]> git.proxmox.com Git - mirror_qemu.git/blob - kvm-all.c
kvm: Remove static return code of kvm_handle_io
[mirror_qemu.git] / kvm-all.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
10 *
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
13 *
14 */
15
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
20
21 #include <linux/kvm.h>
22
23 #include "qemu-common.h"
24 #include "qemu-barrier.h"
25 #include "sysemu.h"
26 #include "hw/hw.h"
27 #include "gdbstub.h"
28 #include "kvm.h"
29 #include "bswap.h"
30
31 /* This check must be after config-host.h is included */
32 #ifdef CONFIG_EVENTFD
33 #include <sys/eventfd.h>
34 #endif
35
36 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
37 #define PAGE_SIZE TARGET_PAGE_SIZE
38
39 //#define DEBUG_KVM
40
41 #ifdef DEBUG_KVM
42 #define DPRINTF(fmt, ...) \
43 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
44 #else
45 #define DPRINTF(fmt, ...) \
46 do { } while (0)
47 #endif
48
49 typedef struct KVMSlot
50 {
51 target_phys_addr_t start_addr;
52 ram_addr_t memory_size;
53 ram_addr_t phys_offset;
54 int slot;
55 int flags;
56 } KVMSlot;
57
58 typedef struct kvm_dirty_log KVMDirtyLog;
59
60 struct KVMState
61 {
62 KVMSlot slots[32];
63 int fd;
64 int vmfd;
65 int coalesced_mmio;
66 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
67 int broken_set_mem_region;
68 int migration_log;
69 int vcpu_events;
70 int robust_singlestep;
71 int debugregs;
72 #ifdef KVM_CAP_SET_GUEST_DEBUG
73 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
74 #endif
75 int irqchip_in_kernel;
76 int pit_in_kernel;
77 int xsave, xcrs;
78 int many_ioeventfds;
79 };
80
81 static KVMState *kvm_state;
82
83 static const KVMCapabilityInfo kvm_required_capabilites[] = {
84 KVM_CAP_INFO(USER_MEMORY),
85 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
86 KVM_CAP_LAST_INFO
87 };
88
89 static KVMSlot *kvm_alloc_slot(KVMState *s)
90 {
91 int i;
92
93 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
94 /* KVM private memory slots */
95 if (i >= 8 && i < 12) {
96 continue;
97 }
98 if (s->slots[i].memory_size == 0) {
99 return &s->slots[i];
100 }
101 }
102
103 fprintf(stderr, "%s: no free slot available\n", __func__);
104 abort();
105 }
106
107 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
108 target_phys_addr_t start_addr,
109 target_phys_addr_t end_addr)
110 {
111 int i;
112
113 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
114 KVMSlot *mem = &s->slots[i];
115
116 if (start_addr == mem->start_addr &&
117 end_addr == mem->start_addr + mem->memory_size) {
118 return mem;
119 }
120 }
121
122 return NULL;
123 }
124
125 /*
126 * Find overlapping slot with lowest start address
127 */
128 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
129 target_phys_addr_t start_addr,
130 target_phys_addr_t end_addr)
131 {
132 KVMSlot *found = NULL;
133 int i;
134
135 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
136 KVMSlot *mem = &s->slots[i];
137
138 if (mem->memory_size == 0 ||
139 (found && found->start_addr < mem->start_addr)) {
140 continue;
141 }
142
143 if (end_addr > mem->start_addr &&
144 start_addr < mem->start_addr + mem->memory_size) {
145 found = mem;
146 }
147 }
148
149 return found;
150 }
151
152 int kvm_physical_memory_addr_from_ram(KVMState *s, ram_addr_t ram_addr,
153 target_phys_addr_t *phys_addr)
154 {
155 int i;
156
157 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
158 KVMSlot *mem = &s->slots[i];
159
160 if (ram_addr >= mem->phys_offset &&
161 ram_addr < mem->phys_offset + mem->memory_size) {
162 *phys_addr = mem->start_addr + (ram_addr - mem->phys_offset);
163 return 1;
164 }
165 }
166
167 return 0;
168 }
169
170 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
171 {
172 struct kvm_userspace_memory_region mem;
173
174 mem.slot = slot->slot;
175 mem.guest_phys_addr = slot->start_addr;
176 mem.memory_size = slot->memory_size;
177 mem.userspace_addr = (unsigned long)qemu_safe_ram_ptr(slot->phys_offset);
178 mem.flags = slot->flags;
179 if (s->migration_log) {
180 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
181 }
182 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
183 }
184
185 static void kvm_reset_vcpu(void *opaque)
186 {
187 CPUState *env = opaque;
188
189 kvm_arch_reset_vcpu(env);
190 }
191
192 int kvm_irqchip_in_kernel(void)
193 {
194 return kvm_state->irqchip_in_kernel;
195 }
196
197 int kvm_pit_in_kernel(void)
198 {
199 return kvm_state->pit_in_kernel;
200 }
201
202 int kvm_init_vcpu(CPUState *env)
203 {
204 KVMState *s = kvm_state;
205 long mmap_size;
206 int ret;
207
208 DPRINTF("kvm_init_vcpu\n");
209
210 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
211 if (ret < 0) {
212 DPRINTF("kvm_create_vcpu failed\n");
213 goto err;
214 }
215
216 env->kvm_fd = ret;
217 env->kvm_state = s;
218
219 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
220 if (mmap_size < 0) {
221 ret = mmap_size;
222 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
223 goto err;
224 }
225
226 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
227 env->kvm_fd, 0);
228 if (env->kvm_run == MAP_FAILED) {
229 ret = -errno;
230 DPRINTF("mmap'ing vcpu state failed\n");
231 goto err;
232 }
233
234 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
235 s->coalesced_mmio_ring =
236 (void *)env->kvm_run + s->coalesced_mmio * PAGE_SIZE;
237 }
238
239 ret = kvm_arch_init_vcpu(env);
240 if (ret == 0) {
241 qemu_register_reset(kvm_reset_vcpu, env);
242 kvm_arch_reset_vcpu(env);
243 }
244 err:
245 return ret;
246 }
247
248 /*
249 * dirty pages logging control
250 */
251 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
252 ram_addr_t size, int flags, int mask)
253 {
254 KVMState *s = kvm_state;
255 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
256 int old_flags;
257
258 if (mem == NULL) {
259 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
260 TARGET_FMT_plx "\n", __func__, phys_addr,
261 (target_phys_addr_t)(phys_addr + size - 1));
262 return -EINVAL;
263 }
264
265 old_flags = mem->flags;
266
267 flags = (mem->flags & ~mask) | flags;
268 mem->flags = flags;
269
270 /* If nothing changed effectively, no need to issue ioctl */
271 if (s->migration_log) {
272 flags |= KVM_MEM_LOG_DIRTY_PAGES;
273 }
274 if (flags == old_flags) {
275 return 0;
276 }
277
278 return kvm_set_user_memory_region(s, mem);
279 }
280
281 int kvm_log_start(target_phys_addr_t phys_addr, ram_addr_t size)
282 {
283 return kvm_dirty_pages_log_change(phys_addr, size, KVM_MEM_LOG_DIRTY_PAGES,
284 KVM_MEM_LOG_DIRTY_PAGES);
285 }
286
287 int kvm_log_stop(target_phys_addr_t phys_addr, ram_addr_t size)
288 {
289 return kvm_dirty_pages_log_change(phys_addr, size, 0,
290 KVM_MEM_LOG_DIRTY_PAGES);
291 }
292
293 static int kvm_set_migration_log(int enable)
294 {
295 KVMState *s = kvm_state;
296 KVMSlot *mem;
297 int i, err;
298
299 s->migration_log = enable;
300
301 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
302 mem = &s->slots[i];
303
304 if (!mem->memory_size) {
305 continue;
306 }
307 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
308 continue;
309 }
310 err = kvm_set_user_memory_region(s, mem);
311 if (err) {
312 return err;
313 }
314 }
315 return 0;
316 }
317
318 /* get kvm's dirty pages bitmap and update qemu's */
319 static int kvm_get_dirty_pages_log_range(unsigned long start_addr,
320 unsigned long *bitmap,
321 unsigned long offset,
322 unsigned long mem_size)
323 {
324 unsigned int i, j;
325 unsigned long page_number, addr, addr1, c;
326 ram_addr_t ram_addr;
327 unsigned int len = ((mem_size / TARGET_PAGE_SIZE) + HOST_LONG_BITS - 1) /
328 HOST_LONG_BITS;
329
330 /*
331 * bitmap-traveling is faster than memory-traveling (for addr...)
332 * especially when most of the memory is not dirty.
333 */
334 for (i = 0; i < len; i++) {
335 if (bitmap[i] != 0) {
336 c = leul_to_cpu(bitmap[i]);
337 do {
338 j = ffsl(c) - 1;
339 c &= ~(1ul << j);
340 page_number = i * HOST_LONG_BITS + j;
341 addr1 = page_number * TARGET_PAGE_SIZE;
342 addr = offset + addr1;
343 ram_addr = cpu_get_physical_page_desc(addr);
344 cpu_physical_memory_set_dirty(ram_addr);
345 } while (c != 0);
346 }
347 }
348 return 0;
349 }
350
351 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
352
353 /**
354 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
355 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
356 * This means all bits are set to dirty.
357 *
358 * @start_add: start of logged region.
359 * @end_addr: end of logged region.
360 */
361 static int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
362 target_phys_addr_t end_addr)
363 {
364 KVMState *s = kvm_state;
365 unsigned long size, allocated_size = 0;
366 KVMDirtyLog d;
367 KVMSlot *mem;
368 int ret = 0;
369
370 d.dirty_bitmap = NULL;
371 while (start_addr < end_addr) {
372 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
373 if (mem == NULL) {
374 break;
375 }
376
377 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS), HOST_LONG_BITS) / 8;
378 if (!d.dirty_bitmap) {
379 d.dirty_bitmap = qemu_malloc(size);
380 } else if (size > allocated_size) {
381 d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size);
382 }
383 allocated_size = size;
384 memset(d.dirty_bitmap, 0, allocated_size);
385
386 d.slot = mem->slot;
387
388 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
389 DPRINTF("ioctl failed %d\n", errno);
390 ret = -1;
391 break;
392 }
393
394 kvm_get_dirty_pages_log_range(mem->start_addr, d.dirty_bitmap,
395 mem->start_addr, mem->memory_size);
396 start_addr = mem->start_addr + mem->memory_size;
397 }
398 qemu_free(d.dirty_bitmap);
399
400 return ret;
401 }
402
403 int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
404 {
405 int ret = -ENOSYS;
406 KVMState *s = kvm_state;
407
408 if (s->coalesced_mmio) {
409 struct kvm_coalesced_mmio_zone zone;
410
411 zone.addr = start;
412 zone.size = size;
413
414 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
415 }
416
417 return ret;
418 }
419
420 int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
421 {
422 int ret = -ENOSYS;
423 KVMState *s = kvm_state;
424
425 if (s->coalesced_mmio) {
426 struct kvm_coalesced_mmio_zone zone;
427
428 zone.addr = start;
429 zone.size = size;
430
431 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
432 }
433
434 return ret;
435 }
436
437 int kvm_check_extension(KVMState *s, unsigned int extension)
438 {
439 int ret;
440
441 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
442 if (ret < 0) {
443 ret = 0;
444 }
445
446 return ret;
447 }
448
449 static int kvm_check_many_ioeventfds(void)
450 {
451 /* Userspace can use ioeventfd for io notification. This requires a host
452 * that supports eventfd(2) and an I/O thread; since eventfd does not
453 * support SIGIO it cannot interrupt the vcpu.
454 *
455 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
456 * can avoid creating too many ioeventfds.
457 */
458 #if defined(CONFIG_EVENTFD) && defined(CONFIG_IOTHREAD)
459 int ioeventfds[7];
460 int i, ret = 0;
461 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
462 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
463 if (ioeventfds[i] < 0) {
464 break;
465 }
466 ret = kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, true);
467 if (ret < 0) {
468 close(ioeventfds[i]);
469 break;
470 }
471 }
472
473 /* Decide whether many devices are supported or not */
474 ret = i == ARRAY_SIZE(ioeventfds);
475
476 while (i-- > 0) {
477 kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, false);
478 close(ioeventfds[i]);
479 }
480 return ret;
481 #else
482 return 0;
483 #endif
484 }
485
486 static const KVMCapabilityInfo *
487 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
488 {
489 while (list->name) {
490 if (!kvm_check_extension(s, list->value)) {
491 return list;
492 }
493 list++;
494 }
495 return NULL;
496 }
497
498 static void kvm_set_phys_mem(target_phys_addr_t start_addr, ram_addr_t size,
499 ram_addr_t phys_offset)
500 {
501 KVMState *s = kvm_state;
502 ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
503 KVMSlot *mem, old;
504 int err;
505
506 /* kvm works in page size chunks, but the function may be called
507 with sub-page size and unaligned start address. */
508 size = TARGET_PAGE_ALIGN(size);
509 start_addr = TARGET_PAGE_ALIGN(start_addr);
510
511 /* KVM does not support read-only slots */
512 phys_offset &= ~IO_MEM_ROM;
513
514 while (1) {
515 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
516 if (!mem) {
517 break;
518 }
519
520 if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
521 (start_addr + size <= mem->start_addr + mem->memory_size) &&
522 (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
523 /* The new slot fits into the existing one and comes with
524 * identical parameters - nothing to be done. */
525 return;
526 }
527
528 old = *mem;
529
530 /* unregister the overlapping slot */
531 mem->memory_size = 0;
532 err = kvm_set_user_memory_region(s, mem);
533 if (err) {
534 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
535 __func__, strerror(-err));
536 abort();
537 }
538
539 /* Workaround for older KVM versions: we can't join slots, even not by
540 * unregistering the previous ones and then registering the larger
541 * slot. We have to maintain the existing fragmentation. Sigh.
542 *
543 * This workaround assumes that the new slot starts at the same
544 * address as the first existing one. If not or if some overlapping
545 * slot comes around later, we will fail (not seen in practice so far)
546 * - and actually require a recent KVM version. */
547 if (s->broken_set_mem_region &&
548 old.start_addr == start_addr && old.memory_size < size &&
549 flags < IO_MEM_UNASSIGNED) {
550 mem = kvm_alloc_slot(s);
551 mem->memory_size = old.memory_size;
552 mem->start_addr = old.start_addr;
553 mem->phys_offset = old.phys_offset;
554 mem->flags = 0;
555
556 err = kvm_set_user_memory_region(s, mem);
557 if (err) {
558 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
559 strerror(-err));
560 abort();
561 }
562
563 start_addr += old.memory_size;
564 phys_offset += old.memory_size;
565 size -= old.memory_size;
566 continue;
567 }
568
569 /* register prefix slot */
570 if (old.start_addr < start_addr) {
571 mem = kvm_alloc_slot(s);
572 mem->memory_size = start_addr - old.start_addr;
573 mem->start_addr = old.start_addr;
574 mem->phys_offset = old.phys_offset;
575 mem->flags = 0;
576
577 err = kvm_set_user_memory_region(s, mem);
578 if (err) {
579 fprintf(stderr, "%s: error registering prefix slot: %s\n",
580 __func__, strerror(-err));
581 abort();
582 }
583 }
584
585 /* register suffix slot */
586 if (old.start_addr + old.memory_size > start_addr + size) {
587 ram_addr_t size_delta;
588
589 mem = kvm_alloc_slot(s);
590 mem->start_addr = start_addr + size;
591 size_delta = mem->start_addr - old.start_addr;
592 mem->memory_size = old.memory_size - size_delta;
593 mem->phys_offset = old.phys_offset + size_delta;
594 mem->flags = 0;
595
596 err = kvm_set_user_memory_region(s, mem);
597 if (err) {
598 fprintf(stderr, "%s: error registering suffix slot: %s\n",
599 __func__, strerror(-err));
600 abort();
601 }
602 }
603 }
604
605 /* in case the KVM bug workaround already "consumed" the new slot */
606 if (!size) {
607 return;
608 }
609 /* KVM does not need to know about this memory */
610 if (flags >= IO_MEM_UNASSIGNED) {
611 return;
612 }
613 mem = kvm_alloc_slot(s);
614 mem->memory_size = size;
615 mem->start_addr = start_addr;
616 mem->phys_offset = phys_offset;
617 mem->flags = 0;
618
619 err = kvm_set_user_memory_region(s, mem);
620 if (err) {
621 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
622 strerror(-err));
623 abort();
624 }
625 }
626
627 static void kvm_client_set_memory(struct CPUPhysMemoryClient *client,
628 target_phys_addr_t start_addr,
629 ram_addr_t size, ram_addr_t phys_offset)
630 {
631 kvm_set_phys_mem(start_addr, size, phys_offset);
632 }
633
634 static int kvm_client_sync_dirty_bitmap(struct CPUPhysMemoryClient *client,
635 target_phys_addr_t start_addr,
636 target_phys_addr_t end_addr)
637 {
638 return kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
639 }
640
641 static int kvm_client_migration_log(struct CPUPhysMemoryClient *client,
642 int enable)
643 {
644 return kvm_set_migration_log(enable);
645 }
646
647 static CPUPhysMemoryClient kvm_cpu_phys_memory_client = {
648 .set_memory = kvm_client_set_memory,
649 .sync_dirty_bitmap = kvm_client_sync_dirty_bitmap,
650 .migration_log = kvm_client_migration_log,
651 };
652
653 int kvm_init(void)
654 {
655 static const char upgrade_note[] =
656 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
657 "(see http://sourceforge.net/projects/kvm).\n";
658 KVMState *s;
659 const KVMCapabilityInfo *missing_cap;
660 int ret;
661 int i;
662
663 s = qemu_mallocz(sizeof(KVMState));
664
665 #ifdef KVM_CAP_SET_GUEST_DEBUG
666 QTAILQ_INIT(&s->kvm_sw_breakpoints);
667 #endif
668 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
669 s->slots[i].slot = i;
670 }
671 s->vmfd = -1;
672 s->fd = qemu_open("/dev/kvm", O_RDWR);
673 if (s->fd == -1) {
674 fprintf(stderr, "Could not access KVM kernel module: %m\n");
675 ret = -errno;
676 goto err;
677 }
678
679 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
680 if (ret < KVM_API_VERSION) {
681 if (ret > 0) {
682 ret = -EINVAL;
683 }
684 fprintf(stderr, "kvm version too old\n");
685 goto err;
686 }
687
688 if (ret > KVM_API_VERSION) {
689 ret = -EINVAL;
690 fprintf(stderr, "kvm version not supported\n");
691 goto err;
692 }
693
694 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
695 if (s->vmfd < 0) {
696 #ifdef TARGET_S390X
697 fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
698 "your host kernel command line\n");
699 #endif
700 goto err;
701 }
702
703 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
704 if (!missing_cap) {
705 missing_cap =
706 kvm_check_extension_list(s, kvm_arch_required_capabilities);
707 }
708 if (missing_cap) {
709 ret = -EINVAL;
710 fprintf(stderr, "kvm does not support %s\n%s",
711 missing_cap->name, upgrade_note);
712 goto err;
713 }
714
715 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
716
717 s->broken_set_mem_region = 1;
718 #ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
719 ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
720 if (ret > 0) {
721 s->broken_set_mem_region = 0;
722 }
723 #endif
724
725 s->vcpu_events = 0;
726 #ifdef KVM_CAP_VCPU_EVENTS
727 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
728 #endif
729
730 s->robust_singlestep = 0;
731 #ifdef KVM_CAP_X86_ROBUST_SINGLESTEP
732 s->robust_singlestep =
733 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
734 #endif
735
736 s->debugregs = 0;
737 #ifdef KVM_CAP_DEBUGREGS
738 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
739 #endif
740
741 s->xsave = 0;
742 #ifdef KVM_CAP_XSAVE
743 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
744 #endif
745
746 s->xcrs = 0;
747 #ifdef KVM_CAP_XCRS
748 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
749 #endif
750
751 ret = kvm_arch_init(s);
752 if (ret < 0) {
753 goto err;
754 }
755
756 kvm_state = s;
757 cpu_register_phys_memory_client(&kvm_cpu_phys_memory_client);
758
759 s->many_ioeventfds = kvm_check_many_ioeventfds();
760
761 return 0;
762
763 err:
764 if (s) {
765 if (s->vmfd != -1) {
766 close(s->vmfd);
767 }
768 if (s->fd != -1) {
769 close(s->fd);
770 }
771 }
772 qemu_free(s);
773
774 return ret;
775 }
776
777 static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
778 uint32_t count)
779 {
780 int i;
781 uint8_t *ptr = data;
782
783 for (i = 0; i < count; i++) {
784 if (direction == KVM_EXIT_IO_IN) {
785 switch (size) {
786 case 1:
787 stb_p(ptr, cpu_inb(port));
788 break;
789 case 2:
790 stw_p(ptr, cpu_inw(port));
791 break;
792 case 4:
793 stl_p(ptr, cpu_inl(port));
794 break;
795 }
796 } else {
797 switch (size) {
798 case 1:
799 cpu_outb(port, ldub_p(ptr));
800 break;
801 case 2:
802 cpu_outw(port, lduw_p(ptr));
803 break;
804 case 4:
805 cpu_outl(port, ldl_p(ptr));
806 break;
807 }
808 }
809
810 ptr += size;
811 }
812 }
813
814 #ifdef KVM_CAP_INTERNAL_ERROR_DATA
815 static int kvm_handle_internal_error(CPUState *env, struct kvm_run *run)
816 {
817 fprintf(stderr, "KVM internal error.");
818 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
819 int i;
820
821 fprintf(stderr, " Suberror: %d\n", run->internal.suberror);
822 for (i = 0; i < run->internal.ndata; ++i) {
823 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
824 i, (uint64_t)run->internal.data[i]);
825 }
826 } else {
827 fprintf(stderr, "\n");
828 }
829 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
830 fprintf(stderr, "emulation failure\n");
831 if (!kvm_arch_stop_on_emulation_error(env)) {
832 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
833 return 0;
834 }
835 }
836 /* FIXME: Should trigger a qmp message to let management know
837 * something went wrong.
838 */
839 return -1;
840 }
841 #endif
842
843 void kvm_flush_coalesced_mmio_buffer(void)
844 {
845 KVMState *s = kvm_state;
846 if (s->coalesced_mmio_ring) {
847 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
848 while (ring->first != ring->last) {
849 struct kvm_coalesced_mmio *ent;
850
851 ent = &ring->coalesced_mmio[ring->first];
852
853 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
854 smp_wmb();
855 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
856 }
857 }
858 }
859
860 static void do_kvm_cpu_synchronize_state(void *_env)
861 {
862 CPUState *env = _env;
863
864 if (!env->kvm_vcpu_dirty) {
865 kvm_arch_get_registers(env);
866 env->kvm_vcpu_dirty = 1;
867 }
868 }
869
870 void kvm_cpu_synchronize_state(CPUState *env)
871 {
872 if (!env->kvm_vcpu_dirty) {
873 run_on_cpu(env, do_kvm_cpu_synchronize_state, env);
874 }
875 }
876
877 void kvm_cpu_synchronize_post_reset(CPUState *env)
878 {
879 kvm_arch_put_registers(env, KVM_PUT_RESET_STATE);
880 env->kvm_vcpu_dirty = 0;
881 }
882
883 void kvm_cpu_synchronize_post_init(CPUState *env)
884 {
885 kvm_arch_put_registers(env, KVM_PUT_FULL_STATE);
886 env->kvm_vcpu_dirty = 0;
887 }
888
889 int kvm_cpu_exec(CPUState *env)
890 {
891 struct kvm_run *run = env->kvm_run;
892 int ret;
893
894 DPRINTF("kvm_cpu_exec()\n");
895
896 if (kvm_arch_process_irqchip_events(env)) {
897 env->exit_request = 0;
898 env->exception_index = EXCP_HLT;
899 return 0;
900 }
901
902 do {
903 if (env->kvm_vcpu_dirty) {
904 kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE);
905 env->kvm_vcpu_dirty = 0;
906 }
907
908 kvm_arch_pre_run(env, run);
909 if (env->exit_request) {
910 DPRINTF("interrupt exit requested\n");
911 /*
912 * KVM requires us to reenter the kernel after IO exits to complete
913 * instruction emulation. This self-signal will ensure that we
914 * leave ASAP again.
915 */
916 qemu_cpu_kick_self();
917 }
918 cpu_single_env = NULL;
919 qemu_mutex_unlock_iothread();
920
921 ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
922
923 qemu_mutex_lock_iothread();
924 cpu_single_env = env;
925 kvm_arch_post_run(env, run);
926
927 kvm_flush_coalesced_mmio_buffer();
928
929 if (ret == -EINTR || ret == -EAGAIN) {
930 cpu_exit(env);
931 DPRINTF("io window exit\n");
932 ret = 0;
933 break;
934 }
935
936 if (ret < 0) {
937 DPRINTF("kvm run failed %s\n", strerror(-ret));
938 abort();
939 }
940
941 ret = 0; /* exit loop */
942 switch (run->exit_reason) {
943 case KVM_EXIT_IO:
944 DPRINTF("handle_io\n");
945 kvm_handle_io(run->io.port,
946 (uint8_t *)run + run->io.data_offset,
947 run->io.direction,
948 run->io.size,
949 run->io.count);
950 ret = 1;
951 break;
952 case KVM_EXIT_MMIO:
953 DPRINTF("handle_mmio\n");
954 cpu_physical_memory_rw(run->mmio.phys_addr,
955 run->mmio.data,
956 run->mmio.len,
957 run->mmio.is_write);
958 ret = 1;
959 break;
960 case KVM_EXIT_IRQ_WINDOW_OPEN:
961 DPRINTF("irq_window_open\n");
962 break;
963 case KVM_EXIT_SHUTDOWN:
964 DPRINTF("shutdown\n");
965 qemu_system_reset_request();
966 ret = 1;
967 break;
968 case KVM_EXIT_UNKNOWN:
969 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
970 (uint64_t)run->hw.hardware_exit_reason);
971 ret = -1;
972 break;
973 #ifdef KVM_CAP_INTERNAL_ERROR_DATA
974 case KVM_EXIT_INTERNAL_ERROR:
975 ret = kvm_handle_internal_error(env, run);
976 break;
977 #endif
978 case KVM_EXIT_DEBUG:
979 DPRINTF("kvm_exit_debug\n");
980 #ifdef KVM_CAP_SET_GUEST_DEBUG
981 if (kvm_arch_debug(&run->debug.arch)) {
982 env->exception_index = EXCP_DEBUG;
983 return 0;
984 }
985 /* re-enter, this exception was guest-internal */
986 ret = 1;
987 #endif /* KVM_CAP_SET_GUEST_DEBUG */
988 break;
989 default:
990 DPRINTF("kvm_arch_handle_exit\n");
991 ret = kvm_arch_handle_exit(env, run);
992 break;
993 }
994 } while (ret > 0);
995
996 if (ret < 0) {
997 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
998 vm_stop(0);
999 env->exit_request = 1;
1000 }
1001 if (env->exit_request) {
1002 env->exit_request = 0;
1003 env->exception_index = EXCP_INTERRUPT;
1004 }
1005
1006 return ret;
1007 }
1008
1009 int kvm_ioctl(KVMState *s, int type, ...)
1010 {
1011 int ret;
1012 void *arg;
1013 va_list ap;
1014
1015 va_start(ap, type);
1016 arg = va_arg(ap, void *);
1017 va_end(ap);
1018
1019 ret = ioctl(s->fd, type, arg);
1020 if (ret == -1) {
1021 ret = -errno;
1022 }
1023 return ret;
1024 }
1025
1026 int kvm_vm_ioctl(KVMState *s, int type, ...)
1027 {
1028 int ret;
1029 void *arg;
1030 va_list ap;
1031
1032 va_start(ap, type);
1033 arg = va_arg(ap, void *);
1034 va_end(ap);
1035
1036 ret = ioctl(s->vmfd, type, arg);
1037 if (ret == -1) {
1038 ret = -errno;
1039 }
1040 return ret;
1041 }
1042
1043 int kvm_vcpu_ioctl(CPUState *env, int type, ...)
1044 {
1045 int ret;
1046 void *arg;
1047 va_list ap;
1048
1049 va_start(ap, type);
1050 arg = va_arg(ap, void *);
1051 va_end(ap);
1052
1053 ret = ioctl(env->kvm_fd, type, arg);
1054 if (ret == -1) {
1055 ret = -errno;
1056 }
1057 return ret;
1058 }
1059
1060 int kvm_has_sync_mmu(void)
1061 {
1062 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
1063 }
1064
1065 int kvm_has_vcpu_events(void)
1066 {
1067 return kvm_state->vcpu_events;
1068 }
1069
1070 int kvm_has_robust_singlestep(void)
1071 {
1072 return kvm_state->robust_singlestep;
1073 }
1074
1075 int kvm_has_debugregs(void)
1076 {
1077 return kvm_state->debugregs;
1078 }
1079
1080 int kvm_has_xsave(void)
1081 {
1082 return kvm_state->xsave;
1083 }
1084
1085 int kvm_has_xcrs(void)
1086 {
1087 return kvm_state->xcrs;
1088 }
1089
1090 int kvm_has_many_ioeventfds(void)
1091 {
1092 if (!kvm_enabled()) {
1093 return 0;
1094 }
1095 return kvm_state->many_ioeventfds;
1096 }
1097
1098 void kvm_setup_guest_memory(void *start, size_t size)
1099 {
1100 if (!kvm_has_sync_mmu()) {
1101 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
1102
1103 if (ret) {
1104 perror("qemu_madvise");
1105 fprintf(stderr,
1106 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1107 exit(1);
1108 }
1109 }
1110 }
1111
1112 #ifdef KVM_CAP_SET_GUEST_DEBUG
1113 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
1114 target_ulong pc)
1115 {
1116 struct kvm_sw_breakpoint *bp;
1117
1118 QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
1119 if (bp->pc == pc) {
1120 return bp;
1121 }
1122 }
1123 return NULL;
1124 }
1125
1126 int kvm_sw_breakpoints_active(CPUState *env)
1127 {
1128 return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
1129 }
1130
1131 struct kvm_set_guest_debug_data {
1132 struct kvm_guest_debug dbg;
1133 CPUState *env;
1134 int err;
1135 };
1136
1137 static void kvm_invoke_set_guest_debug(void *data)
1138 {
1139 struct kvm_set_guest_debug_data *dbg_data = data;
1140 CPUState *env = dbg_data->env;
1141
1142 dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
1143 }
1144
1145 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1146 {
1147 struct kvm_set_guest_debug_data data;
1148
1149 data.dbg.control = reinject_trap;
1150
1151 if (env->singlestep_enabled) {
1152 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1153 }
1154 kvm_arch_update_guest_debug(env, &data.dbg);
1155 data.env = env;
1156
1157 run_on_cpu(env, kvm_invoke_set_guest_debug, &data);
1158 return data.err;
1159 }
1160
1161 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1162 target_ulong len, int type)
1163 {
1164 struct kvm_sw_breakpoint *bp;
1165 CPUState *env;
1166 int err;
1167
1168 if (type == GDB_BREAKPOINT_SW) {
1169 bp = kvm_find_sw_breakpoint(current_env, addr);
1170 if (bp) {
1171 bp->use_count++;
1172 return 0;
1173 }
1174
1175 bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
1176 if (!bp) {
1177 return -ENOMEM;
1178 }
1179
1180 bp->pc = addr;
1181 bp->use_count = 1;
1182 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
1183 if (err) {
1184 free(bp);
1185 return err;
1186 }
1187
1188 QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
1189 bp, entry);
1190 } else {
1191 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1192 if (err) {
1193 return err;
1194 }
1195 }
1196
1197 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1198 err = kvm_update_guest_debug(env, 0);
1199 if (err) {
1200 return err;
1201 }
1202 }
1203 return 0;
1204 }
1205
1206 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1207 target_ulong len, int type)
1208 {
1209 struct kvm_sw_breakpoint *bp;
1210 CPUState *env;
1211 int err;
1212
1213 if (type == GDB_BREAKPOINT_SW) {
1214 bp = kvm_find_sw_breakpoint(current_env, addr);
1215 if (!bp) {
1216 return -ENOENT;
1217 }
1218
1219 if (bp->use_count > 1) {
1220 bp->use_count--;
1221 return 0;
1222 }
1223
1224 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1225 if (err) {
1226 return err;
1227 }
1228
1229 QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1230 qemu_free(bp);
1231 } else {
1232 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1233 if (err) {
1234 return err;
1235 }
1236 }
1237
1238 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1239 err = kvm_update_guest_debug(env, 0);
1240 if (err) {
1241 return err;
1242 }
1243 }
1244 return 0;
1245 }
1246
1247 void kvm_remove_all_breakpoints(CPUState *current_env)
1248 {
1249 struct kvm_sw_breakpoint *bp, *next;
1250 KVMState *s = current_env->kvm_state;
1251 CPUState *env;
1252
1253 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1254 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1255 /* Try harder to find a CPU that currently sees the breakpoint. */
1256 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1257 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0) {
1258 break;
1259 }
1260 }
1261 }
1262 }
1263 kvm_arch_remove_all_hw_breakpoints();
1264
1265 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1266 kvm_update_guest_debug(env, 0);
1267 }
1268 }
1269
1270 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1271
1272 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1273 {
1274 return -EINVAL;
1275 }
1276
1277 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1278 target_ulong len, int type)
1279 {
1280 return -EINVAL;
1281 }
1282
1283 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1284 target_ulong len, int type)
1285 {
1286 return -EINVAL;
1287 }
1288
1289 void kvm_remove_all_breakpoints(CPUState *current_env)
1290 {
1291 }
1292 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
1293
1294 int kvm_set_signal_mask(CPUState *env, const sigset_t *sigset)
1295 {
1296 struct kvm_signal_mask *sigmask;
1297 int r;
1298
1299 if (!sigset) {
1300 return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
1301 }
1302
1303 sigmask = qemu_malloc(sizeof(*sigmask) + sizeof(*sigset));
1304
1305 sigmask->len = 8;
1306 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1307 r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
1308 free(sigmask);
1309
1310 return r;
1311 }
1312
1313 int kvm_set_ioeventfd_mmio_long(int fd, uint32_t addr, uint32_t val, bool assign)
1314 {
1315 #ifdef KVM_IOEVENTFD
1316 int ret;
1317 struct kvm_ioeventfd iofd;
1318
1319 iofd.datamatch = val;
1320 iofd.addr = addr;
1321 iofd.len = 4;
1322 iofd.flags = KVM_IOEVENTFD_FLAG_DATAMATCH;
1323 iofd.fd = fd;
1324
1325 if (!kvm_enabled()) {
1326 return -ENOSYS;
1327 }
1328
1329 if (!assign) {
1330 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1331 }
1332
1333 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1334
1335 if (ret < 0) {
1336 return -errno;
1337 }
1338
1339 return 0;
1340 #else
1341 return -ENOSYS;
1342 #endif
1343 }
1344
1345 int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign)
1346 {
1347 #ifdef KVM_IOEVENTFD
1348 struct kvm_ioeventfd kick = {
1349 .datamatch = val,
1350 .addr = addr,
1351 .len = 2,
1352 .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO,
1353 .fd = fd,
1354 };
1355 int r;
1356 if (!kvm_enabled()) {
1357 return -ENOSYS;
1358 }
1359 if (!assign) {
1360 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1361 }
1362 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1363 if (r < 0) {
1364 return r;
1365 }
1366 return 0;
1367 #else
1368 return -ENOSYS;
1369 #endif
1370 }
1371
1372 int kvm_on_sigbus_vcpu(CPUState *env, int code, void *addr)
1373 {
1374 return kvm_arch_on_sigbus_vcpu(env, code, addr);
1375 }
1376
1377 int kvm_on_sigbus(int code, void *addr)
1378 {
1379 return kvm_arch_on_sigbus(code, addr);
1380 }