]> git.proxmox.com Git - qemu.git/blob - kvm-all.c
86ddbd6700c83f58c84559f5714f601ba20d489b
[qemu.git] / kvm-all.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
10 *
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
13 *
14 */
15
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
20
21 #include <linux/kvm.h>
22
23 #include "qemu-common.h"
24 #include "qemu-barrier.h"
25 #include "sysemu.h"
26 #include "hw/hw.h"
27 #include "gdbstub.h"
28 #include "kvm.h"
29 #include "bswap.h"
30
31 /* This check must be after config-host.h is included */
32 #ifdef CONFIG_EVENTFD
33 #include <sys/eventfd.h>
34 #endif
35
36 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
37 #define PAGE_SIZE TARGET_PAGE_SIZE
38
39 //#define DEBUG_KVM
40
41 #ifdef DEBUG_KVM
42 #define DPRINTF(fmt, ...) \
43 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
44 #else
45 #define DPRINTF(fmt, ...) \
46 do { } while (0)
47 #endif
48
49 typedef struct KVMSlot
50 {
51 target_phys_addr_t start_addr;
52 ram_addr_t memory_size;
53 ram_addr_t phys_offset;
54 int slot;
55 int flags;
56 } KVMSlot;
57
58 typedef struct kvm_dirty_log KVMDirtyLog;
59
60 struct KVMState
61 {
62 KVMSlot slots[32];
63 int fd;
64 int vmfd;
65 int coalesced_mmio;
66 #ifdef KVM_CAP_COALESCED_MMIO
67 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
68 #endif
69 int broken_set_mem_region;
70 int migration_log;
71 int vcpu_events;
72 int robust_singlestep;
73 int debugregs;
74 #ifdef KVM_CAP_SET_GUEST_DEBUG
75 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
76 #endif
77 int irqchip_in_kernel;
78 int pit_in_kernel;
79 int xsave, xcrs;
80 int many_ioeventfds;
81 };
82
83 static KVMState *kvm_state;
84
85 static KVMSlot *kvm_alloc_slot(KVMState *s)
86 {
87 int i;
88
89 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
90 /* KVM private memory slots */
91 if (i >= 8 && i < 12) {
92 continue;
93 }
94 if (s->slots[i].memory_size == 0) {
95 return &s->slots[i];
96 }
97 }
98
99 fprintf(stderr, "%s: no free slot available\n", __func__);
100 abort();
101 }
102
103 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
104 target_phys_addr_t start_addr,
105 target_phys_addr_t end_addr)
106 {
107 int i;
108
109 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
110 KVMSlot *mem = &s->slots[i];
111
112 if (start_addr == mem->start_addr &&
113 end_addr == mem->start_addr + mem->memory_size) {
114 return mem;
115 }
116 }
117
118 return NULL;
119 }
120
121 /*
122 * Find overlapping slot with lowest start address
123 */
124 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
125 target_phys_addr_t start_addr,
126 target_phys_addr_t end_addr)
127 {
128 KVMSlot *found = NULL;
129 int i;
130
131 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
132 KVMSlot *mem = &s->slots[i];
133
134 if (mem->memory_size == 0 ||
135 (found && found->start_addr < mem->start_addr)) {
136 continue;
137 }
138
139 if (end_addr > mem->start_addr &&
140 start_addr < mem->start_addr + mem->memory_size) {
141 found = mem;
142 }
143 }
144
145 return found;
146 }
147
148 int kvm_physical_memory_addr_from_ram(KVMState *s, ram_addr_t ram_addr,
149 target_phys_addr_t *phys_addr)
150 {
151 int i;
152
153 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
154 KVMSlot *mem = &s->slots[i];
155
156 if (ram_addr >= mem->phys_offset &&
157 ram_addr < mem->phys_offset + mem->memory_size) {
158 *phys_addr = mem->start_addr + (ram_addr - mem->phys_offset);
159 return 1;
160 }
161 }
162
163 return 0;
164 }
165
166 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
167 {
168 struct kvm_userspace_memory_region mem;
169
170 mem.slot = slot->slot;
171 mem.guest_phys_addr = slot->start_addr;
172 mem.memory_size = slot->memory_size;
173 mem.userspace_addr = (unsigned long)qemu_safe_ram_ptr(slot->phys_offset);
174 mem.flags = slot->flags;
175 if (s->migration_log) {
176 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
177 }
178 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
179 }
180
181 static void kvm_reset_vcpu(void *opaque)
182 {
183 CPUState *env = opaque;
184
185 kvm_arch_reset_vcpu(env);
186 }
187
188 int kvm_irqchip_in_kernel(void)
189 {
190 return kvm_state->irqchip_in_kernel;
191 }
192
193 int kvm_pit_in_kernel(void)
194 {
195 return kvm_state->pit_in_kernel;
196 }
197
198
199 int kvm_init_vcpu(CPUState *env)
200 {
201 KVMState *s = kvm_state;
202 long mmap_size;
203 int ret;
204
205 DPRINTF("kvm_init_vcpu\n");
206
207 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
208 if (ret < 0) {
209 DPRINTF("kvm_create_vcpu failed\n");
210 goto err;
211 }
212
213 env->kvm_fd = ret;
214 env->kvm_state = s;
215
216 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
217 if (mmap_size < 0) {
218 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
219 goto err;
220 }
221
222 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
223 env->kvm_fd, 0);
224 if (env->kvm_run == MAP_FAILED) {
225 ret = -errno;
226 DPRINTF("mmap'ing vcpu state failed\n");
227 goto err;
228 }
229
230 #ifdef KVM_CAP_COALESCED_MMIO
231 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
232 s->coalesced_mmio_ring =
233 (void *)env->kvm_run + s->coalesced_mmio * PAGE_SIZE;
234 }
235 #endif
236
237 ret = kvm_arch_init_vcpu(env);
238 if (ret == 0) {
239 qemu_register_reset(kvm_reset_vcpu, env);
240 kvm_arch_reset_vcpu(env);
241 }
242 err:
243 return ret;
244 }
245
246 /*
247 * dirty pages logging control
248 */
249 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
250 ram_addr_t size, int flags, int mask)
251 {
252 KVMState *s = kvm_state;
253 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
254 int old_flags;
255
256 if (mem == NULL) {
257 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
258 TARGET_FMT_plx "\n", __func__, phys_addr,
259 (target_phys_addr_t)(phys_addr + size - 1));
260 return -EINVAL;
261 }
262
263 old_flags = mem->flags;
264
265 flags = (mem->flags & ~mask) | flags;
266 mem->flags = flags;
267
268 /* If nothing changed effectively, no need to issue ioctl */
269 if (s->migration_log) {
270 flags |= KVM_MEM_LOG_DIRTY_PAGES;
271 }
272 if (flags == old_flags) {
273 return 0;
274 }
275
276 return kvm_set_user_memory_region(s, mem);
277 }
278
279 int kvm_log_start(target_phys_addr_t phys_addr, ram_addr_t size)
280 {
281 return kvm_dirty_pages_log_change(phys_addr, size, KVM_MEM_LOG_DIRTY_PAGES,
282 KVM_MEM_LOG_DIRTY_PAGES);
283 }
284
285 int kvm_log_stop(target_phys_addr_t phys_addr, ram_addr_t size)
286 {
287 return kvm_dirty_pages_log_change(phys_addr, size, 0,
288 KVM_MEM_LOG_DIRTY_PAGES);
289 }
290
291 static int kvm_set_migration_log(int enable)
292 {
293 KVMState *s = kvm_state;
294 KVMSlot *mem;
295 int i, err;
296
297 s->migration_log = enable;
298
299 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
300 mem = &s->slots[i];
301
302 if (!mem->memory_size) {
303 continue;
304 }
305 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
306 continue;
307 }
308 err = kvm_set_user_memory_region(s, mem);
309 if (err) {
310 return err;
311 }
312 }
313 return 0;
314 }
315
316 /* get kvm's dirty pages bitmap and update qemu's */
317 static int kvm_get_dirty_pages_log_range(unsigned long start_addr,
318 unsigned long *bitmap,
319 unsigned long offset,
320 unsigned long mem_size)
321 {
322 unsigned int i, j;
323 unsigned long page_number, addr, addr1, c;
324 ram_addr_t ram_addr;
325 unsigned int len = ((mem_size / TARGET_PAGE_SIZE) + HOST_LONG_BITS - 1) /
326 HOST_LONG_BITS;
327
328 /*
329 * bitmap-traveling is faster than memory-traveling (for addr...)
330 * especially when most of the memory is not dirty.
331 */
332 for (i = 0; i < len; i++) {
333 if (bitmap[i] != 0) {
334 c = leul_to_cpu(bitmap[i]);
335 do {
336 j = ffsl(c) - 1;
337 c &= ~(1ul << j);
338 page_number = i * HOST_LONG_BITS + j;
339 addr1 = page_number * TARGET_PAGE_SIZE;
340 addr = offset + addr1;
341 ram_addr = cpu_get_physical_page_desc(addr);
342 cpu_physical_memory_set_dirty(ram_addr);
343 } while (c != 0);
344 }
345 }
346 return 0;
347 }
348
349 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
350
351 /**
352 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
353 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
354 * This means all bits are set to dirty.
355 *
356 * @start_add: start of logged region.
357 * @end_addr: end of logged region.
358 */
359 static int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
360 target_phys_addr_t end_addr)
361 {
362 KVMState *s = kvm_state;
363 unsigned long size, allocated_size = 0;
364 KVMDirtyLog d;
365 KVMSlot *mem;
366 int ret = 0;
367
368 d.dirty_bitmap = NULL;
369 while (start_addr < end_addr) {
370 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
371 if (mem == NULL) {
372 break;
373 }
374
375 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS), HOST_LONG_BITS) / 8;
376 if (!d.dirty_bitmap) {
377 d.dirty_bitmap = qemu_malloc(size);
378 } else if (size > allocated_size) {
379 d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size);
380 }
381 allocated_size = size;
382 memset(d.dirty_bitmap, 0, allocated_size);
383
384 d.slot = mem->slot;
385
386 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
387 DPRINTF("ioctl failed %d\n", errno);
388 ret = -1;
389 break;
390 }
391
392 kvm_get_dirty_pages_log_range(mem->start_addr, d.dirty_bitmap,
393 mem->start_addr, mem->memory_size);
394 start_addr = mem->start_addr + mem->memory_size;
395 }
396 qemu_free(d.dirty_bitmap);
397
398 return ret;
399 }
400
401 int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
402 {
403 int ret = -ENOSYS;
404 #ifdef KVM_CAP_COALESCED_MMIO
405 KVMState *s = kvm_state;
406
407 if (s->coalesced_mmio) {
408 struct kvm_coalesced_mmio_zone zone;
409
410 zone.addr = start;
411 zone.size = size;
412
413 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
414 }
415 #endif
416
417 return ret;
418 }
419
420 int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
421 {
422 int ret = -ENOSYS;
423 #ifdef KVM_CAP_COALESCED_MMIO
424 KVMState *s = kvm_state;
425
426 if (s->coalesced_mmio) {
427 struct kvm_coalesced_mmio_zone zone;
428
429 zone.addr = start;
430 zone.size = size;
431
432 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
433 }
434 #endif
435
436 return ret;
437 }
438
439 int kvm_check_extension(KVMState *s, unsigned int extension)
440 {
441 int ret;
442
443 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
444 if (ret < 0) {
445 ret = 0;
446 }
447
448 return ret;
449 }
450
451 static int kvm_check_many_ioeventfds(void)
452 {
453 /* Older kernels have a 6 device limit on the KVM io bus. Find out so we
454 * can avoid creating too many ioeventfds.
455 */
456 #ifdef CONFIG_EVENTFD
457 int ioeventfds[7];
458 int i, ret = 0;
459 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
460 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
461 if (ioeventfds[i] < 0) {
462 break;
463 }
464 ret = kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, true);
465 if (ret < 0) {
466 close(ioeventfds[i]);
467 break;
468 }
469 }
470
471 /* Decide whether many devices are supported or not */
472 ret = i == ARRAY_SIZE(ioeventfds);
473
474 while (i-- > 0) {
475 kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, false);
476 close(ioeventfds[i]);
477 }
478 return ret;
479 #else
480 return 0;
481 #endif
482 }
483
484 static void kvm_set_phys_mem(target_phys_addr_t start_addr, ram_addr_t size,
485 ram_addr_t phys_offset)
486 {
487 KVMState *s = kvm_state;
488 ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
489 KVMSlot *mem, old;
490 int err;
491
492 /* kvm works in page size chunks, but the function may be called
493 with sub-page size and unaligned start address. */
494 size = TARGET_PAGE_ALIGN(size);
495 start_addr = TARGET_PAGE_ALIGN(start_addr);
496
497 /* KVM does not support read-only slots */
498 phys_offset &= ~IO_MEM_ROM;
499
500 while (1) {
501 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
502 if (!mem) {
503 break;
504 }
505
506 if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
507 (start_addr + size <= mem->start_addr + mem->memory_size) &&
508 (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
509 /* The new slot fits into the existing one and comes with
510 * identical parameters - nothing to be done. */
511 return;
512 }
513
514 old = *mem;
515
516 /* unregister the overlapping slot */
517 mem->memory_size = 0;
518 err = kvm_set_user_memory_region(s, mem);
519 if (err) {
520 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
521 __func__, strerror(-err));
522 abort();
523 }
524
525 /* Workaround for older KVM versions: we can't join slots, even not by
526 * unregistering the previous ones and then registering the larger
527 * slot. We have to maintain the existing fragmentation. Sigh.
528 *
529 * This workaround assumes that the new slot starts at the same
530 * address as the first existing one. If not or if some overlapping
531 * slot comes around later, we will fail (not seen in practice so far)
532 * - and actually require a recent KVM version. */
533 if (s->broken_set_mem_region &&
534 old.start_addr == start_addr && old.memory_size < size &&
535 flags < IO_MEM_UNASSIGNED) {
536 mem = kvm_alloc_slot(s);
537 mem->memory_size = old.memory_size;
538 mem->start_addr = old.start_addr;
539 mem->phys_offset = old.phys_offset;
540 mem->flags = 0;
541
542 err = kvm_set_user_memory_region(s, mem);
543 if (err) {
544 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
545 strerror(-err));
546 abort();
547 }
548
549 start_addr += old.memory_size;
550 phys_offset += old.memory_size;
551 size -= old.memory_size;
552 continue;
553 }
554
555 /* register prefix slot */
556 if (old.start_addr < start_addr) {
557 mem = kvm_alloc_slot(s);
558 mem->memory_size = start_addr - old.start_addr;
559 mem->start_addr = old.start_addr;
560 mem->phys_offset = old.phys_offset;
561 mem->flags = 0;
562
563 err = kvm_set_user_memory_region(s, mem);
564 if (err) {
565 fprintf(stderr, "%s: error registering prefix slot: %s\n",
566 __func__, strerror(-err));
567 abort();
568 }
569 }
570
571 /* register suffix slot */
572 if (old.start_addr + old.memory_size > start_addr + size) {
573 ram_addr_t size_delta;
574
575 mem = kvm_alloc_slot(s);
576 mem->start_addr = start_addr + size;
577 size_delta = mem->start_addr - old.start_addr;
578 mem->memory_size = old.memory_size - size_delta;
579 mem->phys_offset = old.phys_offset + size_delta;
580 mem->flags = 0;
581
582 err = kvm_set_user_memory_region(s, mem);
583 if (err) {
584 fprintf(stderr, "%s: error registering suffix slot: %s\n",
585 __func__, strerror(-err));
586 abort();
587 }
588 }
589 }
590
591 /* in case the KVM bug workaround already "consumed" the new slot */
592 if (!size) {
593 return;
594 }
595 /* KVM does not need to know about this memory */
596 if (flags >= IO_MEM_UNASSIGNED) {
597 return;
598 }
599 mem = kvm_alloc_slot(s);
600 mem->memory_size = size;
601 mem->start_addr = start_addr;
602 mem->phys_offset = phys_offset;
603 mem->flags = 0;
604
605 err = kvm_set_user_memory_region(s, mem);
606 if (err) {
607 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
608 strerror(-err));
609 abort();
610 }
611 }
612
613 static void kvm_client_set_memory(struct CPUPhysMemoryClient *client,
614 target_phys_addr_t start_addr,
615 ram_addr_t size, ram_addr_t phys_offset)
616 {
617 kvm_set_phys_mem(start_addr, size, phys_offset);
618 }
619
620 static int kvm_client_sync_dirty_bitmap(struct CPUPhysMemoryClient *client,
621 target_phys_addr_t start_addr,
622 target_phys_addr_t end_addr)
623 {
624 return kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
625 }
626
627 static int kvm_client_migration_log(struct CPUPhysMemoryClient *client,
628 int enable)
629 {
630 return kvm_set_migration_log(enable);
631 }
632
633 static CPUPhysMemoryClient kvm_cpu_phys_memory_client = {
634 .set_memory = kvm_client_set_memory,
635 .sync_dirty_bitmap = kvm_client_sync_dirty_bitmap,
636 .migration_log = kvm_client_migration_log,
637 };
638
639 int kvm_init(int smp_cpus)
640 {
641 static const char upgrade_note[] =
642 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
643 "(see http://sourceforge.net/projects/kvm).\n";
644 KVMState *s;
645 int ret;
646 int i;
647
648 s = qemu_mallocz(sizeof(KVMState));
649
650 #ifdef KVM_CAP_SET_GUEST_DEBUG
651 QTAILQ_INIT(&s->kvm_sw_breakpoints);
652 #endif
653 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
654 s->slots[i].slot = i;
655 }
656 s->vmfd = -1;
657 s->fd = qemu_open("/dev/kvm", O_RDWR);
658 if (s->fd == -1) {
659 fprintf(stderr, "Could not access KVM kernel module: %m\n");
660 ret = -errno;
661 goto err;
662 }
663
664 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
665 if (ret < KVM_API_VERSION) {
666 if (ret > 0) {
667 ret = -EINVAL;
668 }
669 fprintf(stderr, "kvm version too old\n");
670 goto err;
671 }
672
673 if (ret > KVM_API_VERSION) {
674 ret = -EINVAL;
675 fprintf(stderr, "kvm version not supported\n");
676 goto err;
677 }
678
679 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
680 if (s->vmfd < 0) {
681 #ifdef TARGET_S390X
682 fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
683 "your host kernel command line\n");
684 #endif
685 goto err;
686 }
687
688 /* initially, KVM allocated its own memory and we had to jump through
689 * hooks to make phys_ram_base point to this. Modern versions of KVM
690 * just use a user allocated buffer so we can use regular pages
691 * unmodified. Make sure we have a sufficiently modern version of KVM.
692 */
693 if (!kvm_check_extension(s, KVM_CAP_USER_MEMORY)) {
694 ret = -EINVAL;
695 fprintf(stderr, "kvm does not support KVM_CAP_USER_MEMORY\n%s",
696 upgrade_note);
697 goto err;
698 }
699
700 /* There was a nasty bug in < kvm-80 that prevents memory slots from being
701 * destroyed properly. Since we rely on this capability, refuse to work
702 * with any kernel without this capability. */
703 if (!kvm_check_extension(s, KVM_CAP_DESTROY_MEMORY_REGION_WORKS)) {
704 ret = -EINVAL;
705
706 fprintf(stderr,
707 "KVM kernel module broken (DESTROY_MEMORY_REGION).\n%s",
708 upgrade_note);
709 goto err;
710 }
711
712 s->coalesced_mmio = 0;
713 #ifdef KVM_CAP_COALESCED_MMIO
714 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
715 s->coalesced_mmio_ring = NULL;
716 #endif
717
718 s->broken_set_mem_region = 1;
719 #ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
720 ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
721 if (ret > 0) {
722 s->broken_set_mem_region = 0;
723 }
724 #endif
725
726 s->vcpu_events = 0;
727 #ifdef KVM_CAP_VCPU_EVENTS
728 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
729 #endif
730
731 s->robust_singlestep = 0;
732 #ifdef KVM_CAP_X86_ROBUST_SINGLESTEP
733 s->robust_singlestep =
734 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
735 #endif
736
737 s->debugregs = 0;
738 #ifdef KVM_CAP_DEBUGREGS
739 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
740 #endif
741
742 s->xsave = 0;
743 #ifdef KVM_CAP_XSAVE
744 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
745 #endif
746
747 s->xcrs = 0;
748 #ifdef KVM_CAP_XCRS
749 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
750 #endif
751
752 ret = kvm_arch_init(s, smp_cpus);
753 if (ret < 0) {
754 goto err;
755 }
756
757 kvm_state = s;
758 cpu_register_phys_memory_client(&kvm_cpu_phys_memory_client);
759
760 s->many_ioeventfds = kvm_check_many_ioeventfds();
761
762 return 0;
763
764 err:
765 if (s) {
766 if (s->vmfd != -1) {
767 close(s->vmfd);
768 }
769 if (s->fd != -1) {
770 close(s->fd);
771 }
772 }
773 qemu_free(s);
774
775 return ret;
776 }
777
778 static int kvm_handle_io(uint16_t port, void *data, int direction, int size,
779 uint32_t count)
780 {
781 int i;
782 uint8_t *ptr = data;
783
784 for (i = 0; i < count; i++) {
785 if (direction == KVM_EXIT_IO_IN) {
786 switch (size) {
787 case 1:
788 stb_p(ptr, cpu_inb(port));
789 break;
790 case 2:
791 stw_p(ptr, cpu_inw(port));
792 break;
793 case 4:
794 stl_p(ptr, cpu_inl(port));
795 break;
796 }
797 } else {
798 switch (size) {
799 case 1:
800 cpu_outb(port, ldub_p(ptr));
801 break;
802 case 2:
803 cpu_outw(port, lduw_p(ptr));
804 break;
805 case 4:
806 cpu_outl(port, ldl_p(ptr));
807 break;
808 }
809 }
810
811 ptr += size;
812 }
813
814 return 1;
815 }
816
817 #ifdef KVM_CAP_INTERNAL_ERROR_DATA
818 static void kvm_handle_internal_error(CPUState *env, struct kvm_run *run)
819 {
820
821 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
822 int i;
823
824 fprintf(stderr, "KVM internal error. Suberror: %d\n",
825 run->internal.suberror);
826
827 for (i = 0; i < run->internal.ndata; ++i) {
828 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
829 i, (uint64_t)run->internal.data[i]);
830 }
831 }
832 cpu_dump_state(env, stderr, fprintf, 0);
833 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
834 fprintf(stderr, "emulation failure\n");
835 if (!kvm_arch_stop_on_emulation_error(env)) {
836 return;
837 }
838 }
839 /* FIXME: Should trigger a qmp message to let management know
840 * something went wrong.
841 */
842 vm_stop(0);
843 }
844 #endif
845
846 void kvm_flush_coalesced_mmio_buffer(void)
847 {
848 #ifdef KVM_CAP_COALESCED_MMIO
849 KVMState *s = kvm_state;
850 if (s->coalesced_mmio_ring) {
851 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
852 while (ring->first != ring->last) {
853 struct kvm_coalesced_mmio *ent;
854
855 ent = &ring->coalesced_mmio[ring->first];
856
857 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
858 smp_wmb();
859 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
860 }
861 }
862 #endif
863 }
864
865 static void do_kvm_cpu_synchronize_state(void *_env)
866 {
867 CPUState *env = _env;
868
869 if (!env->kvm_vcpu_dirty) {
870 kvm_arch_get_registers(env);
871 env->kvm_vcpu_dirty = 1;
872 }
873 }
874
875 void kvm_cpu_synchronize_state(CPUState *env)
876 {
877 if (!env->kvm_vcpu_dirty) {
878 run_on_cpu(env, do_kvm_cpu_synchronize_state, env);
879 }
880 }
881
882 void kvm_cpu_synchronize_post_reset(CPUState *env)
883 {
884 kvm_arch_put_registers(env, KVM_PUT_RESET_STATE);
885 env->kvm_vcpu_dirty = 0;
886 }
887
888 void kvm_cpu_synchronize_post_init(CPUState *env)
889 {
890 kvm_arch_put_registers(env, KVM_PUT_FULL_STATE);
891 env->kvm_vcpu_dirty = 0;
892 }
893
894 int kvm_cpu_exec(CPUState *env)
895 {
896 struct kvm_run *run = env->kvm_run;
897 int ret;
898
899 DPRINTF("kvm_cpu_exec()\n");
900
901 do {
902 #ifndef CONFIG_IOTHREAD
903 if (env->exit_request) {
904 DPRINTF("interrupt exit requested\n");
905 ret = 0;
906 break;
907 }
908 #endif
909
910 if (kvm_arch_process_irqchip_events(env)) {
911 ret = 0;
912 break;
913 }
914
915 if (env->kvm_vcpu_dirty) {
916 kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE);
917 env->kvm_vcpu_dirty = 0;
918 }
919
920 kvm_arch_pre_run(env, run);
921 cpu_single_env = NULL;
922 qemu_mutex_unlock_iothread();
923 ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
924 qemu_mutex_lock_iothread();
925 cpu_single_env = env;
926 kvm_arch_post_run(env, run);
927
928 if (ret == -EINTR || ret == -EAGAIN) {
929 cpu_exit(env);
930 DPRINTF("io window exit\n");
931 ret = 0;
932 break;
933 }
934
935 if (ret < 0) {
936 DPRINTF("kvm run failed %s\n", strerror(-ret));
937 abort();
938 }
939
940 kvm_flush_coalesced_mmio_buffer();
941
942 ret = 0; /* exit loop */
943 switch (run->exit_reason) {
944 case KVM_EXIT_IO:
945 DPRINTF("handle_io\n");
946 ret = kvm_handle_io(run->io.port,
947 (uint8_t *)run + run->io.data_offset,
948 run->io.direction,
949 run->io.size,
950 run->io.count);
951 break;
952 case KVM_EXIT_MMIO:
953 DPRINTF("handle_mmio\n");
954 cpu_physical_memory_rw(run->mmio.phys_addr,
955 run->mmio.data,
956 run->mmio.len,
957 run->mmio.is_write);
958 ret = 1;
959 break;
960 case KVM_EXIT_IRQ_WINDOW_OPEN:
961 DPRINTF("irq_window_open\n");
962 break;
963 case KVM_EXIT_SHUTDOWN:
964 DPRINTF("shutdown\n");
965 qemu_system_reset_request();
966 ret = 1;
967 break;
968 case KVM_EXIT_UNKNOWN:
969 DPRINTF("kvm_exit_unknown\n");
970 break;
971 case KVM_EXIT_FAIL_ENTRY:
972 DPRINTF("kvm_exit_fail_entry\n");
973 break;
974 case KVM_EXIT_EXCEPTION:
975 DPRINTF("kvm_exit_exception\n");
976 break;
977 #ifdef KVM_CAP_INTERNAL_ERROR_DATA
978 case KVM_EXIT_INTERNAL_ERROR:
979 kvm_handle_internal_error(env, run);
980 break;
981 #endif
982 case KVM_EXIT_DEBUG:
983 DPRINTF("kvm_exit_debug\n");
984 #ifdef KVM_CAP_SET_GUEST_DEBUG
985 if (kvm_arch_debug(&run->debug.arch)) {
986 env->exception_index = EXCP_DEBUG;
987 return 0;
988 }
989 /* re-enter, this exception was guest-internal */
990 ret = 1;
991 #endif /* KVM_CAP_SET_GUEST_DEBUG */
992 break;
993 default:
994 DPRINTF("kvm_arch_handle_exit\n");
995 ret = kvm_arch_handle_exit(env, run);
996 break;
997 }
998 } while (ret > 0);
999
1000 if (env->exit_request) {
1001 env->exit_request = 0;
1002 env->exception_index = EXCP_INTERRUPT;
1003 }
1004
1005 return ret;
1006 }
1007
1008 int kvm_ioctl(KVMState *s, int type, ...)
1009 {
1010 int ret;
1011 void *arg;
1012 va_list ap;
1013
1014 va_start(ap, type);
1015 arg = va_arg(ap, void *);
1016 va_end(ap);
1017
1018 ret = ioctl(s->fd, type, arg);
1019 if (ret == -1) {
1020 ret = -errno;
1021 }
1022 return ret;
1023 }
1024
1025 int kvm_vm_ioctl(KVMState *s, int type, ...)
1026 {
1027 int ret;
1028 void *arg;
1029 va_list ap;
1030
1031 va_start(ap, type);
1032 arg = va_arg(ap, void *);
1033 va_end(ap);
1034
1035 ret = ioctl(s->vmfd, type, arg);
1036 if (ret == -1) {
1037 ret = -errno;
1038 }
1039 return ret;
1040 }
1041
1042 int kvm_vcpu_ioctl(CPUState *env, int type, ...)
1043 {
1044 int ret;
1045 void *arg;
1046 va_list ap;
1047
1048 va_start(ap, type);
1049 arg = va_arg(ap, void *);
1050 va_end(ap);
1051
1052 ret = ioctl(env->kvm_fd, type, arg);
1053 if (ret == -1) {
1054 ret = -errno;
1055 }
1056 return ret;
1057 }
1058
1059 int kvm_has_sync_mmu(void)
1060 {
1061 #ifdef KVM_CAP_SYNC_MMU
1062 KVMState *s = kvm_state;
1063
1064 return kvm_check_extension(s, KVM_CAP_SYNC_MMU);
1065 #else
1066 return 0;
1067 #endif
1068 }
1069
1070 int kvm_has_vcpu_events(void)
1071 {
1072 return kvm_state->vcpu_events;
1073 }
1074
1075 int kvm_has_robust_singlestep(void)
1076 {
1077 return kvm_state->robust_singlestep;
1078 }
1079
1080 int kvm_has_debugregs(void)
1081 {
1082 return kvm_state->debugregs;
1083 }
1084
1085 int kvm_has_xsave(void)
1086 {
1087 return kvm_state->xsave;
1088 }
1089
1090 int kvm_has_xcrs(void)
1091 {
1092 return kvm_state->xcrs;
1093 }
1094
1095 int kvm_has_many_ioeventfds(void)
1096 {
1097 if (!kvm_enabled()) {
1098 return 0;
1099 }
1100 return kvm_state->many_ioeventfds;
1101 }
1102
1103 void kvm_setup_guest_memory(void *start, size_t size)
1104 {
1105 if (!kvm_has_sync_mmu()) {
1106 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
1107
1108 if (ret) {
1109 perror("qemu_madvise");
1110 fprintf(stderr,
1111 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1112 exit(1);
1113 }
1114 }
1115 }
1116
1117 #ifdef KVM_CAP_SET_GUEST_DEBUG
1118 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
1119 target_ulong pc)
1120 {
1121 struct kvm_sw_breakpoint *bp;
1122
1123 QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
1124 if (bp->pc == pc) {
1125 return bp;
1126 }
1127 }
1128 return NULL;
1129 }
1130
1131 int kvm_sw_breakpoints_active(CPUState *env)
1132 {
1133 return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
1134 }
1135
1136 struct kvm_set_guest_debug_data {
1137 struct kvm_guest_debug dbg;
1138 CPUState *env;
1139 int err;
1140 };
1141
1142 static void kvm_invoke_set_guest_debug(void *data)
1143 {
1144 struct kvm_set_guest_debug_data *dbg_data = data;
1145 CPUState *env = dbg_data->env;
1146
1147 dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
1148 }
1149
1150 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1151 {
1152 struct kvm_set_guest_debug_data data;
1153
1154 data.dbg.control = reinject_trap;
1155
1156 if (env->singlestep_enabled) {
1157 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1158 }
1159 kvm_arch_update_guest_debug(env, &data.dbg);
1160 data.env = env;
1161
1162 run_on_cpu(env, kvm_invoke_set_guest_debug, &data);
1163 return data.err;
1164 }
1165
1166 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1167 target_ulong len, int type)
1168 {
1169 struct kvm_sw_breakpoint *bp;
1170 CPUState *env;
1171 int err;
1172
1173 if (type == GDB_BREAKPOINT_SW) {
1174 bp = kvm_find_sw_breakpoint(current_env, addr);
1175 if (bp) {
1176 bp->use_count++;
1177 return 0;
1178 }
1179
1180 bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
1181 if (!bp) {
1182 return -ENOMEM;
1183 }
1184
1185 bp->pc = addr;
1186 bp->use_count = 1;
1187 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
1188 if (err) {
1189 free(bp);
1190 return err;
1191 }
1192
1193 QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
1194 bp, entry);
1195 } else {
1196 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1197 if (err) {
1198 return err;
1199 }
1200 }
1201
1202 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1203 err = kvm_update_guest_debug(env, 0);
1204 if (err) {
1205 return err;
1206 }
1207 }
1208 return 0;
1209 }
1210
1211 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1212 target_ulong len, int type)
1213 {
1214 struct kvm_sw_breakpoint *bp;
1215 CPUState *env;
1216 int err;
1217
1218 if (type == GDB_BREAKPOINT_SW) {
1219 bp = kvm_find_sw_breakpoint(current_env, addr);
1220 if (!bp) {
1221 return -ENOENT;
1222 }
1223
1224 if (bp->use_count > 1) {
1225 bp->use_count--;
1226 return 0;
1227 }
1228
1229 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1230 if (err) {
1231 return err;
1232 }
1233
1234 QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1235 qemu_free(bp);
1236 } else {
1237 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1238 if (err) {
1239 return err;
1240 }
1241 }
1242
1243 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1244 err = kvm_update_guest_debug(env, 0);
1245 if (err) {
1246 return err;
1247 }
1248 }
1249 return 0;
1250 }
1251
1252 void kvm_remove_all_breakpoints(CPUState *current_env)
1253 {
1254 struct kvm_sw_breakpoint *bp, *next;
1255 KVMState *s = current_env->kvm_state;
1256 CPUState *env;
1257
1258 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1259 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1260 /* Try harder to find a CPU that currently sees the breakpoint. */
1261 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1262 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0) {
1263 break;
1264 }
1265 }
1266 }
1267 }
1268 kvm_arch_remove_all_hw_breakpoints();
1269
1270 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1271 kvm_update_guest_debug(env, 0);
1272 }
1273 }
1274
1275 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1276
1277 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1278 {
1279 return -EINVAL;
1280 }
1281
1282 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1283 target_ulong len, int type)
1284 {
1285 return -EINVAL;
1286 }
1287
1288 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1289 target_ulong len, int type)
1290 {
1291 return -EINVAL;
1292 }
1293
1294 void kvm_remove_all_breakpoints(CPUState *current_env)
1295 {
1296 }
1297 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
1298
1299 int kvm_set_signal_mask(CPUState *env, const sigset_t *sigset)
1300 {
1301 struct kvm_signal_mask *sigmask;
1302 int r;
1303
1304 if (!sigset) {
1305 return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
1306 }
1307
1308 sigmask = qemu_malloc(sizeof(*sigmask) + sizeof(*sigset));
1309
1310 sigmask->len = 8;
1311 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1312 r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
1313 free(sigmask);
1314
1315 return r;
1316 }
1317
1318 int kvm_set_ioeventfd_mmio_long(int fd, uint32_t addr, uint32_t val, bool assign)
1319 {
1320 #ifdef KVM_IOEVENTFD
1321 int ret;
1322 struct kvm_ioeventfd iofd;
1323
1324 iofd.datamatch = val;
1325 iofd.addr = addr;
1326 iofd.len = 4;
1327 iofd.flags = KVM_IOEVENTFD_FLAG_DATAMATCH;
1328 iofd.fd = fd;
1329
1330 if (!kvm_enabled()) {
1331 return -ENOSYS;
1332 }
1333
1334 if (!assign) {
1335 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1336 }
1337
1338 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1339
1340 if (ret < 0) {
1341 return -errno;
1342 }
1343
1344 return 0;
1345 #else
1346 return -ENOSYS;
1347 #endif
1348 }
1349
1350 int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign)
1351 {
1352 #ifdef KVM_IOEVENTFD
1353 struct kvm_ioeventfd kick = {
1354 .datamatch = val,
1355 .addr = addr,
1356 .len = 2,
1357 .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO,
1358 .fd = fd,
1359 };
1360 int r;
1361 if (!kvm_enabled()) {
1362 return -ENOSYS;
1363 }
1364 if (!assign) {
1365 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1366 }
1367 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1368 if (r < 0) {
1369 return r;
1370 }
1371 return 0;
1372 #else
1373 return -ENOSYS;
1374 #endif
1375 }