]> git.proxmox.com Git - mirror_qemu.git/blob - kvm-all.c
kvm: x86: Establish IRQ0 override control
[mirror_qemu.git] / kvm-all.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
10 *
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
13 *
14 */
15
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
20
21 #include <linux/kvm.h>
22
23 #include "qemu-common.h"
24 #include "qemu-barrier.h"
25 #include "sysemu.h"
26 #include "hw/hw.h"
27 #include "gdbstub.h"
28 #include "kvm.h"
29 #include "bswap.h"
30 #include "memory.h"
31
32 /* This check must be after config-host.h is included */
33 #ifdef CONFIG_EVENTFD
34 #include <sys/eventfd.h>
35 #endif
36
37 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
38 #define PAGE_SIZE TARGET_PAGE_SIZE
39
40 //#define DEBUG_KVM
41
42 #ifdef DEBUG_KVM
43 #define DPRINTF(fmt, ...) \
44 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
45 #else
46 #define DPRINTF(fmt, ...) \
47 do { } while (0)
48 #endif
49
50 typedef struct KVMSlot
51 {
52 target_phys_addr_t start_addr;
53 ram_addr_t memory_size;
54 void *ram;
55 int slot;
56 int flags;
57 } KVMSlot;
58
59 typedef struct kvm_dirty_log KVMDirtyLog;
60
61 struct KVMState
62 {
63 KVMSlot slots[32];
64 int fd;
65 int vmfd;
66 int coalesced_mmio;
67 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
68 bool coalesced_flush_in_progress;
69 int broken_set_mem_region;
70 int migration_log;
71 int vcpu_events;
72 int robust_singlestep;
73 int debugregs;
74 #ifdef KVM_CAP_SET_GUEST_DEBUG
75 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
76 #endif
77 int irqchip_in_kernel;
78 int pit_in_kernel;
79 int xsave, xcrs;
80 int many_ioeventfds;
81 int irqchip_inject_ioctl;
82 #ifdef KVM_CAP_IRQ_ROUTING
83 struct kvm_irq_routing *irq_routes;
84 int nr_allocated_irq_routes;
85 uint32_t *used_gsi_bitmap;
86 unsigned int max_gsi;
87 #endif
88 };
89
90 KVMState *kvm_state;
91
92 static const KVMCapabilityInfo kvm_required_capabilites[] = {
93 KVM_CAP_INFO(USER_MEMORY),
94 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
95 KVM_CAP_LAST_INFO
96 };
97
98 static KVMSlot *kvm_alloc_slot(KVMState *s)
99 {
100 int i;
101
102 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
103 if (s->slots[i].memory_size == 0) {
104 return &s->slots[i];
105 }
106 }
107
108 fprintf(stderr, "%s: no free slot available\n", __func__);
109 abort();
110 }
111
112 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
113 target_phys_addr_t start_addr,
114 target_phys_addr_t end_addr)
115 {
116 int i;
117
118 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
119 KVMSlot *mem = &s->slots[i];
120
121 if (start_addr == mem->start_addr &&
122 end_addr == mem->start_addr + mem->memory_size) {
123 return mem;
124 }
125 }
126
127 return NULL;
128 }
129
130 /*
131 * Find overlapping slot with lowest start address
132 */
133 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
134 target_phys_addr_t start_addr,
135 target_phys_addr_t end_addr)
136 {
137 KVMSlot *found = NULL;
138 int i;
139
140 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
141 KVMSlot *mem = &s->slots[i];
142
143 if (mem->memory_size == 0 ||
144 (found && found->start_addr < mem->start_addr)) {
145 continue;
146 }
147
148 if (end_addr > mem->start_addr &&
149 start_addr < mem->start_addr + mem->memory_size) {
150 found = mem;
151 }
152 }
153
154 return found;
155 }
156
157 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
158 target_phys_addr_t *phys_addr)
159 {
160 int i;
161
162 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
163 KVMSlot *mem = &s->slots[i];
164
165 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
166 *phys_addr = mem->start_addr + (ram - mem->ram);
167 return 1;
168 }
169 }
170
171 return 0;
172 }
173
174 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
175 {
176 struct kvm_userspace_memory_region mem;
177
178 mem.slot = slot->slot;
179 mem.guest_phys_addr = slot->start_addr;
180 mem.memory_size = slot->memory_size;
181 mem.userspace_addr = (unsigned long)slot->ram;
182 mem.flags = slot->flags;
183 if (s->migration_log) {
184 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
185 }
186 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
187 }
188
189 static void kvm_reset_vcpu(void *opaque)
190 {
191 CPUState *env = opaque;
192
193 kvm_arch_reset_vcpu(env);
194 }
195
196 int kvm_irqchip_in_kernel(void)
197 {
198 return kvm_state->irqchip_in_kernel;
199 }
200
201 int kvm_pit_in_kernel(void)
202 {
203 return kvm_state->pit_in_kernel;
204 }
205
206 int kvm_init_vcpu(CPUState *env)
207 {
208 KVMState *s = kvm_state;
209 long mmap_size;
210 int ret;
211
212 DPRINTF("kvm_init_vcpu\n");
213
214 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
215 if (ret < 0) {
216 DPRINTF("kvm_create_vcpu failed\n");
217 goto err;
218 }
219
220 env->kvm_fd = ret;
221 env->kvm_state = s;
222 env->kvm_vcpu_dirty = 1;
223
224 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
225 if (mmap_size < 0) {
226 ret = mmap_size;
227 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
228 goto err;
229 }
230
231 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
232 env->kvm_fd, 0);
233 if (env->kvm_run == MAP_FAILED) {
234 ret = -errno;
235 DPRINTF("mmap'ing vcpu state failed\n");
236 goto err;
237 }
238
239 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
240 s->coalesced_mmio_ring =
241 (void *)env->kvm_run + s->coalesced_mmio * PAGE_SIZE;
242 }
243
244 ret = kvm_arch_init_vcpu(env);
245 if (ret == 0) {
246 qemu_register_reset(kvm_reset_vcpu, env);
247 kvm_arch_reset_vcpu(env);
248 }
249 err:
250 return ret;
251 }
252
253 /*
254 * dirty pages logging control
255 */
256
257 static int kvm_mem_flags(KVMState *s, bool log_dirty)
258 {
259 return log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0;
260 }
261
262 static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty)
263 {
264 KVMState *s = kvm_state;
265 int flags, mask = KVM_MEM_LOG_DIRTY_PAGES;
266 int old_flags;
267
268 old_flags = mem->flags;
269
270 flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty);
271 mem->flags = flags;
272
273 /* If nothing changed effectively, no need to issue ioctl */
274 if (s->migration_log) {
275 flags |= KVM_MEM_LOG_DIRTY_PAGES;
276 }
277
278 if (flags == old_flags) {
279 return 0;
280 }
281
282 return kvm_set_user_memory_region(s, mem);
283 }
284
285 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
286 ram_addr_t size, bool log_dirty)
287 {
288 KVMState *s = kvm_state;
289 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
290
291 if (mem == NULL) {
292 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
293 TARGET_FMT_plx "\n", __func__, phys_addr,
294 (target_phys_addr_t)(phys_addr + size - 1));
295 return -EINVAL;
296 }
297 return kvm_slot_dirty_pages_log_change(mem, log_dirty);
298 }
299
300 static void kvm_log_start(MemoryListener *listener,
301 MemoryRegionSection *section)
302 {
303 int r;
304
305 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
306 section->size, true);
307 if (r < 0) {
308 abort();
309 }
310 }
311
312 static void kvm_log_stop(MemoryListener *listener,
313 MemoryRegionSection *section)
314 {
315 int r;
316
317 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
318 section->size, false);
319 if (r < 0) {
320 abort();
321 }
322 }
323
324 static int kvm_set_migration_log(int enable)
325 {
326 KVMState *s = kvm_state;
327 KVMSlot *mem;
328 int i, err;
329
330 s->migration_log = enable;
331
332 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
333 mem = &s->slots[i];
334
335 if (!mem->memory_size) {
336 continue;
337 }
338 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
339 continue;
340 }
341 err = kvm_set_user_memory_region(s, mem);
342 if (err) {
343 return err;
344 }
345 }
346 return 0;
347 }
348
349 /* get kvm's dirty pages bitmap and update qemu's */
350 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
351 unsigned long *bitmap)
352 {
353 unsigned int i, j;
354 unsigned long page_number, addr, addr1, c;
355 unsigned int len = ((section->size / TARGET_PAGE_SIZE) + HOST_LONG_BITS - 1) / HOST_LONG_BITS;
356
357 /*
358 * bitmap-traveling is faster than memory-traveling (for addr...)
359 * especially when most of the memory is not dirty.
360 */
361 for (i = 0; i < len; i++) {
362 if (bitmap[i] != 0) {
363 c = leul_to_cpu(bitmap[i]);
364 do {
365 j = ffsl(c) - 1;
366 c &= ~(1ul << j);
367 page_number = i * HOST_LONG_BITS + j;
368 addr1 = page_number * TARGET_PAGE_SIZE;
369 addr = section->offset_within_region + addr1;
370 memory_region_set_dirty(section->mr, addr);
371 } while (c != 0);
372 }
373 }
374 return 0;
375 }
376
377 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
378
379 /**
380 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
381 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
382 * This means all bits are set to dirty.
383 *
384 * @start_add: start of logged region.
385 * @end_addr: end of logged region.
386 */
387 static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section)
388 {
389 KVMState *s = kvm_state;
390 unsigned long size, allocated_size = 0;
391 KVMDirtyLog d;
392 KVMSlot *mem;
393 int ret = 0;
394 target_phys_addr_t start_addr = section->offset_within_address_space;
395 target_phys_addr_t end_addr = start_addr + section->size;
396
397 d.dirty_bitmap = NULL;
398 while (start_addr < end_addr) {
399 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
400 if (mem == NULL) {
401 break;
402 }
403
404 /* XXX bad kernel interface alert
405 * For dirty bitmap, kernel allocates array of size aligned to
406 * bits-per-long. But for case when the kernel is 64bits and
407 * the userspace is 32bits, userspace can't align to the same
408 * bits-per-long, since sizeof(long) is different between kernel
409 * and user space. This way, userspace will provide buffer which
410 * may be 4 bytes less than the kernel will use, resulting in
411 * userspace memory corruption (which is not detectable by valgrind
412 * too, in most cases).
413 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
414 * a hope that sizeof(long) wont become >8 any time soon.
415 */
416 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
417 /*HOST_LONG_BITS*/ 64) / 8;
418 if (!d.dirty_bitmap) {
419 d.dirty_bitmap = g_malloc(size);
420 } else if (size > allocated_size) {
421 d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
422 }
423 allocated_size = size;
424 memset(d.dirty_bitmap, 0, allocated_size);
425
426 d.slot = mem->slot;
427
428 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
429 DPRINTF("ioctl failed %d\n", errno);
430 ret = -1;
431 break;
432 }
433
434 kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
435 start_addr = mem->start_addr + mem->memory_size;
436 }
437 g_free(d.dirty_bitmap);
438
439 return ret;
440 }
441
442 int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
443 {
444 int ret = -ENOSYS;
445 KVMState *s = kvm_state;
446
447 if (s->coalesced_mmio) {
448 struct kvm_coalesced_mmio_zone zone;
449
450 zone.addr = start;
451 zone.size = size;
452
453 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
454 }
455
456 return ret;
457 }
458
459 int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
460 {
461 int ret = -ENOSYS;
462 KVMState *s = kvm_state;
463
464 if (s->coalesced_mmio) {
465 struct kvm_coalesced_mmio_zone zone;
466
467 zone.addr = start;
468 zone.size = size;
469
470 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
471 }
472
473 return ret;
474 }
475
476 int kvm_check_extension(KVMState *s, unsigned int extension)
477 {
478 int ret;
479
480 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
481 if (ret < 0) {
482 ret = 0;
483 }
484
485 return ret;
486 }
487
488 static int kvm_check_many_ioeventfds(void)
489 {
490 /* Userspace can use ioeventfd for io notification. This requires a host
491 * that supports eventfd(2) and an I/O thread; since eventfd does not
492 * support SIGIO it cannot interrupt the vcpu.
493 *
494 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
495 * can avoid creating too many ioeventfds.
496 */
497 #if defined(CONFIG_EVENTFD)
498 int ioeventfds[7];
499 int i, ret = 0;
500 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
501 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
502 if (ioeventfds[i] < 0) {
503 break;
504 }
505 ret = kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, true);
506 if (ret < 0) {
507 close(ioeventfds[i]);
508 break;
509 }
510 }
511
512 /* Decide whether many devices are supported or not */
513 ret = i == ARRAY_SIZE(ioeventfds);
514
515 while (i-- > 0) {
516 kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, false);
517 close(ioeventfds[i]);
518 }
519 return ret;
520 #else
521 return 0;
522 #endif
523 }
524
525 static const KVMCapabilityInfo *
526 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
527 {
528 while (list->name) {
529 if (!kvm_check_extension(s, list->value)) {
530 return list;
531 }
532 list++;
533 }
534 return NULL;
535 }
536
537 static void kvm_set_phys_mem(MemoryRegionSection *section, bool add)
538 {
539 KVMState *s = kvm_state;
540 KVMSlot *mem, old;
541 int err;
542 MemoryRegion *mr = section->mr;
543 bool log_dirty = memory_region_is_logging(mr);
544 target_phys_addr_t start_addr = section->offset_within_address_space;
545 ram_addr_t size = section->size;
546 void *ram = NULL;
547
548 /* kvm works in page size chunks, but the function may be called
549 with sub-page size and unaligned start address. */
550 size = TARGET_PAGE_ALIGN(size);
551 start_addr = TARGET_PAGE_ALIGN(start_addr);
552
553 if (!memory_region_is_ram(mr)) {
554 return;
555 }
556
557 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region;
558
559 while (1) {
560 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
561 if (!mem) {
562 break;
563 }
564
565 if (add && start_addr >= mem->start_addr &&
566 (start_addr + size <= mem->start_addr + mem->memory_size) &&
567 (ram - start_addr == mem->ram - mem->start_addr)) {
568 /* The new slot fits into the existing one and comes with
569 * identical parameters - update flags and done. */
570 kvm_slot_dirty_pages_log_change(mem, log_dirty);
571 return;
572 }
573
574 old = *mem;
575
576 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
577 kvm_physical_sync_dirty_bitmap(section);
578 }
579
580 /* unregister the overlapping slot */
581 mem->memory_size = 0;
582 err = kvm_set_user_memory_region(s, mem);
583 if (err) {
584 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
585 __func__, strerror(-err));
586 abort();
587 }
588
589 /* Workaround for older KVM versions: we can't join slots, even not by
590 * unregistering the previous ones and then registering the larger
591 * slot. We have to maintain the existing fragmentation. Sigh.
592 *
593 * This workaround assumes that the new slot starts at the same
594 * address as the first existing one. If not or if some overlapping
595 * slot comes around later, we will fail (not seen in practice so far)
596 * - and actually require a recent KVM version. */
597 if (s->broken_set_mem_region &&
598 old.start_addr == start_addr && old.memory_size < size && add) {
599 mem = kvm_alloc_slot(s);
600 mem->memory_size = old.memory_size;
601 mem->start_addr = old.start_addr;
602 mem->ram = old.ram;
603 mem->flags = kvm_mem_flags(s, log_dirty);
604
605 err = kvm_set_user_memory_region(s, mem);
606 if (err) {
607 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
608 strerror(-err));
609 abort();
610 }
611
612 start_addr += old.memory_size;
613 ram += old.memory_size;
614 size -= old.memory_size;
615 continue;
616 }
617
618 /* register prefix slot */
619 if (old.start_addr < start_addr) {
620 mem = kvm_alloc_slot(s);
621 mem->memory_size = start_addr - old.start_addr;
622 mem->start_addr = old.start_addr;
623 mem->ram = old.ram;
624 mem->flags = kvm_mem_flags(s, log_dirty);
625
626 err = kvm_set_user_memory_region(s, mem);
627 if (err) {
628 fprintf(stderr, "%s: error registering prefix slot: %s\n",
629 __func__, strerror(-err));
630 #ifdef TARGET_PPC
631 fprintf(stderr, "%s: This is probably because your kernel's " \
632 "PAGE_SIZE is too big. Please try to use 4k " \
633 "PAGE_SIZE!\n", __func__);
634 #endif
635 abort();
636 }
637 }
638
639 /* register suffix slot */
640 if (old.start_addr + old.memory_size > start_addr + size) {
641 ram_addr_t size_delta;
642
643 mem = kvm_alloc_slot(s);
644 mem->start_addr = start_addr + size;
645 size_delta = mem->start_addr - old.start_addr;
646 mem->memory_size = old.memory_size - size_delta;
647 mem->ram = old.ram + size_delta;
648 mem->flags = kvm_mem_flags(s, log_dirty);
649
650 err = kvm_set_user_memory_region(s, mem);
651 if (err) {
652 fprintf(stderr, "%s: error registering suffix slot: %s\n",
653 __func__, strerror(-err));
654 abort();
655 }
656 }
657 }
658
659 /* in case the KVM bug workaround already "consumed" the new slot */
660 if (!size) {
661 return;
662 }
663 if (!add) {
664 return;
665 }
666 mem = kvm_alloc_slot(s);
667 mem->memory_size = size;
668 mem->start_addr = start_addr;
669 mem->ram = ram;
670 mem->flags = kvm_mem_flags(s, log_dirty);
671
672 err = kvm_set_user_memory_region(s, mem);
673 if (err) {
674 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
675 strerror(-err));
676 abort();
677 }
678 }
679
680 static void kvm_region_add(MemoryListener *listener,
681 MemoryRegionSection *section)
682 {
683 kvm_set_phys_mem(section, true);
684 }
685
686 static void kvm_region_del(MemoryListener *listener,
687 MemoryRegionSection *section)
688 {
689 kvm_set_phys_mem(section, false);
690 }
691
692 static void kvm_log_sync(MemoryListener *listener,
693 MemoryRegionSection *section)
694 {
695 int r;
696
697 r = kvm_physical_sync_dirty_bitmap(section);
698 if (r < 0) {
699 abort();
700 }
701 }
702
703 static void kvm_log_global_start(struct MemoryListener *listener)
704 {
705 int r;
706
707 r = kvm_set_migration_log(1);
708 assert(r >= 0);
709 }
710
711 static void kvm_log_global_stop(struct MemoryListener *listener)
712 {
713 int r;
714
715 r = kvm_set_migration_log(0);
716 assert(r >= 0);
717 }
718
719 static MemoryListener kvm_memory_listener = {
720 .region_add = kvm_region_add,
721 .region_del = kvm_region_del,
722 .log_start = kvm_log_start,
723 .log_stop = kvm_log_stop,
724 .log_sync = kvm_log_sync,
725 .log_global_start = kvm_log_global_start,
726 .log_global_stop = kvm_log_global_stop,
727 };
728
729 static void kvm_handle_interrupt(CPUState *env, int mask)
730 {
731 env->interrupt_request |= mask;
732
733 if (!qemu_cpu_is_self(env)) {
734 qemu_cpu_kick(env);
735 }
736 }
737
738 int kvm_irqchip_set_irq(KVMState *s, int irq, int level)
739 {
740 struct kvm_irq_level event;
741 int ret;
742
743 assert(s->irqchip_in_kernel);
744
745 event.level = level;
746 event.irq = irq;
747 ret = kvm_vm_ioctl(s, s->irqchip_inject_ioctl, &event);
748 if (ret < 0) {
749 perror("kvm_set_irqchip_line");
750 abort();
751 }
752
753 return (s->irqchip_inject_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
754 }
755
756 #ifdef KVM_CAP_IRQ_ROUTING
757 static void set_gsi(KVMState *s, unsigned int gsi)
758 {
759 assert(gsi < s->max_gsi);
760
761 s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32);
762 }
763
764 static void kvm_init_irq_routing(KVMState *s)
765 {
766 int gsi_count;
767
768 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING);
769 if (gsi_count > 0) {
770 unsigned int gsi_bits, i;
771
772 /* Round up so we can search ints using ffs */
773 gsi_bits = (gsi_count + 31) / 32;
774 s->used_gsi_bitmap = g_malloc0(gsi_bits / 8);
775 s->max_gsi = gsi_bits;
776
777 /* Mark any over-allocated bits as already in use */
778 for (i = gsi_count; i < gsi_bits; i++) {
779 set_gsi(s, i);
780 }
781 }
782
783 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
784 s->nr_allocated_irq_routes = 0;
785
786 kvm_arch_init_irq_routing(s);
787 }
788
789 static void kvm_add_routing_entry(KVMState *s,
790 struct kvm_irq_routing_entry *entry)
791 {
792 struct kvm_irq_routing_entry *new;
793 int n, size;
794
795 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
796 n = s->nr_allocated_irq_routes * 2;
797 if (n < 64) {
798 n = 64;
799 }
800 size = sizeof(struct kvm_irq_routing);
801 size += n * sizeof(*new);
802 s->irq_routes = g_realloc(s->irq_routes, size);
803 s->nr_allocated_irq_routes = n;
804 }
805 n = s->irq_routes->nr++;
806 new = &s->irq_routes->entries[n];
807 memset(new, 0, sizeof(*new));
808 new->gsi = entry->gsi;
809 new->type = entry->type;
810 new->flags = entry->flags;
811 new->u = entry->u;
812
813 set_gsi(s, entry->gsi);
814 }
815
816 void kvm_irqchip_add_route(KVMState *s, int irq, int irqchip, int pin)
817 {
818 struct kvm_irq_routing_entry e;
819
820 e.gsi = irq;
821 e.type = KVM_IRQ_ROUTING_IRQCHIP;
822 e.flags = 0;
823 e.u.irqchip.irqchip = irqchip;
824 e.u.irqchip.pin = pin;
825 kvm_add_routing_entry(s, &e);
826 }
827
828 int kvm_irqchip_commit_routes(KVMState *s)
829 {
830 s->irq_routes->flags = 0;
831 return kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
832 }
833
834 #else /* !KVM_CAP_IRQ_ROUTING */
835
836 static void kvm_init_irq_routing(KVMState *s)
837 {
838 }
839 #endif /* !KVM_CAP_IRQ_ROUTING */
840
841 static int kvm_irqchip_create(KVMState *s)
842 {
843 QemuOptsList *list = qemu_find_opts("machine");
844 int ret;
845
846 if (QTAILQ_EMPTY(&list->head) ||
847 !qemu_opt_get_bool(QTAILQ_FIRST(&list->head),
848 "kernel_irqchip", false) ||
849 !kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
850 return 0;
851 }
852
853 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
854 if (ret < 0) {
855 fprintf(stderr, "Create kernel irqchip failed\n");
856 return ret;
857 }
858
859 s->irqchip_inject_ioctl = KVM_IRQ_LINE;
860 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
861 s->irqchip_inject_ioctl = KVM_IRQ_LINE_STATUS;
862 }
863 s->irqchip_in_kernel = 1;
864
865 kvm_init_irq_routing(s);
866
867 return 0;
868 }
869
870 int kvm_init(void)
871 {
872 static const char upgrade_note[] =
873 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
874 "(see http://sourceforge.net/projects/kvm).\n";
875 KVMState *s;
876 const KVMCapabilityInfo *missing_cap;
877 int ret;
878 int i;
879
880 s = g_malloc0(sizeof(KVMState));
881
882 #ifdef KVM_CAP_SET_GUEST_DEBUG
883 QTAILQ_INIT(&s->kvm_sw_breakpoints);
884 #endif
885 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
886 s->slots[i].slot = i;
887 }
888 s->vmfd = -1;
889 s->fd = qemu_open("/dev/kvm", O_RDWR);
890 if (s->fd == -1) {
891 fprintf(stderr, "Could not access KVM kernel module: %m\n");
892 ret = -errno;
893 goto err;
894 }
895
896 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
897 if (ret < KVM_API_VERSION) {
898 if (ret > 0) {
899 ret = -EINVAL;
900 }
901 fprintf(stderr, "kvm version too old\n");
902 goto err;
903 }
904
905 if (ret > KVM_API_VERSION) {
906 ret = -EINVAL;
907 fprintf(stderr, "kvm version not supported\n");
908 goto err;
909 }
910
911 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
912 if (s->vmfd < 0) {
913 #ifdef TARGET_S390X
914 fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
915 "your host kernel command line\n");
916 #endif
917 ret = s->vmfd;
918 goto err;
919 }
920
921 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
922 if (!missing_cap) {
923 missing_cap =
924 kvm_check_extension_list(s, kvm_arch_required_capabilities);
925 }
926 if (missing_cap) {
927 ret = -EINVAL;
928 fprintf(stderr, "kvm does not support %s\n%s",
929 missing_cap->name, upgrade_note);
930 goto err;
931 }
932
933 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
934
935 s->broken_set_mem_region = 1;
936 ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
937 if (ret > 0) {
938 s->broken_set_mem_region = 0;
939 }
940
941 #ifdef KVM_CAP_VCPU_EVENTS
942 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
943 #endif
944
945 s->robust_singlestep =
946 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
947
948 #ifdef KVM_CAP_DEBUGREGS
949 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
950 #endif
951
952 #ifdef KVM_CAP_XSAVE
953 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
954 #endif
955
956 #ifdef KVM_CAP_XCRS
957 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
958 #endif
959
960 ret = kvm_arch_init(s);
961 if (ret < 0) {
962 goto err;
963 }
964
965 ret = kvm_irqchip_create(s);
966 if (ret < 0) {
967 goto err;
968 }
969
970 kvm_state = s;
971 memory_listener_register(&kvm_memory_listener);
972
973 s->many_ioeventfds = kvm_check_many_ioeventfds();
974
975 cpu_interrupt_handler = kvm_handle_interrupt;
976
977 return 0;
978
979 err:
980 if (s) {
981 if (s->vmfd >= 0) {
982 close(s->vmfd);
983 }
984 if (s->fd != -1) {
985 close(s->fd);
986 }
987 }
988 g_free(s);
989
990 return ret;
991 }
992
993 static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
994 uint32_t count)
995 {
996 int i;
997 uint8_t *ptr = data;
998
999 for (i = 0; i < count; i++) {
1000 if (direction == KVM_EXIT_IO_IN) {
1001 switch (size) {
1002 case 1:
1003 stb_p(ptr, cpu_inb(port));
1004 break;
1005 case 2:
1006 stw_p(ptr, cpu_inw(port));
1007 break;
1008 case 4:
1009 stl_p(ptr, cpu_inl(port));
1010 break;
1011 }
1012 } else {
1013 switch (size) {
1014 case 1:
1015 cpu_outb(port, ldub_p(ptr));
1016 break;
1017 case 2:
1018 cpu_outw(port, lduw_p(ptr));
1019 break;
1020 case 4:
1021 cpu_outl(port, ldl_p(ptr));
1022 break;
1023 }
1024 }
1025
1026 ptr += size;
1027 }
1028 }
1029
1030 static int kvm_handle_internal_error(CPUState *env, struct kvm_run *run)
1031 {
1032 fprintf(stderr, "KVM internal error.");
1033 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
1034 int i;
1035
1036 fprintf(stderr, " Suberror: %d\n", run->internal.suberror);
1037 for (i = 0; i < run->internal.ndata; ++i) {
1038 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
1039 i, (uint64_t)run->internal.data[i]);
1040 }
1041 } else {
1042 fprintf(stderr, "\n");
1043 }
1044 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
1045 fprintf(stderr, "emulation failure\n");
1046 if (!kvm_arch_stop_on_emulation_error(env)) {
1047 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
1048 return EXCP_INTERRUPT;
1049 }
1050 }
1051 /* FIXME: Should trigger a qmp message to let management know
1052 * something went wrong.
1053 */
1054 return -1;
1055 }
1056
1057 void kvm_flush_coalesced_mmio_buffer(void)
1058 {
1059 KVMState *s = kvm_state;
1060
1061 if (s->coalesced_flush_in_progress) {
1062 return;
1063 }
1064
1065 s->coalesced_flush_in_progress = true;
1066
1067 if (s->coalesced_mmio_ring) {
1068 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
1069 while (ring->first != ring->last) {
1070 struct kvm_coalesced_mmio *ent;
1071
1072 ent = &ring->coalesced_mmio[ring->first];
1073
1074 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
1075 smp_wmb();
1076 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
1077 }
1078 }
1079
1080 s->coalesced_flush_in_progress = false;
1081 }
1082
1083 static void do_kvm_cpu_synchronize_state(void *_env)
1084 {
1085 CPUState *env = _env;
1086
1087 if (!env->kvm_vcpu_dirty) {
1088 kvm_arch_get_registers(env);
1089 env->kvm_vcpu_dirty = 1;
1090 }
1091 }
1092
1093 void kvm_cpu_synchronize_state(CPUState *env)
1094 {
1095 if (!env->kvm_vcpu_dirty) {
1096 run_on_cpu(env, do_kvm_cpu_synchronize_state, env);
1097 }
1098 }
1099
1100 void kvm_cpu_synchronize_post_reset(CPUState *env)
1101 {
1102 kvm_arch_put_registers(env, KVM_PUT_RESET_STATE);
1103 env->kvm_vcpu_dirty = 0;
1104 }
1105
1106 void kvm_cpu_synchronize_post_init(CPUState *env)
1107 {
1108 kvm_arch_put_registers(env, KVM_PUT_FULL_STATE);
1109 env->kvm_vcpu_dirty = 0;
1110 }
1111
1112 int kvm_cpu_exec(CPUState *env)
1113 {
1114 struct kvm_run *run = env->kvm_run;
1115 int ret, run_ret;
1116
1117 DPRINTF("kvm_cpu_exec()\n");
1118
1119 if (kvm_arch_process_async_events(env)) {
1120 env->exit_request = 0;
1121 return EXCP_HLT;
1122 }
1123
1124 cpu_single_env = env;
1125
1126 do {
1127 if (env->kvm_vcpu_dirty) {
1128 kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE);
1129 env->kvm_vcpu_dirty = 0;
1130 }
1131
1132 kvm_arch_pre_run(env, run);
1133 if (env->exit_request) {
1134 DPRINTF("interrupt exit requested\n");
1135 /*
1136 * KVM requires us to reenter the kernel after IO exits to complete
1137 * instruction emulation. This self-signal will ensure that we
1138 * leave ASAP again.
1139 */
1140 qemu_cpu_kick_self();
1141 }
1142 cpu_single_env = NULL;
1143 qemu_mutex_unlock_iothread();
1144
1145 run_ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
1146
1147 qemu_mutex_lock_iothread();
1148 cpu_single_env = env;
1149 kvm_arch_post_run(env, run);
1150
1151 kvm_flush_coalesced_mmio_buffer();
1152
1153 if (run_ret < 0) {
1154 if (run_ret == -EINTR || run_ret == -EAGAIN) {
1155 DPRINTF("io window exit\n");
1156 ret = EXCP_INTERRUPT;
1157 break;
1158 }
1159 fprintf(stderr, "error: kvm run failed %s\n",
1160 strerror(-run_ret));
1161 abort();
1162 }
1163
1164 switch (run->exit_reason) {
1165 case KVM_EXIT_IO:
1166 DPRINTF("handle_io\n");
1167 kvm_handle_io(run->io.port,
1168 (uint8_t *)run + run->io.data_offset,
1169 run->io.direction,
1170 run->io.size,
1171 run->io.count);
1172 ret = 0;
1173 break;
1174 case KVM_EXIT_MMIO:
1175 DPRINTF("handle_mmio\n");
1176 cpu_physical_memory_rw(run->mmio.phys_addr,
1177 run->mmio.data,
1178 run->mmio.len,
1179 run->mmio.is_write);
1180 ret = 0;
1181 break;
1182 case KVM_EXIT_IRQ_WINDOW_OPEN:
1183 DPRINTF("irq_window_open\n");
1184 ret = EXCP_INTERRUPT;
1185 break;
1186 case KVM_EXIT_SHUTDOWN:
1187 DPRINTF("shutdown\n");
1188 qemu_system_reset_request();
1189 ret = EXCP_INTERRUPT;
1190 break;
1191 case KVM_EXIT_UNKNOWN:
1192 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
1193 (uint64_t)run->hw.hardware_exit_reason);
1194 ret = -1;
1195 break;
1196 case KVM_EXIT_INTERNAL_ERROR:
1197 ret = kvm_handle_internal_error(env, run);
1198 break;
1199 default:
1200 DPRINTF("kvm_arch_handle_exit\n");
1201 ret = kvm_arch_handle_exit(env, run);
1202 break;
1203 }
1204 } while (ret == 0);
1205
1206 if (ret < 0) {
1207 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
1208 vm_stop(RUN_STATE_INTERNAL_ERROR);
1209 }
1210
1211 env->exit_request = 0;
1212 cpu_single_env = NULL;
1213 return ret;
1214 }
1215
1216 int kvm_ioctl(KVMState *s, int type, ...)
1217 {
1218 int ret;
1219 void *arg;
1220 va_list ap;
1221
1222 va_start(ap, type);
1223 arg = va_arg(ap, void *);
1224 va_end(ap);
1225
1226 ret = ioctl(s->fd, type, arg);
1227 if (ret == -1) {
1228 ret = -errno;
1229 }
1230 return ret;
1231 }
1232
1233 int kvm_vm_ioctl(KVMState *s, int type, ...)
1234 {
1235 int ret;
1236 void *arg;
1237 va_list ap;
1238
1239 va_start(ap, type);
1240 arg = va_arg(ap, void *);
1241 va_end(ap);
1242
1243 ret = ioctl(s->vmfd, type, arg);
1244 if (ret == -1) {
1245 ret = -errno;
1246 }
1247 return ret;
1248 }
1249
1250 int kvm_vcpu_ioctl(CPUState *env, int type, ...)
1251 {
1252 int ret;
1253 void *arg;
1254 va_list ap;
1255
1256 va_start(ap, type);
1257 arg = va_arg(ap, void *);
1258 va_end(ap);
1259
1260 ret = ioctl(env->kvm_fd, type, arg);
1261 if (ret == -1) {
1262 ret = -errno;
1263 }
1264 return ret;
1265 }
1266
1267 int kvm_has_sync_mmu(void)
1268 {
1269 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
1270 }
1271
1272 int kvm_has_vcpu_events(void)
1273 {
1274 return kvm_state->vcpu_events;
1275 }
1276
1277 int kvm_has_robust_singlestep(void)
1278 {
1279 return kvm_state->robust_singlestep;
1280 }
1281
1282 int kvm_has_debugregs(void)
1283 {
1284 return kvm_state->debugregs;
1285 }
1286
1287 int kvm_has_xsave(void)
1288 {
1289 return kvm_state->xsave;
1290 }
1291
1292 int kvm_has_xcrs(void)
1293 {
1294 return kvm_state->xcrs;
1295 }
1296
1297 int kvm_has_many_ioeventfds(void)
1298 {
1299 if (!kvm_enabled()) {
1300 return 0;
1301 }
1302 return kvm_state->many_ioeventfds;
1303 }
1304
1305 int kvm_has_gsi_routing(void)
1306 {
1307 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
1308 }
1309
1310 int kvm_allows_irq0_override(void)
1311 {
1312 return !kvm_enabled() || !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
1313 }
1314
1315 void kvm_setup_guest_memory(void *start, size_t size)
1316 {
1317 if (!kvm_has_sync_mmu()) {
1318 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
1319
1320 if (ret) {
1321 perror("qemu_madvise");
1322 fprintf(stderr,
1323 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1324 exit(1);
1325 }
1326 }
1327 }
1328
1329 #ifdef KVM_CAP_SET_GUEST_DEBUG
1330 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
1331 target_ulong pc)
1332 {
1333 struct kvm_sw_breakpoint *bp;
1334
1335 QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
1336 if (bp->pc == pc) {
1337 return bp;
1338 }
1339 }
1340 return NULL;
1341 }
1342
1343 int kvm_sw_breakpoints_active(CPUState *env)
1344 {
1345 return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
1346 }
1347
1348 struct kvm_set_guest_debug_data {
1349 struct kvm_guest_debug dbg;
1350 CPUState *env;
1351 int err;
1352 };
1353
1354 static void kvm_invoke_set_guest_debug(void *data)
1355 {
1356 struct kvm_set_guest_debug_data *dbg_data = data;
1357 CPUState *env = dbg_data->env;
1358
1359 dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
1360 }
1361
1362 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1363 {
1364 struct kvm_set_guest_debug_data data;
1365
1366 data.dbg.control = reinject_trap;
1367
1368 if (env->singlestep_enabled) {
1369 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1370 }
1371 kvm_arch_update_guest_debug(env, &data.dbg);
1372 data.env = env;
1373
1374 run_on_cpu(env, kvm_invoke_set_guest_debug, &data);
1375 return data.err;
1376 }
1377
1378 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1379 target_ulong len, int type)
1380 {
1381 struct kvm_sw_breakpoint *bp;
1382 CPUState *env;
1383 int err;
1384
1385 if (type == GDB_BREAKPOINT_SW) {
1386 bp = kvm_find_sw_breakpoint(current_env, addr);
1387 if (bp) {
1388 bp->use_count++;
1389 return 0;
1390 }
1391
1392 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
1393 if (!bp) {
1394 return -ENOMEM;
1395 }
1396
1397 bp->pc = addr;
1398 bp->use_count = 1;
1399 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
1400 if (err) {
1401 g_free(bp);
1402 return err;
1403 }
1404
1405 QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
1406 bp, entry);
1407 } else {
1408 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1409 if (err) {
1410 return err;
1411 }
1412 }
1413
1414 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1415 err = kvm_update_guest_debug(env, 0);
1416 if (err) {
1417 return err;
1418 }
1419 }
1420 return 0;
1421 }
1422
1423 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1424 target_ulong len, int type)
1425 {
1426 struct kvm_sw_breakpoint *bp;
1427 CPUState *env;
1428 int err;
1429
1430 if (type == GDB_BREAKPOINT_SW) {
1431 bp = kvm_find_sw_breakpoint(current_env, addr);
1432 if (!bp) {
1433 return -ENOENT;
1434 }
1435
1436 if (bp->use_count > 1) {
1437 bp->use_count--;
1438 return 0;
1439 }
1440
1441 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1442 if (err) {
1443 return err;
1444 }
1445
1446 QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1447 g_free(bp);
1448 } else {
1449 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1450 if (err) {
1451 return err;
1452 }
1453 }
1454
1455 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1456 err = kvm_update_guest_debug(env, 0);
1457 if (err) {
1458 return err;
1459 }
1460 }
1461 return 0;
1462 }
1463
1464 void kvm_remove_all_breakpoints(CPUState *current_env)
1465 {
1466 struct kvm_sw_breakpoint *bp, *next;
1467 KVMState *s = current_env->kvm_state;
1468 CPUState *env;
1469
1470 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1471 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1472 /* Try harder to find a CPU that currently sees the breakpoint. */
1473 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1474 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0) {
1475 break;
1476 }
1477 }
1478 }
1479 }
1480 kvm_arch_remove_all_hw_breakpoints();
1481
1482 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1483 kvm_update_guest_debug(env, 0);
1484 }
1485 }
1486
1487 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1488
1489 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1490 {
1491 return -EINVAL;
1492 }
1493
1494 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1495 target_ulong len, int type)
1496 {
1497 return -EINVAL;
1498 }
1499
1500 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1501 target_ulong len, int type)
1502 {
1503 return -EINVAL;
1504 }
1505
1506 void kvm_remove_all_breakpoints(CPUState *current_env)
1507 {
1508 }
1509 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
1510
1511 int kvm_set_signal_mask(CPUState *env, const sigset_t *sigset)
1512 {
1513 struct kvm_signal_mask *sigmask;
1514 int r;
1515
1516 if (!sigset) {
1517 return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
1518 }
1519
1520 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
1521
1522 sigmask->len = 8;
1523 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1524 r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
1525 g_free(sigmask);
1526
1527 return r;
1528 }
1529
1530 int kvm_set_ioeventfd_mmio_long(int fd, uint32_t addr, uint32_t val, bool assign)
1531 {
1532 int ret;
1533 struct kvm_ioeventfd iofd;
1534
1535 iofd.datamatch = val;
1536 iofd.addr = addr;
1537 iofd.len = 4;
1538 iofd.flags = KVM_IOEVENTFD_FLAG_DATAMATCH;
1539 iofd.fd = fd;
1540
1541 if (!kvm_enabled()) {
1542 return -ENOSYS;
1543 }
1544
1545 if (!assign) {
1546 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1547 }
1548
1549 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1550
1551 if (ret < 0) {
1552 return -errno;
1553 }
1554
1555 return 0;
1556 }
1557
1558 int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign)
1559 {
1560 struct kvm_ioeventfd kick = {
1561 .datamatch = val,
1562 .addr = addr,
1563 .len = 2,
1564 .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO,
1565 .fd = fd,
1566 };
1567 int r;
1568 if (!kvm_enabled()) {
1569 return -ENOSYS;
1570 }
1571 if (!assign) {
1572 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1573 }
1574 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1575 if (r < 0) {
1576 return r;
1577 }
1578 return 0;
1579 }
1580
1581 int kvm_on_sigbus_vcpu(CPUState *env, int code, void *addr)
1582 {
1583 return kvm_arch_on_sigbus_vcpu(env, code, addr);
1584 }
1585
1586 int kvm_on_sigbus(int code, void *addr)
1587 {
1588 return kvm_arch_on_sigbus(code, addr);
1589 }