]> git.proxmox.com Git - mirror_qemu.git/blob - kvm-all.c
Sun4m use 0 for nonexistent devices (Robert Reif)
[mirror_qemu.git] / kvm-all.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
10 *
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
13 *
14 */
15
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
20
21 #include <linux/kvm.h>
22
23 #include "qemu-common.h"
24 #include "sysemu.h"
25 #include "kvm.h"
26
27 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
28 #define PAGE_SIZE TARGET_PAGE_SIZE
29
30 //#define DEBUG_KVM
31
32 #ifdef DEBUG_KVM
33 #define dprintf(fmt, ...) \
34 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
35 #else
36 #define dprintf(fmt, ...) \
37 do { } while (0)
38 #endif
39
40 typedef struct KVMSlot
41 {
42 target_phys_addr_t start_addr;
43 ram_addr_t memory_size;
44 ram_addr_t phys_offset;
45 int slot;
46 int flags;
47 } KVMSlot;
48
49 typedef struct kvm_dirty_log KVMDirtyLog;
50
51 int kvm_allowed = 0;
52
53 struct KVMState
54 {
55 KVMSlot slots[32];
56 int fd;
57 int vmfd;
58 int coalesced_mmio;
59 };
60
61 static KVMState *kvm_state;
62
63 static KVMSlot *kvm_alloc_slot(KVMState *s)
64 {
65 int i;
66
67 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
68 /* KVM private memory slots */
69 if (i >= 8 && i < 12)
70 continue;
71 if (s->slots[i].memory_size == 0)
72 return &s->slots[i];
73 }
74
75 return NULL;
76 }
77
78 static KVMSlot *kvm_lookup_slot(KVMState *s, target_phys_addr_t start_addr)
79 {
80 int i;
81
82 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
83 KVMSlot *mem = &s->slots[i];
84
85 if (start_addr >= mem->start_addr &&
86 start_addr < (mem->start_addr + mem->memory_size))
87 return mem;
88 }
89
90 return NULL;
91 }
92
93 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
94 {
95 struct kvm_userspace_memory_region mem;
96
97 mem.slot = slot->slot;
98 mem.guest_phys_addr = slot->start_addr;
99 mem.memory_size = slot->memory_size;
100 mem.userspace_addr = (unsigned long)phys_ram_base + slot->phys_offset;
101 mem.flags = slot->flags;
102
103 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
104 }
105
106
107 int kvm_init_vcpu(CPUState *env)
108 {
109 KVMState *s = kvm_state;
110 long mmap_size;
111 int ret;
112
113 dprintf("kvm_init_vcpu\n");
114
115 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
116 if (ret < 0) {
117 dprintf("kvm_create_vcpu failed\n");
118 goto err;
119 }
120
121 env->kvm_fd = ret;
122 env->kvm_state = s;
123
124 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
125 if (mmap_size < 0) {
126 dprintf("KVM_GET_VCPU_MMAP_SIZE failed\n");
127 goto err;
128 }
129
130 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
131 env->kvm_fd, 0);
132 if (env->kvm_run == MAP_FAILED) {
133 ret = -errno;
134 dprintf("mmap'ing vcpu state failed\n");
135 goto err;
136 }
137
138 ret = kvm_arch_init_vcpu(env);
139
140 err:
141 return ret;
142 }
143
144 int kvm_sync_vcpus(void)
145 {
146 CPUState *env;
147
148 for (env = first_cpu; env != NULL; env = env->next_cpu) {
149 int ret;
150
151 ret = kvm_arch_put_registers(env);
152 if (ret)
153 return ret;
154 }
155
156 return 0;
157 }
158
159 /*
160 * dirty pages logging control
161 */
162 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr, target_phys_addr_t end_addr,
163 unsigned flags,
164 unsigned mask)
165 {
166 KVMState *s = kvm_state;
167 KVMSlot *mem = kvm_lookup_slot(s, phys_addr);
168 if (mem == NULL) {
169 dprintf("invalid parameters %llx-%llx\n", phys_addr, end_addr);
170 return -EINVAL;
171 }
172
173 flags = (mem->flags & ~mask) | flags;
174 /* Nothing changed, no need to issue ioctl */
175 if (flags == mem->flags)
176 return 0;
177
178 mem->flags = flags;
179
180 return kvm_set_user_memory_region(s, mem);
181 }
182
183 int kvm_log_start(target_phys_addr_t phys_addr, target_phys_addr_t end_addr)
184 {
185 return kvm_dirty_pages_log_change(phys_addr, end_addr,
186 KVM_MEM_LOG_DIRTY_PAGES,
187 KVM_MEM_LOG_DIRTY_PAGES);
188 }
189
190 int kvm_log_stop(target_phys_addr_t phys_addr, target_phys_addr_t end_addr)
191 {
192 return kvm_dirty_pages_log_change(phys_addr, end_addr,
193 0,
194 KVM_MEM_LOG_DIRTY_PAGES);
195 }
196
197 /**
198 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
199 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
200 * This means all bits are set to dirty.
201 *
202 * @start_add: start of logged region. This is what we use to search the memslot
203 * @end_addr: end of logged region.
204 */
205 void kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr, target_phys_addr_t end_addr)
206 {
207 KVMState *s = kvm_state;
208 KVMDirtyLog d;
209 KVMSlot *mem = kvm_lookup_slot(s, start_addr);
210 unsigned long alloc_size;
211 ram_addr_t addr;
212 target_phys_addr_t phys_addr = start_addr;
213
214 dprintf("sync addr: %llx into %lx\n", start_addr, mem->phys_offset);
215 if (mem == NULL) {
216 fprintf(stderr, "BUG: %s: invalid parameters\n", __func__);
217 return;
218 }
219
220 alloc_size = mem->memory_size >> TARGET_PAGE_BITS / sizeof(d.dirty_bitmap);
221 d.dirty_bitmap = qemu_mallocz(alloc_size);
222
223 if (d.dirty_bitmap == NULL) {
224 dprintf("Could not allocate dirty bitmap\n");
225 return;
226 }
227
228 d.slot = mem->slot;
229 dprintf("slot %d, phys_addr %llx, uaddr: %llx\n",
230 d.slot, mem->start_addr, mem->phys_offset);
231
232 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
233 dprintf("ioctl failed %d\n", errno);
234 goto out;
235 }
236
237 phys_addr = start_addr;
238 for (addr = mem->phys_offset; phys_addr < end_addr; phys_addr+= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
239 unsigned long *bitmap = (unsigned long *)d.dirty_bitmap;
240 unsigned nr = (phys_addr - start_addr) >> TARGET_PAGE_BITS;
241 unsigned word = nr / (sizeof(*bitmap) * 8);
242 unsigned bit = nr % (sizeof(*bitmap) * 8);
243 if ((bitmap[word] >> bit) & 1)
244 cpu_physical_memory_set_dirty(addr);
245 }
246 out:
247 qemu_free(d.dirty_bitmap);
248 }
249
250 int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
251 {
252 int ret = -ENOSYS;
253 #ifdef KVM_CAP_COALESCED_MMIO
254 KVMState *s = kvm_state;
255
256 if (s->coalesced_mmio) {
257 struct kvm_coalesced_mmio_zone zone;
258
259 zone.addr = start;
260 zone.size = size;
261
262 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
263 }
264 #endif
265
266 return ret;
267 }
268
269 int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
270 {
271 int ret = -ENOSYS;
272 #ifdef KVM_CAP_COALESCED_MMIO
273 KVMState *s = kvm_state;
274
275 if (s->coalesced_mmio) {
276 struct kvm_coalesced_mmio_zone zone;
277
278 zone.addr = start;
279 zone.size = size;
280
281 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
282 }
283 #endif
284
285 return ret;
286 }
287
288 int kvm_init(int smp_cpus)
289 {
290 KVMState *s;
291 int ret;
292 int i;
293
294 if (smp_cpus > 1)
295 return -EINVAL;
296
297 s = qemu_mallocz(sizeof(KVMState));
298 if (s == NULL)
299 return -ENOMEM;
300
301 for (i = 0; i < ARRAY_SIZE(s->slots); i++)
302 s->slots[i].slot = i;
303
304 s->vmfd = -1;
305 s->fd = open("/dev/kvm", O_RDWR);
306 if (s->fd == -1) {
307 fprintf(stderr, "Could not access KVM kernel module: %m\n");
308 ret = -errno;
309 goto err;
310 }
311
312 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
313 if (ret < KVM_API_VERSION) {
314 if (ret > 0)
315 ret = -EINVAL;
316 fprintf(stderr, "kvm version too old\n");
317 goto err;
318 }
319
320 if (ret > KVM_API_VERSION) {
321 ret = -EINVAL;
322 fprintf(stderr, "kvm version not supported\n");
323 goto err;
324 }
325
326 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
327 if (s->vmfd < 0)
328 goto err;
329
330 /* initially, KVM allocated its own memory and we had to jump through
331 * hooks to make phys_ram_base point to this. Modern versions of KVM
332 * just use a user allocated buffer so we can use phys_ram_base
333 * unmodified. Make sure we have a sufficiently modern version of KVM.
334 */
335 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_USER_MEMORY);
336 if (ret <= 0) {
337 if (ret == 0)
338 ret = -EINVAL;
339 fprintf(stderr, "kvm does not support KVM_CAP_USER_MEMORY\n");
340 goto err;
341 }
342
343 /* There was a nasty bug in < kvm-80 that prevents memory slots from being
344 * destroyed properly. Since we rely on this capability, refuse to work
345 * with any kernel without this capability. */
346 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION,
347 KVM_CAP_DESTROY_MEMORY_REGION_WORKS);
348 if (ret <= 0) {
349 if (ret == 0)
350 ret = -EINVAL;
351
352 fprintf(stderr,
353 "KVM kernel module broken (DESTROY_MEMORY_REGION)\n"
354 "Please upgrade to at least kvm-81.\n");
355 goto err;
356 }
357
358 s->coalesced_mmio = 0;
359 #ifdef KVM_CAP_COALESCED_MMIO
360 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_COALESCED_MMIO);
361 if (ret > 0)
362 s->coalesced_mmio = ret;
363 #endif
364
365 ret = kvm_arch_init(s, smp_cpus);
366 if (ret < 0)
367 goto err;
368
369 kvm_state = s;
370
371 return 0;
372
373 err:
374 if (s) {
375 if (s->vmfd != -1)
376 close(s->vmfd);
377 if (s->fd != -1)
378 close(s->fd);
379 }
380 qemu_free(s);
381
382 return ret;
383 }
384
385 static int kvm_handle_io(CPUState *env, uint16_t port, void *data,
386 int direction, int size, uint32_t count)
387 {
388 int i;
389 uint8_t *ptr = data;
390
391 for (i = 0; i < count; i++) {
392 if (direction == KVM_EXIT_IO_IN) {
393 switch (size) {
394 case 1:
395 stb_p(ptr, cpu_inb(env, port));
396 break;
397 case 2:
398 stw_p(ptr, cpu_inw(env, port));
399 break;
400 case 4:
401 stl_p(ptr, cpu_inl(env, port));
402 break;
403 }
404 } else {
405 switch (size) {
406 case 1:
407 cpu_outb(env, port, ldub_p(ptr));
408 break;
409 case 2:
410 cpu_outw(env, port, lduw_p(ptr));
411 break;
412 case 4:
413 cpu_outl(env, port, ldl_p(ptr));
414 break;
415 }
416 }
417
418 ptr += size;
419 }
420
421 return 1;
422 }
423
424 static void kvm_run_coalesced_mmio(CPUState *env, struct kvm_run *run)
425 {
426 #ifdef KVM_CAP_COALESCED_MMIO
427 KVMState *s = kvm_state;
428 if (s->coalesced_mmio) {
429 struct kvm_coalesced_mmio_ring *ring;
430
431 ring = (void *)run + (s->coalesced_mmio * TARGET_PAGE_SIZE);
432 while (ring->first != ring->last) {
433 struct kvm_coalesced_mmio *ent;
434
435 ent = &ring->coalesced_mmio[ring->first];
436
437 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
438 /* FIXME smp_wmb() */
439 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
440 }
441 }
442 #endif
443 }
444
445 int kvm_cpu_exec(CPUState *env)
446 {
447 struct kvm_run *run = env->kvm_run;
448 int ret;
449
450 dprintf("kvm_cpu_exec()\n");
451
452 do {
453 kvm_arch_pre_run(env, run);
454
455 if ((env->interrupt_request & CPU_INTERRUPT_EXIT)) {
456 dprintf("interrupt exit requested\n");
457 ret = 0;
458 break;
459 }
460
461 ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
462 kvm_arch_post_run(env, run);
463
464 if (ret == -EINTR || ret == -EAGAIN) {
465 dprintf("io window exit\n");
466 ret = 0;
467 break;
468 }
469
470 if (ret < 0) {
471 dprintf("kvm run failed %s\n", strerror(-ret));
472 abort();
473 }
474
475 kvm_run_coalesced_mmio(env, run);
476
477 ret = 0; /* exit loop */
478 switch (run->exit_reason) {
479 case KVM_EXIT_IO:
480 dprintf("handle_io\n");
481 ret = kvm_handle_io(env, run->io.port,
482 (uint8_t *)run + run->io.data_offset,
483 run->io.direction,
484 run->io.size,
485 run->io.count);
486 break;
487 case KVM_EXIT_MMIO:
488 dprintf("handle_mmio\n");
489 cpu_physical_memory_rw(run->mmio.phys_addr,
490 run->mmio.data,
491 run->mmio.len,
492 run->mmio.is_write);
493 ret = 1;
494 break;
495 case KVM_EXIT_IRQ_WINDOW_OPEN:
496 dprintf("irq_window_open\n");
497 break;
498 case KVM_EXIT_SHUTDOWN:
499 dprintf("shutdown\n");
500 qemu_system_reset_request();
501 ret = 1;
502 break;
503 case KVM_EXIT_UNKNOWN:
504 dprintf("kvm_exit_unknown\n");
505 break;
506 case KVM_EXIT_FAIL_ENTRY:
507 dprintf("kvm_exit_fail_entry\n");
508 break;
509 case KVM_EXIT_EXCEPTION:
510 dprintf("kvm_exit_exception\n");
511 break;
512 case KVM_EXIT_DEBUG:
513 dprintf("kvm_exit_debug\n");
514 break;
515 default:
516 dprintf("kvm_arch_handle_exit\n");
517 ret = kvm_arch_handle_exit(env, run);
518 break;
519 }
520 } while (ret > 0);
521
522 if ((env->interrupt_request & CPU_INTERRUPT_EXIT)) {
523 env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
524 env->exception_index = EXCP_INTERRUPT;
525 }
526
527 return ret;
528 }
529
530 void kvm_set_phys_mem(target_phys_addr_t start_addr,
531 ram_addr_t size,
532 ram_addr_t phys_offset)
533 {
534 KVMState *s = kvm_state;
535 ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
536 KVMSlot *mem;
537
538 /* KVM does not support read-only slots */
539 phys_offset &= ~IO_MEM_ROM;
540
541 mem = kvm_lookup_slot(s, start_addr);
542 if (mem) {
543 if ((flags == IO_MEM_UNASSIGNED) || (flags >= TLB_MMIO)) {
544 mem->memory_size = 0;
545 mem->start_addr = start_addr;
546 mem->phys_offset = 0;
547 mem->flags = 0;
548
549 kvm_set_user_memory_region(s, mem);
550 } else if (start_addr >= mem->start_addr &&
551 (start_addr + size) <= (mem->start_addr +
552 mem->memory_size)) {
553 KVMSlot slot;
554 target_phys_addr_t mem_start;
555 ram_addr_t mem_size, mem_offset;
556
557 /* Not splitting */
558 if ((phys_offset - (start_addr - mem->start_addr)) ==
559 mem->phys_offset)
560 return;
561
562 /* unregister whole slot */
563 memcpy(&slot, mem, sizeof(slot));
564 mem->memory_size = 0;
565 kvm_set_user_memory_region(s, mem);
566
567 /* register prefix slot */
568 mem_start = slot.start_addr;
569 mem_size = start_addr - slot.start_addr;
570 mem_offset = slot.phys_offset;
571 if (mem_size)
572 kvm_set_phys_mem(mem_start, mem_size, mem_offset);
573
574 /* register new slot */
575 kvm_set_phys_mem(start_addr, size, phys_offset);
576
577 /* register suffix slot */
578 mem_start = start_addr + size;
579 mem_offset += mem_size + size;
580 mem_size = slot.memory_size - mem_size - size;
581 if (mem_size)
582 kvm_set_phys_mem(mem_start, mem_size, mem_offset);
583
584 return;
585 } else {
586 printf("Registering overlapping slot\n");
587 abort();
588 }
589 }
590 /* KVM does not need to know about this memory */
591 if (flags >= IO_MEM_UNASSIGNED)
592 return;
593
594 mem = kvm_alloc_slot(s);
595 mem->memory_size = size;
596 mem->start_addr = start_addr;
597 mem->phys_offset = phys_offset;
598 mem->flags = 0;
599
600 kvm_set_user_memory_region(s, mem);
601 /* FIXME deal with errors */
602 }
603
604 int kvm_ioctl(KVMState *s, int type, ...)
605 {
606 int ret;
607 void *arg;
608 va_list ap;
609
610 va_start(ap, type);
611 arg = va_arg(ap, void *);
612 va_end(ap);
613
614 ret = ioctl(s->fd, type, arg);
615 if (ret == -1)
616 ret = -errno;
617
618 return ret;
619 }
620
621 int kvm_vm_ioctl(KVMState *s, int type, ...)
622 {
623 int ret;
624 void *arg;
625 va_list ap;
626
627 va_start(ap, type);
628 arg = va_arg(ap, void *);
629 va_end(ap);
630
631 ret = ioctl(s->vmfd, type, arg);
632 if (ret == -1)
633 ret = -errno;
634
635 return ret;
636 }
637
638 int kvm_vcpu_ioctl(CPUState *env, int type, ...)
639 {
640 int ret;
641 void *arg;
642 va_list ap;
643
644 va_start(ap, type);
645 arg = va_arg(ap, void *);
646 va_end(ap);
647
648 ret = ioctl(env->kvm_fd, type, arg);
649 if (ret == -1)
650 ret = -errno;
651
652 return ret;
653 }
654
655 int kvm_has_sync_mmu(void)
656 {
657 #ifdef KVM_CAP_SYNC_MMU
658 KVMState *s = kvm_state;
659
660 if (kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_SYNC_MMU) > 0)
661 return 1;
662 #endif
663
664 return 0;
665 }