]> git.proxmox.com Git - mirror_qemu.git/blob - kvm-all.c
kvm: reset state from the CPU's reset method
[mirror_qemu.git] / kvm-all.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
10 *
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
13 *
14 */
15
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
20
21 #include <linux/kvm.h>
22
23 #include "qemu-common.h"
24 #include "qemu/atomic.h"
25 #include "qemu/option.h"
26 #include "qemu/config-file.h"
27 #include "sysemu/sysemu.h"
28 #include "hw/hw.h"
29 #include "hw/pci/msi.h"
30 #include "exec/gdbstub.h"
31 #include "sysemu/kvm.h"
32 #include "qemu/bswap.h"
33 #include "exec/memory.h"
34 #include "exec/ram_addr.h"
35 #include "exec/address-spaces.h"
36 #include "qemu/event_notifier.h"
37 #include "trace.h"
38
39 #include "hw/boards.h"
40
41 /* This check must be after config-host.h is included */
42 #ifdef CONFIG_EVENTFD
43 #include <sys/eventfd.h>
44 #endif
45
46 #ifdef CONFIG_VALGRIND_H
47 #include <valgrind/memcheck.h>
48 #endif
49
50 /* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
51 #define PAGE_SIZE TARGET_PAGE_SIZE
52
53 //#define DEBUG_KVM
54
55 #ifdef DEBUG_KVM
56 #define DPRINTF(fmt, ...) \
57 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
58 #else
59 #define DPRINTF(fmt, ...) \
60 do { } while (0)
61 #endif
62
63 #define KVM_MSI_HASHTAB_SIZE 256
64
65 typedef struct KVMSlot
66 {
67 hwaddr start_addr;
68 ram_addr_t memory_size;
69 void *ram;
70 int slot;
71 int flags;
72 } KVMSlot;
73
74 typedef struct kvm_dirty_log KVMDirtyLog;
75
76 struct KVMState
77 {
78 KVMSlot *slots;
79 int nr_slots;
80 int fd;
81 int vmfd;
82 int coalesced_mmio;
83 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
84 bool coalesced_flush_in_progress;
85 int broken_set_mem_region;
86 int migration_log;
87 int vcpu_events;
88 int robust_singlestep;
89 int debugregs;
90 #ifdef KVM_CAP_SET_GUEST_DEBUG
91 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
92 #endif
93 int pit_state2;
94 int xsave, xcrs;
95 int many_ioeventfds;
96 int intx_set_mask;
97 /* The man page (and posix) say ioctl numbers are signed int, but
98 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
99 * unsigned, and treating them as signed here can break things */
100 unsigned irq_set_ioctl;
101 #ifdef KVM_CAP_IRQ_ROUTING
102 struct kvm_irq_routing *irq_routes;
103 int nr_allocated_irq_routes;
104 uint32_t *used_gsi_bitmap;
105 unsigned int gsi_count;
106 QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
107 bool direct_msi;
108 #endif
109 };
110
111 KVMState *kvm_state;
112 bool kvm_kernel_irqchip;
113 bool kvm_async_interrupts_allowed;
114 bool kvm_halt_in_kernel_allowed;
115 bool kvm_irqfds_allowed;
116 bool kvm_msi_via_irqfd_allowed;
117 bool kvm_gsi_routing_allowed;
118 bool kvm_gsi_direct_mapping;
119 bool kvm_allowed;
120 bool kvm_readonly_mem_allowed;
121
122 static const KVMCapabilityInfo kvm_required_capabilites[] = {
123 KVM_CAP_INFO(USER_MEMORY),
124 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
125 KVM_CAP_LAST_INFO
126 };
127
128 static KVMSlot *kvm_alloc_slot(KVMState *s)
129 {
130 int i;
131
132 for (i = 0; i < s->nr_slots; i++) {
133 if (s->slots[i].memory_size == 0) {
134 return &s->slots[i];
135 }
136 }
137
138 fprintf(stderr, "%s: no free slot available\n", __func__);
139 abort();
140 }
141
142 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
143 hwaddr start_addr,
144 hwaddr end_addr)
145 {
146 int i;
147
148 for (i = 0; i < s->nr_slots; i++) {
149 KVMSlot *mem = &s->slots[i];
150
151 if (start_addr == mem->start_addr &&
152 end_addr == mem->start_addr + mem->memory_size) {
153 return mem;
154 }
155 }
156
157 return NULL;
158 }
159
160 /*
161 * Find overlapping slot with lowest start address
162 */
163 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
164 hwaddr start_addr,
165 hwaddr end_addr)
166 {
167 KVMSlot *found = NULL;
168 int i;
169
170 for (i = 0; i < s->nr_slots; i++) {
171 KVMSlot *mem = &s->slots[i];
172
173 if (mem->memory_size == 0 ||
174 (found && found->start_addr < mem->start_addr)) {
175 continue;
176 }
177
178 if (end_addr > mem->start_addr &&
179 start_addr < mem->start_addr + mem->memory_size) {
180 found = mem;
181 }
182 }
183
184 return found;
185 }
186
187 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
188 hwaddr *phys_addr)
189 {
190 int i;
191
192 for (i = 0; i < s->nr_slots; i++) {
193 KVMSlot *mem = &s->slots[i];
194
195 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
196 *phys_addr = mem->start_addr + (ram - mem->ram);
197 return 1;
198 }
199 }
200
201 return 0;
202 }
203
204 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
205 {
206 struct kvm_userspace_memory_region mem;
207
208 mem.slot = slot->slot;
209 mem.guest_phys_addr = slot->start_addr;
210 mem.userspace_addr = (unsigned long)slot->ram;
211 mem.flags = slot->flags;
212 if (s->migration_log) {
213 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
214 }
215
216 if (slot->memory_size && mem.flags & KVM_MEM_READONLY) {
217 /* Set the slot size to 0 before setting the slot to the desired
218 * value. This is needed based on KVM commit 75d61fbc. */
219 mem.memory_size = 0;
220 kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
221 }
222 mem.memory_size = slot->memory_size;
223 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
224 }
225
226 int kvm_init_vcpu(CPUState *cpu)
227 {
228 KVMState *s = kvm_state;
229 long mmap_size;
230 int ret;
231
232 DPRINTF("kvm_init_vcpu\n");
233
234 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)kvm_arch_vcpu_id(cpu));
235 if (ret < 0) {
236 DPRINTF("kvm_create_vcpu failed\n");
237 goto err;
238 }
239
240 cpu->kvm_fd = ret;
241 cpu->kvm_state = s;
242 cpu->kvm_vcpu_dirty = true;
243
244 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
245 if (mmap_size < 0) {
246 ret = mmap_size;
247 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
248 goto err;
249 }
250
251 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
252 cpu->kvm_fd, 0);
253 if (cpu->kvm_run == MAP_FAILED) {
254 ret = -errno;
255 DPRINTF("mmap'ing vcpu state failed\n");
256 goto err;
257 }
258
259 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
260 s->coalesced_mmio_ring =
261 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
262 }
263
264 ret = kvm_arch_init_vcpu(cpu);
265 err:
266 return ret;
267 }
268
269 /*
270 * dirty pages logging control
271 */
272
273 static int kvm_mem_flags(KVMState *s, bool log_dirty, bool readonly)
274 {
275 int flags = 0;
276 flags = log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0;
277 if (readonly && kvm_readonly_mem_allowed) {
278 flags |= KVM_MEM_READONLY;
279 }
280 return flags;
281 }
282
283 static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty)
284 {
285 KVMState *s = kvm_state;
286 int flags, mask = KVM_MEM_LOG_DIRTY_PAGES;
287 int old_flags;
288
289 old_flags = mem->flags;
290
291 flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty, false);
292 mem->flags = flags;
293
294 /* If nothing changed effectively, no need to issue ioctl */
295 if (s->migration_log) {
296 flags |= KVM_MEM_LOG_DIRTY_PAGES;
297 }
298
299 if (flags == old_flags) {
300 return 0;
301 }
302
303 return kvm_set_user_memory_region(s, mem);
304 }
305
306 static int kvm_dirty_pages_log_change(hwaddr phys_addr,
307 ram_addr_t size, bool log_dirty)
308 {
309 KVMState *s = kvm_state;
310 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
311
312 if (mem == NULL) {
313 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
314 TARGET_FMT_plx "\n", __func__, phys_addr,
315 (hwaddr)(phys_addr + size - 1));
316 return -EINVAL;
317 }
318 return kvm_slot_dirty_pages_log_change(mem, log_dirty);
319 }
320
321 static void kvm_log_start(MemoryListener *listener,
322 MemoryRegionSection *section)
323 {
324 int r;
325
326 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
327 int128_get64(section->size), true);
328 if (r < 0) {
329 abort();
330 }
331 }
332
333 static void kvm_log_stop(MemoryListener *listener,
334 MemoryRegionSection *section)
335 {
336 int r;
337
338 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
339 int128_get64(section->size), false);
340 if (r < 0) {
341 abort();
342 }
343 }
344
345 static int kvm_set_migration_log(int enable)
346 {
347 KVMState *s = kvm_state;
348 KVMSlot *mem;
349 int i, err;
350
351 s->migration_log = enable;
352
353 for (i = 0; i < s->nr_slots; i++) {
354 mem = &s->slots[i];
355
356 if (!mem->memory_size) {
357 continue;
358 }
359 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
360 continue;
361 }
362 err = kvm_set_user_memory_region(s, mem);
363 if (err) {
364 return err;
365 }
366 }
367 return 0;
368 }
369
370 /* get kvm's dirty pages bitmap and update qemu's */
371 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
372 unsigned long *bitmap)
373 {
374 ram_addr_t start = section->offset_within_region + section->mr->ram_addr;
375 ram_addr_t pages = int128_get64(section->size) / getpagesize();
376
377 cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages);
378 return 0;
379 }
380
381 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
382
383 /**
384 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
385 * This function updates qemu's dirty bitmap using
386 * memory_region_set_dirty(). This means all bits are set
387 * to dirty.
388 *
389 * @start_add: start of logged region.
390 * @end_addr: end of logged region.
391 */
392 static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section)
393 {
394 KVMState *s = kvm_state;
395 unsigned long size, allocated_size = 0;
396 KVMDirtyLog d;
397 KVMSlot *mem;
398 int ret = 0;
399 hwaddr start_addr = section->offset_within_address_space;
400 hwaddr end_addr = start_addr + int128_get64(section->size);
401
402 d.dirty_bitmap = NULL;
403 while (start_addr < end_addr) {
404 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
405 if (mem == NULL) {
406 break;
407 }
408
409 /* XXX bad kernel interface alert
410 * For dirty bitmap, kernel allocates array of size aligned to
411 * bits-per-long. But for case when the kernel is 64bits and
412 * the userspace is 32bits, userspace can't align to the same
413 * bits-per-long, since sizeof(long) is different between kernel
414 * and user space. This way, userspace will provide buffer which
415 * may be 4 bytes less than the kernel will use, resulting in
416 * userspace memory corruption (which is not detectable by valgrind
417 * too, in most cases).
418 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
419 * a hope that sizeof(long) wont become >8 any time soon.
420 */
421 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
422 /*HOST_LONG_BITS*/ 64) / 8;
423 if (!d.dirty_bitmap) {
424 d.dirty_bitmap = g_malloc(size);
425 } else if (size > allocated_size) {
426 d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
427 }
428 allocated_size = size;
429 memset(d.dirty_bitmap, 0, allocated_size);
430
431 d.slot = mem->slot;
432
433 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
434 DPRINTF("ioctl failed %d\n", errno);
435 ret = -1;
436 break;
437 }
438
439 kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
440 start_addr = mem->start_addr + mem->memory_size;
441 }
442 g_free(d.dirty_bitmap);
443
444 return ret;
445 }
446
447 static void kvm_coalesce_mmio_region(MemoryListener *listener,
448 MemoryRegionSection *secion,
449 hwaddr start, hwaddr size)
450 {
451 KVMState *s = kvm_state;
452
453 if (s->coalesced_mmio) {
454 struct kvm_coalesced_mmio_zone zone;
455
456 zone.addr = start;
457 zone.size = size;
458 zone.pad = 0;
459
460 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
461 }
462 }
463
464 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
465 MemoryRegionSection *secion,
466 hwaddr start, hwaddr size)
467 {
468 KVMState *s = kvm_state;
469
470 if (s->coalesced_mmio) {
471 struct kvm_coalesced_mmio_zone zone;
472
473 zone.addr = start;
474 zone.size = size;
475 zone.pad = 0;
476
477 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
478 }
479 }
480
481 int kvm_check_extension(KVMState *s, unsigned int extension)
482 {
483 int ret;
484
485 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
486 if (ret < 0) {
487 ret = 0;
488 }
489
490 return ret;
491 }
492
493 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
494 bool assign, uint32_t size, bool datamatch)
495 {
496 int ret;
497 struct kvm_ioeventfd iofd;
498
499 iofd.datamatch = datamatch ? val : 0;
500 iofd.addr = addr;
501 iofd.len = size;
502 iofd.flags = 0;
503 iofd.fd = fd;
504
505 if (!kvm_enabled()) {
506 return -ENOSYS;
507 }
508
509 if (datamatch) {
510 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
511 }
512 if (!assign) {
513 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
514 }
515
516 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
517
518 if (ret < 0) {
519 return -errno;
520 }
521
522 return 0;
523 }
524
525 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
526 bool assign, uint32_t size, bool datamatch)
527 {
528 struct kvm_ioeventfd kick = {
529 .datamatch = datamatch ? val : 0,
530 .addr = addr,
531 .flags = KVM_IOEVENTFD_FLAG_PIO,
532 .len = size,
533 .fd = fd,
534 };
535 int r;
536 if (!kvm_enabled()) {
537 return -ENOSYS;
538 }
539 if (datamatch) {
540 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
541 }
542 if (!assign) {
543 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
544 }
545 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
546 if (r < 0) {
547 return r;
548 }
549 return 0;
550 }
551
552
553 static int kvm_check_many_ioeventfds(void)
554 {
555 /* Userspace can use ioeventfd for io notification. This requires a host
556 * that supports eventfd(2) and an I/O thread; since eventfd does not
557 * support SIGIO it cannot interrupt the vcpu.
558 *
559 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
560 * can avoid creating too many ioeventfds.
561 */
562 #if defined(CONFIG_EVENTFD)
563 int ioeventfds[7];
564 int i, ret = 0;
565 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
566 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
567 if (ioeventfds[i] < 0) {
568 break;
569 }
570 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
571 if (ret < 0) {
572 close(ioeventfds[i]);
573 break;
574 }
575 }
576
577 /* Decide whether many devices are supported or not */
578 ret = i == ARRAY_SIZE(ioeventfds);
579
580 while (i-- > 0) {
581 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
582 close(ioeventfds[i]);
583 }
584 return ret;
585 #else
586 return 0;
587 #endif
588 }
589
590 static const KVMCapabilityInfo *
591 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
592 {
593 while (list->name) {
594 if (!kvm_check_extension(s, list->value)) {
595 return list;
596 }
597 list++;
598 }
599 return NULL;
600 }
601
602 static void kvm_set_phys_mem(MemoryRegionSection *section, bool add)
603 {
604 KVMState *s = kvm_state;
605 KVMSlot *mem, old;
606 int err;
607 MemoryRegion *mr = section->mr;
608 bool log_dirty = memory_region_is_logging(mr);
609 bool writeable = !mr->readonly && !mr->rom_device;
610 bool readonly_flag = mr->readonly || memory_region_is_romd(mr);
611 hwaddr start_addr = section->offset_within_address_space;
612 ram_addr_t size = int128_get64(section->size);
613 void *ram = NULL;
614 unsigned delta;
615
616 /* kvm works in page size chunks, but the function may be called
617 with sub-page size and unaligned start address. */
618 delta = TARGET_PAGE_ALIGN(size) - size;
619 if (delta > size) {
620 return;
621 }
622 start_addr += delta;
623 size -= delta;
624 size &= TARGET_PAGE_MASK;
625 if (!size || (start_addr & ~TARGET_PAGE_MASK)) {
626 return;
627 }
628
629 if (!memory_region_is_ram(mr)) {
630 if (writeable || !kvm_readonly_mem_allowed) {
631 return;
632 } else if (!mr->romd_mode) {
633 /* If the memory device is not in romd_mode, then we actually want
634 * to remove the kvm memory slot so all accesses will trap. */
635 add = false;
636 }
637 }
638
639 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta;
640
641 while (1) {
642 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
643 if (!mem) {
644 break;
645 }
646
647 if (add && start_addr >= mem->start_addr &&
648 (start_addr + size <= mem->start_addr + mem->memory_size) &&
649 (ram - start_addr == mem->ram - mem->start_addr)) {
650 /* The new slot fits into the existing one and comes with
651 * identical parameters - update flags and done. */
652 kvm_slot_dirty_pages_log_change(mem, log_dirty);
653 return;
654 }
655
656 old = *mem;
657
658 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
659 kvm_physical_sync_dirty_bitmap(section);
660 }
661
662 /* unregister the overlapping slot */
663 mem->memory_size = 0;
664 err = kvm_set_user_memory_region(s, mem);
665 if (err) {
666 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
667 __func__, strerror(-err));
668 abort();
669 }
670
671 /* Workaround for older KVM versions: we can't join slots, even not by
672 * unregistering the previous ones and then registering the larger
673 * slot. We have to maintain the existing fragmentation. Sigh.
674 *
675 * This workaround assumes that the new slot starts at the same
676 * address as the first existing one. If not or if some overlapping
677 * slot comes around later, we will fail (not seen in practice so far)
678 * - and actually require a recent KVM version. */
679 if (s->broken_set_mem_region &&
680 old.start_addr == start_addr && old.memory_size < size && add) {
681 mem = kvm_alloc_slot(s);
682 mem->memory_size = old.memory_size;
683 mem->start_addr = old.start_addr;
684 mem->ram = old.ram;
685 mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
686
687 err = kvm_set_user_memory_region(s, mem);
688 if (err) {
689 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
690 strerror(-err));
691 abort();
692 }
693
694 start_addr += old.memory_size;
695 ram += old.memory_size;
696 size -= old.memory_size;
697 continue;
698 }
699
700 /* register prefix slot */
701 if (old.start_addr < start_addr) {
702 mem = kvm_alloc_slot(s);
703 mem->memory_size = start_addr - old.start_addr;
704 mem->start_addr = old.start_addr;
705 mem->ram = old.ram;
706 mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
707
708 err = kvm_set_user_memory_region(s, mem);
709 if (err) {
710 fprintf(stderr, "%s: error registering prefix slot: %s\n",
711 __func__, strerror(-err));
712 #ifdef TARGET_PPC
713 fprintf(stderr, "%s: This is probably because your kernel's " \
714 "PAGE_SIZE is too big. Please try to use 4k " \
715 "PAGE_SIZE!\n", __func__);
716 #endif
717 abort();
718 }
719 }
720
721 /* register suffix slot */
722 if (old.start_addr + old.memory_size > start_addr + size) {
723 ram_addr_t size_delta;
724
725 mem = kvm_alloc_slot(s);
726 mem->start_addr = start_addr + size;
727 size_delta = mem->start_addr - old.start_addr;
728 mem->memory_size = old.memory_size - size_delta;
729 mem->ram = old.ram + size_delta;
730 mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
731
732 err = kvm_set_user_memory_region(s, mem);
733 if (err) {
734 fprintf(stderr, "%s: error registering suffix slot: %s\n",
735 __func__, strerror(-err));
736 abort();
737 }
738 }
739 }
740
741 /* in case the KVM bug workaround already "consumed" the new slot */
742 if (!size) {
743 return;
744 }
745 if (!add) {
746 return;
747 }
748 mem = kvm_alloc_slot(s);
749 mem->memory_size = size;
750 mem->start_addr = start_addr;
751 mem->ram = ram;
752 mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
753
754 err = kvm_set_user_memory_region(s, mem);
755 if (err) {
756 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
757 strerror(-err));
758 abort();
759 }
760 }
761
762 static void kvm_region_add(MemoryListener *listener,
763 MemoryRegionSection *section)
764 {
765 memory_region_ref(section->mr);
766 kvm_set_phys_mem(section, true);
767 }
768
769 static void kvm_region_del(MemoryListener *listener,
770 MemoryRegionSection *section)
771 {
772 kvm_set_phys_mem(section, false);
773 memory_region_unref(section->mr);
774 }
775
776 static void kvm_log_sync(MemoryListener *listener,
777 MemoryRegionSection *section)
778 {
779 int r;
780
781 r = kvm_physical_sync_dirty_bitmap(section);
782 if (r < 0) {
783 abort();
784 }
785 }
786
787 static void kvm_log_global_start(struct MemoryListener *listener)
788 {
789 int r;
790
791 r = kvm_set_migration_log(1);
792 assert(r >= 0);
793 }
794
795 static void kvm_log_global_stop(struct MemoryListener *listener)
796 {
797 int r;
798
799 r = kvm_set_migration_log(0);
800 assert(r >= 0);
801 }
802
803 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
804 MemoryRegionSection *section,
805 bool match_data, uint64_t data,
806 EventNotifier *e)
807 {
808 int fd = event_notifier_get_fd(e);
809 int r;
810
811 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
812 data, true, int128_get64(section->size),
813 match_data);
814 if (r < 0) {
815 fprintf(stderr, "%s: error adding ioeventfd: %s\n",
816 __func__, strerror(-r));
817 abort();
818 }
819 }
820
821 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
822 MemoryRegionSection *section,
823 bool match_data, uint64_t data,
824 EventNotifier *e)
825 {
826 int fd = event_notifier_get_fd(e);
827 int r;
828
829 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
830 data, false, int128_get64(section->size),
831 match_data);
832 if (r < 0) {
833 abort();
834 }
835 }
836
837 static void kvm_io_ioeventfd_add(MemoryListener *listener,
838 MemoryRegionSection *section,
839 bool match_data, uint64_t data,
840 EventNotifier *e)
841 {
842 int fd = event_notifier_get_fd(e);
843 int r;
844
845 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
846 data, true, int128_get64(section->size),
847 match_data);
848 if (r < 0) {
849 fprintf(stderr, "%s: error adding ioeventfd: %s\n",
850 __func__, strerror(-r));
851 abort();
852 }
853 }
854
855 static void kvm_io_ioeventfd_del(MemoryListener *listener,
856 MemoryRegionSection *section,
857 bool match_data, uint64_t data,
858 EventNotifier *e)
859
860 {
861 int fd = event_notifier_get_fd(e);
862 int r;
863
864 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
865 data, false, int128_get64(section->size),
866 match_data);
867 if (r < 0) {
868 abort();
869 }
870 }
871
872 static MemoryListener kvm_memory_listener = {
873 .region_add = kvm_region_add,
874 .region_del = kvm_region_del,
875 .log_start = kvm_log_start,
876 .log_stop = kvm_log_stop,
877 .log_sync = kvm_log_sync,
878 .log_global_start = kvm_log_global_start,
879 .log_global_stop = kvm_log_global_stop,
880 .eventfd_add = kvm_mem_ioeventfd_add,
881 .eventfd_del = kvm_mem_ioeventfd_del,
882 .coalesced_mmio_add = kvm_coalesce_mmio_region,
883 .coalesced_mmio_del = kvm_uncoalesce_mmio_region,
884 .priority = 10,
885 };
886
887 static MemoryListener kvm_io_listener = {
888 .eventfd_add = kvm_io_ioeventfd_add,
889 .eventfd_del = kvm_io_ioeventfd_del,
890 .priority = 10,
891 };
892
893 static void kvm_handle_interrupt(CPUState *cpu, int mask)
894 {
895 cpu->interrupt_request |= mask;
896
897 if (!qemu_cpu_is_self(cpu)) {
898 qemu_cpu_kick(cpu);
899 }
900 }
901
902 int kvm_set_irq(KVMState *s, int irq, int level)
903 {
904 struct kvm_irq_level event;
905 int ret;
906
907 assert(kvm_async_interrupts_enabled());
908
909 event.level = level;
910 event.irq = irq;
911 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
912 if (ret < 0) {
913 perror("kvm_set_irq");
914 abort();
915 }
916
917 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
918 }
919
920 #ifdef KVM_CAP_IRQ_ROUTING
921 typedef struct KVMMSIRoute {
922 struct kvm_irq_routing_entry kroute;
923 QTAILQ_ENTRY(KVMMSIRoute) entry;
924 } KVMMSIRoute;
925
926 static void set_gsi(KVMState *s, unsigned int gsi)
927 {
928 s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32);
929 }
930
931 static void clear_gsi(KVMState *s, unsigned int gsi)
932 {
933 s->used_gsi_bitmap[gsi / 32] &= ~(1U << (gsi % 32));
934 }
935
936 void kvm_init_irq_routing(KVMState *s)
937 {
938 int gsi_count, i;
939
940 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING);
941 if (gsi_count > 0) {
942 unsigned int gsi_bits, i;
943
944 /* Round up so we can search ints using ffs */
945 gsi_bits = ALIGN(gsi_count, 32);
946 s->used_gsi_bitmap = g_malloc0(gsi_bits / 8);
947 s->gsi_count = gsi_count;
948
949 /* Mark any over-allocated bits as already in use */
950 for (i = gsi_count; i < gsi_bits; i++) {
951 set_gsi(s, i);
952 }
953 }
954
955 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
956 s->nr_allocated_irq_routes = 0;
957
958 if (!s->direct_msi) {
959 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
960 QTAILQ_INIT(&s->msi_hashtab[i]);
961 }
962 }
963
964 kvm_arch_init_irq_routing(s);
965 }
966
967 void kvm_irqchip_commit_routes(KVMState *s)
968 {
969 int ret;
970
971 s->irq_routes->flags = 0;
972 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
973 assert(ret == 0);
974 }
975
976 static void kvm_add_routing_entry(KVMState *s,
977 struct kvm_irq_routing_entry *entry)
978 {
979 struct kvm_irq_routing_entry *new;
980 int n, size;
981
982 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
983 n = s->nr_allocated_irq_routes * 2;
984 if (n < 64) {
985 n = 64;
986 }
987 size = sizeof(struct kvm_irq_routing);
988 size += n * sizeof(*new);
989 s->irq_routes = g_realloc(s->irq_routes, size);
990 s->nr_allocated_irq_routes = n;
991 }
992 n = s->irq_routes->nr++;
993 new = &s->irq_routes->entries[n];
994
995 *new = *entry;
996
997 set_gsi(s, entry->gsi);
998 }
999
1000 static int kvm_update_routing_entry(KVMState *s,
1001 struct kvm_irq_routing_entry *new_entry)
1002 {
1003 struct kvm_irq_routing_entry *entry;
1004 int n;
1005
1006 for (n = 0; n < s->irq_routes->nr; n++) {
1007 entry = &s->irq_routes->entries[n];
1008 if (entry->gsi != new_entry->gsi) {
1009 continue;
1010 }
1011
1012 if(!memcmp(entry, new_entry, sizeof *entry)) {
1013 return 0;
1014 }
1015
1016 *entry = *new_entry;
1017
1018 kvm_irqchip_commit_routes(s);
1019
1020 return 0;
1021 }
1022
1023 return -ESRCH;
1024 }
1025
1026 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1027 {
1028 struct kvm_irq_routing_entry e = {};
1029
1030 assert(pin < s->gsi_count);
1031
1032 e.gsi = irq;
1033 e.type = KVM_IRQ_ROUTING_IRQCHIP;
1034 e.flags = 0;
1035 e.u.irqchip.irqchip = irqchip;
1036 e.u.irqchip.pin = pin;
1037 kvm_add_routing_entry(s, &e);
1038 }
1039
1040 void kvm_irqchip_release_virq(KVMState *s, int virq)
1041 {
1042 struct kvm_irq_routing_entry *e;
1043 int i;
1044
1045 if (kvm_gsi_direct_mapping()) {
1046 return;
1047 }
1048
1049 for (i = 0; i < s->irq_routes->nr; i++) {
1050 e = &s->irq_routes->entries[i];
1051 if (e->gsi == virq) {
1052 s->irq_routes->nr--;
1053 *e = s->irq_routes->entries[s->irq_routes->nr];
1054 }
1055 }
1056 clear_gsi(s, virq);
1057 }
1058
1059 static unsigned int kvm_hash_msi(uint32_t data)
1060 {
1061 /* This is optimized for IA32 MSI layout. However, no other arch shall
1062 * repeat the mistake of not providing a direct MSI injection API. */
1063 return data & 0xff;
1064 }
1065
1066 static void kvm_flush_dynamic_msi_routes(KVMState *s)
1067 {
1068 KVMMSIRoute *route, *next;
1069 unsigned int hash;
1070
1071 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1072 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1073 kvm_irqchip_release_virq(s, route->kroute.gsi);
1074 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1075 g_free(route);
1076 }
1077 }
1078 }
1079
1080 static int kvm_irqchip_get_virq(KVMState *s)
1081 {
1082 uint32_t *word = s->used_gsi_bitmap;
1083 int max_words = ALIGN(s->gsi_count, 32) / 32;
1084 int i, bit;
1085 bool retry = true;
1086
1087 again:
1088 /* Return the lowest unused GSI in the bitmap */
1089 for (i = 0; i < max_words; i++) {
1090 bit = ffs(~word[i]);
1091 if (!bit) {
1092 continue;
1093 }
1094
1095 return bit - 1 + i * 32;
1096 }
1097 if (!s->direct_msi && retry) {
1098 retry = false;
1099 kvm_flush_dynamic_msi_routes(s);
1100 goto again;
1101 }
1102 return -ENOSPC;
1103
1104 }
1105
1106 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1107 {
1108 unsigned int hash = kvm_hash_msi(msg.data);
1109 KVMMSIRoute *route;
1110
1111 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1112 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1113 route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1114 route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
1115 return route;
1116 }
1117 }
1118 return NULL;
1119 }
1120
1121 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1122 {
1123 struct kvm_msi msi;
1124 KVMMSIRoute *route;
1125
1126 if (s->direct_msi) {
1127 msi.address_lo = (uint32_t)msg.address;
1128 msi.address_hi = msg.address >> 32;
1129 msi.data = le32_to_cpu(msg.data);
1130 msi.flags = 0;
1131 memset(msi.pad, 0, sizeof(msi.pad));
1132
1133 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1134 }
1135
1136 route = kvm_lookup_msi_route(s, msg);
1137 if (!route) {
1138 int virq;
1139
1140 virq = kvm_irqchip_get_virq(s);
1141 if (virq < 0) {
1142 return virq;
1143 }
1144
1145 route = g_malloc0(sizeof(KVMMSIRoute));
1146 route->kroute.gsi = virq;
1147 route->kroute.type = KVM_IRQ_ROUTING_MSI;
1148 route->kroute.flags = 0;
1149 route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1150 route->kroute.u.msi.address_hi = msg.address >> 32;
1151 route->kroute.u.msi.data = le32_to_cpu(msg.data);
1152
1153 kvm_add_routing_entry(s, &route->kroute);
1154 kvm_irqchip_commit_routes(s);
1155
1156 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1157 entry);
1158 }
1159
1160 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1161
1162 return kvm_set_irq(s, route->kroute.gsi, 1);
1163 }
1164
1165 int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1166 {
1167 struct kvm_irq_routing_entry kroute = {};
1168 int virq;
1169
1170 if (kvm_gsi_direct_mapping()) {
1171 return msg.data & 0xffff;
1172 }
1173
1174 if (!kvm_gsi_routing_enabled()) {
1175 return -ENOSYS;
1176 }
1177
1178 virq = kvm_irqchip_get_virq(s);
1179 if (virq < 0) {
1180 return virq;
1181 }
1182
1183 kroute.gsi = virq;
1184 kroute.type = KVM_IRQ_ROUTING_MSI;
1185 kroute.flags = 0;
1186 kroute.u.msi.address_lo = (uint32_t)msg.address;
1187 kroute.u.msi.address_hi = msg.address >> 32;
1188 kroute.u.msi.data = le32_to_cpu(msg.data);
1189
1190 kvm_add_routing_entry(s, &kroute);
1191 kvm_irqchip_commit_routes(s);
1192
1193 return virq;
1194 }
1195
1196 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1197 {
1198 struct kvm_irq_routing_entry kroute = {};
1199
1200 if (kvm_gsi_direct_mapping()) {
1201 return 0;
1202 }
1203
1204 if (!kvm_irqchip_in_kernel()) {
1205 return -ENOSYS;
1206 }
1207
1208 kroute.gsi = virq;
1209 kroute.type = KVM_IRQ_ROUTING_MSI;
1210 kroute.flags = 0;
1211 kroute.u.msi.address_lo = (uint32_t)msg.address;
1212 kroute.u.msi.address_hi = msg.address >> 32;
1213 kroute.u.msi.data = le32_to_cpu(msg.data);
1214
1215 return kvm_update_routing_entry(s, &kroute);
1216 }
1217
1218 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq,
1219 bool assign)
1220 {
1221 struct kvm_irqfd irqfd = {
1222 .fd = fd,
1223 .gsi = virq,
1224 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1225 };
1226
1227 if (rfd != -1) {
1228 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
1229 irqfd.resamplefd = rfd;
1230 }
1231
1232 if (!kvm_irqfds_enabled()) {
1233 return -ENOSYS;
1234 }
1235
1236 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1237 }
1238
1239 #else /* !KVM_CAP_IRQ_ROUTING */
1240
1241 void kvm_init_irq_routing(KVMState *s)
1242 {
1243 }
1244
1245 void kvm_irqchip_release_virq(KVMState *s, int virq)
1246 {
1247 }
1248
1249 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1250 {
1251 abort();
1252 }
1253
1254 int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1255 {
1256 return -ENOSYS;
1257 }
1258
1259 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1260 {
1261 abort();
1262 }
1263
1264 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1265 {
1266 return -ENOSYS;
1267 }
1268 #endif /* !KVM_CAP_IRQ_ROUTING */
1269
1270 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
1271 EventNotifier *rn, int virq)
1272 {
1273 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n),
1274 rn ? event_notifier_get_fd(rn) : -1, virq, true);
1275 }
1276
1277 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, int virq)
1278 {
1279 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), -1, virq,
1280 false);
1281 }
1282
1283 static int kvm_irqchip_create(KVMState *s)
1284 {
1285 int ret;
1286
1287 if (!qemu_opt_get_bool(qemu_get_machine_opts(), "kernel_irqchip", true) ||
1288 !kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
1289 return 0;
1290 }
1291
1292 /* First probe and see if there's a arch-specific hook to create the
1293 * in-kernel irqchip for us */
1294 ret = kvm_arch_irqchip_create(s);
1295 if (ret < 0) {
1296 return ret;
1297 } else if (ret == 0) {
1298 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1299 if (ret < 0) {
1300 fprintf(stderr, "Create kernel irqchip failed\n");
1301 return ret;
1302 }
1303 }
1304
1305 kvm_kernel_irqchip = true;
1306 /* If we have an in-kernel IRQ chip then we must have asynchronous
1307 * interrupt delivery (though the reverse is not necessarily true)
1308 */
1309 kvm_async_interrupts_allowed = true;
1310 kvm_halt_in_kernel_allowed = true;
1311
1312 kvm_init_irq_routing(s);
1313
1314 return 0;
1315 }
1316
1317 /* Find number of supported CPUs using the recommended
1318 * procedure from the kernel API documentation to cope with
1319 * older kernels that may be missing capabilities.
1320 */
1321 static int kvm_recommended_vcpus(KVMState *s)
1322 {
1323 int ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS);
1324 return (ret) ? ret : 4;
1325 }
1326
1327 static int kvm_max_vcpus(KVMState *s)
1328 {
1329 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
1330 return (ret) ? ret : kvm_recommended_vcpus(s);
1331 }
1332
1333 int kvm_init(MachineClass *mc)
1334 {
1335 static const char upgrade_note[] =
1336 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1337 "(see http://sourceforge.net/projects/kvm).\n";
1338 struct {
1339 const char *name;
1340 int num;
1341 } num_cpus[] = {
1342 { "SMP", smp_cpus },
1343 { "hotpluggable", max_cpus },
1344 { NULL, }
1345 }, *nc = num_cpus;
1346 int soft_vcpus_limit, hard_vcpus_limit;
1347 KVMState *s;
1348 const KVMCapabilityInfo *missing_cap;
1349 int ret;
1350 int i, type = 0;
1351 const char *kvm_type;
1352
1353 s = g_malloc0(sizeof(KVMState));
1354
1355 /*
1356 * On systems where the kernel can support different base page
1357 * sizes, host page size may be different from TARGET_PAGE_SIZE,
1358 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
1359 * page size for the system though.
1360 */
1361 assert(TARGET_PAGE_SIZE <= getpagesize());
1362 page_size_init();
1363
1364 #ifdef KVM_CAP_SET_GUEST_DEBUG
1365 QTAILQ_INIT(&s->kvm_sw_breakpoints);
1366 #endif
1367 s->vmfd = -1;
1368 s->fd = qemu_open("/dev/kvm", O_RDWR);
1369 if (s->fd == -1) {
1370 fprintf(stderr, "Could not access KVM kernel module: %m\n");
1371 ret = -errno;
1372 goto err;
1373 }
1374
1375 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
1376 if (ret < KVM_API_VERSION) {
1377 if (ret > 0) {
1378 ret = -EINVAL;
1379 }
1380 fprintf(stderr, "kvm version too old\n");
1381 goto err;
1382 }
1383
1384 if (ret > KVM_API_VERSION) {
1385 ret = -EINVAL;
1386 fprintf(stderr, "kvm version not supported\n");
1387 goto err;
1388 }
1389
1390 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
1391
1392 /* If unspecified, use the default value */
1393 if (!s->nr_slots) {
1394 s->nr_slots = 32;
1395 }
1396
1397 s->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot));
1398
1399 for (i = 0; i < s->nr_slots; i++) {
1400 s->slots[i].slot = i;
1401 }
1402
1403 /* check the vcpu limits */
1404 soft_vcpus_limit = kvm_recommended_vcpus(s);
1405 hard_vcpus_limit = kvm_max_vcpus(s);
1406
1407 while (nc->name) {
1408 if (nc->num > soft_vcpus_limit) {
1409 fprintf(stderr,
1410 "Warning: Number of %s cpus requested (%d) exceeds "
1411 "the recommended cpus supported by KVM (%d)\n",
1412 nc->name, nc->num, soft_vcpus_limit);
1413
1414 if (nc->num > hard_vcpus_limit) {
1415 fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
1416 "the maximum cpus supported by KVM (%d)\n",
1417 nc->name, nc->num, hard_vcpus_limit);
1418 exit(1);
1419 }
1420 }
1421 nc++;
1422 }
1423
1424 kvm_type = qemu_opt_get(qemu_get_machine_opts(), "kvm-type");
1425 if (mc->kvm_type) {
1426 type = mc->kvm_type(kvm_type);
1427 } else if (kvm_type) {
1428 fprintf(stderr, "Invalid argument kvm-type=%s\n", kvm_type);
1429 goto err;
1430 }
1431
1432 do {
1433 ret = kvm_ioctl(s, KVM_CREATE_VM, type);
1434 } while (ret == -EINTR);
1435
1436 if (ret < 0) {
1437 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
1438 strerror(-ret));
1439
1440 #ifdef TARGET_S390X
1441 fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
1442 "your host kernel command line\n");
1443 #endif
1444 goto err;
1445 }
1446
1447 s->vmfd = ret;
1448 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1449 if (!missing_cap) {
1450 missing_cap =
1451 kvm_check_extension_list(s, kvm_arch_required_capabilities);
1452 }
1453 if (missing_cap) {
1454 ret = -EINVAL;
1455 fprintf(stderr, "kvm does not support %s\n%s",
1456 missing_cap->name, upgrade_note);
1457 goto err;
1458 }
1459
1460 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
1461
1462 s->broken_set_mem_region = 1;
1463 ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
1464 if (ret > 0) {
1465 s->broken_set_mem_region = 0;
1466 }
1467
1468 #ifdef KVM_CAP_VCPU_EVENTS
1469 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
1470 #endif
1471
1472 s->robust_singlestep =
1473 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
1474
1475 #ifdef KVM_CAP_DEBUGREGS
1476 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
1477 #endif
1478
1479 #ifdef KVM_CAP_XSAVE
1480 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
1481 #endif
1482
1483 #ifdef KVM_CAP_XCRS
1484 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
1485 #endif
1486
1487 #ifdef KVM_CAP_PIT_STATE2
1488 s->pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
1489 #endif
1490
1491 #ifdef KVM_CAP_IRQ_ROUTING
1492 s->direct_msi = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
1493 #endif
1494
1495 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
1496
1497 s->irq_set_ioctl = KVM_IRQ_LINE;
1498 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
1499 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
1500 }
1501
1502 #ifdef KVM_CAP_READONLY_MEM
1503 kvm_readonly_mem_allowed =
1504 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
1505 #endif
1506
1507 ret = kvm_arch_init(s);
1508 if (ret < 0) {
1509 goto err;
1510 }
1511
1512 ret = kvm_irqchip_create(s);
1513 if (ret < 0) {
1514 goto err;
1515 }
1516
1517 kvm_state = s;
1518 memory_listener_register(&kvm_memory_listener, &address_space_memory);
1519 memory_listener_register(&kvm_io_listener, &address_space_io);
1520
1521 s->many_ioeventfds = kvm_check_many_ioeventfds();
1522
1523 cpu_interrupt_handler = kvm_handle_interrupt;
1524
1525 return 0;
1526
1527 err:
1528 if (s->vmfd >= 0) {
1529 close(s->vmfd);
1530 }
1531 if (s->fd != -1) {
1532 close(s->fd);
1533 }
1534 g_free(s->slots);
1535 g_free(s);
1536
1537 return ret;
1538 }
1539
1540 static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
1541 uint32_t count)
1542 {
1543 int i;
1544 uint8_t *ptr = data;
1545
1546 for (i = 0; i < count; i++) {
1547 address_space_rw(&address_space_io, port, ptr, size,
1548 direction == KVM_EXIT_IO_OUT);
1549 ptr += size;
1550 }
1551 }
1552
1553 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
1554 {
1555 fprintf(stderr, "KVM internal error. Suberror: %d\n",
1556 run->internal.suberror);
1557
1558 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
1559 int i;
1560
1561 for (i = 0; i < run->internal.ndata; ++i) {
1562 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
1563 i, (uint64_t)run->internal.data[i]);
1564 }
1565 }
1566 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
1567 fprintf(stderr, "emulation failure\n");
1568 if (!kvm_arch_stop_on_emulation_error(cpu)) {
1569 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
1570 return EXCP_INTERRUPT;
1571 }
1572 }
1573 /* FIXME: Should trigger a qmp message to let management know
1574 * something went wrong.
1575 */
1576 return -1;
1577 }
1578
1579 void kvm_flush_coalesced_mmio_buffer(void)
1580 {
1581 KVMState *s = kvm_state;
1582
1583 if (s->coalesced_flush_in_progress) {
1584 return;
1585 }
1586
1587 s->coalesced_flush_in_progress = true;
1588
1589 if (s->coalesced_mmio_ring) {
1590 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
1591 while (ring->first != ring->last) {
1592 struct kvm_coalesced_mmio *ent;
1593
1594 ent = &ring->coalesced_mmio[ring->first];
1595
1596 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
1597 smp_wmb();
1598 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
1599 }
1600 }
1601
1602 s->coalesced_flush_in_progress = false;
1603 }
1604
1605 static void do_kvm_cpu_synchronize_state(void *arg)
1606 {
1607 CPUState *cpu = arg;
1608
1609 if (!cpu->kvm_vcpu_dirty) {
1610 kvm_arch_get_registers(cpu);
1611 cpu->kvm_vcpu_dirty = true;
1612 }
1613 }
1614
1615 void kvm_cpu_synchronize_state(CPUState *cpu)
1616 {
1617 if (!cpu->kvm_vcpu_dirty) {
1618 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, cpu);
1619 }
1620 }
1621
1622 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
1623 {
1624 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
1625 cpu->kvm_vcpu_dirty = false;
1626 }
1627
1628 void kvm_cpu_synchronize_post_init(CPUState *cpu)
1629 {
1630 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
1631 cpu->kvm_vcpu_dirty = false;
1632 }
1633
1634 int kvm_cpu_exec(CPUState *cpu)
1635 {
1636 struct kvm_run *run = cpu->kvm_run;
1637 int ret, run_ret;
1638
1639 DPRINTF("kvm_cpu_exec()\n");
1640
1641 if (kvm_arch_process_async_events(cpu)) {
1642 cpu->exit_request = 0;
1643 return EXCP_HLT;
1644 }
1645
1646 do {
1647 if (cpu->kvm_vcpu_dirty) {
1648 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
1649 cpu->kvm_vcpu_dirty = false;
1650 }
1651
1652 kvm_arch_pre_run(cpu, run);
1653 if (cpu->exit_request) {
1654 DPRINTF("interrupt exit requested\n");
1655 /*
1656 * KVM requires us to reenter the kernel after IO exits to complete
1657 * instruction emulation. This self-signal will ensure that we
1658 * leave ASAP again.
1659 */
1660 qemu_cpu_kick_self();
1661 }
1662 qemu_mutex_unlock_iothread();
1663
1664 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
1665
1666 qemu_mutex_lock_iothread();
1667 kvm_arch_post_run(cpu, run);
1668
1669 if (run_ret < 0) {
1670 if (run_ret == -EINTR || run_ret == -EAGAIN) {
1671 DPRINTF("io window exit\n");
1672 ret = EXCP_INTERRUPT;
1673 break;
1674 }
1675 fprintf(stderr, "error: kvm run failed %s\n",
1676 strerror(-run_ret));
1677 abort();
1678 }
1679
1680 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
1681 switch (run->exit_reason) {
1682 case KVM_EXIT_IO:
1683 DPRINTF("handle_io\n");
1684 kvm_handle_io(run->io.port,
1685 (uint8_t *)run + run->io.data_offset,
1686 run->io.direction,
1687 run->io.size,
1688 run->io.count);
1689 ret = 0;
1690 break;
1691 case KVM_EXIT_MMIO:
1692 DPRINTF("handle_mmio\n");
1693 cpu_physical_memory_rw(run->mmio.phys_addr,
1694 run->mmio.data,
1695 run->mmio.len,
1696 run->mmio.is_write);
1697 ret = 0;
1698 break;
1699 case KVM_EXIT_IRQ_WINDOW_OPEN:
1700 DPRINTF("irq_window_open\n");
1701 ret = EXCP_INTERRUPT;
1702 break;
1703 case KVM_EXIT_SHUTDOWN:
1704 DPRINTF("shutdown\n");
1705 qemu_system_reset_request();
1706 ret = EXCP_INTERRUPT;
1707 break;
1708 case KVM_EXIT_UNKNOWN:
1709 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
1710 (uint64_t)run->hw.hardware_exit_reason);
1711 ret = -1;
1712 break;
1713 case KVM_EXIT_INTERNAL_ERROR:
1714 ret = kvm_handle_internal_error(cpu, run);
1715 break;
1716 default:
1717 DPRINTF("kvm_arch_handle_exit\n");
1718 ret = kvm_arch_handle_exit(cpu, run);
1719 break;
1720 }
1721 } while (ret == 0);
1722
1723 if (ret < 0) {
1724 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
1725 vm_stop(RUN_STATE_INTERNAL_ERROR);
1726 }
1727
1728 cpu->exit_request = 0;
1729 return ret;
1730 }
1731
1732 int kvm_ioctl(KVMState *s, int type, ...)
1733 {
1734 int ret;
1735 void *arg;
1736 va_list ap;
1737
1738 va_start(ap, type);
1739 arg = va_arg(ap, void *);
1740 va_end(ap);
1741
1742 trace_kvm_ioctl(type, arg);
1743 ret = ioctl(s->fd, type, arg);
1744 if (ret == -1) {
1745 ret = -errno;
1746 }
1747 return ret;
1748 }
1749
1750 int kvm_vm_ioctl(KVMState *s, int type, ...)
1751 {
1752 int ret;
1753 void *arg;
1754 va_list ap;
1755
1756 va_start(ap, type);
1757 arg = va_arg(ap, void *);
1758 va_end(ap);
1759
1760 trace_kvm_vm_ioctl(type, arg);
1761 ret = ioctl(s->vmfd, type, arg);
1762 if (ret == -1) {
1763 ret = -errno;
1764 }
1765 return ret;
1766 }
1767
1768 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
1769 {
1770 int ret;
1771 void *arg;
1772 va_list ap;
1773
1774 va_start(ap, type);
1775 arg = va_arg(ap, void *);
1776 va_end(ap);
1777
1778 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
1779 ret = ioctl(cpu->kvm_fd, type, arg);
1780 if (ret == -1) {
1781 ret = -errno;
1782 }
1783 return ret;
1784 }
1785
1786 int kvm_device_ioctl(int fd, int type, ...)
1787 {
1788 int ret;
1789 void *arg;
1790 va_list ap;
1791
1792 va_start(ap, type);
1793 arg = va_arg(ap, void *);
1794 va_end(ap);
1795
1796 trace_kvm_device_ioctl(fd, type, arg);
1797 ret = ioctl(fd, type, arg);
1798 if (ret == -1) {
1799 ret = -errno;
1800 }
1801 return ret;
1802 }
1803
1804 int kvm_has_sync_mmu(void)
1805 {
1806 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
1807 }
1808
1809 int kvm_has_vcpu_events(void)
1810 {
1811 return kvm_state->vcpu_events;
1812 }
1813
1814 int kvm_has_robust_singlestep(void)
1815 {
1816 return kvm_state->robust_singlestep;
1817 }
1818
1819 int kvm_has_debugregs(void)
1820 {
1821 return kvm_state->debugregs;
1822 }
1823
1824 int kvm_has_xsave(void)
1825 {
1826 return kvm_state->xsave;
1827 }
1828
1829 int kvm_has_xcrs(void)
1830 {
1831 return kvm_state->xcrs;
1832 }
1833
1834 int kvm_has_pit_state2(void)
1835 {
1836 return kvm_state->pit_state2;
1837 }
1838
1839 int kvm_has_many_ioeventfds(void)
1840 {
1841 if (!kvm_enabled()) {
1842 return 0;
1843 }
1844 return kvm_state->many_ioeventfds;
1845 }
1846
1847 int kvm_has_gsi_routing(void)
1848 {
1849 #ifdef KVM_CAP_IRQ_ROUTING
1850 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
1851 #else
1852 return false;
1853 #endif
1854 }
1855
1856 int kvm_has_intx_set_mask(void)
1857 {
1858 return kvm_state->intx_set_mask;
1859 }
1860
1861 void kvm_setup_guest_memory(void *start, size_t size)
1862 {
1863 #ifdef CONFIG_VALGRIND_H
1864 VALGRIND_MAKE_MEM_DEFINED(start, size);
1865 #endif
1866 if (!kvm_has_sync_mmu()) {
1867 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
1868
1869 if (ret) {
1870 perror("qemu_madvise");
1871 fprintf(stderr,
1872 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1873 exit(1);
1874 }
1875 }
1876 }
1877
1878 #ifdef KVM_CAP_SET_GUEST_DEBUG
1879 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
1880 target_ulong pc)
1881 {
1882 struct kvm_sw_breakpoint *bp;
1883
1884 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
1885 if (bp->pc == pc) {
1886 return bp;
1887 }
1888 }
1889 return NULL;
1890 }
1891
1892 int kvm_sw_breakpoints_active(CPUState *cpu)
1893 {
1894 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
1895 }
1896
1897 struct kvm_set_guest_debug_data {
1898 struct kvm_guest_debug dbg;
1899 CPUState *cpu;
1900 int err;
1901 };
1902
1903 static void kvm_invoke_set_guest_debug(void *data)
1904 {
1905 struct kvm_set_guest_debug_data *dbg_data = data;
1906
1907 dbg_data->err = kvm_vcpu_ioctl(dbg_data->cpu, KVM_SET_GUEST_DEBUG,
1908 &dbg_data->dbg);
1909 }
1910
1911 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
1912 {
1913 struct kvm_set_guest_debug_data data;
1914
1915 data.dbg.control = reinject_trap;
1916
1917 if (cpu->singlestep_enabled) {
1918 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1919 }
1920 kvm_arch_update_guest_debug(cpu, &data.dbg);
1921 data.cpu = cpu;
1922
1923 run_on_cpu(cpu, kvm_invoke_set_guest_debug, &data);
1924 return data.err;
1925 }
1926
1927 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
1928 target_ulong len, int type)
1929 {
1930 struct kvm_sw_breakpoint *bp;
1931 int err;
1932
1933 if (type == GDB_BREAKPOINT_SW) {
1934 bp = kvm_find_sw_breakpoint(cpu, addr);
1935 if (bp) {
1936 bp->use_count++;
1937 return 0;
1938 }
1939
1940 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
1941 if (!bp) {
1942 return -ENOMEM;
1943 }
1944
1945 bp->pc = addr;
1946 bp->use_count = 1;
1947 err = kvm_arch_insert_sw_breakpoint(cpu, bp);
1948 if (err) {
1949 g_free(bp);
1950 return err;
1951 }
1952
1953 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
1954 } else {
1955 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1956 if (err) {
1957 return err;
1958 }
1959 }
1960
1961 CPU_FOREACH(cpu) {
1962 err = kvm_update_guest_debug(cpu, 0);
1963 if (err) {
1964 return err;
1965 }
1966 }
1967 return 0;
1968 }
1969
1970 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
1971 target_ulong len, int type)
1972 {
1973 struct kvm_sw_breakpoint *bp;
1974 int err;
1975
1976 if (type == GDB_BREAKPOINT_SW) {
1977 bp = kvm_find_sw_breakpoint(cpu, addr);
1978 if (!bp) {
1979 return -ENOENT;
1980 }
1981
1982 if (bp->use_count > 1) {
1983 bp->use_count--;
1984 return 0;
1985 }
1986
1987 err = kvm_arch_remove_sw_breakpoint(cpu, bp);
1988 if (err) {
1989 return err;
1990 }
1991
1992 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
1993 g_free(bp);
1994 } else {
1995 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1996 if (err) {
1997 return err;
1998 }
1999 }
2000
2001 CPU_FOREACH(cpu) {
2002 err = kvm_update_guest_debug(cpu, 0);
2003 if (err) {
2004 return err;
2005 }
2006 }
2007 return 0;
2008 }
2009
2010 void kvm_remove_all_breakpoints(CPUState *cpu)
2011 {
2012 struct kvm_sw_breakpoint *bp, *next;
2013 KVMState *s = cpu->kvm_state;
2014
2015 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
2016 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
2017 /* Try harder to find a CPU that currently sees the breakpoint. */
2018 CPU_FOREACH(cpu) {
2019 if (kvm_arch_remove_sw_breakpoint(cpu, bp) == 0) {
2020 break;
2021 }
2022 }
2023 }
2024 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
2025 g_free(bp);
2026 }
2027 kvm_arch_remove_all_hw_breakpoints();
2028
2029 CPU_FOREACH(cpu) {
2030 kvm_update_guest_debug(cpu, 0);
2031 }
2032 }
2033
2034 #else /* !KVM_CAP_SET_GUEST_DEBUG */
2035
2036 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2037 {
2038 return -EINVAL;
2039 }
2040
2041 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2042 target_ulong len, int type)
2043 {
2044 return -EINVAL;
2045 }
2046
2047 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2048 target_ulong len, int type)
2049 {
2050 return -EINVAL;
2051 }
2052
2053 void kvm_remove_all_breakpoints(CPUState *cpu)
2054 {
2055 }
2056 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2057
2058 int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
2059 {
2060 struct kvm_signal_mask *sigmask;
2061 int r;
2062
2063 if (!sigset) {
2064 return kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, NULL);
2065 }
2066
2067 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
2068
2069 sigmask->len = 8;
2070 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
2071 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
2072 g_free(sigmask);
2073
2074 return r;
2075 }
2076 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
2077 {
2078 return kvm_arch_on_sigbus_vcpu(cpu, code, addr);
2079 }
2080
2081 int kvm_on_sigbus(int code, void *addr)
2082 {
2083 return kvm_arch_on_sigbus(code, addr);
2084 }
2085
2086 int kvm_create_device(KVMState *s, uint64_t type, bool test)
2087 {
2088 int ret;
2089 struct kvm_create_device create_dev;
2090
2091 create_dev.type = type;
2092 create_dev.fd = -1;
2093 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
2094
2095 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
2096 return -ENOTSUP;
2097 }
2098
2099 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
2100 if (ret) {
2101 return ret;
2102 }
2103
2104 return test ? 0 : create_dev.fd;
2105 }
2106
2107 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
2108 {
2109 struct kvm_one_reg reg;
2110 int r;
2111
2112 reg.id = id;
2113 reg.addr = (uintptr_t) source;
2114 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
2115 if (r) {
2116 trace_kvm_failed_reg_set(id, strerror(r));
2117 }
2118 return r;
2119 }
2120
2121 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
2122 {
2123 struct kvm_one_reg reg;
2124 int r;
2125
2126 reg.id = id;
2127 reg.addr = (uintptr_t) target;
2128 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
2129 if (r) {
2130 trace_kvm_failed_reg_get(id, strerror(r));
2131 }
2132 return r;
2133 }