]> git.proxmox.com Git - mirror_qemu.git/blob - kvm-all.c
kvm: convert to MemoryListener API
[mirror_qemu.git] / kvm-all.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
10 *
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
13 *
14 */
15
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
20
21 #include <linux/kvm.h>
22
23 #include "qemu-common.h"
24 #include "qemu-barrier.h"
25 #include "sysemu.h"
26 #include "hw/hw.h"
27 #include "gdbstub.h"
28 #include "kvm.h"
29 #include "bswap.h"
30 #include "memory.h"
31
32 /* This check must be after config-host.h is included */
33 #ifdef CONFIG_EVENTFD
34 #include <sys/eventfd.h>
35 #endif
36
37 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
38 #define PAGE_SIZE TARGET_PAGE_SIZE
39
40 //#define DEBUG_KVM
41
42 #ifdef DEBUG_KVM
43 #define DPRINTF(fmt, ...) \
44 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
45 #else
46 #define DPRINTF(fmt, ...) \
47 do { } while (0)
48 #endif
49
50 typedef struct KVMSlot
51 {
52 target_phys_addr_t start_addr;
53 ram_addr_t memory_size;
54 void *ram;
55 int slot;
56 int flags;
57 } KVMSlot;
58
59 typedef struct kvm_dirty_log KVMDirtyLog;
60
61 struct KVMState
62 {
63 KVMSlot slots[32];
64 int fd;
65 int vmfd;
66 int coalesced_mmio;
67 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
68 bool coalesced_flush_in_progress;
69 int broken_set_mem_region;
70 int migration_log;
71 int vcpu_events;
72 int robust_singlestep;
73 int debugregs;
74 #ifdef KVM_CAP_SET_GUEST_DEBUG
75 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
76 #endif
77 int irqchip_in_kernel;
78 int pit_in_kernel;
79 int xsave, xcrs;
80 int many_ioeventfds;
81 };
82
83 KVMState *kvm_state;
84
85 static const KVMCapabilityInfo kvm_required_capabilites[] = {
86 KVM_CAP_INFO(USER_MEMORY),
87 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
88 KVM_CAP_LAST_INFO
89 };
90
91 static KVMSlot *kvm_alloc_slot(KVMState *s)
92 {
93 int i;
94
95 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
96 if (s->slots[i].memory_size == 0) {
97 return &s->slots[i];
98 }
99 }
100
101 fprintf(stderr, "%s: no free slot available\n", __func__);
102 abort();
103 }
104
105 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
106 target_phys_addr_t start_addr,
107 target_phys_addr_t end_addr)
108 {
109 int i;
110
111 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
112 KVMSlot *mem = &s->slots[i];
113
114 if (start_addr == mem->start_addr &&
115 end_addr == mem->start_addr + mem->memory_size) {
116 return mem;
117 }
118 }
119
120 return NULL;
121 }
122
123 /*
124 * Find overlapping slot with lowest start address
125 */
126 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
127 target_phys_addr_t start_addr,
128 target_phys_addr_t end_addr)
129 {
130 KVMSlot *found = NULL;
131 int i;
132
133 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
134 KVMSlot *mem = &s->slots[i];
135
136 if (mem->memory_size == 0 ||
137 (found && found->start_addr < mem->start_addr)) {
138 continue;
139 }
140
141 if (end_addr > mem->start_addr &&
142 start_addr < mem->start_addr + mem->memory_size) {
143 found = mem;
144 }
145 }
146
147 return found;
148 }
149
150 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
151 target_phys_addr_t *phys_addr)
152 {
153 int i;
154
155 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
156 KVMSlot *mem = &s->slots[i];
157
158 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
159 *phys_addr = mem->start_addr + (ram - mem->ram);
160 return 1;
161 }
162 }
163
164 return 0;
165 }
166
167 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
168 {
169 struct kvm_userspace_memory_region mem;
170
171 mem.slot = slot->slot;
172 mem.guest_phys_addr = slot->start_addr;
173 mem.memory_size = slot->memory_size;
174 mem.userspace_addr = (unsigned long)slot->ram;
175 mem.flags = slot->flags;
176 if (s->migration_log) {
177 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
178 }
179 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
180 }
181
182 static void kvm_reset_vcpu(void *opaque)
183 {
184 CPUState *env = opaque;
185
186 kvm_arch_reset_vcpu(env);
187 }
188
189 int kvm_irqchip_in_kernel(void)
190 {
191 return kvm_state->irqchip_in_kernel;
192 }
193
194 int kvm_pit_in_kernel(void)
195 {
196 return kvm_state->pit_in_kernel;
197 }
198
199 int kvm_init_vcpu(CPUState *env)
200 {
201 KVMState *s = kvm_state;
202 long mmap_size;
203 int ret;
204
205 DPRINTF("kvm_init_vcpu\n");
206
207 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
208 if (ret < 0) {
209 DPRINTF("kvm_create_vcpu failed\n");
210 goto err;
211 }
212
213 env->kvm_fd = ret;
214 env->kvm_state = s;
215 env->kvm_vcpu_dirty = 1;
216
217 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
218 if (mmap_size < 0) {
219 ret = mmap_size;
220 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
221 goto err;
222 }
223
224 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
225 env->kvm_fd, 0);
226 if (env->kvm_run == MAP_FAILED) {
227 ret = -errno;
228 DPRINTF("mmap'ing vcpu state failed\n");
229 goto err;
230 }
231
232 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
233 s->coalesced_mmio_ring =
234 (void *)env->kvm_run + s->coalesced_mmio * PAGE_SIZE;
235 }
236
237 ret = kvm_arch_init_vcpu(env);
238 if (ret == 0) {
239 qemu_register_reset(kvm_reset_vcpu, env);
240 kvm_arch_reset_vcpu(env);
241 }
242 err:
243 return ret;
244 }
245
246 /*
247 * dirty pages logging control
248 */
249
250 static int kvm_mem_flags(KVMState *s, bool log_dirty)
251 {
252 return log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0;
253 }
254
255 static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty)
256 {
257 KVMState *s = kvm_state;
258 int flags, mask = KVM_MEM_LOG_DIRTY_PAGES;
259 int old_flags;
260
261 old_flags = mem->flags;
262
263 flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty);
264 mem->flags = flags;
265
266 /* If nothing changed effectively, no need to issue ioctl */
267 if (s->migration_log) {
268 flags |= KVM_MEM_LOG_DIRTY_PAGES;
269 }
270
271 if (flags == old_flags) {
272 return 0;
273 }
274
275 return kvm_set_user_memory_region(s, mem);
276 }
277
278 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
279 ram_addr_t size, bool log_dirty)
280 {
281 KVMState *s = kvm_state;
282 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
283
284 if (mem == NULL) {
285 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
286 TARGET_FMT_plx "\n", __func__, phys_addr,
287 (target_phys_addr_t)(phys_addr + size - 1));
288 return -EINVAL;
289 }
290 return kvm_slot_dirty_pages_log_change(mem, log_dirty);
291 }
292
293 static void kvm_log_start(MemoryListener *listener,
294 MemoryRegionSection *section)
295 {
296 int r;
297
298 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
299 section->size, true);
300 if (r < 0) {
301 abort();
302 }
303 }
304
305 static void kvm_log_stop(MemoryListener *listener,
306 MemoryRegionSection *section)
307 {
308 int r;
309
310 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
311 section->size, false);
312 if (r < 0) {
313 abort();
314 }
315 }
316
317 static int kvm_set_migration_log(int enable)
318 {
319 KVMState *s = kvm_state;
320 KVMSlot *mem;
321 int i, err;
322
323 s->migration_log = enable;
324
325 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
326 mem = &s->slots[i];
327
328 if (!mem->memory_size) {
329 continue;
330 }
331 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
332 continue;
333 }
334 err = kvm_set_user_memory_region(s, mem);
335 if (err) {
336 return err;
337 }
338 }
339 return 0;
340 }
341
342 /* get kvm's dirty pages bitmap and update qemu's */
343 static int kvm_get_dirty_pages_log_range(unsigned long start_addr,
344 unsigned long *bitmap,
345 unsigned long offset,
346 unsigned long mem_size)
347 {
348 unsigned int i, j;
349 unsigned long page_number, addr, addr1, c;
350 ram_addr_t ram_addr;
351 unsigned int len = ((mem_size / TARGET_PAGE_SIZE) + HOST_LONG_BITS - 1) /
352 HOST_LONG_BITS;
353
354 /*
355 * bitmap-traveling is faster than memory-traveling (for addr...)
356 * especially when most of the memory is not dirty.
357 */
358 for (i = 0; i < len; i++) {
359 if (bitmap[i] != 0) {
360 c = leul_to_cpu(bitmap[i]);
361 do {
362 j = ffsl(c) - 1;
363 c &= ~(1ul << j);
364 page_number = i * HOST_LONG_BITS + j;
365 addr1 = page_number * TARGET_PAGE_SIZE;
366 addr = offset + addr1;
367 ram_addr = cpu_get_physical_page_desc(addr);
368 cpu_physical_memory_set_dirty(ram_addr);
369 } while (c != 0);
370 }
371 }
372 return 0;
373 }
374
375 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
376
377 /**
378 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
379 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
380 * This means all bits are set to dirty.
381 *
382 * @start_add: start of logged region.
383 * @end_addr: end of logged region.
384 */
385 static int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
386 target_phys_addr_t end_addr)
387 {
388 KVMState *s = kvm_state;
389 unsigned long size, allocated_size = 0;
390 KVMDirtyLog d;
391 KVMSlot *mem;
392 int ret = 0;
393
394 d.dirty_bitmap = NULL;
395 while (start_addr < end_addr) {
396 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
397 if (mem == NULL) {
398 break;
399 }
400
401 /* XXX bad kernel interface alert
402 * For dirty bitmap, kernel allocates array of size aligned to
403 * bits-per-long. But for case when the kernel is 64bits and
404 * the userspace is 32bits, userspace can't align to the same
405 * bits-per-long, since sizeof(long) is different between kernel
406 * and user space. This way, userspace will provide buffer which
407 * may be 4 bytes less than the kernel will use, resulting in
408 * userspace memory corruption (which is not detectable by valgrind
409 * too, in most cases).
410 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
411 * a hope that sizeof(long) wont become >8 any time soon.
412 */
413 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
414 /*HOST_LONG_BITS*/ 64) / 8;
415 if (!d.dirty_bitmap) {
416 d.dirty_bitmap = g_malloc(size);
417 } else if (size > allocated_size) {
418 d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
419 }
420 allocated_size = size;
421 memset(d.dirty_bitmap, 0, allocated_size);
422
423 d.slot = mem->slot;
424
425 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
426 DPRINTF("ioctl failed %d\n", errno);
427 ret = -1;
428 break;
429 }
430
431 kvm_get_dirty_pages_log_range(mem->start_addr, d.dirty_bitmap,
432 mem->start_addr, mem->memory_size);
433 start_addr = mem->start_addr + mem->memory_size;
434 }
435 g_free(d.dirty_bitmap);
436
437 return ret;
438 }
439
440 int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
441 {
442 int ret = -ENOSYS;
443 KVMState *s = kvm_state;
444
445 if (s->coalesced_mmio) {
446 struct kvm_coalesced_mmio_zone zone;
447
448 zone.addr = start;
449 zone.size = size;
450
451 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
452 }
453
454 return ret;
455 }
456
457 int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
458 {
459 int ret = -ENOSYS;
460 KVMState *s = kvm_state;
461
462 if (s->coalesced_mmio) {
463 struct kvm_coalesced_mmio_zone zone;
464
465 zone.addr = start;
466 zone.size = size;
467
468 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
469 }
470
471 return ret;
472 }
473
474 int kvm_check_extension(KVMState *s, unsigned int extension)
475 {
476 int ret;
477
478 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
479 if (ret < 0) {
480 ret = 0;
481 }
482
483 return ret;
484 }
485
486 static int kvm_check_many_ioeventfds(void)
487 {
488 /* Userspace can use ioeventfd for io notification. This requires a host
489 * that supports eventfd(2) and an I/O thread; since eventfd does not
490 * support SIGIO it cannot interrupt the vcpu.
491 *
492 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
493 * can avoid creating too many ioeventfds.
494 */
495 #if defined(CONFIG_EVENTFD)
496 int ioeventfds[7];
497 int i, ret = 0;
498 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
499 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
500 if (ioeventfds[i] < 0) {
501 break;
502 }
503 ret = kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, true);
504 if (ret < 0) {
505 close(ioeventfds[i]);
506 break;
507 }
508 }
509
510 /* Decide whether many devices are supported or not */
511 ret = i == ARRAY_SIZE(ioeventfds);
512
513 while (i-- > 0) {
514 kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, false);
515 close(ioeventfds[i]);
516 }
517 return ret;
518 #else
519 return 0;
520 #endif
521 }
522
523 static const KVMCapabilityInfo *
524 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
525 {
526 while (list->name) {
527 if (!kvm_check_extension(s, list->value)) {
528 return list;
529 }
530 list++;
531 }
532 return NULL;
533 }
534
535 static void kvm_set_phys_mem(MemoryRegionSection *section, bool add)
536 {
537 KVMState *s = kvm_state;
538 KVMSlot *mem, old;
539 int err;
540 MemoryRegion *mr = section->mr;
541 bool log_dirty = memory_region_is_logging(mr);
542 target_phys_addr_t start_addr = section->offset_within_address_space;
543 ram_addr_t size = section->size;
544 void *ram = NULL;
545
546 /* kvm works in page size chunks, but the function may be called
547 with sub-page size and unaligned start address. */
548 size = TARGET_PAGE_ALIGN(size);
549 start_addr = TARGET_PAGE_ALIGN(start_addr);
550
551 if (!memory_region_is_ram(mr)) {
552 return;
553 }
554
555 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region;
556
557 while (1) {
558 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
559 if (!mem) {
560 break;
561 }
562
563 if (add && start_addr >= mem->start_addr &&
564 (start_addr + size <= mem->start_addr + mem->memory_size) &&
565 (ram - start_addr == mem->ram - mem->start_addr)) {
566 /* The new slot fits into the existing one and comes with
567 * identical parameters - update flags and done. */
568 kvm_slot_dirty_pages_log_change(mem, log_dirty);
569 return;
570 }
571
572 old = *mem;
573
574 /* unregister the overlapping slot */
575 mem->memory_size = 0;
576 err = kvm_set_user_memory_region(s, mem);
577 if (err) {
578 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
579 __func__, strerror(-err));
580 abort();
581 }
582
583 /* Workaround for older KVM versions: we can't join slots, even not by
584 * unregistering the previous ones and then registering the larger
585 * slot. We have to maintain the existing fragmentation. Sigh.
586 *
587 * This workaround assumes that the new slot starts at the same
588 * address as the first existing one. If not or if some overlapping
589 * slot comes around later, we will fail (not seen in practice so far)
590 * - and actually require a recent KVM version. */
591 if (s->broken_set_mem_region &&
592 old.start_addr == start_addr && old.memory_size < size && add) {
593 mem = kvm_alloc_slot(s);
594 mem->memory_size = old.memory_size;
595 mem->start_addr = old.start_addr;
596 mem->ram = old.ram;
597 mem->flags = kvm_mem_flags(s, log_dirty);
598
599 err = kvm_set_user_memory_region(s, mem);
600 if (err) {
601 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
602 strerror(-err));
603 abort();
604 }
605
606 start_addr += old.memory_size;
607 ram += old.memory_size;
608 size -= old.memory_size;
609 continue;
610 }
611
612 /* register prefix slot */
613 if (old.start_addr < start_addr) {
614 mem = kvm_alloc_slot(s);
615 mem->memory_size = start_addr - old.start_addr;
616 mem->start_addr = old.start_addr;
617 mem->ram = old.ram;
618 mem->flags = kvm_mem_flags(s, log_dirty);
619
620 err = kvm_set_user_memory_region(s, mem);
621 if (err) {
622 fprintf(stderr, "%s: error registering prefix slot: %s\n",
623 __func__, strerror(-err));
624 #ifdef TARGET_PPC
625 fprintf(stderr, "%s: This is probably because your kernel's " \
626 "PAGE_SIZE is too big. Please try to use 4k " \
627 "PAGE_SIZE!\n", __func__);
628 #endif
629 abort();
630 }
631 }
632
633 /* register suffix slot */
634 if (old.start_addr + old.memory_size > start_addr + size) {
635 ram_addr_t size_delta;
636
637 mem = kvm_alloc_slot(s);
638 mem->start_addr = start_addr + size;
639 size_delta = mem->start_addr - old.start_addr;
640 mem->memory_size = old.memory_size - size_delta;
641 mem->ram = old.ram + size_delta;
642 mem->flags = kvm_mem_flags(s, log_dirty);
643
644 err = kvm_set_user_memory_region(s, mem);
645 if (err) {
646 fprintf(stderr, "%s: error registering suffix slot: %s\n",
647 __func__, strerror(-err));
648 abort();
649 }
650 }
651 }
652
653 /* in case the KVM bug workaround already "consumed" the new slot */
654 if (!size) {
655 return;
656 }
657 if (!add) {
658 return;
659 }
660 mem = kvm_alloc_slot(s);
661 mem->memory_size = size;
662 mem->start_addr = start_addr;
663 mem->ram = ram;
664 mem->flags = kvm_mem_flags(s, log_dirty);
665
666 err = kvm_set_user_memory_region(s, mem);
667 if (err) {
668 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
669 strerror(-err));
670 abort();
671 }
672 }
673
674 static void kvm_region_add(MemoryListener *listener,
675 MemoryRegionSection *section)
676 {
677 kvm_set_phys_mem(section, true);
678 }
679
680 static void kvm_region_del(MemoryListener *listener,
681 MemoryRegionSection *section)
682 {
683 kvm_set_phys_mem(section, false);
684 }
685
686 static void kvm_log_sync(MemoryListener *listener,
687 MemoryRegionSection *section)
688 {
689 target_phys_addr_t start = section->offset_within_address_space;
690 target_phys_addr_t end = start + section->size;
691 int r;
692
693 r = kvm_physical_sync_dirty_bitmap(start, end);
694 if (r < 0) {
695 abort();
696 }
697 }
698
699 static void kvm_log_global_start(struct MemoryListener *listener)
700 {
701 int r;
702
703 r = kvm_set_migration_log(1);
704 assert(r >= 0);
705 }
706
707 static void kvm_log_global_stop(struct MemoryListener *listener)
708 {
709 int r;
710
711 r = kvm_set_migration_log(0);
712 assert(r >= 0);
713 }
714
715 static MemoryListener kvm_memory_listener = {
716 .region_add = kvm_region_add,
717 .region_del = kvm_region_del,
718 .log_start = kvm_log_start,
719 .log_stop = kvm_log_stop,
720 .log_sync = kvm_log_sync,
721 .log_global_start = kvm_log_global_start,
722 .log_global_stop = kvm_log_global_stop,
723 };
724
725 static void kvm_handle_interrupt(CPUState *env, int mask)
726 {
727 env->interrupt_request |= mask;
728
729 if (!qemu_cpu_is_self(env)) {
730 qemu_cpu_kick(env);
731 }
732 }
733
734 int kvm_init(void)
735 {
736 static const char upgrade_note[] =
737 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
738 "(see http://sourceforge.net/projects/kvm).\n";
739 KVMState *s;
740 const KVMCapabilityInfo *missing_cap;
741 int ret;
742 int i;
743
744 s = g_malloc0(sizeof(KVMState));
745
746 #ifdef KVM_CAP_SET_GUEST_DEBUG
747 QTAILQ_INIT(&s->kvm_sw_breakpoints);
748 #endif
749 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
750 s->slots[i].slot = i;
751 }
752 s->vmfd = -1;
753 s->fd = qemu_open("/dev/kvm", O_RDWR);
754 if (s->fd == -1) {
755 fprintf(stderr, "Could not access KVM kernel module: %m\n");
756 ret = -errno;
757 goto err;
758 }
759
760 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
761 if (ret < KVM_API_VERSION) {
762 if (ret > 0) {
763 ret = -EINVAL;
764 }
765 fprintf(stderr, "kvm version too old\n");
766 goto err;
767 }
768
769 if (ret > KVM_API_VERSION) {
770 ret = -EINVAL;
771 fprintf(stderr, "kvm version not supported\n");
772 goto err;
773 }
774
775 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
776 if (s->vmfd < 0) {
777 #ifdef TARGET_S390X
778 fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
779 "your host kernel command line\n");
780 #endif
781 ret = s->vmfd;
782 goto err;
783 }
784
785 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
786 if (!missing_cap) {
787 missing_cap =
788 kvm_check_extension_list(s, kvm_arch_required_capabilities);
789 }
790 if (missing_cap) {
791 ret = -EINVAL;
792 fprintf(stderr, "kvm does not support %s\n%s",
793 missing_cap->name, upgrade_note);
794 goto err;
795 }
796
797 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
798
799 s->broken_set_mem_region = 1;
800 ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
801 if (ret > 0) {
802 s->broken_set_mem_region = 0;
803 }
804
805 #ifdef KVM_CAP_VCPU_EVENTS
806 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
807 #endif
808
809 s->robust_singlestep =
810 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
811
812 #ifdef KVM_CAP_DEBUGREGS
813 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
814 #endif
815
816 #ifdef KVM_CAP_XSAVE
817 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
818 #endif
819
820 #ifdef KVM_CAP_XCRS
821 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
822 #endif
823
824 ret = kvm_arch_init(s);
825 if (ret < 0) {
826 goto err;
827 }
828
829 kvm_state = s;
830 memory_listener_register(&kvm_memory_listener);
831
832 s->many_ioeventfds = kvm_check_many_ioeventfds();
833
834 cpu_interrupt_handler = kvm_handle_interrupt;
835
836 return 0;
837
838 err:
839 if (s) {
840 if (s->vmfd >= 0) {
841 close(s->vmfd);
842 }
843 if (s->fd != -1) {
844 close(s->fd);
845 }
846 }
847 g_free(s);
848
849 return ret;
850 }
851
852 static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
853 uint32_t count)
854 {
855 int i;
856 uint8_t *ptr = data;
857
858 for (i = 0; i < count; i++) {
859 if (direction == KVM_EXIT_IO_IN) {
860 switch (size) {
861 case 1:
862 stb_p(ptr, cpu_inb(port));
863 break;
864 case 2:
865 stw_p(ptr, cpu_inw(port));
866 break;
867 case 4:
868 stl_p(ptr, cpu_inl(port));
869 break;
870 }
871 } else {
872 switch (size) {
873 case 1:
874 cpu_outb(port, ldub_p(ptr));
875 break;
876 case 2:
877 cpu_outw(port, lduw_p(ptr));
878 break;
879 case 4:
880 cpu_outl(port, ldl_p(ptr));
881 break;
882 }
883 }
884
885 ptr += size;
886 }
887 }
888
889 static int kvm_handle_internal_error(CPUState *env, struct kvm_run *run)
890 {
891 fprintf(stderr, "KVM internal error.");
892 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
893 int i;
894
895 fprintf(stderr, " Suberror: %d\n", run->internal.suberror);
896 for (i = 0; i < run->internal.ndata; ++i) {
897 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
898 i, (uint64_t)run->internal.data[i]);
899 }
900 } else {
901 fprintf(stderr, "\n");
902 }
903 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
904 fprintf(stderr, "emulation failure\n");
905 if (!kvm_arch_stop_on_emulation_error(env)) {
906 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
907 return EXCP_INTERRUPT;
908 }
909 }
910 /* FIXME: Should trigger a qmp message to let management know
911 * something went wrong.
912 */
913 return -1;
914 }
915
916 void kvm_flush_coalesced_mmio_buffer(void)
917 {
918 KVMState *s = kvm_state;
919
920 if (s->coalesced_flush_in_progress) {
921 return;
922 }
923
924 s->coalesced_flush_in_progress = true;
925
926 if (s->coalesced_mmio_ring) {
927 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
928 while (ring->first != ring->last) {
929 struct kvm_coalesced_mmio *ent;
930
931 ent = &ring->coalesced_mmio[ring->first];
932
933 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
934 smp_wmb();
935 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
936 }
937 }
938
939 s->coalesced_flush_in_progress = false;
940 }
941
942 static void do_kvm_cpu_synchronize_state(void *_env)
943 {
944 CPUState *env = _env;
945
946 if (!env->kvm_vcpu_dirty) {
947 kvm_arch_get_registers(env);
948 env->kvm_vcpu_dirty = 1;
949 }
950 }
951
952 void kvm_cpu_synchronize_state(CPUState *env)
953 {
954 if (!env->kvm_vcpu_dirty) {
955 run_on_cpu(env, do_kvm_cpu_synchronize_state, env);
956 }
957 }
958
959 void kvm_cpu_synchronize_post_reset(CPUState *env)
960 {
961 kvm_arch_put_registers(env, KVM_PUT_RESET_STATE);
962 env->kvm_vcpu_dirty = 0;
963 }
964
965 void kvm_cpu_synchronize_post_init(CPUState *env)
966 {
967 kvm_arch_put_registers(env, KVM_PUT_FULL_STATE);
968 env->kvm_vcpu_dirty = 0;
969 }
970
971 int kvm_cpu_exec(CPUState *env)
972 {
973 struct kvm_run *run = env->kvm_run;
974 int ret, run_ret;
975
976 DPRINTF("kvm_cpu_exec()\n");
977
978 if (kvm_arch_process_async_events(env)) {
979 env->exit_request = 0;
980 return EXCP_HLT;
981 }
982
983 cpu_single_env = env;
984
985 do {
986 if (env->kvm_vcpu_dirty) {
987 kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE);
988 env->kvm_vcpu_dirty = 0;
989 }
990
991 kvm_arch_pre_run(env, run);
992 if (env->exit_request) {
993 DPRINTF("interrupt exit requested\n");
994 /*
995 * KVM requires us to reenter the kernel after IO exits to complete
996 * instruction emulation. This self-signal will ensure that we
997 * leave ASAP again.
998 */
999 qemu_cpu_kick_self();
1000 }
1001 cpu_single_env = NULL;
1002 qemu_mutex_unlock_iothread();
1003
1004 run_ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
1005
1006 qemu_mutex_lock_iothread();
1007 cpu_single_env = env;
1008 kvm_arch_post_run(env, run);
1009
1010 kvm_flush_coalesced_mmio_buffer();
1011
1012 if (run_ret < 0) {
1013 if (run_ret == -EINTR || run_ret == -EAGAIN) {
1014 DPRINTF("io window exit\n");
1015 ret = EXCP_INTERRUPT;
1016 break;
1017 }
1018 fprintf(stderr, "error: kvm run failed %s\n",
1019 strerror(-run_ret));
1020 abort();
1021 }
1022
1023 switch (run->exit_reason) {
1024 case KVM_EXIT_IO:
1025 DPRINTF("handle_io\n");
1026 kvm_handle_io(run->io.port,
1027 (uint8_t *)run + run->io.data_offset,
1028 run->io.direction,
1029 run->io.size,
1030 run->io.count);
1031 ret = 0;
1032 break;
1033 case KVM_EXIT_MMIO:
1034 DPRINTF("handle_mmio\n");
1035 cpu_physical_memory_rw(run->mmio.phys_addr,
1036 run->mmio.data,
1037 run->mmio.len,
1038 run->mmio.is_write);
1039 ret = 0;
1040 break;
1041 case KVM_EXIT_IRQ_WINDOW_OPEN:
1042 DPRINTF("irq_window_open\n");
1043 ret = EXCP_INTERRUPT;
1044 break;
1045 case KVM_EXIT_SHUTDOWN:
1046 DPRINTF("shutdown\n");
1047 qemu_system_reset_request();
1048 ret = EXCP_INTERRUPT;
1049 break;
1050 case KVM_EXIT_UNKNOWN:
1051 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
1052 (uint64_t)run->hw.hardware_exit_reason);
1053 ret = -1;
1054 break;
1055 case KVM_EXIT_INTERNAL_ERROR:
1056 ret = kvm_handle_internal_error(env, run);
1057 break;
1058 default:
1059 DPRINTF("kvm_arch_handle_exit\n");
1060 ret = kvm_arch_handle_exit(env, run);
1061 break;
1062 }
1063 } while (ret == 0);
1064
1065 if (ret < 0) {
1066 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
1067 vm_stop(RUN_STATE_INTERNAL_ERROR);
1068 }
1069
1070 env->exit_request = 0;
1071 cpu_single_env = NULL;
1072 return ret;
1073 }
1074
1075 int kvm_ioctl(KVMState *s, int type, ...)
1076 {
1077 int ret;
1078 void *arg;
1079 va_list ap;
1080
1081 va_start(ap, type);
1082 arg = va_arg(ap, void *);
1083 va_end(ap);
1084
1085 ret = ioctl(s->fd, type, arg);
1086 if (ret == -1) {
1087 ret = -errno;
1088 }
1089 return ret;
1090 }
1091
1092 int kvm_vm_ioctl(KVMState *s, int type, ...)
1093 {
1094 int ret;
1095 void *arg;
1096 va_list ap;
1097
1098 va_start(ap, type);
1099 arg = va_arg(ap, void *);
1100 va_end(ap);
1101
1102 ret = ioctl(s->vmfd, type, arg);
1103 if (ret == -1) {
1104 ret = -errno;
1105 }
1106 return ret;
1107 }
1108
1109 int kvm_vcpu_ioctl(CPUState *env, int type, ...)
1110 {
1111 int ret;
1112 void *arg;
1113 va_list ap;
1114
1115 va_start(ap, type);
1116 arg = va_arg(ap, void *);
1117 va_end(ap);
1118
1119 ret = ioctl(env->kvm_fd, type, arg);
1120 if (ret == -1) {
1121 ret = -errno;
1122 }
1123 return ret;
1124 }
1125
1126 int kvm_has_sync_mmu(void)
1127 {
1128 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
1129 }
1130
1131 int kvm_has_vcpu_events(void)
1132 {
1133 return kvm_state->vcpu_events;
1134 }
1135
1136 int kvm_has_robust_singlestep(void)
1137 {
1138 return kvm_state->robust_singlestep;
1139 }
1140
1141 int kvm_has_debugregs(void)
1142 {
1143 return kvm_state->debugregs;
1144 }
1145
1146 int kvm_has_xsave(void)
1147 {
1148 return kvm_state->xsave;
1149 }
1150
1151 int kvm_has_xcrs(void)
1152 {
1153 return kvm_state->xcrs;
1154 }
1155
1156 int kvm_has_many_ioeventfds(void)
1157 {
1158 if (!kvm_enabled()) {
1159 return 0;
1160 }
1161 return kvm_state->many_ioeventfds;
1162 }
1163
1164 void kvm_setup_guest_memory(void *start, size_t size)
1165 {
1166 if (!kvm_has_sync_mmu()) {
1167 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
1168
1169 if (ret) {
1170 perror("qemu_madvise");
1171 fprintf(stderr,
1172 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1173 exit(1);
1174 }
1175 }
1176 }
1177
1178 #ifdef KVM_CAP_SET_GUEST_DEBUG
1179 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
1180 target_ulong pc)
1181 {
1182 struct kvm_sw_breakpoint *bp;
1183
1184 QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
1185 if (bp->pc == pc) {
1186 return bp;
1187 }
1188 }
1189 return NULL;
1190 }
1191
1192 int kvm_sw_breakpoints_active(CPUState *env)
1193 {
1194 return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
1195 }
1196
1197 struct kvm_set_guest_debug_data {
1198 struct kvm_guest_debug dbg;
1199 CPUState *env;
1200 int err;
1201 };
1202
1203 static void kvm_invoke_set_guest_debug(void *data)
1204 {
1205 struct kvm_set_guest_debug_data *dbg_data = data;
1206 CPUState *env = dbg_data->env;
1207
1208 dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
1209 }
1210
1211 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1212 {
1213 struct kvm_set_guest_debug_data data;
1214
1215 data.dbg.control = reinject_trap;
1216
1217 if (env->singlestep_enabled) {
1218 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1219 }
1220 kvm_arch_update_guest_debug(env, &data.dbg);
1221 data.env = env;
1222
1223 run_on_cpu(env, kvm_invoke_set_guest_debug, &data);
1224 return data.err;
1225 }
1226
1227 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1228 target_ulong len, int type)
1229 {
1230 struct kvm_sw_breakpoint *bp;
1231 CPUState *env;
1232 int err;
1233
1234 if (type == GDB_BREAKPOINT_SW) {
1235 bp = kvm_find_sw_breakpoint(current_env, addr);
1236 if (bp) {
1237 bp->use_count++;
1238 return 0;
1239 }
1240
1241 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
1242 if (!bp) {
1243 return -ENOMEM;
1244 }
1245
1246 bp->pc = addr;
1247 bp->use_count = 1;
1248 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
1249 if (err) {
1250 g_free(bp);
1251 return err;
1252 }
1253
1254 QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
1255 bp, entry);
1256 } else {
1257 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1258 if (err) {
1259 return err;
1260 }
1261 }
1262
1263 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1264 err = kvm_update_guest_debug(env, 0);
1265 if (err) {
1266 return err;
1267 }
1268 }
1269 return 0;
1270 }
1271
1272 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1273 target_ulong len, int type)
1274 {
1275 struct kvm_sw_breakpoint *bp;
1276 CPUState *env;
1277 int err;
1278
1279 if (type == GDB_BREAKPOINT_SW) {
1280 bp = kvm_find_sw_breakpoint(current_env, addr);
1281 if (!bp) {
1282 return -ENOENT;
1283 }
1284
1285 if (bp->use_count > 1) {
1286 bp->use_count--;
1287 return 0;
1288 }
1289
1290 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1291 if (err) {
1292 return err;
1293 }
1294
1295 QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1296 g_free(bp);
1297 } else {
1298 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1299 if (err) {
1300 return err;
1301 }
1302 }
1303
1304 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1305 err = kvm_update_guest_debug(env, 0);
1306 if (err) {
1307 return err;
1308 }
1309 }
1310 return 0;
1311 }
1312
1313 void kvm_remove_all_breakpoints(CPUState *current_env)
1314 {
1315 struct kvm_sw_breakpoint *bp, *next;
1316 KVMState *s = current_env->kvm_state;
1317 CPUState *env;
1318
1319 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1320 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1321 /* Try harder to find a CPU that currently sees the breakpoint. */
1322 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1323 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0) {
1324 break;
1325 }
1326 }
1327 }
1328 }
1329 kvm_arch_remove_all_hw_breakpoints();
1330
1331 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1332 kvm_update_guest_debug(env, 0);
1333 }
1334 }
1335
1336 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1337
1338 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1339 {
1340 return -EINVAL;
1341 }
1342
1343 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1344 target_ulong len, int type)
1345 {
1346 return -EINVAL;
1347 }
1348
1349 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1350 target_ulong len, int type)
1351 {
1352 return -EINVAL;
1353 }
1354
1355 void kvm_remove_all_breakpoints(CPUState *current_env)
1356 {
1357 }
1358 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
1359
1360 int kvm_set_signal_mask(CPUState *env, const sigset_t *sigset)
1361 {
1362 struct kvm_signal_mask *sigmask;
1363 int r;
1364
1365 if (!sigset) {
1366 return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
1367 }
1368
1369 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
1370
1371 sigmask->len = 8;
1372 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1373 r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
1374 g_free(sigmask);
1375
1376 return r;
1377 }
1378
1379 int kvm_set_ioeventfd_mmio_long(int fd, uint32_t addr, uint32_t val, bool assign)
1380 {
1381 int ret;
1382 struct kvm_ioeventfd iofd;
1383
1384 iofd.datamatch = val;
1385 iofd.addr = addr;
1386 iofd.len = 4;
1387 iofd.flags = KVM_IOEVENTFD_FLAG_DATAMATCH;
1388 iofd.fd = fd;
1389
1390 if (!kvm_enabled()) {
1391 return -ENOSYS;
1392 }
1393
1394 if (!assign) {
1395 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1396 }
1397
1398 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1399
1400 if (ret < 0) {
1401 return -errno;
1402 }
1403
1404 return 0;
1405 }
1406
1407 int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign)
1408 {
1409 struct kvm_ioeventfd kick = {
1410 .datamatch = val,
1411 .addr = addr,
1412 .len = 2,
1413 .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO,
1414 .fd = fd,
1415 };
1416 int r;
1417 if (!kvm_enabled()) {
1418 return -ENOSYS;
1419 }
1420 if (!assign) {
1421 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1422 }
1423 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1424 if (r < 0) {
1425 return r;
1426 }
1427 return 0;
1428 }
1429
1430 int kvm_on_sigbus_vcpu(CPUState *env, int code, void *addr)
1431 {
1432 return kvm_arch_on_sigbus_vcpu(env, code, addr);
1433 }
1434
1435 int kvm_on_sigbus(int code, void *addr)
1436 {
1437 return kvm_arch_on_sigbus(code, addr);
1438 }