]> git.proxmox.com Git - mirror_qemu.git/blob - kvm-all.c
memory: Flush coalesced MMIO on mapping and state changes
[mirror_qemu.git] / kvm-all.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
10 *
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
13 *
14 */
15
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
20
21 #include <linux/kvm.h>
22
23 #include "qemu-common.h"
24 #include "qemu-barrier.h"
25 #include "qemu-option.h"
26 #include "qemu-config.h"
27 #include "sysemu.h"
28 #include "hw/hw.h"
29 #include "hw/msi.h"
30 #include "gdbstub.h"
31 #include "kvm.h"
32 #include "bswap.h"
33 #include "memory.h"
34 #include "exec-memory.h"
35 #include "event_notifier.h"
36
37 /* This check must be after config-host.h is included */
38 #ifdef CONFIG_EVENTFD
39 #include <sys/eventfd.h>
40 #endif
41
42 #ifdef CONFIG_VALGRIND_H
43 #include <valgrind/memcheck.h>
44 #endif
45
46 /* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
47 #define PAGE_SIZE TARGET_PAGE_SIZE
48
49 //#define DEBUG_KVM
50
51 #ifdef DEBUG_KVM
52 #define DPRINTF(fmt, ...) \
53 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
54 #else
55 #define DPRINTF(fmt, ...) \
56 do { } while (0)
57 #endif
58
59 #define KVM_MSI_HASHTAB_SIZE 256
60
61 typedef struct KVMSlot
62 {
63 target_phys_addr_t start_addr;
64 ram_addr_t memory_size;
65 void *ram;
66 int slot;
67 int flags;
68 } KVMSlot;
69
70 typedef struct kvm_dirty_log KVMDirtyLog;
71
72 struct KVMState
73 {
74 KVMSlot slots[32];
75 int fd;
76 int vmfd;
77 int coalesced_mmio;
78 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
79 bool coalesced_flush_in_progress;
80 int broken_set_mem_region;
81 int migration_log;
82 int vcpu_events;
83 int robust_singlestep;
84 int debugregs;
85 #ifdef KVM_CAP_SET_GUEST_DEBUG
86 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
87 #endif
88 int pit_state2;
89 int xsave, xcrs;
90 int many_ioeventfds;
91 int intx_set_mask;
92 /* The man page (and posix) say ioctl numbers are signed int, but
93 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
94 * unsigned, and treating them as signed here can break things */
95 unsigned irqchip_inject_ioctl;
96 #ifdef KVM_CAP_IRQ_ROUTING
97 struct kvm_irq_routing *irq_routes;
98 int nr_allocated_irq_routes;
99 uint32_t *used_gsi_bitmap;
100 unsigned int gsi_count;
101 QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
102 bool direct_msi;
103 #endif
104 };
105
106 KVMState *kvm_state;
107 bool kvm_kernel_irqchip;
108 bool kvm_async_interrupts_allowed;
109 bool kvm_irqfds_allowed;
110 bool kvm_msi_via_irqfd_allowed;
111 bool kvm_gsi_routing_allowed;
112
113 static const KVMCapabilityInfo kvm_required_capabilites[] = {
114 KVM_CAP_INFO(USER_MEMORY),
115 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
116 KVM_CAP_LAST_INFO
117 };
118
119 static KVMSlot *kvm_alloc_slot(KVMState *s)
120 {
121 int i;
122
123 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
124 if (s->slots[i].memory_size == 0) {
125 return &s->slots[i];
126 }
127 }
128
129 fprintf(stderr, "%s: no free slot available\n", __func__);
130 abort();
131 }
132
133 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
134 target_phys_addr_t start_addr,
135 target_phys_addr_t end_addr)
136 {
137 int i;
138
139 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
140 KVMSlot *mem = &s->slots[i];
141
142 if (start_addr == mem->start_addr &&
143 end_addr == mem->start_addr + mem->memory_size) {
144 return mem;
145 }
146 }
147
148 return NULL;
149 }
150
151 /*
152 * Find overlapping slot with lowest start address
153 */
154 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
155 target_phys_addr_t start_addr,
156 target_phys_addr_t end_addr)
157 {
158 KVMSlot *found = NULL;
159 int i;
160
161 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
162 KVMSlot *mem = &s->slots[i];
163
164 if (mem->memory_size == 0 ||
165 (found && found->start_addr < mem->start_addr)) {
166 continue;
167 }
168
169 if (end_addr > mem->start_addr &&
170 start_addr < mem->start_addr + mem->memory_size) {
171 found = mem;
172 }
173 }
174
175 return found;
176 }
177
178 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
179 target_phys_addr_t *phys_addr)
180 {
181 int i;
182
183 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
184 KVMSlot *mem = &s->slots[i];
185
186 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
187 *phys_addr = mem->start_addr + (ram - mem->ram);
188 return 1;
189 }
190 }
191
192 return 0;
193 }
194
195 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
196 {
197 struct kvm_userspace_memory_region mem;
198
199 mem.slot = slot->slot;
200 mem.guest_phys_addr = slot->start_addr;
201 mem.memory_size = slot->memory_size;
202 mem.userspace_addr = (unsigned long)slot->ram;
203 mem.flags = slot->flags;
204 if (s->migration_log) {
205 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
206 }
207 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
208 }
209
210 static void kvm_reset_vcpu(void *opaque)
211 {
212 CPUArchState *env = opaque;
213
214 kvm_arch_reset_vcpu(env);
215 }
216
217 int kvm_init_vcpu(CPUArchState *env)
218 {
219 KVMState *s = kvm_state;
220 long mmap_size;
221 int ret;
222
223 DPRINTF("kvm_init_vcpu\n");
224
225 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
226 if (ret < 0) {
227 DPRINTF("kvm_create_vcpu failed\n");
228 goto err;
229 }
230
231 env->kvm_fd = ret;
232 env->kvm_state = s;
233 env->kvm_vcpu_dirty = 1;
234
235 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
236 if (mmap_size < 0) {
237 ret = mmap_size;
238 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
239 goto err;
240 }
241
242 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
243 env->kvm_fd, 0);
244 if (env->kvm_run == MAP_FAILED) {
245 ret = -errno;
246 DPRINTF("mmap'ing vcpu state failed\n");
247 goto err;
248 }
249
250 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
251 s->coalesced_mmio_ring =
252 (void *)env->kvm_run + s->coalesced_mmio * PAGE_SIZE;
253 }
254
255 ret = kvm_arch_init_vcpu(env);
256 if (ret == 0) {
257 qemu_register_reset(kvm_reset_vcpu, env);
258 kvm_arch_reset_vcpu(env);
259 }
260 err:
261 return ret;
262 }
263
264 /*
265 * dirty pages logging control
266 */
267
268 static int kvm_mem_flags(KVMState *s, bool log_dirty)
269 {
270 return log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0;
271 }
272
273 static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty)
274 {
275 KVMState *s = kvm_state;
276 int flags, mask = KVM_MEM_LOG_DIRTY_PAGES;
277 int old_flags;
278
279 old_flags = mem->flags;
280
281 flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty);
282 mem->flags = flags;
283
284 /* If nothing changed effectively, no need to issue ioctl */
285 if (s->migration_log) {
286 flags |= KVM_MEM_LOG_DIRTY_PAGES;
287 }
288
289 if (flags == old_flags) {
290 return 0;
291 }
292
293 return kvm_set_user_memory_region(s, mem);
294 }
295
296 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
297 ram_addr_t size, bool log_dirty)
298 {
299 KVMState *s = kvm_state;
300 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
301
302 if (mem == NULL) {
303 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
304 TARGET_FMT_plx "\n", __func__, phys_addr,
305 (target_phys_addr_t)(phys_addr + size - 1));
306 return -EINVAL;
307 }
308 return kvm_slot_dirty_pages_log_change(mem, log_dirty);
309 }
310
311 static void kvm_log_start(MemoryListener *listener,
312 MemoryRegionSection *section)
313 {
314 int r;
315
316 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
317 section->size, true);
318 if (r < 0) {
319 abort();
320 }
321 }
322
323 static void kvm_log_stop(MemoryListener *listener,
324 MemoryRegionSection *section)
325 {
326 int r;
327
328 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
329 section->size, false);
330 if (r < 0) {
331 abort();
332 }
333 }
334
335 static int kvm_set_migration_log(int enable)
336 {
337 KVMState *s = kvm_state;
338 KVMSlot *mem;
339 int i, err;
340
341 s->migration_log = enable;
342
343 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
344 mem = &s->slots[i];
345
346 if (!mem->memory_size) {
347 continue;
348 }
349 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
350 continue;
351 }
352 err = kvm_set_user_memory_region(s, mem);
353 if (err) {
354 return err;
355 }
356 }
357 return 0;
358 }
359
360 /* get kvm's dirty pages bitmap and update qemu's */
361 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
362 unsigned long *bitmap)
363 {
364 unsigned int i, j;
365 unsigned long page_number, c;
366 target_phys_addr_t addr, addr1;
367 unsigned int len = ((section->size / TARGET_PAGE_SIZE) + HOST_LONG_BITS - 1) / HOST_LONG_BITS;
368 unsigned long hpratio = getpagesize() / TARGET_PAGE_SIZE;
369
370 /*
371 * bitmap-traveling is faster than memory-traveling (for addr...)
372 * especially when most of the memory is not dirty.
373 */
374 for (i = 0; i < len; i++) {
375 if (bitmap[i] != 0) {
376 c = leul_to_cpu(bitmap[i]);
377 do {
378 j = ffsl(c) - 1;
379 c &= ~(1ul << j);
380 page_number = (i * HOST_LONG_BITS + j) * hpratio;
381 addr1 = page_number * TARGET_PAGE_SIZE;
382 addr = section->offset_within_region + addr1;
383 memory_region_set_dirty(section->mr, addr,
384 TARGET_PAGE_SIZE * hpratio);
385 } while (c != 0);
386 }
387 }
388 return 0;
389 }
390
391 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
392
393 /**
394 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
395 * This function updates qemu's dirty bitmap using
396 * memory_region_set_dirty(). This means all bits are set
397 * to dirty.
398 *
399 * @start_add: start of logged region.
400 * @end_addr: end of logged region.
401 */
402 static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section)
403 {
404 KVMState *s = kvm_state;
405 unsigned long size, allocated_size = 0;
406 KVMDirtyLog d;
407 KVMSlot *mem;
408 int ret = 0;
409 target_phys_addr_t start_addr = section->offset_within_address_space;
410 target_phys_addr_t end_addr = start_addr + section->size;
411
412 d.dirty_bitmap = NULL;
413 while (start_addr < end_addr) {
414 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
415 if (mem == NULL) {
416 break;
417 }
418
419 /* XXX bad kernel interface alert
420 * For dirty bitmap, kernel allocates array of size aligned to
421 * bits-per-long. But for case when the kernel is 64bits and
422 * the userspace is 32bits, userspace can't align to the same
423 * bits-per-long, since sizeof(long) is different between kernel
424 * and user space. This way, userspace will provide buffer which
425 * may be 4 bytes less than the kernel will use, resulting in
426 * userspace memory corruption (which is not detectable by valgrind
427 * too, in most cases).
428 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
429 * a hope that sizeof(long) wont become >8 any time soon.
430 */
431 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
432 /*HOST_LONG_BITS*/ 64) / 8;
433 if (!d.dirty_bitmap) {
434 d.dirty_bitmap = g_malloc(size);
435 } else if (size > allocated_size) {
436 d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
437 }
438 allocated_size = size;
439 memset(d.dirty_bitmap, 0, allocated_size);
440
441 d.slot = mem->slot;
442
443 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
444 DPRINTF("ioctl failed %d\n", errno);
445 ret = -1;
446 break;
447 }
448
449 kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
450 start_addr = mem->start_addr + mem->memory_size;
451 }
452 g_free(d.dirty_bitmap);
453
454 return ret;
455 }
456
457 int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
458 {
459 int ret = -ENOSYS;
460 KVMState *s = kvm_state;
461
462 if (s->coalesced_mmio) {
463 struct kvm_coalesced_mmio_zone zone;
464
465 zone.addr = start;
466 zone.size = size;
467 zone.pad = 0;
468
469 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
470 }
471
472 return ret;
473 }
474
475 int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
476 {
477 int ret = -ENOSYS;
478 KVMState *s = kvm_state;
479
480 if (s->coalesced_mmio) {
481 struct kvm_coalesced_mmio_zone zone;
482
483 zone.addr = start;
484 zone.size = size;
485 zone.pad = 0;
486
487 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
488 }
489
490 return ret;
491 }
492
493 int kvm_check_extension(KVMState *s, unsigned int extension)
494 {
495 int ret;
496
497 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
498 if (ret < 0) {
499 ret = 0;
500 }
501
502 return ret;
503 }
504
505 static int kvm_check_many_ioeventfds(void)
506 {
507 /* Userspace can use ioeventfd for io notification. This requires a host
508 * that supports eventfd(2) and an I/O thread; since eventfd does not
509 * support SIGIO it cannot interrupt the vcpu.
510 *
511 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
512 * can avoid creating too many ioeventfds.
513 */
514 #if defined(CONFIG_EVENTFD)
515 int ioeventfds[7];
516 int i, ret = 0;
517 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
518 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
519 if (ioeventfds[i] < 0) {
520 break;
521 }
522 ret = kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, true);
523 if (ret < 0) {
524 close(ioeventfds[i]);
525 break;
526 }
527 }
528
529 /* Decide whether many devices are supported or not */
530 ret = i == ARRAY_SIZE(ioeventfds);
531
532 while (i-- > 0) {
533 kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, false);
534 close(ioeventfds[i]);
535 }
536 return ret;
537 #else
538 return 0;
539 #endif
540 }
541
542 static const KVMCapabilityInfo *
543 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
544 {
545 while (list->name) {
546 if (!kvm_check_extension(s, list->value)) {
547 return list;
548 }
549 list++;
550 }
551 return NULL;
552 }
553
554 static void kvm_set_phys_mem(MemoryRegionSection *section, bool add)
555 {
556 KVMState *s = kvm_state;
557 KVMSlot *mem, old;
558 int err;
559 MemoryRegion *mr = section->mr;
560 bool log_dirty = memory_region_is_logging(mr);
561 target_phys_addr_t start_addr = section->offset_within_address_space;
562 ram_addr_t size = section->size;
563 void *ram = NULL;
564 unsigned delta;
565
566 /* kvm works in page size chunks, but the function may be called
567 with sub-page size and unaligned start address. */
568 delta = TARGET_PAGE_ALIGN(size) - size;
569 if (delta > size) {
570 return;
571 }
572 start_addr += delta;
573 size -= delta;
574 size &= TARGET_PAGE_MASK;
575 if (!size || (start_addr & ~TARGET_PAGE_MASK)) {
576 return;
577 }
578
579 if (!memory_region_is_ram(mr)) {
580 return;
581 }
582
583 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta;
584
585 while (1) {
586 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
587 if (!mem) {
588 break;
589 }
590
591 if (add && start_addr >= mem->start_addr &&
592 (start_addr + size <= mem->start_addr + mem->memory_size) &&
593 (ram - start_addr == mem->ram - mem->start_addr)) {
594 /* The new slot fits into the existing one and comes with
595 * identical parameters - update flags and done. */
596 kvm_slot_dirty_pages_log_change(mem, log_dirty);
597 return;
598 }
599
600 old = *mem;
601
602 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
603 kvm_physical_sync_dirty_bitmap(section);
604 }
605
606 /* unregister the overlapping slot */
607 mem->memory_size = 0;
608 err = kvm_set_user_memory_region(s, mem);
609 if (err) {
610 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
611 __func__, strerror(-err));
612 abort();
613 }
614
615 /* Workaround for older KVM versions: we can't join slots, even not by
616 * unregistering the previous ones and then registering the larger
617 * slot. We have to maintain the existing fragmentation. Sigh.
618 *
619 * This workaround assumes that the new slot starts at the same
620 * address as the first existing one. If not or if some overlapping
621 * slot comes around later, we will fail (not seen in practice so far)
622 * - and actually require a recent KVM version. */
623 if (s->broken_set_mem_region &&
624 old.start_addr == start_addr && old.memory_size < size && add) {
625 mem = kvm_alloc_slot(s);
626 mem->memory_size = old.memory_size;
627 mem->start_addr = old.start_addr;
628 mem->ram = old.ram;
629 mem->flags = kvm_mem_flags(s, log_dirty);
630
631 err = kvm_set_user_memory_region(s, mem);
632 if (err) {
633 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
634 strerror(-err));
635 abort();
636 }
637
638 start_addr += old.memory_size;
639 ram += old.memory_size;
640 size -= old.memory_size;
641 continue;
642 }
643
644 /* register prefix slot */
645 if (old.start_addr < start_addr) {
646 mem = kvm_alloc_slot(s);
647 mem->memory_size = start_addr - old.start_addr;
648 mem->start_addr = old.start_addr;
649 mem->ram = old.ram;
650 mem->flags = kvm_mem_flags(s, log_dirty);
651
652 err = kvm_set_user_memory_region(s, mem);
653 if (err) {
654 fprintf(stderr, "%s: error registering prefix slot: %s\n",
655 __func__, strerror(-err));
656 #ifdef TARGET_PPC
657 fprintf(stderr, "%s: This is probably because your kernel's " \
658 "PAGE_SIZE is too big. Please try to use 4k " \
659 "PAGE_SIZE!\n", __func__);
660 #endif
661 abort();
662 }
663 }
664
665 /* register suffix slot */
666 if (old.start_addr + old.memory_size > start_addr + size) {
667 ram_addr_t size_delta;
668
669 mem = kvm_alloc_slot(s);
670 mem->start_addr = start_addr + size;
671 size_delta = mem->start_addr - old.start_addr;
672 mem->memory_size = old.memory_size - size_delta;
673 mem->ram = old.ram + size_delta;
674 mem->flags = kvm_mem_flags(s, log_dirty);
675
676 err = kvm_set_user_memory_region(s, mem);
677 if (err) {
678 fprintf(stderr, "%s: error registering suffix slot: %s\n",
679 __func__, strerror(-err));
680 abort();
681 }
682 }
683 }
684
685 /* in case the KVM bug workaround already "consumed" the new slot */
686 if (!size) {
687 return;
688 }
689 if (!add) {
690 return;
691 }
692 mem = kvm_alloc_slot(s);
693 mem->memory_size = size;
694 mem->start_addr = start_addr;
695 mem->ram = ram;
696 mem->flags = kvm_mem_flags(s, log_dirty);
697
698 err = kvm_set_user_memory_region(s, mem);
699 if (err) {
700 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
701 strerror(-err));
702 abort();
703 }
704 }
705
706 static void kvm_begin(MemoryListener *listener)
707 {
708 }
709
710 static void kvm_commit(MemoryListener *listener)
711 {
712 }
713
714 static void kvm_region_add(MemoryListener *listener,
715 MemoryRegionSection *section)
716 {
717 kvm_set_phys_mem(section, true);
718 }
719
720 static void kvm_region_del(MemoryListener *listener,
721 MemoryRegionSection *section)
722 {
723 kvm_set_phys_mem(section, false);
724 }
725
726 static void kvm_region_nop(MemoryListener *listener,
727 MemoryRegionSection *section)
728 {
729 }
730
731 static void kvm_log_sync(MemoryListener *listener,
732 MemoryRegionSection *section)
733 {
734 int r;
735
736 r = kvm_physical_sync_dirty_bitmap(section);
737 if (r < 0) {
738 abort();
739 }
740 }
741
742 static void kvm_log_global_start(struct MemoryListener *listener)
743 {
744 int r;
745
746 r = kvm_set_migration_log(1);
747 assert(r >= 0);
748 }
749
750 static void kvm_log_global_stop(struct MemoryListener *listener)
751 {
752 int r;
753
754 r = kvm_set_migration_log(0);
755 assert(r >= 0);
756 }
757
758 static void kvm_mem_ioeventfd_add(MemoryRegionSection *section,
759 bool match_data, uint64_t data, int fd)
760 {
761 int r;
762
763 assert(match_data && section->size <= 8);
764
765 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
766 data, true, section->size);
767 if (r < 0) {
768 abort();
769 }
770 }
771
772 static void kvm_mem_ioeventfd_del(MemoryRegionSection *section,
773 bool match_data, uint64_t data, int fd)
774 {
775 int r;
776
777 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
778 data, false, section->size);
779 if (r < 0) {
780 abort();
781 }
782 }
783
784 static void kvm_io_ioeventfd_add(MemoryRegionSection *section,
785 bool match_data, uint64_t data, int fd)
786 {
787 int r;
788
789 assert(match_data && section->size == 2);
790
791 r = kvm_set_ioeventfd_pio_word(fd, section->offset_within_address_space,
792 data, true);
793 if (r < 0) {
794 abort();
795 }
796 }
797
798 static void kvm_io_ioeventfd_del(MemoryRegionSection *section,
799 bool match_data, uint64_t data, int fd)
800
801 {
802 int r;
803
804 r = kvm_set_ioeventfd_pio_word(fd, section->offset_within_address_space,
805 data, false);
806 if (r < 0) {
807 abort();
808 }
809 }
810
811 static void kvm_eventfd_add(MemoryListener *listener,
812 MemoryRegionSection *section,
813 bool match_data, uint64_t data,
814 EventNotifier *e)
815 {
816 if (section->address_space == get_system_memory()) {
817 kvm_mem_ioeventfd_add(section, match_data, data,
818 event_notifier_get_fd(e));
819 } else {
820 kvm_io_ioeventfd_add(section, match_data, data,
821 event_notifier_get_fd(e));
822 }
823 }
824
825 static void kvm_eventfd_del(MemoryListener *listener,
826 MemoryRegionSection *section,
827 bool match_data, uint64_t data,
828 EventNotifier *e)
829 {
830 if (section->address_space == get_system_memory()) {
831 kvm_mem_ioeventfd_del(section, match_data, data,
832 event_notifier_get_fd(e));
833 } else {
834 kvm_io_ioeventfd_del(section, match_data, data,
835 event_notifier_get_fd(e));
836 }
837 }
838
839 static MemoryListener kvm_memory_listener = {
840 .begin = kvm_begin,
841 .commit = kvm_commit,
842 .region_add = kvm_region_add,
843 .region_del = kvm_region_del,
844 .region_nop = kvm_region_nop,
845 .log_start = kvm_log_start,
846 .log_stop = kvm_log_stop,
847 .log_sync = kvm_log_sync,
848 .log_global_start = kvm_log_global_start,
849 .log_global_stop = kvm_log_global_stop,
850 .eventfd_add = kvm_eventfd_add,
851 .eventfd_del = kvm_eventfd_del,
852 .priority = 10,
853 };
854
855 static void kvm_handle_interrupt(CPUArchState *env, int mask)
856 {
857 env->interrupt_request |= mask;
858
859 if (!qemu_cpu_is_self(env)) {
860 qemu_cpu_kick(env);
861 }
862 }
863
864 int kvm_set_irq(KVMState *s, int irq, int level)
865 {
866 struct kvm_irq_level event;
867 int ret;
868
869 assert(kvm_async_interrupts_enabled());
870
871 event.level = level;
872 event.irq = irq;
873 ret = kvm_vm_ioctl(s, s->irqchip_inject_ioctl, &event);
874 if (ret < 0) {
875 perror("kvm_set_irq");
876 abort();
877 }
878
879 return (s->irqchip_inject_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
880 }
881
882 #ifdef KVM_CAP_IRQ_ROUTING
883 typedef struct KVMMSIRoute {
884 struct kvm_irq_routing_entry kroute;
885 QTAILQ_ENTRY(KVMMSIRoute) entry;
886 } KVMMSIRoute;
887
888 static void set_gsi(KVMState *s, unsigned int gsi)
889 {
890 s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32);
891 }
892
893 static void clear_gsi(KVMState *s, unsigned int gsi)
894 {
895 s->used_gsi_bitmap[gsi / 32] &= ~(1U << (gsi % 32));
896 }
897
898 static void kvm_init_irq_routing(KVMState *s)
899 {
900 int gsi_count, i;
901
902 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING);
903 if (gsi_count > 0) {
904 unsigned int gsi_bits, i;
905
906 /* Round up so we can search ints using ffs */
907 gsi_bits = ALIGN(gsi_count, 32);
908 s->used_gsi_bitmap = g_malloc0(gsi_bits / 8);
909 s->gsi_count = gsi_count;
910
911 /* Mark any over-allocated bits as already in use */
912 for (i = gsi_count; i < gsi_bits; i++) {
913 set_gsi(s, i);
914 }
915 }
916
917 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
918 s->nr_allocated_irq_routes = 0;
919
920 if (!s->direct_msi) {
921 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
922 QTAILQ_INIT(&s->msi_hashtab[i]);
923 }
924 }
925
926 kvm_arch_init_irq_routing(s);
927 }
928
929 static void kvm_irqchip_commit_routes(KVMState *s)
930 {
931 int ret;
932
933 s->irq_routes->flags = 0;
934 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
935 assert(ret == 0);
936 }
937
938 static void kvm_add_routing_entry(KVMState *s,
939 struct kvm_irq_routing_entry *entry)
940 {
941 struct kvm_irq_routing_entry *new;
942 int n, size;
943
944 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
945 n = s->nr_allocated_irq_routes * 2;
946 if (n < 64) {
947 n = 64;
948 }
949 size = sizeof(struct kvm_irq_routing);
950 size += n * sizeof(*new);
951 s->irq_routes = g_realloc(s->irq_routes, size);
952 s->nr_allocated_irq_routes = n;
953 }
954 n = s->irq_routes->nr++;
955 new = &s->irq_routes->entries[n];
956 memset(new, 0, sizeof(*new));
957 new->gsi = entry->gsi;
958 new->type = entry->type;
959 new->flags = entry->flags;
960 new->u = entry->u;
961
962 set_gsi(s, entry->gsi);
963
964 kvm_irqchip_commit_routes(s);
965 }
966
967 static int kvm_update_routing_entry(KVMState *s,
968 struct kvm_irq_routing_entry *new_entry)
969 {
970 struct kvm_irq_routing_entry *entry;
971 int n;
972
973 for (n = 0; n < s->irq_routes->nr; n++) {
974 entry = &s->irq_routes->entries[n];
975 if (entry->gsi != new_entry->gsi) {
976 continue;
977 }
978
979 entry->type = new_entry->type;
980 entry->flags = new_entry->flags;
981 entry->u = new_entry->u;
982
983 kvm_irqchip_commit_routes(s);
984
985 return 0;
986 }
987
988 return -ESRCH;
989 }
990
991 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
992 {
993 struct kvm_irq_routing_entry e;
994
995 assert(pin < s->gsi_count);
996
997 e.gsi = irq;
998 e.type = KVM_IRQ_ROUTING_IRQCHIP;
999 e.flags = 0;
1000 e.u.irqchip.irqchip = irqchip;
1001 e.u.irqchip.pin = pin;
1002 kvm_add_routing_entry(s, &e);
1003 }
1004
1005 void kvm_irqchip_release_virq(KVMState *s, int virq)
1006 {
1007 struct kvm_irq_routing_entry *e;
1008 int i;
1009
1010 for (i = 0; i < s->irq_routes->nr; i++) {
1011 e = &s->irq_routes->entries[i];
1012 if (e->gsi == virq) {
1013 s->irq_routes->nr--;
1014 *e = s->irq_routes->entries[s->irq_routes->nr];
1015 }
1016 }
1017 clear_gsi(s, virq);
1018
1019 kvm_irqchip_commit_routes(s);
1020 }
1021
1022 static unsigned int kvm_hash_msi(uint32_t data)
1023 {
1024 /* This is optimized for IA32 MSI layout. However, no other arch shall
1025 * repeat the mistake of not providing a direct MSI injection API. */
1026 return data & 0xff;
1027 }
1028
1029 static void kvm_flush_dynamic_msi_routes(KVMState *s)
1030 {
1031 KVMMSIRoute *route, *next;
1032 unsigned int hash;
1033
1034 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1035 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1036 kvm_irqchip_release_virq(s, route->kroute.gsi);
1037 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1038 g_free(route);
1039 }
1040 }
1041 }
1042
1043 static int kvm_irqchip_get_virq(KVMState *s)
1044 {
1045 uint32_t *word = s->used_gsi_bitmap;
1046 int max_words = ALIGN(s->gsi_count, 32) / 32;
1047 int i, bit;
1048 bool retry = true;
1049
1050 again:
1051 /* Return the lowest unused GSI in the bitmap */
1052 for (i = 0; i < max_words; i++) {
1053 bit = ffs(~word[i]);
1054 if (!bit) {
1055 continue;
1056 }
1057
1058 return bit - 1 + i * 32;
1059 }
1060 if (!s->direct_msi && retry) {
1061 retry = false;
1062 kvm_flush_dynamic_msi_routes(s);
1063 goto again;
1064 }
1065 return -ENOSPC;
1066
1067 }
1068
1069 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1070 {
1071 unsigned int hash = kvm_hash_msi(msg.data);
1072 KVMMSIRoute *route;
1073
1074 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1075 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1076 route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1077 route->kroute.u.msi.data == msg.data) {
1078 return route;
1079 }
1080 }
1081 return NULL;
1082 }
1083
1084 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1085 {
1086 struct kvm_msi msi;
1087 KVMMSIRoute *route;
1088
1089 if (s->direct_msi) {
1090 msi.address_lo = (uint32_t)msg.address;
1091 msi.address_hi = msg.address >> 32;
1092 msi.data = msg.data;
1093 msi.flags = 0;
1094 memset(msi.pad, 0, sizeof(msi.pad));
1095
1096 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1097 }
1098
1099 route = kvm_lookup_msi_route(s, msg);
1100 if (!route) {
1101 int virq;
1102
1103 virq = kvm_irqchip_get_virq(s);
1104 if (virq < 0) {
1105 return virq;
1106 }
1107
1108 route = g_malloc(sizeof(KVMMSIRoute));
1109 route->kroute.gsi = virq;
1110 route->kroute.type = KVM_IRQ_ROUTING_MSI;
1111 route->kroute.flags = 0;
1112 route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1113 route->kroute.u.msi.address_hi = msg.address >> 32;
1114 route->kroute.u.msi.data = msg.data;
1115
1116 kvm_add_routing_entry(s, &route->kroute);
1117
1118 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1119 entry);
1120 }
1121
1122 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1123
1124 return kvm_set_irq(s, route->kroute.gsi, 1);
1125 }
1126
1127 int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1128 {
1129 struct kvm_irq_routing_entry kroute;
1130 int virq;
1131
1132 if (!kvm_gsi_routing_enabled()) {
1133 return -ENOSYS;
1134 }
1135
1136 virq = kvm_irqchip_get_virq(s);
1137 if (virq < 0) {
1138 return virq;
1139 }
1140
1141 kroute.gsi = virq;
1142 kroute.type = KVM_IRQ_ROUTING_MSI;
1143 kroute.flags = 0;
1144 kroute.u.msi.address_lo = (uint32_t)msg.address;
1145 kroute.u.msi.address_hi = msg.address >> 32;
1146 kroute.u.msi.data = msg.data;
1147
1148 kvm_add_routing_entry(s, &kroute);
1149
1150 return virq;
1151 }
1152
1153 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1154 {
1155 struct kvm_irq_routing_entry kroute;
1156
1157 if (!kvm_irqchip_in_kernel()) {
1158 return -ENOSYS;
1159 }
1160
1161 kroute.gsi = virq;
1162 kroute.type = KVM_IRQ_ROUTING_MSI;
1163 kroute.flags = 0;
1164 kroute.u.msi.address_lo = (uint32_t)msg.address;
1165 kroute.u.msi.address_hi = msg.address >> 32;
1166 kroute.u.msi.data = msg.data;
1167
1168 return kvm_update_routing_entry(s, &kroute);
1169 }
1170
1171 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1172 {
1173 struct kvm_irqfd irqfd = {
1174 .fd = fd,
1175 .gsi = virq,
1176 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1177 };
1178
1179 if (!kvm_irqfds_enabled()) {
1180 return -ENOSYS;
1181 }
1182
1183 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1184 }
1185
1186 #else /* !KVM_CAP_IRQ_ROUTING */
1187
1188 static void kvm_init_irq_routing(KVMState *s)
1189 {
1190 }
1191
1192 void kvm_irqchip_release_virq(KVMState *s, int virq)
1193 {
1194 }
1195
1196 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1197 {
1198 abort();
1199 }
1200
1201 int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1202 {
1203 return -ENOSYS;
1204 }
1205
1206 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1207 {
1208 abort();
1209 }
1210 #endif /* !KVM_CAP_IRQ_ROUTING */
1211
1212 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, int virq)
1213 {
1214 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), virq, true);
1215 }
1216
1217 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, int virq)
1218 {
1219 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), virq, false);
1220 }
1221
1222 static int kvm_irqchip_create(KVMState *s)
1223 {
1224 QemuOptsList *list = qemu_find_opts("machine");
1225 int ret;
1226
1227 if (QTAILQ_EMPTY(&list->head) ||
1228 !qemu_opt_get_bool(QTAILQ_FIRST(&list->head),
1229 "kernel_irqchip", true) ||
1230 !kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
1231 return 0;
1232 }
1233
1234 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1235 if (ret < 0) {
1236 fprintf(stderr, "Create kernel irqchip failed\n");
1237 return ret;
1238 }
1239
1240 kvm_kernel_irqchip = true;
1241 /* If we have an in-kernel IRQ chip then we must have asynchronous
1242 * interrupt delivery (though the reverse is not necessarily true)
1243 */
1244 kvm_async_interrupts_allowed = true;
1245
1246 kvm_init_irq_routing(s);
1247
1248 return 0;
1249 }
1250
1251 static int kvm_max_vcpus(KVMState *s)
1252 {
1253 int ret;
1254
1255 /* Find number of supported CPUs using the recommended
1256 * procedure from the kernel API documentation to cope with
1257 * older kernels that may be missing capabilities.
1258 */
1259 ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
1260 if (ret) {
1261 return ret;
1262 }
1263 ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS);
1264 if (ret) {
1265 return ret;
1266 }
1267
1268 return 4;
1269 }
1270
1271 int kvm_init(void)
1272 {
1273 static const char upgrade_note[] =
1274 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1275 "(see http://sourceforge.net/projects/kvm).\n";
1276 KVMState *s;
1277 const KVMCapabilityInfo *missing_cap;
1278 int ret;
1279 int i;
1280 int max_vcpus;
1281
1282 s = g_malloc0(sizeof(KVMState));
1283
1284 /*
1285 * On systems where the kernel can support different base page
1286 * sizes, host page size may be different from TARGET_PAGE_SIZE,
1287 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
1288 * page size for the system though.
1289 */
1290 assert(TARGET_PAGE_SIZE <= getpagesize());
1291
1292 #ifdef KVM_CAP_SET_GUEST_DEBUG
1293 QTAILQ_INIT(&s->kvm_sw_breakpoints);
1294 #endif
1295 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
1296 s->slots[i].slot = i;
1297 }
1298 s->vmfd = -1;
1299 s->fd = qemu_open("/dev/kvm", O_RDWR);
1300 if (s->fd == -1) {
1301 fprintf(stderr, "Could not access KVM kernel module: %m\n");
1302 ret = -errno;
1303 goto err;
1304 }
1305
1306 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
1307 if (ret < KVM_API_VERSION) {
1308 if (ret > 0) {
1309 ret = -EINVAL;
1310 }
1311 fprintf(stderr, "kvm version too old\n");
1312 goto err;
1313 }
1314
1315 if (ret > KVM_API_VERSION) {
1316 ret = -EINVAL;
1317 fprintf(stderr, "kvm version not supported\n");
1318 goto err;
1319 }
1320
1321 max_vcpus = kvm_max_vcpus(s);
1322 if (smp_cpus > max_vcpus) {
1323 ret = -EINVAL;
1324 fprintf(stderr, "Number of SMP cpus requested (%d) exceeds max cpus "
1325 "supported by KVM (%d)\n", smp_cpus, max_vcpus);
1326 goto err;
1327 }
1328
1329 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
1330 if (s->vmfd < 0) {
1331 #ifdef TARGET_S390X
1332 fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
1333 "your host kernel command line\n");
1334 #endif
1335 ret = s->vmfd;
1336 goto err;
1337 }
1338
1339 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1340 if (!missing_cap) {
1341 missing_cap =
1342 kvm_check_extension_list(s, kvm_arch_required_capabilities);
1343 }
1344 if (missing_cap) {
1345 ret = -EINVAL;
1346 fprintf(stderr, "kvm does not support %s\n%s",
1347 missing_cap->name, upgrade_note);
1348 goto err;
1349 }
1350
1351 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
1352
1353 s->broken_set_mem_region = 1;
1354 ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
1355 if (ret > 0) {
1356 s->broken_set_mem_region = 0;
1357 }
1358
1359 #ifdef KVM_CAP_VCPU_EVENTS
1360 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
1361 #endif
1362
1363 s->robust_singlestep =
1364 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
1365
1366 #ifdef KVM_CAP_DEBUGREGS
1367 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
1368 #endif
1369
1370 #ifdef KVM_CAP_XSAVE
1371 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
1372 #endif
1373
1374 #ifdef KVM_CAP_XCRS
1375 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
1376 #endif
1377
1378 #ifdef KVM_CAP_PIT_STATE2
1379 s->pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
1380 #endif
1381
1382 #ifdef KVM_CAP_IRQ_ROUTING
1383 s->direct_msi = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
1384 #endif
1385
1386 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
1387
1388 s->irqchip_inject_ioctl = KVM_IRQ_LINE;
1389 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
1390 s->irqchip_inject_ioctl = KVM_IRQ_LINE_STATUS;
1391 }
1392
1393 ret = kvm_arch_init(s);
1394 if (ret < 0) {
1395 goto err;
1396 }
1397
1398 ret = kvm_irqchip_create(s);
1399 if (ret < 0) {
1400 goto err;
1401 }
1402
1403 kvm_state = s;
1404 memory_listener_register(&kvm_memory_listener, NULL);
1405
1406 s->many_ioeventfds = kvm_check_many_ioeventfds();
1407
1408 cpu_interrupt_handler = kvm_handle_interrupt;
1409
1410 return 0;
1411
1412 err:
1413 if (s) {
1414 if (s->vmfd >= 0) {
1415 close(s->vmfd);
1416 }
1417 if (s->fd != -1) {
1418 close(s->fd);
1419 }
1420 }
1421 g_free(s);
1422
1423 return ret;
1424 }
1425
1426 static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
1427 uint32_t count)
1428 {
1429 int i;
1430 uint8_t *ptr = data;
1431
1432 for (i = 0; i < count; i++) {
1433 if (direction == KVM_EXIT_IO_IN) {
1434 switch (size) {
1435 case 1:
1436 stb_p(ptr, cpu_inb(port));
1437 break;
1438 case 2:
1439 stw_p(ptr, cpu_inw(port));
1440 break;
1441 case 4:
1442 stl_p(ptr, cpu_inl(port));
1443 break;
1444 }
1445 } else {
1446 switch (size) {
1447 case 1:
1448 cpu_outb(port, ldub_p(ptr));
1449 break;
1450 case 2:
1451 cpu_outw(port, lduw_p(ptr));
1452 break;
1453 case 4:
1454 cpu_outl(port, ldl_p(ptr));
1455 break;
1456 }
1457 }
1458
1459 ptr += size;
1460 }
1461 }
1462
1463 static int kvm_handle_internal_error(CPUArchState *env, struct kvm_run *run)
1464 {
1465 fprintf(stderr, "KVM internal error.");
1466 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
1467 int i;
1468
1469 fprintf(stderr, " Suberror: %d\n", run->internal.suberror);
1470 for (i = 0; i < run->internal.ndata; ++i) {
1471 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
1472 i, (uint64_t)run->internal.data[i]);
1473 }
1474 } else {
1475 fprintf(stderr, "\n");
1476 }
1477 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
1478 fprintf(stderr, "emulation failure\n");
1479 if (!kvm_arch_stop_on_emulation_error(env)) {
1480 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
1481 return EXCP_INTERRUPT;
1482 }
1483 }
1484 /* FIXME: Should trigger a qmp message to let management know
1485 * something went wrong.
1486 */
1487 return -1;
1488 }
1489
1490 void kvm_flush_coalesced_mmio_buffer(void)
1491 {
1492 KVMState *s = kvm_state;
1493
1494 if (s->coalesced_flush_in_progress) {
1495 return;
1496 }
1497
1498 s->coalesced_flush_in_progress = true;
1499
1500 if (s->coalesced_mmio_ring) {
1501 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
1502 while (ring->first != ring->last) {
1503 struct kvm_coalesced_mmio *ent;
1504
1505 ent = &ring->coalesced_mmio[ring->first];
1506
1507 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
1508 smp_wmb();
1509 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
1510 }
1511 }
1512
1513 s->coalesced_flush_in_progress = false;
1514 }
1515
1516 static void do_kvm_cpu_synchronize_state(void *_env)
1517 {
1518 CPUArchState *env = _env;
1519
1520 if (!env->kvm_vcpu_dirty) {
1521 kvm_arch_get_registers(env);
1522 env->kvm_vcpu_dirty = 1;
1523 }
1524 }
1525
1526 void kvm_cpu_synchronize_state(CPUArchState *env)
1527 {
1528 if (!env->kvm_vcpu_dirty) {
1529 run_on_cpu(env, do_kvm_cpu_synchronize_state, env);
1530 }
1531 }
1532
1533 void kvm_cpu_synchronize_post_reset(CPUArchState *env)
1534 {
1535 kvm_arch_put_registers(env, KVM_PUT_RESET_STATE);
1536 env->kvm_vcpu_dirty = 0;
1537 }
1538
1539 void kvm_cpu_synchronize_post_init(CPUArchState *env)
1540 {
1541 kvm_arch_put_registers(env, KVM_PUT_FULL_STATE);
1542 env->kvm_vcpu_dirty = 0;
1543 }
1544
1545 int kvm_cpu_exec(CPUArchState *env)
1546 {
1547 struct kvm_run *run = env->kvm_run;
1548 int ret, run_ret;
1549
1550 DPRINTF("kvm_cpu_exec()\n");
1551
1552 if (kvm_arch_process_async_events(env)) {
1553 env->exit_request = 0;
1554 return EXCP_HLT;
1555 }
1556
1557 do {
1558 if (env->kvm_vcpu_dirty) {
1559 kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE);
1560 env->kvm_vcpu_dirty = 0;
1561 }
1562
1563 kvm_arch_pre_run(env, run);
1564 if (env->exit_request) {
1565 DPRINTF("interrupt exit requested\n");
1566 /*
1567 * KVM requires us to reenter the kernel after IO exits to complete
1568 * instruction emulation. This self-signal will ensure that we
1569 * leave ASAP again.
1570 */
1571 qemu_cpu_kick_self();
1572 }
1573 qemu_mutex_unlock_iothread();
1574
1575 run_ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
1576
1577 qemu_mutex_lock_iothread();
1578 kvm_arch_post_run(env, run);
1579
1580 kvm_flush_coalesced_mmio_buffer();
1581
1582 if (run_ret < 0) {
1583 if (run_ret == -EINTR || run_ret == -EAGAIN) {
1584 DPRINTF("io window exit\n");
1585 ret = EXCP_INTERRUPT;
1586 break;
1587 }
1588 fprintf(stderr, "error: kvm run failed %s\n",
1589 strerror(-run_ret));
1590 abort();
1591 }
1592
1593 switch (run->exit_reason) {
1594 case KVM_EXIT_IO:
1595 DPRINTF("handle_io\n");
1596 kvm_handle_io(run->io.port,
1597 (uint8_t *)run + run->io.data_offset,
1598 run->io.direction,
1599 run->io.size,
1600 run->io.count);
1601 ret = 0;
1602 break;
1603 case KVM_EXIT_MMIO:
1604 DPRINTF("handle_mmio\n");
1605 cpu_physical_memory_rw(run->mmio.phys_addr,
1606 run->mmio.data,
1607 run->mmio.len,
1608 run->mmio.is_write);
1609 ret = 0;
1610 break;
1611 case KVM_EXIT_IRQ_WINDOW_OPEN:
1612 DPRINTF("irq_window_open\n");
1613 ret = EXCP_INTERRUPT;
1614 break;
1615 case KVM_EXIT_SHUTDOWN:
1616 DPRINTF("shutdown\n");
1617 qemu_system_reset_request();
1618 ret = EXCP_INTERRUPT;
1619 break;
1620 case KVM_EXIT_UNKNOWN:
1621 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
1622 (uint64_t)run->hw.hardware_exit_reason);
1623 ret = -1;
1624 break;
1625 case KVM_EXIT_INTERNAL_ERROR:
1626 ret = kvm_handle_internal_error(env, run);
1627 break;
1628 default:
1629 DPRINTF("kvm_arch_handle_exit\n");
1630 ret = kvm_arch_handle_exit(env, run);
1631 break;
1632 }
1633 } while (ret == 0);
1634
1635 if (ret < 0) {
1636 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
1637 vm_stop(RUN_STATE_INTERNAL_ERROR);
1638 }
1639
1640 env->exit_request = 0;
1641 return ret;
1642 }
1643
1644 int kvm_ioctl(KVMState *s, int type, ...)
1645 {
1646 int ret;
1647 void *arg;
1648 va_list ap;
1649
1650 va_start(ap, type);
1651 arg = va_arg(ap, void *);
1652 va_end(ap);
1653
1654 ret = ioctl(s->fd, type, arg);
1655 if (ret == -1) {
1656 ret = -errno;
1657 }
1658 return ret;
1659 }
1660
1661 int kvm_vm_ioctl(KVMState *s, int type, ...)
1662 {
1663 int ret;
1664 void *arg;
1665 va_list ap;
1666
1667 va_start(ap, type);
1668 arg = va_arg(ap, void *);
1669 va_end(ap);
1670
1671 ret = ioctl(s->vmfd, type, arg);
1672 if (ret == -1) {
1673 ret = -errno;
1674 }
1675 return ret;
1676 }
1677
1678 int kvm_vcpu_ioctl(CPUArchState *env, int type, ...)
1679 {
1680 int ret;
1681 void *arg;
1682 va_list ap;
1683
1684 va_start(ap, type);
1685 arg = va_arg(ap, void *);
1686 va_end(ap);
1687
1688 ret = ioctl(env->kvm_fd, type, arg);
1689 if (ret == -1) {
1690 ret = -errno;
1691 }
1692 return ret;
1693 }
1694
1695 int kvm_has_sync_mmu(void)
1696 {
1697 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
1698 }
1699
1700 int kvm_has_vcpu_events(void)
1701 {
1702 return kvm_state->vcpu_events;
1703 }
1704
1705 int kvm_has_robust_singlestep(void)
1706 {
1707 return kvm_state->robust_singlestep;
1708 }
1709
1710 int kvm_has_debugregs(void)
1711 {
1712 return kvm_state->debugregs;
1713 }
1714
1715 int kvm_has_xsave(void)
1716 {
1717 return kvm_state->xsave;
1718 }
1719
1720 int kvm_has_xcrs(void)
1721 {
1722 return kvm_state->xcrs;
1723 }
1724
1725 int kvm_has_pit_state2(void)
1726 {
1727 return kvm_state->pit_state2;
1728 }
1729
1730 int kvm_has_many_ioeventfds(void)
1731 {
1732 if (!kvm_enabled()) {
1733 return 0;
1734 }
1735 return kvm_state->many_ioeventfds;
1736 }
1737
1738 int kvm_has_gsi_routing(void)
1739 {
1740 #ifdef KVM_CAP_IRQ_ROUTING
1741 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
1742 #else
1743 return false;
1744 #endif
1745 }
1746
1747 int kvm_has_intx_set_mask(void)
1748 {
1749 return kvm_state->intx_set_mask;
1750 }
1751
1752 void *kvm_vmalloc(ram_addr_t size)
1753 {
1754 #ifdef TARGET_S390X
1755 void *mem;
1756
1757 mem = kvm_arch_vmalloc(size);
1758 if (mem) {
1759 return mem;
1760 }
1761 #endif
1762 return qemu_vmalloc(size);
1763 }
1764
1765 void kvm_setup_guest_memory(void *start, size_t size)
1766 {
1767 #ifdef CONFIG_VALGRIND_H
1768 VALGRIND_MAKE_MEM_DEFINED(start, size);
1769 #endif
1770 if (!kvm_has_sync_mmu()) {
1771 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
1772
1773 if (ret) {
1774 perror("qemu_madvise");
1775 fprintf(stderr,
1776 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1777 exit(1);
1778 }
1779 }
1780 }
1781
1782 #ifdef KVM_CAP_SET_GUEST_DEBUG
1783 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUArchState *env,
1784 target_ulong pc)
1785 {
1786 struct kvm_sw_breakpoint *bp;
1787
1788 QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
1789 if (bp->pc == pc) {
1790 return bp;
1791 }
1792 }
1793 return NULL;
1794 }
1795
1796 int kvm_sw_breakpoints_active(CPUArchState *env)
1797 {
1798 return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
1799 }
1800
1801 struct kvm_set_guest_debug_data {
1802 struct kvm_guest_debug dbg;
1803 CPUArchState *env;
1804 int err;
1805 };
1806
1807 static void kvm_invoke_set_guest_debug(void *data)
1808 {
1809 struct kvm_set_guest_debug_data *dbg_data = data;
1810 CPUArchState *env = dbg_data->env;
1811
1812 dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
1813 }
1814
1815 int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap)
1816 {
1817 struct kvm_set_guest_debug_data data;
1818
1819 data.dbg.control = reinject_trap;
1820
1821 if (env->singlestep_enabled) {
1822 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1823 }
1824 kvm_arch_update_guest_debug(env, &data.dbg);
1825 data.env = env;
1826
1827 run_on_cpu(env, kvm_invoke_set_guest_debug, &data);
1828 return data.err;
1829 }
1830
1831 int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr,
1832 target_ulong len, int type)
1833 {
1834 struct kvm_sw_breakpoint *bp;
1835 CPUArchState *env;
1836 int err;
1837
1838 if (type == GDB_BREAKPOINT_SW) {
1839 bp = kvm_find_sw_breakpoint(current_env, addr);
1840 if (bp) {
1841 bp->use_count++;
1842 return 0;
1843 }
1844
1845 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
1846 if (!bp) {
1847 return -ENOMEM;
1848 }
1849
1850 bp->pc = addr;
1851 bp->use_count = 1;
1852 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
1853 if (err) {
1854 g_free(bp);
1855 return err;
1856 }
1857
1858 QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
1859 bp, entry);
1860 } else {
1861 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1862 if (err) {
1863 return err;
1864 }
1865 }
1866
1867 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1868 err = kvm_update_guest_debug(env, 0);
1869 if (err) {
1870 return err;
1871 }
1872 }
1873 return 0;
1874 }
1875
1876 int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr,
1877 target_ulong len, int type)
1878 {
1879 struct kvm_sw_breakpoint *bp;
1880 CPUArchState *env;
1881 int err;
1882
1883 if (type == GDB_BREAKPOINT_SW) {
1884 bp = kvm_find_sw_breakpoint(current_env, addr);
1885 if (!bp) {
1886 return -ENOENT;
1887 }
1888
1889 if (bp->use_count > 1) {
1890 bp->use_count--;
1891 return 0;
1892 }
1893
1894 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1895 if (err) {
1896 return err;
1897 }
1898
1899 QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1900 g_free(bp);
1901 } else {
1902 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1903 if (err) {
1904 return err;
1905 }
1906 }
1907
1908 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1909 err = kvm_update_guest_debug(env, 0);
1910 if (err) {
1911 return err;
1912 }
1913 }
1914 return 0;
1915 }
1916
1917 void kvm_remove_all_breakpoints(CPUArchState *current_env)
1918 {
1919 struct kvm_sw_breakpoint *bp, *next;
1920 KVMState *s = current_env->kvm_state;
1921 CPUArchState *env;
1922
1923 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1924 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1925 /* Try harder to find a CPU that currently sees the breakpoint. */
1926 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1927 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0) {
1928 break;
1929 }
1930 }
1931 }
1932 }
1933 kvm_arch_remove_all_hw_breakpoints();
1934
1935 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1936 kvm_update_guest_debug(env, 0);
1937 }
1938 }
1939
1940 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1941
1942 int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap)
1943 {
1944 return -EINVAL;
1945 }
1946
1947 int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr,
1948 target_ulong len, int type)
1949 {
1950 return -EINVAL;
1951 }
1952
1953 int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr,
1954 target_ulong len, int type)
1955 {
1956 return -EINVAL;
1957 }
1958
1959 void kvm_remove_all_breakpoints(CPUArchState *current_env)
1960 {
1961 }
1962 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
1963
1964 int kvm_set_signal_mask(CPUArchState *env, const sigset_t *sigset)
1965 {
1966 struct kvm_signal_mask *sigmask;
1967 int r;
1968
1969 if (!sigset) {
1970 return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
1971 }
1972
1973 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
1974
1975 sigmask->len = 8;
1976 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1977 r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
1978 g_free(sigmask);
1979
1980 return r;
1981 }
1982
1983 int kvm_set_ioeventfd_mmio(int fd, uint32_t addr, uint32_t val, bool assign,
1984 uint32_t size)
1985 {
1986 int ret;
1987 struct kvm_ioeventfd iofd;
1988
1989 iofd.datamatch = val;
1990 iofd.addr = addr;
1991 iofd.len = size;
1992 iofd.flags = KVM_IOEVENTFD_FLAG_DATAMATCH;
1993 iofd.fd = fd;
1994
1995 if (!kvm_enabled()) {
1996 return -ENOSYS;
1997 }
1998
1999 if (!assign) {
2000 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
2001 }
2002
2003 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
2004
2005 if (ret < 0) {
2006 return -errno;
2007 }
2008
2009 return 0;
2010 }
2011
2012 int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign)
2013 {
2014 struct kvm_ioeventfd kick = {
2015 .datamatch = val,
2016 .addr = addr,
2017 .len = 2,
2018 .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO,
2019 .fd = fd,
2020 };
2021 int r;
2022 if (!kvm_enabled()) {
2023 return -ENOSYS;
2024 }
2025 if (!assign) {
2026 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
2027 }
2028 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
2029 if (r < 0) {
2030 return r;
2031 }
2032 return 0;
2033 }
2034
2035 int kvm_on_sigbus_vcpu(CPUArchState *env, int code, void *addr)
2036 {
2037 return kvm_arch_on_sigbus_vcpu(env, code, addr);
2038 }
2039
2040 int kvm_on_sigbus(int code, void *addr)
2041 {
2042 return kvm_arch_on_sigbus(code, addr);
2043 }