]> git.proxmox.com Git - mirror_qemu.git/blob - kvm-all.c
Merge remote-tracking branch 'qemu-kvm/uq/master' into staging
[mirror_qemu.git] / kvm-all.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
10 *
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
13 *
14 */
15
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
20
21 #include <linux/kvm.h>
22
23 #include "qemu-common.h"
24 #include "qemu/atomic.h"
25 #include "qemu/option.h"
26 #include "qemu/config-file.h"
27 #include "sysemu/sysemu.h"
28 #include "hw/hw.h"
29 #include "hw/pci/msi.h"
30 #include "exec/gdbstub.h"
31 #include "sysemu/kvm.h"
32 #include "qemu/bswap.h"
33 #include "exec/memory.h"
34 #include "exec/ram_addr.h"
35 #include "exec/address-spaces.h"
36 #include "qemu/event_notifier.h"
37 #include "trace.h"
38
39 /* This check must be after config-host.h is included */
40 #ifdef CONFIG_EVENTFD
41 #include <sys/eventfd.h>
42 #endif
43
44 #ifdef CONFIG_VALGRIND_H
45 #include <valgrind/memcheck.h>
46 #endif
47
48 /* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
49 #define PAGE_SIZE TARGET_PAGE_SIZE
50
51 //#define DEBUG_KVM
52
53 #ifdef DEBUG_KVM
54 #define DPRINTF(fmt, ...) \
55 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
56 #else
57 #define DPRINTF(fmt, ...) \
58 do { } while (0)
59 #endif
60
61 #define KVM_MSI_HASHTAB_SIZE 256
62
63 typedef struct KVMSlot
64 {
65 hwaddr start_addr;
66 ram_addr_t memory_size;
67 void *ram;
68 int slot;
69 int flags;
70 } KVMSlot;
71
72 typedef struct kvm_dirty_log KVMDirtyLog;
73
74 struct KVMState
75 {
76 KVMSlot *slots;
77 int nr_slots;
78 int fd;
79 int vmfd;
80 int coalesced_mmio;
81 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
82 bool coalesced_flush_in_progress;
83 int broken_set_mem_region;
84 int migration_log;
85 int vcpu_events;
86 int robust_singlestep;
87 int debugregs;
88 #ifdef KVM_CAP_SET_GUEST_DEBUG
89 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
90 #endif
91 int pit_state2;
92 int xsave, xcrs;
93 int many_ioeventfds;
94 int intx_set_mask;
95 /* The man page (and posix) say ioctl numbers are signed int, but
96 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
97 * unsigned, and treating them as signed here can break things */
98 unsigned irq_set_ioctl;
99 #ifdef KVM_CAP_IRQ_ROUTING
100 struct kvm_irq_routing *irq_routes;
101 int nr_allocated_irq_routes;
102 uint32_t *used_gsi_bitmap;
103 unsigned int gsi_count;
104 QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
105 bool direct_msi;
106 #endif
107 };
108
109 KVMState *kvm_state;
110 bool kvm_kernel_irqchip;
111 bool kvm_async_interrupts_allowed;
112 bool kvm_halt_in_kernel_allowed;
113 bool kvm_irqfds_allowed;
114 bool kvm_msi_via_irqfd_allowed;
115 bool kvm_gsi_routing_allowed;
116 bool kvm_gsi_direct_mapping;
117 bool kvm_allowed;
118 bool kvm_readonly_mem_allowed;
119
120 static const KVMCapabilityInfo kvm_required_capabilites[] = {
121 KVM_CAP_INFO(USER_MEMORY),
122 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
123 KVM_CAP_LAST_INFO
124 };
125
126 static KVMSlot *kvm_alloc_slot(KVMState *s)
127 {
128 int i;
129
130 for (i = 0; i < s->nr_slots; i++) {
131 if (s->slots[i].memory_size == 0) {
132 return &s->slots[i];
133 }
134 }
135
136 fprintf(stderr, "%s: no free slot available\n", __func__);
137 abort();
138 }
139
140 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
141 hwaddr start_addr,
142 hwaddr end_addr)
143 {
144 int i;
145
146 for (i = 0; i < s->nr_slots; i++) {
147 KVMSlot *mem = &s->slots[i];
148
149 if (start_addr == mem->start_addr &&
150 end_addr == mem->start_addr + mem->memory_size) {
151 return mem;
152 }
153 }
154
155 return NULL;
156 }
157
158 /*
159 * Find overlapping slot with lowest start address
160 */
161 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
162 hwaddr start_addr,
163 hwaddr end_addr)
164 {
165 KVMSlot *found = NULL;
166 int i;
167
168 for (i = 0; i < s->nr_slots; i++) {
169 KVMSlot *mem = &s->slots[i];
170
171 if (mem->memory_size == 0 ||
172 (found && found->start_addr < mem->start_addr)) {
173 continue;
174 }
175
176 if (end_addr > mem->start_addr &&
177 start_addr < mem->start_addr + mem->memory_size) {
178 found = mem;
179 }
180 }
181
182 return found;
183 }
184
185 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
186 hwaddr *phys_addr)
187 {
188 int i;
189
190 for (i = 0; i < s->nr_slots; i++) {
191 KVMSlot *mem = &s->slots[i];
192
193 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
194 *phys_addr = mem->start_addr + (ram - mem->ram);
195 return 1;
196 }
197 }
198
199 return 0;
200 }
201
202 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
203 {
204 struct kvm_userspace_memory_region mem;
205
206 mem.slot = slot->slot;
207 mem.guest_phys_addr = slot->start_addr;
208 mem.userspace_addr = (unsigned long)slot->ram;
209 mem.flags = slot->flags;
210 if (s->migration_log) {
211 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
212 }
213
214 if (slot->memory_size && mem.flags & KVM_MEM_READONLY) {
215 /* Set the slot size to 0 before setting the slot to the desired
216 * value. This is needed based on KVM commit 75d61fbc. */
217 mem.memory_size = 0;
218 kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
219 }
220 mem.memory_size = slot->memory_size;
221 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
222 }
223
224 static void kvm_reset_vcpu(void *opaque)
225 {
226 CPUState *cpu = opaque;
227
228 kvm_arch_reset_vcpu(cpu);
229 }
230
231 int kvm_init_vcpu(CPUState *cpu)
232 {
233 KVMState *s = kvm_state;
234 long mmap_size;
235 int ret;
236
237 DPRINTF("kvm_init_vcpu\n");
238
239 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)kvm_arch_vcpu_id(cpu));
240 if (ret < 0) {
241 DPRINTF("kvm_create_vcpu failed\n");
242 goto err;
243 }
244
245 cpu->kvm_fd = ret;
246 cpu->kvm_state = s;
247 cpu->kvm_vcpu_dirty = true;
248
249 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
250 if (mmap_size < 0) {
251 ret = mmap_size;
252 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
253 goto err;
254 }
255
256 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
257 cpu->kvm_fd, 0);
258 if (cpu->kvm_run == MAP_FAILED) {
259 ret = -errno;
260 DPRINTF("mmap'ing vcpu state failed\n");
261 goto err;
262 }
263
264 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
265 s->coalesced_mmio_ring =
266 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
267 }
268
269 ret = kvm_arch_init_vcpu(cpu);
270 if (ret == 0) {
271 qemu_register_reset(kvm_reset_vcpu, cpu);
272 kvm_arch_reset_vcpu(cpu);
273 }
274 err:
275 return ret;
276 }
277
278 /*
279 * dirty pages logging control
280 */
281
282 static int kvm_mem_flags(KVMState *s, bool log_dirty, bool readonly)
283 {
284 int flags = 0;
285 flags = log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0;
286 if (readonly && kvm_readonly_mem_allowed) {
287 flags |= KVM_MEM_READONLY;
288 }
289 return flags;
290 }
291
292 static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty)
293 {
294 KVMState *s = kvm_state;
295 int flags, mask = KVM_MEM_LOG_DIRTY_PAGES;
296 int old_flags;
297
298 old_flags = mem->flags;
299
300 flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty, false);
301 mem->flags = flags;
302
303 /* If nothing changed effectively, no need to issue ioctl */
304 if (s->migration_log) {
305 flags |= KVM_MEM_LOG_DIRTY_PAGES;
306 }
307
308 if (flags == old_flags) {
309 return 0;
310 }
311
312 return kvm_set_user_memory_region(s, mem);
313 }
314
315 static int kvm_dirty_pages_log_change(hwaddr phys_addr,
316 ram_addr_t size, bool log_dirty)
317 {
318 KVMState *s = kvm_state;
319 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
320
321 if (mem == NULL) {
322 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
323 TARGET_FMT_plx "\n", __func__, phys_addr,
324 (hwaddr)(phys_addr + size - 1));
325 return -EINVAL;
326 }
327 return kvm_slot_dirty_pages_log_change(mem, log_dirty);
328 }
329
330 static void kvm_log_start(MemoryListener *listener,
331 MemoryRegionSection *section)
332 {
333 int r;
334
335 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
336 int128_get64(section->size), true);
337 if (r < 0) {
338 abort();
339 }
340 }
341
342 static void kvm_log_stop(MemoryListener *listener,
343 MemoryRegionSection *section)
344 {
345 int r;
346
347 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
348 int128_get64(section->size), false);
349 if (r < 0) {
350 abort();
351 }
352 }
353
354 static int kvm_set_migration_log(int enable)
355 {
356 KVMState *s = kvm_state;
357 KVMSlot *mem;
358 int i, err;
359
360 s->migration_log = enable;
361
362 for (i = 0; i < s->nr_slots; i++) {
363 mem = &s->slots[i];
364
365 if (!mem->memory_size) {
366 continue;
367 }
368 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
369 continue;
370 }
371 err = kvm_set_user_memory_region(s, mem);
372 if (err) {
373 return err;
374 }
375 }
376 return 0;
377 }
378
379 /* get kvm's dirty pages bitmap and update qemu's */
380 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
381 unsigned long *bitmap)
382 {
383 ram_addr_t start = section->offset_within_region + section->mr->ram_addr;
384 ram_addr_t pages = int128_get64(section->size) / getpagesize();
385
386 cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages);
387 return 0;
388 }
389
390 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
391
392 /**
393 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
394 * This function updates qemu's dirty bitmap using
395 * memory_region_set_dirty(). This means all bits are set
396 * to dirty.
397 *
398 * @start_add: start of logged region.
399 * @end_addr: end of logged region.
400 */
401 static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section)
402 {
403 KVMState *s = kvm_state;
404 unsigned long size, allocated_size = 0;
405 KVMDirtyLog d;
406 KVMSlot *mem;
407 int ret = 0;
408 hwaddr start_addr = section->offset_within_address_space;
409 hwaddr end_addr = start_addr + int128_get64(section->size);
410
411 d.dirty_bitmap = NULL;
412 while (start_addr < end_addr) {
413 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
414 if (mem == NULL) {
415 break;
416 }
417
418 /* XXX bad kernel interface alert
419 * For dirty bitmap, kernel allocates array of size aligned to
420 * bits-per-long. But for case when the kernel is 64bits and
421 * the userspace is 32bits, userspace can't align to the same
422 * bits-per-long, since sizeof(long) is different between kernel
423 * and user space. This way, userspace will provide buffer which
424 * may be 4 bytes less than the kernel will use, resulting in
425 * userspace memory corruption (which is not detectable by valgrind
426 * too, in most cases).
427 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
428 * a hope that sizeof(long) wont become >8 any time soon.
429 */
430 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
431 /*HOST_LONG_BITS*/ 64) / 8;
432 if (!d.dirty_bitmap) {
433 d.dirty_bitmap = g_malloc(size);
434 } else if (size > allocated_size) {
435 d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
436 }
437 allocated_size = size;
438 memset(d.dirty_bitmap, 0, allocated_size);
439
440 d.slot = mem->slot;
441
442 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
443 DPRINTF("ioctl failed %d\n", errno);
444 ret = -1;
445 break;
446 }
447
448 kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
449 start_addr = mem->start_addr + mem->memory_size;
450 }
451 g_free(d.dirty_bitmap);
452
453 return ret;
454 }
455
456 static void kvm_coalesce_mmio_region(MemoryListener *listener,
457 MemoryRegionSection *secion,
458 hwaddr start, hwaddr size)
459 {
460 KVMState *s = kvm_state;
461
462 if (s->coalesced_mmio) {
463 struct kvm_coalesced_mmio_zone zone;
464
465 zone.addr = start;
466 zone.size = size;
467 zone.pad = 0;
468
469 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
470 }
471 }
472
473 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
474 MemoryRegionSection *secion,
475 hwaddr start, hwaddr size)
476 {
477 KVMState *s = kvm_state;
478
479 if (s->coalesced_mmio) {
480 struct kvm_coalesced_mmio_zone zone;
481
482 zone.addr = start;
483 zone.size = size;
484 zone.pad = 0;
485
486 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
487 }
488 }
489
490 int kvm_check_extension(KVMState *s, unsigned int extension)
491 {
492 int ret;
493
494 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
495 if (ret < 0) {
496 ret = 0;
497 }
498
499 return ret;
500 }
501
502 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
503 bool assign, uint32_t size, bool datamatch)
504 {
505 int ret;
506 struct kvm_ioeventfd iofd;
507
508 iofd.datamatch = datamatch ? val : 0;
509 iofd.addr = addr;
510 iofd.len = size;
511 iofd.flags = 0;
512 iofd.fd = fd;
513
514 if (!kvm_enabled()) {
515 return -ENOSYS;
516 }
517
518 if (datamatch) {
519 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
520 }
521 if (!assign) {
522 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
523 }
524
525 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
526
527 if (ret < 0) {
528 return -errno;
529 }
530
531 return 0;
532 }
533
534 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
535 bool assign, uint32_t size, bool datamatch)
536 {
537 struct kvm_ioeventfd kick = {
538 .datamatch = datamatch ? val : 0,
539 .addr = addr,
540 .flags = KVM_IOEVENTFD_FLAG_PIO,
541 .len = size,
542 .fd = fd,
543 };
544 int r;
545 if (!kvm_enabled()) {
546 return -ENOSYS;
547 }
548 if (datamatch) {
549 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
550 }
551 if (!assign) {
552 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
553 }
554 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
555 if (r < 0) {
556 return r;
557 }
558 return 0;
559 }
560
561
562 static int kvm_check_many_ioeventfds(void)
563 {
564 /* Userspace can use ioeventfd for io notification. This requires a host
565 * that supports eventfd(2) and an I/O thread; since eventfd does not
566 * support SIGIO it cannot interrupt the vcpu.
567 *
568 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
569 * can avoid creating too many ioeventfds.
570 */
571 #if defined(CONFIG_EVENTFD)
572 int ioeventfds[7];
573 int i, ret = 0;
574 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
575 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
576 if (ioeventfds[i] < 0) {
577 break;
578 }
579 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
580 if (ret < 0) {
581 close(ioeventfds[i]);
582 break;
583 }
584 }
585
586 /* Decide whether many devices are supported or not */
587 ret = i == ARRAY_SIZE(ioeventfds);
588
589 while (i-- > 0) {
590 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
591 close(ioeventfds[i]);
592 }
593 return ret;
594 #else
595 return 0;
596 #endif
597 }
598
599 static const KVMCapabilityInfo *
600 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
601 {
602 while (list->name) {
603 if (!kvm_check_extension(s, list->value)) {
604 return list;
605 }
606 list++;
607 }
608 return NULL;
609 }
610
611 static void kvm_set_phys_mem(MemoryRegionSection *section, bool add)
612 {
613 KVMState *s = kvm_state;
614 KVMSlot *mem, old;
615 int err;
616 MemoryRegion *mr = section->mr;
617 bool log_dirty = memory_region_is_logging(mr);
618 bool writeable = !mr->readonly && !mr->rom_device;
619 bool readonly_flag = mr->readonly || memory_region_is_romd(mr);
620 hwaddr start_addr = section->offset_within_address_space;
621 ram_addr_t size = int128_get64(section->size);
622 void *ram = NULL;
623 unsigned delta;
624
625 /* kvm works in page size chunks, but the function may be called
626 with sub-page size and unaligned start address. */
627 delta = TARGET_PAGE_ALIGN(size) - size;
628 if (delta > size) {
629 return;
630 }
631 start_addr += delta;
632 size -= delta;
633 size &= TARGET_PAGE_MASK;
634 if (!size || (start_addr & ~TARGET_PAGE_MASK)) {
635 return;
636 }
637
638 if (!memory_region_is_ram(mr)) {
639 if (writeable || !kvm_readonly_mem_allowed) {
640 return;
641 } else if (!mr->romd_mode) {
642 /* If the memory device is not in romd_mode, then we actually want
643 * to remove the kvm memory slot so all accesses will trap. */
644 add = false;
645 }
646 }
647
648 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta;
649
650 while (1) {
651 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
652 if (!mem) {
653 break;
654 }
655
656 if (add && start_addr >= mem->start_addr &&
657 (start_addr + size <= mem->start_addr + mem->memory_size) &&
658 (ram - start_addr == mem->ram - mem->start_addr)) {
659 /* The new slot fits into the existing one and comes with
660 * identical parameters - update flags and done. */
661 kvm_slot_dirty_pages_log_change(mem, log_dirty);
662 return;
663 }
664
665 old = *mem;
666
667 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
668 kvm_physical_sync_dirty_bitmap(section);
669 }
670
671 /* unregister the overlapping slot */
672 mem->memory_size = 0;
673 err = kvm_set_user_memory_region(s, mem);
674 if (err) {
675 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
676 __func__, strerror(-err));
677 abort();
678 }
679
680 /* Workaround for older KVM versions: we can't join slots, even not by
681 * unregistering the previous ones and then registering the larger
682 * slot. We have to maintain the existing fragmentation. Sigh.
683 *
684 * This workaround assumes that the new slot starts at the same
685 * address as the first existing one. If not or if some overlapping
686 * slot comes around later, we will fail (not seen in practice so far)
687 * - and actually require a recent KVM version. */
688 if (s->broken_set_mem_region &&
689 old.start_addr == start_addr && old.memory_size < size && add) {
690 mem = kvm_alloc_slot(s);
691 mem->memory_size = old.memory_size;
692 mem->start_addr = old.start_addr;
693 mem->ram = old.ram;
694 mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
695
696 err = kvm_set_user_memory_region(s, mem);
697 if (err) {
698 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
699 strerror(-err));
700 abort();
701 }
702
703 start_addr += old.memory_size;
704 ram += old.memory_size;
705 size -= old.memory_size;
706 continue;
707 }
708
709 /* register prefix slot */
710 if (old.start_addr < start_addr) {
711 mem = kvm_alloc_slot(s);
712 mem->memory_size = start_addr - old.start_addr;
713 mem->start_addr = old.start_addr;
714 mem->ram = old.ram;
715 mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
716
717 err = kvm_set_user_memory_region(s, mem);
718 if (err) {
719 fprintf(stderr, "%s: error registering prefix slot: %s\n",
720 __func__, strerror(-err));
721 #ifdef TARGET_PPC
722 fprintf(stderr, "%s: This is probably because your kernel's " \
723 "PAGE_SIZE is too big. Please try to use 4k " \
724 "PAGE_SIZE!\n", __func__);
725 #endif
726 abort();
727 }
728 }
729
730 /* register suffix slot */
731 if (old.start_addr + old.memory_size > start_addr + size) {
732 ram_addr_t size_delta;
733
734 mem = kvm_alloc_slot(s);
735 mem->start_addr = start_addr + size;
736 size_delta = mem->start_addr - old.start_addr;
737 mem->memory_size = old.memory_size - size_delta;
738 mem->ram = old.ram + size_delta;
739 mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
740
741 err = kvm_set_user_memory_region(s, mem);
742 if (err) {
743 fprintf(stderr, "%s: error registering suffix slot: %s\n",
744 __func__, strerror(-err));
745 abort();
746 }
747 }
748 }
749
750 /* in case the KVM bug workaround already "consumed" the new slot */
751 if (!size) {
752 return;
753 }
754 if (!add) {
755 return;
756 }
757 mem = kvm_alloc_slot(s);
758 mem->memory_size = size;
759 mem->start_addr = start_addr;
760 mem->ram = ram;
761 mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
762
763 err = kvm_set_user_memory_region(s, mem);
764 if (err) {
765 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
766 strerror(-err));
767 abort();
768 }
769 }
770
771 static void kvm_region_add(MemoryListener *listener,
772 MemoryRegionSection *section)
773 {
774 memory_region_ref(section->mr);
775 kvm_set_phys_mem(section, true);
776 }
777
778 static void kvm_region_del(MemoryListener *listener,
779 MemoryRegionSection *section)
780 {
781 kvm_set_phys_mem(section, false);
782 memory_region_unref(section->mr);
783 }
784
785 static void kvm_log_sync(MemoryListener *listener,
786 MemoryRegionSection *section)
787 {
788 int r;
789
790 r = kvm_physical_sync_dirty_bitmap(section);
791 if (r < 0) {
792 abort();
793 }
794 }
795
796 static void kvm_log_global_start(struct MemoryListener *listener)
797 {
798 int r;
799
800 r = kvm_set_migration_log(1);
801 assert(r >= 0);
802 }
803
804 static void kvm_log_global_stop(struct MemoryListener *listener)
805 {
806 int r;
807
808 r = kvm_set_migration_log(0);
809 assert(r >= 0);
810 }
811
812 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
813 MemoryRegionSection *section,
814 bool match_data, uint64_t data,
815 EventNotifier *e)
816 {
817 int fd = event_notifier_get_fd(e);
818 int r;
819
820 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
821 data, true, int128_get64(section->size),
822 match_data);
823 if (r < 0) {
824 fprintf(stderr, "%s: error adding ioeventfd: %s\n",
825 __func__, strerror(-r));
826 abort();
827 }
828 }
829
830 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
831 MemoryRegionSection *section,
832 bool match_data, uint64_t data,
833 EventNotifier *e)
834 {
835 int fd = event_notifier_get_fd(e);
836 int r;
837
838 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
839 data, false, int128_get64(section->size),
840 match_data);
841 if (r < 0) {
842 abort();
843 }
844 }
845
846 static void kvm_io_ioeventfd_add(MemoryListener *listener,
847 MemoryRegionSection *section,
848 bool match_data, uint64_t data,
849 EventNotifier *e)
850 {
851 int fd = event_notifier_get_fd(e);
852 int r;
853
854 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
855 data, true, int128_get64(section->size),
856 match_data);
857 if (r < 0) {
858 fprintf(stderr, "%s: error adding ioeventfd: %s\n",
859 __func__, strerror(-r));
860 abort();
861 }
862 }
863
864 static void kvm_io_ioeventfd_del(MemoryListener *listener,
865 MemoryRegionSection *section,
866 bool match_data, uint64_t data,
867 EventNotifier *e)
868
869 {
870 int fd = event_notifier_get_fd(e);
871 int r;
872
873 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
874 data, false, int128_get64(section->size),
875 match_data);
876 if (r < 0) {
877 abort();
878 }
879 }
880
881 static MemoryListener kvm_memory_listener = {
882 .region_add = kvm_region_add,
883 .region_del = kvm_region_del,
884 .log_start = kvm_log_start,
885 .log_stop = kvm_log_stop,
886 .log_sync = kvm_log_sync,
887 .log_global_start = kvm_log_global_start,
888 .log_global_stop = kvm_log_global_stop,
889 .eventfd_add = kvm_mem_ioeventfd_add,
890 .eventfd_del = kvm_mem_ioeventfd_del,
891 .coalesced_mmio_add = kvm_coalesce_mmio_region,
892 .coalesced_mmio_del = kvm_uncoalesce_mmio_region,
893 .priority = 10,
894 };
895
896 static MemoryListener kvm_io_listener = {
897 .eventfd_add = kvm_io_ioeventfd_add,
898 .eventfd_del = kvm_io_ioeventfd_del,
899 .priority = 10,
900 };
901
902 static void kvm_handle_interrupt(CPUState *cpu, int mask)
903 {
904 cpu->interrupt_request |= mask;
905
906 if (!qemu_cpu_is_self(cpu)) {
907 qemu_cpu_kick(cpu);
908 }
909 }
910
911 int kvm_set_irq(KVMState *s, int irq, int level)
912 {
913 struct kvm_irq_level event;
914 int ret;
915
916 assert(kvm_async_interrupts_enabled());
917
918 event.level = level;
919 event.irq = irq;
920 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
921 if (ret < 0) {
922 perror("kvm_set_irq");
923 abort();
924 }
925
926 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
927 }
928
929 #ifdef KVM_CAP_IRQ_ROUTING
930 typedef struct KVMMSIRoute {
931 struct kvm_irq_routing_entry kroute;
932 QTAILQ_ENTRY(KVMMSIRoute) entry;
933 } KVMMSIRoute;
934
935 static void set_gsi(KVMState *s, unsigned int gsi)
936 {
937 s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32);
938 }
939
940 static void clear_gsi(KVMState *s, unsigned int gsi)
941 {
942 s->used_gsi_bitmap[gsi / 32] &= ~(1U << (gsi % 32));
943 }
944
945 void kvm_init_irq_routing(KVMState *s)
946 {
947 int gsi_count, i;
948
949 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING);
950 if (gsi_count > 0) {
951 unsigned int gsi_bits, i;
952
953 /* Round up so we can search ints using ffs */
954 gsi_bits = ALIGN(gsi_count, 32);
955 s->used_gsi_bitmap = g_malloc0(gsi_bits / 8);
956 s->gsi_count = gsi_count;
957
958 /* Mark any over-allocated bits as already in use */
959 for (i = gsi_count; i < gsi_bits; i++) {
960 set_gsi(s, i);
961 }
962 }
963
964 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
965 s->nr_allocated_irq_routes = 0;
966
967 if (!s->direct_msi) {
968 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
969 QTAILQ_INIT(&s->msi_hashtab[i]);
970 }
971 }
972
973 kvm_arch_init_irq_routing(s);
974 }
975
976 void kvm_irqchip_commit_routes(KVMState *s)
977 {
978 int ret;
979
980 s->irq_routes->flags = 0;
981 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
982 assert(ret == 0);
983 }
984
985 static void kvm_add_routing_entry(KVMState *s,
986 struct kvm_irq_routing_entry *entry)
987 {
988 struct kvm_irq_routing_entry *new;
989 int n, size;
990
991 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
992 n = s->nr_allocated_irq_routes * 2;
993 if (n < 64) {
994 n = 64;
995 }
996 size = sizeof(struct kvm_irq_routing);
997 size += n * sizeof(*new);
998 s->irq_routes = g_realloc(s->irq_routes, size);
999 s->nr_allocated_irq_routes = n;
1000 }
1001 n = s->irq_routes->nr++;
1002 new = &s->irq_routes->entries[n];
1003
1004 *new = *entry;
1005
1006 set_gsi(s, entry->gsi);
1007 }
1008
1009 static int kvm_update_routing_entry(KVMState *s,
1010 struct kvm_irq_routing_entry *new_entry)
1011 {
1012 struct kvm_irq_routing_entry *entry;
1013 int n;
1014
1015 for (n = 0; n < s->irq_routes->nr; n++) {
1016 entry = &s->irq_routes->entries[n];
1017 if (entry->gsi != new_entry->gsi) {
1018 continue;
1019 }
1020
1021 if(!memcmp(entry, new_entry, sizeof *entry)) {
1022 return 0;
1023 }
1024
1025 *entry = *new_entry;
1026
1027 kvm_irqchip_commit_routes(s);
1028
1029 return 0;
1030 }
1031
1032 return -ESRCH;
1033 }
1034
1035 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1036 {
1037 struct kvm_irq_routing_entry e = {};
1038
1039 assert(pin < s->gsi_count);
1040
1041 e.gsi = irq;
1042 e.type = KVM_IRQ_ROUTING_IRQCHIP;
1043 e.flags = 0;
1044 e.u.irqchip.irqchip = irqchip;
1045 e.u.irqchip.pin = pin;
1046 kvm_add_routing_entry(s, &e);
1047 }
1048
1049 void kvm_irqchip_release_virq(KVMState *s, int virq)
1050 {
1051 struct kvm_irq_routing_entry *e;
1052 int i;
1053
1054 if (kvm_gsi_direct_mapping()) {
1055 return;
1056 }
1057
1058 for (i = 0; i < s->irq_routes->nr; i++) {
1059 e = &s->irq_routes->entries[i];
1060 if (e->gsi == virq) {
1061 s->irq_routes->nr--;
1062 *e = s->irq_routes->entries[s->irq_routes->nr];
1063 }
1064 }
1065 clear_gsi(s, virq);
1066 }
1067
1068 static unsigned int kvm_hash_msi(uint32_t data)
1069 {
1070 /* This is optimized for IA32 MSI layout. However, no other arch shall
1071 * repeat the mistake of not providing a direct MSI injection API. */
1072 return data & 0xff;
1073 }
1074
1075 static void kvm_flush_dynamic_msi_routes(KVMState *s)
1076 {
1077 KVMMSIRoute *route, *next;
1078 unsigned int hash;
1079
1080 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1081 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1082 kvm_irqchip_release_virq(s, route->kroute.gsi);
1083 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1084 g_free(route);
1085 }
1086 }
1087 }
1088
1089 static int kvm_irqchip_get_virq(KVMState *s)
1090 {
1091 uint32_t *word = s->used_gsi_bitmap;
1092 int max_words = ALIGN(s->gsi_count, 32) / 32;
1093 int i, bit;
1094 bool retry = true;
1095
1096 again:
1097 /* Return the lowest unused GSI in the bitmap */
1098 for (i = 0; i < max_words; i++) {
1099 bit = ffs(~word[i]);
1100 if (!bit) {
1101 continue;
1102 }
1103
1104 return bit - 1 + i * 32;
1105 }
1106 if (!s->direct_msi && retry) {
1107 retry = false;
1108 kvm_flush_dynamic_msi_routes(s);
1109 goto again;
1110 }
1111 return -ENOSPC;
1112
1113 }
1114
1115 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1116 {
1117 unsigned int hash = kvm_hash_msi(msg.data);
1118 KVMMSIRoute *route;
1119
1120 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1121 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1122 route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1123 route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
1124 return route;
1125 }
1126 }
1127 return NULL;
1128 }
1129
1130 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1131 {
1132 struct kvm_msi msi;
1133 KVMMSIRoute *route;
1134
1135 if (s->direct_msi) {
1136 msi.address_lo = (uint32_t)msg.address;
1137 msi.address_hi = msg.address >> 32;
1138 msi.data = le32_to_cpu(msg.data);
1139 msi.flags = 0;
1140 memset(msi.pad, 0, sizeof(msi.pad));
1141
1142 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1143 }
1144
1145 route = kvm_lookup_msi_route(s, msg);
1146 if (!route) {
1147 int virq;
1148
1149 virq = kvm_irqchip_get_virq(s);
1150 if (virq < 0) {
1151 return virq;
1152 }
1153
1154 route = g_malloc0(sizeof(KVMMSIRoute));
1155 route->kroute.gsi = virq;
1156 route->kroute.type = KVM_IRQ_ROUTING_MSI;
1157 route->kroute.flags = 0;
1158 route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1159 route->kroute.u.msi.address_hi = msg.address >> 32;
1160 route->kroute.u.msi.data = le32_to_cpu(msg.data);
1161
1162 kvm_add_routing_entry(s, &route->kroute);
1163 kvm_irqchip_commit_routes(s);
1164
1165 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1166 entry);
1167 }
1168
1169 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1170
1171 return kvm_set_irq(s, route->kroute.gsi, 1);
1172 }
1173
1174 int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1175 {
1176 struct kvm_irq_routing_entry kroute = {};
1177 int virq;
1178
1179 if (kvm_gsi_direct_mapping()) {
1180 return msg.data & 0xffff;
1181 }
1182
1183 if (!kvm_gsi_routing_enabled()) {
1184 return -ENOSYS;
1185 }
1186
1187 virq = kvm_irqchip_get_virq(s);
1188 if (virq < 0) {
1189 return virq;
1190 }
1191
1192 kroute.gsi = virq;
1193 kroute.type = KVM_IRQ_ROUTING_MSI;
1194 kroute.flags = 0;
1195 kroute.u.msi.address_lo = (uint32_t)msg.address;
1196 kroute.u.msi.address_hi = msg.address >> 32;
1197 kroute.u.msi.data = le32_to_cpu(msg.data);
1198
1199 kvm_add_routing_entry(s, &kroute);
1200 kvm_irqchip_commit_routes(s);
1201
1202 return virq;
1203 }
1204
1205 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1206 {
1207 struct kvm_irq_routing_entry kroute = {};
1208
1209 if (kvm_gsi_direct_mapping()) {
1210 return 0;
1211 }
1212
1213 if (!kvm_irqchip_in_kernel()) {
1214 return -ENOSYS;
1215 }
1216
1217 kroute.gsi = virq;
1218 kroute.type = KVM_IRQ_ROUTING_MSI;
1219 kroute.flags = 0;
1220 kroute.u.msi.address_lo = (uint32_t)msg.address;
1221 kroute.u.msi.address_hi = msg.address >> 32;
1222 kroute.u.msi.data = le32_to_cpu(msg.data);
1223
1224 return kvm_update_routing_entry(s, &kroute);
1225 }
1226
1227 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq,
1228 bool assign)
1229 {
1230 struct kvm_irqfd irqfd = {
1231 .fd = fd,
1232 .gsi = virq,
1233 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1234 };
1235
1236 if (rfd != -1) {
1237 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
1238 irqfd.resamplefd = rfd;
1239 }
1240
1241 if (!kvm_irqfds_enabled()) {
1242 return -ENOSYS;
1243 }
1244
1245 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1246 }
1247
1248 #else /* !KVM_CAP_IRQ_ROUTING */
1249
1250 void kvm_init_irq_routing(KVMState *s)
1251 {
1252 }
1253
1254 void kvm_irqchip_release_virq(KVMState *s, int virq)
1255 {
1256 }
1257
1258 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1259 {
1260 abort();
1261 }
1262
1263 int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1264 {
1265 return -ENOSYS;
1266 }
1267
1268 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1269 {
1270 abort();
1271 }
1272
1273 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1274 {
1275 return -ENOSYS;
1276 }
1277 #endif /* !KVM_CAP_IRQ_ROUTING */
1278
1279 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
1280 EventNotifier *rn, int virq)
1281 {
1282 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n),
1283 rn ? event_notifier_get_fd(rn) : -1, virq, true);
1284 }
1285
1286 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, int virq)
1287 {
1288 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), -1, virq,
1289 false);
1290 }
1291
1292 static int kvm_irqchip_create(KVMState *s)
1293 {
1294 int ret;
1295
1296 if (!qemu_opt_get_bool(qemu_get_machine_opts(), "kernel_irqchip", true) ||
1297 !kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
1298 return 0;
1299 }
1300
1301 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1302 if (ret < 0) {
1303 fprintf(stderr, "Create kernel irqchip failed\n");
1304 return ret;
1305 }
1306
1307 kvm_kernel_irqchip = true;
1308 /* If we have an in-kernel IRQ chip then we must have asynchronous
1309 * interrupt delivery (though the reverse is not necessarily true)
1310 */
1311 kvm_async_interrupts_allowed = true;
1312 kvm_halt_in_kernel_allowed = true;
1313
1314 kvm_init_irq_routing(s);
1315
1316 return 0;
1317 }
1318
1319 /* Find number of supported CPUs using the recommended
1320 * procedure from the kernel API documentation to cope with
1321 * older kernels that may be missing capabilities.
1322 */
1323 static int kvm_recommended_vcpus(KVMState *s)
1324 {
1325 int ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS);
1326 return (ret) ? ret : 4;
1327 }
1328
1329 static int kvm_max_vcpus(KVMState *s)
1330 {
1331 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
1332 return (ret) ? ret : kvm_recommended_vcpus(s);
1333 }
1334
1335 int kvm_init(void)
1336 {
1337 static const char upgrade_note[] =
1338 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1339 "(see http://sourceforge.net/projects/kvm).\n";
1340 struct {
1341 const char *name;
1342 int num;
1343 } num_cpus[] = {
1344 { "SMP", smp_cpus },
1345 { "hotpluggable", max_cpus },
1346 { NULL, }
1347 }, *nc = num_cpus;
1348 int soft_vcpus_limit, hard_vcpus_limit;
1349 KVMState *s;
1350 const KVMCapabilityInfo *missing_cap;
1351 int ret;
1352 int i;
1353
1354 s = g_malloc0(sizeof(KVMState));
1355
1356 /*
1357 * On systems where the kernel can support different base page
1358 * sizes, host page size may be different from TARGET_PAGE_SIZE,
1359 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
1360 * page size for the system though.
1361 */
1362 assert(TARGET_PAGE_SIZE <= getpagesize());
1363
1364 #ifdef KVM_CAP_SET_GUEST_DEBUG
1365 QTAILQ_INIT(&s->kvm_sw_breakpoints);
1366 #endif
1367 s->vmfd = -1;
1368 s->fd = qemu_open("/dev/kvm", O_RDWR);
1369 if (s->fd == -1) {
1370 fprintf(stderr, "Could not access KVM kernel module: %m\n");
1371 ret = -errno;
1372 goto err;
1373 }
1374
1375 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
1376 if (ret < KVM_API_VERSION) {
1377 if (ret > 0) {
1378 ret = -EINVAL;
1379 }
1380 fprintf(stderr, "kvm version too old\n");
1381 goto err;
1382 }
1383
1384 if (ret > KVM_API_VERSION) {
1385 ret = -EINVAL;
1386 fprintf(stderr, "kvm version not supported\n");
1387 goto err;
1388 }
1389
1390 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
1391
1392 /* If unspecified, use the default value */
1393 if (!s->nr_slots) {
1394 s->nr_slots = 32;
1395 }
1396
1397 s->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot));
1398
1399 for (i = 0; i < s->nr_slots; i++) {
1400 s->slots[i].slot = i;
1401 }
1402
1403 /* check the vcpu limits */
1404 soft_vcpus_limit = kvm_recommended_vcpus(s);
1405 hard_vcpus_limit = kvm_max_vcpus(s);
1406
1407 while (nc->name) {
1408 if (nc->num > soft_vcpus_limit) {
1409 fprintf(stderr,
1410 "Warning: Number of %s cpus requested (%d) exceeds "
1411 "the recommended cpus supported by KVM (%d)\n",
1412 nc->name, nc->num, soft_vcpus_limit);
1413
1414 if (nc->num > hard_vcpus_limit) {
1415 ret = -EINVAL;
1416 fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
1417 "the maximum cpus supported by KVM (%d)\n",
1418 nc->name, nc->num, hard_vcpus_limit);
1419 goto err;
1420 }
1421 }
1422 nc++;
1423 }
1424
1425 do {
1426 ret = kvm_ioctl(s, KVM_CREATE_VM, 0);
1427 } while (ret == -EINTR);
1428
1429 if (ret < 0) {
1430 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -s->vmfd,
1431 strerror(-ret));
1432
1433 #ifdef TARGET_S390X
1434 fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
1435 "your host kernel command line\n");
1436 #endif
1437 goto err;
1438 }
1439
1440 s->vmfd = ret;
1441 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1442 if (!missing_cap) {
1443 missing_cap =
1444 kvm_check_extension_list(s, kvm_arch_required_capabilities);
1445 }
1446 if (missing_cap) {
1447 ret = -EINVAL;
1448 fprintf(stderr, "kvm does not support %s\n%s",
1449 missing_cap->name, upgrade_note);
1450 goto err;
1451 }
1452
1453 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
1454
1455 s->broken_set_mem_region = 1;
1456 ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
1457 if (ret > 0) {
1458 s->broken_set_mem_region = 0;
1459 }
1460
1461 #ifdef KVM_CAP_VCPU_EVENTS
1462 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
1463 #endif
1464
1465 s->robust_singlestep =
1466 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
1467
1468 #ifdef KVM_CAP_DEBUGREGS
1469 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
1470 #endif
1471
1472 #ifdef KVM_CAP_XSAVE
1473 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
1474 #endif
1475
1476 #ifdef KVM_CAP_XCRS
1477 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
1478 #endif
1479
1480 #ifdef KVM_CAP_PIT_STATE2
1481 s->pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
1482 #endif
1483
1484 #ifdef KVM_CAP_IRQ_ROUTING
1485 s->direct_msi = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
1486 #endif
1487
1488 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
1489
1490 s->irq_set_ioctl = KVM_IRQ_LINE;
1491 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
1492 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
1493 }
1494
1495 #ifdef KVM_CAP_READONLY_MEM
1496 kvm_readonly_mem_allowed =
1497 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
1498 #endif
1499
1500 ret = kvm_arch_init(s);
1501 if (ret < 0) {
1502 goto err;
1503 }
1504
1505 ret = kvm_irqchip_create(s);
1506 if (ret < 0) {
1507 goto err;
1508 }
1509
1510 kvm_state = s;
1511 memory_listener_register(&kvm_memory_listener, &address_space_memory);
1512 memory_listener_register(&kvm_io_listener, &address_space_io);
1513
1514 s->many_ioeventfds = kvm_check_many_ioeventfds();
1515
1516 cpu_interrupt_handler = kvm_handle_interrupt;
1517
1518 return 0;
1519
1520 err:
1521 if (s->vmfd >= 0) {
1522 close(s->vmfd);
1523 }
1524 if (s->fd != -1) {
1525 close(s->fd);
1526 }
1527 g_free(s->slots);
1528 g_free(s);
1529
1530 return ret;
1531 }
1532
1533 static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
1534 uint32_t count)
1535 {
1536 int i;
1537 uint8_t *ptr = data;
1538
1539 for (i = 0; i < count; i++) {
1540 address_space_rw(&address_space_io, port, ptr, size,
1541 direction == KVM_EXIT_IO_OUT);
1542 ptr += size;
1543 }
1544 }
1545
1546 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
1547 {
1548 fprintf(stderr, "KVM internal error.");
1549 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
1550 int i;
1551
1552 fprintf(stderr, " Suberror: %d\n", run->internal.suberror);
1553 for (i = 0; i < run->internal.ndata; ++i) {
1554 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
1555 i, (uint64_t)run->internal.data[i]);
1556 }
1557 } else {
1558 fprintf(stderr, "\n");
1559 }
1560 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
1561 fprintf(stderr, "emulation failure\n");
1562 if (!kvm_arch_stop_on_emulation_error(cpu)) {
1563 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
1564 return EXCP_INTERRUPT;
1565 }
1566 }
1567 /* FIXME: Should trigger a qmp message to let management know
1568 * something went wrong.
1569 */
1570 return -1;
1571 }
1572
1573 void kvm_flush_coalesced_mmio_buffer(void)
1574 {
1575 KVMState *s = kvm_state;
1576
1577 if (s->coalesced_flush_in_progress) {
1578 return;
1579 }
1580
1581 s->coalesced_flush_in_progress = true;
1582
1583 if (s->coalesced_mmio_ring) {
1584 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
1585 while (ring->first != ring->last) {
1586 struct kvm_coalesced_mmio *ent;
1587
1588 ent = &ring->coalesced_mmio[ring->first];
1589
1590 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
1591 smp_wmb();
1592 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
1593 }
1594 }
1595
1596 s->coalesced_flush_in_progress = false;
1597 }
1598
1599 static void do_kvm_cpu_synchronize_state(void *arg)
1600 {
1601 CPUState *cpu = arg;
1602
1603 if (!cpu->kvm_vcpu_dirty) {
1604 kvm_arch_get_registers(cpu);
1605 cpu->kvm_vcpu_dirty = true;
1606 }
1607 }
1608
1609 void kvm_cpu_synchronize_state(CPUState *cpu)
1610 {
1611 if (!cpu->kvm_vcpu_dirty) {
1612 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, cpu);
1613 }
1614 }
1615
1616 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
1617 {
1618 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
1619 cpu->kvm_vcpu_dirty = false;
1620 }
1621
1622 void kvm_cpu_synchronize_post_init(CPUState *cpu)
1623 {
1624 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
1625 cpu->kvm_vcpu_dirty = false;
1626 }
1627
1628 int kvm_cpu_exec(CPUState *cpu)
1629 {
1630 struct kvm_run *run = cpu->kvm_run;
1631 int ret, run_ret;
1632
1633 DPRINTF("kvm_cpu_exec()\n");
1634
1635 if (kvm_arch_process_async_events(cpu)) {
1636 cpu->exit_request = 0;
1637 return EXCP_HLT;
1638 }
1639
1640 do {
1641 if (cpu->kvm_vcpu_dirty) {
1642 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
1643 cpu->kvm_vcpu_dirty = false;
1644 }
1645
1646 kvm_arch_pre_run(cpu, run);
1647 if (cpu->exit_request) {
1648 DPRINTF("interrupt exit requested\n");
1649 /*
1650 * KVM requires us to reenter the kernel after IO exits to complete
1651 * instruction emulation. This self-signal will ensure that we
1652 * leave ASAP again.
1653 */
1654 qemu_cpu_kick_self();
1655 }
1656 qemu_mutex_unlock_iothread();
1657
1658 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
1659
1660 qemu_mutex_lock_iothread();
1661 kvm_arch_post_run(cpu, run);
1662
1663 if (run_ret < 0) {
1664 if (run_ret == -EINTR || run_ret == -EAGAIN) {
1665 DPRINTF("io window exit\n");
1666 ret = EXCP_INTERRUPT;
1667 break;
1668 }
1669 fprintf(stderr, "error: kvm run failed %s\n",
1670 strerror(-run_ret));
1671 abort();
1672 }
1673
1674 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
1675 switch (run->exit_reason) {
1676 case KVM_EXIT_IO:
1677 DPRINTF("handle_io\n");
1678 kvm_handle_io(run->io.port,
1679 (uint8_t *)run + run->io.data_offset,
1680 run->io.direction,
1681 run->io.size,
1682 run->io.count);
1683 ret = 0;
1684 break;
1685 case KVM_EXIT_MMIO:
1686 DPRINTF("handle_mmio\n");
1687 cpu_physical_memory_rw(run->mmio.phys_addr,
1688 run->mmio.data,
1689 run->mmio.len,
1690 run->mmio.is_write);
1691 ret = 0;
1692 break;
1693 case KVM_EXIT_IRQ_WINDOW_OPEN:
1694 DPRINTF("irq_window_open\n");
1695 ret = EXCP_INTERRUPT;
1696 break;
1697 case KVM_EXIT_SHUTDOWN:
1698 DPRINTF("shutdown\n");
1699 qemu_system_reset_request();
1700 ret = EXCP_INTERRUPT;
1701 break;
1702 case KVM_EXIT_UNKNOWN:
1703 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
1704 (uint64_t)run->hw.hardware_exit_reason);
1705 ret = -1;
1706 break;
1707 case KVM_EXIT_INTERNAL_ERROR:
1708 ret = kvm_handle_internal_error(cpu, run);
1709 break;
1710 default:
1711 DPRINTF("kvm_arch_handle_exit\n");
1712 ret = kvm_arch_handle_exit(cpu, run);
1713 break;
1714 }
1715 } while (ret == 0);
1716
1717 if (ret < 0) {
1718 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
1719 vm_stop(RUN_STATE_INTERNAL_ERROR);
1720 }
1721
1722 cpu->exit_request = 0;
1723 return ret;
1724 }
1725
1726 int kvm_ioctl(KVMState *s, int type, ...)
1727 {
1728 int ret;
1729 void *arg;
1730 va_list ap;
1731
1732 va_start(ap, type);
1733 arg = va_arg(ap, void *);
1734 va_end(ap);
1735
1736 trace_kvm_ioctl(type, arg);
1737 ret = ioctl(s->fd, type, arg);
1738 if (ret == -1) {
1739 ret = -errno;
1740 }
1741 return ret;
1742 }
1743
1744 int kvm_vm_ioctl(KVMState *s, int type, ...)
1745 {
1746 int ret;
1747 void *arg;
1748 va_list ap;
1749
1750 va_start(ap, type);
1751 arg = va_arg(ap, void *);
1752 va_end(ap);
1753
1754 trace_kvm_vm_ioctl(type, arg);
1755 ret = ioctl(s->vmfd, type, arg);
1756 if (ret == -1) {
1757 ret = -errno;
1758 }
1759 return ret;
1760 }
1761
1762 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
1763 {
1764 int ret;
1765 void *arg;
1766 va_list ap;
1767
1768 va_start(ap, type);
1769 arg = va_arg(ap, void *);
1770 va_end(ap);
1771
1772 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
1773 ret = ioctl(cpu->kvm_fd, type, arg);
1774 if (ret == -1) {
1775 ret = -errno;
1776 }
1777 return ret;
1778 }
1779
1780 int kvm_has_sync_mmu(void)
1781 {
1782 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
1783 }
1784
1785 int kvm_has_vcpu_events(void)
1786 {
1787 return kvm_state->vcpu_events;
1788 }
1789
1790 int kvm_has_robust_singlestep(void)
1791 {
1792 return kvm_state->robust_singlestep;
1793 }
1794
1795 int kvm_has_debugregs(void)
1796 {
1797 return kvm_state->debugregs;
1798 }
1799
1800 int kvm_has_xsave(void)
1801 {
1802 return kvm_state->xsave;
1803 }
1804
1805 int kvm_has_xcrs(void)
1806 {
1807 return kvm_state->xcrs;
1808 }
1809
1810 int kvm_has_pit_state2(void)
1811 {
1812 return kvm_state->pit_state2;
1813 }
1814
1815 int kvm_has_many_ioeventfds(void)
1816 {
1817 if (!kvm_enabled()) {
1818 return 0;
1819 }
1820 return kvm_state->many_ioeventfds;
1821 }
1822
1823 int kvm_has_gsi_routing(void)
1824 {
1825 #ifdef KVM_CAP_IRQ_ROUTING
1826 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
1827 #else
1828 return false;
1829 #endif
1830 }
1831
1832 int kvm_has_intx_set_mask(void)
1833 {
1834 return kvm_state->intx_set_mask;
1835 }
1836
1837 void kvm_setup_guest_memory(void *start, size_t size)
1838 {
1839 #ifdef CONFIG_VALGRIND_H
1840 VALGRIND_MAKE_MEM_DEFINED(start, size);
1841 #endif
1842 if (!kvm_has_sync_mmu()) {
1843 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
1844
1845 if (ret) {
1846 perror("qemu_madvise");
1847 fprintf(stderr,
1848 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1849 exit(1);
1850 }
1851 }
1852 }
1853
1854 #ifdef KVM_CAP_SET_GUEST_DEBUG
1855 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
1856 target_ulong pc)
1857 {
1858 struct kvm_sw_breakpoint *bp;
1859
1860 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
1861 if (bp->pc == pc) {
1862 return bp;
1863 }
1864 }
1865 return NULL;
1866 }
1867
1868 int kvm_sw_breakpoints_active(CPUState *cpu)
1869 {
1870 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
1871 }
1872
1873 struct kvm_set_guest_debug_data {
1874 struct kvm_guest_debug dbg;
1875 CPUState *cpu;
1876 int err;
1877 };
1878
1879 static void kvm_invoke_set_guest_debug(void *data)
1880 {
1881 struct kvm_set_guest_debug_data *dbg_data = data;
1882
1883 dbg_data->err = kvm_vcpu_ioctl(dbg_data->cpu, KVM_SET_GUEST_DEBUG,
1884 &dbg_data->dbg);
1885 }
1886
1887 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
1888 {
1889 struct kvm_set_guest_debug_data data;
1890
1891 data.dbg.control = reinject_trap;
1892
1893 if (cpu->singlestep_enabled) {
1894 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1895 }
1896 kvm_arch_update_guest_debug(cpu, &data.dbg);
1897 data.cpu = cpu;
1898
1899 run_on_cpu(cpu, kvm_invoke_set_guest_debug, &data);
1900 return data.err;
1901 }
1902
1903 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
1904 target_ulong len, int type)
1905 {
1906 struct kvm_sw_breakpoint *bp;
1907 int err;
1908
1909 if (type == GDB_BREAKPOINT_SW) {
1910 bp = kvm_find_sw_breakpoint(cpu, addr);
1911 if (bp) {
1912 bp->use_count++;
1913 return 0;
1914 }
1915
1916 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
1917 if (!bp) {
1918 return -ENOMEM;
1919 }
1920
1921 bp->pc = addr;
1922 bp->use_count = 1;
1923 err = kvm_arch_insert_sw_breakpoint(cpu, bp);
1924 if (err) {
1925 g_free(bp);
1926 return err;
1927 }
1928
1929 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
1930 } else {
1931 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1932 if (err) {
1933 return err;
1934 }
1935 }
1936
1937 CPU_FOREACH(cpu) {
1938 err = kvm_update_guest_debug(cpu, 0);
1939 if (err) {
1940 return err;
1941 }
1942 }
1943 return 0;
1944 }
1945
1946 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
1947 target_ulong len, int type)
1948 {
1949 struct kvm_sw_breakpoint *bp;
1950 int err;
1951
1952 if (type == GDB_BREAKPOINT_SW) {
1953 bp = kvm_find_sw_breakpoint(cpu, addr);
1954 if (!bp) {
1955 return -ENOENT;
1956 }
1957
1958 if (bp->use_count > 1) {
1959 bp->use_count--;
1960 return 0;
1961 }
1962
1963 err = kvm_arch_remove_sw_breakpoint(cpu, bp);
1964 if (err) {
1965 return err;
1966 }
1967
1968 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
1969 g_free(bp);
1970 } else {
1971 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1972 if (err) {
1973 return err;
1974 }
1975 }
1976
1977 CPU_FOREACH(cpu) {
1978 err = kvm_update_guest_debug(cpu, 0);
1979 if (err) {
1980 return err;
1981 }
1982 }
1983 return 0;
1984 }
1985
1986 void kvm_remove_all_breakpoints(CPUState *cpu)
1987 {
1988 struct kvm_sw_breakpoint *bp, *next;
1989 KVMState *s = cpu->kvm_state;
1990
1991 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1992 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
1993 /* Try harder to find a CPU that currently sees the breakpoint. */
1994 CPU_FOREACH(cpu) {
1995 if (kvm_arch_remove_sw_breakpoint(cpu, bp) == 0) {
1996 break;
1997 }
1998 }
1999 }
2000 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
2001 g_free(bp);
2002 }
2003 kvm_arch_remove_all_hw_breakpoints();
2004
2005 CPU_FOREACH(cpu) {
2006 kvm_update_guest_debug(cpu, 0);
2007 }
2008 }
2009
2010 #else /* !KVM_CAP_SET_GUEST_DEBUG */
2011
2012 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2013 {
2014 return -EINVAL;
2015 }
2016
2017 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2018 target_ulong len, int type)
2019 {
2020 return -EINVAL;
2021 }
2022
2023 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2024 target_ulong len, int type)
2025 {
2026 return -EINVAL;
2027 }
2028
2029 void kvm_remove_all_breakpoints(CPUState *cpu)
2030 {
2031 }
2032 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2033
2034 int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
2035 {
2036 struct kvm_signal_mask *sigmask;
2037 int r;
2038
2039 if (!sigset) {
2040 return kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, NULL);
2041 }
2042
2043 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
2044
2045 sigmask->len = 8;
2046 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
2047 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
2048 g_free(sigmask);
2049
2050 return r;
2051 }
2052 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
2053 {
2054 return kvm_arch_on_sigbus_vcpu(cpu, code, addr);
2055 }
2056
2057 int kvm_on_sigbus(int code, void *addr)
2058 {
2059 return kvm_arch_on_sigbus(code, addr);
2060 }