]> git.proxmox.com Git - mirror_qemu.git/blob - kvm-all.c
kvm: Introduce basic MSI support for in-kernel irqchips
[mirror_qemu.git] / kvm-all.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
10 *
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
13 *
14 */
15
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
20
21 #include <linux/kvm.h>
22
23 #include "qemu-common.h"
24 #include "qemu-barrier.h"
25 #include "sysemu.h"
26 #include "hw/hw.h"
27 #include "hw/msi.h"
28 #include "gdbstub.h"
29 #include "kvm.h"
30 #include "bswap.h"
31 #include "memory.h"
32 #include "exec-memory.h"
33
34 /* This check must be after config-host.h is included */
35 #ifdef CONFIG_EVENTFD
36 #include <sys/eventfd.h>
37 #endif
38
39 /* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
40 #define PAGE_SIZE TARGET_PAGE_SIZE
41
42 //#define DEBUG_KVM
43
44 #ifdef DEBUG_KVM
45 #define DPRINTF(fmt, ...) \
46 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
47 #else
48 #define DPRINTF(fmt, ...) \
49 do { } while (0)
50 #endif
51
52 #define KVM_MSI_HASHTAB_SIZE 256
53
54 typedef struct KVMSlot
55 {
56 target_phys_addr_t start_addr;
57 ram_addr_t memory_size;
58 void *ram;
59 int slot;
60 int flags;
61 } KVMSlot;
62
63 typedef struct kvm_dirty_log KVMDirtyLog;
64
65 typedef struct KVMMSIRoute {
66 struct kvm_irq_routing_entry kroute;
67 QTAILQ_ENTRY(KVMMSIRoute) entry;
68 } KVMMSIRoute;
69
70 struct KVMState
71 {
72 KVMSlot slots[32];
73 int fd;
74 int vmfd;
75 int coalesced_mmio;
76 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
77 bool coalesced_flush_in_progress;
78 int broken_set_mem_region;
79 int migration_log;
80 int vcpu_events;
81 int robust_singlestep;
82 int debugregs;
83 #ifdef KVM_CAP_SET_GUEST_DEBUG
84 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
85 #endif
86 int pit_state2;
87 int xsave, xcrs;
88 int many_ioeventfds;
89 /* The man page (and posix) say ioctl numbers are signed int, but
90 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
91 * unsigned, and treating them as signed here can break things */
92 unsigned irqchip_inject_ioctl;
93 #ifdef KVM_CAP_IRQ_ROUTING
94 struct kvm_irq_routing *irq_routes;
95 int nr_allocated_irq_routes;
96 uint32_t *used_gsi_bitmap;
97 unsigned int gsi_count;
98 QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
99 #endif
100 };
101
102 KVMState *kvm_state;
103 bool kvm_kernel_irqchip;
104
105 static const KVMCapabilityInfo kvm_required_capabilites[] = {
106 KVM_CAP_INFO(USER_MEMORY),
107 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
108 KVM_CAP_LAST_INFO
109 };
110
111 static KVMSlot *kvm_alloc_slot(KVMState *s)
112 {
113 int i;
114
115 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
116 if (s->slots[i].memory_size == 0) {
117 return &s->slots[i];
118 }
119 }
120
121 fprintf(stderr, "%s: no free slot available\n", __func__);
122 abort();
123 }
124
125 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
126 target_phys_addr_t start_addr,
127 target_phys_addr_t end_addr)
128 {
129 int i;
130
131 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
132 KVMSlot *mem = &s->slots[i];
133
134 if (start_addr == mem->start_addr &&
135 end_addr == mem->start_addr + mem->memory_size) {
136 return mem;
137 }
138 }
139
140 return NULL;
141 }
142
143 /*
144 * Find overlapping slot with lowest start address
145 */
146 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
147 target_phys_addr_t start_addr,
148 target_phys_addr_t end_addr)
149 {
150 KVMSlot *found = NULL;
151 int i;
152
153 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
154 KVMSlot *mem = &s->slots[i];
155
156 if (mem->memory_size == 0 ||
157 (found && found->start_addr < mem->start_addr)) {
158 continue;
159 }
160
161 if (end_addr > mem->start_addr &&
162 start_addr < mem->start_addr + mem->memory_size) {
163 found = mem;
164 }
165 }
166
167 return found;
168 }
169
170 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
171 target_phys_addr_t *phys_addr)
172 {
173 int i;
174
175 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
176 KVMSlot *mem = &s->slots[i];
177
178 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
179 *phys_addr = mem->start_addr + (ram - mem->ram);
180 return 1;
181 }
182 }
183
184 return 0;
185 }
186
187 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
188 {
189 struct kvm_userspace_memory_region mem;
190
191 mem.slot = slot->slot;
192 mem.guest_phys_addr = slot->start_addr;
193 mem.memory_size = slot->memory_size;
194 mem.userspace_addr = (unsigned long)slot->ram;
195 mem.flags = slot->flags;
196 if (s->migration_log) {
197 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
198 }
199 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
200 }
201
202 static void kvm_reset_vcpu(void *opaque)
203 {
204 CPUArchState *env = opaque;
205
206 kvm_arch_reset_vcpu(env);
207 }
208
209 int kvm_init_vcpu(CPUArchState *env)
210 {
211 KVMState *s = kvm_state;
212 long mmap_size;
213 int ret;
214
215 DPRINTF("kvm_init_vcpu\n");
216
217 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
218 if (ret < 0) {
219 DPRINTF("kvm_create_vcpu failed\n");
220 goto err;
221 }
222
223 env->kvm_fd = ret;
224 env->kvm_state = s;
225 env->kvm_vcpu_dirty = 1;
226
227 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
228 if (mmap_size < 0) {
229 ret = mmap_size;
230 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
231 goto err;
232 }
233
234 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
235 env->kvm_fd, 0);
236 if (env->kvm_run == MAP_FAILED) {
237 ret = -errno;
238 DPRINTF("mmap'ing vcpu state failed\n");
239 goto err;
240 }
241
242 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
243 s->coalesced_mmio_ring =
244 (void *)env->kvm_run + s->coalesced_mmio * PAGE_SIZE;
245 }
246
247 ret = kvm_arch_init_vcpu(env);
248 if (ret == 0) {
249 qemu_register_reset(kvm_reset_vcpu, env);
250 kvm_arch_reset_vcpu(env);
251 }
252 err:
253 return ret;
254 }
255
256 /*
257 * dirty pages logging control
258 */
259
260 static int kvm_mem_flags(KVMState *s, bool log_dirty)
261 {
262 return log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0;
263 }
264
265 static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty)
266 {
267 KVMState *s = kvm_state;
268 int flags, mask = KVM_MEM_LOG_DIRTY_PAGES;
269 int old_flags;
270
271 old_flags = mem->flags;
272
273 flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty);
274 mem->flags = flags;
275
276 /* If nothing changed effectively, no need to issue ioctl */
277 if (s->migration_log) {
278 flags |= KVM_MEM_LOG_DIRTY_PAGES;
279 }
280
281 if (flags == old_flags) {
282 return 0;
283 }
284
285 return kvm_set_user_memory_region(s, mem);
286 }
287
288 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
289 ram_addr_t size, bool log_dirty)
290 {
291 KVMState *s = kvm_state;
292 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
293
294 if (mem == NULL) {
295 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
296 TARGET_FMT_plx "\n", __func__, phys_addr,
297 (target_phys_addr_t)(phys_addr + size - 1));
298 return -EINVAL;
299 }
300 return kvm_slot_dirty_pages_log_change(mem, log_dirty);
301 }
302
303 static void kvm_log_start(MemoryListener *listener,
304 MemoryRegionSection *section)
305 {
306 int r;
307
308 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
309 section->size, true);
310 if (r < 0) {
311 abort();
312 }
313 }
314
315 static void kvm_log_stop(MemoryListener *listener,
316 MemoryRegionSection *section)
317 {
318 int r;
319
320 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
321 section->size, false);
322 if (r < 0) {
323 abort();
324 }
325 }
326
327 static int kvm_set_migration_log(int enable)
328 {
329 KVMState *s = kvm_state;
330 KVMSlot *mem;
331 int i, err;
332
333 s->migration_log = enable;
334
335 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
336 mem = &s->slots[i];
337
338 if (!mem->memory_size) {
339 continue;
340 }
341 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
342 continue;
343 }
344 err = kvm_set_user_memory_region(s, mem);
345 if (err) {
346 return err;
347 }
348 }
349 return 0;
350 }
351
352 /* get kvm's dirty pages bitmap and update qemu's */
353 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
354 unsigned long *bitmap)
355 {
356 unsigned int i, j;
357 unsigned long page_number, c;
358 target_phys_addr_t addr, addr1;
359 unsigned int len = ((section->size / TARGET_PAGE_SIZE) + HOST_LONG_BITS - 1) / HOST_LONG_BITS;
360 unsigned long hpratio = getpagesize() / TARGET_PAGE_SIZE;
361
362 /*
363 * bitmap-traveling is faster than memory-traveling (for addr...)
364 * especially when most of the memory is not dirty.
365 */
366 for (i = 0; i < len; i++) {
367 if (bitmap[i] != 0) {
368 c = leul_to_cpu(bitmap[i]);
369 do {
370 j = ffsl(c) - 1;
371 c &= ~(1ul << j);
372 page_number = (i * HOST_LONG_BITS + j) * hpratio;
373 addr1 = page_number * TARGET_PAGE_SIZE;
374 addr = section->offset_within_region + addr1;
375 memory_region_set_dirty(section->mr, addr,
376 TARGET_PAGE_SIZE * hpratio);
377 } while (c != 0);
378 }
379 }
380 return 0;
381 }
382
383 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
384
385 /**
386 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
387 * This function updates qemu's dirty bitmap using
388 * memory_region_set_dirty(). This means all bits are set
389 * to dirty.
390 *
391 * @start_add: start of logged region.
392 * @end_addr: end of logged region.
393 */
394 static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section)
395 {
396 KVMState *s = kvm_state;
397 unsigned long size, allocated_size = 0;
398 KVMDirtyLog d;
399 KVMSlot *mem;
400 int ret = 0;
401 target_phys_addr_t start_addr = section->offset_within_address_space;
402 target_phys_addr_t end_addr = start_addr + section->size;
403
404 d.dirty_bitmap = NULL;
405 while (start_addr < end_addr) {
406 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
407 if (mem == NULL) {
408 break;
409 }
410
411 /* XXX bad kernel interface alert
412 * For dirty bitmap, kernel allocates array of size aligned to
413 * bits-per-long. But for case when the kernel is 64bits and
414 * the userspace is 32bits, userspace can't align to the same
415 * bits-per-long, since sizeof(long) is different between kernel
416 * and user space. This way, userspace will provide buffer which
417 * may be 4 bytes less than the kernel will use, resulting in
418 * userspace memory corruption (which is not detectable by valgrind
419 * too, in most cases).
420 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
421 * a hope that sizeof(long) wont become >8 any time soon.
422 */
423 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
424 /*HOST_LONG_BITS*/ 64) / 8;
425 if (!d.dirty_bitmap) {
426 d.dirty_bitmap = g_malloc(size);
427 } else if (size > allocated_size) {
428 d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
429 }
430 allocated_size = size;
431 memset(d.dirty_bitmap, 0, allocated_size);
432
433 d.slot = mem->slot;
434
435 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
436 DPRINTF("ioctl failed %d\n", errno);
437 ret = -1;
438 break;
439 }
440
441 kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
442 start_addr = mem->start_addr + mem->memory_size;
443 }
444 g_free(d.dirty_bitmap);
445
446 return ret;
447 }
448
449 int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
450 {
451 int ret = -ENOSYS;
452 KVMState *s = kvm_state;
453
454 if (s->coalesced_mmio) {
455 struct kvm_coalesced_mmio_zone zone;
456
457 zone.addr = start;
458 zone.size = size;
459 zone.pad = 0;
460
461 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
462 }
463
464 return ret;
465 }
466
467 int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
468 {
469 int ret = -ENOSYS;
470 KVMState *s = kvm_state;
471
472 if (s->coalesced_mmio) {
473 struct kvm_coalesced_mmio_zone zone;
474
475 zone.addr = start;
476 zone.size = size;
477 zone.pad = 0;
478
479 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
480 }
481
482 return ret;
483 }
484
485 int kvm_check_extension(KVMState *s, unsigned int extension)
486 {
487 int ret;
488
489 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
490 if (ret < 0) {
491 ret = 0;
492 }
493
494 return ret;
495 }
496
497 static int kvm_check_many_ioeventfds(void)
498 {
499 /* Userspace can use ioeventfd for io notification. This requires a host
500 * that supports eventfd(2) and an I/O thread; since eventfd does not
501 * support SIGIO it cannot interrupt the vcpu.
502 *
503 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
504 * can avoid creating too many ioeventfds.
505 */
506 #if defined(CONFIG_EVENTFD)
507 int ioeventfds[7];
508 int i, ret = 0;
509 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
510 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
511 if (ioeventfds[i] < 0) {
512 break;
513 }
514 ret = kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, true);
515 if (ret < 0) {
516 close(ioeventfds[i]);
517 break;
518 }
519 }
520
521 /* Decide whether many devices are supported or not */
522 ret = i == ARRAY_SIZE(ioeventfds);
523
524 while (i-- > 0) {
525 kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, false);
526 close(ioeventfds[i]);
527 }
528 return ret;
529 #else
530 return 0;
531 #endif
532 }
533
534 static const KVMCapabilityInfo *
535 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
536 {
537 while (list->name) {
538 if (!kvm_check_extension(s, list->value)) {
539 return list;
540 }
541 list++;
542 }
543 return NULL;
544 }
545
546 static void kvm_set_phys_mem(MemoryRegionSection *section, bool add)
547 {
548 KVMState *s = kvm_state;
549 KVMSlot *mem, old;
550 int err;
551 MemoryRegion *mr = section->mr;
552 bool log_dirty = memory_region_is_logging(mr);
553 target_phys_addr_t start_addr = section->offset_within_address_space;
554 ram_addr_t size = section->size;
555 void *ram = NULL;
556 unsigned delta;
557
558 /* kvm works in page size chunks, but the function may be called
559 with sub-page size and unaligned start address. */
560 delta = TARGET_PAGE_ALIGN(size) - size;
561 if (delta > size) {
562 return;
563 }
564 start_addr += delta;
565 size -= delta;
566 size &= TARGET_PAGE_MASK;
567 if (!size || (start_addr & ~TARGET_PAGE_MASK)) {
568 return;
569 }
570
571 if (!memory_region_is_ram(mr)) {
572 return;
573 }
574
575 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta;
576
577 while (1) {
578 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
579 if (!mem) {
580 break;
581 }
582
583 if (add && start_addr >= mem->start_addr &&
584 (start_addr + size <= mem->start_addr + mem->memory_size) &&
585 (ram - start_addr == mem->ram - mem->start_addr)) {
586 /* The new slot fits into the existing one and comes with
587 * identical parameters - update flags and done. */
588 kvm_slot_dirty_pages_log_change(mem, log_dirty);
589 return;
590 }
591
592 old = *mem;
593
594 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
595 kvm_physical_sync_dirty_bitmap(section);
596 }
597
598 /* unregister the overlapping slot */
599 mem->memory_size = 0;
600 err = kvm_set_user_memory_region(s, mem);
601 if (err) {
602 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
603 __func__, strerror(-err));
604 abort();
605 }
606
607 /* Workaround for older KVM versions: we can't join slots, even not by
608 * unregistering the previous ones and then registering the larger
609 * slot. We have to maintain the existing fragmentation. Sigh.
610 *
611 * This workaround assumes that the new slot starts at the same
612 * address as the first existing one. If not or if some overlapping
613 * slot comes around later, we will fail (not seen in practice so far)
614 * - and actually require a recent KVM version. */
615 if (s->broken_set_mem_region &&
616 old.start_addr == start_addr && old.memory_size < size && add) {
617 mem = kvm_alloc_slot(s);
618 mem->memory_size = old.memory_size;
619 mem->start_addr = old.start_addr;
620 mem->ram = old.ram;
621 mem->flags = kvm_mem_flags(s, log_dirty);
622
623 err = kvm_set_user_memory_region(s, mem);
624 if (err) {
625 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
626 strerror(-err));
627 abort();
628 }
629
630 start_addr += old.memory_size;
631 ram += old.memory_size;
632 size -= old.memory_size;
633 continue;
634 }
635
636 /* register prefix slot */
637 if (old.start_addr < start_addr) {
638 mem = kvm_alloc_slot(s);
639 mem->memory_size = start_addr - old.start_addr;
640 mem->start_addr = old.start_addr;
641 mem->ram = old.ram;
642 mem->flags = kvm_mem_flags(s, log_dirty);
643
644 err = kvm_set_user_memory_region(s, mem);
645 if (err) {
646 fprintf(stderr, "%s: error registering prefix slot: %s\n",
647 __func__, strerror(-err));
648 #ifdef TARGET_PPC
649 fprintf(stderr, "%s: This is probably because your kernel's " \
650 "PAGE_SIZE is too big. Please try to use 4k " \
651 "PAGE_SIZE!\n", __func__);
652 #endif
653 abort();
654 }
655 }
656
657 /* register suffix slot */
658 if (old.start_addr + old.memory_size > start_addr + size) {
659 ram_addr_t size_delta;
660
661 mem = kvm_alloc_slot(s);
662 mem->start_addr = start_addr + size;
663 size_delta = mem->start_addr - old.start_addr;
664 mem->memory_size = old.memory_size - size_delta;
665 mem->ram = old.ram + size_delta;
666 mem->flags = kvm_mem_flags(s, log_dirty);
667
668 err = kvm_set_user_memory_region(s, mem);
669 if (err) {
670 fprintf(stderr, "%s: error registering suffix slot: %s\n",
671 __func__, strerror(-err));
672 abort();
673 }
674 }
675 }
676
677 /* in case the KVM bug workaround already "consumed" the new slot */
678 if (!size) {
679 return;
680 }
681 if (!add) {
682 return;
683 }
684 mem = kvm_alloc_slot(s);
685 mem->memory_size = size;
686 mem->start_addr = start_addr;
687 mem->ram = ram;
688 mem->flags = kvm_mem_flags(s, log_dirty);
689
690 err = kvm_set_user_memory_region(s, mem);
691 if (err) {
692 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
693 strerror(-err));
694 abort();
695 }
696 }
697
698 static void kvm_begin(MemoryListener *listener)
699 {
700 }
701
702 static void kvm_commit(MemoryListener *listener)
703 {
704 }
705
706 static void kvm_region_add(MemoryListener *listener,
707 MemoryRegionSection *section)
708 {
709 kvm_set_phys_mem(section, true);
710 }
711
712 static void kvm_region_del(MemoryListener *listener,
713 MemoryRegionSection *section)
714 {
715 kvm_set_phys_mem(section, false);
716 }
717
718 static void kvm_region_nop(MemoryListener *listener,
719 MemoryRegionSection *section)
720 {
721 }
722
723 static void kvm_log_sync(MemoryListener *listener,
724 MemoryRegionSection *section)
725 {
726 int r;
727
728 r = kvm_physical_sync_dirty_bitmap(section);
729 if (r < 0) {
730 abort();
731 }
732 }
733
734 static void kvm_log_global_start(struct MemoryListener *listener)
735 {
736 int r;
737
738 r = kvm_set_migration_log(1);
739 assert(r >= 0);
740 }
741
742 static void kvm_log_global_stop(struct MemoryListener *listener)
743 {
744 int r;
745
746 r = kvm_set_migration_log(0);
747 assert(r >= 0);
748 }
749
750 static void kvm_mem_ioeventfd_add(MemoryRegionSection *section,
751 bool match_data, uint64_t data, int fd)
752 {
753 int r;
754
755 assert(match_data && section->size <= 8);
756
757 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
758 data, true, section->size);
759 if (r < 0) {
760 abort();
761 }
762 }
763
764 static void kvm_mem_ioeventfd_del(MemoryRegionSection *section,
765 bool match_data, uint64_t data, int fd)
766 {
767 int r;
768
769 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
770 data, false, section->size);
771 if (r < 0) {
772 abort();
773 }
774 }
775
776 static void kvm_io_ioeventfd_add(MemoryRegionSection *section,
777 bool match_data, uint64_t data, int fd)
778 {
779 int r;
780
781 assert(match_data && section->size == 2);
782
783 r = kvm_set_ioeventfd_pio_word(fd, section->offset_within_address_space,
784 data, true);
785 if (r < 0) {
786 abort();
787 }
788 }
789
790 static void kvm_io_ioeventfd_del(MemoryRegionSection *section,
791 bool match_data, uint64_t data, int fd)
792
793 {
794 int r;
795
796 r = kvm_set_ioeventfd_pio_word(fd, section->offset_within_address_space,
797 data, false);
798 if (r < 0) {
799 abort();
800 }
801 }
802
803 static void kvm_eventfd_add(MemoryListener *listener,
804 MemoryRegionSection *section,
805 bool match_data, uint64_t data, int fd)
806 {
807 if (section->address_space == get_system_memory()) {
808 kvm_mem_ioeventfd_add(section, match_data, data, fd);
809 } else {
810 kvm_io_ioeventfd_add(section, match_data, data, fd);
811 }
812 }
813
814 static void kvm_eventfd_del(MemoryListener *listener,
815 MemoryRegionSection *section,
816 bool match_data, uint64_t data, int fd)
817 {
818 if (section->address_space == get_system_memory()) {
819 kvm_mem_ioeventfd_del(section, match_data, data, fd);
820 } else {
821 kvm_io_ioeventfd_del(section, match_data, data, fd);
822 }
823 }
824
825 static MemoryListener kvm_memory_listener = {
826 .begin = kvm_begin,
827 .commit = kvm_commit,
828 .region_add = kvm_region_add,
829 .region_del = kvm_region_del,
830 .region_nop = kvm_region_nop,
831 .log_start = kvm_log_start,
832 .log_stop = kvm_log_stop,
833 .log_sync = kvm_log_sync,
834 .log_global_start = kvm_log_global_start,
835 .log_global_stop = kvm_log_global_stop,
836 .eventfd_add = kvm_eventfd_add,
837 .eventfd_del = kvm_eventfd_del,
838 .priority = 10,
839 };
840
841 static void kvm_handle_interrupt(CPUArchState *env, int mask)
842 {
843 env->interrupt_request |= mask;
844
845 if (!qemu_cpu_is_self(env)) {
846 qemu_cpu_kick(env);
847 }
848 }
849
850 int kvm_irqchip_set_irq(KVMState *s, int irq, int level)
851 {
852 struct kvm_irq_level event;
853 int ret;
854
855 assert(kvm_irqchip_in_kernel());
856
857 event.level = level;
858 event.irq = irq;
859 ret = kvm_vm_ioctl(s, s->irqchip_inject_ioctl, &event);
860 if (ret < 0) {
861 perror("kvm_set_irqchip_line");
862 abort();
863 }
864
865 return (s->irqchip_inject_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
866 }
867
868 #ifdef KVM_CAP_IRQ_ROUTING
869 static void set_gsi(KVMState *s, unsigned int gsi)
870 {
871 s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32);
872 }
873
874 static void clear_gsi(KVMState *s, unsigned int gsi)
875 {
876 s->used_gsi_bitmap[gsi / 32] &= ~(1U << (gsi % 32));
877 }
878
879 static void kvm_init_irq_routing(KVMState *s)
880 {
881 int gsi_count, i;
882
883 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING);
884 if (gsi_count > 0) {
885 unsigned int gsi_bits, i;
886
887 /* Round up so we can search ints using ffs */
888 gsi_bits = ALIGN(gsi_count, 32);
889 s->used_gsi_bitmap = g_malloc0(gsi_bits / 8);
890 s->gsi_count = gsi_count;
891
892 /* Mark any over-allocated bits as already in use */
893 for (i = gsi_count; i < gsi_bits; i++) {
894 set_gsi(s, i);
895 }
896 }
897
898 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
899 s->nr_allocated_irq_routes = 0;
900
901 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
902 QTAILQ_INIT(&s->msi_hashtab[i]);
903 }
904
905 kvm_arch_init_irq_routing(s);
906 }
907
908 static void kvm_add_routing_entry(KVMState *s,
909 struct kvm_irq_routing_entry *entry)
910 {
911 struct kvm_irq_routing_entry *new;
912 int n, size;
913
914 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
915 n = s->nr_allocated_irq_routes * 2;
916 if (n < 64) {
917 n = 64;
918 }
919 size = sizeof(struct kvm_irq_routing);
920 size += n * sizeof(*new);
921 s->irq_routes = g_realloc(s->irq_routes, size);
922 s->nr_allocated_irq_routes = n;
923 }
924 n = s->irq_routes->nr++;
925 new = &s->irq_routes->entries[n];
926 memset(new, 0, sizeof(*new));
927 new->gsi = entry->gsi;
928 new->type = entry->type;
929 new->flags = entry->flags;
930 new->u = entry->u;
931
932 set_gsi(s, entry->gsi);
933 }
934
935 void kvm_irqchip_add_route(KVMState *s, int irq, int irqchip, int pin)
936 {
937 struct kvm_irq_routing_entry e;
938
939 assert(pin < s->gsi_count);
940
941 e.gsi = irq;
942 e.type = KVM_IRQ_ROUTING_IRQCHIP;
943 e.flags = 0;
944 e.u.irqchip.irqchip = irqchip;
945 e.u.irqchip.pin = pin;
946 kvm_add_routing_entry(s, &e);
947 }
948
949 int kvm_irqchip_commit_routes(KVMState *s)
950 {
951 s->irq_routes->flags = 0;
952 return kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
953 }
954
955 static void kvm_irqchip_release_virq(KVMState *s, int virq)
956 {
957 struct kvm_irq_routing_entry *e;
958 int i;
959
960 for (i = 0; i < s->irq_routes->nr; i++) {
961 e = &s->irq_routes->entries[i];
962 if (e->gsi == virq) {
963 s->irq_routes->nr--;
964 *e = s->irq_routes->entries[s->irq_routes->nr];
965 }
966 }
967 clear_gsi(s, virq);
968 }
969
970 static unsigned int kvm_hash_msi(uint32_t data)
971 {
972 /* This is optimized for IA32 MSI layout. However, no other arch shall
973 * repeat the mistake of not providing a direct MSI injection API. */
974 return data & 0xff;
975 }
976
977 static void kvm_flush_dynamic_msi_routes(KVMState *s)
978 {
979 KVMMSIRoute *route, *next;
980 unsigned int hash;
981
982 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
983 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
984 kvm_irqchip_release_virq(s, route->kroute.gsi);
985 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
986 g_free(route);
987 }
988 }
989 }
990
991 static int kvm_irqchip_get_virq(KVMState *s)
992 {
993 uint32_t *word = s->used_gsi_bitmap;
994 int max_words = ALIGN(s->gsi_count, 32) / 32;
995 int i, bit;
996 bool retry = true;
997
998 again:
999 /* Return the lowest unused GSI in the bitmap */
1000 for (i = 0; i < max_words; i++) {
1001 bit = ffs(~word[i]);
1002 if (!bit) {
1003 continue;
1004 }
1005
1006 return bit - 1 + i * 32;
1007 }
1008 if (retry) {
1009 retry = false;
1010 kvm_flush_dynamic_msi_routes(s);
1011 goto again;
1012 }
1013 return -ENOSPC;
1014
1015 }
1016
1017 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1018 {
1019 unsigned int hash = kvm_hash_msi(msg.data);
1020 KVMMSIRoute *route;
1021
1022 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1023 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1024 route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1025 route->kroute.u.msi.data == msg.data) {
1026 return route;
1027 }
1028 }
1029 return NULL;
1030 }
1031
1032 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1033 {
1034 KVMMSIRoute *route;
1035
1036 route = kvm_lookup_msi_route(s, msg);
1037 if (!route) {
1038 int virq, ret;
1039
1040 virq = kvm_irqchip_get_virq(s);
1041 if (virq < 0) {
1042 return virq;
1043 }
1044
1045 route = g_malloc(sizeof(KVMMSIRoute));
1046 route->kroute.gsi = virq;
1047 route->kroute.type = KVM_IRQ_ROUTING_MSI;
1048 route->kroute.flags = 0;
1049 route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1050 route->kroute.u.msi.address_hi = msg.address >> 32;
1051 route->kroute.u.msi.data = msg.data;
1052
1053 kvm_add_routing_entry(s, &route->kroute);
1054
1055 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1056 entry);
1057
1058 ret = kvm_irqchip_commit_routes(s);
1059 if (ret < 0) {
1060 return ret;
1061 }
1062 }
1063
1064 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1065
1066 return kvm_irqchip_set_irq(s, route->kroute.gsi, 1);
1067 }
1068
1069 #else /* !KVM_CAP_IRQ_ROUTING */
1070
1071 static void kvm_init_irq_routing(KVMState *s)
1072 {
1073 }
1074
1075 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1076 {
1077 abort();
1078 }
1079 #endif /* !KVM_CAP_IRQ_ROUTING */
1080
1081 static int kvm_irqchip_create(KVMState *s)
1082 {
1083 QemuOptsList *list = qemu_find_opts("machine");
1084 int ret;
1085
1086 if (QTAILQ_EMPTY(&list->head) ||
1087 !qemu_opt_get_bool(QTAILQ_FIRST(&list->head),
1088 "kernel_irqchip", false) ||
1089 !kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
1090 return 0;
1091 }
1092
1093 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1094 if (ret < 0) {
1095 fprintf(stderr, "Create kernel irqchip failed\n");
1096 return ret;
1097 }
1098
1099 s->irqchip_inject_ioctl = KVM_IRQ_LINE;
1100 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
1101 s->irqchip_inject_ioctl = KVM_IRQ_LINE_STATUS;
1102 }
1103 kvm_kernel_irqchip = true;
1104
1105 kvm_init_irq_routing(s);
1106
1107 return 0;
1108 }
1109
1110 int kvm_init(void)
1111 {
1112 static const char upgrade_note[] =
1113 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1114 "(see http://sourceforge.net/projects/kvm).\n";
1115 KVMState *s;
1116 const KVMCapabilityInfo *missing_cap;
1117 int ret;
1118 int i;
1119
1120 s = g_malloc0(sizeof(KVMState));
1121
1122 /*
1123 * On systems where the kernel can support different base page
1124 * sizes, host page size may be different from TARGET_PAGE_SIZE,
1125 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
1126 * page size for the system though.
1127 */
1128 assert(TARGET_PAGE_SIZE <= getpagesize());
1129
1130 #ifdef KVM_CAP_SET_GUEST_DEBUG
1131 QTAILQ_INIT(&s->kvm_sw_breakpoints);
1132 #endif
1133 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
1134 s->slots[i].slot = i;
1135 }
1136 s->vmfd = -1;
1137 s->fd = qemu_open("/dev/kvm", O_RDWR);
1138 if (s->fd == -1) {
1139 fprintf(stderr, "Could not access KVM kernel module: %m\n");
1140 ret = -errno;
1141 goto err;
1142 }
1143
1144 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
1145 if (ret < KVM_API_VERSION) {
1146 if (ret > 0) {
1147 ret = -EINVAL;
1148 }
1149 fprintf(stderr, "kvm version too old\n");
1150 goto err;
1151 }
1152
1153 if (ret > KVM_API_VERSION) {
1154 ret = -EINVAL;
1155 fprintf(stderr, "kvm version not supported\n");
1156 goto err;
1157 }
1158
1159 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
1160 if (s->vmfd < 0) {
1161 #ifdef TARGET_S390X
1162 fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
1163 "your host kernel command line\n");
1164 #endif
1165 ret = s->vmfd;
1166 goto err;
1167 }
1168
1169 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1170 if (!missing_cap) {
1171 missing_cap =
1172 kvm_check_extension_list(s, kvm_arch_required_capabilities);
1173 }
1174 if (missing_cap) {
1175 ret = -EINVAL;
1176 fprintf(stderr, "kvm does not support %s\n%s",
1177 missing_cap->name, upgrade_note);
1178 goto err;
1179 }
1180
1181 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
1182
1183 s->broken_set_mem_region = 1;
1184 ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
1185 if (ret > 0) {
1186 s->broken_set_mem_region = 0;
1187 }
1188
1189 #ifdef KVM_CAP_VCPU_EVENTS
1190 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
1191 #endif
1192
1193 s->robust_singlestep =
1194 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
1195
1196 #ifdef KVM_CAP_DEBUGREGS
1197 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
1198 #endif
1199
1200 #ifdef KVM_CAP_XSAVE
1201 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
1202 #endif
1203
1204 #ifdef KVM_CAP_XCRS
1205 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
1206 #endif
1207
1208 #ifdef KVM_CAP_PIT_STATE2
1209 s->pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
1210 #endif
1211
1212 ret = kvm_arch_init(s);
1213 if (ret < 0) {
1214 goto err;
1215 }
1216
1217 ret = kvm_irqchip_create(s);
1218 if (ret < 0) {
1219 goto err;
1220 }
1221
1222 kvm_state = s;
1223 memory_listener_register(&kvm_memory_listener, NULL);
1224
1225 s->many_ioeventfds = kvm_check_many_ioeventfds();
1226
1227 cpu_interrupt_handler = kvm_handle_interrupt;
1228
1229 return 0;
1230
1231 err:
1232 if (s) {
1233 if (s->vmfd >= 0) {
1234 close(s->vmfd);
1235 }
1236 if (s->fd != -1) {
1237 close(s->fd);
1238 }
1239 }
1240 g_free(s);
1241
1242 return ret;
1243 }
1244
1245 static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
1246 uint32_t count)
1247 {
1248 int i;
1249 uint8_t *ptr = data;
1250
1251 for (i = 0; i < count; i++) {
1252 if (direction == KVM_EXIT_IO_IN) {
1253 switch (size) {
1254 case 1:
1255 stb_p(ptr, cpu_inb(port));
1256 break;
1257 case 2:
1258 stw_p(ptr, cpu_inw(port));
1259 break;
1260 case 4:
1261 stl_p(ptr, cpu_inl(port));
1262 break;
1263 }
1264 } else {
1265 switch (size) {
1266 case 1:
1267 cpu_outb(port, ldub_p(ptr));
1268 break;
1269 case 2:
1270 cpu_outw(port, lduw_p(ptr));
1271 break;
1272 case 4:
1273 cpu_outl(port, ldl_p(ptr));
1274 break;
1275 }
1276 }
1277
1278 ptr += size;
1279 }
1280 }
1281
1282 static int kvm_handle_internal_error(CPUArchState *env, struct kvm_run *run)
1283 {
1284 fprintf(stderr, "KVM internal error.");
1285 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
1286 int i;
1287
1288 fprintf(stderr, " Suberror: %d\n", run->internal.suberror);
1289 for (i = 0; i < run->internal.ndata; ++i) {
1290 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
1291 i, (uint64_t)run->internal.data[i]);
1292 }
1293 } else {
1294 fprintf(stderr, "\n");
1295 }
1296 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
1297 fprintf(stderr, "emulation failure\n");
1298 if (!kvm_arch_stop_on_emulation_error(env)) {
1299 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
1300 return EXCP_INTERRUPT;
1301 }
1302 }
1303 /* FIXME: Should trigger a qmp message to let management know
1304 * something went wrong.
1305 */
1306 return -1;
1307 }
1308
1309 void kvm_flush_coalesced_mmio_buffer(void)
1310 {
1311 KVMState *s = kvm_state;
1312
1313 if (s->coalesced_flush_in_progress) {
1314 return;
1315 }
1316
1317 s->coalesced_flush_in_progress = true;
1318
1319 if (s->coalesced_mmio_ring) {
1320 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
1321 while (ring->first != ring->last) {
1322 struct kvm_coalesced_mmio *ent;
1323
1324 ent = &ring->coalesced_mmio[ring->first];
1325
1326 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
1327 smp_wmb();
1328 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
1329 }
1330 }
1331
1332 s->coalesced_flush_in_progress = false;
1333 }
1334
1335 static void do_kvm_cpu_synchronize_state(void *_env)
1336 {
1337 CPUArchState *env = _env;
1338
1339 if (!env->kvm_vcpu_dirty) {
1340 kvm_arch_get_registers(env);
1341 env->kvm_vcpu_dirty = 1;
1342 }
1343 }
1344
1345 void kvm_cpu_synchronize_state(CPUArchState *env)
1346 {
1347 if (!env->kvm_vcpu_dirty) {
1348 run_on_cpu(env, do_kvm_cpu_synchronize_state, env);
1349 }
1350 }
1351
1352 void kvm_cpu_synchronize_post_reset(CPUArchState *env)
1353 {
1354 kvm_arch_put_registers(env, KVM_PUT_RESET_STATE);
1355 env->kvm_vcpu_dirty = 0;
1356 }
1357
1358 void kvm_cpu_synchronize_post_init(CPUArchState *env)
1359 {
1360 kvm_arch_put_registers(env, KVM_PUT_FULL_STATE);
1361 env->kvm_vcpu_dirty = 0;
1362 }
1363
1364 int kvm_cpu_exec(CPUArchState *env)
1365 {
1366 struct kvm_run *run = env->kvm_run;
1367 int ret, run_ret;
1368
1369 DPRINTF("kvm_cpu_exec()\n");
1370
1371 if (kvm_arch_process_async_events(env)) {
1372 env->exit_request = 0;
1373 return EXCP_HLT;
1374 }
1375
1376 do {
1377 if (env->kvm_vcpu_dirty) {
1378 kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE);
1379 env->kvm_vcpu_dirty = 0;
1380 }
1381
1382 kvm_arch_pre_run(env, run);
1383 if (env->exit_request) {
1384 DPRINTF("interrupt exit requested\n");
1385 /*
1386 * KVM requires us to reenter the kernel after IO exits to complete
1387 * instruction emulation. This self-signal will ensure that we
1388 * leave ASAP again.
1389 */
1390 qemu_cpu_kick_self();
1391 }
1392 qemu_mutex_unlock_iothread();
1393
1394 run_ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
1395
1396 qemu_mutex_lock_iothread();
1397 kvm_arch_post_run(env, run);
1398
1399 kvm_flush_coalesced_mmio_buffer();
1400
1401 if (run_ret < 0) {
1402 if (run_ret == -EINTR || run_ret == -EAGAIN) {
1403 DPRINTF("io window exit\n");
1404 ret = EXCP_INTERRUPT;
1405 break;
1406 }
1407 fprintf(stderr, "error: kvm run failed %s\n",
1408 strerror(-run_ret));
1409 abort();
1410 }
1411
1412 switch (run->exit_reason) {
1413 case KVM_EXIT_IO:
1414 DPRINTF("handle_io\n");
1415 kvm_handle_io(run->io.port,
1416 (uint8_t *)run + run->io.data_offset,
1417 run->io.direction,
1418 run->io.size,
1419 run->io.count);
1420 ret = 0;
1421 break;
1422 case KVM_EXIT_MMIO:
1423 DPRINTF("handle_mmio\n");
1424 cpu_physical_memory_rw(run->mmio.phys_addr,
1425 run->mmio.data,
1426 run->mmio.len,
1427 run->mmio.is_write);
1428 ret = 0;
1429 break;
1430 case KVM_EXIT_IRQ_WINDOW_OPEN:
1431 DPRINTF("irq_window_open\n");
1432 ret = EXCP_INTERRUPT;
1433 break;
1434 case KVM_EXIT_SHUTDOWN:
1435 DPRINTF("shutdown\n");
1436 qemu_system_reset_request();
1437 ret = EXCP_INTERRUPT;
1438 break;
1439 case KVM_EXIT_UNKNOWN:
1440 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
1441 (uint64_t)run->hw.hardware_exit_reason);
1442 ret = -1;
1443 break;
1444 case KVM_EXIT_INTERNAL_ERROR:
1445 ret = kvm_handle_internal_error(env, run);
1446 break;
1447 default:
1448 DPRINTF("kvm_arch_handle_exit\n");
1449 ret = kvm_arch_handle_exit(env, run);
1450 break;
1451 }
1452 } while (ret == 0);
1453
1454 if (ret < 0) {
1455 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
1456 vm_stop(RUN_STATE_INTERNAL_ERROR);
1457 }
1458
1459 env->exit_request = 0;
1460 return ret;
1461 }
1462
1463 int kvm_ioctl(KVMState *s, int type, ...)
1464 {
1465 int ret;
1466 void *arg;
1467 va_list ap;
1468
1469 va_start(ap, type);
1470 arg = va_arg(ap, void *);
1471 va_end(ap);
1472
1473 ret = ioctl(s->fd, type, arg);
1474 if (ret == -1) {
1475 ret = -errno;
1476 }
1477 return ret;
1478 }
1479
1480 int kvm_vm_ioctl(KVMState *s, int type, ...)
1481 {
1482 int ret;
1483 void *arg;
1484 va_list ap;
1485
1486 va_start(ap, type);
1487 arg = va_arg(ap, void *);
1488 va_end(ap);
1489
1490 ret = ioctl(s->vmfd, type, arg);
1491 if (ret == -1) {
1492 ret = -errno;
1493 }
1494 return ret;
1495 }
1496
1497 int kvm_vcpu_ioctl(CPUArchState *env, int type, ...)
1498 {
1499 int ret;
1500 void *arg;
1501 va_list ap;
1502
1503 va_start(ap, type);
1504 arg = va_arg(ap, void *);
1505 va_end(ap);
1506
1507 ret = ioctl(env->kvm_fd, type, arg);
1508 if (ret == -1) {
1509 ret = -errno;
1510 }
1511 return ret;
1512 }
1513
1514 int kvm_has_sync_mmu(void)
1515 {
1516 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
1517 }
1518
1519 int kvm_has_vcpu_events(void)
1520 {
1521 return kvm_state->vcpu_events;
1522 }
1523
1524 int kvm_has_robust_singlestep(void)
1525 {
1526 return kvm_state->robust_singlestep;
1527 }
1528
1529 int kvm_has_debugregs(void)
1530 {
1531 return kvm_state->debugregs;
1532 }
1533
1534 int kvm_has_xsave(void)
1535 {
1536 return kvm_state->xsave;
1537 }
1538
1539 int kvm_has_xcrs(void)
1540 {
1541 return kvm_state->xcrs;
1542 }
1543
1544 int kvm_has_pit_state2(void)
1545 {
1546 return kvm_state->pit_state2;
1547 }
1548
1549 int kvm_has_many_ioeventfds(void)
1550 {
1551 if (!kvm_enabled()) {
1552 return 0;
1553 }
1554 return kvm_state->many_ioeventfds;
1555 }
1556
1557 int kvm_has_gsi_routing(void)
1558 {
1559 #ifdef KVM_CAP_IRQ_ROUTING
1560 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
1561 #else
1562 return false;
1563 #endif
1564 }
1565
1566 int kvm_allows_irq0_override(void)
1567 {
1568 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
1569 }
1570
1571 void kvm_setup_guest_memory(void *start, size_t size)
1572 {
1573 if (!kvm_has_sync_mmu()) {
1574 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
1575
1576 if (ret) {
1577 perror("qemu_madvise");
1578 fprintf(stderr,
1579 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1580 exit(1);
1581 }
1582 }
1583 }
1584
1585 #ifdef KVM_CAP_SET_GUEST_DEBUG
1586 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUArchState *env,
1587 target_ulong pc)
1588 {
1589 struct kvm_sw_breakpoint *bp;
1590
1591 QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
1592 if (bp->pc == pc) {
1593 return bp;
1594 }
1595 }
1596 return NULL;
1597 }
1598
1599 int kvm_sw_breakpoints_active(CPUArchState *env)
1600 {
1601 return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
1602 }
1603
1604 struct kvm_set_guest_debug_data {
1605 struct kvm_guest_debug dbg;
1606 CPUArchState *env;
1607 int err;
1608 };
1609
1610 static void kvm_invoke_set_guest_debug(void *data)
1611 {
1612 struct kvm_set_guest_debug_data *dbg_data = data;
1613 CPUArchState *env = dbg_data->env;
1614
1615 dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
1616 }
1617
1618 int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap)
1619 {
1620 struct kvm_set_guest_debug_data data;
1621
1622 data.dbg.control = reinject_trap;
1623
1624 if (env->singlestep_enabled) {
1625 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1626 }
1627 kvm_arch_update_guest_debug(env, &data.dbg);
1628 data.env = env;
1629
1630 run_on_cpu(env, kvm_invoke_set_guest_debug, &data);
1631 return data.err;
1632 }
1633
1634 int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr,
1635 target_ulong len, int type)
1636 {
1637 struct kvm_sw_breakpoint *bp;
1638 CPUArchState *env;
1639 int err;
1640
1641 if (type == GDB_BREAKPOINT_SW) {
1642 bp = kvm_find_sw_breakpoint(current_env, addr);
1643 if (bp) {
1644 bp->use_count++;
1645 return 0;
1646 }
1647
1648 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
1649 if (!bp) {
1650 return -ENOMEM;
1651 }
1652
1653 bp->pc = addr;
1654 bp->use_count = 1;
1655 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
1656 if (err) {
1657 g_free(bp);
1658 return err;
1659 }
1660
1661 QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
1662 bp, entry);
1663 } else {
1664 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1665 if (err) {
1666 return err;
1667 }
1668 }
1669
1670 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1671 err = kvm_update_guest_debug(env, 0);
1672 if (err) {
1673 return err;
1674 }
1675 }
1676 return 0;
1677 }
1678
1679 int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr,
1680 target_ulong len, int type)
1681 {
1682 struct kvm_sw_breakpoint *bp;
1683 CPUArchState *env;
1684 int err;
1685
1686 if (type == GDB_BREAKPOINT_SW) {
1687 bp = kvm_find_sw_breakpoint(current_env, addr);
1688 if (!bp) {
1689 return -ENOENT;
1690 }
1691
1692 if (bp->use_count > 1) {
1693 bp->use_count--;
1694 return 0;
1695 }
1696
1697 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1698 if (err) {
1699 return err;
1700 }
1701
1702 QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1703 g_free(bp);
1704 } else {
1705 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1706 if (err) {
1707 return err;
1708 }
1709 }
1710
1711 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1712 err = kvm_update_guest_debug(env, 0);
1713 if (err) {
1714 return err;
1715 }
1716 }
1717 return 0;
1718 }
1719
1720 void kvm_remove_all_breakpoints(CPUArchState *current_env)
1721 {
1722 struct kvm_sw_breakpoint *bp, *next;
1723 KVMState *s = current_env->kvm_state;
1724 CPUArchState *env;
1725
1726 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1727 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1728 /* Try harder to find a CPU that currently sees the breakpoint. */
1729 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1730 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0) {
1731 break;
1732 }
1733 }
1734 }
1735 }
1736 kvm_arch_remove_all_hw_breakpoints();
1737
1738 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1739 kvm_update_guest_debug(env, 0);
1740 }
1741 }
1742
1743 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1744
1745 int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap)
1746 {
1747 return -EINVAL;
1748 }
1749
1750 int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr,
1751 target_ulong len, int type)
1752 {
1753 return -EINVAL;
1754 }
1755
1756 int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr,
1757 target_ulong len, int type)
1758 {
1759 return -EINVAL;
1760 }
1761
1762 void kvm_remove_all_breakpoints(CPUArchState *current_env)
1763 {
1764 }
1765 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
1766
1767 int kvm_set_signal_mask(CPUArchState *env, const sigset_t *sigset)
1768 {
1769 struct kvm_signal_mask *sigmask;
1770 int r;
1771
1772 if (!sigset) {
1773 return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
1774 }
1775
1776 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
1777
1778 sigmask->len = 8;
1779 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1780 r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
1781 g_free(sigmask);
1782
1783 return r;
1784 }
1785
1786 int kvm_set_ioeventfd_mmio(int fd, uint32_t addr, uint32_t val, bool assign,
1787 uint32_t size)
1788 {
1789 int ret;
1790 struct kvm_ioeventfd iofd;
1791
1792 iofd.datamatch = val;
1793 iofd.addr = addr;
1794 iofd.len = size;
1795 iofd.flags = KVM_IOEVENTFD_FLAG_DATAMATCH;
1796 iofd.fd = fd;
1797
1798 if (!kvm_enabled()) {
1799 return -ENOSYS;
1800 }
1801
1802 if (!assign) {
1803 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1804 }
1805
1806 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1807
1808 if (ret < 0) {
1809 return -errno;
1810 }
1811
1812 return 0;
1813 }
1814
1815 int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign)
1816 {
1817 struct kvm_ioeventfd kick = {
1818 .datamatch = val,
1819 .addr = addr,
1820 .len = 2,
1821 .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO,
1822 .fd = fd,
1823 };
1824 int r;
1825 if (!kvm_enabled()) {
1826 return -ENOSYS;
1827 }
1828 if (!assign) {
1829 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1830 }
1831 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1832 if (r < 0) {
1833 return r;
1834 }
1835 return 0;
1836 }
1837
1838 int kvm_on_sigbus_vcpu(CPUArchState *env, int code, void *addr)
1839 {
1840 return kvm_arch_on_sigbus_vcpu(env, code, addr);
1841 }
1842
1843 int kvm_on_sigbus(int code, void *addr)
1844 {
1845 return kvm_arch_on_sigbus(code, addr);
1846 }