]> git.proxmox.com Git - mirror_qemu.git/blob - kvm-all.c
kvm: Switch to unlocked PIO
[mirror_qemu.git] / kvm-all.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
10 *
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
13 *
14 */
15
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
20
21 #include <linux/kvm.h>
22
23 #include "qemu-common.h"
24 #include "qemu/atomic.h"
25 #include "qemu/option.h"
26 #include "qemu/config-file.h"
27 #include "sysemu/sysemu.h"
28 #include "sysemu/accel.h"
29 #include "hw/hw.h"
30 #include "hw/pci/msi.h"
31 #include "hw/s390x/adapter.h"
32 #include "exec/gdbstub.h"
33 #include "sysemu/kvm.h"
34 #include "qemu/bswap.h"
35 #include "exec/memory.h"
36 #include "exec/ram_addr.h"
37 #include "exec/address-spaces.h"
38 #include "qemu/event_notifier.h"
39 #include "trace.h"
40
41 #include "hw/boards.h"
42
43 /* This check must be after config-host.h is included */
44 #ifdef CONFIG_EVENTFD
45 #include <sys/eventfd.h>
46 #endif
47
48 /* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
49 #define PAGE_SIZE TARGET_PAGE_SIZE
50
51 //#define DEBUG_KVM
52
53 #ifdef DEBUG_KVM
54 #define DPRINTF(fmt, ...) \
55 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
56 #else
57 #define DPRINTF(fmt, ...) \
58 do { } while (0)
59 #endif
60
61 #define KVM_MSI_HASHTAB_SIZE 256
62
63 typedef struct KVMSlot
64 {
65 hwaddr start_addr;
66 ram_addr_t memory_size;
67 void *ram;
68 int slot;
69 int flags;
70 } KVMSlot;
71
72 typedef struct kvm_dirty_log KVMDirtyLog;
73
74 struct KVMState
75 {
76 AccelState parent_obj;
77
78 KVMSlot *slots;
79 int nr_slots;
80 int fd;
81 int vmfd;
82 int coalesced_mmio;
83 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
84 bool coalesced_flush_in_progress;
85 int broken_set_mem_region;
86 int vcpu_events;
87 int robust_singlestep;
88 int debugregs;
89 #ifdef KVM_CAP_SET_GUEST_DEBUG
90 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
91 #endif
92 int pit_state2;
93 int xsave, xcrs;
94 int many_ioeventfds;
95 int intx_set_mask;
96 /* The man page (and posix) say ioctl numbers are signed int, but
97 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
98 * unsigned, and treating them as signed here can break things */
99 unsigned irq_set_ioctl;
100 unsigned int sigmask_len;
101 #ifdef KVM_CAP_IRQ_ROUTING
102 struct kvm_irq_routing *irq_routes;
103 int nr_allocated_irq_routes;
104 uint32_t *used_gsi_bitmap;
105 unsigned int gsi_count;
106 QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
107 bool direct_msi;
108 #endif
109 };
110
111 #define TYPE_KVM_ACCEL ACCEL_CLASS_NAME("kvm")
112
113 #define KVM_STATE(obj) \
114 OBJECT_CHECK(KVMState, (obj), TYPE_KVM_ACCEL)
115
116 KVMState *kvm_state;
117 bool kvm_kernel_irqchip;
118 bool kvm_async_interrupts_allowed;
119 bool kvm_halt_in_kernel_allowed;
120 bool kvm_eventfds_allowed;
121 bool kvm_irqfds_allowed;
122 bool kvm_resamplefds_allowed;
123 bool kvm_msi_via_irqfd_allowed;
124 bool kvm_gsi_routing_allowed;
125 bool kvm_gsi_direct_mapping;
126 bool kvm_allowed;
127 bool kvm_readonly_mem_allowed;
128 bool kvm_vm_attributes_allowed;
129
130 static const KVMCapabilityInfo kvm_required_capabilites[] = {
131 KVM_CAP_INFO(USER_MEMORY),
132 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
133 KVM_CAP_LAST_INFO
134 };
135
136 static KVMSlot *kvm_get_free_slot(KVMState *s)
137 {
138 int i;
139
140 for (i = 0; i < s->nr_slots; i++) {
141 if (s->slots[i].memory_size == 0) {
142 return &s->slots[i];
143 }
144 }
145
146 return NULL;
147 }
148
149 bool kvm_has_free_slot(MachineState *ms)
150 {
151 return kvm_get_free_slot(KVM_STATE(ms->accelerator));
152 }
153
154 static KVMSlot *kvm_alloc_slot(KVMState *s)
155 {
156 KVMSlot *slot = kvm_get_free_slot(s);
157
158 if (slot) {
159 return slot;
160 }
161
162 fprintf(stderr, "%s: no free slot available\n", __func__);
163 abort();
164 }
165
166 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
167 hwaddr start_addr,
168 hwaddr end_addr)
169 {
170 int i;
171
172 for (i = 0; i < s->nr_slots; i++) {
173 KVMSlot *mem = &s->slots[i];
174
175 if (start_addr == mem->start_addr &&
176 end_addr == mem->start_addr + mem->memory_size) {
177 return mem;
178 }
179 }
180
181 return NULL;
182 }
183
184 /*
185 * Find overlapping slot with lowest start address
186 */
187 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
188 hwaddr start_addr,
189 hwaddr end_addr)
190 {
191 KVMSlot *found = NULL;
192 int i;
193
194 for (i = 0; i < s->nr_slots; i++) {
195 KVMSlot *mem = &s->slots[i];
196
197 if (mem->memory_size == 0 ||
198 (found && found->start_addr < mem->start_addr)) {
199 continue;
200 }
201
202 if (end_addr > mem->start_addr &&
203 start_addr < mem->start_addr + mem->memory_size) {
204 found = mem;
205 }
206 }
207
208 return found;
209 }
210
211 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
212 hwaddr *phys_addr)
213 {
214 int i;
215
216 for (i = 0; i < s->nr_slots; i++) {
217 KVMSlot *mem = &s->slots[i];
218
219 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
220 *phys_addr = mem->start_addr + (ram - mem->ram);
221 return 1;
222 }
223 }
224
225 return 0;
226 }
227
228 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
229 {
230 struct kvm_userspace_memory_region mem;
231
232 mem.slot = slot->slot;
233 mem.guest_phys_addr = slot->start_addr;
234 mem.userspace_addr = (unsigned long)slot->ram;
235 mem.flags = slot->flags;
236
237 if (slot->memory_size && mem.flags & KVM_MEM_READONLY) {
238 /* Set the slot size to 0 before setting the slot to the desired
239 * value. This is needed based on KVM commit 75d61fbc. */
240 mem.memory_size = 0;
241 kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
242 }
243 mem.memory_size = slot->memory_size;
244 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
245 }
246
247 int kvm_init_vcpu(CPUState *cpu)
248 {
249 KVMState *s = kvm_state;
250 long mmap_size;
251 int ret;
252
253 DPRINTF("kvm_init_vcpu\n");
254
255 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)kvm_arch_vcpu_id(cpu));
256 if (ret < 0) {
257 DPRINTF("kvm_create_vcpu failed\n");
258 goto err;
259 }
260
261 cpu->kvm_fd = ret;
262 cpu->kvm_state = s;
263 cpu->kvm_vcpu_dirty = true;
264
265 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
266 if (mmap_size < 0) {
267 ret = mmap_size;
268 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
269 goto err;
270 }
271
272 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
273 cpu->kvm_fd, 0);
274 if (cpu->kvm_run == MAP_FAILED) {
275 ret = -errno;
276 DPRINTF("mmap'ing vcpu state failed\n");
277 goto err;
278 }
279
280 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
281 s->coalesced_mmio_ring =
282 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
283 }
284
285 ret = kvm_arch_init_vcpu(cpu);
286 err:
287 return ret;
288 }
289
290 /*
291 * dirty pages logging control
292 */
293
294 static int kvm_mem_flags(KVMState *s, bool log_dirty, bool readonly)
295 {
296 int flags = 0;
297 flags = log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0;
298 if (readonly && kvm_readonly_mem_allowed) {
299 flags |= KVM_MEM_READONLY;
300 }
301 return flags;
302 }
303
304 static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty)
305 {
306 KVMState *s = kvm_state;
307 int flags, mask = KVM_MEM_LOG_DIRTY_PAGES;
308 int old_flags;
309
310 old_flags = mem->flags;
311
312 flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty, false);
313 mem->flags = flags;
314
315 /* If nothing changed effectively, no need to issue ioctl */
316 if (flags == old_flags) {
317 return 0;
318 }
319
320 return kvm_set_user_memory_region(s, mem);
321 }
322
323 static int kvm_dirty_pages_log_change(hwaddr phys_addr,
324 ram_addr_t size, bool log_dirty)
325 {
326 KVMState *s = kvm_state;
327 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
328
329 if (mem == NULL) {
330 return 0;
331 } else {
332 return kvm_slot_dirty_pages_log_change(mem, log_dirty);
333 }
334 }
335
336 static void kvm_log_start(MemoryListener *listener,
337 MemoryRegionSection *section,
338 int old, int new)
339 {
340 int r;
341
342 if (old != 0) {
343 return;
344 }
345
346 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
347 int128_get64(section->size), true);
348 if (r < 0) {
349 abort();
350 }
351 }
352
353 static void kvm_log_stop(MemoryListener *listener,
354 MemoryRegionSection *section,
355 int old, int new)
356 {
357 int r;
358
359 if (new != 0) {
360 return;
361 }
362
363 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
364 int128_get64(section->size), false);
365 if (r < 0) {
366 abort();
367 }
368 }
369
370 /* get kvm's dirty pages bitmap and update qemu's */
371 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
372 unsigned long *bitmap)
373 {
374 ram_addr_t start = section->offset_within_region + section->mr->ram_addr;
375 ram_addr_t pages = int128_get64(section->size) / getpagesize();
376
377 cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages);
378 return 0;
379 }
380
381 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
382
383 /**
384 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
385 * This function updates qemu's dirty bitmap using
386 * memory_region_set_dirty(). This means all bits are set
387 * to dirty.
388 *
389 * @start_add: start of logged region.
390 * @end_addr: end of logged region.
391 */
392 static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section)
393 {
394 KVMState *s = kvm_state;
395 unsigned long size, allocated_size = 0;
396 KVMDirtyLog d = {};
397 KVMSlot *mem;
398 int ret = 0;
399 hwaddr start_addr = section->offset_within_address_space;
400 hwaddr end_addr = start_addr + int128_get64(section->size);
401
402 d.dirty_bitmap = NULL;
403 while (start_addr < end_addr) {
404 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
405 if (mem == NULL) {
406 break;
407 }
408
409 /* XXX bad kernel interface alert
410 * For dirty bitmap, kernel allocates array of size aligned to
411 * bits-per-long. But for case when the kernel is 64bits and
412 * the userspace is 32bits, userspace can't align to the same
413 * bits-per-long, since sizeof(long) is different between kernel
414 * and user space. This way, userspace will provide buffer which
415 * may be 4 bytes less than the kernel will use, resulting in
416 * userspace memory corruption (which is not detectable by valgrind
417 * too, in most cases).
418 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
419 * a hope that sizeof(long) wont become >8 any time soon.
420 */
421 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
422 /*HOST_LONG_BITS*/ 64) / 8;
423 if (!d.dirty_bitmap) {
424 d.dirty_bitmap = g_malloc(size);
425 } else if (size > allocated_size) {
426 d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
427 }
428 allocated_size = size;
429 memset(d.dirty_bitmap, 0, allocated_size);
430
431 d.slot = mem->slot;
432
433 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
434 DPRINTF("ioctl failed %d\n", errno);
435 ret = -1;
436 break;
437 }
438
439 kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
440 start_addr = mem->start_addr + mem->memory_size;
441 }
442 g_free(d.dirty_bitmap);
443
444 return ret;
445 }
446
447 static void kvm_coalesce_mmio_region(MemoryListener *listener,
448 MemoryRegionSection *secion,
449 hwaddr start, hwaddr size)
450 {
451 KVMState *s = kvm_state;
452
453 if (s->coalesced_mmio) {
454 struct kvm_coalesced_mmio_zone zone;
455
456 zone.addr = start;
457 zone.size = size;
458 zone.pad = 0;
459
460 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
461 }
462 }
463
464 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
465 MemoryRegionSection *secion,
466 hwaddr start, hwaddr size)
467 {
468 KVMState *s = kvm_state;
469
470 if (s->coalesced_mmio) {
471 struct kvm_coalesced_mmio_zone zone;
472
473 zone.addr = start;
474 zone.size = size;
475 zone.pad = 0;
476
477 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
478 }
479 }
480
481 int kvm_check_extension(KVMState *s, unsigned int extension)
482 {
483 int ret;
484
485 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
486 if (ret < 0) {
487 ret = 0;
488 }
489
490 return ret;
491 }
492
493 int kvm_vm_check_extension(KVMState *s, unsigned int extension)
494 {
495 int ret;
496
497 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
498 if (ret < 0) {
499 /* VM wide version not implemented, use global one instead */
500 ret = kvm_check_extension(s, extension);
501 }
502
503 return ret;
504 }
505
506 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
507 {
508 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
509 /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN
510 * endianness, but the memory core hands them in target endianness.
511 * For example, PPC is always treated as big-endian even if running
512 * on KVM and on PPC64LE. Correct here.
513 */
514 switch (size) {
515 case 2:
516 val = bswap16(val);
517 break;
518 case 4:
519 val = bswap32(val);
520 break;
521 }
522 #endif
523 return val;
524 }
525
526 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
527 bool assign, uint32_t size, bool datamatch)
528 {
529 int ret;
530 struct kvm_ioeventfd iofd = {
531 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
532 .addr = addr,
533 .len = size,
534 .flags = 0,
535 .fd = fd,
536 };
537
538 if (!kvm_enabled()) {
539 return -ENOSYS;
540 }
541
542 if (datamatch) {
543 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
544 }
545 if (!assign) {
546 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
547 }
548
549 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
550
551 if (ret < 0) {
552 return -errno;
553 }
554
555 return 0;
556 }
557
558 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
559 bool assign, uint32_t size, bool datamatch)
560 {
561 struct kvm_ioeventfd kick = {
562 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
563 .addr = addr,
564 .flags = KVM_IOEVENTFD_FLAG_PIO,
565 .len = size,
566 .fd = fd,
567 };
568 int r;
569 if (!kvm_enabled()) {
570 return -ENOSYS;
571 }
572 if (datamatch) {
573 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
574 }
575 if (!assign) {
576 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
577 }
578 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
579 if (r < 0) {
580 return r;
581 }
582 return 0;
583 }
584
585
586 static int kvm_check_many_ioeventfds(void)
587 {
588 /* Userspace can use ioeventfd for io notification. This requires a host
589 * that supports eventfd(2) and an I/O thread; since eventfd does not
590 * support SIGIO it cannot interrupt the vcpu.
591 *
592 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
593 * can avoid creating too many ioeventfds.
594 */
595 #if defined(CONFIG_EVENTFD)
596 int ioeventfds[7];
597 int i, ret = 0;
598 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
599 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
600 if (ioeventfds[i] < 0) {
601 break;
602 }
603 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
604 if (ret < 0) {
605 close(ioeventfds[i]);
606 break;
607 }
608 }
609
610 /* Decide whether many devices are supported or not */
611 ret = i == ARRAY_SIZE(ioeventfds);
612
613 while (i-- > 0) {
614 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
615 close(ioeventfds[i]);
616 }
617 return ret;
618 #else
619 return 0;
620 #endif
621 }
622
623 static const KVMCapabilityInfo *
624 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
625 {
626 while (list->name) {
627 if (!kvm_check_extension(s, list->value)) {
628 return list;
629 }
630 list++;
631 }
632 return NULL;
633 }
634
635 static void kvm_set_phys_mem(MemoryRegionSection *section, bool add)
636 {
637 KVMState *s = kvm_state;
638 KVMSlot *mem, old;
639 int err;
640 MemoryRegion *mr = section->mr;
641 bool log_dirty = memory_region_get_dirty_log_mask(mr) != 0;
642 bool writeable = !mr->readonly && !mr->rom_device;
643 bool readonly_flag = mr->readonly || memory_region_is_romd(mr);
644 hwaddr start_addr = section->offset_within_address_space;
645 ram_addr_t size = int128_get64(section->size);
646 void *ram = NULL;
647 unsigned delta;
648
649 /* kvm works in page size chunks, but the function may be called
650 with sub-page size and unaligned start address. Pad the start
651 address to next and truncate size to previous page boundary. */
652 delta = (TARGET_PAGE_SIZE - (start_addr & ~TARGET_PAGE_MASK));
653 delta &= ~TARGET_PAGE_MASK;
654 if (delta > size) {
655 return;
656 }
657 start_addr += delta;
658 size -= delta;
659 size &= TARGET_PAGE_MASK;
660 if (!size || (start_addr & ~TARGET_PAGE_MASK)) {
661 return;
662 }
663
664 if (!memory_region_is_ram(mr)) {
665 if (writeable || !kvm_readonly_mem_allowed) {
666 return;
667 } else if (!mr->romd_mode) {
668 /* If the memory device is not in romd_mode, then we actually want
669 * to remove the kvm memory slot so all accesses will trap. */
670 add = false;
671 }
672 }
673
674 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta;
675
676 while (1) {
677 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
678 if (!mem) {
679 break;
680 }
681
682 if (add && start_addr >= mem->start_addr &&
683 (start_addr + size <= mem->start_addr + mem->memory_size) &&
684 (ram - start_addr == mem->ram - mem->start_addr)) {
685 /* The new slot fits into the existing one and comes with
686 * identical parameters - update flags and done. */
687 kvm_slot_dirty_pages_log_change(mem, log_dirty);
688 return;
689 }
690
691 old = *mem;
692
693 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
694 kvm_physical_sync_dirty_bitmap(section);
695 }
696
697 /* unregister the overlapping slot */
698 mem->memory_size = 0;
699 err = kvm_set_user_memory_region(s, mem);
700 if (err) {
701 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
702 __func__, strerror(-err));
703 abort();
704 }
705
706 /* Workaround for older KVM versions: we can't join slots, even not by
707 * unregistering the previous ones and then registering the larger
708 * slot. We have to maintain the existing fragmentation. Sigh.
709 *
710 * This workaround assumes that the new slot starts at the same
711 * address as the first existing one. If not or if some overlapping
712 * slot comes around later, we will fail (not seen in practice so far)
713 * - and actually require a recent KVM version. */
714 if (s->broken_set_mem_region &&
715 old.start_addr == start_addr && old.memory_size < size && add) {
716 mem = kvm_alloc_slot(s);
717 mem->memory_size = old.memory_size;
718 mem->start_addr = old.start_addr;
719 mem->ram = old.ram;
720 mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
721
722 err = kvm_set_user_memory_region(s, mem);
723 if (err) {
724 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
725 strerror(-err));
726 abort();
727 }
728
729 start_addr += old.memory_size;
730 ram += old.memory_size;
731 size -= old.memory_size;
732 continue;
733 }
734
735 /* register prefix slot */
736 if (old.start_addr < start_addr) {
737 mem = kvm_alloc_slot(s);
738 mem->memory_size = start_addr - old.start_addr;
739 mem->start_addr = old.start_addr;
740 mem->ram = old.ram;
741 mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
742
743 err = kvm_set_user_memory_region(s, mem);
744 if (err) {
745 fprintf(stderr, "%s: error registering prefix slot: %s\n",
746 __func__, strerror(-err));
747 #ifdef TARGET_PPC
748 fprintf(stderr, "%s: This is probably because your kernel's " \
749 "PAGE_SIZE is too big. Please try to use 4k " \
750 "PAGE_SIZE!\n", __func__);
751 #endif
752 abort();
753 }
754 }
755
756 /* register suffix slot */
757 if (old.start_addr + old.memory_size > start_addr + size) {
758 ram_addr_t size_delta;
759
760 mem = kvm_alloc_slot(s);
761 mem->start_addr = start_addr + size;
762 size_delta = mem->start_addr - old.start_addr;
763 mem->memory_size = old.memory_size - size_delta;
764 mem->ram = old.ram + size_delta;
765 mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
766
767 err = kvm_set_user_memory_region(s, mem);
768 if (err) {
769 fprintf(stderr, "%s: error registering suffix slot: %s\n",
770 __func__, strerror(-err));
771 abort();
772 }
773 }
774 }
775
776 /* in case the KVM bug workaround already "consumed" the new slot */
777 if (!size) {
778 return;
779 }
780 if (!add) {
781 return;
782 }
783 mem = kvm_alloc_slot(s);
784 mem->memory_size = size;
785 mem->start_addr = start_addr;
786 mem->ram = ram;
787 mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
788
789 err = kvm_set_user_memory_region(s, mem);
790 if (err) {
791 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
792 strerror(-err));
793 abort();
794 }
795 }
796
797 static void kvm_region_add(MemoryListener *listener,
798 MemoryRegionSection *section)
799 {
800 memory_region_ref(section->mr);
801 kvm_set_phys_mem(section, true);
802 }
803
804 static void kvm_region_del(MemoryListener *listener,
805 MemoryRegionSection *section)
806 {
807 kvm_set_phys_mem(section, false);
808 memory_region_unref(section->mr);
809 }
810
811 static void kvm_log_sync(MemoryListener *listener,
812 MemoryRegionSection *section)
813 {
814 int r;
815
816 r = kvm_physical_sync_dirty_bitmap(section);
817 if (r < 0) {
818 abort();
819 }
820 }
821
822 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
823 MemoryRegionSection *section,
824 bool match_data, uint64_t data,
825 EventNotifier *e)
826 {
827 int fd = event_notifier_get_fd(e);
828 int r;
829
830 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
831 data, true, int128_get64(section->size),
832 match_data);
833 if (r < 0) {
834 fprintf(stderr, "%s: error adding ioeventfd: %s\n",
835 __func__, strerror(-r));
836 abort();
837 }
838 }
839
840 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
841 MemoryRegionSection *section,
842 bool match_data, uint64_t data,
843 EventNotifier *e)
844 {
845 int fd = event_notifier_get_fd(e);
846 int r;
847
848 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
849 data, false, int128_get64(section->size),
850 match_data);
851 if (r < 0) {
852 abort();
853 }
854 }
855
856 static void kvm_io_ioeventfd_add(MemoryListener *listener,
857 MemoryRegionSection *section,
858 bool match_data, uint64_t data,
859 EventNotifier *e)
860 {
861 int fd = event_notifier_get_fd(e);
862 int r;
863
864 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
865 data, true, int128_get64(section->size),
866 match_data);
867 if (r < 0) {
868 fprintf(stderr, "%s: error adding ioeventfd: %s\n",
869 __func__, strerror(-r));
870 abort();
871 }
872 }
873
874 static void kvm_io_ioeventfd_del(MemoryListener *listener,
875 MemoryRegionSection *section,
876 bool match_data, uint64_t data,
877 EventNotifier *e)
878
879 {
880 int fd = event_notifier_get_fd(e);
881 int r;
882
883 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
884 data, false, int128_get64(section->size),
885 match_data);
886 if (r < 0) {
887 abort();
888 }
889 }
890
891 static MemoryListener kvm_memory_listener = {
892 .region_add = kvm_region_add,
893 .region_del = kvm_region_del,
894 .log_start = kvm_log_start,
895 .log_stop = kvm_log_stop,
896 .log_sync = kvm_log_sync,
897 .eventfd_add = kvm_mem_ioeventfd_add,
898 .eventfd_del = kvm_mem_ioeventfd_del,
899 .coalesced_mmio_add = kvm_coalesce_mmio_region,
900 .coalesced_mmio_del = kvm_uncoalesce_mmio_region,
901 .priority = 10,
902 };
903
904 static MemoryListener kvm_io_listener = {
905 .eventfd_add = kvm_io_ioeventfd_add,
906 .eventfd_del = kvm_io_ioeventfd_del,
907 .priority = 10,
908 };
909
910 static void kvm_handle_interrupt(CPUState *cpu, int mask)
911 {
912 cpu->interrupt_request |= mask;
913
914 if (!qemu_cpu_is_self(cpu)) {
915 qemu_cpu_kick(cpu);
916 }
917 }
918
919 int kvm_set_irq(KVMState *s, int irq, int level)
920 {
921 struct kvm_irq_level event;
922 int ret;
923
924 assert(kvm_async_interrupts_enabled());
925
926 event.level = level;
927 event.irq = irq;
928 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
929 if (ret < 0) {
930 perror("kvm_set_irq");
931 abort();
932 }
933
934 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
935 }
936
937 #ifdef KVM_CAP_IRQ_ROUTING
938 typedef struct KVMMSIRoute {
939 struct kvm_irq_routing_entry kroute;
940 QTAILQ_ENTRY(KVMMSIRoute) entry;
941 } KVMMSIRoute;
942
943 static void set_gsi(KVMState *s, unsigned int gsi)
944 {
945 s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32);
946 }
947
948 static void clear_gsi(KVMState *s, unsigned int gsi)
949 {
950 s->used_gsi_bitmap[gsi / 32] &= ~(1U << (gsi % 32));
951 }
952
953 void kvm_init_irq_routing(KVMState *s)
954 {
955 int gsi_count, i;
956
957 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
958 if (gsi_count > 0) {
959 unsigned int gsi_bits, i;
960
961 /* Round up so we can search ints using ffs */
962 gsi_bits = ALIGN(gsi_count, 32);
963 s->used_gsi_bitmap = g_malloc0(gsi_bits / 8);
964 s->gsi_count = gsi_count;
965
966 /* Mark any over-allocated bits as already in use */
967 for (i = gsi_count; i < gsi_bits; i++) {
968 set_gsi(s, i);
969 }
970 }
971
972 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
973 s->nr_allocated_irq_routes = 0;
974
975 if (!s->direct_msi) {
976 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
977 QTAILQ_INIT(&s->msi_hashtab[i]);
978 }
979 }
980
981 kvm_arch_init_irq_routing(s);
982 }
983
984 void kvm_irqchip_commit_routes(KVMState *s)
985 {
986 int ret;
987
988 s->irq_routes->flags = 0;
989 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
990 assert(ret == 0);
991 }
992
993 static void kvm_add_routing_entry(KVMState *s,
994 struct kvm_irq_routing_entry *entry)
995 {
996 struct kvm_irq_routing_entry *new;
997 int n, size;
998
999 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
1000 n = s->nr_allocated_irq_routes * 2;
1001 if (n < 64) {
1002 n = 64;
1003 }
1004 size = sizeof(struct kvm_irq_routing);
1005 size += n * sizeof(*new);
1006 s->irq_routes = g_realloc(s->irq_routes, size);
1007 s->nr_allocated_irq_routes = n;
1008 }
1009 n = s->irq_routes->nr++;
1010 new = &s->irq_routes->entries[n];
1011
1012 *new = *entry;
1013
1014 set_gsi(s, entry->gsi);
1015 }
1016
1017 static int kvm_update_routing_entry(KVMState *s,
1018 struct kvm_irq_routing_entry *new_entry)
1019 {
1020 struct kvm_irq_routing_entry *entry;
1021 int n;
1022
1023 for (n = 0; n < s->irq_routes->nr; n++) {
1024 entry = &s->irq_routes->entries[n];
1025 if (entry->gsi != new_entry->gsi) {
1026 continue;
1027 }
1028
1029 if(!memcmp(entry, new_entry, sizeof *entry)) {
1030 return 0;
1031 }
1032
1033 *entry = *new_entry;
1034
1035 kvm_irqchip_commit_routes(s);
1036
1037 return 0;
1038 }
1039
1040 return -ESRCH;
1041 }
1042
1043 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1044 {
1045 struct kvm_irq_routing_entry e = {};
1046
1047 assert(pin < s->gsi_count);
1048
1049 e.gsi = irq;
1050 e.type = KVM_IRQ_ROUTING_IRQCHIP;
1051 e.flags = 0;
1052 e.u.irqchip.irqchip = irqchip;
1053 e.u.irqchip.pin = pin;
1054 kvm_add_routing_entry(s, &e);
1055 }
1056
1057 void kvm_irqchip_release_virq(KVMState *s, int virq)
1058 {
1059 struct kvm_irq_routing_entry *e;
1060 int i;
1061
1062 if (kvm_gsi_direct_mapping()) {
1063 return;
1064 }
1065
1066 for (i = 0; i < s->irq_routes->nr; i++) {
1067 e = &s->irq_routes->entries[i];
1068 if (e->gsi == virq) {
1069 s->irq_routes->nr--;
1070 *e = s->irq_routes->entries[s->irq_routes->nr];
1071 }
1072 }
1073 clear_gsi(s, virq);
1074 }
1075
1076 static unsigned int kvm_hash_msi(uint32_t data)
1077 {
1078 /* This is optimized for IA32 MSI layout. However, no other arch shall
1079 * repeat the mistake of not providing a direct MSI injection API. */
1080 return data & 0xff;
1081 }
1082
1083 static void kvm_flush_dynamic_msi_routes(KVMState *s)
1084 {
1085 KVMMSIRoute *route, *next;
1086 unsigned int hash;
1087
1088 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1089 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1090 kvm_irqchip_release_virq(s, route->kroute.gsi);
1091 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1092 g_free(route);
1093 }
1094 }
1095 }
1096
1097 static int kvm_irqchip_get_virq(KVMState *s)
1098 {
1099 uint32_t *word = s->used_gsi_bitmap;
1100 int max_words = ALIGN(s->gsi_count, 32) / 32;
1101 int i, zeroes;
1102
1103 /*
1104 * PIC and IOAPIC share the first 16 GSI numbers, thus the available
1105 * GSI numbers are more than the number of IRQ route. Allocating a GSI
1106 * number can succeed even though a new route entry cannot be added.
1107 * When this happens, flush dynamic MSI entries to free IRQ route entries.
1108 */
1109 if (!s->direct_msi && s->irq_routes->nr == s->gsi_count) {
1110 kvm_flush_dynamic_msi_routes(s);
1111 }
1112
1113 /* Return the lowest unused GSI in the bitmap */
1114 for (i = 0; i < max_words; i++) {
1115 zeroes = ctz32(~word[i]);
1116 if (zeroes == 32) {
1117 continue;
1118 }
1119
1120 return zeroes + i * 32;
1121 }
1122 return -ENOSPC;
1123
1124 }
1125
1126 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1127 {
1128 unsigned int hash = kvm_hash_msi(msg.data);
1129 KVMMSIRoute *route;
1130
1131 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1132 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1133 route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1134 route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
1135 return route;
1136 }
1137 }
1138 return NULL;
1139 }
1140
1141 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1142 {
1143 struct kvm_msi msi;
1144 KVMMSIRoute *route;
1145
1146 if (s->direct_msi) {
1147 msi.address_lo = (uint32_t)msg.address;
1148 msi.address_hi = msg.address >> 32;
1149 msi.data = le32_to_cpu(msg.data);
1150 msi.flags = 0;
1151 memset(msi.pad, 0, sizeof(msi.pad));
1152
1153 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1154 }
1155
1156 route = kvm_lookup_msi_route(s, msg);
1157 if (!route) {
1158 int virq;
1159
1160 virq = kvm_irqchip_get_virq(s);
1161 if (virq < 0) {
1162 return virq;
1163 }
1164
1165 route = g_malloc0(sizeof(KVMMSIRoute));
1166 route->kroute.gsi = virq;
1167 route->kroute.type = KVM_IRQ_ROUTING_MSI;
1168 route->kroute.flags = 0;
1169 route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1170 route->kroute.u.msi.address_hi = msg.address >> 32;
1171 route->kroute.u.msi.data = le32_to_cpu(msg.data);
1172
1173 kvm_add_routing_entry(s, &route->kroute);
1174 kvm_irqchip_commit_routes(s);
1175
1176 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1177 entry);
1178 }
1179
1180 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1181
1182 return kvm_set_irq(s, route->kroute.gsi, 1);
1183 }
1184
1185 int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1186 {
1187 struct kvm_irq_routing_entry kroute = {};
1188 int virq;
1189
1190 if (kvm_gsi_direct_mapping()) {
1191 return kvm_arch_msi_data_to_gsi(msg.data);
1192 }
1193
1194 if (!kvm_gsi_routing_enabled()) {
1195 return -ENOSYS;
1196 }
1197
1198 virq = kvm_irqchip_get_virq(s);
1199 if (virq < 0) {
1200 return virq;
1201 }
1202
1203 kroute.gsi = virq;
1204 kroute.type = KVM_IRQ_ROUTING_MSI;
1205 kroute.flags = 0;
1206 kroute.u.msi.address_lo = (uint32_t)msg.address;
1207 kroute.u.msi.address_hi = msg.address >> 32;
1208 kroute.u.msi.data = le32_to_cpu(msg.data);
1209 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data)) {
1210 kvm_irqchip_release_virq(s, virq);
1211 return -EINVAL;
1212 }
1213
1214 kvm_add_routing_entry(s, &kroute);
1215 kvm_irqchip_commit_routes(s);
1216
1217 return virq;
1218 }
1219
1220 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1221 {
1222 struct kvm_irq_routing_entry kroute = {};
1223
1224 if (kvm_gsi_direct_mapping()) {
1225 return 0;
1226 }
1227
1228 if (!kvm_irqchip_in_kernel()) {
1229 return -ENOSYS;
1230 }
1231
1232 kroute.gsi = virq;
1233 kroute.type = KVM_IRQ_ROUTING_MSI;
1234 kroute.flags = 0;
1235 kroute.u.msi.address_lo = (uint32_t)msg.address;
1236 kroute.u.msi.address_hi = msg.address >> 32;
1237 kroute.u.msi.data = le32_to_cpu(msg.data);
1238 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data)) {
1239 return -EINVAL;
1240 }
1241
1242 return kvm_update_routing_entry(s, &kroute);
1243 }
1244
1245 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq,
1246 bool assign)
1247 {
1248 struct kvm_irqfd irqfd = {
1249 .fd = fd,
1250 .gsi = virq,
1251 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1252 };
1253
1254 if (rfd != -1) {
1255 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
1256 irqfd.resamplefd = rfd;
1257 }
1258
1259 if (!kvm_irqfds_enabled()) {
1260 return -ENOSYS;
1261 }
1262
1263 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1264 }
1265
1266 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1267 {
1268 struct kvm_irq_routing_entry kroute = {};
1269 int virq;
1270
1271 if (!kvm_gsi_routing_enabled()) {
1272 return -ENOSYS;
1273 }
1274
1275 virq = kvm_irqchip_get_virq(s);
1276 if (virq < 0) {
1277 return virq;
1278 }
1279
1280 kroute.gsi = virq;
1281 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
1282 kroute.flags = 0;
1283 kroute.u.adapter.summary_addr = adapter->summary_addr;
1284 kroute.u.adapter.ind_addr = adapter->ind_addr;
1285 kroute.u.adapter.summary_offset = adapter->summary_offset;
1286 kroute.u.adapter.ind_offset = adapter->ind_offset;
1287 kroute.u.adapter.adapter_id = adapter->adapter_id;
1288
1289 kvm_add_routing_entry(s, &kroute);
1290 kvm_irqchip_commit_routes(s);
1291
1292 return virq;
1293 }
1294
1295 #else /* !KVM_CAP_IRQ_ROUTING */
1296
1297 void kvm_init_irq_routing(KVMState *s)
1298 {
1299 }
1300
1301 void kvm_irqchip_release_virq(KVMState *s, int virq)
1302 {
1303 }
1304
1305 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1306 {
1307 abort();
1308 }
1309
1310 int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1311 {
1312 return -ENOSYS;
1313 }
1314
1315 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1316 {
1317 return -ENOSYS;
1318 }
1319
1320 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1321 {
1322 abort();
1323 }
1324
1325 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1326 {
1327 return -ENOSYS;
1328 }
1329 #endif /* !KVM_CAP_IRQ_ROUTING */
1330
1331 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
1332 EventNotifier *rn, int virq)
1333 {
1334 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n),
1335 rn ? event_notifier_get_fd(rn) : -1, virq, true);
1336 }
1337
1338 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, int virq)
1339 {
1340 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), -1, virq,
1341 false);
1342 }
1343
1344 static int kvm_irqchip_create(MachineState *machine, KVMState *s)
1345 {
1346 int ret;
1347
1348 if (!machine_kernel_irqchip_allowed(machine) ||
1349 (!kvm_check_extension(s, KVM_CAP_IRQCHIP) &&
1350 (kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0) < 0))) {
1351 return 0;
1352 }
1353
1354 /* First probe and see if there's a arch-specific hook to create the
1355 * in-kernel irqchip for us */
1356 ret = kvm_arch_irqchip_create(s);
1357 if (ret < 0) {
1358 return ret;
1359 } else if (ret == 0) {
1360 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1361 if (ret < 0) {
1362 fprintf(stderr, "Create kernel irqchip failed\n");
1363 return ret;
1364 }
1365 }
1366
1367 kvm_kernel_irqchip = true;
1368 /* If we have an in-kernel IRQ chip then we must have asynchronous
1369 * interrupt delivery (though the reverse is not necessarily true)
1370 */
1371 kvm_async_interrupts_allowed = true;
1372 kvm_halt_in_kernel_allowed = true;
1373
1374 kvm_init_irq_routing(s);
1375
1376 return 0;
1377 }
1378
1379 /* Find number of supported CPUs using the recommended
1380 * procedure from the kernel API documentation to cope with
1381 * older kernels that may be missing capabilities.
1382 */
1383 static int kvm_recommended_vcpus(KVMState *s)
1384 {
1385 int ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS);
1386 return (ret) ? ret : 4;
1387 }
1388
1389 static int kvm_max_vcpus(KVMState *s)
1390 {
1391 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
1392 return (ret) ? ret : kvm_recommended_vcpus(s);
1393 }
1394
1395 static int kvm_init(MachineState *ms)
1396 {
1397 MachineClass *mc = MACHINE_GET_CLASS(ms);
1398 static const char upgrade_note[] =
1399 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1400 "(see http://sourceforge.net/projects/kvm).\n";
1401 struct {
1402 const char *name;
1403 int num;
1404 } num_cpus[] = {
1405 { "SMP", smp_cpus },
1406 { "hotpluggable", max_cpus },
1407 { NULL, }
1408 }, *nc = num_cpus;
1409 int soft_vcpus_limit, hard_vcpus_limit;
1410 KVMState *s;
1411 const KVMCapabilityInfo *missing_cap;
1412 int ret;
1413 int i, type = 0;
1414 const char *kvm_type;
1415
1416 s = KVM_STATE(ms->accelerator);
1417
1418 /*
1419 * On systems where the kernel can support different base page
1420 * sizes, host page size may be different from TARGET_PAGE_SIZE,
1421 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
1422 * page size for the system though.
1423 */
1424 assert(TARGET_PAGE_SIZE <= getpagesize());
1425 page_size_init();
1426
1427 s->sigmask_len = 8;
1428
1429 #ifdef KVM_CAP_SET_GUEST_DEBUG
1430 QTAILQ_INIT(&s->kvm_sw_breakpoints);
1431 #endif
1432 s->vmfd = -1;
1433 s->fd = qemu_open("/dev/kvm", O_RDWR);
1434 if (s->fd == -1) {
1435 fprintf(stderr, "Could not access KVM kernel module: %m\n");
1436 ret = -errno;
1437 goto err;
1438 }
1439
1440 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
1441 if (ret < KVM_API_VERSION) {
1442 if (ret >= 0) {
1443 ret = -EINVAL;
1444 }
1445 fprintf(stderr, "kvm version too old\n");
1446 goto err;
1447 }
1448
1449 if (ret > KVM_API_VERSION) {
1450 ret = -EINVAL;
1451 fprintf(stderr, "kvm version not supported\n");
1452 goto err;
1453 }
1454
1455 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
1456
1457 /* If unspecified, use the default value */
1458 if (!s->nr_slots) {
1459 s->nr_slots = 32;
1460 }
1461
1462 s->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot));
1463
1464 for (i = 0; i < s->nr_slots; i++) {
1465 s->slots[i].slot = i;
1466 }
1467
1468 /* check the vcpu limits */
1469 soft_vcpus_limit = kvm_recommended_vcpus(s);
1470 hard_vcpus_limit = kvm_max_vcpus(s);
1471
1472 while (nc->name) {
1473 if (nc->num > soft_vcpus_limit) {
1474 fprintf(stderr,
1475 "Warning: Number of %s cpus requested (%d) exceeds "
1476 "the recommended cpus supported by KVM (%d)\n",
1477 nc->name, nc->num, soft_vcpus_limit);
1478
1479 if (nc->num > hard_vcpus_limit) {
1480 fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
1481 "the maximum cpus supported by KVM (%d)\n",
1482 nc->name, nc->num, hard_vcpus_limit);
1483 exit(1);
1484 }
1485 }
1486 nc++;
1487 }
1488
1489 kvm_type = qemu_opt_get(qemu_get_machine_opts(), "kvm-type");
1490 if (mc->kvm_type) {
1491 type = mc->kvm_type(kvm_type);
1492 } else if (kvm_type) {
1493 ret = -EINVAL;
1494 fprintf(stderr, "Invalid argument kvm-type=%s\n", kvm_type);
1495 goto err;
1496 }
1497
1498 do {
1499 ret = kvm_ioctl(s, KVM_CREATE_VM, type);
1500 } while (ret == -EINTR);
1501
1502 if (ret < 0) {
1503 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
1504 strerror(-ret));
1505
1506 #ifdef TARGET_S390X
1507 if (ret == -EINVAL) {
1508 fprintf(stderr,
1509 "Host kernel setup problem detected. Please verify:\n");
1510 fprintf(stderr, "- for kernels supporting the switch_amode or"
1511 " user_mode parameters, whether\n");
1512 fprintf(stderr,
1513 " user space is running in primary address space\n");
1514 fprintf(stderr,
1515 "- for kernels supporting the vm.allocate_pgste sysctl, "
1516 "whether it is enabled\n");
1517 }
1518 #endif
1519 goto err;
1520 }
1521
1522 s->vmfd = ret;
1523 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1524 if (!missing_cap) {
1525 missing_cap =
1526 kvm_check_extension_list(s, kvm_arch_required_capabilities);
1527 }
1528 if (missing_cap) {
1529 ret = -EINVAL;
1530 fprintf(stderr, "kvm does not support %s\n%s",
1531 missing_cap->name, upgrade_note);
1532 goto err;
1533 }
1534
1535 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
1536
1537 s->broken_set_mem_region = 1;
1538 ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
1539 if (ret > 0) {
1540 s->broken_set_mem_region = 0;
1541 }
1542
1543 #ifdef KVM_CAP_VCPU_EVENTS
1544 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
1545 #endif
1546
1547 s->robust_singlestep =
1548 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
1549
1550 #ifdef KVM_CAP_DEBUGREGS
1551 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
1552 #endif
1553
1554 #ifdef KVM_CAP_XSAVE
1555 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
1556 #endif
1557
1558 #ifdef KVM_CAP_XCRS
1559 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
1560 #endif
1561
1562 #ifdef KVM_CAP_PIT_STATE2
1563 s->pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
1564 #endif
1565
1566 #ifdef KVM_CAP_IRQ_ROUTING
1567 s->direct_msi = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
1568 #endif
1569
1570 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
1571
1572 s->irq_set_ioctl = KVM_IRQ_LINE;
1573 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
1574 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
1575 }
1576
1577 #ifdef KVM_CAP_READONLY_MEM
1578 kvm_readonly_mem_allowed =
1579 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
1580 #endif
1581
1582 kvm_eventfds_allowed =
1583 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0);
1584
1585 kvm_irqfds_allowed =
1586 (kvm_check_extension(s, KVM_CAP_IRQFD) > 0);
1587
1588 kvm_resamplefds_allowed =
1589 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
1590
1591 kvm_vm_attributes_allowed =
1592 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
1593
1594 ret = kvm_arch_init(ms, s);
1595 if (ret < 0) {
1596 goto err;
1597 }
1598
1599 ret = kvm_irqchip_create(ms, s);
1600 if (ret < 0) {
1601 goto err;
1602 }
1603
1604 kvm_state = s;
1605 memory_listener_register(&kvm_memory_listener, &address_space_memory);
1606 memory_listener_register(&kvm_io_listener, &address_space_io);
1607
1608 s->many_ioeventfds = kvm_check_many_ioeventfds();
1609
1610 cpu_interrupt_handler = kvm_handle_interrupt;
1611
1612 return 0;
1613
1614 err:
1615 assert(ret < 0);
1616 if (s->vmfd >= 0) {
1617 close(s->vmfd);
1618 }
1619 if (s->fd != -1) {
1620 close(s->fd);
1621 }
1622 g_free(s->slots);
1623
1624 return ret;
1625 }
1626
1627 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
1628 {
1629 s->sigmask_len = sigmask_len;
1630 }
1631
1632 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction,
1633 int size, uint32_t count)
1634 {
1635 int i;
1636 uint8_t *ptr = data;
1637
1638 for (i = 0; i < count; i++) {
1639 address_space_rw(&address_space_io, port, attrs,
1640 ptr, size,
1641 direction == KVM_EXIT_IO_OUT);
1642 ptr += size;
1643 }
1644 }
1645
1646 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
1647 {
1648 fprintf(stderr, "KVM internal error. Suberror: %d\n",
1649 run->internal.suberror);
1650
1651 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
1652 int i;
1653
1654 for (i = 0; i < run->internal.ndata; ++i) {
1655 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
1656 i, (uint64_t)run->internal.data[i]);
1657 }
1658 }
1659 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
1660 fprintf(stderr, "emulation failure\n");
1661 if (!kvm_arch_stop_on_emulation_error(cpu)) {
1662 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
1663 return EXCP_INTERRUPT;
1664 }
1665 }
1666 /* FIXME: Should trigger a qmp message to let management know
1667 * something went wrong.
1668 */
1669 return -1;
1670 }
1671
1672 void kvm_flush_coalesced_mmio_buffer(void)
1673 {
1674 KVMState *s = kvm_state;
1675
1676 if (s->coalesced_flush_in_progress) {
1677 return;
1678 }
1679
1680 s->coalesced_flush_in_progress = true;
1681
1682 if (s->coalesced_mmio_ring) {
1683 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
1684 while (ring->first != ring->last) {
1685 struct kvm_coalesced_mmio *ent;
1686
1687 ent = &ring->coalesced_mmio[ring->first];
1688
1689 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
1690 smp_wmb();
1691 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
1692 }
1693 }
1694
1695 s->coalesced_flush_in_progress = false;
1696 }
1697
1698 static void do_kvm_cpu_synchronize_state(void *arg)
1699 {
1700 CPUState *cpu = arg;
1701
1702 if (!cpu->kvm_vcpu_dirty) {
1703 kvm_arch_get_registers(cpu);
1704 cpu->kvm_vcpu_dirty = true;
1705 }
1706 }
1707
1708 void kvm_cpu_synchronize_state(CPUState *cpu)
1709 {
1710 if (!cpu->kvm_vcpu_dirty) {
1711 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, cpu);
1712 }
1713 }
1714
1715 static void do_kvm_cpu_synchronize_post_reset(void *arg)
1716 {
1717 CPUState *cpu = arg;
1718
1719 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
1720 cpu->kvm_vcpu_dirty = false;
1721 }
1722
1723 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
1724 {
1725 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, cpu);
1726 }
1727
1728 static void do_kvm_cpu_synchronize_post_init(void *arg)
1729 {
1730 CPUState *cpu = arg;
1731
1732 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
1733 cpu->kvm_vcpu_dirty = false;
1734 }
1735
1736 void kvm_cpu_synchronize_post_init(CPUState *cpu)
1737 {
1738 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, cpu);
1739 }
1740
1741 void kvm_cpu_clean_state(CPUState *cpu)
1742 {
1743 cpu->kvm_vcpu_dirty = false;
1744 }
1745
1746 int kvm_cpu_exec(CPUState *cpu)
1747 {
1748 struct kvm_run *run = cpu->kvm_run;
1749 int ret, run_ret;
1750
1751 DPRINTF("kvm_cpu_exec()\n");
1752
1753 if (kvm_arch_process_async_events(cpu)) {
1754 cpu->exit_request = 0;
1755 return EXCP_HLT;
1756 }
1757
1758 qemu_mutex_unlock_iothread();
1759
1760 do {
1761 MemTxAttrs attrs;
1762
1763 if (cpu->kvm_vcpu_dirty) {
1764 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
1765 cpu->kvm_vcpu_dirty = false;
1766 }
1767
1768 kvm_arch_pre_run(cpu, run);
1769 if (cpu->exit_request) {
1770 DPRINTF("interrupt exit requested\n");
1771 /*
1772 * KVM requires us to reenter the kernel after IO exits to complete
1773 * instruction emulation. This self-signal will ensure that we
1774 * leave ASAP again.
1775 */
1776 qemu_cpu_kick_self();
1777 }
1778
1779 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
1780
1781 attrs = kvm_arch_post_run(cpu, run);
1782
1783 if (run_ret < 0) {
1784 if (run_ret == -EINTR || run_ret == -EAGAIN) {
1785 DPRINTF("io window exit\n");
1786 ret = EXCP_INTERRUPT;
1787 break;
1788 }
1789 fprintf(stderr, "error: kvm run failed %s\n",
1790 strerror(-run_ret));
1791 #ifdef TARGET_PPC
1792 if (run_ret == -EBUSY) {
1793 fprintf(stderr,
1794 "This is probably because your SMT is enabled.\n"
1795 "VCPU can only run on primary threads with all "
1796 "secondary threads offline.\n");
1797 }
1798 #endif
1799 ret = -1;
1800 break;
1801 }
1802
1803 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
1804 switch (run->exit_reason) {
1805 case KVM_EXIT_IO:
1806 DPRINTF("handle_io\n");
1807 /* Called outside BQL */
1808 kvm_handle_io(run->io.port, attrs,
1809 (uint8_t *)run + run->io.data_offset,
1810 run->io.direction,
1811 run->io.size,
1812 run->io.count);
1813 ret = 0;
1814 break;
1815 case KVM_EXIT_MMIO:
1816 DPRINTF("handle_mmio\n");
1817 qemu_mutex_lock_iothread();
1818 address_space_rw(&address_space_memory,
1819 run->mmio.phys_addr, attrs,
1820 run->mmio.data,
1821 run->mmio.len,
1822 run->mmio.is_write);
1823 qemu_mutex_unlock_iothread();
1824 ret = 0;
1825 break;
1826 case KVM_EXIT_IRQ_WINDOW_OPEN:
1827 DPRINTF("irq_window_open\n");
1828 ret = EXCP_INTERRUPT;
1829 break;
1830 case KVM_EXIT_SHUTDOWN:
1831 DPRINTF("shutdown\n");
1832 qemu_system_reset_request();
1833 ret = EXCP_INTERRUPT;
1834 break;
1835 case KVM_EXIT_UNKNOWN:
1836 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
1837 (uint64_t)run->hw.hardware_exit_reason);
1838 ret = -1;
1839 break;
1840 case KVM_EXIT_INTERNAL_ERROR:
1841 ret = kvm_handle_internal_error(cpu, run);
1842 break;
1843 case KVM_EXIT_SYSTEM_EVENT:
1844 switch (run->system_event.type) {
1845 case KVM_SYSTEM_EVENT_SHUTDOWN:
1846 qemu_system_shutdown_request();
1847 ret = EXCP_INTERRUPT;
1848 break;
1849 case KVM_SYSTEM_EVENT_RESET:
1850 qemu_system_reset_request();
1851 ret = EXCP_INTERRUPT;
1852 break;
1853 default:
1854 DPRINTF("kvm_arch_handle_exit\n");
1855 ret = kvm_arch_handle_exit(cpu, run);
1856 break;
1857 }
1858 break;
1859 default:
1860 DPRINTF("kvm_arch_handle_exit\n");
1861 ret = kvm_arch_handle_exit(cpu, run);
1862 break;
1863 }
1864 } while (ret == 0);
1865
1866 qemu_mutex_lock_iothread();
1867
1868 if (ret < 0) {
1869 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
1870 vm_stop(RUN_STATE_INTERNAL_ERROR);
1871 }
1872
1873 cpu->exit_request = 0;
1874 return ret;
1875 }
1876
1877 int kvm_ioctl(KVMState *s, int type, ...)
1878 {
1879 int ret;
1880 void *arg;
1881 va_list ap;
1882
1883 va_start(ap, type);
1884 arg = va_arg(ap, void *);
1885 va_end(ap);
1886
1887 trace_kvm_ioctl(type, arg);
1888 ret = ioctl(s->fd, type, arg);
1889 if (ret == -1) {
1890 ret = -errno;
1891 }
1892 return ret;
1893 }
1894
1895 int kvm_vm_ioctl(KVMState *s, int type, ...)
1896 {
1897 int ret;
1898 void *arg;
1899 va_list ap;
1900
1901 va_start(ap, type);
1902 arg = va_arg(ap, void *);
1903 va_end(ap);
1904
1905 trace_kvm_vm_ioctl(type, arg);
1906 ret = ioctl(s->vmfd, type, arg);
1907 if (ret == -1) {
1908 ret = -errno;
1909 }
1910 return ret;
1911 }
1912
1913 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
1914 {
1915 int ret;
1916 void *arg;
1917 va_list ap;
1918
1919 va_start(ap, type);
1920 arg = va_arg(ap, void *);
1921 va_end(ap);
1922
1923 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
1924 ret = ioctl(cpu->kvm_fd, type, arg);
1925 if (ret == -1) {
1926 ret = -errno;
1927 }
1928 return ret;
1929 }
1930
1931 int kvm_device_ioctl(int fd, int type, ...)
1932 {
1933 int ret;
1934 void *arg;
1935 va_list ap;
1936
1937 va_start(ap, type);
1938 arg = va_arg(ap, void *);
1939 va_end(ap);
1940
1941 trace_kvm_device_ioctl(fd, type, arg);
1942 ret = ioctl(fd, type, arg);
1943 if (ret == -1) {
1944 ret = -errno;
1945 }
1946 return ret;
1947 }
1948
1949 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr)
1950 {
1951 int ret;
1952 struct kvm_device_attr attribute = {
1953 .group = group,
1954 .attr = attr,
1955 };
1956
1957 if (!kvm_vm_attributes_allowed) {
1958 return 0;
1959 }
1960
1961 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute);
1962 /* kvm returns 0 on success for HAS_DEVICE_ATTR */
1963 return ret ? 0 : 1;
1964 }
1965
1966 int kvm_has_sync_mmu(void)
1967 {
1968 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
1969 }
1970
1971 int kvm_has_vcpu_events(void)
1972 {
1973 return kvm_state->vcpu_events;
1974 }
1975
1976 int kvm_has_robust_singlestep(void)
1977 {
1978 return kvm_state->robust_singlestep;
1979 }
1980
1981 int kvm_has_debugregs(void)
1982 {
1983 return kvm_state->debugregs;
1984 }
1985
1986 int kvm_has_xsave(void)
1987 {
1988 return kvm_state->xsave;
1989 }
1990
1991 int kvm_has_xcrs(void)
1992 {
1993 return kvm_state->xcrs;
1994 }
1995
1996 int kvm_has_pit_state2(void)
1997 {
1998 return kvm_state->pit_state2;
1999 }
2000
2001 int kvm_has_many_ioeventfds(void)
2002 {
2003 if (!kvm_enabled()) {
2004 return 0;
2005 }
2006 return kvm_state->many_ioeventfds;
2007 }
2008
2009 int kvm_has_gsi_routing(void)
2010 {
2011 #ifdef KVM_CAP_IRQ_ROUTING
2012 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
2013 #else
2014 return false;
2015 #endif
2016 }
2017
2018 int kvm_has_intx_set_mask(void)
2019 {
2020 return kvm_state->intx_set_mask;
2021 }
2022
2023 void kvm_setup_guest_memory(void *start, size_t size)
2024 {
2025 if (!kvm_has_sync_mmu()) {
2026 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
2027
2028 if (ret) {
2029 perror("qemu_madvise");
2030 fprintf(stderr,
2031 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
2032 exit(1);
2033 }
2034 }
2035 }
2036
2037 #ifdef KVM_CAP_SET_GUEST_DEBUG
2038 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
2039 target_ulong pc)
2040 {
2041 struct kvm_sw_breakpoint *bp;
2042
2043 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
2044 if (bp->pc == pc) {
2045 return bp;
2046 }
2047 }
2048 return NULL;
2049 }
2050
2051 int kvm_sw_breakpoints_active(CPUState *cpu)
2052 {
2053 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
2054 }
2055
2056 struct kvm_set_guest_debug_data {
2057 struct kvm_guest_debug dbg;
2058 CPUState *cpu;
2059 int err;
2060 };
2061
2062 static void kvm_invoke_set_guest_debug(void *data)
2063 {
2064 struct kvm_set_guest_debug_data *dbg_data = data;
2065
2066 dbg_data->err = kvm_vcpu_ioctl(dbg_data->cpu, KVM_SET_GUEST_DEBUG,
2067 &dbg_data->dbg);
2068 }
2069
2070 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2071 {
2072 struct kvm_set_guest_debug_data data;
2073
2074 data.dbg.control = reinject_trap;
2075
2076 if (cpu->singlestep_enabled) {
2077 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
2078 }
2079 kvm_arch_update_guest_debug(cpu, &data.dbg);
2080 data.cpu = cpu;
2081
2082 run_on_cpu(cpu, kvm_invoke_set_guest_debug, &data);
2083 return data.err;
2084 }
2085
2086 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2087 target_ulong len, int type)
2088 {
2089 struct kvm_sw_breakpoint *bp;
2090 int err;
2091
2092 if (type == GDB_BREAKPOINT_SW) {
2093 bp = kvm_find_sw_breakpoint(cpu, addr);
2094 if (bp) {
2095 bp->use_count++;
2096 return 0;
2097 }
2098
2099 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
2100 bp->pc = addr;
2101 bp->use_count = 1;
2102 err = kvm_arch_insert_sw_breakpoint(cpu, bp);
2103 if (err) {
2104 g_free(bp);
2105 return err;
2106 }
2107
2108 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2109 } else {
2110 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
2111 if (err) {
2112 return err;
2113 }
2114 }
2115
2116 CPU_FOREACH(cpu) {
2117 err = kvm_update_guest_debug(cpu, 0);
2118 if (err) {
2119 return err;
2120 }
2121 }
2122 return 0;
2123 }
2124
2125 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2126 target_ulong len, int type)
2127 {
2128 struct kvm_sw_breakpoint *bp;
2129 int err;
2130
2131 if (type == GDB_BREAKPOINT_SW) {
2132 bp = kvm_find_sw_breakpoint(cpu, addr);
2133 if (!bp) {
2134 return -ENOENT;
2135 }
2136
2137 if (bp->use_count > 1) {
2138 bp->use_count--;
2139 return 0;
2140 }
2141
2142 err = kvm_arch_remove_sw_breakpoint(cpu, bp);
2143 if (err) {
2144 return err;
2145 }
2146
2147 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2148 g_free(bp);
2149 } else {
2150 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
2151 if (err) {
2152 return err;
2153 }
2154 }
2155
2156 CPU_FOREACH(cpu) {
2157 err = kvm_update_guest_debug(cpu, 0);
2158 if (err) {
2159 return err;
2160 }
2161 }
2162 return 0;
2163 }
2164
2165 void kvm_remove_all_breakpoints(CPUState *cpu)
2166 {
2167 struct kvm_sw_breakpoint *bp, *next;
2168 KVMState *s = cpu->kvm_state;
2169 CPUState *tmpcpu;
2170
2171 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
2172 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
2173 /* Try harder to find a CPU that currently sees the breakpoint. */
2174 CPU_FOREACH(tmpcpu) {
2175 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
2176 break;
2177 }
2178 }
2179 }
2180 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
2181 g_free(bp);
2182 }
2183 kvm_arch_remove_all_hw_breakpoints();
2184
2185 CPU_FOREACH(cpu) {
2186 kvm_update_guest_debug(cpu, 0);
2187 }
2188 }
2189
2190 #else /* !KVM_CAP_SET_GUEST_DEBUG */
2191
2192 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2193 {
2194 return -EINVAL;
2195 }
2196
2197 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2198 target_ulong len, int type)
2199 {
2200 return -EINVAL;
2201 }
2202
2203 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2204 target_ulong len, int type)
2205 {
2206 return -EINVAL;
2207 }
2208
2209 void kvm_remove_all_breakpoints(CPUState *cpu)
2210 {
2211 }
2212 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2213
2214 int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
2215 {
2216 KVMState *s = kvm_state;
2217 struct kvm_signal_mask *sigmask;
2218 int r;
2219
2220 if (!sigset) {
2221 return kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, NULL);
2222 }
2223
2224 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
2225
2226 sigmask->len = s->sigmask_len;
2227 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
2228 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
2229 g_free(sigmask);
2230
2231 return r;
2232 }
2233 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
2234 {
2235 return kvm_arch_on_sigbus_vcpu(cpu, code, addr);
2236 }
2237
2238 int kvm_on_sigbus(int code, void *addr)
2239 {
2240 return kvm_arch_on_sigbus(code, addr);
2241 }
2242
2243 int kvm_create_device(KVMState *s, uint64_t type, bool test)
2244 {
2245 int ret;
2246 struct kvm_create_device create_dev;
2247
2248 create_dev.type = type;
2249 create_dev.fd = -1;
2250 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
2251
2252 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
2253 return -ENOTSUP;
2254 }
2255
2256 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
2257 if (ret) {
2258 return ret;
2259 }
2260
2261 return test ? 0 : create_dev.fd;
2262 }
2263
2264 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
2265 {
2266 struct kvm_one_reg reg;
2267 int r;
2268
2269 reg.id = id;
2270 reg.addr = (uintptr_t) source;
2271 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
2272 if (r) {
2273 trace_kvm_failed_reg_set(id, strerror(r));
2274 }
2275 return r;
2276 }
2277
2278 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
2279 {
2280 struct kvm_one_reg reg;
2281 int r;
2282
2283 reg.id = id;
2284 reg.addr = (uintptr_t) target;
2285 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
2286 if (r) {
2287 trace_kvm_failed_reg_get(id, strerror(r));
2288 }
2289 return r;
2290 }
2291
2292 static void kvm_accel_class_init(ObjectClass *oc, void *data)
2293 {
2294 AccelClass *ac = ACCEL_CLASS(oc);
2295 ac->name = "KVM";
2296 ac->init_machine = kvm_init;
2297 ac->allowed = &kvm_allowed;
2298 }
2299
2300 static const TypeInfo kvm_accel_type = {
2301 .name = TYPE_KVM_ACCEL,
2302 .parent = TYPE_ACCEL,
2303 .class_init = kvm_accel_class_init,
2304 .instance_size = sizeof(KVMState),
2305 };
2306
2307 static void kvm_type_init(void)
2308 {
2309 type_register_static(&kvm_accel_type);
2310 }
2311
2312 type_init(kvm_type_init);