]> git.proxmox.com Git - mirror_qemu.git/blob - kvm-all.c
kvm-all: trace: strerror fixup
[mirror_qemu.git] / kvm-all.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
10 *
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
13 *
14 */
15
16 #include "qemu/osdep.h"
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19
20 #include <linux/kvm.h>
21
22 #include "qemu-common.h"
23 #include "qemu/atomic.h"
24 #include "qemu/option.h"
25 #include "qemu/config-file.h"
26 #include "qemu/error-report.h"
27 #include "hw/hw.h"
28 #include "hw/pci/msi.h"
29 #include "hw/s390x/adapter.h"
30 #include "exec/gdbstub.h"
31 #include "sysemu/kvm_int.h"
32 #include "qemu/bswap.h"
33 #include "exec/memory.h"
34 #include "exec/ram_addr.h"
35 #include "exec/address-spaces.h"
36 #include "qemu/event_notifier.h"
37 #include "trace.h"
38 #include "hw/irq.h"
39
40 #include "hw/boards.h"
41
42 /* This check must be after config-host.h is included */
43 #ifdef CONFIG_EVENTFD
44 #include <sys/eventfd.h>
45 #endif
46
47 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We
48 * need to use the real host PAGE_SIZE, as that's what KVM will use.
49 */
50 #define PAGE_SIZE getpagesize()
51
52 //#define DEBUG_KVM
53
54 #ifdef DEBUG_KVM
55 #define DPRINTF(fmt, ...) \
56 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
57 #else
58 #define DPRINTF(fmt, ...) \
59 do { } while (0)
60 #endif
61
62 #define KVM_MSI_HASHTAB_SIZE 256
63
64 struct KVMState
65 {
66 AccelState parent_obj;
67
68 int nr_slots;
69 int fd;
70 int vmfd;
71 int coalesced_mmio;
72 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
73 bool coalesced_flush_in_progress;
74 int broken_set_mem_region;
75 int vcpu_events;
76 int robust_singlestep;
77 int debugregs;
78 #ifdef KVM_CAP_SET_GUEST_DEBUG
79 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
80 #endif
81 int many_ioeventfds;
82 int intx_set_mask;
83 /* The man page (and posix) say ioctl numbers are signed int, but
84 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
85 * unsigned, and treating them as signed here can break things */
86 unsigned irq_set_ioctl;
87 unsigned int sigmask_len;
88 GHashTable *gsimap;
89 #ifdef KVM_CAP_IRQ_ROUTING
90 struct kvm_irq_routing *irq_routes;
91 int nr_allocated_irq_routes;
92 uint32_t *used_gsi_bitmap;
93 unsigned int gsi_count;
94 QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
95 #endif
96 KVMMemoryListener memory_listener;
97 };
98
99 KVMState *kvm_state;
100 bool kvm_kernel_irqchip;
101 bool kvm_split_irqchip;
102 bool kvm_async_interrupts_allowed;
103 bool kvm_halt_in_kernel_allowed;
104 bool kvm_eventfds_allowed;
105 bool kvm_irqfds_allowed;
106 bool kvm_resamplefds_allowed;
107 bool kvm_msi_via_irqfd_allowed;
108 bool kvm_gsi_routing_allowed;
109 bool kvm_gsi_direct_mapping;
110 bool kvm_allowed;
111 bool kvm_readonly_mem_allowed;
112 bool kvm_vm_attributes_allowed;
113 bool kvm_direct_msi_allowed;
114 bool kvm_ioeventfd_any_length_allowed;
115
116 static const KVMCapabilityInfo kvm_required_capabilites[] = {
117 KVM_CAP_INFO(USER_MEMORY),
118 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
119 KVM_CAP_LAST_INFO
120 };
121
122 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml)
123 {
124 KVMState *s = kvm_state;
125 int i;
126
127 for (i = 0; i < s->nr_slots; i++) {
128 if (kml->slots[i].memory_size == 0) {
129 return &kml->slots[i];
130 }
131 }
132
133 return NULL;
134 }
135
136 bool kvm_has_free_slot(MachineState *ms)
137 {
138 KVMState *s = KVM_STATE(ms->accelerator);
139
140 return kvm_get_free_slot(&s->memory_listener);
141 }
142
143 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml)
144 {
145 KVMSlot *slot = kvm_get_free_slot(kml);
146
147 if (slot) {
148 return slot;
149 }
150
151 fprintf(stderr, "%s: no free slot available\n", __func__);
152 abort();
153 }
154
155 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml,
156 hwaddr start_addr,
157 hwaddr end_addr)
158 {
159 KVMState *s = kvm_state;
160 int i;
161
162 for (i = 0; i < s->nr_slots; i++) {
163 KVMSlot *mem = &kml->slots[i];
164
165 if (start_addr == mem->start_addr &&
166 end_addr == mem->start_addr + mem->memory_size) {
167 return mem;
168 }
169 }
170
171 return NULL;
172 }
173
174 /*
175 * Find overlapping slot with lowest start address
176 */
177 static KVMSlot *kvm_lookup_overlapping_slot(KVMMemoryListener *kml,
178 hwaddr start_addr,
179 hwaddr end_addr)
180 {
181 KVMState *s = kvm_state;
182 KVMSlot *found = NULL;
183 int i;
184
185 for (i = 0; i < s->nr_slots; i++) {
186 KVMSlot *mem = &kml->slots[i];
187
188 if (mem->memory_size == 0 ||
189 (found && found->start_addr < mem->start_addr)) {
190 continue;
191 }
192
193 if (end_addr > mem->start_addr &&
194 start_addr < mem->start_addr + mem->memory_size) {
195 found = mem;
196 }
197 }
198
199 return found;
200 }
201
202 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
203 hwaddr *phys_addr)
204 {
205 KVMMemoryListener *kml = &s->memory_listener;
206 int i;
207
208 for (i = 0; i < s->nr_slots; i++) {
209 KVMSlot *mem = &kml->slots[i];
210
211 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
212 *phys_addr = mem->start_addr + (ram - mem->ram);
213 return 1;
214 }
215 }
216
217 return 0;
218 }
219
220 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot)
221 {
222 KVMState *s = kvm_state;
223 struct kvm_userspace_memory_region mem;
224
225 mem.slot = slot->slot | (kml->as_id << 16);
226 mem.guest_phys_addr = slot->start_addr;
227 mem.userspace_addr = (unsigned long)slot->ram;
228 mem.flags = slot->flags;
229
230 if (slot->memory_size && mem.flags & KVM_MEM_READONLY) {
231 /* Set the slot size to 0 before setting the slot to the desired
232 * value. This is needed based on KVM commit 75d61fbc. */
233 mem.memory_size = 0;
234 kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
235 }
236 mem.memory_size = slot->memory_size;
237 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
238 }
239
240 int kvm_init_vcpu(CPUState *cpu)
241 {
242 KVMState *s = kvm_state;
243 long mmap_size;
244 int ret;
245
246 DPRINTF("kvm_init_vcpu\n");
247
248 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)kvm_arch_vcpu_id(cpu));
249 if (ret < 0) {
250 DPRINTF("kvm_create_vcpu failed\n");
251 goto err;
252 }
253
254 cpu->kvm_fd = ret;
255 cpu->kvm_state = s;
256 cpu->kvm_vcpu_dirty = true;
257
258 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
259 if (mmap_size < 0) {
260 ret = mmap_size;
261 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
262 goto err;
263 }
264
265 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
266 cpu->kvm_fd, 0);
267 if (cpu->kvm_run == MAP_FAILED) {
268 ret = -errno;
269 DPRINTF("mmap'ing vcpu state failed\n");
270 goto err;
271 }
272
273 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
274 s->coalesced_mmio_ring =
275 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
276 }
277
278 ret = kvm_arch_init_vcpu(cpu);
279 err:
280 return ret;
281 }
282
283 /*
284 * dirty pages logging control
285 */
286
287 static int kvm_mem_flags(MemoryRegion *mr)
288 {
289 bool readonly = mr->readonly || memory_region_is_romd(mr);
290 int flags = 0;
291
292 if (memory_region_get_dirty_log_mask(mr) != 0) {
293 flags |= KVM_MEM_LOG_DIRTY_PAGES;
294 }
295 if (readonly && kvm_readonly_mem_allowed) {
296 flags |= KVM_MEM_READONLY;
297 }
298 return flags;
299 }
300
301 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem,
302 MemoryRegion *mr)
303 {
304 int old_flags;
305
306 old_flags = mem->flags;
307 mem->flags = kvm_mem_flags(mr);
308
309 /* If nothing changed effectively, no need to issue ioctl */
310 if (mem->flags == old_flags) {
311 return 0;
312 }
313
314 return kvm_set_user_memory_region(kml, mem);
315 }
316
317 static int kvm_section_update_flags(KVMMemoryListener *kml,
318 MemoryRegionSection *section)
319 {
320 hwaddr phys_addr = section->offset_within_address_space;
321 ram_addr_t size = int128_get64(section->size);
322 KVMSlot *mem = kvm_lookup_matching_slot(kml, phys_addr, phys_addr + size);
323
324 if (mem == NULL) {
325 return 0;
326 } else {
327 return kvm_slot_update_flags(kml, mem, section->mr);
328 }
329 }
330
331 static void kvm_log_start(MemoryListener *listener,
332 MemoryRegionSection *section,
333 int old, int new)
334 {
335 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
336 int r;
337
338 if (old != 0) {
339 return;
340 }
341
342 r = kvm_section_update_flags(kml, section);
343 if (r < 0) {
344 abort();
345 }
346 }
347
348 static void kvm_log_stop(MemoryListener *listener,
349 MemoryRegionSection *section,
350 int old, int new)
351 {
352 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
353 int r;
354
355 if (new != 0) {
356 return;
357 }
358
359 r = kvm_section_update_flags(kml, section);
360 if (r < 0) {
361 abort();
362 }
363 }
364
365 /* get kvm's dirty pages bitmap and update qemu's */
366 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
367 unsigned long *bitmap)
368 {
369 ram_addr_t start = section->offset_within_region + section->mr->ram_addr;
370 ram_addr_t pages = int128_get64(section->size) / getpagesize();
371
372 cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages);
373 return 0;
374 }
375
376 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
377
378 /**
379 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
380 * This function updates qemu's dirty bitmap using
381 * memory_region_set_dirty(). This means all bits are set
382 * to dirty.
383 *
384 * @start_add: start of logged region.
385 * @end_addr: end of logged region.
386 */
387 static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml,
388 MemoryRegionSection *section)
389 {
390 KVMState *s = kvm_state;
391 unsigned long size, allocated_size = 0;
392 struct kvm_dirty_log d = {};
393 KVMSlot *mem;
394 int ret = 0;
395 hwaddr start_addr = section->offset_within_address_space;
396 hwaddr end_addr = start_addr + int128_get64(section->size);
397
398 d.dirty_bitmap = NULL;
399 while (start_addr < end_addr) {
400 mem = kvm_lookup_overlapping_slot(kml, start_addr, end_addr);
401 if (mem == NULL) {
402 break;
403 }
404
405 /* XXX bad kernel interface alert
406 * For dirty bitmap, kernel allocates array of size aligned to
407 * bits-per-long. But for case when the kernel is 64bits and
408 * the userspace is 32bits, userspace can't align to the same
409 * bits-per-long, since sizeof(long) is different between kernel
410 * and user space. This way, userspace will provide buffer which
411 * may be 4 bytes less than the kernel will use, resulting in
412 * userspace memory corruption (which is not detectable by valgrind
413 * too, in most cases).
414 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
415 * a hope that sizeof(long) wont become >8 any time soon.
416 */
417 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
418 /*HOST_LONG_BITS*/ 64) / 8;
419 if (!d.dirty_bitmap) {
420 d.dirty_bitmap = g_malloc(size);
421 } else if (size > allocated_size) {
422 d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
423 }
424 allocated_size = size;
425 memset(d.dirty_bitmap, 0, allocated_size);
426
427 d.slot = mem->slot | (kml->as_id << 16);
428 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
429 DPRINTF("ioctl failed %d\n", errno);
430 ret = -1;
431 break;
432 }
433
434 kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
435 start_addr = mem->start_addr + mem->memory_size;
436 }
437 g_free(d.dirty_bitmap);
438
439 return ret;
440 }
441
442 static void kvm_coalesce_mmio_region(MemoryListener *listener,
443 MemoryRegionSection *secion,
444 hwaddr start, hwaddr size)
445 {
446 KVMState *s = kvm_state;
447
448 if (s->coalesced_mmio) {
449 struct kvm_coalesced_mmio_zone zone;
450
451 zone.addr = start;
452 zone.size = size;
453 zone.pad = 0;
454
455 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
456 }
457 }
458
459 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
460 MemoryRegionSection *secion,
461 hwaddr start, hwaddr size)
462 {
463 KVMState *s = kvm_state;
464
465 if (s->coalesced_mmio) {
466 struct kvm_coalesced_mmio_zone zone;
467
468 zone.addr = start;
469 zone.size = size;
470 zone.pad = 0;
471
472 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
473 }
474 }
475
476 int kvm_check_extension(KVMState *s, unsigned int extension)
477 {
478 int ret;
479
480 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
481 if (ret < 0) {
482 ret = 0;
483 }
484
485 return ret;
486 }
487
488 int kvm_vm_check_extension(KVMState *s, unsigned int extension)
489 {
490 int ret;
491
492 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
493 if (ret < 0) {
494 /* VM wide version not implemented, use global one instead */
495 ret = kvm_check_extension(s, extension);
496 }
497
498 return ret;
499 }
500
501 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
502 {
503 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
504 /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN
505 * endianness, but the memory core hands them in target endianness.
506 * For example, PPC is always treated as big-endian even if running
507 * on KVM and on PPC64LE. Correct here.
508 */
509 switch (size) {
510 case 2:
511 val = bswap16(val);
512 break;
513 case 4:
514 val = bswap32(val);
515 break;
516 }
517 #endif
518 return val;
519 }
520
521 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
522 bool assign, uint32_t size, bool datamatch)
523 {
524 int ret;
525 struct kvm_ioeventfd iofd = {
526 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
527 .addr = addr,
528 .len = size,
529 .flags = 0,
530 .fd = fd,
531 };
532
533 if (!kvm_enabled()) {
534 return -ENOSYS;
535 }
536
537 if (datamatch) {
538 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
539 }
540 if (!assign) {
541 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
542 }
543
544 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
545
546 if (ret < 0) {
547 return -errno;
548 }
549
550 return 0;
551 }
552
553 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
554 bool assign, uint32_t size, bool datamatch)
555 {
556 struct kvm_ioeventfd kick = {
557 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
558 .addr = addr,
559 .flags = KVM_IOEVENTFD_FLAG_PIO,
560 .len = size,
561 .fd = fd,
562 };
563 int r;
564 if (!kvm_enabled()) {
565 return -ENOSYS;
566 }
567 if (datamatch) {
568 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
569 }
570 if (!assign) {
571 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
572 }
573 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
574 if (r < 0) {
575 return r;
576 }
577 return 0;
578 }
579
580
581 static int kvm_check_many_ioeventfds(void)
582 {
583 /* Userspace can use ioeventfd for io notification. This requires a host
584 * that supports eventfd(2) and an I/O thread; since eventfd does not
585 * support SIGIO it cannot interrupt the vcpu.
586 *
587 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
588 * can avoid creating too many ioeventfds.
589 */
590 #if defined(CONFIG_EVENTFD)
591 int ioeventfds[7];
592 int i, ret = 0;
593 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
594 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
595 if (ioeventfds[i] < 0) {
596 break;
597 }
598 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
599 if (ret < 0) {
600 close(ioeventfds[i]);
601 break;
602 }
603 }
604
605 /* Decide whether many devices are supported or not */
606 ret = i == ARRAY_SIZE(ioeventfds);
607
608 while (i-- > 0) {
609 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
610 close(ioeventfds[i]);
611 }
612 return ret;
613 #else
614 return 0;
615 #endif
616 }
617
618 static const KVMCapabilityInfo *
619 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
620 {
621 while (list->name) {
622 if (!kvm_check_extension(s, list->value)) {
623 return list;
624 }
625 list++;
626 }
627 return NULL;
628 }
629
630 static void kvm_set_phys_mem(KVMMemoryListener *kml,
631 MemoryRegionSection *section, bool add)
632 {
633 KVMState *s = kvm_state;
634 KVMSlot *mem, old;
635 int err;
636 MemoryRegion *mr = section->mr;
637 bool writeable = !mr->readonly && !mr->rom_device;
638 hwaddr start_addr = section->offset_within_address_space;
639 ram_addr_t size = int128_get64(section->size);
640 void *ram = NULL;
641 unsigned delta;
642
643 /* kvm works in page size chunks, but the function may be called
644 with sub-page size and unaligned start address. Pad the start
645 address to next and truncate size to previous page boundary. */
646 delta = qemu_real_host_page_size - (start_addr & ~qemu_real_host_page_mask);
647 delta &= ~qemu_real_host_page_mask;
648 if (delta > size) {
649 return;
650 }
651 start_addr += delta;
652 size -= delta;
653 size &= qemu_real_host_page_mask;
654 if (!size || (start_addr & ~qemu_real_host_page_mask)) {
655 return;
656 }
657
658 if (!memory_region_is_ram(mr)) {
659 if (writeable || !kvm_readonly_mem_allowed) {
660 return;
661 } else if (!mr->romd_mode) {
662 /* If the memory device is not in romd_mode, then we actually want
663 * to remove the kvm memory slot so all accesses will trap. */
664 add = false;
665 }
666 }
667
668 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta;
669
670 while (1) {
671 mem = kvm_lookup_overlapping_slot(kml, start_addr, start_addr + size);
672 if (!mem) {
673 break;
674 }
675
676 if (add && start_addr >= mem->start_addr &&
677 (start_addr + size <= mem->start_addr + mem->memory_size) &&
678 (ram - start_addr == mem->ram - mem->start_addr)) {
679 /* The new slot fits into the existing one and comes with
680 * identical parameters - update flags and done. */
681 kvm_slot_update_flags(kml, mem, mr);
682 return;
683 }
684
685 old = *mem;
686
687 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
688 kvm_physical_sync_dirty_bitmap(kml, section);
689 }
690
691 /* unregister the overlapping slot */
692 mem->memory_size = 0;
693 err = kvm_set_user_memory_region(kml, mem);
694 if (err) {
695 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
696 __func__, strerror(-err));
697 abort();
698 }
699
700 /* Workaround for older KVM versions: we can't join slots, even not by
701 * unregistering the previous ones and then registering the larger
702 * slot. We have to maintain the existing fragmentation. Sigh.
703 *
704 * This workaround assumes that the new slot starts at the same
705 * address as the first existing one. If not or if some overlapping
706 * slot comes around later, we will fail (not seen in practice so far)
707 * - and actually require a recent KVM version. */
708 if (s->broken_set_mem_region &&
709 old.start_addr == start_addr && old.memory_size < size && add) {
710 mem = kvm_alloc_slot(kml);
711 mem->memory_size = old.memory_size;
712 mem->start_addr = old.start_addr;
713 mem->ram = old.ram;
714 mem->flags = kvm_mem_flags(mr);
715
716 err = kvm_set_user_memory_region(kml, mem);
717 if (err) {
718 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
719 strerror(-err));
720 abort();
721 }
722
723 start_addr += old.memory_size;
724 ram += old.memory_size;
725 size -= old.memory_size;
726 continue;
727 }
728
729 /* register prefix slot */
730 if (old.start_addr < start_addr) {
731 mem = kvm_alloc_slot(kml);
732 mem->memory_size = start_addr - old.start_addr;
733 mem->start_addr = old.start_addr;
734 mem->ram = old.ram;
735 mem->flags = kvm_mem_flags(mr);
736
737 err = kvm_set_user_memory_region(kml, mem);
738 if (err) {
739 fprintf(stderr, "%s: error registering prefix slot: %s\n",
740 __func__, strerror(-err));
741 #ifdef TARGET_PPC
742 fprintf(stderr, "%s: This is probably because your kernel's " \
743 "PAGE_SIZE is too big. Please try to use 4k " \
744 "PAGE_SIZE!\n", __func__);
745 #endif
746 abort();
747 }
748 }
749
750 /* register suffix slot */
751 if (old.start_addr + old.memory_size > start_addr + size) {
752 ram_addr_t size_delta;
753
754 mem = kvm_alloc_slot(kml);
755 mem->start_addr = start_addr + size;
756 size_delta = mem->start_addr - old.start_addr;
757 mem->memory_size = old.memory_size - size_delta;
758 mem->ram = old.ram + size_delta;
759 mem->flags = kvm_mem_flags(mr);
760
761 err = kvm_set_user_memory_region(kml, mem);
762 if (err) {
763 fprintf(stderr, "%s: error registering suffix slot: %s\n",
764 __func__, strerror(-err));
765 abort();
766 }
767 }
768 }
769
770 /* in case the KVM bug workaround already "consumed" the new slot */
771 if (!size) {
772 return;
773 }
774 if (!add) {
775 return;
776 }
777 mem = kvm_alloc_slot(kml);
778 mem->memory_size = size;
779 mem->start_addr = start_addr;
780 mem->ram = ram;
781 mem->flags = kvm_mem_flags(mr);
782
783 err = kvm_set_user_memory_region(kml, mem);
784 if (err) {
785 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
786 strerror(-err));
787 abort();
788 }
789 }
790
791 static void kvm_region_add(MemoryListener *listener,
792 MemoryRegionSection *section)
793 {
794 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
795
796 memory_region_ref(section->mr);
797 kvm_set_phys_mem(kml, section, true);
798 }
799
800 static void kvm_region_del(MemoryListener *listener,
801 MemoryRegionSection *section)
802 {
803 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
804
805 kvm_set_phys_mem(kml, section, false);
806 memory_region_unref(section->mr);
807 }
808
809 static void kvm_log_sync(MemoryListener *listener,
810 MemoryRegionSection *section)
811 {
812 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
813 int r;
814
815 r = kvm_physical_sync_dirty_bitmap(kml, section);
816 if (r < 0) {
817 abort();
818 }
819 }
820
821 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
822 MemoryRegionSection *section,
823 bool match_data, uint64_t data,
824 EventNotifier *e)
825 {
826 int fd = event_notifier_get_fd(e);
827 int r;
828
829 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
830 data, true, int128_get64(section->size),
831 match_data);
832 if (r < 0) {
833 fprintf(stderr, "%s: error adding ioeventfd: %s\n",
834 __func__, strerror(-r));
835 abort();
836 }
837 }
838
839 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
840 MemoryRegionSection *section,
841 bool match_data, uint64_t data,
842 EventNotifier *e)
843 {
844 int fd = event_notifier_get_fd(e);
845 int r;
846
847 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
848 data, false, int128_get64(section->size),
849 match_data);
850 if (r < 0) {
851 abort();
852 }
853 }
854
855 static void kvm_io_ioeventfd_add(MemoryListener *listener,
856 MemoryRegionSection *section,
857 bool match_data, uint64_t data,
858 EventNotifier *e)
859 {
860 int fd = event_notifier_get_fd(e);
861 int r;
862
863 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
864 data, true, int128_get64(section->size),
865 match_data);
866 if (r < 0) {
867 fprintf(stderr, "%s: error adding ioeventfd: %s\n",
868 __func__, strerror(-r));
869 abort();
870 }
871 }
872
873 static void kvm_io_ioeventfd_del(MemoryListener *listener,
874 MemoryRegionSection *section,
875 bool match_data, uint64_t data,
876 EventNotifier *e)
877
878 {
879 int fd = event_notifier_get_fd(e);
880 int r;
881
882 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
883 data, false, int128_get64(section->size),
884 match_data);
885 if (r < 0) {
886 abort();
887 }
888 }
889
890 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml,
891 AddressSpace *as, int as_id)
892 {
893 int i;
894
895 kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot));
896 kml->as_id = as_id;
897
898 for (i = 0; i < s->nr_slots; i++) {
899 kml->slots[i].slot = i;
900 }
901
902 kml->listener.region_add = kvm_region_add;
903 kml->listener.region_del = kvm_region_del;
904 kml->listener.log_start = kvm_log_start;
905 kml->listener.log_stop = kvm_log_stop;
906 kml->listener.log_sync = kvm_log_sync;
907 kml->listener.priority = 10;
908
909 memory_listener_register(&kml->listener, as);
910 }
911
912 static MemoryListener kvm_io_listener = {
913 .eventfd_add = kvm_io_ioeventfd_add,
914 .eventfd_del = kvm_io_ioeventfd_del,
915 .priority = 10,
916 };
917
918 static void kvm_handle_interrupt(CPUState *cpu, int mask)
919 {
920 cpu->interrupt_request |= mask;
921
922 if (!qemu_cpu_is_self(cpu)) {
923 qemu_cpu_kick(cpu);
924 }
925 }
926
927 int kvm_set_irq(KVMState *s, int irq, int level)
928 {
929 struct kvm_irq_level event;
930 int ret;
931
932 assert(kvm_async_interrupts_enabled());
933
934 event.level = level;
935 event.irq = irq;
936 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
937 if (ret < 0) {
938 perror("kvm_set_irq");
939 abort();
940 }
941
942 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
943 }
944
945 #ifdef KVM_CAP_IRQ_ROUTING
946 typedef struct KVMMSIRoute {
947 struct kvm_irq_routing_entry kroute;
948 QTAILQ_ENTRY(KVMMSIRoute) entry;
949 } KVMMSIRoute;
950
951 static void set_gsi(KVMState *s, unsigned int gsi)
952 {
953 s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32);
954 }
955
956 static void clear_gsi(KVMState *s, unsigned int gsi)
957 {
958 s->used_gsi_bitmap[gsi / 32] &= ~(1U << (gsi % 32));
959 }
960
961 void kvm_init_irq_routing(KVMState *s)
962 {
963 int gsi_count, i;
964
965 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
966 if (gsi_count > 0) {
967 unsigned int gsi_bits, i;
968
969 /* Round up so we can search ints using ffs */
970 gsi_bits = ALIGN(gsi_count, 32);
971 s->used_gsi_bitmap = g_malloc0(gsi_bits / 8);
972 s->gsi_count = gsi_count;
973
974 /* Mark any over-allocated bits as already in use */
975 for (i = gsi_count; i < gsi_bits; i++) {
976 set_gsi(s, i);
977 }
978 }
979
980 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
981 s->nr_allocated_irq_routes = 0;
982
983 if (!kvm_direct_msi_allowed) {
984 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
985 QTAILQ_INIT(&s->msi_hashtab[i]);
986 }
987 }
988
989 kvm_arch_init_irq_routing(s);
990 }
991
992 void kvm_irqchip_commit_routes(KVMState *s)
993 {
994 int ret;
995
996 s->irq_routes->flags = 0;
997 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
998 assert(ret == 0);
999 }
1000
1001 static void kvm_add_routing_entry(KVMState *s,
1002 struct kvm_irq_routing_entry *entry)
1003 {
1004 struct kvm_irq_routing_entry *new;
1005 int n, size;
1006
1007 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
1008 n = s->nr_allocated_irq_routes * 2;
1009 if (n < 64) {
1010 n = 64;
1011 }
1012 size = sizeof(struct kvm_irq_routing);
1013 size += n * sizeof(*new);
1014 s->irq_routes = g_realloc(s->irq_routes, size);
1015 s->nr_allocated_irq_routes = n;
1016 }
1017 n = s->irq_routes->nr++;
1018 new = &s->irq_routes->entries[n];
1019
1020 *new = *entry;
1021
1022 set_gsi(s, entry->gsi);
1023 }
1024
1025 static int kvm_update_routing_entry(KVMState *s,
1026 struct kvm_irq_routing_entry *new_entry)
1027 {
1028 struct kvm_irq_routing_entry *entry;
1029 int n;
1030
1031 for (n = 0; n < s->irq_routes->nr; n++) {
1032 entry = &s->irq_routes->entries[n];
1033 if (entry->gsi != new_entry->gsi) {
1034 continue;
1035 }
1036
1037 if(!memcmp(entry, new_entry, sizeof *entry)) {
1038 return 0;
1039 }
1040
1041 *entry = *new_entry;
1042
1043 kvm_irqchip_commit_routes(s);
1044
1045 return 0;
1046 }
1047
1048 return -ESRCH;
1049 }
1050
1051 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1052 {
1053 struct kvm_irq_routing_entry e = {};
1054
1055 assert(pin < s->gsi_count);
1056
1057 e.gsi = irq;
1058 e.type = KVM_IRQ_ROUTING_IRQCHIP;
1059 e.flags = 0;
1060 e.u.irqchip.irqchip = irqchip;
1061 e.u.irqchip.pin = pin;
1062 kvm_add_routing_entry(s, &e);
1063 }
1064
1065 void kvm_irqchip_release_virq(KVMState *s, int virq)
1066 {
1067 struct kvm_irq_routing_entry *e;
1068 int i;
1069
1070 if (kvm_gsi_direct_mapping()) {
1071 return;
1072 }
1073
1074 for (i = 0; i < s->irq_routes->nr; i++) {
1075 e = &s->irq_routes->entries[i];
1076 if (e->gsi == virq) {
1077 s->irq_routes->nr--;
1078 *e = s->irq_routes->entries[s->irq_routes->nr];
1079 }
1080 }
1081 clear_gsi(s, virq);
1082 }
1083
1084 static unsigned int kvm_hash_msi(uint32_t data)
1085 {
1086 /* This is optimized for IA32 MSI layout. However, no other arch shall
1087 * repeat the mistake of not providing a direct MSI injection API. */
1088 return data & 0xff;
1089 }
1090
1091 static void kvm_flush_dynamic_msi_routes(KVMState *s)
1092 {
1093 KVMMSIRoute *route, *next;
1094 unsigned int hash;
1095
1096 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1097 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1098 kvm_irqchip_release_virq(s, route->kroute.gsi);
1099 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1100 g_free(route);
1101 }
1102 }
1103 }
1104
1105 static int kvm_irqchip_get_virq(KVMState *s)
1106 {
1107 uint32_t *word = s->used_gsi_bitmap;
1108 int max_words = ALIGN(s->gsi_count, 32) / 32;
1109 int i, zeroes;
1110
1111 /*
1112 * PIC and IOAPIC share the first 16 GSI numbers, thus the available
1113 * GSI numbers are more than the number of IRQ route. Allocating a GSI
1114 * number can succeed even though a new route entry cannot be added.
1115 * When this happens, flush dynamic MSI entries to free IRQ route entries.
1116 */
1117 if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) {
1118 kvm_flush_dynamic_msi_routes(s);
1119 }
1120
1121 /* Return the lowest unused GSI in the bitmap */
1122 for (i = 0; i < max_words; i++) {
1123 zeroes = ctz32(~word[i]);
1124 if (zeroes == 32) {
1125 continue;
1126 }
1127
1128 return zeroes + i * 32;
1129 }
1130 return -ENOSPC;
1131
1132 }
1133
1134 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1135 {
1136 unsigned int hash = kvm_hash_msi(msg.data);
1137 KVMMSIRoute *route;
1138
1139 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1140 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1141 route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1142 route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
1143 return route;
1144 }
1145 }
1146 return NULL;
1147 }
1148
1149 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1150 {
1151 struct kvm_msi msi;
1152 KVMMSIRoute *route;
1153
1154 if (kvm_direct_msi_allowed) {
1155 msi.address_lo = (uint32_t)msg.address;
1156 msi.address_hi = msg.address >> 32;
1157 msi.data = le32_to_cpu(msg.data);
1158 msi.flags = 0;
1159 memset(msi.pad, 0, sizeof(msi.pad));
1160
1161 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1162 }
1163
1164 route = kvm_lookup_msi_route(s, msg);
1165 if (!route) {
1166 int virq;
1167
1168 virq = kvm_irqchip_get_virq(s);
1169 if (virq < 0) {
1170 return virq;
1171 }
1172
1173 route = g_malloc0(sizeof(KVMMSIRoute));
1174 route->kroute.gsi = virq;
1175 route->kroute.type = KVM_IRQ_ROUTING_MSI;
1176 route->kroute.flags = 0;
1177 route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1178 route->kroute.u.msi.address_hi = msg.address >> 32;
1179 route->kroute.u.msi.data = le32_to_cpu(msg.data);
1180
1181 kvm_add_routing_entry(s, &route->kroute);
1182 kvm_irqchip_commit_routes(s);
1183
1184 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1185 entry);
1186 }
1187
1188 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1189
1190 return kvm_set_irq(s, route->kroute.gsi, 1);
1191 }
1192
1193 int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg, PCIDevice *dev)
1194 {
1195 struct kvm_irq_routing_entry kroute = {};
1196 int virq;
1197
1198 if (kvm_gsi_direct_mapping()) {
1199 return kvm_arch_msi_data_to_gsi(msg.data);
1200 }
1201
1202 if (!kvm_gsi_routing_enabled()) {
1203 return -ENOSYS;
1204 }
1205
1206 virq = kvm_irqchip_get_virq(s);
1207 if (virq < 0) {
1208 return virq;
1209 }
1210
1211 kroute.gsi = virq;
1212 kroute.type = KVM_IRQ_ROUTING_MSI;
1213 kroute.flags = 0;
1214 kroute.u.msi.address_lo = (uint32_t)msg.address;
1215 kroute.u.msi.address_hi = msg.address >> 32;
1216 kroute.u.msi.data = le32_to_cpu(msg.data);
1217 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1218 kvm_irqchip_release_virq(s, virq);
1219 return -EINVAL;
1220 }
1221
1222 kvm_add_routing_entry(s, &kroute);
1223 kvm_irqchip_commit_routes(s);
1224
1225 return virq;
1226 }
1227
1228 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg,
1229 PCIDevice *dev)
1230 {
1231 struct kvm_irq_routing_entry kroute = {};
1232
1233 if (kvm_gsi_direct_mapping()) {
1234 return 0;
1235 }
1236
1237 if (!kvm_irqchip_in_kernel()) {
1238 return -ENOSYS;
1239 }
1240
1241 kroute.gsi = virq;
1242 kroute.type = KVM_IRQ_ROUTING_MSI;
1243 kroute.flags = 0;
1244 kroute.u.msi.address_lo = (uint32_t)msg.address;
1245 kroute.u.msi.address_hi = msg.address >> 32;
1246 kroute.u.msi.data = le32_to_cpu(msg.data);
1247 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1248 return -EINVAL;
1249 }
1250
1251 return kvm_update_routing_entry(s, &kroute);
1252 }
1253
1254 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq,
1255 bool assign)
1256 {
1257 struct kvm_irqfd irqfd = {
1258 .fd = fd,
1259 .gsi = virq,
1260 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1261 };
1262
1263 if (rfd != -1) {
1264 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
1265 irqfd.resamplefd = rfd;
1266 }
1267
1268 if (!kvm_irqfds_enabled()) {
1269 return -ENOSYS;
1270 }
1271
1272 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1273 }
1274
1275 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1276 {
1277 struct kvm_irq_routing_entry kroute = {};
1278 int virq;
1279
1280 if (!kvm_gsi_routing_enabled()) {
1281 return -ENOSYS;
1282 }
1283
1284 virq = kvm_irqchip_get_virq(s);
1285 if (virq < 0) {
1286 return virq;
1287 }
1288
1289 kroute.gsi = virq;
1290 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
1291 kroute.flags = 0;
1292 kroute.u.adapter.summary_addr = adapter->summary_addr;
1293 kroute.u.adapter.ind_addr = adapter->ind_addr;
1294 kroute.u.adapter.summary_offset = adapter->summary_offset;
1295 kroute.u.adapter.ind_offset = adapter->ind_offset;
1296 kroute.u.adapter.adapter_id = adapter->adapter_id;
1297
1298 kvm_add_routing_entry(s, &kroute);
1299
1300 return virq;
1301 }
1302
1303 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
1304 {
1305 struct kvm_irq_routing_entry kroute = {};
1306 int virq;
1307
1308 if (!kvm_gsi_routing_enabled()) {
1309 return -ENOSYS;
1310 }
1311 if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) {
1312 return -ENOSYS;
1313 }
1314 virq = kvm_irqchip_get_virq(s);
1315 if (virq < 0) {
1316 return virq;
1317 }
1318
1319 kroute.gsi = virq;
1320 kroute.type = KVM_IRQ_ROUTING_HV_SINT;
1321 kroute.flags = 0;
1322 kroute.u.hv_sint.vcpu = vcpu;
1323 kroute.u.hv_sint.sint = sint;
1324
1325 kvm_add_routing_entry(s, &kroute);
1326 kvm_irqchip_commit_routes(s);
1327
1328 return virq;
1329 }
1330
1331 #else /* !KVM_CAP_IRQ_ROUTING */
1332
1333 void kvm_init_irq_routing(KVMState *s)
1334 {
1335 }
1336
1337 void kvm_irqchip_release_virq(KVMState *s, int virq)
1338 {
1339 }
1340
1341 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1342 {
1343 abort();
1344 }
1345
1346 int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1347 {
1348 return -ENOSYS;
1349 }
1350
1351 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1352 {
1353 return -ENOSYS;
1354 }
1355
1356 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
1357 {
1358 return -ENOSYS;
1359 }
1360
1361 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1362 {
1363 abort();
1364 }
1365
1366 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1367 {
1368 return -ENOSYS;
1369 }
1370 #endif /* !KVM_CAP_IRQ_ROUTING */
1371
1372 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
1373 EventNotifier *rn, int virq)
1374 {
1375 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n),
1376 rn ? event_notifier_get_fd(rn) : -1, virq, true);
1377 }
1378
1379 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
1380 int virq)
1381 {
1382 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), -1, virq,
1383 false);
1384 }
1385
1386 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
1387 EventNotifier *rn, qemu_irq irq)
1388 {
1389 gpointer key, gsi;
1390 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
1391
1392 if (!found) {
1393 return -ENXIO;
1394 }
1395 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi));
1396 }
1397
1398 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n,
1399 qemu_irq irq)
1400 {
1401 gpointer key, gsi;
1402 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
1403
1404 if (!found) {
1405 return -ENXIO;
1406 }
1407 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi));
1408 }
1409
1410 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi)
1411 {
1412 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi));
1413 }
1414
1415 static void kvm_irqchip_create(MachineState *machine, KVMState *s)
1416 {
1417 int ret;
1418
1419 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
1420 ;
1421 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) {
1422 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0);
1423 if (ret < 0) {
1424 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret));
1425 exit(1);
1426 }
1427 } else {
1428 return;
1429 }
1430
1431 /* First probe and see if there's a arch-specific hook to create the
1432 * in-kernel irqchip for us */
1433 ret = kvm_arch_irqchip_create(machine, s);
1434 if (ret == 0) {
1435 if (machine_kernel_irqchip_split(machine)) {
1436 perror("Split IRQ chip mode not supported.");
1437 exit(1);
1438 } else {
1439 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1440 }
1441 }
1442 if (ret < 0) {
1443 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret));
1444 exit(1);
1445 }
1446
1447 kvm_kernel_irqchip = true;
1448 /* If we have an in-kernel IRQ chip then we must have asynchronous
1449 * interrupt delivery (though the reverse is not necessarily true)
1450 */
1451 kvm_async_interrupts_allowed = true;
1452 kvm_halt_in_kernel_allowed = true;
1453
1454 kvm_init_irq_routing(s);
1455
1456 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal);
1457 }
1458
1459 /* Find number of supported CPUs using the recommended
1460 * procedure from the kernel API documentation to cope with
1461 * older kernels that may be missing capabilities.
1462 */
1463 static int kvm_recommended_vcpus(KVMState *s)
1464 {
1465 int ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS);
1466 return (ret) ? ret : 4;
1467 }
1468
1469 static int kvm_max_vcpus(KVMState *s)
1470 {
1471 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
1472 return (ret) ? ret : kvm_recommended_vcpus(s);
1473 }
1474
1475 static int kvm_init(MachineState *ms)
1476 {
1477 MachineClass *mc = MACHINE_GET_CLASS(ms);
1478 static const char upgrade_note[] =
1479 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1480 "(see http://sourceforge.net/projects/kvm).\n";
1481 struct {
1482 const char *name;
1483 int num;
1484 } num_cpus[] = {
1485 { "SMP", smp_cpus },
1486 { "hotpluggable", max_cpus },
1487 { NULL, }
1488 }, *nc = num_cpus;
1489 int soft_vcpus_limit, hard_vcpus_limit;
1490 KVMState *s;
1491 const KVMCapabilityInfo *missing_cap;
1492 int ret;
1493 int type = 0;
1494 const char *kvm_type;
1495
1496 s = KVM_STATE(ms->accelerator);
1497
1498 /*
1499 * On systems where the kernel can support different base page
1500 * sizes, host page size may be different from TARGET_PAGE_SIZE,
1501 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
1502 * page size for the system though.
1503 */
1504 assert(TARGET_PAGE_SIZE <= getpagesize());
1505
1506 s->sigmask_len = 8;
1507
1508 #ifdef KVM_CAP_SET_GUEST_DEBUG
1509 QTAILQ_INIT(&s->kvm_sw_breakpoints);
1510 #endif
1511 s->vmfd = -1;
1512 s->fd = qemu_open("/dev/kvm", O_RDWR);
1513 if (s->fd == -1) {
1514 fprintf(stderr, "Could not access KVM kernel module: %m\n");
1515 ret = -errno;
1516 goto err;
1517 }
1518
1519 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
1520 if (ret < KVM_API_VERSION) {
1521 if (ret >= 0) {
1522 ret = -EINVAL;
1523 }
1524 fprintf(stderr, "kvm version too old\n");
1525 goto err;
1526 }
1527
1528 if (ret > KVM_API_VERSION) {
1529 ret = -EINVAL;
1530 fprintf(stderr, "kvm version not supported\n");
1531 goto err;
1532 }
1533
1534 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
1535
1536 /* If unspecified, use the default value */
1537 if (!s->nr_slots) {
1538 s->nr_slots = 32;
1539 }
1540
1541 /* check the vcpu limits */
1542 soft_vcpus_limit = kvm_recommended_vcpus(s);
1543 hard_vcpus_limit = kvm_max_vcpus(s);
1544
1545 while (nc->name) {
1546 if (nc->num > soft_vcpus_limit) {
1547 fprintf(stderr,
1548 "Warning: Number of %s cpus requested (%d) exceeds "
1549 "the recommended cpus supported by KVM (%d)\n",
1550 nc->name, nc->num, soft_vcpus_limit);
1551
1552 if (nc->num > hard_vcpus_limit) {
1553 fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
1554 "the maximum cpus supported by KVM (%d)\n",
1555 nc->name, nc->num, hard_vcpus_limit);
1556 exit(1);
1557 }
1558 }
1559 nc++;
1560 }
1561
1562 kvm_type = qemu_opt_get(qemu_get_machine_opts(), "kvm-type");
1563 if (mc->kvm_type) {
1564 type = mc->kvm_type(kvm_type);
1565 } else if (kvm_type) {
1566 ret = -EINVAL;
1567 fprintf(stderr, "Invalid argument kvm-type=%s\n", kvm_type);
1568 goto err;
1569 }
1570
1571 do {
1572 ret = kvm_ioctl(s, KVM_CREATE_VM, type);
1573 } while (ret == -EINTR);
1574
1575 if (ret < 0) {
1576 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
1577 strerror(-ret));
1578
1579 #ifdef TARGET_S390X
1580 if (ret == -EINVAL) {
1581 fprintf(stderr,
1582 "Host kernel setup problem detected. Please verify:\n");
1583 fprintf(stderr, "- for kernels supporting the switch_amode or"
1584 " user_mode parameters, whether\n");
1585 fprintf(stderr,
1586 " user space is running in primary address space\n");
1587 fprintf(stderr,
1588 "- for kernels supporting the vm.allocate_pgste sysctl, "
1589 "whether it is enabled\n");
1590 }
1591 #endif
1592 goto err;
1593 }
1594
1595 s->vmfd = ret;
1596 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1597 if (!missing_cap) {
1598 missing_cap =
1599 kvm_check_extension_list(s, kvm_arch_required_capabilities);
1600 }
1601 if (missing_cap) {
1602 ret = -EINVAL;
1603 fprintf(stderr, "kvm does not support %s\n%s",
1604 missing_cap->name, upgrade_note);
1605 goto err;
1606 }
1607
1608 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
1609
1610 s->broken_set_mem_region = 1;
1611 ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
1612 if (ret > 0) {
1613 s->broken_set_mem_region = 0;
1614 }
1615
1616 #ifdef KVM_CAP_VCPU_EVENTS
1617 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
1618 #endif
1619
1620 s->robust_singlestep =
1621 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
1622
1623 #ifdef KVM_CAP_DEBUGREGS
1624 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
1625 #endif
1626
1627 #ifdef KVM_CAP_IRQ_ROUTING
1628 kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
1629 #endif
1630
1631 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
1632
1633 s->irq_set_ioctl = KVM_IRQ_LINE;
1634 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
1635 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
1636 }
1637
1638 #ifdef KVM_CAP_READONLY_MEM
1639 kvm_readonly_mem_allowed =
1640 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
1641 #endif
1642
1643 kvm_eventfds_allowed =
1644 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0);
1645
1646 kvm_irqfds_allowed =
1647 (kvm_check_extension(s, KVM_CAP_IRQFD) > 0);
1648
1649 kvm_resamplefds_allowed =
1650 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
1651
1652 kvm_vm_attributes_allowed =
1653 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
1654
1655 kvm_ioeventfd_any_length_allowed =
1656 (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0);
1657
1658 ret = kvm_arch_init(ms, s);
1659 if (ret < 0) {
1660 goto err;
1661 }
1662
1663 if (machine_kernel_irqchip_allowed(ms)) {
1664 kvm_irqchip_create(ms, s);
1665 }
1666
1667 kvm_state = s;
1668
1669 if (kvm_eventfds_allowed) {
1670 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add;
1671 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del;
1672 }
1673 s->memory_listener.listener.coalesced_mmio_add = kvm_coalesce_mmio_region;
1674 s->memory_listener.listener.coalesced_mmio_del = kvm_uncoalesce_mmio_region;
1675
1676 kvm_memory_listener_register(s, &s->memory_listener,
1677 &address_space_memory, 0);
1678 memory_listener_register(&kvm_io_listener,
1679 &address_space_io);
1680
1681 s->many_ioeventfds = kvm_check_many_ioeventfds();
1682
1683 cpu_interrupt_handler = kvm_handle_interrupt;
1684
1685 return 0;
1686
1687 err:
1688 assert(ret < 0);
1689 if (s->vmfd >= 0) {
1690 close(s->vmfd);
1691 }
1692 if (s->fd != -1) {
1693 close(s->fd);
1694 }
1695 g_free(s->memory_listener.slots);
1696
1697 return ret;
1698 }
1699
1700 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
1701 {
1702 s->sigmask_len = sigmask_len;
1703 }
1704
1705 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction,
1706 int size, uint32_t count)
1707 {
1708 int i;
1709 uint8_t *ptr = data;
1710
1711 for (i = 0; i < count; i++) {
1712 address_space_rw(&address_space_io, port, attrs,
1713 ptr, size,
1714 direction == KVM_EXIT_IO_OUT);
1715 ptr += size;
1716 }
1717 }
1718
1719 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
1720 {
1721 fprintf(stderr, "KVM internal error. Suberror: %d\n",
1722 run->internal.suberror);
1723
1724 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
1725 int i;
1726
1727 for (i = 0; i < run->internal.ndata; ++i) {
1728 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
1729 i, (uint64_t)run->internal.data[i]);
1730 }
1731 }
1732 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
1733 fprintf(stderr, "emulation failure\n");
1734 if (!kvm_arch_stop_on_emulation_error(cpu)) {
1735 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
1736 return EXCP_INTERRUPT;
1737 }
1738 }
1739 /* FIXME: Should trigger a qmp message to let management know
1740 * something went wrong.
1741 */
1742 return -1;
1743 }
1744
1745 void kvm_flush_coalesced_mmio_buffer(void)
1746 {
1747 KVMState *s = kvm_state;
1748
1749 if (s->coalesced_flush_in_progress) {
1750 return;
1751 }
1752
1753 s->coalesced_flush_in_progress = true;
1754
1755 if (s->coalesced_mmio_ring) {
1756 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
1757 while (ring->first != ring->last) {
1758 struct kvm_coalesced_mmio *ent;
1759
1760 ent = &ring->coalesced_mmio[ring->first];
1761
1762 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
1763 smp_wmb();
1764 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
1765 }
1766 }
1767
1768 s->coalesced_flush_in_progress = false;
1769 }
1770
1771 static void do_kvm_cpu_synchronize_state(void *arg)
1772 {
1773 CPUState *cpu = arg;
1774
1775 if (!cpu->kvm_vcpu_dirty) {
1776 kvm_arch_get_registers(cpu);
1777 cpu->kvm_vcpu_dirty = true;
1778 }
1779 }
1780
1781 void kvm_cpu_synchronize_state(CPUState *cpu)
1782 {
1783 if (!cpu->kvm_vcpu_dirty) {
1784 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, cpu);
1785 }
1786 }
1787
1788 static void do_kvm_cpu_synchronize_post_reset(void *arg)
1789 {
1790 CPUState *cpu = arg;
1791
1792 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
1793 cpu->kvm_vcpu_dirty = false;
1794 }
1795
1796 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
1797 {
1798 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, cpu);
1799 }
1800
1801 static void do_kvm_cpu_synchronize_post_init(void *arg)
1802 {
1803 CPUState *cpu = arg;
1804
1805 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
1806 cpu->kvm_vcpu_dirty = false;
1807 }
1808
1809 void kvm_cpu_synchronize_post_init(CPUState *cpu)
1810 {
1811 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, cpu);
1812 }
1813
1814 int kvm_cpu_exec(CPUState *cpu)
1815 {
1816 struct kvm_run *run = cpu->kvm_run;
1817 int ret, run_ret;
1818
1819 DPRINTF("kvm_cpu_exec()\n");
1820
1821 if (kvm_arch_process_async_events(cpu)) {
1822 cpu->exit_request = 0;
1823 return EXCP_HLT;
1824 }
1825
1826 qemu_mutex_unlock_iothread();
1827
1828 do {
1829 MemTxAttrs attrs;
1830
1831 if (cpu->kvm_vcpu_dirty) {
1832 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
1833 cpu->kvm_vcpu_dirty = false;
1834 }
1835
1836 kvm_arch_pre_run(cpu, run);
1837 if (cpu->exit_request) {
1838 DPRINTF("interrupt exit requested\n");
1839 /*
1840 * KVM requires us to reenter the kernel after IO exits to complete
1841 * instruction emulation. This self-signal will ensure that we
1842 * leave ASAP again.
1843 */
1844 qemu_cpu_kick_self();
1845 }
1846
1847 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
1848
1849 attrs = kvm_arch_post_run(cpu, run);
1850
1851 if (run_ret < 0) {
1852 if (run_ret == -EINTR || run_ret == -EAGAIN) {
1853 DPRINTF("io window exit\n");
1854 ret = EXCP_INTERRUPT;
1855 break;
1856 }
1857 fprintf(stderr, "error: kvm run failed %s\n",
1858 strerror(-run_ret));
1859 #ifdef TARGET_PPC
1860 if (run_ret == -EBUSY) {
1861 fprintf(stderr,
1862 "This is probably because your SMT is enabled.\n"
1863 "VCPU can only run on primary threads with all "
1864 "secondary threads offline.\n");
1865 }
1866 #endif
1867 ret = -1;
1868 break;
1869 }
1870
1871 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
1872 switch (run->exit_reason) {
1873 case KVM_EXIT_IO:
1874 DPRINTF("handle_io\n");
1875 /* Called outside BQL */
1876 kvm_handle_io(run->io.port, attrs,
1877 (uint8_t *)run + run->io.data_offset,
1878 run->io.direction,
1879 run->io.size,
1880 run->io.count);
1881 ret = 0;
1882 break;
1883 case KVM_EXIT_MMIO:
1884 DPRINTF("handle_mmio\n");
1885 /* Called outside BQL */
1886 address_space_rw(&address_space_memory,
1887 run->mmio.phys_addr, attrs,
1888 run->mmio.data,
1889 run->mmio.len,
1890 run->mmio.is_write);
1891 ret = 0;
1892 break;
1893 case KVM_EXIT_IRQ_WINDOW_OPEN:
1894 DPRINTF("irq_window_open\n");
1895 ret = EXCP_INTERRUPT;
1896 break;
1897 case KVM_EXIT_SHUTDOWN:
1898 DPRINTF("shutdown\n");
1899 qemu_system_reset_request();
1900 ret = EXCP_INTERRUPT;
1901 break;
1902 case KVM_EXIT_UNKNOWN:
1903 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
1904 (uint64_t)run->hw.hardware_exit_reason);
1905 ret = -1;
1906 break;
1907 case KVM_EXIT_INTERNAL_ERROR:
1908 ret = kvm_handle_internal_error(cpu, run);
1909 break;
1910 case KVM_EXIT_SYSTEM_EVENT:
1911 switch (run->system_event.type) {
1912 case KVM_SYSTEM_EVENT_SHUTDOWN:
1913 qemu_system_shutdown_request();
1914 ret = EXCP_INTERRUPT;
1915 break;
1916 case KVM_SYSTEM_EVENT_RESET:
1917 qemu_system_reset_request();
1918 ret = EXCP_INTERRUPT;
1919 break;
1920 case KVM_SYSTEM_EVENT_CRASH:
1921 qemu_mutex_lock_iothread();
1922 qemu_system_guest_panicked();
1923 qemu_mutex_unlock_iothread();
1924 ret = 0;
1925 break;
1926 default:
1927 DPRINTF("kvm_arch_handle_exit\n");
1928 ret = kvm_arch_handle_exit(cpu, run);
1929 break;
1930 }
1931 break;
1932 default:
1933 DPRINTF("kvm_arch_handle_exit\n");
1934 ret = kvm_arch_handle_exit(cpu, run);
1935 break;
1936 }
1937 } while (ret == 0);
1938
1939 qemu_mutex_lock_iothread();
1940
1941 if (ret < 0) {
1942 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
1943 vm_stop(RUN_STATE_INTERNAL_ERROR);
1944 }
1945
1946 cpu->exit_request = 0;
1947 return ret;
1948 }
1949
1950 int kvm_ioctl(KVMState *s, int type, ...)
1951 {
1952 int ret;
1953 void *arg;
1954 va_list ap;
1955
1956 va_start(ap, type);
1957 arg = va_arg(ap, void *);
1958 va_end(ap);
1959
1960 trace_kvm_ioctl(type, arg);
1961 ret = ioctl(s->fd, type, arg);
1962 if (ret == -1) {
1963 ret = -errno;
1964 }
1965 return ret;
1966 }
1967
1968 int kvm_vm_ioctl(KVMState *s, int type, ...)
1969 {
1970 int ret;
1971 void *arg;
1972 va_list ap;
1973
1974 va_start(ap, type);
1975 arg = va_arg(ap, void *);
1976 va_end(ap);
1977
1978 trace_kvm_vm_ioctl(type, arg);
1979 ret = ioctl(s->vmfd, type, arg);
1980 if (ret == -1) {
1981 ret = -errno;
1982 }
1983 return ret;
1984 }
1985
1986 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
1987 {
1988 int ret;
1989 void *arg;
1990 va_list ap;
1991
1992 va_start(ap, type);
1993 arg = va_arg(ap, void *);
1994 va_end(ap);
1995
1996 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
1997 ret = ioctl(cpu->kvm_fd, type, arg);
1998 if (ret == -1) {
1999 ret = -errno;
2000 }
2001 return ret;
2002 }
2003
2004 int kvm_device_ioctl(int fd, int type, ...)
2005 {
2006 int ret;
2007 void *arg;
2008 va_list ap;
2009
2010 va_start(ap, type);
2011 arg = va_arg(ap, void *);
2012 va_end(ap);
2013
2014 trace_kvm_device_ioctl(fd, type, arg);
2015 ret = ioctl(fd, type, arg);
2016 if (ret == -1) {
2017 ret = -errno;
2018 }
2019 return ret;
2020 }
2021
2022 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr)
2023 {
2024 int ret;
2025 struct kvm_device_attr attribute = {
2026 .group = group,
2027 .attr = attr,
2028 };
2029
2030 if (!kvm_vm_attributes_allowed) {
2031 return 0;
2032 }
2033
2034 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute);
2035 /* kvm returns 0 on success for HAS_DEVICE_ATTR */
2036 return ret ? 0 : 1;
2037 }
2038
2039 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
2040 {
2041 struct kvm_device_attr attribute = {
2042 .group = group,
2043 .attr = attr,
2044 .flags = 0,
2045 };
2046
2047 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1;
2048 }
2049
2050 void kvm_device_access(int fd, int group, uint64_t attr,
2051 void *val, bool write)
2052 {
2053 struct kvm_device_attr kvmattr;
2054 int err;
2055
2056 kvmattr.flags = 0;
2057 kvmattr.group = group;
2058 kvmattr.attr = attr;
2059 kvmattr.addr = (uintptr_t)val;
2060
2061 err = kvm_device_ioctl(fd,
2062 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
2063 &kvmattr);
2064 if (err < 0) {
2065 error_report("KVM_%s_DEVICE_ATTR failed: %s",
2066 write ? "SET" : "GET", strerror(-err));
2067 error_printf("Group %d attr 0x%016" PRIx64, group, attr);
2068 abort();
2069 }
2070 }
2071
2072 int kvm_has_sync_mmu(void)
2073 {
2074 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
2075 }
2076
2077 int kvm_has_vcpu_events(void)
2078 {
2079 return kvm_state->vcpu_events;
2080 }
2081
2082 int kvm_has_robust_singlestep(void)
2083 {
2084 return kvm_state->robust_singlestep;
2085 }
2086
2087 int kvm_has_debugregs(void)
2088 {
2089 return kvm_state->debugregs;
2090 }
2091
2092 int kvm_has_many_ioeventfds(void)
2093 {
2094 if (!kvm_enabled()) {
2095 return 0;
2096 }
2097 return kvm_state->many_ioeventfds;
2098 }
2099
2100 int kvm_has_gsi_routing(void)
2101 {
2102 #ifdef KVM_CAP_IRQ_ROUTING
2103 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
2104 #else
2105 return false;
2106 #endif
2107 }
2108
2109 int kvm_has_intx_set_mask(void)
2110 {
2111 return kvm_state->intx_set_mask;
2112 }
2113
2114 void kvm_setup_guest_memory(void *start, size_t size)
2115 {
2116 if (!kvm_has_sync_mmu()) {
2117 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
2118
2119 if (ret) {
2120 perror("qemu_madvise");
2121 fprintf(stderr,
2122 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
2123 exit(1);
2124 }
2125 }
2126 }
2127
2128 #ifdef KVM_CAP_SET_GUEST_DEBUG
2129 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
2130 target_ulong pc)
2131 {
2132 struct kvm_sw_breakpoint *bp;
2133
2134 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
2135 if (bp->pc == pc) {
2136 return bp;
2137 }
2138 }
2139 return NULL;
2140 }
2141
2142 int kvm_sw_breakpoints_active(CPUState *cpu)
2143 {
2144 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
2145 }
2146
2147 struct kvm_set_guest_debug_data {
2148 struct kvm_guest_debug dbg;
2149 CPUState *cpu;
2150 int err;
2151 };
2152
2153 static void kvm_invoke_set_guest_debug(void *data)
2154 {
2155 struct kvm_set_guest_debug_data *dbg_data = data;
2156
2157 dbg_data->err = kvm_vcpu_ioctl(dbg_data->cpu, KVM_SET_GUEST_DEBUG,
2158 &dbg_data->dbg);
2159 }
2160
2161 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2162 {
2163 struct kvm_set_guest_debug_data data;
2164
2165 data.dbg.control = reinject_trap;
2166
2167 if (cpu->singlestep_enabled) {
2168 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
2169 }
2170 kvm_arch_update_guest_debug(cpu, &data.dbg);
2171 data.cpu = cpu;
2172
2173 run_on_cpu(cpu, kvm_invoke_set_guest_debug, &data);
2174 return data.err;
2175 }
2176
2177 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2178 target_ulong len, int type)
2179 {
2180 struct kvm_sw_breakpoint *bp;
2181 int err;
2182
2183 if (type == GDB_BREAKPOINT_SW) {
2184 bp = kvm_find_sw_breakpoint(cpu, addr);
2185 if (bp) {
2186 bp->use_count++;
2187 return 0;
2188 }
2189
2190 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
2191 bp->pc = addr;
2192 bp->use_count = 1;
2193 err = kvm_arch_insert_sw_breakpoint(cpu, bp);
2194 if (err) {
2195 g_free(bp);
2196 return err;
2197 }
2198
2199 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2200 } else {
2201 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
2202 if (err) {
2203 return err;
2204 }
2205 }
2206
2207 CPU_FOREACH(cpu) {
2208 err = kvm_update_guest_debug(cpu, 0);
2209 if (err) {
2210 return err;
2211 }
2212 }
2213 return 0;
2214 }
2215
2216 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2217 target_ulong len, int type)
2218 {
2219 struct kvm_sw_breakpoint *bp;
2220 int err;
2221
2222 if (type == GDB_BREAKPOINT_SW) {
2223 bp = kvm_find_sw_breakpoint(cpu, addr);
2224 if (!bp) {
2225 return -ENOENT;
2226 }
2227
2228 if (bp->use_count > 1) {
2229 bp->use_count--;
2230 return 0;
2231 }
2232
2233 err = kvm_arch_remove_sw_breakpoint(cpu, bp);
2234 if (err) {
2235 return err;
2236 }
2237
2238 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2239 g_free(bp);
2240 } else {
2241 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
2242 if (err) {
2243 return err;
2244 }
2245 }
2246
2247 CPU_FOREACH(cpu) {
2248 err = kvm_update_guest_debug(cpu, 0);
2249 if (err) {
2250 return err;
2251 }
2252 }
2253 return 0;
2254 }
2255
2256 void kvm_remove_all_breakpoints(CPUState *cpu)
2257 {
2258 struct kvm_sw_breakpoint *bp, *next;
2259 KVMState *s = cpu->kvm_state;
2260 CPUState *tmpcpu;
2261
2262 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
2263 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
2264 /* Try harder to find a CPU that currently sees the breakpoint. */
2265 CPU_FOREACH(tmpcpu) {
2266 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
2267 break;
2268 }
2269 }
2270 }
2271 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
2272 g_free(bp);
2273 }
2274 kvm_arch_remove_all_hw_breakpoints();
2275
2276 CPU_FOREACH(cpu) {
2277 kvm_update_guest_debug(cpu, 0);
2278 }
2279 }
2280
2281 #else /* !KVM_CAP_SET_GUEST_DEBUG */
2282
2283 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2284 {
2285 return -EINVAL;
2286 }
2287
2288 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2289 target_ulong len, int type)
2290 {
2291 return -EINVAL;
2292 }
2293
2294 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2295 target_ulong len, int type)
2296 {
2297 return -EINVAL;
2298 }
2299
2300 void kvm_remove_all_breakpoints(CPUState *cpu)
2301 {
2302 }
2303 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2304
2305 int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
2306 {
2307 KVMState *s = kvm_state;
2308 struct kvm_signal_mask *sigmask;
2309 int r;
2310
2311 if (!sigset) {
2312 return kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, NULL);
2313 }
2314
2315 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
2316
2317 sigmask->len = s->sigmask_len;
2318 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
2319 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
2320 g_free(sigmask);
2321
2322 return r;
2323 }
2324 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
2325 {
2326 return kvm_arch_on_sigbus_vcpu(cpu, code, addr);
2327 }
2328
2329 int kvm_on_sigbus(int code, void *addr)
2330 {
2331 return kvm_arch_on_sigbus(code, addr);
2332 }
2333
2334 int kvm_create_device(KVMState *s, uint64_t type, bool test)
2335 {
2336 int ret;
2337 struct kvm_create_device create_dev;
2338
2339 create_dev.type = type;
2340 create_dev.fd = -1;
2341 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
2342
2343 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
2344 return -ENOTSUP;
2345 }
2346
2347 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
2348 if (ret) {
2349 return ret;
2350 }
2351
2352 return test ? 0 : create_dev.fd;
2353 }
2354
2355 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
2356 {
2357 struct kvm_one_reg reg;
2358 int r;
2359
2360 reg.id = id;
2361 reg.addr = (uintptr_t) source;
2362 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
2363 if (r) {
2364 trace_kvm_failed_reg_set(id, strerror(-r));
2365 }
2366 return r;
2367 }
2368
2369 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
2370 {
2371 struct kvm_one_reg reg;
2372 int r;
2373
2374 reg.id = id;
2375 reg.addr = (uintptr_t) target;
2376 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
2377 if (r) {
2378 trace_kvm_failed_reg_get(id, strerror(-r));
2379 }
2380 return r;
2381 }
2382
2383 static void kvm_accel_class_init(ObjectClass *oc, void *data)
2384 {
2385 AccelClass *ac = ACCEL_CLASS(oc);
2386 ac->name = "KVM";
2387 ac->init_machine = kvm_init;
2388 ac->allowed = &kvm_allowed;
2389 }
2390
2391 static const TypeInfo kvm_accel_type = {
2392 .name = TYPE_KVM_ACCEL,
2393 .parent = TYPE_ACCEL,
2394 .class_init = kvm_accel_class_init,
2395 .instance_size = sizeof(KVMState),
2396 };
2397
2398 static void kvm_type_init(void)
2399 {
2400 type_register_static(&kvm_accel_type);
2401 }
2402
2403 type_init(kvm_type_init);