]> git.proxmox.com Git - mirror_qemu.git/blob - kvm-all.c
kvm-all: exit in case max vcpus exceeded
[mirror_qemu.git] / kvm-all.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
10 *
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
13 *
14 */
15
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
20
21 #include <linux/kvm.h>
22
23 #include "qemu-common.h"
24 #include "qemu/atomic.h"
25 #include "qemu/option.h"
26 #include "qemu/config-file.h"
27 #include "sysemu/sysemu.h"
28 #include "hw/hw.h"
29 #include "hw/pci/msi.h"
30 #include "exec/gdbstub.h"
31 #include "sysemu/kvm.h"
32 #include "qemu/bswap.h"
33 #include "exec/memory.h"
34 #include "exec/ram_addr.h"
35 #include "exec/address-spaces.h"
36 #include "qemu/event_notifier.h"
37 #include "trace.h"
38
39 /* This check must be after config-host.h is included */
40 #ifdef CONFIG_EVENTFD
41 #include <sys/eventfd.h>
42 #endif
43
44 #ifdef CONFIG_VALGRIND_H
45 #include <valgrind/memcheck.h>
46 #endif
47
48 /* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
49 #define PAGE_SIZE TARGET_PAGE_SIZE
50
51 //#define DEBUG_KVM
52
53 #ifdef DEBUG_KVM
54 #define DPRINTF(fmt, ...) \
55 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
56 #else
57 #define DPRINTF(fmt, ...) \
58 do { } while (0)
59 #endif
60
61 #define KVM_MSI_HASHTAB_SIZE 256
62
63 typedef struct KVMSlot
64 {
65 hwaddr start_addr;
66 ram_addr_t memory_size;
67 void *ram;
68 int slot;
69 int flags;
70 } KVMSlot;
71
72 typedef struct kvm_dirty_log KVMDirtyLog;
73
74 struct KVMState
75 {
76 KVMSlot *slots;
77 int nr_slots;
78 int fd;
79 int vmfd;
80 int coalesced_mmio;
81 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
82 bool coalesced_flush_in_progress;
83 int broken_set_mem_region;
84 int migration_log;
85 int vcpu_events;
86 int robust_singlestep;
87 int debugregs;
88 #ifdef KVM_CAP_SET_GUEST_DEBUG
89 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
90 #endif
91 int pit_state2;
92 int xsave, xcrs;
93 int many_ioeventfds;
94 int intx_set_mask;
95 /* The man page (and posix) say ioctl numbers are signed int, but
96 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
97 * unsigned, and treating them as signed here can break things */
98 unsigned irq_set_ioctl;
99 #ifdef KVM_CAP_IRQ_ROUTING
100 struct kvm_irq_routing *irq_routes;
101 int nr_allocated_irq_routes;
102 uint32_t *used_gsi_bitmap;
103 unsigned int gsi_count;
104 QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
105 bool direct_msi;
106 #endif
107 };
108
109 KVMState *kvm_state;
110 bool kvm_kernel_irqchip;
111 bool kvm_async_interrupts_allowed;
112 bool kvm_halt_in_kernel_allowed;
113 bool kvm_irqfds_allowed;
114 bool kvm_msi_via_irqfd_allowed;
115 bool kvm_gsi_routing_allowed;
116 bool kvm_gsi_direct_mapping;
117 bool kvm_allowed;
118 bool kvm_readonly_mem_allowed;
119
120 static const KVMCapabilityInfo kvm_required_capabilites[] = {
121 KVM_CAP_INFO(USER_MEMORY),
122 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
123 KVM_CAP_LAST_INFO
124 };
125
126 static KVMSlot *kvm_alloc_slot(KVMState *s)
127 {
128 int i;
129
130 for (i = 0; i < s->nr_slots; i++) {
131 if (s->slots[i].memory_size == 0) {
132 return &s->slots[i];
133 }
134 }
135
136 fprintf(stderr, "%s: no free slot available\n", __func__);
137 abort();
138 }
139
140 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
141 hwaddr start_addr,
142 hwaddr end_addr)
143 {
144 int i;
145
146 for (i = 0; i < s->nr_slots; i++) {
147 KVMSlot *mem = &s->slots[i];
148
149 if (start_addr == mem->start_addr &&
150 end_addr == mem->start_addr + mem->memory_size) {
151 return mem;
152 }
153 }
154
155 return NULL;
156 }
157
158 /*
159 * Find overlapping slot with lowest start address
160 */
161 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
162 hwaddr start_addr,
163 hwaddr end_addr)
164 {
165 KVMSlot *found = NULL;
166 int i;
167
168 for (i = 0; i < s->nr_slots; i++) {
169 KVMSlot *mem = &s->slots[i];
170
171 if (mem->memory_size == 0 ||
172 (found && found->start_addr < mem->start_addr)) {
173 continue;
174 }
175
176 if (end_addr > mem->start_addr &&
177 start_addr < mem->start_addr + mem->memory_size) {
178 found = mem;
179 }
180 }
181
182 return found;
183 }
184
185 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
186 hwaddr *phys_addr)
187 {
188 int i;
189
190 for (i = 0; i < s->nr_slots; i++) {
191 KVMSlot *mem = &s->slots[i];
192
193 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
194 *phys_addr = mem->start_addr + (ram - mem->ram);
195 return 1;
196 }
197 }
198
199 return 0;
200 }
201
202 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
203 {
204 struct kvm_userspace_memory_region mem;
205
206 mem.slot = slot->slot;
207 mem.guest_phys_addr = slot->start_addr;
208 mem.userspace_addr = (unsigned long)slot->ram;
209 mem.flags = slot->flags;
210 if (s->migration_log) {
211 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
212 }
213
214 if (slot->memory_size && mem.flags & KVM_MEM_READONLY) {
215 /* Set the slot size to 0 before setting the slot to the desired
216 * value. This is needed based on KVM commit 75d61fbc. */
217 mem.memory_size = 0;
218 kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
219 }
220 mem.memory_size = slot->memory_size;
221 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
222 }
223
224 static void kvm_reset_vcpu(void *opaque)
225 {
226 CPUState *cpu = opaque;
227
228 kvm_arch_reset_vcpu(cpu);
229 }
230
231 int kvm_init_vcpu(CPUState *cpu)
232 {
233 KVMState *s = kvm_state;
234 long mmap_size;
235 int ret;
236
237 DPRINTF("kvm_init_vcpu\n");
238
239 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)kvm_arch_vcpu_id(cpu));
240 if (ret < 0) {
241 DPRINTF("kvm_create_vcpu failed\n");
242 goto err;
243 }
244
245 cpu->kvm_fd = ret;
246 cpu->kvm_state = s;
247 cpu->kvm_vcpu_dirty = true;
248
249 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
250 if (mmap_size < 0) {
251 ret = mmap_size;
252 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
253 goto err;
254 }
255
256 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
257 cpu->kvm_fd, 0);
258 if (cpu->kvm_run == MAP_FAILED) {
259 ret = -errno;
260 DPRINTF("mmap'ing vcpu state failed\n");
261 goto err;
262 }
263
264 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
265 s->coalesced_mmio_ring =
266 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
267 }
268
269 ret = kvm_arch_init_vcpu(cpu);
270 if (ret == 0) {
271 qemu_register_reset(kvm_reset_vcpu, cpu);
272 kvm_arch_reset_vcpu(cpu);
273 }
274 err:
275 return ret;
276 }
277
278 /*
279 * dirty pages logging control
280 */
281
282 static int kvm_mem_flags(KVMState *s, bool log_dirty, bool readonly)
283 {
284 int flags = 0;
285 flags = log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0;
286 if (readonly && kvm_readonly_mem_allowed) {
287 flags |= KVM_MEM_READONLY;
288 }
289 return flags;
290 }
291
292 static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty)
293 {
294 KVMState *s = kvm_state;
295 int flags, mask = KVM_MEM_LOG_DIRTY_PAGES;
296 int old_flags;
297
298 old_flags = mem->flags;
299
300 flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty, false);
301 mem->flags = flags;
302
303 /* If nothing changed effectively, no need to issue ioctl */
304 if (s->migration_log) {
305 flags |= KVM_MEM_LOG_DIRTY_PAGES;
306 }
307
308 if (flags == old_flags) {
309 return 0;
310 }
311
312 return kvm_set_user_memory_region(s, mem);
313 }
314
315 static int kvm_dirty_pages_log_change(hwaddr phys_addr,
316 ram_addr_t size, bool log_dirty)
317 {
318 KVMState *s = kvm_state;
319 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
320
321 if (mem == NULL) {
322 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
323 TARGET_FMT_plx "\n", __func__, phys_addr,
324 (hwaddr)(phys_addr + size - 1));
325 return -EINVAL;
326 }
327 return kvm_slot_dirty_pages_log_change(mem, log_dirty);
328 }
329
330 static void kvm_log_start(MemoryListener *listener,
331 MemoryRegionSection *section)
332 {
333 int r;
334
335 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
336 int128_get64(section->size), true);
337 if (r < 0) {
338 abort();
339 }
340 }
341
342 static void kvm_log_stop(MemoryListener *listener,
343 MemoryRegionSection *section)
344 {
345 int r;
346
347 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
348 int128_get64(section->size), false);
349 if (r < 0) {
350 abort();
351 }
352 }
353
354 static int kvm_set_migration_log(int enable)
355 {
356 KVMState *s = kvm_state;
357 KVMSlot *mem;
358 int i, err;
359
360 s->migration_log = enable;
361
362 for (i = 0; i < s->nr_slots; i++) {
363 mem = &s->slots[i];
364
365 if (!mem->memory_size) {
366 continue;
367 }
368 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
369 continue;
370 }
371 err = kvm_set_user_memory_region(s, mem);
372 if (err) {
373 return err;
374 }
375 }
376 return 0;
377 }
378
379 /* get kvm's dirty pages bitmap and update qemu's */
380 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
381 unsigned long *bitmap)
382 {
383 ram_addr_t start = section->offset_within_region + section->mr->ram_addr;
384 ram_addr_t pages = int128_get64(section->size) / getpagesize();
385
386 cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages);
387 return 0;
388 }
389
390 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
391
392 /**
393 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
394 * This function updates qemu's dirty bitmap using
395 * memory_region_set_dirty(). This means all bits are set
396 * to dirty.
397 *
398 * @start_add: start of logged region.
399 * @end_addr: end of logged region.
400 */
401 static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section)
402 {
403 KVMState *s = kvm_state;
404 unsigned long size, allocated_size = 0;
405 KVMDirtyLog d;
406 KVMSlot *mem;
407 int ret = 0;
408 hwaddr start_addr = section->offset_within_address_space;
409 hwaddr end_addr = start_addr + int128_get64(section->size);
410
411 d.dirty_bitmap = NULL;
412 while (start_addr < end_addr) {
413 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
414 if (mem == NULL) {
415 break;
416 }
417
418 /* XXX bad kernel interface alert
419 * For dirty bitmap, kernel allocates array of size aligned to
420 * bits-per-long. But for case when the kernel is 64bits and
421 * the userspace is 32bits, userspace can't align to the same
422 * bits-per-long, since sizeof(long) is different between kernel
423 * and user space. This way, userspace will provide buffer which
424 * may be 4 bytes less than the kernel will use, resulting in
425 * userspace memory corruption (which is not detectable by valgrind
426 * too, in most cases).
427 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
428 * a hope that sizeof(long) wont become >8 any time soon.
429 */
430 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
431 /*HOST_LONG_BITS*/ 64) / 8;
432 if (!d.dirty_bitmap) {
433 d.dirty_bitmap = g_malloc(size);
434 } else if (size > allocated_size) {
435 d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
436 }
437 allocated_size = size;
438 memset(d.dirty_bitmap, 0, allocated_size);
439
440 d.slot = mem->slot;
441
442 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
443 DPRINTF("ioctl failed %d\n", errno);
444 ret = -1;
445 break;
446 }
447
448 kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
449 start_addr = mem->start_addr + mem->memory_size;
450 }
451 g_free(d.dirty_bitmap);
452
453 return ret;
454 }
455
456 static void kvm_coalesce_mmio_region(MemoryListener *listener,
457 MemoryRegionSection *secion,
458 hwaddr start, hwaddr size)
459 {
460 KVMState *s = kvm_state;
461
462 if (s->coalesced_mmio) {
463 struct kvm_coalesced_mmio_zone zone;
464
465 zone.addr = start;
466 zone.size = size;
467 zone.pad = 0;
468
469 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
470 }
471 }
472
473 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
474 MemoryRegionSection *secion,
475 hwaddr start, hwaddr size)
476 {
477 KVMState *s = kvm_state;
478
479 if (s->coalesced_mmio) {
480 struct kvm_coalesced_mmio_zone zone;
481
482 zone.addr = start;
483 zone.size = size;
484 zone.pad = 0;
485
486 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
487 }
488 }
489
490 int kvm_check_extension(KVMState *s, unsigned int extension)
491 {
492 int ret;
493
494 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
495 if (ret < 0) {
496 ret = 0;
497 }
498
499 return ret;
500 }
501
502 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
503 bool assign, uint32_t size, bool datamatch)
504 {
505 int ret;
506 struct kvm_ioeventfd iofd;
507
508 iofd.datamatch = datamatch ? val : 0;
509 iofd.addr = addr;
510 iofd.len = size;
511 iofd.flags = 0;
512 iofd.fd = fd;
513
514 if (!kvm_enabled()) {
515 return -ENOSYS;
516 }
517
518 if (datamatch) {
519 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
520 }
521 if (!assign) {
522 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
523 }
524
525 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
526
527 if (ret < 0) {
528 return -errno;
529 }
530
531 return 0;
532 }
533
534 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
535 bool assign, uint32_t size, bool datamatch)
536 {
537 struct kvm_ioeventfd kick = {
538 .datamatch = datamatch ? val : 0,
539 .addr = addr,
540 .flags = KVM_IOEVENTFD_FLAG_PIO,
541 .len = size,
542 .fd = fd,
543 };
544 int r;
545 if (!kvm_enabled()) {
546 return -ENOSYS;
547 }
548 if (datamatch) {
549 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
550 }
551 if (!assign) {
552 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
553 }
554 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
555 if (r < 0) {
556 return r;
557 }
558 return 0;
559 }
560
561
562 static int kvm_check_many_ioeventfds(void)
563 {
564 /* Userspace can use ioeventfd for io notification. This requires a host
565 * that supports eventfd(2) and an I/O thread; since eventfd does not
566 * support SIGIO it cannot interrupt the vcpu.
567 *
568 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
569 * can avoid creating too many ioeventfds.
570 */
571 #if defined(CONFIG_EVENTFD)
572 int ioeventfds[7];
573 int i, ret = 0;
574 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
575 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
576 if (ioeventfds[i] < 0) {
577 break;
578 }
579 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
580 if (ret < 0) {
581 close(ioeventfds[i]);
582 break;
583 }
584 }
585
586 /* Decide whether many devices are supported or not */
587 ret = i == ARRAY_SIZE(ioeventfds);
588
589 while (i-- > 0) {
590 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
591 close(ioeventfds[i]);
592 }
593 return ret;
594 #else
595 return 0;
596 #endif
597 }
598
599 static const KVMCapabilityInfo *
600 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
601 {
602 while (list->name) {
603 if (!kvm_check_extension(s, list->value)) {
604 return list;
605 }
606 list++;
607 }
608 return NULL;
609 }
610
611 static void kvm_set_phys_mem(MemoryRegionSection *section, bool add)
612 {
613 KVMState *s = kvm_state;
614 KVMSlot *mem, old;
615 int err;
616 MemoryRegion *mr = section->mr;
617 bool log_dirty = memory_region_is_logging(mr);
618 bool writeable = !mr->readonly && !mr->rom_device;
619 bool readonly_flag = mr->readonly || memory_region_is_romd(mr);
620 hwaddr start_addr = section->offset_within_address_space;
621 ram_addr_t size = int128_get64(section->size);
622 void *ram = NULL;
623 unsigned delta;
624
625 /* kvm works in page size chunks, but the function may be called
626 with sub-page size and unaligned start address. */
627 delta = TARGET_PAGE_ALIGN(size) - size;
628 if (delta > size) {
629 return;
630 }
631 start_addr += delta;
632 size -= delta;
633 size &= TARGET_PAGE_MASK;
634 if (!size || (start_addr & ~TARGET_PAGE_MASK)) {
635 return;
636 }
637
638 if (!memory_region_is_ram(mr)) {
639 if (writeable || !kvm_readonly_mem_allowed) {
640 return;
641 } else if (!mr->romd_mode) {
642 /* If the memory device is not in romd_mode, then we actually want
643 * to remove the kvm memory slot so all accesses will trap. */
644 add = false;
645 }
646 }
647
648 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta;
649
650 while (1) {
651 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
652 if (!mem) {
653 break;
654 }
655
656 if (add && start_addr >= mem->start_addr &&
657 (start_addr + size <= mem->start_addr + mem->memory_size) &&
658 (ram - start_addr == mem->ram - mem->start_addr)) {
659 /* The new slot fits into the existing one and comes with
660 * identical parameters - update flags and done. */
661 kvm_slot_dirty_pages_log_change(mem, log_dirty);
662 return;
663 }
664
665 old = *mem;
666
667 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
668 kvm_physical_sync_dirty_bitmap(section);
669 }
670
671 /* unregister the overlapping slot */
672 mem->memory_size = 0;
673 err = kvm_set_user_memory_region(s, mem);
674 if (err) {
675 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
676 __func__, strerror(-err));
677 abort();
678 }
679
680 /* Workaround for older KVM versions: we can't join slots, even not by
681 * unregistering the previous ones and then registering the larger
682 * slot. We have to maintain the existing fragmentation. Sigh.
683 *
684 * This workaround assumes that the new slot starts at the same
685 * address as the first existing one. If not or if some overlapping
686 * slot comes around later, we will fail (not seen in practice so far)
687 * - and actually require a recent KVM version. */
688 if (s->broken_set_mem_region &&
689 old.start_addr == start_addr && old.memory_size < size && add) {
690 mem = kvm_alloc_slot(s);
691 mem->memory_size = old.memory_size;
692 mem->start_addr = old.start_addr;
693 mem->ram = old.ram;
694 mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
695
696 err = kvm_set_user_memory_region(s, mem);
697 if (err) {
698 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
699 strerror(-err));
700 abort();
701 }
702
703 start_addr += old.memory_size;
704 ram += old.memory_size;
705 size -= old.memory_size;
706 continue;
707 }
708
709 /* register prefix slot */
710 if (old.start_addr < start_addr) {
711 mem = kvm_alloc_slot(s);
712 mem->memory_size = start_addr - old.start_addr;
713 mem->start_addr = old.start_addr;
714 mem->ram = old.ram;
715 mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
716
717 err = kvm_set_user_memory_region(s, mem);
718 if (err) {
719 fprintf(stderr, "%s: error registering prefix slot: %s\n",
720 __func__, strerror(-err));
721 #ifdef TARGET_PPC
722 fprintf(stderr, "%s: This is probably because your kernel's " \
723 "PAGE_SIZE is too big. Please try to use 4k " \
724 "PAGE_SIZE!\n", __func__);
725 #endif
726 abort();
727 }
728 }
729
730 /* register suffix slot */
731 if (old.start_addr + old.memory_size > start_addr + size) {
732 ram_addr_t size_delta;
733
734 mem = kvm_alloc_slot(s);
735 mem->start_addr = start_addr + size;
736 size_delta = mem->start_addr - old.start_addr;
737 mem->memory_size = old.memory_size - size_delta;
738 mem->ram = old.ram + size_delta;
739 mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
740
741 err = kvm_set_user_memory_region(s, mem);
742 if (err) {
743 fprintf(stderr, "%s: error registering suffix slot: %s\n",
744 __func__, strerror(-err));
745 abort();
746 }
747 }
748 }
749
750 /* in case the KVM bug workaround already "consumed" the new slot */
751 if (!size) {
752 return;
753 }
754 if (!add) {
755 return;
756 }
757 mem = kvm_alloc_slot(s);
758 mem->memory_size = size;
759 mem->start_addr = start_addr;
760 mem->ram = ram;
761 mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
762
763 err = kvm_set_user_memory_region(s, mem);
764 if (err) {
765 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
766 strerror(-err));
767 abort();
768 }
769 }
770
771 static void kvm_region_add(MemoryListener *listener,
772 MemoryRegionSection *section)
773 {
774 memory_region_ref(section->mr);
775 kvm_set_phys_mem(section, true);
776 }
777
778 static void kvm_region_del(MemoryListener *listener,
779 MemoryRegionSection *section)
780 {
781 kvm_set_phys_mem(section, false);
782 memory_region_unref(section->mr);
783 }
784
785 static void kvm_log_sync(MemoryListener *listener,
786 MemoryRegionSection *section)
787 {
788 int r;
789
790 r = kvm_physical_sync_dirty_bitmap(section);
791 if (r < 0) {
792 abort();
793 }
794 }
795
796 static void kvm_log_global_start(struct MemoryListener *listener)
797 {
798 int r;
799
800 r = kvm_set_migration_log(1);
801 assert(r >= 0);
802 }
803
804 static void kvm_log_global_stop(struct MemoryListener *listener)
805 {
806 int r;
807
808 r = kvm_set_migration_log(0);
809 assert(r >= 0);
810 }
811
812 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
813 MemoryRegionSection *section,
814 bool match_data, uint64_t data,
815 EventNotifier *e)
816 {
817 int fd = event_notifier_get_fd(e);
818 int r;
819
820 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
821 data, true, int128_get64(section->size),
822 match_data);
823 if (r < 0) {
824 fprintf(stderr, "%s: error adding ioeventfd: %s\n",
825 __func__, strerror(-r));
826 abort();
827 }
828 }
829
830 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
831 MemoryRegionSection *section,
832 bool match_data, uint64_t data,
833 EventNotifier *e)
834 {
835 int fd = event_notifier_get_fd(e);
836 int r;
837
838 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
839 data, false, int128_get64(section->size),
840 match_data);
841 if (r < 0) {
842 abort();
843 }
844 }
845
846 static void kvm_io_ioeventfd_add(MemoryListener *listener,
847 MemoryRegionSection *section,
848 bool match_data, uint64_t data,
849 EventNotifier *e)
850 {
851 int fd = event_notifier_get_fd(e);
852 int r;
853
854 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
855 data, true, int128_get64(section->size),
856 match_data);
857 if (r < 0) {
858 fprintf(stderr, "%s: error adding ioeventfd: %s\n",
859 __func__, strerror(-r));
860 abort();
861 }
862 }
863
864 static void kvm_io_ioeventfd_del(MemoryListener *listener,
865 MemoryRegionSection *section,
866 bool match_data, uint64_t data,
867 EventNotifier *e)
868
869 {
870 int fd = event_notifier_get_fd(e);
871 int r;
872
873 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
874 data, false, int128_get64(section->size),
875 match_data);
876 if (r < 0) {
877 abort();
878 }
879 }
880
881 static MemoryListener kvm_memory_listener = {
882 .region_add = kvm_region_add,
883 .region_del = kvm_region_del,
884 .log_start = kvm_log_start,
885 .log_stop = kvm_log_stop,
886 .log_sync = kvm_log_sync,
887 .log_global_start = kvm_log_global_start,
888 .log_global_stop = kvm_log_global_stop,
889 .eventfd_add = kvm_mem_ioeventfd_add,
890 .eventfd_del = kvm_mem_ioeventfd_del,
891 .coalesced_mmio_add = kvm_coalesce_mmio_region,
892 .coalesced_mmio_del = kvm_uncoalesce_mmio_region,
893 .priority = 10,
894 };
895
896 static MemoryListener kvm_io_listener = {
897 .eventfd_add = kvm_io_ioeventfd_add,
898 .eventfd_del = kvm_io_ioeventfd_del,
899 .priority = 10,
900 };
901
902 static void kvm_handle_interrupt(CPUState *cpu, int mask)
903 {
904 cpu->interrupt_request |= mask;
905
906 if (!qemu_cpu_is_self(cpu)) {
907 qemu_cpu_kick(cpu);
908 }
909 }
910
911 int kvm_set_irq(KVMState *s, int irq, int level)
912 {
913 struct kvm_irq_level event;
914 int ret;
915
916 assert(kvm_async_interrupts_enabled());
917
918 event.level = level;
919 event.irq = irq;
920 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
921 if (ret < 0) {
922 perror("kvm_set_irq");
923 abort();
924 }
925
926 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
927 }
928
929 #ifdef KVM_CAP_IRQ_ROUTING
930 typedef struct KVMMSIRoute {
931 struct kvm_irq_routing_entry kroute;
932 QTAILQ_ENTRY(KVMMSIRoute) entry;
933 } KVMMSIRoute;
934
935 static void set_gsi(KVMState *s, unsigned int gsi)
936 {
937 s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32);
938 }
939
940 static void clear_gsi(KVMState *s, unsigned int gsi)
941 {
942 s->used_gsi_bitmap[gsi / 32] &= ~(1U << (gsi % 32));
943 }
944
945 void kvm_init_irq_routing(KVMState *s)
946 {
947 int gsi_count, i;
948
949 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING);
950 if (gsi_count > 0) {
951 unsigned int gsi_bits, i;
952
953 /* Round up so we can search ints using ffs */
954 gsi_bits = ALIGN(gsi_count, 32);
955 s->used_gsi_bitmap = g_malloc0(gsi_bits / 8);
956 s->gsi_count = gsi_count;
957
958 /* Mark any over-allocated bits as already in use */
959 for (i = gsi_count; i < gsi_bits; i++) {
960 set_gsi(s, i);
961 }
962 }
963
964 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
965 s->nr_allocated_irq_routes = 0;
966
967 if (!s->direct_msi) {
968 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
969 QTAILQ_INIT(&s->msi_hashtab[i]);
970 }
971 }
972
973 kvm_arch_init_irq_routing(s);
974 }
975
976 void kvm_irqchip_commit_routes(KVMState *s)
977 {
978 int ret;
979
980 s->irq_routes->flags = 0;
981 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
982 assert(ret == 0);
983 }
984
985 static void kvm_add_routing_entry(KVMState *s,
986 struct kvm_irq_routing_entry *entry)
987 {
988 struct kvm_irq_routing_entry *new;
989 int n, size;
990
991 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
992 n = s->nr_allocated_irq_routes * 2;
993 if (n < 64) {
994 n = 64;
995 }
996 size = sizeof(struct kvm_irq_routing);
997 size += n * sizeof(*new);
998 s->irq_routes = g_realloc(s->irq_routes, size);
999 s->nr_allocated_irq_routes = n;
1000 }
1001 n = s->irq_routes->nr++;
1002 new = &s->irq_routes->entries[n];
1003
1004 *new = *entry;
1005
1006 set_gsi(s, entry->gsi);
1007 }
1008
1009 static int kvm_update_routing_entry(KVMState *s,
1010 struct kvm_irq_routing_entry *new_entry)
1011 {
1012 struct kvm_irq_routing_entry *entry;
1013 int n;
1014
1015 for (n = 0; n < s->irq_routes->nr; n++) {
1016 entry = &s->irq_routes->entries[n];
1017 if (entry->gsi != new_entry->gsi) {
1018 continue;
1019 }
1020
1021 if(!memcmp(entry, new_entry, sizeof *entry)) {
1022 return 0;
1023 }
1024
1025 *entry = *new_entry;
1026
1027 kvm_irqchip_commit_routes(s);
1028
1029 return 0;
1030 }
1031
1032 return -ESRCH;
1033 }
1034
1035 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1036 {
1037 struct kvm_irq_routing_entry e = {};
1038
1039 assert(pin < s->gsi_count);
1040
1041 e.gsi = irq;
1042 e.type = KVM_IRQ_ROUTING_IRQCHIP;
1043 e.flags = 0;
1044 e.u.irqchip.irqchip = irqchip;
1045 e.u.irqchip.pin = pin;
1046 kvm_add_routing_entry(s, &e);
1047 }
1048
1049 void kvm_irqchip_release_virq(KVMState *s, int virq)
1050 {
1051 struct kvm_irq_routing_entry *e;
1052 int i;
1053
1054 if (kvm_gsi_direct_mapping()) {
1055 return;
1056 }
1057
1058 for (i = 0; i < s->irq_routes->nr; i++) {
1059 e = &s->irq_routes->entries[i];
1060 if (e->gsi == virq) {
1061 s->irq_routes->nr--;
1062 *e = s->irq_routes->entries[s->irq_routes->nr];
1063 }
1064 }
1065 clear_gsi(s, virq);
1066 }
1067
1068 static unsigned int kvm_hash_msi(uint32_t data)
1069 {
1070 /* This is optimized for IA32 MSI layout. However, no other arch shall
1071 * repeat the mistake of not providing a direct MSI injection API. */
1072 return data & 0xff;
1073 }
1074
1075 static void kvm_flush_dynamic_msi_routes(KVMState *s)
1076 {
1077 KVMMSIRoute *route, *next;
1078 unsigned int hash;
1079
1080 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1081 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1082 kvm_irqchip_release_virq(s, route->kroute.gsi);
1083 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1084 g_free(route);
1085 }
1086 }
1087 }
1088
1089 static int kvm_irqchip_get_virq(KVMState *s)
1090 {
1091 uint32_t *word = s->used_gsi_bitmap;
1092 int max_words = ALIGN(s->gsi_count, 32) / 32;
1093 int i, bit;
1094 bool retry = true;
1095
1096 again:
1097 /* Return the lowest unused GSI in the bitmap */
1098 for (i = 0; i < max_words; i++) {
1099 bit = ffs(~word[i]);
1100 if (!bit) {
1101 continue;
1102 }
1103
1104 return bit - 1 + i * 32;
1105 }
1106 if (!s->direct_msi && retry) {
1107 retry = false;
1108 kvm_flush_dynamic_msi_routes(s);
1109 goto again;
1110 }
1111 return -ENOSPC;
1112
1113 }
1114
1115 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1116 {
1117 unsigned int hash = kvm_hash_msi(msg.data);
1118 KVMMSIRoute *route;
1119
1120 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1121 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1122 route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1123 route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
1124 return route;
1125 }
1126 }
1127 return NULL;
1128 }
1129
1130 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1131 {
1132 struct kvm_msi msi;
1133 KVMMSIRoute *route;
1134
1135 if (s->direct_msi) {
1136 msi.address_lo = (uint32_t)msg.address;
1137 msi.address_hi = msg.address >> 32;
1138 msi.data = le32_to_cpu(msg.data);
1139 msi.flags = 0;
1140 memset(msi.pad, 0, sizeof(msi.pad));
1141
1142 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1143 }
1144
1145 route = kvm_lookup_msi_route(s, msg);
1146 if (!route) {
1147 int virq;
1148
1149 virq = kvm_irqchip_get_virq(s);
1150 if (virq < 0) {
1151 return virq;
1152 }
1153
1154 route = g_malloc0(sizeof(KVMMSIRoute));
1155 route->kroute.gsi = virq;
1156 route->kroute.type = KVM_IRQ_ROUTING_MSI;
1157 route->kroute.flags = 0;
1158 route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1159 route->kroute.u.msi.address_hi = msg.address >> 32;
1160 route->kroute.u.msi.data = le32_to_cpu(msg.data);
1161
1162 kvm_add_routing_entry(s, &route->kroute);
1163 kvm_irqchip_commit_routes(s);
1164
1165 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1166 entry);
1167 }
1168
1169 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1170
1171 return kvm_set_irq(s, route->kroute.gsi, 1);
1172 }
1173
1174 int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1175 {
1176 struct kvm_irq_routing_entry kroute = {};
1177 int virq;
1178
1179 if (kvm_gsi_direct_mapping()) {
1180 return msg.data & 0xffff;
1181 }
1182
1183 if (!kvm_gsi_routing_enabled()) {
1184 return -ENOSYS;
1185 }
1186
1187 virq = kvm_irqchip_get_virq(s);
1188 if (virq < 0) {
1189 return virq;
1190 }
1191
1192 kroute.gsi = virq;
1193 kroute.type = KVM_IRQ_ROUTING_MSI;
1194 kroute.flags = 0;
1195 kroute.u.msi.address_lo = (uint32_t)msg.address;
1196 kroute.u.msi.address_hi = msg.address >> 32;
1197 kroute.u.msi.data = le32_to_cpu(msg.data);
1198
1199 kvm_add_routing_entry(s, &kroute);
1200 kvm_irqchip_commit_routes(s);
1201
1202 return virq;
1203 }
1204
1205 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1206 {
1207 struct kvm_irq_routing_entry kroute = {};
1208
1209 if (kvm_gsi_direct_mapping()) {
1210 return 0;
1211 }
1212
1213 if (!kvm_irqchip_in_kernel()) {
1214 return -ENOSYS;
1215 }
1216
1217 kroute.gsi = virq;
1218 kroute.type = KVM_IRQ_ROUTING_MSI;
1219 kroute.flags = 0;
1220 kroute.u.msi.address_lo = (uint32_t)msg.address;
1221 kroute.u.msi.address_hi = msg.address >> 32;
1222 kroute.u.msi.data = le32_to_cpu(msg.data);
1223
1224 return kvm_update_routing_entry(s, &kroute);
1225 }
1226
1227 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq,
1228 bool assign)
1229 {
1230 struct kvm_irqfd irqfd = {
1231 .fd = fd,
1232 .gsi = virq,
1233 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1234 };
1235
1236 if (rfd != -1) {
1237 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
1238 irqfd.resamplefd = rfd;
1239 }
1240
1241 if (!kvm_irqfds_enabled()) {
1242 return -ENOSYS;
1243 }
1244
1245 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1246 }
1247
1248 #else /* !KVM_CAP_IRQ_ROUTING */
1249
1250 void kvm_init_irq_routing(KVMState *s)
1251 {
1252 }
1253
1254 void kvm_irqchip_release_virq(KVMState *s, int virq)
1255 {
1256 }
1257
1258 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1259 {
1260 abort();
1261 }
1262
1263 int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1264 {
1265 return -ENOSYS;
1266 }
1267
1268 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1269 {
1270 abort();
1271 }
1272
1273 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1274 {
1275 return -ENOSYS;
1276 }
1277 #endif /* !KVM_CAP_IRQ_ROUTING */
1278
1279 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
1280 EventNotifier *rn, int virq)
1281 {
1282 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n),
1283 rn ? event_notifier_get_fd(rn) : -1, virq, true);
1284 }
1285
1286 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, int virq)
1287 {
1288 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), -1, virq,
1289 false);
1290 }
1291
1292 static int kvm_irqchip_create(KVMState *s)
1293 {
1294 int ret;
1295
1296 if (!qemu_opt_get_bool(qemu_get_machine_opts(), "kernel_irqchip", true) ||
1297 !kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
1298 return 0;
1299 }
1300
1301 /* First probe and see if there's a arch-specific hook to create the
1302 * in-kernel irqchip for us */
1303 ret = kvm_arch_irqchip_create(s);
1304 if (ret < 0) {
1305 return ret;
1306 } else if (ret == 0) {
1307 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1308 if (ret < 0) {
1309 fprintf(stderr, "Create kernel irqchip failed\n");
1310 return ret;
1311 }
1312 }
1313
1314 kvm_kernel_irqchip = true;
1315 /* If we have an in-kernel IRQ chip then we must have asynchronous
1316 * interrupt delivery (though the reverse is not necessarily true)
1317 */
1318 kvm_async_interrupts_allowed = true;
1319 kvm_halt_in_kernel_allowed = true;
1320
1321 kvm_init_irq_routing(s);
1322
1323 return 0;
1324 }
1325
1326 /* Find number of supported CPUs using the recommended
1327 * procedure from the kernel API documentation to cope with
1328 * older kernels that may be missing capabilities.
1329 */
1330 static int kvm_recommended_vcpus(KVMState *s)
1331 {
1332 int ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS);
1333 return (ret) ? ret : 4;
1334 }
1335
1336 static int kvm_max_vcpus(KVMState *s)
1337 {
1338 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
1339 return (ret) ? ret : kvm_recommended_vcpus(s);
1340 }
1341
1342 int kvm_init(void)
1343 {
1344 static const char upgrade_note[] =
1345 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1346 "(see http://sourceforge.net/projects/kvm).\n";
1347 struct {
1348 const char *name;
1349 int num;
1350 } num_cpus[] = {
1351 { "SMP", smp_cpus },
1352 { "hotpluggable", max_cpus },
1353 { NULL, }
1354 }, *nc = num_cpus;
1355 int soft_vcpus_limit, hard_vcpus_limit;
1356 KVMState *s;
1357 const KVMCapabilityInfo *missing_cap;
1358 int ret;
1359 int i;
1360
1361 s = g_malloc0(sizeof(KVMState));
1362
1363 /*
1364 * On systems where the kernel can support different base page
1365 * sizes, host page size may be different from TARGET_PAGE_SIZE,
1366 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
1367 * page size for the system though.
1368 */
1369 assert(TARGET_PAGE_SIZE <= getpagesize());
1370 page_size_init();
1371
1372 #ifdef KVM_CAP_SET_GUEST_DEBUG
1373 QTAILQ_INIT(&s->kvm_sw_breakpoints);
1374 #endif
1375 s->vmfd = -1;
1376 s->fd = qemu_open("/dev/kvm", O_RDWR);
1377 if (s->fd == -1) {
1378 fprintf(stderr, "Could not access KVM kernel module: %m\n");
1379 ret = -errno;
1380 goto err;
1381 }
1382
1383 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
1384 if (ret < KVM_API_VERSION) {
1385 if (ret > 0) {
1386 ret = -EINVAL;
1387 }
1388 fprintf(stderr, "kvm version too old\n");
1389 goto err;
1390 }
1391
1392 if (ret > KVM_API_VERSION) {
1393 ret = -EINVAL;
1394 fprintf(stderr, "kvm version not supported\n");
1395 goto err;
1396 }
1397
1398 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
1399
1400 /* If unspecified, use the default value */
1401 if (!s->nr_slots) {
1402 s->nr_slots = 32;
1403 }
1404
1405 s->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot));
1406
1407 for (i = 0; i < s->nr_slots; i++) {
1408 s->slots[i].slot = i;
1409 }
1410
1411 /* check the vcpu limits */
1412 soft_vcpus_limit = kvm_recommended_vcpus(s);
1413 hard_vcpus_limit = kvm_max_vcpus(s);
1414
1415 while (nc->name) {
1416 if (nc->num > soft_vcpus_limit) {
1417 fprintf(stderr,
1418 "Warning: Number of %s cpus requested (%d) exceeds "
1419 "the recommended cpus supported by KVM (%d)\n",
1420 nc->name, nc->num, soft_vcpus_limit);
1421
1422 if (nc->num > hard_vcpus_limit) {
1423 fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
1424 "the maximum cpus supported by KVM (%d)\n",
1425 nc->name, nc->num, hard_vcpus_limit);
1426 exit(1);
1427 }
1428 }
1429 nc++;
1430 }
1431
1432 do {
1433 ret = kvm_ioctl(s, KVM_CREATE_VM, 0);
1434 } while (ret == -EINTR);
1435
1436 if (ret < 0) {
1437 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
1438 strerror(-ret));
1439
1440 #ifdef TARGET_S390X
1441 fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
1442 "your host kernel command line\n");
1443 #endif
1444 goto err;
1445 }
1446
1447 s->vmfd = ret;
1448 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1449 if (!missing_cap) {
1450 missing_cap =
1451 kvm_check_extension_list(s, kvm_arch_required_capabilities);
1452 }
1453 if (missing_cap) {
1454 ret = -EINVAL;
1455 fprintf(stderr, "kvm does not support %s\n%s",
1456 missing_cap->name, upgrade_note);
1457 goto err;
1458 }
1459
1460 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
1461
1462 s->broken_set_mem_region = 1;
1463 ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
1464 if (ret > 0) {
1465 s->broken_set_mem_region = 0;
1466 }
1467
1468 #ifdef KVM_CAP_VCPU_EVENTS
1469 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
1470 #endif
1471
1472 s->robust_singlestep =
1473 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
1474
1475 #ifdef KVM_CAP_DEBUGREGS
1476 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
1477 #endif
1478
1479 #ifdef KVM_CAP_XSAVE
1480 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
1481 #endif
1482
1483 #ifdef KVM_CAP_XCRS
1484 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
1485 #endif
1486
1487 #ifdef KVM_CAP_PIT_STATE2
1488 s->pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
1489 #endif
1490
1491 #ifdef KVM_CAP_IRQ_ROUTING
1492 s->direct_msi = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
1493 #endif
1494
1495 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
1496
1497 s->irq_set_ioctl = KVM_IRQ_LINE;
1498 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
1499 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
1500 }
1501
1502 #ifdef KVM_CAP_READONLY_MEM
1503 kvm_readonly_mem_allowed =
1504 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
1505 #endif
1506
1507 ret = kvm_arch_init(s);
1508 if (ret < 0) {
1509 goto err;
1510 }
1511
1512 ret = kvm_irqchip_create(s);
1513 if (ret < 0) {
1514 goto err;
1515 }
1516
1517 kvm_state = s;
1518 memory_listener_register(&kvm_memory_listener, &address_space_memory);
1519 memory_listener_register(&kvm_io_listener, &address_space_io);
1520
1521 s->many_ioeventfds = kvm_check_many_ioeventfds();
1522
1523 cpu_interrupt_handler = kvm_handle_interrupt;
1524
1525 return 0;
1526
1527 err:
1528 if (s->vmfd >= 0) {
1529 close(s->vmfd);
1530 }
1531 if (s->fd != -1) {
1532 close(s->fd);
1533 }
1534 g_free(s->slots);
1535 g_free(s);
1536
1537 return ret;
1538 }
1539
1540 static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
1541 uint32_t count)
1542 {
1543 int i;
1544 uint8_t *ptr = data;
1545
1546 for (i = 0; i < count; i++) {
1547 address_space_rw(&address_space_io, port, ptr, size,
1548 direction == KVM_EXIT_IO_OUT);
1549 ptr += size;
1550 }
1551 }
1552
1553 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
1554 {
1555 fprintf(stderr, "KVM internal error. Suberror: %d\n",
1556 run->internal.suberror);
1557
1558 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
1559 int i;
1560
1561 for (i = 0; i < run->internal.ndata; ++i) {
1562 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
1563 i, (uint64_t)run->internal.data[i]);
1564 }
1565 }
1566 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
1567 fprintf(stderr, "emulation failure\n");
1568 if (!kvm_arch_stop_on_emulation_error(cpu)) {
1569 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
1570 return EXCP_INTERRUPT;
1571 }
1572 }
1573 /* FIXME: Should trigger a qmp message to let management know
1574 * something went wrong.
1575 */
1576 return -1;
1577 }
1578
1579 void kvm_flush_coalesced_mmio_buffer(void)
1580 {
1581 KVMState *s = kvm_state;
1582
1583 if (s->coalesced_flush_in_progress) {
1584 return;
1585 }
1586
1587 s->coalesced_flush_in_progress = true;
1588
1589 if (s->coalesced_mmio_ring) {
1590 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
1591 while (ring->first != ring->last) {
1592 struct kvm_coalesced_mmio *ent;
1593
1594 ent = &ring->coalesced_mmio[ring->first];
1595
1596 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
1597 smp_wmb();
1598 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
1599 }
1600 }
1601
1602 s->coalesced_flush_in_progress = false;
1603 }
1604
1605 static void do_kvm_cpu_synchronize_state(void *arg)
1606 {
1607 CPUState *cpu = arg;
1608
1609 if (!cpu->kvm_vcpu_dirty) {
1610 kvm_arch_get_registers(cpu);
1611 cpu->kvm_vcpu_dirty = true;
1612 }
1613 }
1614
1615 void kvm_cpu_synchronize_state(CPUState *cpu)
1616 {
1617 if (!cpu->kvm_vcpu_dirty) {
1618 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, cpu);
1619 }
1620 }
1621
1622 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
1623 {
1624 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
1625 cpu->kvm_vcpu_dirty = false;
1626 }
1627
1628 void kvm_cpu_synchronize_post_init(CPUState *cpu)
1629 {
1630 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
1631 cpu->kvm_vcpu_dirty = false;
1632 }
1633
1634 int kvm_cpu_exec(CPUState *cpu)
1635 {
1636 struct kvm_run *run = cpu->kvm_run;
1637 int ret, run_ret;
1638
1639 DPRINTF("kvm_cpu_exec()\n");
1640
1641 if (kvm_arch_process_async_events(cpu)) {
1642 cpu->exit_request = 0;
1643 return EXCP_HLT;
1644 }
1645
1646 do {
1647 if (cpu->kvm_vcpu_dirty) {
1648 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
1649 cpu->kvm_vcpu_dirty = false;
1650 }
1651
1652 kvm_arch_pre_run(cpu, run);
1653 if (cpu->exit_request) {
1654 DPRINTF("interrupt exit requested\n");
1655 /*
1656 * KVM requires us to reenter the kernel after IO exits to complete
1657 * instruction emulation. This self-signal will ensure that we
1658 * leave ASAP again.
1659 */
1660 qemu_cpu_kick_self();
1661 }
1662 qemu_mutex_unlock_iothread();
1663
1664 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
1665
1666 qemu_mutex_lock_iothread();
1667 kvm_arch_post_run(cpu, run);
1668
1669 if (run_ret < 0) {
1670 if (run_ret == -EINTR || run_ret == -EAGAIN) {
1671 DPRINTF("io window exit\n");
1672 ret = EXCP_INTERRUPT;
1673 break;
1674 }
1675 fprintf(stderr, "error: kvm run failed %s\n",
1676 strerror(-run_ret));
1677 abort();
1678 }
1679
1680 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
1681 switch (run->exit_reason) {
1682 case KVM_EXIT_IO:
1683 DPRINTF("handle_io\n");
1684 kvm_handle_io(run->io.port,
1685 (uint8_t *)run + run->io.data_offset,
1686 run->io.direction,
1687 run->io.size,
1688 run->io.count);
1689 ret = 0;
1690 break;
1691 case KVM_EXIT_MMIO:
1692 DPRINTF("handle_mmio\n");
1693 cpu_physical_memory_rw(run->mmio.phys_addr,
1694 run->mmio.data,
1695 run->mmio.len,
1696 run->mmio.is_write);
1697 ret = 0;
1698 break;
1699 case KVM_EXIT_IRQ_WINDOW_OPEN:
1700 DPRINTF("irq_window_open\n");
1701 ret = EXCP_INTERRUPT;
1702 break;
1703 case KVM_EXIT_SHUTDOWN:
1704 DPRINTF("shutdown\n");
1705 qemu_system_reset_request();
1706 ret = EXCP_INTERRUPT;
1707 break;
1708 case KVM_EXIT_UNKNOWN:
1709 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
1710 (uint64_t)run->hw.hardware_exit_reason);
1711 ret = -1;
1712 break;
1713 case KVM_EXIT_INTERNAL_ERROR:
1714 ret = kvm_handle_internal_error(cpu, run);
1715 break;
1716 default:
1717 DPRINTF("kvm_arch_handle_exit\n");
1718 ret = kvm_arch_handle_exit(cpu, run);
1719 break;
1720 }
1721 } while (ret == 0);
1722
1723 if (ret < 0) {
1724 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
1725 vm_stop(RUN_STATE_INTERNAL_ERROR);
1726 }
1727
1728 cpu->exit_request = 0;
1729 return ret;
1730 }
1731
1732 int kvm_ioctl(KVMState *s, int type, ...)
1733 {
1734 int ret;
1735 void *arg;
1736 va_list ap;
1737
1738 va_start(ap, type);
1739 arg = va_arg(ap, void *);
1740 va_end(ap);
1741
1742 trace_kvm_ioctl(type, arg);
1743 ret = ioctl(s->fd, type, arg);
1744 if (ret == -1) {
1745 ret = -errno;
1746 }
1747 return ret;
1748 }
1749
1750 int kvm_vm_ioctl(KVMState *s, int type, ...)
1751 {
1752 int ret;
1753 void *arg;
1754 va_list ap;
1755
1756 va_start(ap, type);
1757 arg = va_arg(ap, void *);
1758 va_end(ap);
1759
1760 trace_kvm_vm_ioctl(type, arg);
1761 ret = ioctl(s->vmfd, type, arg);
1762 if (ret == -1) {
1763 ret = -errno;
1764 }
1765 return ret;
1766 }
1767
1768 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
1769 {
1770 int ret;
1771 void *arg;
1772 va_list ap;
1773
1774 va_start(ap, type);
1775 arg = va_arg(ap, void *);
1776 va_end(ap);
1777
1778 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
1779 ret = ioctl(cpu->kvm_fd, type, arg);
1780 if (ret == -1) {
1781 ret = -errno;
1782 }
1783 return ret;
1784 }
1785
1786 int kvm_device_ioctl(int fd, int type, ...)
1787 {
1788 int ret;
1789 void *arg;
1790 va_list ap;
1791
1792 va_start(ap, type);
1793 arg = va_arg(ap, void *);
1794 va_end(ap);
1795
1796 trace_kvm_device_ioctl(fd, type, arg);
1797 ret = ioctl(fd, type, arg);
1798 if (ret == -1) {
1799 ret = -errno;
1800 }
1801 return ret;
1802 }
1803
1804 int kvm_has_sync_mmu(void)
1805 {
1806 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
1807 }
1808
1809 int kvm_has_vcpu_events(void)
1810 {
1811 return kvm_state->vcpu_events;
1812 }
1813
1814 int kvm_has_robust_singlestep(void)
1815 {
1816 return kvm_state->robust_singlestep;
1817 }
1818
1819 int kvm_has_debugregs(void)
1820 {
1821 return kvm_state->debugregs;
1822 }
1823
1824 int kvm_has_xsave(void)
1825 {
1826 return kvm_state->xsave;
1827 }
1828
1829 int kvm_has_xcrs(void)
1830 {
1831 return kvm_state->xcrs;
1832 }
1833
1834 int kvm_has_pit_state2(void)
1835 {
1836 return kvm_state->pit_state2;
1837 }
1838
1839 int kvm_has_many_ioeventfds(void)
1840 {
1841 if (!kvm_enabled()) {
1842 return 0;
1843 }
1844 return kvm_state->many_ioeventfds;
1845 }
1846
1847 int kvm_has_gsi_routing(void)
1848 {
1849 #ifdef KVM_CAP_IRQ_ROUTING
1850 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
1851 #else
1852 return false;
1853 #endif
1854 }
1855
1856 int kvm_has_intx_set_mask(void)
1857 {
1858 return kvm_state->intx_set_mask;
1859 }
1860
1861 void kvm_setup_guest_memory(void *start, size_t size)
1862 {
1863 #ifdef CONFIG_VALGRIND_H
1864 VALGRIND_MAKE_MEM_DEFINED(start, size);
1865 #endif
1866 if (!kvm_has_sync_mmu()) {
1867 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
1868
1869 if (ret) {
1870 perror("qemu_madvise");
1871 fprintf(stderr,
1872 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1873 exit(1);
1874 }
1875 }
1876 }
1877
1878 #ifdef KVM_CAP_SET_GUEST_DEBUG
1879 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
1880 target_ulong pc)
1881 {
1882 struct kvm_sw_breakpoint *bp;
1883
1884 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
1885 if (bp->pc == pc) {
1886 return bp;
1887 }
1888 }
1889 return NULL;
1890 }
1891
1892 int kvm_sw_breakpoints_active(CPUState *cpu)
1893 {
1894 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
1895 }
1896
1897 struct kvm_set_guest_debug_data {
1898 struct kvm_guest_debug dbg;
1899 CPUState *cpu;
1900 int err;
1901 };
1902
1903 static void kvm_invoke_set_guest_debug(void *data)
1904 {
1905 struct kvm_set_guest_debug_data *dbg_data = data;
1906
1907 dbg_data->err = kvm_vcpu_ioctl(dbg_data->cpu, KVM_SET_GUEST_DEBUG,
1908 &dbg_data->dbg);
1909 }
1910
1911 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
1912 {
1913 struct kvm_set_guest_debug_data data;
1914
1915 data.dbg.control = reinject_trap;
1916
1917 if (cpu->singlestep_enabled) {
1918 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1919 }
1920 kvm_arch_update_guest_debug(cpu, &data.dbg);
1921 data.cpu = cpu;
1922
1923 run_on_cpu(cpu, kvm_invoke_set_guest_debug, &data);
1924 return data.err;
1925 }
1926
1927 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
1928 target_ulong len, int type)
1929 {
1930 struct kvm_sw_breakpoint *bp;
1931 int err;
1932
1933 if (type == GDB_BREAKPOINT_SW) {
1934 bp = kvm_find_sw_breakpoint(cpu, addr);
1935 if (bp) {
1936 bp->use_count++;
1937 return 0;
1938 }
1939
1940 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
1941 if (!bp) {
1942 return -ENOMEM;
1943 }
1944
1945 bp->pc = addr;
1946 bp->use_count = 1;
1947 err = kvm_arch_insert_sw_breakpoint(cpu, bp);
1948 if (err) {
1949 g_free(bp);
1950 return err;
1951 }
1952
1953 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
1954 } else {
1955 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1956 if (err) {
1957 return err;
1958 }
1959 }
1960
1961 CPU_FOREACH(cpu) {
1962 err = kvm_update_guest_debug(cpu, 0);
1963 if (err) {
1964 return err;
1965 }
1966 }
1967 return 0;
1968 }
1969
1970 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
1971 target_ulong len, int type)
1972 {
1973 struct kvm_sw_breakpoint *bp;
1974 int err;
1975
1976 if (type == GDB_BREAKPOINT_SW) {
1977 bp = kvm_find_sw_breakpoint(cpu, addr);
1978 if (!bp) {
1979 return -ENOENT;
1980 }
1981
1982 if (bp->use_count > 1) {
1983 bp->use_count--;
1984 return 0;
1985 }
1986
1987 err = kvm_arch_remove_sw_breakpoint(cpu, bp);
1988 if (err) {
1989 return err;
1990 }
1991
1992 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
1993 g_free(bp);
1994 } else {
1995 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1996 if (err) {
1997 return err;
1998 }
1999 }
2000
2001 CPU_FOREACH(cpu) {
2002 err = kvm_update_guest_debug(cpu, 0);
2003 if (err) {
2004 return err;
2005 }
2006 }
2007 return 0;
2008 }
2009
2010 void kvm_remove_all_breakpoints(CPUState *cpu)
2011 {
2012 struct kvm_sw_breakpoint *bp, *next;
2013 KVMState *s = cpu->kvm_state;
2014
2015 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
2016 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
2017 /* Try harder to find a CPU that currently sees the breakpoint. */
2018 CPU_FOREACH(cpu) {
2019 if (kvm_arch_remove_sw_breakpoint(cpu, bp) == 0) {
2020 break;
2021 }
2022 }
2023 }
2024 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
2025 g_free(bp);
2026 }
2027 kvm_arch_remove_all_hw_breakpoints();
2028
2029 CPU_FOREACH(cpu) {
2030 kvm_update_guest_debug(cpu, 0);
2031 }
2032 }
2033
2034 #else /* !KVM_CAP_SET_GUEST_DEBUG */
2035
2036 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2037 {
2038 return -EINVAL;
2039 }
2040
2041 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2042 target_ulong len, int type)
2043 {
2044 return -EINVAL;
2045 }
2046
2047 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2048 target_ulong len, int type)
2049 {
2050 return -EINVAL;
2051 }
2052
2053 void kvm_remove_all_breakpoints(CPUState *cpu)
2054 {
2055 }
2056 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2057
2058 int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
2059 {
2060 struct kvm_signal_mask *sigmask;
2061 int r;
2062
2063 if (!sigset) {
2064 return kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, NULL);
2065 }
2066
2067 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
2068
2069 sigmask->len = 8;
2070 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
2071 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
2072 g_free(sigmask);
2073
2074 return r;
2075 }
2076 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
2077 {
2078 return kvm_arch_on_sigbus_vcpu(cpu, code, addr);
2079 }
2080
2081 int kvm_on_sigbus(int code, void *addr)
2082 {
2083 return kvm_arch_on_sigbus(code, addr);
2084 }
2085
2086 int kvm_create_device(KVMState *s, uint64_t type, bool test)
2087 {
2088 int ret;
2089 struct kvm_create_device create_dev;
2090
2091 create_dev.type = type;
2092 create_dev.fd = -1;
2093 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
2094
2095 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
2096 return -ENOTSUP;
2097 }
2098
2099 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
2100 if (ret) {
2101 return ret;
2102 }
2103
2104 return test ? 0 : create_dev.fd;
2105 }