]> git.proxmox.com Git - mirror_qemu.git/blob - kvm-all.c
kvm: add kvm_readonly_mem_enabled
[mirror_qemu.git] / kvm-all.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
10 *
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
13 *
14 */
15
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
20
21 #include <linux/kvm.h>
22
23 #include "qemu-common.h"
24 #include "qemu/atomic.h"
25 #include "qemu/option.h"
26 #include "qemu/config-file.h"
27 #include "sysemu/sysemu.h"
28 #include "hw/hw.h"
29 #include "hw/pci/msi.h"
30 #include "exec/gdbstub.h"
31 #include "sysemu/kvm.h"
32 #include "qemu/bswap.h"
33 #include "exec/memory.h"
34 #include "exec/address-spaces.h"
35 #include "qemu/event_notifier.h"
36 #include "trace.h"
37
38 /* This check must be after config-host.h is included */
39 #ifdef CONFIG_EVENTFD
40 #include <sys/eventfd.h>
41 #endif
42
43 #ifdef CONFIG_VALGRIND_H
44 #include <valgrind/memcheck.h>
45 #endif
46
47 /* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
48 #define PAGE_SIZE TARGET_PAGE_SIZE
49
50 //#define DEBUG_KVM
51
52 #ifdef DEBUG_KVM
53 #define DPRINTF(fmt, ...) \
54 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
55 #else
56 #define DPRINTF(fmt, ...) \
57 do { } while (0)
58 #endif
59
60 #define KVM_MSI_HASHTAB_SIZE 256
61
62 typedef struct KVMSlot
63 {
64 hwaddr start_addr;
65 ram_addr_t memory_size;
66 void *ram;
67 int slot;
68 int flags;
69 } KVMSlot;
70
71 typedef struct kvm_dirty_log KVMDirtyLog;
72
73 struct KVMState
74 {
75 KVMSlot slots[32];
76 int fd;
77 int vmfd;
78 int coalesced_mmio;
79 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
80 bool coalesced_flush_in_progress;
81 int broken_set_mem_region;
82 int migration_log;
83 int vcpu_events;
84 int robust_singlestep;
85 int debugregs;
86 #ifdef KVM_CAP_SET_GUEST_DEBUG
87 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
88 #endif
89 int pit_state2;
90 int xsave, xcrs;
91 int many_ioeventfds;
92 int intx_set_mask;
93 /* The man page (and posix) say ioctl numbers are signed int, but
94 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
95 * unsigned, and treating them as signed here can break things */
96 unsigned irq_set_ioctl;
97 #ifdef KVM_CAP_IRQ_ROUTING
98 struct kvm_irq_routing *irq_routes;
99 int nr_allocated_irq_routes;
100 uint32_t *used_gsi_bitmap;
101 unsigned int gsi_count;
102 QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
103 bool direct_msi;
104 #endif
105 };
106
107 KVMState *kvm_state;
108 bool kvm_kernel_irqchip;
109 bool kvm_async_interrupts_allowed;
110 bool kvm_irqfds_allowed;
111 bool kvm_msi_via_irqfd_allowed;
112 bool kvm_gsi_routing_allowed;
113 bool kvm_allowed;
114 bool kvm_readonly_mem_allowed;
115
116 static const KVMCapabilityInfo kvm_required_capabilites[] = {
117 KVM_CAP_INFO(USER_MEMORY),
118 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
119 KVM_CAP_LAST_INFO
120 };
121
122 static KVMSlot *kvm_alloc_slot(KVMState *s)
123 {
124 int i;
125
126 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
127 if (s->slots[i].memory_size == 0) {
128 return &s->slots[i];
129 }
130 }
131
132 fprintf(stderr, "%s: no free slot available\n", __func__);
133 abort();
134 }
135
136 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
137 hwaddr start_addr,
138 hwaddr end_addr)
139 {
140 int i;
141
142 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
143 KVMSlot *mem = &s->slots[i];
144
145 if (start_addr == mem->start_addr &&
146 end_addr == mem->start_addr + mem->memory_size) {
147 return mem;
148 }
149 }
150
151 return NULL;
152 }
153
154 /*
155 * Find overlapping slot with lowest start address
156 */
157 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
158 hwaddr start_addr,
159 hwaddr end_addr)
160 {
161 KVMSlot *found = NULL;
162 int i;
163
164 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
165 KVMSlot *mem = &s->slots[i];
166
167 if (mem->memory_size == 0 ||
168 (found && found->start_addr < mem->start_addr)) {
169 continue;
170 }
171
172 if (end_addr > mem->start_addr &&
173 start_addr < mem->start_addr + mem->memory_size) {
174 found = mem;
175 }
176 }
177
178 return found;
179 }
180
181 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
182 hwaddr *phys_addr)
183 {
184 int i;
185
186 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
187 KVMSlot *mem = &s->slots[i];
188
189 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
190 *phys_addr = mem->start_addr + (ram - mem->ram);
191 return 1;
192 }
193 }
194
195 return 0;
196 }
197
198 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
199 {
200 struct kvm_userspace_memory_region mem;
201
202 mem.slot = slot->slot;
203 mem.guest_phys_addr = slot->start_addr;
204 mem.memory_size = slot->memory_size;
205 mem.userspace_addr = (unsigned long)slot->ram;
206 mem.flags = slot->flags;
207 if (s->migration_log) {
208 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
209 }
210 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
211 }
212
213 static void kvm_reset_vcpu(void *opaque)
214 {
215 CPUState *cpu = opaque;
216
217 kvm_arch_reset_vcpu(cpu);
218 }
219
220 int kvm_init_vcpu(CPUState *cpu)
221 {
222 KVMState *s = kvm_state;
223 long mmap_size;
224 int ret;
225
226 DPRINTF("kvm_init_vcpu\n");
227
228 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)kvm_arch_vcpu_id(cpu));
229 if (ret < 0) {
230 DPRINTF("kvm_create_vcpu failed\n");
231 goto err;
232 }
233
234 cpu->kvm_fd = ret;
235 cpu->kvm_state = s;
236 cpu->kvm_vcpu_dirty = true;
237
238 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
239 if (mmap_size < 0) {
240 ret = mmap_size;
241 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
242 goto err;
243 }
244
245 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
246 cpu->kvm_fd, 0);
247 if (cpu->kvm_run == MAP_FAILED) {
248 ret = -errno;
249 DPRINTF("mmap'ing vcpu state failed\n");
250 goto err;
251 }
252
253 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
254 s->coalesced_mmio_ring =
255 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
256 }
257
258 ret = kvm_arch_init_vcpu(cpu);
259 if (ret == 0) {
260 qemu_register_reset(kvm_reset_vcpu, cpu);
261 kvm_arch_reset_vcpu(cpu);
262 }
263 err:
264 return ret;
265 }
266
267 /*
268 * dirty pages logging control
269 */
270
271 static int kvm_mem_flags(KVMState *s, bool log_dirty)
272 {
273 return log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0;
274 }
275
276 static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty)
277 {
278 KVMState *s = kvm_state;
279 int flags, mask = KVM_MEM_LOG_DIRTY_PAGES;
280 int old_flags;
281
282 old_flags = mem->flags;
283
284 flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty);
285 mem->flags = flags;
286
287 /* If nothing changed effectively, no need to issue ioctl */
288 if (s->migration_log) {
289 flags |= KVM_MEM_LOG_DIRTY_PAGES;
290 }
291
292 if (flags == old_flags) {
293 return 0;
294 }
295
296 return kvm_set_user_memory_region(s, mem);
297 }
298
299 static int kvm_dirty_pages_log_change(hwaddr phys_addr,
300 ram_addr_t size, bool log_dirty)
301 {
302 KVMState *s = kvm_state;
303 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
304
305 if (mem == NULL) {
306 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
307 TARGET_FMT_plx "\n", __func__, phys_addr,
308 (hwaddr)(phys_addr + size - 1));
309 return -EINVAL;
310 }
311 return kvm_slot_dirty_pages_log_change(mem, log_dirty);
312 }
313
314 static void kvm_log_start(MemoryListener *listener,
315 MemoryRegionSection *section)
316 {
317 int r;
318
319 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
320 section->size, true);
321 if (r < 0) {
322 abort();
323 }
324 }
325
326 static void kvm_log_stop(MemoryListener *listener,
327 MemoryRegionSection *section)
328 {
329 int r;
330
331 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
332 section->size, false);
333 if (r < 0) {
334 abort();
335 }
336 }
337
338 static int kvm_set_migration_log(int enable)
339 {
340 KVMState *s = kvm_state;
341 KVMSlot *mem;
342 int i, err;
343
344 s->migration_log = enable;
345
346 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
347 mem = &s->slots[i];
348
349 if (!mem->memory_size) {
350 continue;
351 }
352 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
353 continue;
354 }
355 err = kvm_set_user_memory_region(s, mem);
356 if (err) {
357 return err;
358 }
359 }
360 return 0;
361 }
362
363 /* get kvm's dirty pages bitmap and update qemu's */
364 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
365 unsigned long *bitmap)
366 {
367 unsigned int i, j;
368 unsigned long page_number, c;
369 hwaddr addr, addr1;
370 unsigned int len = ((section->size / getpagesize()) + HOST_LONG_BITS - 1) / HOST_LONG_BITS;
371 unsigned long hpratio = getpagesize() / TARGET_PAGE_SIZE;
372
373 /*
374 * bitmap-traveling is faster than memory-traveling (for addr...)
375 * especially when most of the memory is not dirty.
376 */
377 for (i = 0; i < len; i++) {
378 if (bitmap[i] != 0) {
379 c = leul_to_cpu(bitmap[i]);
380 do {
381 j = ffsl(c) - 1;
382 c &= ~(1ul << j);
383 page_number = (i * HOST_LONG_BITS + j) * hpratio;
384 addr1 = page_number * TARGET_PAGE_SIZE;
385 addr = section->offset_within_region + addr1;
386 memory_region_set_dirty(section->mr, addr,
387 TARGET_PAGE_SIZE * hpratio);
388 } while (c != 0);
389 }
390 }
391 return 0;
392 }
393
394 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
395
396 /**
397 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
398 * This function updates qemu's dirty bitmap using
399 * memory_region_set_dirty(). This means all bits are set
400 * to dirty.
401 *
402 * @start_add: start of logged region.
403 * @end_addr: end of logged region.
404 */
405 static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section)
406 {
407 KVMState *s = kvm_state;
408 unsigned long size, allocated_size = 0;
409 KVMDirtyLog d;
410 KVMSlot *mem;
411 int ret = 0;
412 hwaddr start_addr = section->offset_within_address_space;
413 hwaddr end_addr = start_addr + section->size;
414
415 d.dirty_bitmap = NULL;
416 while (start_addr < end_addr) {
417 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
418 if (mem == NULL) {
419 break;
420 }
421
422 /* XXX bad kernel interface alert
423 * For dirty bitmap, kernel allocates array of size aligned to
424 * bits-per-long. But for case when the kernel is 64bits and
425 * the userspace is 32bits, userspace can't align to the same
426 * bits-per-long, since sizeof(long) is different between kernel
427 * and user space. This way, userspace will provide buffer which
428 * may be 4 bytes less than the kernel will use, resulting in
429 * userspace memory corruption (which is not detectable by valgrind
430 * too, in most cases).
431 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
432 * a hope that sizeof(long) wont become >8 any time soon.
433 */
434 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
435 /*HOST_LONG_BITS*/ 64) / 8;
436 if (!d.dirty_bitmap) {
437 d.dirty_bitmap = g_malloc(size);
438 } else if (size > allocated_size) {
439 d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
440 }
441 allocated_size = size;
442 memset(d.dirty_bitmap, 0, allocated_size);
443
444 d.slot = mem->slot;
445
446 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
447 DPRINTF("ioctl failed %d\n", errno);
448 ret = -1;
449 break;
450 }
451
452 kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
453 start_addr = mem->start_addr + mem->memory_size;
454 }
455 g_free(d.dirty_bitmap);
456
457 return ret;
458 }
459
460 static void kvm_coalesce_mmio_region(MemoryListener *listener,
461 MemoryRegionSection *secion,
462 hwaddr start, hwaddr size)
463 {
464 KVMState *s = kvm_state;
465
466 if (s->coalesced_mmio) {
467 struct kvm_coalesced_mmio_zone zone;
468
469 zone.addr = start;
470 zone.size = size;
471 zone.pad = 0;
472
473 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
474 }
475 }
476
477 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
478 MemoryRegionSection *secion,
479 hwaddr start, hwaddr size)
480 {
481 KVMState *s = kvm_state;
482
483 if (s->coalesced_mmio) {
484 struct kvm_coalesced_mmio_zone zone;
485
486 zone.addr = start;
487 zone.size = size;
488 zone.pad = 0;
489
490 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
491 }
492 }
493
494 int kvm_check_extension(KVMState *s, unsigned int extension)
495 {
496 int ret;
497
498 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
499 if (ret < 0) {
500 ret = 0;
501 }
502
503 return ret;
504 }
505
506 static int kvm_set_ioeventfd_mmio(int fd, uint32_t addr, uint32_t val,
507 bool assign, uint32_t size, bool datamatch)
508 {
509 int ret;
510 struct kvm_ioeventfd iofd;
511
512 iofd.datamatch = datamatch ? val : 0;
513 iofd.addr = addr;
514 iofd.len = size;
515 iofd.flags = 0;
516 iofd.fd = fd;
517
518 if (!kvm_enabled()) {
519 return -ENOSYS;
520 }
521
522 if (datamatch) {
523 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
524 }
525 if (!assign) {
526 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
527 }
528
529 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
530
531 if (ret < 0) {
532 return -errno;
533 }
534
535 return 0;
536 }
537
538 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
539 bool assign, uint32_t size, bool datamatch)
540 {
541 struct kvm_ioeventfd kick = {
542 .datamatch = datamatch ? val : 0,
543 .addr = addr,
544 .flags = KVM_IOEVENTFD_FLAG_PIO,
545 .len = size,
546 .fd = fd,
547 };
548 int r;
549 if (!kvm_enabled()) {
550 return -ENOSYS;
551 }
552 if (datamatch) {
553 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
554 }
555 if (!assign) {
556 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
557 }
558 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
559 if (r < 0) {
560 return r;
561 }
562 return 0;
563 }
564
565
566 static int kvm_check_many_ioeventfds(void)
567 {
568 /* Userspace can use ioeventfd for io notification. This requires a host
569 * that supports eventfd(2) and an I/O thread; since eventfd does not
570 * support SIGIO it cannot interrupt the vcpu.
571 *
572 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
573 * can avoid creating too many ioeventfds.
574 */
575 #if defined(CONFIG_EVENTFD)
576 int ioeventfds[7];
577 int i, ret = 0;
578 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
579 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
580 if (ioeventfds[i] < 0) {
581 break;
582 }
583 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
584 if (ret < 0) {
585 close(ioeventfds[i]);
586 break;
587 }
588 }
589
590 /* Decide whether many devices are supported or not */
591 ret = i == ARRAY_SIZE(ioeventfds);
592
593 while (i-- > 0) {
594 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
595 close(ioeventfds[i]);
596 }
597 return ret;
598 #else
599 return 0;
600 #endif
601 }
602
603 static const KVMCapabilityInfo *
604 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
605 {
606 while (list->name) {
607 if (!kvm_check_extension(s, list->value)) {
608 return list;
609 }
610 list++;
611 }
612 return NULL;
613 }
614
615 static void kvm_set_phys_mem(MemoryRegionSection *section, bool add)
616 {
617 KVMState *s = kvm_state;
618 KVMSlot *mem, old;
619 int err;
620 MemoryRegion *mr = section->mr;
621 bool log_dirty = memory_region_is_logging(mr);
622 hwaddr start_addr = section->offset_within_address_space;
623 ram_addr_t size = section->size;
624 void *ram = NULL;
625 unsigned delta;
626
627 /* kvm works in page size chunks, but the function may be called
628 with sub-page size and unaligned start address. */
629 delta = TARGET_PAGE_ALIGN(size) - size;
630 if (delta > size) {
631 return;
632 }
633 start_addr += delta;
634 size -= delta;
635 size &= TARGET_PAGE_MASK;
636 if (!size || (start_addr & ~TARGET_PAGE_MASK)) {
637 return;
638 }
639
640 if (!memory_region_is_ram(mr)) {
641 return;
642 }
643
644 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta;
645
646 while (1) {
647 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
648 if (!mem) {
649 break;
650 }
651
652 if (add && start_addr >= mem->start_addr &&
653 (start_addr + size <= mem->start_addr + mem->memory_size) &&
654 (ram - start_addr == mem->ram - mem->start_addr)) {
655 /* The new slot fits into the existing one and comes with
656 * identical parameters - update flags and done. */
657 kvm_slot_dirty_pages_log_change(mem, log_dirty);
658 return;
659 }
660
661 old = *mem;
662
663 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
664 kvm_physical_sync_dirty_bitmap(section);
665 }
666
667 /* unregister the overlapping slot */
668 mem->memory_size = 0;
669 err = kvm_set_user_memory_region(s, mem);
670 if (err) {
671 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
672 __func__, strerror(-err));
673 abort();
674 }
675
676 /* Workaround for older KVM versions: we can't join slots, even not by
677 * unregistering the previous ones and then registering the larger
678 * slot. We have to maintain the existing fragmentation. Sigh.
679 *
680 * This workaround assumes that the new slot starts at the same
681 * address as the first existing one. If not or if some overlapping
682 * slot comes around later, we will fail (not seen in practice so far)
683 * - and actually require a recent KVM version. */
684 if (s->broken_set_mem_region &&
685 old.start_addr == start_addr && old.memory_size < size && add) {
686 mem = kvm_alloc_slot(s);
687 mem->memory_size = old.memory_size;
688 mem->start_addr = old.start_addr;
689 mem->ram = old.ram;
690 mem->flags = kvm_mem_flags(s, log_dirty);
691
692 err = kvm_set_user_memory_region(s, mem);
693 if (err) {
694 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
695 strerror(-err));
696 abort();
697 }
698
699 start_addr += old.memory_size;
700 ram += old.memory_size;
701 size -= old.memory_size;
702 continue;
703 }
704
705 /* register prefix slot */
706 if (old.start_addr < start_addr) {
707 mem = kvm_alloc_slot(s);
708 mem->memory_size = start_addr - old.start_addr;
709 mem->start_addr = old.start_addr;
710 mem->ram = old.ram;
711 mem->flags = kvm_mem_flags(s, log_dirty);
712
713 err = kvm_set_user_memory_region(s, mem);
714 if (err) {
715 fprintf(stderr, "%s: error registering prefix slot: %s\n",
716 __func__, strerror(-err));
717 #ifdef TARGET_PPC
718 fprintf(stderr, "%s: This is probably because your kernel's " \
719 "PAGE_SIZE is too big. Please try to use 4k " \
720 "PAGE_SIZE!\n", __func__);
721 #endif
722 abort();
723 }
724 }
725
726 /* register suffix slot */
727 if (old.start_addr + old.memory_size > start_addr + size) {
728 ram_addr_t size_delta;
729
730 mem = kvm_alloc_slot(s);
731 mem->start_addr = start_addr + size;
732 size_delta = mem->start_addr - old.start_addr;
733 mem->memory_size = old.memory_size - size_delta;
734 mem->ram = old.ram + size_delta;
735 mem->flags = kvm_mem_flags(s, log_dirty);
736
737 err = kvm_set_user_memory_region(s, mem);
738 if (err) {
739 fprintf(stderr, "%s: error registering suffix slot: %s\n",
740 __func__, strerror(-err));
741 abort();
742 }
743 }
744 }
745
746 /* in case the KVM bug workaround already "consumed" the new slot */
747 if (!size) {
748 return;
749 }
750 if (!add) {
751 return;
752 }
753 mem = kvm_alloc_slot(s);
754 mem->memory_size = size;
755 mem->start_addr = start_addr;
756 mem->ram = ram;
757 mem->flags = kvm_mem_flags(s, log_dirty);
758
759 err = kvm_set_user_memory_region(s, mem);
760 if (err) {
761 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
762 strerror(-err));
763 abort();
764 }
765 }
766
767 static void kvm_region_add(MemoryListener *listener,
768 MemoryRegionSection *section)
769 {
770 kvm_set_phys_mem(section, true);
771 }
772
773 static void kvm_region_del(MemoryListener *listener,
774 MemoryRegionSection *section)
775 {
776 kvm_set_phys_mem(section, false);
777 }
778
779 static void kvm_log_sync(MemoryListener *listener,
780 MemoryRegionSection *section)
781 {
782 int r;
783
784 r = kvm_physical_sync_dirty_bitmap(section);
785 if (r < 0) {
786 abort();
787 }
788 }
789
790 static void kvm_log_global_start(struct MemoryListener *listener)
791 {
792 int r;
793
794 r = kvm_set_migration_log(1);
795 assert(r >= 0);
796 }
797
798 static void kvm_log_global_stop(struct MemoryListener *listener)
799 {
800 int r;
801
802 r = kvm_set_migration_log(0);
803 assert(r >= 0);
804 }
805
806 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
807 MemoryRegionSection *section,
808 bool match_data, uint64_t data,
809 EventNotifier *e)
810 {
811 int fd = event_notifier_get_fd(e);
812 int r;
813
814 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
815 data, true, section->size, match_data);
816 if (r < 0) {
817 abort();
818 }
819 }
820
821 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
822 MemoryRegionSection *section,
823 bool match_data, uint64_t data,
824 EventNotifier *e)
825 {
826 int fd = event_notifier_get_fd(e);
827 int r;
828
829 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
830 data, false, section->size, match_data);
831 if (r < 0) {
832 abort();
833 }
834 }
835
836 static void kvm_io_ioeventfd_add(MemoryListener *listener,
837 MemoryRegionSection *section,
838 bool match_data, uint64_t data,
839 EventNotifier *e)
840 {
841 int fd = event_notifier_get_fd(e);
842 int r;
843
844 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
845 data, true, section->size, match_data);
846 if (r < 0) {
847 abort();
848 }
849 }
850
851 static void kvm_io_ioeventfd_del(MemoryListener *listener,
852 MemoryRegionSection *section,
853 bool match_data, uint64_t data,
854 EventNotifier *e)
855
856 {
857 int fd = event_notifier_get_fd(e);
858 int r;
859
860 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
861 data, false, section->size, match_data);
862 if (r < 0) {
863 abort();
864 }
865 }
866
867 static MemoryListener kvm_memory_listener = {
868 .region_add = kvm_region_add,
869 .region_del = kvm_region_del,
870 .log_start = kvm_log_start,
871 .log_stop = kvm_log_stop,
872 .log_sync = kvm_log_sync,
873 .log_global_start = kvm_log_global_start,
874 .log_global_stop = kvm_log_global_stop,
875 .eventfd_add = kvm_mem_ioeventfd_add,
876 .eventfd_del = kvm_mem_ioeventfd_del,
877 .coalesced_mmio_add = kvm_coalesce_mmio_region,
878 .coalesced_mmio_del = kvm_uncoalesce_mmio_region,
879 .priority = 10,
880 };
881
882 static MemoryListener kvm_io_listener = {
883 .eventfd_add = kvm_io_ioeventfd_add,
884 .eventfd_del = kvm_io_ioeventfd_del,
885 .priority = 10,
886 };
887
888 static void kvm_handle_interrupt(CPUState *cpu, int mask)
889 {
890 cpu->interrupt_request |= mask;
891
892 if (!qemu_cpu_is_self(cpu)) {
893 qemu_cpu_kick(cpu);
894 }
895 }
896
897 int kvm_set_irq(KVMState *s, int irq, int level)
898 {
899 struct kvm_irq_level event;
900 int ret;
901
902 assert(kvm_async_interrupts_enabled());
903
904 event.level = level;
905 event.irq = irq;
906 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
907 if (ret < 0) {
908 perror("kvm_set_irq");
909 abort();
910 }
911
912 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
913 }
914
915 #ifdef KVM_CAP_IRQ_ROUTING
916 typedef struct KVMMSIRoute {
917 struct kvm_irq_routing_entry kroute;
918 QTAILQ_ENTRY(KVMMSIRoute) entry;
919 } KVMMSIRoute;
920
921 static void set_gsi(KVMState *s, unsigned int gsi)
922 {
923 s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32);
924 }
925
926 static void clear_gsi(KVMState *s, unsigned int gsi)
927 {
928 s->used_gsi_bitmap[gsi / 32] &= ~(1U << (gsi % 32));
929 }
930
931 static void kvm_init_irq_routing(KVMState *s)
932 {
933 int gsi_count, i;
934
935 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING);
936 if (gsi_count > 0) {
937 unsigned int gsi_bits, i;
938
939 /* Round up so we can search ints using ffs */
940 gsi_bits = ALIGN(gsi_count, 32);
941 s->used_gsi_bitmap = g_malloc0(gsi_bits / 8);
942 s->gsi_count = gsi_count;
943
944 /* Mark any over-allocated bits as already in use */
945 for (i = gsi_count; i < gsi_bits; i++) {
946 set_gsi(s, i);
947 }
948 }
949
950 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
951 s->nr_allocated_irq_routes = 0;
952
953 if (!s->direct_msi) {
954 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
955 QTAILQ_INIT(&s->msi_hashtab[i]);
956 }
957 }
958
959 kvm_arch_init_irq_routing(s);
960 }
961
962 static void kvm_irqchip_commit_routes(KVMState *s)
963 {
964 int ret;
965
966 s->irq_routes->flags = 0;
967 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
968 assert(ret == 0);
969 }
970
971 static void kvm_add_routing_entry(KVMState *s,
972 struct kvm_irq_routing_entry *entry)
973 {
974 struct kvm_irq_routing_entry *new;
975 int n, size;
976
977 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
978 n = s->nr_allocated_irq_routes * 2;
979 if (n < 64) {
980 n = 64;
981 }
982 size = sizeof(struct kvm_irq_routing);
983 size += n * sizeof(*new);
984 s->irq_routes = g_realloc(s->irq_routes, size);
985 s->nr_allocated_irq_routes = n;
986 }
987 n = s->irq_routes->nr++;
988 new = &s->irq_routes->entries[n];
989 memset(new, 0, sizeof(*new));
990 new->gsi = entry->gsi;
991 new->type = entry->type;
992 new->flags = entry->flags;
993 new->u = entry->u;
994
995 set_gsi(s, entry->gsi);
996
997 kvm_irqchip_commit_routes(s);
998 }
999
1000 static int kvm_update_routing_entry(KVMState *s,
1001 struct kvm_irq_routing_entry *new_entry)
1002 {
1003 struct kvm_irq_routing_entry *entry;
1004 int n;
1005
1006 for (n = 0; n < s->irq_routes->nr; n++) {
1007 entry = &s->irq_routes->entries[n];
1008 if (entry->gsi != new_entry->gsi) {
1009 continue;
1010 }
1011
1012 entry->type = new_entry->type;
1013 entry->flags = new_entry->flags;
1014 entry->u = new_entry->u;
1015
1016 kvm_irqchip_commit_routes(s);
1017
1018 return 0;
1019 }
1020
1021 return -ESRCH;
1022 }
1023
1024 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1025 {
1026 struct kvm_irq_routing_entry e;
1027
1028 assert(pin < s->gsi_count);
1029
1030 e.gsi = irq;
1031 e.type = KVM_IRQ_ROUTING_IRQCHIP;
1032 e.flags = 0;
1033 e.u.irqchip.irqchip = irqchip;
1034 e.u.irqchip.pin = pin;
1035 kvm_add_routing_entry(s, &e);
1036 }
1037
1038 void kvm_irqchip_release_virq(KVMState *s, int virq)
1039 {
1040 struct kvm_irq_routing_entry *e;
1041 int i;
1042
1043 for (i = 0; i < s->irq_routes->nr; i++) {
1044 e = &s->irq_routes->entries[i];
1045 if (e->gsi == virq) {
1046 s->irq_routes->nr--;
1047 *e = s->irq_routes->entries[s->irq_routes->nr];
1048 }
1049 }
1050 clear_gsi(s, virq);
1051 }
1052
1053 static unsigned int kvm_hash_msi(uint32_t data)
1054 {
1055 /* This is optimized for IA32 MSI layout. However, no other arch shall
1056 * repeat the mistake of not providing a direct MSI injection API. */
1057 return data & 0xff;
1058 }
1059
1060 static void kvm_flush_dynamic_msi_routes(KVMState *s)
1061 {
1062 KVMMSIRoute *route, *next;
1063 unsigned int hash;
1064
1065 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1066 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1067 kvm_irqchip_release_virq(s, route->kroute.gsi);
1068 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1069 g_free(route);
1070 }
1071 }
1072 }
1073
1074 static int kvm_irqchip_get_virq(KVMState *s)
1075 {
1076 uint32_t *word = s->used_gsi_bitmap;
1077 int max_words = ALIGN(s->gsi_count, 32) / 32;
1078 int i, bit;
1079 bool retry = true;
1080
1081 again:
1082 /* Return the lowest unused GSI in the bitmap */
1083 for (i = 0; i < max_words; i++) {
1084 bit = ffs(~word[i]);
1085 if (!bit) {
1086 continue;
1087 }
1088
1089 return bit - 1 + i * 32;
1090 }
1091 if (!s->direct_msi && retry) {
1092 retry = false;
1093 kvm_flush_dynamic_msi_routes(s);
1094 goto again;
1095 }
1096 return -ENOSPC;
1097
1098 }
1099
1100 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1101 {
1102 unsigned int hash = kvm_hash_msi(msg.data);
1103 KVMMSIRoute *route;
1104
1105 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1106 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1107 route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1108 route->kroute.u.msi.data == msg.data) {
1109 return route;
1110 }
1111 }
1112 return NULL;
1113 }
1114
1115 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1116 {
1117 struct kvm_msi msi;
1118 KVMMSIRoute *route;
1119
1120 if (s->direct_msi) {
1121 msi.address_lo = (uint32_t)msg.address;
1122 msi.address_hi = msg.address >> 32;
1123 msi.data = msg.data;
1124 msi.flags = 0;
1125 memset(msi.pad, 0, sizeof(msi.pad));
1126
1127 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1128 }
1129
1130 route = kvm_lookup_msi_route(s, msg);
1131 if (!route) {
1132 int virq;
1133
1134 virq = kvm_irqchip_get_virq(s);
1135 if (virq < 0) {
1136 return virq;
1137 }
1138
1139 route = g_malloc(sizeof(KVMMSIRoute));
1140 route->kroute.gsi = virq;
1141 route->kroute.type = KVM_IRQ_ROUTING_MSI;
1142 route->kroute.flags = 0;
1143 route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1144 route->kroute.u.msi.address_hi = msg.address >> 32;
1145 route->kroute.u.msi.data = msg.data;
1146
1147 kvm_add_routing_entry(s, &route->kroute);
1148
1149 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1150 entry);
1151 }
1152
1153 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1154
1155 return kvm_set_irq(s, route->kroute.gsi, 1);
1156 }
1157
1158 int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1159 {
1160 struct kvm_irq_routing_entry kroute;
1161 int virq;
1162
1163 if (!kvm_gsi_routing_enabled()) {
1164 return -ENOSYS;
1165 }
1166
1167 virq = kvm_irqchip_get_virq(s);
1168 if (virq < 0) {
1169 return virq;
1170 }
1171
1172 kroute.gsi = virq;
1173 kroute.type = KVM_IRQ_ROUTING_MSI;
1174 kroute.flags = 0;
1175 kroute.u.msi.address_lo = (uint32_t)msg.address;
1176 kroute.u.msi.address_hi = msg.address >> 32;
1177 kroute.u.msi.data = msg.data;
1178
1179 kvm_add_routing_entry(s, &kroute);
1180
1181 return virq;
1182 }
1183
1184 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1185 {
1186 struct kvm_irq_routing_entry kroute;
1187
1188 if (!kvm_irqchip_in_kernel()) {
1189 return -ENOSYS;
1190 }
1191
1192 kroute.gsi = virq;
1193 kroute.type = KVM_IRQ_ROUTING_MSI;
1194 kroute.flags = 0;
1195 kroute.u.msi.address_lo = (uint32_t)msg.address;
1196 kroute.u.msi.address_hi = msg.address >> 32;
1197 kroute.u.msi.data = msg.data;
1198
1199 return kvm_update_routing_entry(s, &kroute);
1200 }
1201
1202 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1203 {
1204 struct kvm_irqfd irqfd = {
1205 .fd = fd,
1206 .gsi = virq,
1207 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1208 };
1209
1210 if (!kvm_irqfds_enabled()) {
1211 return -ENOSYS;
1212 }
1213
1214 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1215 }
1216
1217 #else /* !KVM_CAP_IRQ_ROUTING */
1218
1219 static void kvm_init_irq_routing(KVMState *s)
1220 {
1221 }
1222
1223 void kvm_irqchip_release_virq(KVMState *s, int virq)
1224 {
1225 }
1226
1227 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1228 {
1229 abort();
1230 }
1231
1232 int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1233 {
1234 return -ENOSYS;
1235 }
1236
1237 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1238 {
1239 abort();
1240 }
1241
1242 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1243 {
1244 return -ENOSYS;
1245 }
1246 #endif /* !KVM_CAP_IRQ_ROUTING */
1247
1248 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, int virq)
1249 {
1250 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), virq, true);
1251 }
1252
1253 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, int virq)
1254 {
1255 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), virq, false);
1256 }
1257
1258 static int kvm_irqchip_create(KVMState *s)
1259 {
1260 QemuOptsList *list = qemu_find_opts("machine");
1261 int ret;
1262
1263 if (QTAILQ_EMPTY(&list->head) ||
1264 !qemu_opt_get_bool(QTAILQ_FIRST(&list->head),
1265 "kernel_irqchip", true) ||
1266 !kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
1267 return 0;
1268 }
1269
1270 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1271 if (ret < 0) {
1272 fprintf(stderr, "Create kernel irqchip failed\n");
1273 return ret;
1274 }
1275
1276 kvm_kernel_irqchip = true;
1277 /* If we have an in-kernel IRQ chip then we must have asynchronous
1278 * interrupt delivery (though the reverse is not necessarily true)
1279 */
1280 kvm_async_interrupts_allowed = true;
1281
1282 kvm_init_irq_routing(s);
1283
1284 return 0;
1285 }
1286
1287 static int kvm_max_vcpus(KVMState *s)
1288 {
1289 int ret;
1290
1291 /* Find number of supported CPUs using the recommended
1292 * procedure from the kernel API documentation to cope with
1293 * older kernels that may be missing capabilities.
1294 */
1295 ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
1296 if (ret) {
1297 return ret;
1298 }
1299 ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS);
1300 if (ret) {
1301 return ret;
1302 }
1303
1304 return 4;
1305 }
1306
1307 int kvm_init(void)
1308 {
1309 static const char upgrade_note[] =
1310 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1311 "(see http://sourceforge.net/projects/kvm).\n";
1312 KVMState *s;
1313 const KVMCapabilityInfo *missing_cap;
1314 int ret;
1315 int i;
1316 int max_vcpus;
1317
1318 s = g_malloc0(sizeof(KVMState));
1319
1320 /*
1321 * On systems where the kernel can support different base page
1322 * sizes, host page size may be different from TARGET_PAGE_SIZE,
1323 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
1324 * page size for the system though.
1325 */
1326 assert(TARGET_PAGE_SIZE <= getpagesize());
1327
1328 #ifdef KVM_CAP_SET_GUEST_DEBUG
1329 QTAILQ_INIT(&s->kvm_sw_breakpoints);
1330 #endif
1331 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
1332 s->slots[i].slot = i;
1333 }
1334 s->vmfd = -1;
1335 s->fd = qemu_open("/dev/kvm", O_RDWR);
1336 if (s->fd == -1) {
1337 fprintf(stderr, "Could not access KVM kernel module: %m\n");
1338 ret = -errno;
1339 goto err;
1340 }
1341
1342 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
1343 if (ret < KVM_API_VERSION) {
1344 if (ret > 0) {
1345 ret = -EINVAL;
1346 }
1347 fprintf(stderr, "kvm version too old\n");
1348 goto err;
1349 }
1350
1351 if (ret > KVM_API_VERSION) {
1352 ret = -EINVAL;
1353 fprintf(stderr, "kvm version not supported\n");
1354 goto err;
1355 }
1356
1357 max_vcpus = kvm_max_vcpus(s);
1358 if (smp_cpus > max_vcpus) {
1359 ret = -EINVAL;
1360 fprintf(stderr, "Number of SMP cpus requested (%d) exceeds max cpus "
1361 "supported by KVM (%d)\n", smp_cpus, max_vcpus);
1362 goto err;
1363 }
1364
1365 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
1366 if (s->vmfd < 0) {
1367 #ifdef TARGET_S390X
1368 fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
1369 "your host kernel command line\n");
1370 #endif
1371 ret = s->vmfd;
1372 goto err;
1373 }
1374
1375 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1376 if (!missing_cap) {
1377 missing_cap =
1378 kvm_check_extension_list(s, kvm_arch_required_capabilities);
1379 }
1380 if (missing_cap) {
1381 ret = -EINVAL;
1382 fprintf(stderr, "kvm does not support %s\n%s",
1383 missing_cap->name, upgrade_note);
1384 goto err;
1385 }
1386
1387 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
1388
1389 s->broken_set_mem_region = 1;
1390 ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
1391 if (ret > 0) {
1392 s->broken_set_mem_region = 0;
1393 }
1394
1395 #ifdef KVM_CAP_VCPU_EVENTS
1396 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
1397 #endif
1398
1399 s->robust_singlestep =
1400 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
1401
1402 #ifdef KVM_CAP_DEBUGREGS
1403 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
1404 #endif
1405
1406 #ifdef KVM_CAP_XSAVE
1407 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
1408 #endif
1409
1410 #ifdef KVM_CAP_XCRS
1411 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
1412 #endif
1413
1414 #ifdef KVM_CAP_PIT_STATE2
1415 s->pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
1416 #endif
1417
1418 #ifdef KVM_CAP_IRQ_ROUTING
1419 s->direct_msi = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
1420 #endif
1421
1422 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
1423
1424 s->irq_set_ioctl = KVM_IRQ_LINE;
1425 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
1426 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
1427 }
1428
1429 #ifdef KVM_CAP_READONLY_MEM
1430 kvm_readonly_mem_allowed =
1431 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
1432 #endif
1433
1434 ret = kvm_arch_init(s);
1435 if (ret < 0) {
1436 goto err;
1437 }
1438
1439 ret = kvm_irqchip_create(s);
1440 if (ret < 0) {
1441 goto err;
1442 }
1443
1444 kvm_state = s;
1445 memory_listener_register(&kvm_memory_listener, &address_space_memory);
1446 memory_listener_register(&kvm_io_listener, &address_space_io);
1447
1448 s->many_ioeventfds = kvm_check_many_ioeventfds();
1449
1450 cpu_interrupt_handler = kvm_handle_interrupt;
1451
1452 return 0;
1453
1454 err:
1455 if (s->vmfd >= 0) {
1456 close(s->vmfd);
1457 }
1458 if (s->fd != -1) {
1459 close(s->fd);
1460 }
1461 g_free(s);
1462
1463 return ret;
1464 }
1465
1466 static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
1467 uint32_t count)
1468 {
1469 int i;
1470 uint8_t *ptr = data;
1471
1472 for (i = 0; i < count; i++) {
1473 if (direction == KVM_EXIT_IO_IN) {
1474 switch (size) {
1475 case 1:
1476 stb_p(ptr, cpu_inb(port));
1477 break;
1478 case 2:
1479 stw_p(ptr, cpu_inw(port));
1480 break;
1481 case 4:
1482 stl_p(ptr, cpu_inl(port));
1483 break;
1484 }
1485 } else {
1486 switch (size) {
1487 case 1:
1488 cpu_outb(port, ldub_p(ptr));
1489 break;
1490 case 2:
1491 cpu_outw(port, lduw_p(ptr));
1492 break;
1493 case 4:
1494 cpu_outl(port, ldl_p(ptr));
1495 break;
1496 }
1497 }
1498
1499 ptr += size;
1500 }
1501 }
1502
1503 static int kvm_handle_internal_error(CPUArchState *env, struct kvm_run *run)
1504 {
1505 CPUState *cpu = ENV_GET_CPU(env);
1506
1507 fprintf(stderr, "KVM internal error.");
1508 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
1509 int i;
1510
1511 fprintf(stderr, " Suberror: %d\n", run->internal.suberror);
1512 for (i = 0; i < run->internal.ndata; ++i) {
1513 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
1514 i, (uint64_t)run->internal.data[i]);
1515 }
1516 } else {
1517 fprintf(stderr, "\n");
1518 }
1519 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
1520 fprintf(stderr, "emulation failure\n");
1521 if (!kvm_arch_stop_on_emulation_error(cpu)) {
1522 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
1523 return EXCP_INTERRUPT;
1524 }
1525 }
1526 /* FIXME: Should trigger a qmp message to let management know
1527 * something went wrong.
1528 */
1529 return -1;
1530 }
1531
1532 void kvm_flush_coalesced_mmio_buffer(void)
1533 {
1534 KVMState *s = kvm_state;
1535
1536 if (s->coalesced_flush_in_progress) {
1537 return;
1538 }
1539
1540 s->coalesced_flush_in_progress = true;
1541
1542 if (s->coalesced_mmio_ring) {
1543 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
1544 while (ring->first != ring->last) {
1545 struct kvm_coalesced_mmio *ent;
1546
1547 ent = &ring->coalesced_mmio[ring->first];
1548
1549 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
1550 smp_wmb();
1551 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
1552 }
1553 }
1554
1555 s->coalesced_flush_in_progress = false;
1556 }
1557
1558 static void do_kvm_cpu_synchronize_state(void *arg)
1559 {
1560 CPUState *cpu = arg;
1561
1562 if (!cpu->kvm_vcpu_dirty) {
1563 kvm_arch_get_registers(cpu);
1564 cpu->kvm_vcpu_dirty = true;
1565 }
1566 }
1567
1568 void kvm_cpu_synchronize_state(CPUArchState *env)
1569 {
1570 CPUState *cpu = ENV_GET_CPU(env);
1571
1572 if (!cpu->kvm_vcpu_dirty) {
1573 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, cpu);
1574 }
1575 }
1576
1577 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
1578 {
1579 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
1580 cpu->kvm_vcpu_dirty = false;
1581 }
1582
1583 void kvm_cpu_synchronize_post_init(CPUState *cpu)
1584 {
1585 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
1586 cpu->kvm_vcpu_dirty = false;
1587 }
1588
1589 int kvm_cpu_exec(CPUArchState *env)
1590 {
1591 CPUState *cpu = ENV_GET_CPU(env);
1592 struct kvm_run *run = cpu->kvm_run;
1593 int ret, run_ret;
1594
1595 DPRINTF("kvm_cpu_exec()\n");
1596
1597 if (kvm_arch_process_async_events(cpu)) {
1598 cpu->exit_request = 0;
1599 return EXCP_HLT;
1600 }
1601
1602 do {
1603 if (cpu->kvm_vcpu_dirty) {
1604 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
1605 cpu->kvm_vcpu_dirty = false;
1606 }
1607
1608 kvm_arch_pre_run(cpu, run);
1609 if (cpu->exit_request) {
1610 DPRINTF("interrupt exit requested\n");
1611 /*
1612 * KVM requires us to reenter the kernel after IO exits to complete
1613 * instruction emulation. This self-signal will ensure that we
1614 * leave ASAP again.
1615 */
1616 qemu_cpu_kick_self();
1617 }
1618 qemu_mutex_unlock_iothread();
1619
1620 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
1621
1622 qemu_mutex_lock_iothread();
1623 kvm_arch_post_run(cpu, run);
1624
1625 if (run_ret < 0) {
1626 if (run_ret == -EINTR || run_ret == -EAGAIN) {
1627 DPRINTF("io window exit\n");
1628 ret = EXCP_INTERRUPT;
1629 break;
1630 }
1631 fprintf(stderr, "error: kvm run failed %s\n",
1632 strerror(-run_ret));
1633 abort();
1634 }
1635
1636 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
1637 switch (run->exit_reason) {
1638 case KVM_EXIT_IO:
1639 DPRINTF("handle_io\n");
1640 kvm_handle_io(run->io.port,
1641 (uint8_t *)run + run->io.data_offset,
1642 run->io.direction,
1643 run->io.size,
1644 run->io.count);
1645 ret = 0;
1646 break;
1647 case KVM_EXIT_MMIO:
1648 DPRINTF("handle_mmio\n");
1649 cpu_physical_memory_rw(run->mmio.phys_addr,
1650 run->mmio.data,
1651 run->mmio.len,
1652 run->mmio.is_write);
1653 ret = 0;
1654 break;
1655 case KVM_EXIT_IRQ_WINDOW_OPEN:
1656 DPRINTF("irq_window_open\n");
1657 ret = EXCP_INTERRUPT;
1658 break;
1659 case KVM_EXIT_SHUTDOWN:
1660 DPRINTF("shutdown\n");
1661 qemu_system_reset_request();
1662 ret = EXCP_INTERRUPT;
1663 break;
1664 case KVM_EXIT_UNKNOWN:
1665 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
1666 (uint64_t)run->hw.hardware_exit_reason);
1667 ret = -1;
1668 break;
1669 case KVM_EXIT_INTERNAL_ERROR:
1670 ret = kvm_handle_internal_error(env, run);
1671 break;
1672 default:
1673 DPRINTF("kvm_arch_handle_exit\n");
1674 ret = kvm_arch_handle_exit(cpu, run);
1675 break;
1676 }
1677 } while (ret == 0);
1678
1679 if (ret < 0) {
1680 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
1681 vm_stop(RUN_STATE_INTERNAL_ERROR);
1682 }
1683
1684 cpu->exit_request = 0;
1685 return ret;
1686 }
1687
1688 int kvm_ioctl(KVMState *s, int type, ...)
1689 {
1690 int ret;
1691 void *arg;
1692 va_list ap;
1693
1694 va_start(ap, type);
1695 arg = va_arg(ap, void *);
1696 va_end(ap);
1697
1698 trace_kvm_ioctl(type, arg);
1699 ret = ioctl(s->fd, type, arg);
1700 if (ret == -1) {
1701 ret = -errno;
1702 }
1703 return ret;
1704 }
1705
1706 int kvm_vm_ioctl(KVMState *s, int type, ...)
1707 {
1708 int ret;
1709 void *arg;
1710 va_list ap;
1711
1712 va_start(ap, type);
1713 arg = va_arg(ap, void *);
1714 va_end(ap);
1715
1716 trace_kvm_vm_ioctl(type, arg);
1717 ret = ioctl(s->vmfd, type, arg);
1718 if (ret == -1) {
1719 ret = -errno;
1720 }
1721 return ret;
1722 }
1723
1724 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
1725 {
1726 int ret;
1727 void *arg;
1728 va_list ap;
1729
1730 va_start(ap, type);
1731 arg = va_arg(ap, void *);
1732 va_end(ap);
1733
1734 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
1735 ret = ioctl(cpu->kvm_fd, type, arg);
1736 if (ret == -1) {
1737 ret = -errno;
1738 }
1739 return ret;
1740 }
1741
1742 int kvm_has_sync_mmu(void)
1743 {
1744 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
1745 }
1746
1747 int kvm_has_vcpu_events(void)
1748 {
1749 return kvm_state->vcpu_events;
1750 }
1751
1752 int kvm_has_robust_singlestep(void)
1753 {
1754 return kvm_state->robust_singlestep;
1755 }
1756
1757 int kvm_has_debugregs(void)
1758 {
1759 return kvm_state->debugregs;
1760 }
1761
1762 int kvm_has_xsave(void)
1763 {
1764 return kvm_state->xsave;
1765 }
1766
1767 int kvm_has_xcrs(void)
1768 {
1769 return kvm_state->xcrs;
1770 }
1771
1772 int kvm_has_pit_state2(void)
1773 {
1774 return kvm_state->pit_state2;
1775 }
1776
1777 int kvm_has_many_ioeventfds(void)
1778 {
1779 if (!kvm_enabled()) {
1780 return 0;
1781 }
1782 return kvm_state->many_ioeventfds;
1783 }
1784
1785 int kvm_has_gsi_routing(void)
1786 {
1787 #ifdef KVM_CAP_IRQ_ROUTING
1788 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
1789 #else
1790 return false;
1791 #endif
1792 }
1793
1794 int kvm_has_intx_set_mask(void)
1795 {
1796 return kvm_state->intx_set_mask;
1797 }
1798
1799 void *kvm_ram_alloc(ram_addr_t size)
1800 {
1801 #ifdef TARGET_S390X
1802 void *mem;
1803
1804 mem = kvm_arch_ram_alloc(size);
1805 if (mem) {
1806 return mem;
1807 }
1808 #endif
1809 return qemu_anon_ram_alloc(size);
1810 }
1811
1812 void kvm_setup_guest_memory(void *start, size_t size)
1813 {
1814 #ifdef CONFIG_VALGRIND_H
1815 VALGRIND_MAKE_MEM_DEFINED(start, size);
1816 #endif
1817 if (!kvm_has_sync_mmu()) {
1818 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
1819
1820 if (ret) {
1821 perror("qemu_madvise");
1822 fprintf(stderr,
1823 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1824 exit(1);
1825 }
1826 }
1827 }
1828
1829 #ifdef KVM_CAP_SET_GUEST_DEBUG
1830 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
1831 target_ulong pc)
1832 {
1833 struct kvm_sw_breakpoint *bp;
1834
1835 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
1836 if (bp->pc == pc) {
1837 return bp;
1838 }
1839 }
1840 return NULL;
1841 }
1842
1843 int kvm_sw_breakpoints_active(CPUState *cpu)
1844 {
1845 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
1846 }
1847
1848 struct kvm_set_guest_debug_data {
1849 struct kvm_guest_debug dbg;
1850 CPUState *cpu;
1851 int err;
1852 };
1853
1854 static void kvm_invoke_set_guest_debug(void *data)
1855 {
1856 struct kvm_set_guest_debug_data *dbg_data = data;
1857
1858 dbg_data->err = kvm_vcpu_ioctl(dbg_data->cpu, KVM_SET_GUEST_DEBUG,
1859 &dbg_data->dbg);
1860 }
1861
1862 int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap)
1863 {
1864 CPUState *cpu = ENV_GET_CPU(env);
1865 struct kvm_set_guest_debug_data data;
1866
1867 data.dbg.control = reinject_trap;
1868
1869 if (env->singlestep_enabled) {
1870 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1871 }
1872 kvm_arch_update_guest_debug(cpu, &data.dbg);
1873 data.cpu = cpu;
1874
1875 run_on_cpu(cpu, kvm_invoke_set_guest_debug, &data);
1876 return data.err;
1877 }
1878
1879 int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr,
1880 target_ulong len, int type)
1881 {
1882 CPUState *current_cpu = ENV_GET_CPU(current_env);
1883 struct kvm_sw_breakpoint *bp;
1884 CPUArchState *env;
1885 int err;
1886
1887 if (type == GDB_BREAKPOINT_SW) {
1888 bp = kvm_find_sw_breakpoint(current_cpu, addr);
1889 if (bp) {
1890 bp->use_count++;
1891 return 0;
1892 }
1893
1894 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
1895 if (!bp) {
1896 return -ENOMEM;
1897 }
1898
1899 bp->pc = addr;
1900 bp->use_count = 1;
1901 err = kvm_arch_insert_sw_breakpoint(current_cpu, bp);
1902 if (err) {
1903 g_free(bp);
1904 return err;
1905 }
1906
1907 QTAILQ_INSERT_HEAD(&current_cpu->kvm_state->kvm_sw_breakpoints,
1908 bp, entry);
1909 } else {
1910 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1911 if (err) {
1912 return err;
1913 }
1914 }
1915
1916 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1917 err = kvm_update_guest_debug(env, 0);
1918 if (err) {
1919 return err;
1920 }
1921 }
1922 return 0;
1923 }
1924
1925 int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr,
1926 target_ulong len, int type)
1927 {
1928 CPUState *current_cpu = ENV_GET_CPU(current_env);
1929 struct kvm_sw_breakpoint *bp;
1930 CPUArchState *env;
1931 int err;
1932
1933 if (type == GDB_BREAKPOINT_SW) {
1934 bp = kvm_find_sw_breakpoint(current_cpu, addr);
1935 if (!bp) {
1936 return -ENOENT;
1937 }
1938
1939 if (bp->use_count > 1) {
1940 bp->use_count--;
1941 return 0;
1942 }
1943
1944 err = kvm_arch_remove_sw_breakpoint(current_cpu, bp);
1945 if (err) {
1946 return err;
1947 }
1948
1949 QTAILQ_REMOVE(&current_cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
1950 g_free(bp);
1951 } else {
1952 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1953 if (err) {
1954 return err;
1955 }
1956 }
1957
1958 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1959 err = kvm_update_guest_debug(env, 0);
1960 if (err) {
1961 return err;
1962 }
1963 }
1964 return 0;
1965 }
1966
1967 void kvm_remove_all_breakpoints(CPUArchState *current_env)
1968 {
1969 CPUState *current_cpu = ENV_GET_CPU(current_env);
1970 struct kvm_sw_breakpoint *bp, *next;
1971 KVMState *s = current_cpu->kvm_state;
1972 CPUArchState *env;
1973 CPUState *cpu;
1974
1975 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1976 if (kvm_arch_remove_sw_breakpoint(current_cpu, bp) != 0) {
1977 /* Try harder to find a CPU that currently sees the breakpoint. */
1978 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1979 cpu = ENV_GET_CPU(env);
1980 if (kvm_arch_remove_sw_breakpoint(cpu, bp) == 0) {
1981 break;
1982 }
1983 }
1984 }
1985 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
1986 g_free(bp);
1987 }
1988 kvm_arch_remove_all_hw_breakpoints();
1989
1990 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1991 kvm_update_guest_debug(env, 0);
1992 }
1993 }
1994
1995 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1996
1997 int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap)
1998 {
1999 return -EINVAL;
2000 }
2001
2002 int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr,
2003 target_ulong len, int type)
2004 {
2005 return -EINVAL;
2006 }
2007
2008 int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr,
2009 target_ulong len, int type)
2010 {
2011 return -EINVAL;
2012 }
2013
2014 void kvm_remove_all_breakpoints(CPUArchState *current_env)
2015 {
2016 }
2017 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2018
2019 int kvm_set_signal_mask(CPUArchState *env, const sigset_t *sigset)
2020 {
2021 CPUState *cpu = ENV_GET_CPU(env);
2022 struct kvm_signal_mask *sigmask;
2023 int r;
2024
2025 if (!sigset) {
2026 return kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, NULL);
2027 }
2028
2029 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
2030
2031 sigmask->len = 8;
2032 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
2033 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
2034 g_free(sigmask);
2035
2036 return r;
2037 }
2038 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
2039 {
2040 return kvm_arch_on_sigbus_vcpu(cpu, code, addr);
2041 }
2042
2043 int kvm_on_sigbus(int code, void *addr)
2044 {
2045 return kvm_arch_on_sigbus(code, addr);
2046 }