]> git.proxmox.com Git - mirror_qemu.git/blob - kvm-all.c
Merge remote-tracking branch 'remotes/bonzini/tags/for-upstream-smm' into staging
[mirror_qemu.git] / kvm-all.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
10 *
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
13 *
14 */
15
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
20
21 #include <linux/kvm.h>
22
23 #include "qemu-common.h"
24 #include "qemu/atomic.h"
25 #include "qemu/option.h"
26 #include "qemu/config-file.h"
27 #include "hw/hw.h"
28 #include "hw/pci/msi.h"
29 #include "hw/s390x/adapter.h"
30 #include "exec/gdbstub.h"
31 #include "sysemu/kvm_int.h"
32 #include "qemu/bswap.h"
33 #include "exec/memory.h"
34 #include "exec/ram_addr.h"
35 #include "exec/address-spaces.h"
36 #include "qemu/event_notifier.h"
37 #include "trace.h"
38
39 #include "hw/boards.h"
40
41 /* This check must be after config-host.h is included */
42 #ifdef CONFIG_EVENTFD
43 #include <sys/eventfd.h>
44 #endif
45
46 /* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
47 #define PAGE_SIZE TARGET_PAGE_SIZE
48
49 //#define DEBUG_KVM
50
51 #ifdef DEBUG_KVM
52 #define DPRINTF(fmt, ...) \
53 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
54 #else
55 #define DPRINTF(fmt, ...) \
56 do { } while (0)
57 #endif
58
59 #define KVM_MSI_HASHTAB_SIZE 256
60
61 struct KVMState
62 {
63 AccelState parent_obj;
64
65 int nr_slots;
66 int fd;
67 int vmfd;
68 int coalesced_mmio;
69 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
70 bool coalesced_flush_in_progress;
71 int broken_set_mem_region;
72 int vcpu_events;
73 int robust_singlestep;
74 int debugregs;
75 #ifdef KVM_CAP_SET_GUEST_DEBUG
76 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
77 #endif
78 int pit_state2;
79 int xsave, xcrs;
80 int many_ioeventfds;
81 int intx_set_mask;
82 /* The man page (and posix) say ioctl numbers are signed int, but
83 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
84 * unsigned, and treating them as signed here can break things */
85 unsigned irq_set_ioctl;
86 unsigned int sigmask_len;
87 #ifdef KVM_CAP_IRQ_ROUTING
88 struct kvm_irq_routing *irq_routes;
89 int nr_allocated_irq_routes;
90 uint32_t *used_gsi_bitmap;
91 unsigned int gsi_count;
92 QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
93 bool direct_msi;
94 #endif
95 KVMMemoryListener memory_listener;
96 };
97
98 KVMState *kvm_state;
99 bool kvm_kernel_irqchip;
100 bool kvm_async_interrupts_allowed;
101 bool kvm_halt_in_kernel_allowed;
102 bool kvm_eventfds_allowed;
103 bool kvm_irqfds_allowed;
104 bool kvm_resamplefds_allowed;
105 bool kvm_msi_via_irqfd_allowed;
106 bool kvm_gsi_routing_allowed;
107 bool kvm_gsi_direct_mapping;
108 bool kvm_allowed;
109 bool kvm_readonly_mem_allowed;
110 bool kvm_vm_attributes_allowed;
111
112 static const KVMCapabilityInfo kvm_required_capabilites[] = {
113 KVM_CAP_INFO(USER_MEMORY),
114 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
115 KVM_CAP_LAST_INFO
116 };
117
118 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml)
119 {
120 KVMState *s = kvm_state;
121 int i;
122
123 for (i = 0; i < s->nr_slots; i++) {
124 if (kml->slots[i].memory_size == 0) {
125 return &kml->slots[i];
126 }
127 }
128
129 return NULL;
130 }
131
132 bool kvm_has_free_slot(MachineState *ms)
133 {
134 KVMState *s = KVM_STATE(ms->accelerator);
135
136 return kvm_get_free_slot(&s->memory_listener);
137 }
138
139 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml)
140 {
141 KVMSlot *slot = kvm_get_free_slot(kml);
142
143 if (slot) {
144 return slot;
145 }
146
147 fprintf(stderr, "%s: no free slot available\n", __func__);
148 abort();
149 }
150
151 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml,
152 hwaddr start_addr,
153 hwaddr end_addr)
154 {
155 KVMState *s = kvm_state;
156 int i;
157
158 for (i = 0; i < s->nr_slots; i++) {
159 KVMSlot *mem = &kml->slots[i];
160
161 if (start_addr == mem->start_addr &&
162 end_addr == mem->start_addr + mem->memory_size) {
163 return mem;
164 }
165 }
166
167 return NULL;
168 }
169
170 /*
171 * Find overlapping slot with lowest start address
172 */
173 static KVMSlot *kvm_lookup_overlapping_slot(KVMMemoryListener *kml,
174 hwaddr start_addr,
175 hwaddr end_addr)
176 {
177 KVMState *s = kvm_state;
178 KVMSlot *found = NULL;
179 int i;
180
181 for (i = 0; i < s->nr_slots; i++) {
182 KVMSlot *mem = &kml->slots[i];
183
184 if (mem->memory_size == 0 ||
185 (found && found->start_addr < mem->start_addr)) {
186 continue;
187 }
188
189 if (end_addr > mem->start_addr &&
190 start_addr < mem->start_addr + mem->memory_size) {
191 found = mem;
192 }
193 }
194
195 return found;
196 }
197
198 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
199 hwaddr *phys_addr)
200 {
201 KVMMemoryListener *kml = &s->memory_listener;
202 int i;
203
204 for (i = 0; i < s->nr_slots; i++) {
205 KVMSlot *mem = &kml->slots[i];
206
207 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
208 *phys_addr = mem->start_addr + (ram - mem->ram);
209 return 1;
210 }
211 }
212
213 return 0;
214 }
215
216 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot)
217 {
218 KVMState *s = kvm_state;
219 struct kvm_userspace_memory_region mem;
220
221 mem.slot = slot->slot | (kml->as_id << 16);
222 mem.guest_phys_addr = slot->start_addr;
223 mem.userspace_addr = (unsigned long)slot->ram;
224 mem.flags = slot->flags;
225
226 if (slot->memory_size && mem.flags & KVM_MEM_READONLY) {
227 /* Set the slot size to 0 before setting the slot to the desired
228 * value. This is needed based on KVM commit 75d61fbc. */
229 mem.memory_size = 0;
230 kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
231 }
232 mem.memory_size = slot->memory_size;
233 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
234 }
235
236 int kvm_init_vcpu(CPUState *cpu)
237 {
238 KVMState *s = kvm_state;
239 long mmap_size;
240 int ret;
241
242 DPRINTF("kvm_init_vcpu\n");
243
244 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)kvm_arch_vcpu_id(cpu));
245 if (ret < 0) {
246 DPRINTF("kvm_create_vcpu failed\n");
247 goto err;
248 }
249
250 cpu->kvm_fd = ret;
251 cpu->kvm_state = s;
252 cpu->kvm_vcpu_dirty = true;
253
254 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
255 if (mmap_size < 0) {
256 ret = mmap_size;
257 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
258 goto err;
259 }
260
261 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
262 cpu->kvm_fd, 0);
263 if (cpu->kvm_run == MAP_FAILED) {
264 ret = -errno;
265 DPRINTF("mmap'ing vcpu state failed\n");
266 goto err;
267 }
268
269 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
270 s->coalesced_mmio_ring =
271 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
272 }
273
274 ret = kvm_arch_init_vcpu(cpu);
275 err:
276 return ret;
277 }
278
279 /*
280 * dirty pages logging control
281 */
282
283 static int kvm_mem_flags(MemoryRegion *mr)
284 {
285 bool readonly = mr->readonly || memory_region_is_romd(mr);
286 int flags = 0;
287
288 if (memory_region_get_dirty_log_mask(mr) != 0) {
289 flags |= KVM_MEM_LOG_DIRTY_PAGES;
290 }
291 if (readonly && kvm_readonly_mem_allowed) {
292 flags |= KVM_MEM_READONLY;
293 }
294 return flags;
295 }
296
297 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem,
298 MemoryRegion *mr)
299 {
300 int old_flags;
301
302 old_flags = mem->flags;
303 mem->flags = kvm_mem_flags(mr);
304
305 /* If nothing changed effectively, no need to issue ioctl */
306 if (mem->flags == old_flags) {
307 return 0;
308 }
309
310 return kvm_set_user_memory_region(kml, mem);
311 }
312
313 static int kvm_section_update_flags(KVMMemoryListener *kml,
314 MemoryRegionSection *section)
315 {
316 hwaddr phys_addr = section->offset_within_address_space;
317 ram_addr_t size = int128_get64(section->size);
318 KVMSlot *mem = kvm_lookup_matching_slot(kml, phys_addr, phys_addr + size);
319
320 if (mem == NULL) {
321 return 0;
322 } else {
323 return kvm_slot_update_flags(kml, mem, section->mr);
324 }
325 }
326
327 static void kvm_log_start(MemoryListener *listener,
328 MemoryRegionSection *section,
329 int old, int new)
330 {
331 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
332 int r;
333
334 if (old != 0) {
335 return;
336 }
337
338 r = kvm_section_update_flags(kml, section);
339 if (r < 0) {
340 abort();
341 }
342 }
343
344 static void kvm_log_stop(MemoryListener *listener,
345 MemoryRegionSection *section,
346 int old, int new)
347 {
348 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
349 int r;
350
351 if (new != 0) {
352 return;
353 }
354
355 r = kvm_section_update_flags(kml, section);
356 if (r < 0) {
357 abort();
358 }
359 }
360
361 /* get kvm's dirty pages bitmap and update qemu's */
362 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
363 unsigned long *bitmap)
364 {
365 ram_addr_t start = section->offset_within_region + section->mr->ram_addr;
366 ram_addr_t pages = int128_get64(section->size) / getpagesize();
367
368 cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages);
369 return 0;
370 }
371
372 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
373
374 /**
375 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
376 * This function updates qemu's dirty bitmap using
377 * memory_region_set_dirty(). This means all bits are set
378 * to dirty.
379 *
380 * @start_add: start of logged region.
381 * @end_addr: end of logged region.
382 */
383 static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml,
384 MemoryRegionSection *section)
385 {
386 KVMState *s = kvm_state;
387 unsigned long size, allocated_size = 0;
388 struct kvm_dirty_log d = {};
389 KVMSlot *mem;
390 int ret = 0;
391 hwaddr start_addr = section->offset_within_address_space;
392 hwaddr end_addr = start_addr + int128_get64(section->size);
393
394 d.dirty_bitmap = NULL;
395 while (start_addr < end_addr) {
396 mem = kvm_lookup_overlapping_slot(kml, start_addr, end_addr);
397 if (mem == NULL) {
398 break;
399 }
400
401 /* XXX bad kernel interface alert
402 * For dirty bitmap, kernel allocates array of size aligned to
403 * bits-per-long. But for case when the kernel is 64bits and
404 * the userspace is 32bits, userspace can't align to the same
405 * bits-per-long, since sizeof(long) is different between kernel
406 * and user space. This way, userspace will provide buffer which
407 * may be 4 bytes less than the kernel will use, resulting in
408 * userspace memory corruption (which is not detectable by valgrind
409 * too, in most cases).
410 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
411 * a hope that sizeof(long) wont become >8 any time soon.
412 */
413 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
414 /*HOST_LONG_BITS*/ 64) / 8;
415 if (!d.dirty_bitmap) {
416 d.dirty_bitmap = g_malloc(size);
417 } else if (size > allocated_size) {
418 d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
419 }
420 allocated_size = size;
421 memset(d.dirty_bitmap, 0, allocated_size);
422
423 d.slot = mem->slot | (kml->as_id << 16);
424 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
425 DPRINTF("ioctl failed %d\n", errno);
426 ret = -1;
427 break;
428 }
429
430 kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
431 start_addr = mem->start_addr + mem->memory_size;
432 }
433 g_free(d.dirty_bitmap);
434
435 return ret;
436 }
437
438 static void kvm_coalesce_mmio_region(MemoryListener *listener,
439 MemoryRegionSection *secion,
440 hwaddr start, hwaddr size)
441 {
442 KVMState *s = kvm_state;
443
444 if (s->coalesced_mmio) {
445 struct kvm_coalesced_mmio_zone zone;
446
447 zone.addr = start;
448 zone.size = size;
449 zone.pad = 0;
450
451 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
452 }
453 }
454
455 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
456 MemoryRegionSection *secion,
457 hwaddr start, hwaddr size)
458 {
459 KVMState *s = kvm_state;
460
461 if (s->coalesced_mmio) {
462 struct kvm_coalesced_mmio_zone zone;
463
464 zone.addr = start;
465 zone.size = size;
466 zone.pad = 0;
467
468 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
469 }
470 }
471
472 int kvm_check_extension(KVMState *s, unsigned int extension)
473 {
474 int ret;
475
476 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
477 if (ret < 0) {
478 ret = 0;
479 }
480
481 return ret;
482 }
483
484 int kvm_vm_check_extension(KVMState *s, unsigned int extension)
485 {
486 int ret;
487
488 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
489 if (ret < 0) {
490 /* VM wide version not implemented, use global one instead */
491 ret = kvm_check_extension(s, extension);
492 }
493
494 return ret;
495 }
496
497 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
498 {
499 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
500 /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN
501 * endianness, but the memory core hands them in target endianness.
502 * For example, PPC is always treated as big-endian even if running
503 * on KVM and on PPC64LE. Correct here.
504 */
505 switch (size) {
506 case 2:
507 val = bswap16(val);
508 break;
509 case 4:
510 val = bswap32(val);
511 break;
512 }
513 #endif
514 return val;
515 }
516
517 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
518 bool assign, uint32_t size, bool datamatch)
519 {
520 int ret;
521 struct kvm_ioeventfd iofd = {
522 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
523 .addr = addr,
524 .len = size,
525 .flags = 0,
526 .fd = fd,
527 };
528
529 if (!kvm_enabled()) {
530 return -ENOSYS;
531 }
532
533 if (datamatch) {
534 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
535 }
536 if (!assign) {
537 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
538 }
539
540 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
541
542 if (ret < 0) {
543 return -errno;
544 }
545
546 return 0;
547 }
548
549 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
550 bool assign, uint32_t size, bool datamatch)
551 {
552 struct kvm_ioeventfd kick = {
553 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
554 .addr = addr,
555 .flags = KVM_IOEVENTFD_FLAG_PIO,
556 .len = size,
557 .fd = fd,
558 };
559 int r;
560 if (!kvm_enabled()) {
561 return -ENOSYS;
562 }
563 if (datamatch) {
564 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
565 }
566 if (!assign) {
567 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
568 }
569 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
570 if (r < 0) {
571 return r;
572 }
573 return 0;
574 }
575
576
577 static int kvm_check_many_ioeventfds(void)
578 {
579 /* Userspace can use ioeventfd for io notification. This requires a host
580 * that supports eventfd(2) and an I/O thread; since eventfd does not
581 * support SIGIO it cannot interrupt the vcpu.
582 *
583 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
584 * can avoid creating too many ioeventfds.
585 */
586 #if defined(CONFIG_EVENTFD)
587 int ioeventfds[7];
588 int i, ret = 0;
589 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
590 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
591 if (ioeventfds[i] < 0) {
592 break;
593 }
594 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
595 if (ret < 0) {
596 close(ioeventfds[i]);
597 break;
598 }
599 }
600
601 /* Decide whether many devices are supported or not */
602 ret = i == ARRAY_SIZE(ioeventfds);
603
604 while (i-- > 0) {
605 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
606 close(ioeventfds[i]);
607 }
608 return ret;
609 #else
610 return 0;
611 #endif
612 }
613
614 static const KVMCapabilityInfo *
615 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
616 {
617 while (list->name) {
618 if (!kvm_check_extension(s, list->value)) {
619 return list;
620 }
621 list++;
622 }
623 return NULL;
624 }
625
626 static void kvm_set_phys_mem(KVMMemoryListener *kml,
627 MemoryRegionSection *section, bool add)
628 {
629 KVMState *s = kvm_state;
630 KVMSlot *mem, old;
631 int err;
632 MemoryRegion *mr = section->mr;
633 bool writeable = !mr->readonly && !mr->rom_device;
634 hwaddr start_addr = section->offset_within_address_space;
635 ram_addr_t size = int128_get64(section->size);
636 void *ram = NULL;
637 unsigned delta;
638
639 /* kvm works in page size chunks, but the function may be called
640 with sub-page size and unaligned start address. Pad the start
641 address to next and truncate size to previous page boundary. */
642 delta = (TARGET_PAGE_SIZE - (start_addr & ~TARGET_PAGE_MASK));
643 delta &= ~TARGET_PAGE_MASK;
644 if (delta > size) {
645 return;
646 }
647 start_addr += delta;
648 size -= delta;
649 size &= TARGET_PAGE_MASK;
650 if (!size || (start_addr & ~TARGET_PAGE_MASK)) {
651 return;
652 }
653
654 if (!memory_region_is_ram(mr)) {
655 if (writeable || !kvm_readonly_mem_allowed) {
656 return;
657 } else if (!mr->romd_mode) {
658 /* If the memory device is not in romd_mode, then we actually want
659 * to remove the kvm memory slot so all accesses will trap. */
660 add = false;
661 }
662 }
663
664 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta;
665
666 while (1) {
667 mem = kvm_lookup_overlapping_slot(kml, start_addr, start_addr + size);
668 if (!mem) {
669 break;
670 }
671
672 if (add && start_addr >= mem->start_addr &&
673 (start_addr + size <= mem->start_addr + mem->memory_size) &&
674 (ram - start_addr == mem->ram - mem->start_addr)) {
675 /* The new slot fits into the existing one and comes with
676 * identical parameters - update flags and done. */
677 kvm_slot_update_flags(kml, mem, mr);
678 return;
679 }
680
681 old = *mem;
682
683 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
684 kvm_physical_sync_dirty_bitmap(kml, section);
685 }
686
687 /* unregister the overlapping slot */
688 mem->memory_size = 0;
689 err = kvm_set_user_memory_region(kml, mem);
690 if (err) {
691 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
692 __func__, strerror(-err));
693 abort();
694 }
695
696 /* Workaround for older KVM versions: we can't join slots, even not by
697 * unregistering the previous ones and then registering the larger
698 * slot. We have to maintain the existing fragmentation. Sigh.
699 *
700 * This workaround assumes that the new slot starts at the same
701 * address as the first existing one. If not or if some overlapping
702 * slot comes around later, we will fail (not seen in practice so far)
703 * - and actually require a recent KVM version. */
704 if (s->broken_set_mem_region &&
705 old.start_addr == start_addr && old.memory_size < size && add) {
706 mem = kvm_alloc_slot(kml);
707 mem->memory_size = old.memory_size;
708 mem->start_addr = old.start_addr;
709 mem->ram = old.ram;
710 mem->flags = kvm_mem_flags(mr);
711
712 err = kvm_set_user_memory_region(kml, mem);
713 if (err) {
714 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
715 strerror(-err));
716 abort();
717 }
718
719 start_addr += old.memory_size;
720 ram += old.memory_size;
721 size -= old.memory_size;
722 continue;
723 }
724
725 /* register prefix slot */
726 if (old.start_addr < start_addr) {
727 mem = kvm_alloc_slot(kml);
728 mem->memory_size = start_addr - old.start_addr;
729 mem->start_addr = old.start_addr;
730 mem->ram = old.ram;
731 mem->flags = kvm_mem_flags(mr);
732
733 err = kvm_set_user_memory_region(kml, mem);
734 if (err) {
735 fprintf(stderr, "%s: error registering prefix slot: %s\n",
736 __func__, strerror(-err));
737 #ifdef TARGET_PPC
738 fprintf(stderr, "%s: This is probably because your kernel's " \
739 "PAGE_SIZE is too big. Please try to use 4k " \
740 "PAGE_SIZE!\n", __func__);
741 #endif
742 abort();
743 }
744 }
745
746 /* register suffix slot */
747 if (old.start_addr + old.memory_size > start_addr + size) {
748 ram_addr_t size_delta;
749
750 mem = kvm_alloc_slot(kml);
751 mem->start_addr = start_addr + size;
752 size_delta = mem->start_addr - old.start_addr;
753 mem->memory_size = old.memory_size - size_delta;
754 mem->ram = old.ram + size_delta;
755 mem->flags = kvm_mem_flags(mr);
756
757 err = kvm_set_user_memory_region(kml, mem);
758 if (err) {
759 fprintf(stderr, "%s: error registering suffix slot: %s\n",
760 __func__, strerror(-err));
761 abort();
762 }
763 }
764 }
765
766 /* in case the KVM bug workaround already "consumed" the new slot */
767 if (!size) {
768 return;
769 }
770 if (!add) {
771 return;
772 }
773 mem = kvm_alloc_slot(kml);
774 mem->memory_size = size;
775 mem->start_addr = start_addr;
776 mem->ram = ram;
777 mem->flags = kvm_mem_flags(mr);
778
779 err = kvm_set_user_memory_region(kml, mem);
780 if (err) {
781 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
782 strerror(-err));
783 abort();
784 }
785 }
786
787 static void kvm_region_add(MemoryListener *listener,
788 MemoryRegionSection *section)
789 {
790 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
791
792 memory_region_ref(section->mr);
793 kvm_set_phys_mem(kml, section, true);
794 }
795
796 static void kvm_region_del(MemoryListener *listener,
797 MemoryRegionSection *section)
798 {
799 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
800
801 kvm_set_phys_mem(kml, section, false);
802 memory_region_unref(section->mr);
803 }
804
805 static void kvm_log_sync(MemoryListener *listener,
806 MemoryRegionSection *section)
807 {
808 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
809 int r;
810
811 r = kvm_physical_sync_dirty_bitmap(kml, section);
812 if (r < 0) {
813 abort();
814 }
815 }
816
817 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
818 MemoryRegionSection *section,
819 bool match_data, uint64_t data,
820 EventNotifier *e)
821 {
822 int fd = event_notifier_get_fd(e);
823 int r;
824
825 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
826 data, true, int128_get64(section->size),
827 match_data);
828 if (r < 0) {
829 fprintf(stderr, "%s: error adding ioeventfd: %s\n",
830 __func__, strerror(-r));
831 abort();
832 }
833 }
834
835 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
836 MemoryRegionSection *section,
837 bool match_data, uint64_t data,
838 EventNotifier *e)
839 {
840 int fd = event_notifier_get_fd(e);
841 int r;
842
843 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
844 data, false, int128_get64(section->size),
845 match_data);
846 if (r < 0) {
847 abort();
848 }
849 }
850
851 static void kvm_io_ioeventfd_add(MemoryListener *listener,
852 MemoryRegionSection *section,
853 bool match_data, uint64_t data,
854 EventNotifier *e)
855 {
856 int fd = event_notifier_get_fd(e);
857 int r;
858
859 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
860 data, true, int128_get64(section->size),
861 match_data);
862 if (r < 0) {
863 fprintf(stderr, "%s: error adding ioeventfd: %s\n",
864 __func__, strerror(-r));
865 abort();
866 }
867 }
868
869 static void kvm_io_ioeventfd_del(MemoryListener *listener,
870 MemoryRegionSection *section,
871 bool match_data, uint64_t data,
872 EventNotifier *e)
873
874 {
875 int fd = event_notifier_get_fd(e);
876 int r;
877
878 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
879 data, false, int128_get64(section->size),
880 match_data);
881 if (r < 0) {
882 abort();
883 }
884 }
885
886 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml,
887 AddressSpace *as, int as_id)
888 {
889 int i;
890
891 kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot));
892 kml->as_id = as_id;
893
894 for (i = 0; i < s->nr_slots; i++) {
895 kml->slots[i].slot = i;
896 }
897
898 kml->listener.region_add = kvm_region_add;
899 kml->listener.region_del = kvm_region_del;
900 kml->listener.log_start = kvm_log_start;
901 kml->listener.log_stop = kvm_log_stop;
902 kml->listener.log_sync = kvm_log_sync;
903 kml->listener.priority = 10;
904
905 memory_listener_register(&kml->listener, as);
906 }
907
908 static MemoryListener kvm_io_listener = {
909 .eventfd_add = kvm_io_ioeventfd_add,
910 .eventfd_del = kvm_io_ioeventfd_del,
911 .priority = 10,
912 };
913
914 static void kvm_handle_interrupt(CPUState *cpu, int mask)
915 {
916 cpu->interrupt_request |= mask;
917
918 if (!qemu_cpu_is_self(cpu)) {
919 qemu_cpu_kick(cpu);
920 }
921 }
922
923 int kvm_set_irq(KVMState *s, int irq, int level)
924 {
925 struct kvm_irq_level event;
926 int ret;
927
928 assert(kvm_async_interrupts_enabled());
929
930 event.level = level;
931 event.irq = irq;
932 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
933 if (ret < 0) {
934 perror("kvm_set_irq");
935 abort();
936 }
937
938 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
939 }
940
941 #ifdef KVM_CAP_IRQ_ROUTING
942 typedef struct KVMMSIRoute {
943 struct kvm_irq_routing_entry kroute;
944 QTAILQ_ENTRY(KVMMSIRoute) entry;
945 } KVMMSIRoute;
946
947 static void set_gsi(KVMState *s, unsigned int gsi)
948 {
949 s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32);
950 }
951
952 static void clear_gsi(KVMState *s, unsigned int gsi)
953 {
954 s->used_gsi_bitmap[gsi / 32] &= ~(1U << (gsi % 32));
955 }
956
957 void kvm_init_irq_routing(KVMState *s)
958 {
959 int gsi_count, i;
960
961 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
962 if (gsi_count > 0) {
963 unsigned int gsi_bits, i;
964
965 /* Round up so we can search ints using ffs */
966 gsi_bits = ALIGN(gsi_count, 32);
967 s->used_gsi_bitmap = g_malloc0(gsi_bits / 8);
968 s->gsi_count = gsi_count;
969
970 /* Mark any over-allocated bits as already in use */
971 for (i = gsi_count; i < gsi_bits; i++) {
972 set_gsi(s, i);
973 }
974 }
975
976 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
977 s->nr_allocated_irq_routes = 0;
978
979 if (!s->direct_msi) {
980 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
981 QTAILQ_INIT(&s->msi_hashtab[i]);
982 }
983 }
984
985 kvm_arch_init_irq_routing(s);
986 }
987
988 void kvm_irqchip_commit_routes(KVMState *s)
989 {
990 int ret;
991
992 s->irq_routes->flags = 0;
993 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
994 assert(ret == 0);
995 }
996
997 static void kvm_add_routing_entry(KVMState *s,
998 struct kvm_irq_routing_entry *entry)
999 {
1000 struct kvm_irq_routing_entry *new;
1001 int n, size;
1002
1003 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
1004 n = s->nr_allocated_irq_routes * 2;
1005 if (n < 64) {
1006 n = 64;
1007 }
1008 size = sizeof(struct kvm_irq_routing);
1009 size += n * sizeof(*new);
1010 s->irq_routes = g_realloc(s->irq_routes, size);
1011 s->nr_allocated_irq_routes = n;
1012 }
1013 n = s->irq_routes->nr++;
1014 new = &s->irq_routes->entries[n];
1015
1016 *new = *entry;
1017
1018 set_gsi(s, entry->gsi);
1019 }
1020
1021 static int kvm_update_routing_entry(KVMState *s,
1022 struct kvm_irq_routing_entry *new_entry)
1023 {
1024 struct kvm_irq_routing_entry *entry;
1025 int n;
1026
1027 for (n = 0; n < s->irq_routes->nr; n++) {
1028 entry = &s->irq_routes->entries[n];
1029 if (entry->gsi != new_entry->gsi) {
1030 continue;
1031 }
1032
1033 if(!memcmp(entry, new_entry, sizeof *entry)) {
1034 return 0;
1035 }
1036
1037 *entry = *new_entry;
1038
1039 kvm_irqchip_commit_routes(s);
1040
1041 return 0;
1042 }
1043
1044 return -ESRCH;
1045 }
1046
1047 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1048 {
1049 struct kvm_irq_routing_entry e = {};
1050
1051 assert(pin < s->gsi_count);
1052
1053 e.gsi = irq;
1054 e.type = KVM_IRQ_ROUTING_IRQCHIP;
1055 e.flags = 0;
1056 e.u.irqchip.irqchip = irqchip;
1057 e.u.irqchip.pin = pin;
1058 kvm_add_routing_entry(s, &e);
1059 }
1060
1061 void kvm_irqchip_release_virq(KVMState *s, int virq)
1062 {
1063 struct kvm_irq_routing_entry *e;
1064 int i;
1065
1066 if (kvm_gsi_direct_mapping()) {
1067 return;
1068 }
1069
1070 for (i = 0; i < s->irq_routes->nr; i++) {
1071 e = &s->irq_routes->entries[i];
1072 if (e->gsi == virq) {
1073 s->irq_routes->nr--;
1074 *e = s->irq_routes->entries[s->irq_routes->nr];
1075 }
1076 }
1077 clear_gsi(s, virq);
1078 }
1079
1080 static unsigned int kvm_hash_msi(uint32_t data)
1081 {
1082 /* This is optimized for IA32 MSI layout. However, no other arch shall
1083 * repeat the mistake of not providing a direct MSI injection API. */
1084 return data & 0xff;
1085 }
1086
1087 static void kvm_flush_dynamic_msi_routes(KVMState *s)
1088 {
1089 KVMMSIRoute *route, *next;
1090 unsigned int hash;
1091
1092 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1093 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1094 kvm_irqchip_release_virq(s, route->kroute.gsi);
1095 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1096 g_free(route);
1097 }
1098 }
1099 }
1100
1101 static int kvm_irqchip_get_virq(KVMState *s)
1102 {
1103 uint32_t *word = s->used_gsi_bitmap;
1104 int max_words = ALIGN(s->gsi_count, 32) / 32;
1105 int i, zeroes;
1106
1107 /*
1108 * PIC and IOAPIC share the first 16 GSI numbers, thus the available
1109 * GSI numbers are more than the number of IRQ route. Allocating a GSI
1110 * number can succeed even though a new route entry cannot be added.
1111 * When this happens, flush dynamic MSI entries to free IRQ route entries.
1112 */
1113 if (!s->direct_msi && s->irq_routes->nr == s->gsi_count) {
1114 kvm_flush_dynamic_msi_routes(s);
1115 }
1116
1117 /* Return the lowest unused GSI in the bitmap */
1118 for (i = 0; i < max_words; i++) {
1119 zeroes = ctz32(~word[i]);
1120 if (zeroes == 32) {
1121 continue;
1122 }
1123
1124 return zeroes + i * 32;
1125 }
1126 return -ENOSPC;
1127
1128 }
1129
1130 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1131 {
1132 unsigned int hash = kvm_hash_msi(msg.data);
1133 KVMMSIRoute *route;
1134
1135 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1136 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1137 route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1138 route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
1139 return route;
1140 }
1141 }
1142 return NULL;
1143 }
1144
1145 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1146 {
1147 struct kvm_msi msi;
1148 KVMMSIRoute *route;
1149
1150 if (s->direct_msi) {
1151 msi.address_lo = (uint32_t)msg.address;
1152 msi.address_hi = msg.address >> 32;
1153 msi.data = le32_to_cpu(msg.data);
1154 msi.flags = 0;
1155 memset(msi.pad, 0, sizeof(msi.pad));
1156
1157 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1158 }
1159
1160 route = kvm_lookup_msi_route(s, msg);
1161 if (!route) {
1162 int virq;
1163
1164 virq = kvm_irqchip_get_virq(s);
1165 if (virq < 0) {
1166 return virq;
1167 }
1168
1169 route = g_malloc0(sizeof(KVMMSIRoute));
1170 route->kroute.gsi = virq;
1171 route->kroute.type = KVM_IRQ_ROUTING_MSI;
1172 route->kroute.flags = 0;
1173 route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1174 route->kroute.u.msi.address_hi = msg.address >> 32;
1175 route->kroute.u.msi.data = le32_to_cpu(msg.data);
1176
1177 kvm_add_routing_entry(s, &route->kroute);
1178 kvm_irqchip_commit_routes(s);
1179
1180 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1181 entry);
1182 }
1183
1184 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1185
1186 return kvm_set_irq(s, route->kroute.gsi, 1);
1187 }
1188
1189 int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1190 {
1191 struct kvm_irq_routing_entry kroute = {};
1192 int virq;
1193
1194 if (kvm_gsi_direct_mapping()) {
1195 return kvm_arch_msi_data_to_gsi(msg.data);
1196 }
1197
1198 if (!kvm_gsi_routing_enabled()) {
1199 return -ENOSYS;
1200 }
1201
1202 virq = kvm_irqchip_get_virq(s);
1203 if (virq < 0) {
1204 return virq;
1205 }
1206
1207 kroute.gsi = virq;
1208 kroute.type = KVM_IRQ_ROUTING_MSI;
1209 kroute.flags = 0;
1210 kroute.u.msi.address_lo = (uint32_t)msg.address;
1211 kroute.u.msi.address_hi = msg.address >> 32;
1212 kroute.u.msi.data = le32_to_cpu(msg.data);
1213 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data)) {
1214 kvm_irqchip_release_virq(s, virq);
1215 return -EINVAL;
1216 }
1217
1218 kvm_add_routing_entry(s, &kroute);
1219 kvm_irqchip_commit_routes(s);
1220
1221 return virq;
1222 }
1223
1224 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1225 {
1226 struct kvm_irq_routing_entry kroute = {};
1227
1228 if (kvm_gsi_direct_mapping()) {
1229 return 0;
1230 }
1231
1232 if (!kvm_irqchip_in_kernel()) {
1233 return -ENOSYS;
1234 }
1235
1236 kroute.gsi = virq;
1237 kroute.type = KVM_IRQ_ROUTING_MSI;
1238 kroute.flags = 0;
1239 kroute.u.msi.address_lo = (uint32_t)msg.address;
1240 kroute.u.msi.address_hi = msg.address >> 32;
1241 kroute.u.msi.data = le32_to_cpu(msg.data);
1242 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data)) {
1243 return -EINVAL;
1244 }
1245
1246 return kvm_update_routing_entry(s, &kroute);
1247 }
1248
1249 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq,
1250 bool assign)
1251 {
1252 struct kvm_irqfd irqfd = {
1253 .fd = fd,
1254 .gsi = virq,
1255 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1256 };
1257
1258 if (rfd != -1) {
1259 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
1260 irqfd.resamplefd = rfd;
1261 }
1262
1263 if (!kvm_irqfds_enabled()) {
1264 return -ENOSYS;
1265 }
1266
1267 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1268 }
1269
1270 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1271 {
1272 struct kvm_irq_routing_entry kroute = {};
1273 int virq;
1274
1275 if (!kvm_gsi_routing_enabled()) {
1276 return -ENOSYS;
1277 }
1278
1279 virq = kvm_irqchip_get_virq(s);
1280 if (virq < 0) {
1281 return virq;
1282 }
1283
1284 kroute.gsi = virq;
1285 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
1286 kroute.flags = 0;
1287 kroute.u.adapter.summary_addr = adapter->summary_addr;
1288 kroute.u.adapter.ind_addr = adapter->ind_addr;
1289 kroute.u.adapter.summary_offset = adapter->summary_offset;
1290 kroute.u.adapter.ind_offset = adapter->ind_offset;
1291 kroute.u.adapter.adapter_id = adapter->adapter_id;
1292
1293 kvm_add_routing_entry(s, &kroute);
1294 kvm_irqchip_commit_routes(s);
1295
1296 return virq;
1297 }
1298
1299 #else /* !KVM_CAP_IRQ_ROUTING */
1300
1301 void kvm_init_irq_routing(KVMState *s)
1302 {
1303 }
1304
1305 void kvm_irqchip_release_virq(KVMState *s, int virq)
1306 {
1307 }
1308
1309 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1310 {
1311 abort();
1312 }
1313
1314 int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1315 {
1316 return -ENOSYS;
1317 }
1318
1319 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1320 {
1321 return -ENOSYS;
1322 }
1323
1324 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1325 {
1326 abort();
1327 }
1328
1329 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1330 {
1331 return -ENOSYS;
1332 }
1333 #endif /* !KVM_CAP_IRQ_ROUTING */
1334
1335 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
1336 EventNotifier *rn, int virq)
1337 {
1338 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n),
1339 rn ? event_notifier_get_fd(rn) : -1, virq, true);
1340 }
1341
1342 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, int virq)
1343 {
1344 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), -1, virq,
1345 false);
1346 }
1347
1348 static void kvm_irqchip_create(MachineState *machine, KVMState *s)
1349 {
1350 int ret;
1351
1352 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
1353 ;
1354 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) {
1355 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0);
1356 if (ret < 0) {
1357 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret));
1358 exit(1);
1359 }
1360 } else {
1361 return;
1362 }
1363
1364 /* First probe and see if there's a arch-specific hook to create the
1365 * in-kernel irqchip for us */
1366 ret = kvm_arch_irqchip_create(s);
1367 if (ret == 0) {
1368 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1369 }
1370 if (ret < 0) {
1371 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret));
1372 exit(1);
1373 }
1374
1375 kvm_kernel_irqchip = true;
1376 /* If we have an in-kernel IRQ chip then we must have asynchronous
1377 * interrupt delivery (though the reverse is not necessarily true)
1378 */
1379 kvm_async_interrupts_allowed = true;
1380 kvm_halt_in_kernel_allowed = true;
1381
1382 kvm_init_irq_routing(s);
1383 }
1384
1385 /* Find number of supported CPUs using the recommended
1386 * procedure from the kernel API documentation to cope with
1387 * older kernels that may be missing capabilities.
1388 */
1389 static int kvm_recommended_vcpus(KVMState *s)
1390 {
1391 int ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS);
1392 return (ret) ? ret : 4;
1393 }
1394
1395 static int kvm_max_vcpus(KVMState *s)
1396 {
1397 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
1398 return (ret) ? ret : kvm_recommended_vcpus(s);
1399 }
1400
1401 static int kvm_init(MachineState *ms)
1402 {
1403 MachineClass *mc = MACHINE_GET_CLASS(ms);
1404 static const char upgrade_note[] =
1405 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1406 "(see http://sourceforge.net/projects/kvm).\n";
1407 struct {
1408 const char *name;
1409 int num;
1410 } num_cpus[] = {
1411 { "SMP", smp_cpus },
1412 { "hotpluggable", max_cpus },
1413 { NULL, }
1414 }, *nc = num_cpus;
1415 int soft_vcpus_limit, hard_vcpus_limit;
1416 KVMState *s;
1417 const KVMCapabilityInfo *missing_cap;
1418 int ret;
1419 int type = 0;
1420 const char *kvm_type;
1421
1422 s = KVM_STATE(ms->accelerator);
1423
1424 /*
1425 * On systems where the kernel can support different base page
1426 * sizes, host page size may be different from TARGET_PAGE_SIZE,
1427 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
1428 * page size for the system though.
1429 */
1430 assert(TARGET_PAGE_SIZE <= getpagesize());
1431 page_size_init();
1432
1433 s->sigmask_len = 8;
1434
1435 #ifdef KVM_CAP_SET_GUEST_DEBUG
1436 QTAILQ_INIT(&s->kvm_sw_breakpoints);
1437 #endif
1438 s->vmfd = -1;
1439 s->fd = qemu_open("/dev/kvm", O_RDWR);
1440 if (s->fd == -1) {
1441 fprintf(stderr, "Could not access KVM kernel module: %m\n");
1442 ret = -errno;
1443 goto err;
1444 }
1445
1446 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
1447 if (ret < KVM_API_VERSION) {
1448 if (ret >= 0) {
1449 ret = -EINVAL;
1450 }
1451 fprintf(stderr, "kvm version too old\n");
1452 goto err;
1453 }
1454
1455 if (ret > KVM_API_VERSION) {
1456 ret = -EINVAL;
1457 fprintf(stderr, "kvm version not supported\n");
1458 goto err;
1459 }
1460
1461 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
1462
1463 /* If unspecified, use the default value */
1464 if (!s->nr_slots) {
1465 s->nr_slots = 32;
1466 }
1467
1468 /* check the vcpu limits */
1469 soft_vcpus_limit = kvm_recommended_vcpus(s);
1470 hard_vcpus_limit = kvm_max_vcpus(s);
1471
1472 while (nc->name) {
1473 if (nc->num > soft_vcpus_limit) {
1474 fprintf(stderr,
1475 "Warning: Number of %s cpus requested (%d) exceeds "
1476 "the recommended cpus supported by KVM (%d)\n",
1477 nc->name, nc->num, soft_vcpus_limit);
1478
1479 if (nc->num > hard_vcpus_limit) {
1480 fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
1481 "the maximum cpus supported by KVM (%d)\n",
1482 nc->name, nc->num, hard_vcpus_limit);
1483 exit(1);
1484 }
1485 }
1486 nc++;
1487 }
1488
1489 kvm_type = qemu_opt_get(qemu_get_machine_opts(), "kvm-type");
1490 if (mc->kvm_type) {
1491 type = mc->kvm_type(kvm_type);
1492 } else if (kvm_type) {
1493 ret = -EINVAL;
1494 fprintf(stderr, "Invalid argument kvm-type=%s\n", kvm_type);
1495 goto err;
1496 }
1497
1498 do {
1499 ret = kvm_ioctl(s, KVM_CREATE_VM, type);
1500 } while (ret == -EINTR);
1501
1502 if (ret < 0) {
1503 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
1504 strerror(-ret));
1505
1506 #ifdef TARGET_S390X
1507 if (ret == -EINVAL) {
1508 fprintf(stderr,
1509 "Host kernel setup problem detected. Please verify:\n");
1510 fprintf(stderr, "- for kernels supporting the switch_amode or"
1511 " user_mode parameters, whether\n");
1512 fprintf(stderr,
1513 " user space is running in primary address space\n");
1514 fprintf(stderr,
1515 "- for kernels supporting the vm.allocate_pgste sysctl, "
1516 "whether it is enabled\n");
1517 }
1518 #endif
1519 goto err;
1520 }
1521
1522 s->vmfd = ret;
1523 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1524 if (!missing_cap) {
1525 missing_cap =
1526 kvm_check_extension_list(s, kvm_arch_required_capabilities);
1527 }
1528 if (missing_cap) {
1529 ret = -EINVAL;
1530 fprintf(stderr, "kvm does not support %s\n%s",
1531 missing_cap->name, upgrade_note);
1532 goto err;
1533 }
1534
1535 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
1536
1537 s->broken_set_mem_region = 1;
1538 ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
1539 if (ret > 0) {
1540 s->broken_set_mem_region = 0;
1541 }
1542
1543 #ifdef KVM_CAP_VCPU_EVENTS
1544 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
1545 #endif
1546
1547 s->robust_singlestep =
1548 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
1549
1550 #ifdef KVM_CAP_DEBUGREGS
1551 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
1552 #endif
1553
1554 #ifdef KVM_CAP_XSAVE
1555 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
1556 #endif
1557
1558 #ifdef KVM_CAP_XCRS
1559 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
1560 #endif
1561
1562 #ifdef KVM_CAP_PIT_STATE2
1563 s->pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
1564 #endif
1565
1566 #ifdef KVM_CAP_IRQ_ROUTING
1567 s->direct_msi = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
1568 #endif
1569
1570 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
1571
1572 s->irq_set_ioctl = KVM_IRQ_LINE;
1573 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
1574 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
1575 }
1576
1577 #ifdef KVM_CAP_READONLY_MEM
1578 kvm_readonly_mem_allowed =
1579 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
1580 #endif
1581
1582 kvm_eventfds_allowed =
1583 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0);
1584
1585 kvm_irqfds_allowed =
1586 (kvm_check_extension(s, KVM_CAP_IRQFD) > 0);
1587
1588 kvm_resamplefds_allowed =
1589 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
1590
1591 kvm_vm_attributes_allowed =
1592 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
1593
1594 ret = kvm_arch_init(ms, s);
1595 if (ret < 0) {
1596 goto err;
1597 }
1598
1599 if (machine_kernel_irqchip_allowed(ms)) {
1600 kvm_irqchip_create(ms, s);
1601 }
1602
1603 kvm_state = s;
1604
1605 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add;
1606 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del;
1607 s->memory_listener.listener.coalesced_mmio_add = kvm_coalesce_mmio_region;
1608 s->memory_listener.listener.coalesced_mmio_del = kvm_uncoalesce_mmio_region;
1609
1610 kvm_memory_listener_register(s, &s->memory_listener,
1611 &address_space_memory, 0);
1612 memory_listener_register(&kvm_io_listener,
1613 &address_space_io);
1614
1615 s->many_ioeventfds = kvm_check_many_ioeventfds();
1616
1617 cpu_interrupt_handler = kvm_handle_interrupt;
1618
1619 return 0;
1620
1621 err:
1622 assert(ret < 0);
1623 if (s->vmfd >= 0) {
1624 close(s->vmfd);
1625 }
1626 if (s->fd != -1) {
1627 close(s->fd);
1628 }
1629 g_free(s->memory_listener.slots);
1630
1631 return ret;
1632 }
1633
1634 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
1635 {
1636 s->sigmask_len = sigmask_len;
1637 }
1638
1639 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction,
1640 int size, uint32_t count)
1641 {
1642 int i;
1643 uint8_t *ptr = data;
1644
1645 for (i = 0; i < count; i++) {
1646 address_space_rw(&address_space_io, port, attrs,
1647 ptr, size,
1648 direction == KVM_EXIT_IO_OUT);
1649 ptr += size;
1650 }
1651 }
1652
1653 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
1654 {
1655 fprintf(stderr, "KVM internal error. Suberror: %d\n",
1656 run->internal.suberror);
1657
1658 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
1659 int i;
1660
1661 for (i = 0; i < run->internal.ndata; ++i) {
1662 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
1663 i, (uint64_t)run->internal.data[i]);
1664 }
1665 }
1666 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
1667 fprintf(stderr, "emulation failure\n");
1668 if (!kvm_arch_stop_on_emulation_error(cpu)) {
1669 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
1670 return EXCP_INTERRUPT;
1671 }
1672 }
1673 /* FIXME: Should trigger a qmp message to let management know
1674 * something went wrong.
1675 */
1676 return -1;
1677 }
1678
1679 void kvm_flush_coalesced_mmio_buffer(void)
1680 {
1681 KVMState *s = kvm_state;
1682
1683 if (s->coalesced_flush_in_progress) {
1684 return;
1685 }
1686
1687 s->coalesced_flush_in_progress = true;
1688
1689 if (s->coalesced_mmio_ring) {
1690 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
1691 while (ring->first != ring->last) {
1692 struct kvm_coalesced_mmio *ent;
1693
1694 ent = &ring->coalesced_mmio[ring->first];
1695
1696 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
1697 smp_wmb();
1698 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
1699 }
1700 }
1701
1702 s->coalesced_flush_in_progress = false;
1703 }
1704
1705 static void do_kvm_cpu_synchronize_state(void *arg)
1706 {
1707 CPUState *cpu = arg;
1708
1709 if (!cpu->kvm_vcpu_dirty) {
1710 kvm_arch_get_registers(cpu);
1711 cpu->kvm_vcpu_dirty = true;
1712 }
1713 }
1714
1715 void kvm_cpu_synchronize_state(CPUState *cpu)
1716 {
1717 if (!cpu->kvm_vcpu_dirty) {
1718 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, cpu);
1719 }
1720 }
1721
1722 static void do_kvm_cpu_synchronize_post_reset(void *arg)
1723 {
1724 CPUState *cpu = arg;
1725
1726 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
1727 cpu->kvm_vcpu_dirty = false;
1728 }
1729
1730 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
1731 {
1732 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, cpu);
1733 }
1734
1735 static void do_kvm_cpu_synchronize_post_init(void *arg)
1736 {
1737 CPUState *cpu = arg;
1738
1739 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
1740 cpu->kvm_vcpu_dirty = false;
1741 }
1742
1743 void kvm_cpu_synchronize_post_init(CPUState *cpu)
1744 {
1745 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, cpu);
1746 }
1747
1748 void kvm_cpu_clean_state(CPUState *cpu)
1749 {
1750 cpu->kvm_vcpu_dirty = false;
1751 }
1752
1753 int kvm_cpu_exec(CPUState *cpu)
1754 {
1755 struct kvm_run *run = cpu->kvm_run;
1756 int ret, run_ret;
1757
1758 DPRINTF("kvm_cpu_exec()\n");
1759
1760 if (kvm_arch_process_async_events(cpu)) {
1761 cpu->exit_request = 0;
1762 return EXCP_HLT;
1763 }
1764
1765 qemu_mutex_unlock_iothread();
1766
1767 do {
1768 MemTxAttrs attrs;
1769
1770 if (cpu->kvm_vcpu_dirty) {
1771 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
1772 cpu->kvm_vcpu_dirty = false;
1773 }
1774
1775 kvm_arch_pre_run(cpu, run);
1776 if (cpu->exit_request) {
1777 DPRINTF("interrupt exit requested\n");
1778 /*
1779 * KVM requires us to reenter the kernel after IO exits to complete
1780 * instruction emulation. This self-signal will ensure that we
1781 * leave ASAP again.
1782 */
1783 qemu_cpu_kick_self();
1784 }
1785
1786 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
1787
1788 attrs = kvm_arch_post_run(cpu, run);
1789
1790 if (run_ret < 0) {
1791 if (run_ret == -EINTR || run_ret == -EAGAIN) {
1792 DPRINTF("io window exit\n");
1793 ret = EXCP_INTERRUPT;
1794 break;
1795 }
1796 fprintf(stderr, "error: kvm run failed %s\n",
1797 strerror(-run_ret));
1798 #ifdef TARGET_PPC
1799 if (run_ret == -EBUSY) {
1800 fprintf(stderr,
1801 "This is probably because your SMT is enabled.\n"
1802 "VCPU can only run on primary threads with all "
1803 "secondary threads offline.\n");
1804 }
1805 #endif
1806 ret = -1;
1807 break;
1808 }
1809
1810 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
1811 switch (run->exit_reason) {
1812 case KVM_EXIT_IO:
1813 DPRINTF("handle_io\n");
1814 /* Called outside BQL */
1815 kvm_handle_io(run->io.port, attrs,
1816 (uint8_t *)run + run->io.data_offset,
1817 run->io.direction,
1818 run->io.size,
1819 run->io.count);
1820 ret = 0;
1821 break;
1822 case KVM_EXIT_MMIO:
1823 DPRINTF("handle_mmio\n");
1824 /* Called outside BQL */
1825 address_space_rw(&address_space_memory,
1826 run->mmio.phys_addr, attrs,
1827 run->mmio.data,
1828 run->mmio.len,
1829 run->mmio.is_write);
1830 ret = 0;
1831 break;
1832 case KVM_EXIT_IRQ_WINDOW_OPEN:
1833 DPRINTF("irq_window_open\n");
1834 ret = EXCP_INTERRUPT;
1835 break;
1836 case KVM_EXIT_SHUTDOWN:
1837 DPRINTF("shutdown\n");
1838 qemu_system_reset_request();
1839 ret = EXCP_INTERRUPT;
1840 break;
1841 case KVM_EXIT_UNKNOWN:
1842 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
1843 (uint64_t)run->hw.hardware_exit_reason);
1844 ret = -1;
1845 break;
1846 case KVM_EXIT_INTERNAL_ERROR:
1847 ret = kvm_handle_internal_error(cpu, run);
1848 break;
1849 case KVM_EXIT_SYSTEM_EVENT:
1850 switch (run->system_event.type) {
1851 case KVM_SYSTEM_EVENT_SHUTDOWN:
1852 qemu_system_shutdown_request();
1853 ret = EXCP_INTERRUPT;
1854 break;
1855 case KVM_SYSTEM_EVENT_RESET:
1856 qemu_system_reset_request();
1857 ret = EXCP_INTERRUPT;
1858 break;
1859 default:
1860 DPRINTF("kvm_arch_handle_exit\n");
1861 ret = kvm_arch_handle_exit(cpu, run);
1862 break;
1863 }
1864 break;
1865 default:
1866 DPRINTF("kvm_arch_handle_exit\n");
1867 ret = kvm_arch_handle_exit(cpu, run);
1868 break;
1869 }
1870 } while (ret == 0);
1871
1872 qemu_mutex_lock_iothread();
1873
1874 if (ret < 0) {
1875 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
1876 vm_stop(RUN_STATE_INTERNAL_ERROR);
1877 }
1878
1879 cpu->exit_request = 0;
1880 return ret;
1881 }
1882
1883 int kvm_ioctl(KVMState *s, int type, ...)
1884 {
1885 int ret;
1886 void *arg;
1887 va_list ap;
1888
1889 va_start(ap, type);
1890 arg = va_arg(ap, void *);
1891 va_end(ap);
1892
1893 trace_kvm_ioctl(type, arg);
1894 ret = ioctl(s->fd, type, arg);
1895 if (ret == -1) {
1896 ret = -errno;
1897 }
1898 return ret;
1899 }
1900
1901 int kvm_vm_ioctl(KVMState *s, int type, ...)
1902 {
1903 int ret;
1904 void *arg;
1905 va_list ap;
1906
1907 va_start(ap, type);
1908 arg = va_arg(ap, void *);
1909 va_end(ap);
1910
1911 trace_kvm_vm_ioctl(type, arg);
1912 ret = ioctl(s->vmfd, type, arg);
1913 if (ret == -1) {
1914 ret = -errno;
1915 }
1916 return ret;
1917 }
1918
1919 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
1920 {
1921 int ret;
1922 void *arg;
1923 va_list ap;
1924
1925 va_start(ap, type);
1926 arg = va_arg(ap, void *);
1927 va_end(ap);
1928
1929 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
1930 ret = ioctl(cpu->kvm_fd, type, arg);
1931 if (ret == -1) {
1932 ret = -errno;
1933 }
1934 return ret;
1935 }
1936
1937 int kvm_device_ioctl(int fd, int type, ...)
1938 {
1939 int ret;
1940 void *arg;
1941 va_list ap;
1942
1943 va_start(ap, type);
1944 arg = va_arg(ap, void *);
1945 va_end(ap);
1946
1947 trace_kvm_device_ioctl(fd, type, arg);
1948 ret = ioctl(fd, type, arg);
1949 if (ret == -1) {
1950 ret = -errno;
1951 }
1952 return ret;
1953 }
1954
1955 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr)
1956 {
1957 int ret;
1958 struct kvm_device_attr attribute = {
1959 .group = group,
1960 .attr = attr,
1961 };
1962
1963 if (!kvm_vm_attributes_allowed) {
1964 return 0;
1965 }
1966
1967 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute);
1968 /* kvm returns 0 on success for HAS_DEVICE_ATTR */
1969 return ret ? 0 : 1;
1970 }
1971
1972 int kvm_has_sync_mmu(void)
1973 {
1974 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
1975 }
1976
1977 int kvm_has_vcpu_events(void)
1978 {
1979 return kvm_state->vcpu_events;
1980 }
1981
1982 int kvm_has_robust_singlestep(void)
1983 {
1984 return kvm_state->robust_singlestep;
1985 }
1986
1987 int kvm_has_debugregs(void)
1988 {
1989 return kvm_state->debugregs;
1990 }
1991
1992 int kvm_has_xsave(void)
1993 {
1994 return kvm_state->xsave;
1995 }
1996
1997 int kvm_has_xcrs(void)
1998 {
1999 return kvm_state->xcrs;
2000 }
2001
2002 int kvm_has_pit_state2(void)
2003 {
2004 return kvm_state->pit_state2;
2005 }
2006
2007 int kvm_has_many_ioeventfds(void)
2008 {
2009 if (!kvm_enabled()) {
2010 return 0;
2011 }
2012 return kvm_state->many_ioeventfds;
2013 }
2014
2015 int kvm_has_gsi_routing(void)
2016 {
2017 #ifdef KVM_CAP_IRQ_ROUTING
2018 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
2019 #else
2020 return false;
2021 #endif
2022 }
2023
2024 int kvm_has_intx_set_mask(void)
2025 {
2026 return kvm_state->intx_set_mask;
2027 }
2028
2029 void kvm_setup_guest_memory(void *start, size_t size)
2030 {
2031 if (!kvm_has_sync_mmu()) {
2032 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
2033
2034 if (ret) {
2035 perror("qemu_madvise");
2036 fprintf(stderr,
2037 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
2038 exit(1);
2039 }
2040 }
2041 }
2042
2043 #ifdef KVM_CAP_SET_GUEST_DEBUG
2044 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
2045 target_ulong pc)
2046 {
2047 struct kvm_sw_breakpoint *bp;
2048
2049 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
2050 if (bp->pc == pc) {
2051 return bp;
2052 }
2053 }
2054 return NULL;
2055 }
2056
2057 int kvm_sw_breakpoints_active(CPUState *cpu)
2058 {
2059 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
2060 }
2061
2062 struct kvm_set_guest_debug_data {
2063 struct kvm_guest_debug dbg;
2064 CPUState *cpu;
2065 int err;
2066 };
2067
2068 static void kvm_invoke_set_guest_debug(void *data)
2069 {
2070 struct kvm_set_guest_debug_data *dbg_data = data;
2071
2072 dbg_data->err = kvm_vcpu_ioctl(dbg_data->cpu, KVM_SET_GUEST_DEBUG,
2073 &dbg_data->dbg);
2074 }
2075
2076 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2077 {
2078 struct kvm_set_guest_debug_data data;
2079
2080 data.dbg.control = reinject_trap;
2081
2082 if (cpu->singlestep_enabled) {
2083 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
2084 }
2085 kvm_arch_update_guest_debug(cpu, &data.dbg);
2086 data.cpu = cpu;
2087
2088 run_on_cpu(cpu, kvm_invoke_set_guest_debug, &data);
2089 return data.err;
2090 }
2091
2092 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2093 target_ulong len, int type)
2094 {
2095 struct kvm_sw_breakpoint *bp;
2096 int err;
2097
2098 if (type == GDB_BREAKPOINT_SW) {
2099 bp = kvm_find_sw_breakpoint(cpu, addr);
2100 if (bp) {
2101 bp->use_count++;
2102 return 0;
2103 }
2104
2105 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
2106 bp->pc = addr;
2107 bp->use_count = 1;
2108 err = kvm_arch_insert_sw_breakpoint(cpu, bp);
2109 if (err) {
2110 g_free(bp);
2111 return err;
2112 }
2113
2114 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2115 } else {
2116 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
2117 if (err) {
2118 return err;
2119 }
2120 }
2121
2122 CPU_FOREACH(cpu) {
2123 err = kvm_update_guest_debug(cpu, 0);
2124 if (err) {
2125 return err;
2126 }
2127 }
2128 return 0;
2129 }
2130
2131 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2132 target_ulong len, int type)
2133 {
2134 struct kvm_sw_breakpoint *bp;
2135 int err;
2136
2137 if (type == GDB_BREAKPOINT_SW) {
2138 bp = kvm_find_sw_breakpoint(cpu, addr);
2139 if (!bp) {
2140 return -ENOENT;
2141 }
2142
2143 if (bp->use_count > 1) {
2144 bp->use_count--;
2145 return 0;
2146 }
2147
2148 err = kvm_arch_remove_sw_breakpoint(cpu, bp);
2149 if (err) {
2150 return err;
2151 }
2152
2153 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2154 g_free(bp);
2155 } else {
2156 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
2157 if (err) {
2158 return err;
2159 }
2160 }
2161
2162 CPU_FOREACH(cpu) {
2163 err = kvm_update_guest_debug(cpu, 0);
2164 if (err) {
2165 return err;
2166 }
2167 }
2168 return 0;
2169 }
2170
2171 void kvm_remove_all_breakpoints(CPUState *cpu)
2172 {
2173 struct kvm_sw_breakpoint *bp, *next;
2174 KVMState *s = cpu->kvm_state;
2175 CPUState *tmpcpu;
2176
2177 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
2178 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
2179 /* Try harder to find a CPU that currently sees the breakpoint. */
2180 CPU_FOREACH(tmpcpu) {
2181 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
2182 break;
2183 }
2184 }
2185 }
2186 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
2187 g_free(bp);
2188 }
2189 kvm_arch_remove_all_hw_breakpoints();
2190
2191 CPU_FOREACH(cpu) {
2192 kvm_update_guest_debug(cpu, 0);
2193 }
2194 }
2195
2196 #else /* !KVM_CAP_SET_GUEST_DEBUG */
2197
2198 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2199 {
2200 return -EINVAL;
2201 }
2202
2203 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2204 target_ulong len, int type)
2205 {
2206 return -EINVAL;
2207 }
2208
2209 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2210 target_ulong len, int type)
2211 {
2212 return -EINVAL;
2213 }
2214
2215 void kvm_remove_all_breakpoints(CPUState *cpu)
2216 {
2217 }
2218 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2219
2220 int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
2221 {
2222 KVMState *s = kvm_state;
2223 struct kvm_signal_mask *sigmask;
2224 int r;
2225
2226 if (!sigset) {
2227 return kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, NULL);
2228 }
2229
2230 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
2231
2232 sigmask->len = s->sigmask_len;
2233 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
2234 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
2235 g_free(sigmask);
2236
2237 return r;
2238 }
2239 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
2240 {
2241 return kvm_arch_on_sigbus_vcpu(cpu, code, addr);
2242 }
2243
2244 int kvm_on_sigbus(int code, void *addr)
2245 {
2246 return kvm_arch_on_sigbus(code, addr);
2247 }
2248
2249 int kvm_create_device(KVMState *s, uint64_t type, bool test)
2250 {
2251 int ret;
2252 struct kvm_create_device create_dev;
2253
2254 create_dev.type = type;
2255 create_dev.fd = -1;
2256 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
2257
2258 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
2259 return -ENOTSUP;
2260 }
2261
2262 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
2263 if (ret) {
2264 return ret;
2265 }
2266
2267 return test ? 0 : create_dev.fd;
2268 }
2269
2270 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
2271 {
2272 struct kvm_one_reg reg;
2273 int r;
2274
2275 reg.id = id;
2276 reg.addr = (uintptr_t) source;
2277 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
2278 if (r) {
2279 trace_kvm_failed_reg_set(id, strerror(r));
2280 }
2281 return r;
2282 }
2283
2284 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
2285 {
2286 struct kvm_one_reg reg;
2287 int r;
2288
2289 reg.id = id;
2290 reg.addr = (uintptr_t) target;
2291 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
2292 if (r) {
2293 trace_kvm_failed_reg_get(id, strerror(r));
2294 }
2295 return r;
2296 }
2297
2298 static void kvm_accel_class_init(ObjectClass *oc, void *data)
2299 {
2300 AccelClass *ac = ACCEL_CLASS(oc);
2301 ac->name = "KVM";
2302 ac->init_machine = kvm_init;
2303 ac->allowed = &kvm_allowed;
2304 }
2305
2306 static const TypeInfo kvm_accel_type = {
2307 .name = TYPE_KVM_ACCEL,
2308 .parent = TYPE_ACCEL,
2309 .class_init = kvm_accel_class_init,
2310 .instance_size = sizeof(KVMState),
2311 };
2312
2313 static void kvm_type_init(void)
2314 {
2315 type_register_static(&kvm_accel_type);
2316 }
2317
2318 type_init(kvm_type_init);