]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - lib/bitmap.c
scsi: Remove percpu_ida
[mirror_ubuntu-hirsute-kernel.git] / lib / bitmap.c
1 /*
2 * lib/bitmap.c
3 * Helper functions for bitmap.h.
4 *
5 * This source code is licensed under the GNU General Public License,
6 * Version 2. See the file COPYING for more details.
7 */
8 #include <linux/export.h>
9 #include <linux/thread_info.h>
10 #include <linux/ctype.h>
11 #include <linux/errno.h>
12 #include <linux/bitmap.h>
13 #include <linux/bitops.h>
14 #include <linux/bug.h>
15 #include <linux/kernel.h>
16 #include <linux/string.h>
17 #include <linux/uaccess.h>
18
19 #include <asm/page.h>
20
21 /**
22 * DOC: bitmap introduction
23 *
24 * bitmaps provide an array of bits, implemented using an an
25 * array of unsigned longs. The number of valid bits in a
26 * given bitmap does _not_ need to be an exact multiple of
27 * BITS_PER_LONG.
28 *
29 * The possible unused bits in the last, partially used word
30 * of a bitmap are 'don't care'. The implementation makes
31 * no particular effort to keep them zero. It ensures that
32 * their value will not affect the results of any operation.
33 * The bitmap operations that return Boolean (bitmap_empty,
34 * for example) or scalar (bitmap_weight, for example) results
35 * carefully filter out these unused bits from impacting their
36 * results.
37 *
38 * These operations actually hold to a slightly stronger rule:
39 * if you don't input any bitmaps to these ops that have some
40 * unused bits set, then they won't output any set unused bits
41 * in output bitmaps.
42 *
43 * The byte ordering of bitmaps is more natural on little
44 * endian architectures. See the big-endian headers
45 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
46 * for the best explanations of this ordering.
47 */
48
49 int __bitmap_equal(const unsigned long *bitmap1,
50 const unsigned long *bitmap2, unsigned int bits)
51 {
52 unsigned int k, lim = bits/BITS_PER_LONG;
53 for (k = 0; k < lim; ++k)
54 if (bitmap1[k] != bitmap2[k])
55 return 0;
56
57 if (bits % BITS_PER_LONG)
58 if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
59 return 0;
60
61 return 1;
62 }
63 EXPORT_SYMBOL(__bitmap_equal);
64
65 void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits)
66 {
67 unsigned int k, lim = BITS_TO_LONGS(bits);
68 for (k = 0; k < lim; ++k)
69 dst[k] = ~src[k];
70 }
71 EXPORT_SYMBOL(__bitmap_complement);
72
73 /**
74 * __bitmap_shift_right - logical right shift of the bits in a bitmap
75 * @dst : destination bitmap
76 * @src : source bitmap
77 * @shift : shift by this many bits
78 * @nbits : bitmap size, in bits
79 *
80 * Shifting right (dividing) means moving bits in the MS -> LS bit
81 * direction. Zeros are fed into the vacated MS positions and the
82 * LS bits shifted off the bottom are lost.
83 */
84 void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
85 unsigned shift, unsigned nbits)
86 {
87 unsigned k, lim = BITS_TO_LONGS(nbits);
88 unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
89 unsigned long mask = BITMAP_LAST_WORD_MASK(nbits);
90 for (k = 0; off + k < lim; ++k) {
91 unsigned long upper, lower;
92
93 /*
94 * If shift is not word aligned, take lower rem bits of
95 * word above and make them the top rem bits of result.
96 */
97 if (!rem || off + k + 1 >= lim)
98 upper = 0;
99 else {
100 upper = src[off + k + 1];
101 if (off + k + 1 == lim - 1)
102 upper &= mask;
103 upper <<= (BITS_PER_LONG - rem);
104 }
105 lower = src[off + k];
106 if (off + k == lim - 1)
107 lower &= mask;
108 lower >>= rem;
109 dst[k] = lower | upper;
110 }
111 if (off)
112 memset(&dst[lim - off], 0, off*sizeof(unsigned long));
113 }
114 EXPORT_SYMBOL(__bitmap_shift_right);
115
116
117 /**
118 * __bitmap_shift_left - logical left shift of the bits in a bitmap
119 * @dst : destination bitmap
120 * @src : source bitmap
121 * @shift : shift by this many bits
122 * @nbits : bitmap size, in bits
123 *
124 * Shifting left (multiplying) means moving bits in the LS -> MS
125 * direction. Zeros are fed into the vacated LS bit positions
126 * and those MS bits shifted off the top are lost.
127 */
128
129 void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
130 unsigned int shift, unsigned int nbits)
131 {
132 int k;
133 unsigned int lim = BITS_TO_LONGS(nbits);
134 unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
135 for (k = lim - off - 1; k >= 0; --k) {
136 unsigned long upper, lower;
137
138 /*
139 * If shift is not word aligned, take upper rem bits of
140 * word below and make them the bottom rem bits of result.
141 */
142 if (rem && k > 0)
143 lower = src[k - 1] >> (BITS_PER_LONG - rem);
144 else
145 lower = 0;
146 upper = src[k] << rem;
147 dst[k + off] = lower | upper;
148 }
149 if (off)
150 memset(dst, 0, off*sizeof(unsigned long));
151 }
152 EXPORT_SYMBOL(__bitmap_shift_left);
153
154 int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
155 const unsigned long *bitmap2, unsigned int bits)
156 {
157 unsigned int k;
158 unsigned int lim = bits/BITS_PER_LONG;
159 unsigned long result = 0;
160
161 for (k = 0; k < lim; k++)
162 result |= (dst[k] = bitmap1[k] & bitmap2[k]);
163 if (bits % BITS_PER_LONG)
164 result |= (dst[k] = bitmap1[k] & bitmap2[k] &
165 BITMAP_LAST_WORD_MASK(bits));
166 return result != 0;
167 }
168 EXPORT_SYMBOL(__bitmap_and);
169
170 void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
171 const unsigned long *bitmap2, unsigned int bits)
172 {
173 unsigned int k;
174 unsigned int nr = BITS_TO_LONGS(bits);
175
176 for (k = 0; k < nr; k++)
177 dst[k] = bitmap1[k] | bitmap2[k];
178 }
179 EXPORT_SYMBOL(__bitmap_or);
180
181 void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
182 const unsigned long *bitmap2, unsigned int bits)
183 {
184 unsigned int k;
185 unsigned int nr = BITS_TO_LONGS(bits);
186
187 for (k = 0; k < nr; k++)
188 dst[k] = bitmap1[k] ^ bitmap2[k];
189 }
190 EXPORT_SYMBOL(__bitmap_xor);
191
192 int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
193 const unsigned long *bitmap2, unsigned int bits)
194 {
195 unsigned int k;
196 unsigned int lim = bits/BITS_PER_LONG;
197 unsigned long result = 0;
198
199 for (k = 0; k < lim; k++)
200 result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
201 if (bits % BITS_PER_LONG)
202 result |= (dst[k] = bitmap1[k] & ~bitmap2[k] &
203 BITMAP_LAST_WORD_MASK(bits));
204 return result != 0;
205 }
206 EXPORT_SYMBOL(__bitmap_andnot);
207
208 int __bitmap_intersects(const unsigned long *bitmap1,
209 const unsigned long *bitmap2, unsigned int bits)
210 {
211 unsigned int k, lim = bits/BITS_PER_LONG;
212 for (k = 0; k < lim; ++k)
213 if (bitmap1[k] & bitmap2[k])
214 return 1;
215
216 if (bits % BITS_PER_LONG)
217 if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
218 return 1;
219 return 0;
220 }
221 EXPORT_SYMBOL(__bitmap_intersects);
222
223 int __bitmap_subset(const unsigned long *bitmap1,
224 const unsigned long *bitmap2, unsigned int bits)
225 {
226 unsigned int k, lim = bits/BITS_PER_LONG;
227 for (k = 0; k < lim; ++k)
228 if (bitmap1[k] & ~bitmap2[k])
229 return 0;
230
231 if (bits % BITS_PER_LONG)
232 if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
233 return 0;
234 return 1;
235 }
236 EXPORT_SYMBOL(__bitmap_subset);
237
238 int __bitmap_weight(const unsigned long *bitmap, unsigned int bits)
239 {
240 unsigned int k, lim = bits/BITS_PER_LONG;
241 int w = 0;
242
243 for (k = 0; k < lim; k++)
244 w += hweight_long(bitmap[k]);
245
246 if (bits % BITS_PER_LONG)
247 w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
248
249 return w;
250 }
251 EXPORT_SYMBOL(__bitmap_weight);
252
253 void __bitmap_set(unsigned long *map, unsigned int start, int len)
254 {
255 unsigned long *p = map + BIT_WORD(start);
256 const unsigned int size = start + len;
257 int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
258 unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
259
260 while (len - bits_to_set >= 0) {
261 *p |= mask_to_set;
262 len -= bits_to_set;
263 bits_to_set = BITS_PER_LONG;
264 mask_to_set = ~0UL;
265 p++;
266 }
267 if (len) {
268 mask_to_set &= BITMAP_LAST_WORD_MASK(size);
269 *p |= mask_to_set;
270 }
271 }
272 EXPORT_SYMBOL(__bitmap_set);
273
274 void __bitmap_clear(unsigned long *map, unsigned int start, int len)
275 {
276 unsigned long *p = map + BIT_WORD(start);
277 const unsigned int size = start + len;
278 int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
279 unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
280
281 while (len - bits_to_clear >= 0) {
282 *p &= ~mask_to_clear;
283 len -= bits_to_clear;
284 bits_to_clear = BITS_PER_LONG;
285 mask_to_clear = ~0UL;
286 p++;
287 }
288 if (len) {
289 mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
290 *p &= ~mask_to_clear;
291 }
292 }
293 EXPORT_SYMBOL(__bitmap_clear);
294
295 /**
296 * bitmap_find_next_zero_area_off - find a contiguous aligned zero area
297 * @map: The address to base the search on
298 * @size: The bitmap size in bits
299 * @start: The bitnumber to start searching at
300 * @nr: The number of zeroed bits we're looking for
301 * @align_mask: Alignment mask for zero area
302 * @align_offset: Alignment offset for zero area.
303 *
304 * The @align_mask should be one less than a power of 2; the effect is that
305 * the bit offset of all zero areas this function finds plus @align_offset
306 * is multiple of that power of 2.
307 */
308 unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
309 unsigned long size,
310 unsigned long start,
311 unsigned int nr,
312 unsigned long align_mask,
313 unsigned long align_offset)
314 {
315 unsigned long index, end, i;
316 again:
317 index = find_next_zero_bit(map, size, start);
318
319 /* Align allocation */
320 index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset;
321
322 end = index + nr;
323 if (end > size)
324 return end;
325 i = find_next_bit(map, end, index);
326 if (i < end) {
327 start = i + 1;
328 goto again;
329 }
330 return index;
331 }
332 EXPORT_SYMBOL(bitmap_find_next_zero_area_off);
333
334 /*
335 * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers,
336 * second version by Paul Jackson, third by Joe Korty.
337 */
338
339 #define CHUNKSZ 32
340 #define nbits_to_hold_value(val) fls(val)
341 #define BASEDEC 10 /* fancier cpuset lists input in decimal */
342
343 /**
344 * __bitmap_parse - convert an ASCII hex string into a bitmap.
345 * @buf: pointer to buffer containing string.
346 * @buflen: buffer size in bytes. If string is smaller than this
347 * then it must be terminated with a \0.
348 * @is_user: location of buffer, 0 indicates kernel space
349 * @maskp: pointer to bitmap array that will contain result.
350 * @nmaskbits: size of bitmap, in bits.
351 *
352 * Commas group hex digits into chunks. Each chunk defines exactly 32
353 * bits of the resultant bitmask. No chunk may specify a value larger
354 * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
355 * then leading 0-bits are prepended. %-EINVAL is returned for illegal
356 * characters and for grouping errors such as "1,,5", ",44", "," and "".
357 * Leading and trailing whitespace accepted, but not embedded whitespace.
358 */
359 int __bitmap_parse(const char *buf, unsigned int buflen,
360 int is_user, unsigned long *maskp,
361 int nmaskbits)
362 {
363 int c, old_c, totaldigits, ndigits, nchunks, nbits;
364 u32 chunk;
365 const char __user __force *ubuf = (const char __user __force *)buf;
366
367 bitmap_zero(maskp, nmaskbits);
368
369 nchunks = nbits = totaldigits = c = 0;
370 do {
371 chunk = 0;
372 ndigits = totaldigits;
373
374 /* Get the next chunk of the bitmap */
375 while (buflen) {
376 old_c = c;
377 if (is_user) {
378 if (__get_user(c, ubuf++))
379 return -EFAULT;
380 }
381 else
382 c = *buf++;
383 buflen--;
384 if (isspace(c))
385 continue;
386
387 /*
388 * If the last character was a space and the current
389 * character isn't '\0', we've got embedded whitespace.
390 * This is a no-no, so throw an error.
391 */
392 if (totaldigits && c && isspace(old_c))
393 return -EINVAL;
394
395 /* A '\0' or a ',' signal the end of the chunk */
396 if (c == '\0' || c == ',')
397 break;
398
399 if (!isxdigit(c))
400 return -EINVAL;
401
402 /*
403 * Make sure there are at least 4 free bits in 'chunk'.
404 * If not, this hexdigit will overflow 'chunk', so
405 * throw an error.
406 */
407 if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1))
408 return -EOVERFLOW;
409
410 chunk = (chunk << 4) | hex_to_bin(c);
411 totaldigits++;
412 }
413 if (ndigits == totaldigits)
414 return -EINVAL;
415 if (nchunks == 0 && chunk == 0)
416 continue;
417
418 __bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits);
419 *maskp |= chunk;
420 nchunks++;
421 nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ;
422 if (nbits > nmaskbits)
423 return -EOVERFLOW;
424 } while (buflen && c == ',');
425
426 return 0;
427 }
428 EXPORT_SYMBOL(__bitmap_parse);
429
430 /**
431 * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap
432 *
433 * @ubuf: pointer to user buffer containing string.
434 * @ulen: buffer size in bytes. If string is smaller than this
435 * then it must be terminated with a \0.
436 * @maskp: pointer to bitmap array that will contain result.
437 * @nmaskbits: size of bitmap, in bits.
438 *
439 * Wrapper for __bitmap_parse(), providing it with user buffer.
440 *
441 * We cannot have this as an inline function in bitmap.h because it needs
442 * linux/uaccess.h to get the access_ok() declaration and this causes
443 * cyclic dependencies.
444 */
445 int bitmap_parse_user(const char __user *ubuf,
446 unsigned int ulen, unsigned long *maskp,
447 int nmaskbits)
448 {
449 if (!access_ok(VERIFY_READ, ubuf, ulen))
450 return -EFAULT;
451 return __bitmap_parse((const char __force *)ubuf,
452 ulen, 1, maskp, nmaskbits);
453
454 }
455 EXPORT_SYMBOL(bitmap_parse_user);
456
457 /**
458 * bitmap_print_to_pagebuf - convert bitmap to list or hex format ASCII string
459 * @list: indicates whether the bitmap must be list
460 * @buf: page aligned buffer into which string is placed
461 * @maskp: pointer to bitmap to convert
462 * @nmaskbits: size of bitmap, in bits
463 *
464 * Output format is a comma-separated list of decimal numbers and
465 * ranges if list is specified or hex digits grouped into comma-separated
466 * sets of 8 digits/set. Returns the number of characters written to buf.
467 *
468 * It is assumed that @buf is a pointer into a PAGE_SIZE area and that
469 * sufficient storage remains at @buf to accommodate the
470 * bitmap_print_to_pagebuf() output.
471 */
472 int bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp,
473 int nmaskbits)
474 {
475 ptrdiff_t len = PTR_ALIGN(buf + PAGE_SIZE - 1, PAGE_SIZE) - buf;
476 int n = 0;
477
478 if (len > 1)
479 n = list ? scnprintf(buf, len, "%*pbl\n", nmaskbits, maskp) :
480 scnprintf(buf, len, "%*pb\n", nmaskbits, maskp);
481 return n;
482 }
483 EXPORT_SYMBOL(bitmap_print_to_pagebuf);
484
485 /**
486 * __bitmap_parselist - convert list format ASCII string to bitmap
487 * @buf: read nul-terminated user string from this buffer
488 * @buflen: buffer size in bytes. If string is smaller than this
489 * then it must be terminated with a \0.
490 * @is_user: location of buffer, 0 indicates kernel space
491 * @maskp: write resulting mask here
492 * @nmaskbits: number of bits in mask to be written
493 *
494 * Input format is a comma-separated list of decimal numbers and
495 * ranges. Consecutively set bits are shown as two hyphen-separated
496 * decimal numbers, the smallest and largest bit numbers set in
497 * the range.
498 * Optionally each range can be postfixed to denote that only parts of it
499 * should be set. The range will divided to groups of specific size.
500 * From each group will be used only defined amount of bits.
501 * Syntax: range:used_size/group_size
502 * Example: 0-1023:2/256 ==> 0,1,256,257,512,513,768,769
503 *
504 * Returns: 0 on success, -errno on invalid input strings. Error values:
505 *
506 * - ``-EINVAL``: second number in range smaller than first
507 * - ``-EINVAL``: invalid character in string
508 * - ``-ERANGE``: bit number specified too large for mask
509 */
510 static int __bitmap_parselist(const char *buf, unsigned int buflen,
511 int is_user, unsigned long *maskp,
512 int nmaskbits)
513 {
514 unsigned int a, b, old_a, old_b;
515 unsigned int group_size, used_size, off;
516 int c, old_c, totaldigits, ndigits;
517 const char __user __force *ubuf = (const char __user __force *)buf;
518 int at_start, in_range, in_partial_range;
519
520 totaldigits = c = 0;
521 old_a = old_b = 0;
522 group_size = used_size = 0;
523 bitmap_zero(maskp, nmaskbits);
524 do {
525 at_start = 1;
526 in_range = 0;
527 in_partial_range = 0;
528 a = b = 0;
529 ndigits = totaldigits;
530
531 /* Get the next cpu# or a range of cpu#'s */
532 while (buflen) {
533 old_c = c;
534 if (is_user) {
535 if (__get_user(c, ubuf++))
536 return -EFAULT;
537 } else
538 c = *buf++;
539 buflen--;
540 if (isspace(c))
541 continue;
542
543 /* A '\0' or a ',' signal the end of a cpu# or range */
544 if (c == '\0' || c == ',')
545 break;
546 /*
547 * whitespaces between digits are not allowed,
548 * but it's ok if whitespaces are on head or tail.
549 * when old_c is whilespace,
550 * if totaldigits == ndigits, whitespace is on head.
551 * if whitespace is on tail, it should not run here.
552 * as c was ',' or '\0',
553 * the last code line has broken the current loop.
554 */
555 if ((totaldigits != ndigits) && isspace(old_c))
556 return -EINVAL;
557
558 if (c == '/') {
559 used_size = a;
560 at_start = 1;
561 in_range = 0;
562 a = b = 0;
563 continue;
564 }
565
566 if (c == ':') {
567 old_a = a;
568 old_b = b;
569 at_start = 1;
570 in_range = 0;
571 in_partial_range = 1;
572 a = b = 0;
573 continue;
574 }
575
576 if (c == '-') {
577 if (at_start || in_range)
578 return -EINVAL;
579 b = 0;
580 in_range = 1;
581 at_start = 1;
582 continue;
583 }
584
585 if (!isdigit(c))
586 return -EINVAL;
587
588 b = b * 10 + (c - '0');
589 if (!in_range)
590 a = b;
591 at_start = 0;
592 totaldigits++;
593 }
594 if (ndigits == totaldigits)
595 continue;
596 if (in_partial_range) {
597 group_size = a;
598 a = old_a;
599 b = old_b;
600 old_a = old_b = 0;
601 } else {
602 used_size = group_size = b - a + 1;
603 }
604 /* if no digit is after '-', it's wrong*/
605 if (at_start && in_range)
606 return -EINVAL;
607 if (!(a <= b) || group_size == 0 || !(used_size <= group_size))
608 return -EINVAL;
609 if (b >= nmaskbits)
610 return -ERANGE;
611 while (a <= b) {
612 off = min(b - a + 1, used_size);
613 bitmap_set(maskp, a, off);
614 a += group_size;
615 }
616 } while (buflen && c == ',');
617 return 0;
618 }
619
620 int bitmap_parselist(const char *bp, unsigned long *maskp, int nmaskbits)
621 {
622 char *nl = strchrnul(bp, '\n');
623 int len = nl - bp;
624
625 return __bitmap_parselist(bp, len, 0, maskp, nmaskbits);
626 }
627 EXPORT_SYMBOL(bitmap_parselist);
628
629
630 /**
631 * bitmap_parselist_user()
632 *
633 * @ubuf: pointer to user buffer containing string.
634 * @ulen: buffer size in bytes. If string is smaller than this
635 * then it must be terminated with a \0.
636 * @maskp: pointer to bitmap array that will contain result.
637 * @nmaskbits: size of bitmap, in bits.
638 *
639 * Wrapper for bitmap_parselist(), providing it with user buffer.
640 *
641 * We cannot have this as an inline function in bitmap.h because it needs
642 * linux/uaccess.h to get the access_ok() declaration and this causes
643 * cyclic dependencies.
644 */
645 int bitmap_parselist_user(const char __user *ubuf,
646 unsigned int ulen, unsigned long *maskp,
647 int nmaskbits)
648 {
649 if (!access_ok(VERIFY_READ, ubuf, ulen))
650 return -EFAULT;
651 return __bitmap_parselist((const char __force *)ubuf,
652 ulen, 1, maskp, nmaskbits);
653 }
654 EXPORT_SYMBOL(bitmap_parselist_user);
655
656
657 /**
658 * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
659 * @buf: pointer to a bitmap
660 * @pos: a bit position in @buf (0 <= @pos < @nbits)
661 * @nbits: number of valid bit positions in @buf
662 *
663 * Map the bit at position @pos in @buf (of length @nbits) to the
664 * ordinal of which set bit it is. If it is not set or if @pos
665 * is not a valid bit position, map to -1.
666 *
667 * If for example, just bits 4 through 7 are set in @buf, then @pos
668 * values 4 through 7 will get mapped to 0 through 3, respectively,
669 * and other @pos values will get mapped to -1. When @pos value 7
670 * gets mapped to (returns) @ord value 3 in this example, that means
671 * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
672 *
673 * The bit positions 0 through @bits are valid positions in @buf.
674 */
675 static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits)
676 {
677 if (pos >= nbits || !test_bit(pos, buf))
678 return -1;
679
680 return __bitmap_weight(buf, pos);
681 }
682
683 /**
684 * bitmap_ord_to_pos - find position of n-th set bit in bitmap
685 * @buf: pointer to bitmap
686 * @ord: ordinal bit position (n-th set bit, n >= 0)
687 * @nbits: number of valid bit positions in @buf
688 *
689 * Map the ordinal offset of bit @ord in @buf to its position in @buf.
690 * Value of @ord should be in range 0 <= @ord < weight(buf). If @ord
691 * >= weight(buf), returns @nbits.
692 *
693 * If for example, just bits 4 through 7 are set in @buf, then @ord
694 * values 0 through 3 will get mapped to 4 through 7, respectively,
695 * and all other @ord values returns @nbits. When @ord value 3
696 * gets mapped to (returns) @pos value 7 in this example, that means
697 * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
698 *
699 * The bit positions 0 through @nbits-1 are valid positions in @buf.
700 */
701 unsigned int bitmap_ord_to_pos(const unsigned long *buf, unsigned int ord, unsigned int nbits)
702 {
703 unsigned int pos;
704
705 for (pos = find_first_bit(buf, nbits);
706 pos < nbits && ord;
707 pos = find_next_bit(buf, nbits, pos + 1))
708 ord--;
709
710 return pos;
711 }
712
713 /**
714 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
715 * @dst: remapped result
716 * @src: subset to be remapped
717 * @old: defines domain of map
718 * @new: defines range of map
719 * @nbits: number of bits in each of these bitmaps
720 *
721 * Let @old and @new define a mapping of bit positions, such that
722 * whatever position is held by the n-th set bit in @old is mapped
723 * to the n-th set bit in @new. In the more general case, allowing
724 * for the possibility that the weight 'w' of @new is less than the
725 * weight of @old, map the position of the n-th set bit in @old to
726 * the position of the m-th set bit in @new, where m == n % w.
727 *
728 * If either of the @old and @new bitmaps are empty, or if @src and
729 * @dst point to the same location, then this routine copies @src
730 * to @dst.
731 *
732 * The positions of unset bits in @old are mapped to themselves
733 * (the identify map).
734 *
735 * Apply the above specified mapping to @src, placing the result in
736 * @dst, clearing any bits previously set in @dst.
737 *
738 * For example, lets say that @old has bits 4 through 7 set, and
739 * @new has bits 12 through 15 set. This defines the mapping of bit
740 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
741 * bit positions unchanged. So if say @src comes into this routine
742 * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
743 * 13 and 15 set.
744 */
745 void bitmap_remap(unsigned long *dst, const unsigned long *src,
746 const unsigned long *old, const unsigned long *new,
747 unsigned int nbits)
748 {
749 unsigned int oldbit, w;
750
751 if (dst == src) /* following doesn't handle inplace remaps */
752 return;
753 bitmap_zero(dst, nbits);
754
755 w = bitmap_weight(new, nbits);
756 for_each_set_bit(oldbit, src, nbits) {
757 int n = bitmap_pos_to_ord(old, oldbit, nbits);
758
759 if (n < 0 || w == 0)
760 set_bit(oldbit, dst); /* identity map */
761 else
762 set_bit(bitmap_ord_to_pos(new, n % w, nbits), dst);
763 }
764 }
765 EXPORT_SYMBOL(bitmap_remap);
766
767 /**
768 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
769 * @oldbit: bit position to be mapped
770 * @old: defines domain of map
771 * @new: defines range of map
772 * @bits: number of bits in each of these bitmaps
773 *
774 * Let @old and @new define a mapping of bit positions, such that
775 * whatever position is held by the n-th set bit in @old is mapped
776 * to the n-th set bit in @new. In the more general case, allowing
777 * for the possibility that the weight 'w' of @new is less than the
778 * weight of @old, map the position of the n-th set bit in @old to
779 * the position of the m-th set bit in @new, where m == n % w.
780 *
781 * The positions of unset bits in @old are mapped to themselves
782 * (the identify map).
783 *
784 * Apply the above specified mapping to bit position @oldbit, returning
785 * the new bit position.
786 *
787 * For example, lets say that @old has bits 4 through 7 set, and
788 * @new has bits 12 through 15 set. This defines the mapping of bit
789 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
790 * bit positions unchanged. So if say @oldbit is 5, then this routine
791 * returns 13.
792 */
793 int bitmap_bitremap(int oldbit, const unsigned long *old,
794 const unsigned long *new, int bits)
795 {
796 int w = bitmap_weight(new, bits);
797 int n = bitmap_pos_to_ord(old, oldbit, bits);
798 if (n < 0 || w == 0)
799 return oldbit;
800 else
801 return bitmap_ord_to_pos(new, n % w, bits);
802 }
803 EXPORT_SYMBOL(bitmap_bitremap);
804
805 /**
806 * bitmap_onto - translate one bitmap relative to another
807 * @dst: resulting translated bitmap
808 * @orig: original untranslated bitmap
809 * @relmap: bitmap relative to which translated
810 * @bits: number of bits in each of these bitmaps
811 *
812 * Set the n-th bit of @dst iff there exists some m such that the
813 * n-th bit of @relmap is set, the m-th bit of @orig is set, and
814 * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
815 * (If you understood the previous sentence the first time your
816 * read it, you're overqualified for your current job.)
817 *
818 * In other words, @orig is mapped onto (surjectively) @dst,
819 * using the map { <n, m> | the n-th bit of @relmap is the
820 * m-th set bit of @relmap }.
821 *
822 * Any set bits in @orig above bit number W, where W is the
823 * weight of (number of set bits in) @relmap are mapped nowhere.
824 * In particular, if for all bits m set in @orig, m >= W, then
825 * @dst will end up empty. In situations where the possibility
826 * of such an empty result is not desired, one way to avoid it is
827 * to use the bitmap_fold() operator, below, to first fold the
828 * @orig bitmap over itself so that all its set bits x are in the
829 * range 0 <= x < W. The bitmap_fold() operator does this by
830 * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
831 *
832 * Example [1] for bitmap_onto():
833 * Let's say @relmap has bits 30-39 set, and @orig has bits
834 * 1, 3, 5, 7, 9 and 11 set. Then on return from this routine,
835 * @dst will have bits 31, 33, 35, 37 and 39 set.
836 *
837 * When bit 0 is set in @orig, it means turn on the bit in
838 * @dst corresponding to whatever is the first bit (if any)
839 * that is turned on in @relmap. Since bit 0 was off in the
840 * above example, we leave off that bit (bit 30) in @dst.
841 *
842 * When bit 1 is set in @orig (as in the above example), it
843 * means turn on the bit in @dst corresponding to whatever
844 * is the second bit that is turned on in @relmap. The second
845 * bit in @relmap that was turned on in the above example was
846 * bit 31, so we turned on bit 31 in @dst.
847 *
848 * Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
849 * because they were the 4th, 6th, 8th and 10th set bits
850 * set in @relmap, and the 4th, 6th, 8th and 10th bits of
851 * @orig (i.e. bits 3, 5, 7 and 9) were also set.
852 *
853 * When bit 11 is set in @orig, it means turn on the bit in
854 * @dst corresponding to whatever is the twelfth bit that is
855 * turned on in @relmap. In the above example, there were
856 * only ten bits turned on in @relmap (30..39), so that bit
857 * 11 was set in @orig had no affect on @dst.
858 *
859 * Example [2] for bitmap_fold() + bitmap_onto():
860 * Let's say @relmap has these ten bits set::
861 *
862 * 40 41 42 43 45 48 53 61 74 95
863 *
864 * (for the curious, that's 40 plus the first ten terms of the
865 * Fibonacci sequence.)
866 *
867 * Further lets say we use the following code, invoking
868 * bitmap_fold() then bitmap_onto, as suggested above to
869 * avoid the possibility of an empty @dst result::
870 *
871 * unsigned long *tmp; // a temporary bitmap's bits
872 *
873 * bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
874 * bitmap_onto(dst, tmp, relmap, bits);
875 *
876 * Then this table shows what various values of @dst would be, for
877 * various @orig's. I list the zero-based positions of each set bit.
878 * The tmp column shows the intermediate result, as computed by
879 * using bitmap_fold() to fold the @orig bitmap modulo ten
880 * (the weight of @relmap):
881 *
882 * =============== ============== =================
883 * @orig tmp @dst
884 * 0 0 40
885 * 1 1 41
886 * 9 9 95
887 * 10 0 40 [#f1]_
888 * 1 3 5 7 1 3 5 7 41 43 48 61
889 * 0 1 2 3 4 0 1 2 3 4 40 41 42 43 45
890 * 0 9 18 27 0 9 8 7 40 61 74 95
891 * 0 10 20 30 0 40
892 * 0 11 22 33 0 1 2 3 40 41 42 43
893 * 0 12 24 36 0 2 4 6 40 42 45 53
894 * 78 102 211 1 2 8 41 42 74 [#f1]_
895 * =============== ============== =================
896 *
897 * .. [#f1]
898 *
899 * For these marked lines, if we hadn't first done bitmap_fold()
900 * into tmp, then the @dst result would have been empty.
901 *
902 * If either of @orig or @relmap is empty (no set bits), then @dst
903 * will be returned empty.
904 *
905 * If (as explained above) the only set bits in @orig are in positions
906 * m where m >= W, (where W is the weight of @relmap) then @dst will
907 * once again be returned empty.
908 *
909 * All bits in @dst not set by the above rule are cleared.
910 */
911 void bitmap_onto(unsigned long *dst, const unsigned long *orig,
912 const unsigned long *relmap, unsigned int bits)
913 {
914 unsigned int n, m; /* same meaning as in above comment */
915
916 if (dst == orig) /* following doesn't handle inplace mappings */
917 return;
918 bitmap_zero(dst, bits);
919
920 /*
921 * The following code is a more efficient, but less
922 * obvious, equivalent to the loop:
923 * for (m = 0; m < bitmap_weight(relmap, bits); m++) {
924 * n = bitmap_ord_to_pos(orig, m, bits);
925 * if (test_bit(m, orig))
926 * set_bit(n, dst);
927 * }
928 */
929
930 m = 0;
931 for_each_set_bit(n, relmap, bits) {
932 /* m == bitmap_pos_to_ord(relmap, n, bits) */
933 if (test_bit(m, orig))
934 set_bit(n, dst);
935 m++;
936 }
937 }
938 EXPORT_SYMBOL(bitmap_onto);
939
940 /**
941 * bitmap_fold - fold larger bitmap into smaller, modulo specified size
942 * @dst: resulting smaller bitmap
943 * @orig: original larger bitmap
944 * @sz: specified size
945 * @nbits: number of bits in each of these bitmaps
946 *
947 * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
948 * Clear all other bits in @dst. See further the comment and
949 * Example [2] for bitmap_onto() for why and how to use this.
950 */
951 void bitmap_fold(unsigned long *dst, const unsigned long *orig,
952 unsigned int sz, unsigned int nbits)
953 {
954 unsigned int oldbit;
955
956 if (dst == orig) /* following doesn't handle inplace mappings */
957 return;
958 bitmap_zero(dst, nbits);
959
960 for_each_set_bit(oldbit, orig, nbits)
961 set_bit(oldbit % sz, dst);
962 }
963 EXPORT_SYMBOL(bitmap_fold);
964
965 /*
966 * Common code for bitmap_*_region() routines.
967 * bitmap: array of unsigned longs corresponding to the bitmap
968 * pos: the beginning of the region
969 * order: region size (log base 2 of number of bits)
970 * reg_op: operation(s) to perform on that region of bitmap
971 *
972 * Can set, verify and/or release a region of bits in a bitmap,
973 * depending on which combination of REG_OP_* flag bits is set.
974 *
975 * A region of a bitmap is a sequence of bits in the bitmap, of
976 * some size '1 << order' (a power of two), aligned to that same
977 * '1 << order' power of two.
978 *
979 * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
980 * Returns 0 in all other cases and reg_ops.
981 */
982
983 enum {
984 REG_OP_ISFREE, /* true if region is all zero bits */
985 REG_OP_ALLOC, /* set all bits in region */
986 REG_OP_RELEASE, /* clear all bits in region */
987 };
988
989 static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op)
990 {
991 int nbits_reg; /* number of bits in region */
992 int index; /* index first long of region in bitmap */
993 int offset; /* bit offset region in bitmap[index] */
994 int nlongs_reg; /* num longs spanned by region in bitmap */
995 int nbitsinlong; /* num bits of region in each spanned long */
996 unsigned long mask; /* bitmask for one long of region */
997 int i; /* scans bitmap by longs */
998 int ret = 0; /* return value */
999
1000 /*
1001 * Either nlongs_reg == 1 (for small orders that fit in one long)
1002 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
1003 */
1004 nbits_reg = 1 << order;
1005 index = pos / BITS_PER_LONG;
1006 offset = pos - (index * BITS_PER_LONG);
1007 nlongs_reg = BITS_TO_LONGS(nbits_reg);
1008 nbitsinlong = min(nbits_reg, BITS_PER_LONG);
1009
1010 /*
1011 * Can't do "mask = (1UL << nbitsinlong) - 1", as that
1012 * overflows if nbitsinlong == BITS_PER_LONG.
1013 */
1014 mask = (1UL << (nbitsinlong - 1));
1015 mask += mask - 1;
1016 mask <<= offset;
1017
1018 switch (reg_op) {
1019 case REG_OP_ISFREE:
1020 for (i = 0; i < nlongs_reg; i++) {
1021 if (bitmap[index + i] & mask)
1022 goto done;
1023 }
1024 ret = 1; /* all bits in region free (zero) */
1025 break;
1026
1027 case REG_OP_ALLOC:
1028 for (i = 0; i < nlongs_reg; i++)
1029 bitmap[index + i] |= mask;
1030 break;
1031
1032 case REG_OP_RELEASE:
1033 for (i = 0; i < nlongs_reg; i++)
1034 bitmap[index + i] &= ~mask;
1035 break;
1036 }
1037 done:
1038 return ret;
1039 }
1040
1041 /**
1042 * bitmap_find_free_region - find a contiguous aligned mem region
1043 * @bitmap: array of unsigned longs corresponding to the bitmap
1044 * @bits: number of bits in the bitmap
1045 * @order: region size (log base 2 of number of bits) to find
1046 *
1047 * Find a region of free (zero) bits in a @bitmap of @bits bits and
1048 * allocate them (set them to one). Only consider regions of length
1049 * a power (@order) of two, aligned to that power of two, which
1050 * makes the search algorithm much faster.
1051 *
1052 * Return the bit offset in bitmap of the allocated region,
1053 * or -errno on failure.
1054 */
1055 int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order)
1056 {
1057 unsigned int pos, end; /* scans bitmap by regions of size order */
1058
1059 for (pos = 0 ; (end = pos + (1U << order)) <= bits; pos = end) {
1060 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1061 continue;
1062 __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1063 return pos;
1064 }
1065 return -ENOMEM;
1066 }
1067 EXPORT_SYMBOL(bitmap_find_free_region);
1068
1069 /**
1070 * bitmap_release_region - release allocated bitmap region
1071 * @bitmap: array of unsigned longs corresponding to the bitmap
1072 * @pos: beginning of bit region to release
1073 * @order: region size (log base 2 of number of bits) to release
1074 *
1075 * This is the complement to __bitmap_find_free_region() and releases
1076 * the found region (by clearing it in the bitmap).
1077 *
1078 * No return value.
1079 */
1080 void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order)
1081 {
1082 __reg_op(bitmap, pos, order, REG_OP_RELEASE);
1083 }
1084 EXPORT_SYMBOL(bitmap_release_region);
1085
1086 /**
1087 * bitmap_allocate_region - allocate bitmap region
1088 * @bitmap: array of unsigned longs corresponding to the bitmap
1089 * @pos: beginning of bit region to allocate
1090 * @order: region size (log base 2 of number of bits) to allocate
1091 *
1092 * Allocate (set bits in) a specified region of a bitmap.
1093 *
1094 * Return 0 on success, or %-EBUSY if specified region wasn't
1095 * free (not all bits were zero).
1096 */
1097 int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order)
1098 {
1099 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1100 return -EBUSY;
1101 return __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1102 }
1103 EXPORT_SYMBOL(bitmap_allocate_region);
1104
1105 /**
1106 * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
1107 * @dst: destination buffer
1108 * @src: bitmap to copy
1109 * @nbits: number of bits in the bitmap
1110 *
1111 * Require nbits % BITS_PER_LONG == 0.
1112 */
1113 #ifdef __BIG_ENDIAN
1114 void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits)
1115 {
1116 unsigned int i;
1117
1118 for (i = 0; i < nbits/BITS_PER_LONG; i++) {
1119 if (BITS_PER_LONG == 64)
1120 dst[i] = cpu_to_le64(src[i]);
1121 else
1122 dst[i] = cpu_to_le32(src[i]);
1123 }
1124 }
1125 EXPORT_SYMBOL(bitmap_copy_le);
1126 #endif
1127
1128 #if BITS_PER_LONG == 64
1129 /**
1130 * bitmap_from_arr32 - copy the contents of u32 array of bits to bitmap
1131 * @bitmap: array of unsigned longs, the destination bitmap
1132 * @buf: array of u32 (in host byte order), the source bitmap
1133 * @nbits: number of bits in @bitmap
1134 */
1135 void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf,
1136 unsigned int nbits)
1137 {
1138 unsigned int i, halfwords;
1139
1140 if (!nbits)
1141 return;
1142
1143 halfwords = DIV_ROUND_UP(nbits, 32);
1144 for (i = 0; i < halfwords; i++) {
1145 bitmap[i/2] = (unsigned long) buf[i];
1146 if (++i < halfwords)
1147 bitmap[i/2] |= ((unsigned long) buf[i]) << 32;
1148 }
1149
1150 /* Clear tail bits in last word beyond nbits. */
1151 if (nbits % BITS_PER_LONG)
1152 bitmap[(halfwords - 1) / 2] &= BITMAP_LAST_WORD_MASK(nbits);
1153 }
1154 EXPORT_SYMBOL(bitmap_from_arr32);
1155
1156 /**
1157 * bitmap_to_arr32 - copy the contents of bitmap to a u32 array of bits
1158 * @buf: array of u32 (in host byte order), the dest bitmap
1159 * @bitmap: array of unsigned longs, the source bitmap
1160 * @nbits: number of bits in @bitmap
1161 */
1162 void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap, unsigned int nbits)
1163 {
1164 unsigned int i, halfwords;
1165
1166 if (!nbits)
1167 return;
1168
1169 halfwords = DIV_ROUND_UP(nbits, 32);
1170 for (i = 0; i < halfwords; i++) {
1171 buf[i] = (u32) (bitmap[i/2] & UINT_MAX);
1172 if (++i < halfwords)
1173 buf[i] = (u32) (bitmap[i/2] >> 32);
1174 }
1175
1176 /* Clear tail bits in last element of array beyond nbits. */
1177 if (nbits % BITS_PER_LONG)
1178 buf[halfwords - 1] &= (u32) (UINT_MAX >> ((-nbits) & 31));
1179 }
1180 EXPORT_SYMBOL(bitmap_to_arr32);
1181
1182 #endif