]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - lib/bitmap.c
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[mirror_ubuntu-jammy-kernel.git] / lib / bitmap.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * lib/bitmap.c
4 * Helper functions for bitmap.h.
5 */
6
7 #include <linux/bitmap.h>
8 #include <linux/bitops.h>
9 #include <linux/bug.h>
10 #include <linux/ctype.h>
11 #include <linux/device.h>
12 #include <linux/errno.h>
13 #include <linux/export.h>
14 #include <linux/kernel.h>
15 #include <linux/mm.h>
16 #include <linux/slab.h>
17 #include <linux/string.h>
18 #include <linux/thread_info.h>
19 #include <linux/uaccess.h>
20
21 #include <asm/page.h>
22
23 #include "kstrtox.h"
24
25 /**
26 * DOC: bitmap introduction
27 *
28 * bitmaps provide an array of bits, implemented using an
29 * array of unsigned longs. The number of valid bits in a
30 * given bitmap does _not_ need to be an exact multiple of
31 * BITS_PER_LONG.
32 *
33 * The possible unused bits in the last, partially used word
34 * of a bitmap are 'don't care'. The implementation makes
35 * no particular effort to keep them zero. It ensures that
36 * their value will not affect the results of any operation.
37 * The bitmap operations that return Boolean (bitmap_empty,
38 * for example) or scalar (bitmap_weight, for example) results
39 * carefully filter out these unused bits from impacting their
40 * results.
41 *
42 * The byte ordering of bitmaps is more natural on little
43 * endian architectures. See the big-endian headers
44 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
45 * for the best explanations of this ordering.
46 */
47
48 int __bitmap_equal(const unsigned long *bitmap1,
49 const unsigned long *bitmap2, unsigned int bits)
50 {
51 unsigned int k, lim = bits/BITS_PER_LONG;
52 for (k = 0; k < lim; ++k)
53 if (bitmap1[k] != bitmap2[k])
54 return 0;
55
56 if (bits % BITS_PER_LONG)
57 if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
58 return 0;
59
60 return 1;
61 }
62 EXPORT_SYMBOL(__bitmap_equal);
63
64 bool __bitmap_or_equal(const unsigned long *bitmap1,
65 const unsigned long *bitmap2,
66 const unsigned long *bitmap3,
67 unsigned int bits)
68 {
69 unsigned int k, lim = bits / BITS_PER_LONG;
70 unsigned long tmp;
71
72 for (k = 0; k < lim; ++k) {
73 if ((bitmap1[k] | bitmap2[k]) != bitmap3[k])
74 return false;
75 }
76
77 if (!(bits % BITS_PER_LONG))
78 return true;
79
80 tmp = (bitmap1[k] | bitmap2[k]) ^ bitmap3[k];
81 return (tmp & BITMAP_LAST_WORD_MASK(bits)) == 0;
82 }
83
84 void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits)
85 {
86 unsigned int k, lim = BITS_TO_LONGS(bits);
87 for (k = 0; k < lim; ++k)
88 dst[k] = ~src[k];
89 }
90 EXPORT_SYMBOL(__bitmap_complement);
91
92 /**
93 * __bitmap_shift_right - logical right shift of the bits in a bitmap
94 * @dst : destination bitmap
95 * @src : source bitmap
96 * @shift : shift by this many bits
97 * @nbits : bitmap size, in bits
98 *
99 * Shifting right (dividing) means moving bits in the MS -> LS bit
100 * direction. Zeros are fed into the vacated MS positions and the
101 * LS bits shifted off the bottom are lost.
102 */
103 void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
104 unsigned shift, unsigned nbits)
105 {
106 unsigned k, lim = BITS_TO_LONGS(nbits);
107 unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
108 unsigned long mask = BITMAP_LAST_WORD_MASK(nbits);
109 for (k = 0; off + k < lim; ++k) {
110 unsigned long upper, lower;
111
112 /*
113 * If shift is not word aligned, take lower rem bits of
114 * word above and make them the top rem bits of result.
115 */
116 if (!rem || off + k + 1 >= lim)
117 upper = 0;
118 else {
119 upper = src[off + k + 1];
120 if (off + k + 1 == lim - 1)
121 upper &= mask;
122 upper <<= (BITS_PER_LONG - rem);
123 }
124 lower = src[off + k];
125 if (off + k == lim - 1)
126 lower &= mask;
127 lower >>= rem;
128 dst[k] = lower | upper;
129 }
130 if (off)
131 memset(&dst[lim - off], 0, off*sizeof(unsigned long));
132 }
133 EXPORT_SYMBOL(__bitmap_shift_right);
134
135
136 /**
137 * __bitmap_shift_left - logical left shift of the bits in a bitmap
138 * @dst : destination bitmap
139 * @src : source bitmap
140 * @shift : shift by this many bits
141 * @nbits : bitmap size, in bits
142 *
143 * Shifting left (multiplying) means moving bits in the LS -> MS
144 * direction. Zeros are fed into the vacated LS bit positions
145 * and those MS bits shifted off the top are lost.
146 */
147
148 void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
149 unsigned int shift, unsigned int nbits)
150 {
151 int k;
152 unsigned int lim = BITS_TO_LONGS(nbits);
153 unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
154 for (k = lim - off - 1; k >= 0; --k) {
155 unsigned long upper, lower;
156
157 /*
158 * If shift is not word aligned, take upper rem bits of
159 * word below and make them the bottom rem bits of result.
160 */
161 if (rem && k > 0)
162 lower = src[k - 1] >> (BITS_PER_LONG - rem);
163 else
164 lower = 0;
165 upper = src[k] << rem;
166 dst[k + off] = lower | upper;
167 }
168 if (off)
169 memset(dst, 0, off*sizeof(unsigned long));
170 }
171 EXPORT_SYMBOL(__bitmap_shift_left);
172
173 /**
174 * bitmap_cut() - remove bit region from bitmap and right shift remaining bits
175 * @dst: destination bitmap, might overlap with src
176 * @src: source bitmap
177 * @first: start bit of region to be removed
178 * @cut: number of bits to remove
179 * @nbits: bitmap size, in bits
180 *
181 * Set the n-th bit of @dst iff the n-th bit of @src is set and
182 * n is less than @first, or the m-th bit of @src is set for any
183 * m such that @first <= n < nbits, and m = n + @cut.
184 *
185 * In pictures, example for a big-endian 32-bit architecture:
186 *
187 * The @src bitmap is::
188 *
189 * 31 63
190 * | |
191 * 10000000 11000001 11110010 00010101 10000000 11000001 01110010 00010101
192 * | | | |
193 * 16 14 0 32
194 *
195 * if @cut is 3, and @first is 14, bits 14-16 in @src are cut and @dst is::
196 *
197 * 31 63
198 * | |
199 * 10110000 00011000 00110010 00010101 00010000 00011000 00101110 01000010
200 * | | |
201 * 14 (bit 17 0 32
202 * from @src)
203 *
204 * Note that @dst and @src might overlap partially or entirely.
205 *
206 * This is implemented in the obvious way, with a shift and carry
207 * step for each moved bit. Optimisation is left as an exercise
208 * for the compiler.
209 */
210 void bitmap_cut(unsigned long *dst, const unsigned long *src,
211 unsigned int first, unsigned int cut, unsigned int nbits)
212 {
213 unsigned int len = BITS_TO_LONGS(nbits);
214 unsigned long keep = 0, carry;
215 int i;
216
217 if (first % BITS_PER_LONG) {
218 keep = src[first / BITS_PER_LONG] &
219 (~0UL >> (BITS_PER_LONG - first % BITS_PER_LONG));
220 }
221
222 memmove(dst, src, len * sizeof(*dst));
223
224 while (cut--) {
225 for (i = first / BITS_PER_LONG; i < len; i++) {
226 if (i < len - 1)
227 carry = dst[i + 1] & 1UL;
228 else
229 carry = 0;
230
231 dst[i] = (dst[i] >> 1) | (carry << (BITS_PER_LONG - 1));
232 }
233 }
234
235 dst[first / BITS_PER_LONG] &= ~0UL << (first % BITS_PER_LONG);
236 dst[first / BITS_PER_LONG] |= keep;
237 }
238 EXPORT_SYMBOL(bitmap_cut);
239
240 int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
241 const unsigned long *bitmap2, unsigned int bits)
242 {
243 unsigned int k;
244 unsigned int lim = bits/BITS_PER_LONG;
245 unsigned long result = 0;
246
247 for (k = 0; k < lim; k++)
248 result |= (dst[k] = bitmap1[k] & bitmap2[k]);
249 if (bits % BITS_PER_LONG)
250 result |= (dst[k] = bitmap1[k] & bitmap2[k] &
251 BITMAP_LAST_WORD_MASK(bits));
252 return result != 0;
253 }
254 EXPORT_SYMBOL(__bitmap_and);
255
256 void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
257 const unsigned long *bitmap2, unsigned int bits)
258 {
259 unsigned int k;
260 unsigned int nr = BITS_TO_LONGS(bits);
261
262 for (k = 0; k < nr; k++)
263 dst[k] = bitmap1[k] | bitmap2[k];
264 }
265 EXPORT_SYMBOL(__bitmap_or);
266
267 void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
268 const unsigned long *bitmap2, unsigned int bits)
269 {
270 unsigned int k;
271 unsigned int nr = BITS_TO_LONGS(bits);
272
273 for (k = 0; k < nr; k++)
274 dst[k] = bitmap1[k] ^ bitmap2[k];
275 }
276 EXPORT_SYMBOL(__bitmap_xor);
277
278 int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
279 const unsigned long *bitmap2, unsigned int bits)
280 {
281 unsigned int k;
282 unsigned int lim = bits/BITS_PER_LONG;
283 unsigned long result = 0;
284
285 for (k = 0; k < lim; k++)
286 result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
287 if (bits % BITS_PER_LONG)
288 result |= (dst[k] = bitmap1[k] & ~bitmap2[k] &
289 BITMAP_LAST_WORD_MASK(bits));
290 return result != 0;
291 }
292 EXPORT_SYMBOL(__bitmap_andnot);
293
294 void __bitmap_replace(unsigned long *dst,
295 const unsigned long *old, const unsigned long *new,
296 const unsigned long *mask, unsigned int nbits)
297 {
298 unsigned int k;
299 unsigned int nr = BITS_TO_LONGS(nbits);
300
301 for (k = 0; k < nr; k++)
302 dst[k] = (old[k] & ~mask[k]) | (new[k] & mask[k]);
303 }
304 EXPORT_SYMBOL(__bitmap_replace);
305
306 int __bitmap_intersects(const unsigned long *bitmap1,
307 const unsigned long *bitmap2, unsigned int bits)
308 {
309 unsigned int k, lim = bits/BITS_PER_LONG;
310 for (k = 0; k < lim; ++k)
311 if (bitmap1[k] & bitmap2[k])
312 return 1;
313
314 if (bits % BITS_PER_LONG)
315 if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
316 return 1;
317 return 0;
318 }
319 EXPORT_SYMBOL(__bitmap_intersects);
320
321 int __bitmap_subset(const unsigned long *bitmap1,
322 const unsigned long *bitmap2, unsigned int bits)
323 {
324 unsigned int k, lim = bits/BITS_PER_LONG;
325 for (k = 0; k < lim; ++k)
326 if (bitmap1[k] & ~bitmap2[k])
327 return 0;
328
329 if (bits % BITS_PER_LONG)
330 if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
331 return 0;
332 return 1;
333 }
334 EXPORT_SYMBOL(__bitmap_subset);
335
336 int __bitmap_weight(const unsigned long *bitmap, unsigned int bits)
337 {
338 unsigned int k, lim = bits/BITS_PER_LONG;
339 int w = 0;
340
341 for (k = 0; k < lim; k++)
342 w += hweight_long(bitmap[k]);
343
344 if (bits % BITS_PER_LONG)
345 w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
346
347 return w;
348 }
349 EXPORT_SYMBOL(__bitmap_weight);
350
351 void __bitmap_set(unsigned long *map, unsigned int start, int len)
352 {
353 unsigned long *p = map + BIT_WORD(start);
354 const unsigned int size = start + len;
355 int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
356 unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
357
358 while (len - bits_to_set >= 0) {
359 *p |= mask_to_set;
360 len -= bits_to_set;
361 bits_to_set = BITS_PER_LONG;
362 mask_to_set = ~0UL;
363 p++;
364 }
365 if (len) {
366 mask_to_set &= BITMAP_LAST_WORD_MASK(size);
367 *p |= mask_to_set;
368 }
369 }
370 EXPORT_SYMBOL(__bitmap_set);
371
372 void __bitmap_clear(unsigned long *map, unsigned int start, int len)
373 {
374 unsigned long *p = map + BIT_WORD(start);
375 const unsigned int size = start + len;
376 int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
377 unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
378
379 while (len - bits_to_clear >= 0) {
380 *p &= ~mask_to_clear;
381 len -= bits_to_clear;
382 bits_to_clear = BITS_PER_LONG;
383 mask_to_clear = ~0UL;
384 p++;
385 }
386 if (len) {
387 mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
388 *p &= ~mask_to_clear;
389 }
390 }
391 EXPORT_SYMBOL(__bitmap_clear);
392
393 /**
394 * bitmap_find_next_zero_area_off - find a contiguous aligned zero area
395 * @map: The address to base the search on
396 * @size: The bitmap size in bits
397 * @start: The bitnumber to start searching at
398 * @nr: The number of zeroed bits we're looking for
399 * @align_mask: Alignment mask for zero area
400 * @align_offset: Alignment offset for zero area.
401 *
402 * The @align_mask should be one less than a power of 2; the effect is that
403 * the bit offset of all zero areas this function finds plus @align_offset
404 * is multiple of that power of 2.
405 */
406 unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
407 unsigned long size,
408 unsigned long start,
409 unsigned int nr,
410 unsigned long align_mask,
411 unsigned long align_offset)
412 {
413 unsigned long index, end, i;
414 again:
415 index = find_next_zero_bit(map, size, start);
416
417 /* Align allocation */
418 index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset;
419
420 end = index + nr;
421 if (end > size)
422 return end;
423 i = find_next_bit(map, end, index);
424 if (i < end) {
425 start = i + 1;
426 goto again;
427 }
428 return index;
429 }
430 EXPORT_SYMBOL(bitmap_find_next_zero_area_off);
431
432 /*
433 * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers,
434 * second version by Paul Jackson, third by Joe Korty.
435 */
436
437 /**
438 * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap
439 *
440 * @ubuf: pointer to user buffer containing string.
441 * @ulen: buffer size in bytes. If string is smaller than this
442 * then it must be terminated with a \0.
443 * @maskp: pointer to bitmap array that will contain result.
444 * @nmaskbits: size of bitmap, in bits.
445 */
446 int bitmap_parse_user(const char __user *ubuf,
447 unsigned int ulen, unsigned long *maskp,
448 int nmaskbits)
449 {
450 char *buf;
451 int ret;
452
453 buf = memdup_user_nul(ubuf, ulen);
454 if (IS_ERR(buf))
455 return PTR_ERR(buf);
456
457 ret = bitmap_parse(buf, UINT_MAX, maskp, nmaskbits);
458
459 kfree(buf);
460 return ret;
461 }
462 EXPORT_SYMBOL(bitmap_parse_user);
463
464 /**
465 * bitmap_print_to_pagebuf - convert bitmap to list or hex format ASCII string
466 * @list: indicates whether the bitmap must be list
467 * @buf: page aligned buffer into which string is placed
468 * @maskp: pointer to bitmap to convert
469 * @nmaskbits: size of bitmap, in bits
470 *
471 * Output format is a comma-separated list of decimal numbers and
472 * ranges if list is specified or hex digits grouped into comma-separated
473 * sets of 8 digits/set. Returns the number of characters written to buf.
474 *
475 * It is assumed that @buf is a pointer into a PAGE_SIZE, page-aligned
476 * area and that sufficient storage remains at @buf to accommodate the
477 * bitmap_print_to_pagebuf() output. Returns the number of characters
478 * actually printed to @buf, excluding terminating '\0'.
479 */
480 int bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp,
481 int nmaskbits)
482 {
483 ptrdiff_t len = PAGE_SIZE - offset_in_page(buf);
484
485 return list ? scnprintf(buf, len, "%*pbl\n", nmaskbits, maskp) :
486 scnprintf(buf, len, "%*pb\n", nmaskbits, maskp);
487 }
488 EXPORT_SYMBOL(bitmap_print_to_pagebuf);
489
490 /**
491 * bitmap_print_to_buf - convert bitmap to list or hex format ASCII string
492 * @list: indicates whether the bitmap must be list
493 * true: print in decimal list format
494 * false: print in hexadecimal bitmask format
495 */
496 static int bitmap_print_to_buf(bool list, char *buf, const unsigned long *maskp,
497 int nmaskbits, loff_t off, size_t count)
498 {
499 const char *fmt = list ? "%*pbl\n" : "%*pb\n";
500 ssize_t size;
501 void *data;
502
503 data = kasprintf(GFP_KERNEL, fmt, nmaskbits, maskp);
504 if (!data)
505 return -ENOMEM;
506
507 size = memory_read_from_buffer(buf, count, &off, data, strlen(data) + 1);
508 kfree(data);
509
510 return size;
511 }
512
513 /**
514 * bitmap_print_bitmask_to_buf - convert bitmap to hex bitmask format ASCII string
515 *
516 * The bitmap_print_to_pagebuf() is used indirectly via its cpumap wrapper
517 * cpumap_print_to_pagebuf() or directly by drivers to export hexadecimal
518 * bitmask and decimal list to userspace by sysfs ABI.
519 * Drivers might be using a normal attribute for this kind of ABIs. A
520 * normal attribute typically has show entry as below:
521 * static ssize_t example_attribute_show(struct device *dev,
522 * struct device_attribute *attr, char *buf)
523 * {
524 * ...
525 * return bitmap_print_to_pagebuf(true, buf, &mask, nr_trig_max);
526 * }
527 * show entry of attribute has no offset and count parameters and this
528 * means the file is limited to one page only.
529 * bitmap_print_to_pagebuf() API works terribly well for this kind of
530 * normal attribute with buf parameter and without offset, count:
531 * bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp,
532 * int nmaskbits)
533 * {
534 * }
535 * The problem is once we have a large bitmap, we have a chance to get a
536 * bitmask or list more than one page. Especially for list, it could be
537 * as complex as 0,3,5,7,9,... We have no simple way to know it exact size.
538 * It turns out bin_attribute is a way to break this limit. bin_attribute
539 * has show entry as below:
540 * static ssize_t
541 * example_bin_attribute_show(struct file *filp, struct kobject *kobj,
542 * struct bin_attribute *attr, char *buf,
543 * loff_t offset, size_t count)
544 * {
545 * ...
546 * }
547 * With the new offset and count parameters, this makes sysfs ABI be able
548 * to support file size more than one page. For example, offset could be
549 * >= 4096.
550 * bitmap_print_bitmask_to_buf(), bitmap_print_list_to_buf() wit their
551 * cpumap wrapper cpumap_print_bitmask_to_buf(), cpumap_print_list_to_buf()
552 * make those drivers be able to support large bitmask and list after they
553 * move to use bin_attribute. In result, we have to pass the corresponding
554 * parameters such as off, count from bin_attribute show entry to this API.
555 *
556 * @buf: buffer into which string is placed
557 * @maskp: pointer to bitmap to convert
558 * @nmaskbits: size of bitmap, in bits
559 * @off: in the string from which we are copying, We copy to @buf
560 * @count: the maximum number of bytes to print
561 *
562 * The role of cpumap_print_bitmask_to_buf() and cpumap_print_list_to_buf()
563 * is similar with cpumap_print_to_pagebuf(), the difference is that
564 * bitmap_print_to_pagebuf() mainly serves sysfs attribute with the assumption
565 * the destination buffer is exactly one page and won't be more than one page.
566 * cpumap_print_bitmask_to_buf() and cpumap_print_list_to_buf(), on the other
567 * hand, mainly serves bin_attribute which doesn't work with exact one page,
568 * and it can break the size limit of converted decimal list and hexadecimal
569 * bitmask.
570 *
571 * WARNING!
572 *
573 * This function is not a replacement for sprintf() or bitmap_print_to_pagebuf().
574 * It is intended to workaround sysfs limitations discussed above and should be
575 * used carefully in general case for the following reasons:
576 * - Time complexity is O(nbits^2/count), comparing to O(nbits) for snprintf().
577 * - Memory complexity is O(nbits), comparing to O(1) for snprintf().
578 * - @off and @count are NOT offset and number of bits to print.
579 * - If printing part of bitmap as list, the resulting string is not a correct
580 * list representation of bitmap. Particularly, some bits within or out of
581 * related interval may be erroneously set or unset. The format of the string
582 * may be broken, so bitmap_parselist-like parser may fail parsing it.
583 * - If printing the whole bitmap as list by parts, user must ensure the order
584 * of calls of the function such that the offset is incremented linearly.
585 * - If printing the whole bitmap as list by parts, user must keep bitmap
586 * unchanged between the very first and very last call. Otherwise concatenated
587 * result may be incorrect, and format may be broken.
588 *
589 * Returns the number of characters actually printed to @buf
590 */
591 int bitmap_print_bitmask_to_buf(char *buf, const unsigned long *maskp,
592 int nmaskbits, loff_t off, size_t count)
593 {
594 return bitmap_print_to_buf(false, buf, maskp, nmaskbits, off, count);
595 }
596 EXPORT_SYMBOL(bitmap_print_bitmask_to_buf);
597
598 /**
599 * bitmap_print_list_to_buf - convert bitmap to decimal list format ASCII string
600 *
601 * Everything is same with the above bitmap_print_bitmask_to_buf() except
602 * the print format.
603 */
604 int bitmap_print_list_to_buf(char *buf, const unsigned long *maskp,
605 int nmaskbits, loff_t off, size_t count)
606 {
607 return bitmap_print_to_buf(true, buf, maskp, nmaskbits, off, count);
608 }
609 EXPORT_SYMBOL(bitmap_print_list_to_buf);
610
611 /*
612 * Region 9-38:4/10 describes the following bitmap structure:
613 * 0 9 12 18 38 N
614 * .........****......****......****..................
615 * ^ ^ ^ ^ ^
616 * start off group_len end nbits
617 */
618 struct region {
619 unsigned int start;
620 unsigned int off;
621 unsigned int group_len;
622 unsigned int end;
623 unsigned int nbits;
624 };
625
626 static void bitmap_set_region(const struct region *r, unsigned long *bitmap)
627 {
628 unsigned int start;
629
630 for (start = r->start; start <= r->end; start += r->group_len)
631 bitmap_set(bitmap, start, min(r->end - start + 1, r->off));
632 }
633
634 static int bitmap_check_region(const struct region *r)
635 {
636 if (r->start > r->end || r->group_len == 0 || r->off > r->group_len)
637 return -EINVAL;
638
639 if (r->end >= r->nbits)
640 return -ERANGE;
641
642 return 0;
643 }
644
645 static const char *bitmap_getnum(const char *str, unsigned int *num,
646 unsigned int lastbit)
647 {
648 unsigned long long n;
649 unsigned int len;
650
651 if (str[0] == 'N') {
652 *num = lastbit;
653 return str + 1;
654 }
655
656 len = _parse_integer(str, 10, &n);
657 if (!len)
658 return ERR_PTR(-EINVAL);
659 if (len & KSTRTOX_OVERFLOW || n != (unsigned int)n)
660 return ERR_PTR(-EOVERFLOW);
661
662 *num = n;
663 return str + len;
664 }
665
666 static inline bool end_of_str(char c)
667 {
668 return c == '\0' || c == '\n';
669 }
670
671 static inline bool __end_of_region(char c)
672 {
673 return isspace(c) || c == ',';
674 }
675
676 static inline bool end_of_region(char c)
677 {
678 return __end_of_region(c) || end_of_str(c);
679 }
680
681 /*
682 * The format allows commas and whitespaces at the beginning
683 * of the region.
684 */
685 static const char *bitmap_find_region(const char *str)
686 {
687 while (__end_of_region(*str))
688 str++;
689
690 return end_of_str(*str) ? NULL : str;
691 }
692
693 static const char *bitmap_find_region_reverse(const char *start, const char *end)
694 {
695 while (start <= end && __end_of_region(*end))
696 end--;
697
698 return end;
699 }
700
701 static const char *bitmap_parse_region(const char *str, struct region *r)
702 {
703 unsigned int lastbit = r->nbits - 1;
704
705 if (!strncasecmp(str, "all", 3)) {
706 r->start = 0;
707 r->end = lastbit;
708 str += 3;
709
710 goto check_pattern;
711 }
712
713 str = bitmap_getnum(str, &r->start, lastbit);
714 if (IS_ERR(str))
715 return str;
716
717 if (end_of_region(*str))
718 goto no_end;
719
720 if (*str != '-')
721 return ERR_PTR(-EINVAL);
722
723 str = bitmap_getnum(str + 1, &r->end, lastbit);
724 if (IS_ERR(str))
725 return str;
726
727 check_pattern:
728 if (end_of_region(*str))
729 goto no_pattern;
730
731 if (*str != ':')
732 return ERR_PTR(-EINVAL);
733
734 str = bitmap_getnum(str + 1, &r->off, lastbit);
735 if (IS_ERR(str))
736 return str;
737
738 if (*str != '/')
739 return ERR_PTR(-EINVAL);
740
741 return bitmap_getnum(str + 1, &r->group_len, lastbit);
742
743 no_end:
744 r->end = r->start;
745 no_pattern:
746 r->off = r->end + 1;
747 r->group_len = r->end + 1;
748
749 return end_of_str(*str) ? NULL : str;
750 }
751
752 /**
753 * bitmap_parselist - convert list format ASCII string to bitmap
754 * @buf: read user string from this buffer; must be terminated
755 * with a \0 or \n.
756 * @maskp: write resulting mask here
757 * @nmaskbits: number of bits in mask to be written
758 *
759 * Input format is a comma-separated list of decimal numbers and
760 * ranges. Consecutively set bits are shown as two hyphen-separated
761 * decimal numbers, the smallest and largest bit numbers set in
762 * the range.
763 * Optionally each range can be postfixed to denote that only parts of it
764 * should be set. The range will divided to groups of specific size.
765 * From each group will be used only defined amount of bits.
766 * Syntax: range:used_size/group_size
767 * Example: 0-1023:2/256 ==> 0,1,256,257,512,513,768,769
768 * The value 'N' can be used as a dynamically substituted token for the
769 * maximum allowed value; i.e (nmaskbits - 1). Keep in mind that it is
770 * dynamic, so if system changes cause the bitmap width to change, such
771 * as more cores in a CPU list, then any ranges using N will also change.
772 *
773 * Returns: 0 on success, -errno on invalid input strings. Error values:
774 *
775 * - ``-EINVAL``: wrong region format
776 * - ``-EINVAL``: invalid character in string
777 * - ``-ERANGE``: bit number specified too large for mask
778 * - ``-EOVERFLOW``: integer overflow in the input parameters
779 */
780 int bitmap_parselist(const char *buf, unsigned long *maskp, int nmaskbits)
781 {
782 struct region r;
783 long ret;
784
785 r.nbits = nmaskbits;
786 bitmap_zero(maskp, r.nbits);
787
788 while (buf) {
789 buf = bitmap_find_region(buf);
790 if (buf == NULL)
791 return 0;
792
793 buf = bitmap_parse_region(buf, &r);
794 if (IS_ERR(buf))
795 return PTR_ERR(buf);
796
797 ret = bitmap_check_region(&r);
798 if (ret)
799 return ret;
800
801 bitmap_set_region(&r, maskp);
802 }
803
804 return 0;
805 }
806 EXPORT_SYMBOL(bitmap_parselist);
807
808
809 /**
810 * bitmap_parselist_user()
811 *
812 * @ubuf: pointer to user buffer containing string.
813 * @ulen: buffer size in bytes. If string is smaller than this
814 * then it must be terminated with a \0.
815 * @maskp: pointer to bitmap array that will contain result.
816 * @nmaskbits: size of bitmap, in bits.
817 *
818 * Wrapper for bitmap_parselist(), providing it with user buffer.
819 */
820 int bitmap_parselist_user(const char __user *ubuf,
821 unsigned int ulen, unsigned long *maskp,
822 int nmaskbits)
823 {
824 char *buf;
825 int ret;
826
827 buf = memdup_user_nul(ubuf, ulen);
828 if (IS_ERR(buf))
829 return PTR_ERR(buf);
830
831 ret = bitmap_parselist(buf, maskp, nmaskbits);
832
833 kfree(buf);
834 return ret;
835 }
836 EXPORT_SYMBOL(bitmap_parselist_user);
837
838 static const char *bitmap_get_x32_reverse(const char *start,
839 const char *end, u32 *num)
840 {
841 u32 ret = 0;
842 int c, i;
843
844 for (i = 0; i < 32; i += 4) {
845 c = hex_to_bin(*end--);
846 if (c < 0)
847 return ERR_PTR(-EINVAL);
848
849 ret |= c << i;
850
851 if (start > end || __end_of_region(*end))
852 goto out;
853 }
854
855 if (hex_to_bin(*end--) >= 0)
856 return ERR_PTR(-EOVERFLOW);
857 out:
858 *num = ret;
859 return end;
860 }
861
862 /**
863 * bitmap_parse - convert an ASCII hex string into a bitmap.
864 * @start: pointer to buffer containing string.
865 * @buflen: buffer size in bytes. If string is smaller than this
866 * then it must be terminated with a \0 or \n. In that case,
867 * UINT_MAX may be provided instead of string length.
868 * @maskp: pointer to bitmap array that will contain result.
869 * @nmaskbits: size of bitmap, in bits.
870 *
871 * Commas group hex digits into chunks. Each chunk defines exactly 32
872 * bits of the resultant bitmask. No chunk may specify a value larger
873 * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
874 * then leading 0-bits are prepended. %-EINVAL is returned for illegal
875 * characters. Grouping such as "1,,5", ",44", "," or "" is allowed.
876 * Leading, embedded and trailing whitespace accepted.
877 */
878 int bitmap_parse(const char *start, unsigned int buflen,
879 unsigned long *maskp, int nmaskbits)
880 {
881 const char *end = strnchrnul(start, buflen, '\n') - 1;
882 int chunks = BITS_TO_U32(nmaskbits);
883 u32 *bitmap = (u32 *)maskp;
884 int unset_bit;
885 int chunk;
886
887 for (chunk = 0; ; chunk++) {
888 end = bitmap_find_region_reverse(start, end);
889 if (start > end)
890 break;
891
892 if (!chunks--)
893 return -EOVERFLOW;
894
895 #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
896 end = bitmap_get_x32_reverse(start, end, &bitmap[chunk ^ 1]);
897 #else
898 end = bitmap_get_x32_reverse(start, end, &bitmap[chunk]);
899 #endif
900 if (IS_ERR(end))
901 return PTR_ERR(end);
902 }
903
904 unset_bit = (BITS_TO_U32(nmaskbits) - chunks) * 32;
905 if (unset_bit < nmaskbits) {
906 bitmap_clear(maskp, unset_bit, nmaskbits - unset_bit);
907 return 0;
908 }
909
910 if (find_next_bit(maskp, unset_bit, nmaskbits) != unset_bit)
911 return -EOVERFLOW;
912
913 return 0;
914 }
915 EXPORT_SYMBOL(bitmap_parse);
916
917 /**
918 * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
919 * @buf: pointer to a bitmap
920 * @pos: a bit position in @buf (0 <= @pos < @nbits)
921 * @nbits: number of valid bit positions in @buf
922 *
923 * Map the bit at position @pos in @buf (of length @nbits) to the
924 * ordinal of which set bit it is. If it is not set or if @pos
925 * is not a valid bit position, map to -1.
926 *
927 * If for example, just bits 4 through 7 are set in @buf, then @pos
928 * values 4 through 7 will get mapped to 0 through 3, respectively,
929 * and other @pos values will get mapped to -1. When @pos value 7
930 * gets mapped to (returns) @ord value 3 in this example, that means
931 * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
932 *
933 * The bit positions 0 through @bits are valid positions in @buf.
934 */
935 static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits)
936 {
937 if (pos >= nbits || !test_bit(pos, buf))
938 return -1;
939
940 return __bitmap_weight(buf, pos);
941 }
942
943 /**
944 * bitmap_ord_to_pos - find position of n-th set bit in bitmap
945 * @buf: pointer to bitmap
946 * @ord: ordinal bit position (n-th set bit, n >= 0)
947 * @nbits: number of valid bit positions in @buf
948 *
949 * Map the ordinal offset of bit @ord in @buf to its position in @buf.
950 * Value of @ord should be in range 0 <= @ord < weight(buf). If @ord
951 * >= weight(buf), returns @nbits.
952 *
953 * If for example, just bits 4 through 7 are set in @buf, then @ord
954 * values 0 through 3 will get mapped to 4 through 7, respectively,
955 * and all other @ord values returns @nbits. When @ord value 3
956 * gets mapped to (returns) @pos value 7 in this example, that means
957 * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
958 *
959 * The bit positions 0 through @nbits-1 are valid positions in @buf.
960 */
961 unsigned int bitmap_ord_to_pos(const unsigned long *buf, unsigned int ord, unsigned int nbits)
962 {
963 unsigned int pos;
964
965 for (pos = find_first_bit(buf, nbits);
966 pos < nbits && ord;
967 pos = find_next_bit(buf, nbits, pos + 1))
968 ord--;
969
970 return pos;
971 }
972
973 /**
974 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
975 * @dst: remapped result
976 * @src: subset to be remapped
977 * @old: defines domain of map
978 * @new: defines range of map
979 * @nbits: number of bits in each of these bitmaps
980 *
981 * Let @old and @new define a mapping of bit positions, such that
982 * whatever position is held by the n-th set bit in @old is mapped
983 * to the n-th set bit in @new. In the more general case, allowing
984 * for the possibility that the weight 'w' of @new is less than the
985 * weight of @old, map the position of the n-th set bit in @old to
986 * the position of the m-th set bit in @new, where m == n % w.
987 *
988 * If either of the @old and @new bitmaps are empty, or if @src and
989 * @dst point to the same location, then this routine copies @src
990 * to @dst.
991 *
992 * The positions of unset bits in @old are mapped to themselves
993 * (the identify map).
994 *
995 * Apply the above specified mapping to @src, placing the result in
996 * @dst, clearing any bits previously set in @dst.
997 *
998 * For example, lets say that @old has bits 4 through 7 set, and
999 * @new has bits 12 through 15 set. This defines the mapping of bit
1000 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
1001 * bit positions unchanged. So if say @src comes into this routine
1002 * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
1003 * 13 and 15 set.
1004 */
1005 void bitmap_remap(unsigned long *dst, const unsigned long *src,
1006 const unsigned long *old, const unsigned long *new,
1007 unsigned int nbits)
1008 {
1009 unsigned int oldbit, w;
1010
1011 if (dst == src) /* following doesn't handle inplace remaps */
1012 return;
1013 bitmap_zero(dst, nbits);
1014
1015 w = bitmap_weight(new, nbits);
1016 for_each_set_bit(oldbit, src, nbits) {
1017 int n = bitmap_pos_to_ord(old, oldbit, nbits);
1018
1019 if (n < 0 || w == 0)
1020 set_bit(oldbit, dst); /* identity map */
1021 else
1022 set_bit(bitmap_ord_to_pos(new, n % w, nbits), dst);
1023 }
1024 }
1025 EXPORT_SYMBOL(bitmap_remap);
1026
1027 /**
1028 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
1029 * @oldbit: bit position to be mapped
1030 * @old: defines domain of map
1031 * @new: defines range of map
1032 * @bits: number of bits in each of these bitmaps
1033 *
1034 * Let @old and @new define a mapping of bit positions, such that
1035 * whatever position is held by the n-th set bit in @old is mapped
1036 * to the n-th set bit in @new. In the more general case, allowing
1037 * for the possibility that the weight 'w' of @new is less than the
1038 * weight of @old, map the position of the n-th set bit in @old to
1039 * the position of the m-th set bit in @new, where m == n % w.
1040 *
1041 * The positions of unset bits in @old are mapped to themselves
1042 * (the identify map).
1043 *
1044 * Apply the above specified mapping to bit position @oldbit, returning
1045 * the new bit position.
1046 *
1047 * For example, lets say that @old has bits 4 through 7 set, and
1048 * @new has bits 12 through 15 set. This defines the mapping of bit
1049 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
1050 * bit positions unchanged. So if say @oldbit is 5, then this routine
1051 * returns 13.
1052 */
1053 int bitmap_bitremap(int oldbit, const unsigned long *old,
1054 const unsigned long *new, int bits)
1055 {
1056 int w = bitmap_weight(new, bits);
1057 int n = bitmap_pos_to_ord(old, oldbit, bits);
1058 if (n < 0 || w == 0)
1059 return oldbit;
1060 else
1061 return bitmap_ord_to_pos(new, n % w, bits);
1062 }
1063 EXPORT_SYMBOL(bitmap_bitremap);
1064
1065 #ifdef CONFIG_NUMA
1066 /**
1067 * bitmap_onto - translate one bitmap relative to another
1068 * @dst: resulting translated bitmap
1069 * @orig: original untranslated bitmap
1070 * @relmap: bitmap relative to which translated
1071 * @bits: number of bits in each of these bitmaps
1072 *
1073 * Set the n-th bit of @dst iff there exists some m such that the
1074 * n-th bit of @relmap is set, the m-th bit of @orig is set, and
1075 * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
1076 * (If you understood the previous sentence the first time your
1077 * read it, you're overqualified for your current job.)
1078 *
1079 * In other words, @orig is mapped onto (surjectively) @dst,
1080 * using the map { <n, m> | the n-th bit of @relmap is the
1081 * m-th set bit of @relmap }.
1082 *
1083 * Any set bits in @orig above bit number W, where W is the
1084 * weight of (number of set bits in) @relmap are mapped nowhere.
1085 * In particular, if for all bits m set in @orig, m >= W, then
1086 * @dst will end up empty. In situations where the possibility
1087 * of such an empty result is not desired, one way to avoid it is
1088 * to use the bitmap_fold() operator, below, to first fold the
1089 * @orig bitmap over itself so that all its set bits x are in the
1090 * range 0 <= x < W. The bitmap_fold() operator does this by
1091 * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
1092 *
1093 * Example [1] for bitmap_onto():
1094 * Let's say @relmap has bits 30-39 set, and @orig has bits
1095 * 1, 3, 5, 7, 9 and 11 set. Then on return from this routine,
1096 * @dst will have bits 31, 33, 35, 37 and 39 set.
1097 *
1098 * When bit 0 is set in @orig, it means turn on the bit in
1099 * @dst corresponding to whatever is the first bit (if any)
1100 * that is turned on in @relmap. Since bit 0 was off in the
1101 * above example, we leave off that bit (bit 30) in @dst.
1102 *
1103 * When bit 1 is set in @orig (as in the above example), it
1104 * means turn on the bit in @dst corresponding to whatever
1105 * is the second bit that is turned on in @relmap. The second
1106 * bit in @relmap that was turned on in the above example was
1107 * bit 31, so we turned on bit 31 in @dst.
1108 *
1109 * Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
1110 * because they were the 4th, 6th, 8th and 10th set bits
1111 * set in @relmap, and the 4th, 6th, 8th and 10th bits of
1112 * @orig (i.e. bits 3, 5, 7 and 9) were also set.
1113 *
1114 * When bit 11 is set in @orig, it means turn on the bit in
1115 * @dst corresponding to whatever is the twelfth bit that is
1116 * turned on in @relmap. In the above example, there were
1117 * only ten bits turned on in @relmap (30..39), so that bit
1118 * 11 was set in @orig had no affect on @dst.
1119 *
1120 * Example [2] for bitmap_fold() + bitmap_onto():
1121 * Let's say @relmap has these ten bits set::
1122 *
1123 * 40 41 42 43 45 48 53 61 74 95
1124 *
1125 * (for the curious, that's 40 plus the first ten terms of the
1126 * Fibonacci sequence.)
1127 *
1128 * Further lets say we use the following code, invoking
1129 * bitmap_fold() then bitmap_onto, as suggested above to
1130 * avoid the possibility of an empty @dst result::
1131 *
1132 * unsigned long *tmp; // a temporary bitmap's bits
1133 *
1134 * bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
1135 * bitmap_onto(dst, tmp, relmap, bits);
1136 *
1137 * Then this table shows what various values of @dst would be, for
1138 * various @orig's. I list the zero-based positions of each set bit.
1139 * The tmp column shows the intermediate result, as computed by
1140 * using bitmap_fold() to fold the @orig bitmap modulo ten
1141 * (the weight of @relmap):
1142 *
1143 * =============== ============== =================
1144 * @orig tmp @dst
1145 * 0 0 40
1146 * 1 1 41
1147 * 9 9 95
1148 * 10 0 40 [#f1]_
1149 * 1 3 5 7 1 3 5 7 41 43 48 61
1150 * 0 1 2 3 4 0 1 2 3 4 40 41 42 43 45
1151 * 0 9 18 27 0 9 8 7 40 61 74 95
1152 * 0 10 20 30 0 40
1153 * 0 11 22 33 0 1 2 3 40 41 42 43
1154 * 0 12 24 36 0 2 4 6 40 42 45 53
1155 * 78 102 211 1 2 8 41 42 74 [#f1]_
1156 * =============== ============== =================
1157 *
1158 * .. [#f1]
1159 *
1160 * For these marked lines, if we hadn't first done bitmap_fold()
1161 * into tmp, then the @dst result would have been empty.
1162 *
1163 * If either of @orig or @relmap is empty (no set bits), then @dst
1164 * will be returned empty.
1165 *
1166 * If (as explained above) the only set bits in @orig are in positions
1167 * m where m >= W, (where W is the weight of @relmap) then @dst will
1168 * once again be returned empty.
1169 *
1170 * All bits in @dst not set by the above rule are cleared.
1171 */
1172 void bitmap_onto(unsigned long *dst, const unsigned long *orig,
1173 const unsigned long *relmap, unsigned int bits)
1174 {
1175 unsigned int n, m; /* same meaning as in above comment */
1176
1177 if (dst == orig) /* following doesn't handle inplace mappings */
1178 return;
1179 bitmap_zero(dst, bits);
1180
1181 /*
1182 * The following code is a more efficient, but less
1183 * obvious, equivalent to the loop:
1184 * for (m = 0; m < bitmap_weight(relmap, bits); m++) {
1185 * n = bitmap_ord_to_pos(orig, m, bits);
1186 * if (test_bit(m, orig))
1187 * set_bit(n, dst);
1188 * }
1189 */
1190
1191 m = 0;
1192 for_each_set_bit(n, relmap, bits) {
1193 /* m == bitmap_pos_to_ord(relmap, n, bits) */
1194 if (test_bit(m, orig))
1195 set_bit(n, dst);
1196 m++;
1197 }
1198 }
1199
1200 /**
1201 * bitmap_fold - fold larger bitmap into smaller, modulo specified size
1202 * @dst: resulting smaller bitmap
1203 * @orig: original larger bitmap
1204 * @sz: specified size
1205 * @nbits: number of bits in each of these bitmaps
1206 *
1207 * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
1208 * Clear all other bits in @dst. See further the comment and
1209 * Example [2] for bitmap_onto() for why and how to use this.
1210 */
1211 void bitmap_fold(unsigned long *dst, const unsigned long *orig,
1212 unsigned int sz, unsigned int nbits)
1213 {
1214 unsigned int oldbit;
1215
1216 if (dst == orig) /* following doesn't handle inplace mappings */
1217 return;
1218 bitmap_zero(dst, nbits);
1219
1220 for_each_set_bit(oldbit, orig, nbits)
1221 set_bit(oldbit % sz, dst);
1222 }
1223 #endif /* CONFIG_NUMA */
1224
1225 /*
1226 * Common code for bitmap_*_region() routines.
1227 * bitmap: array of unsigned longs corresponding to the bitmap
1228 * pos: the beginning of the region
1229 * order: region size (log base 2 of number of bits)
1230 * reg_op: operation(s) to perform on that region of bitmap
1231 *
1232 * Can set, verify and/or release a region of bits in a bitmap,
1233 * depending on which combination of REG_OP_* flag bits is set.
1234 *
1235 * A region of a bitmap is a sequence of bits in the bitmap, of
1236 * some size '1 << order' (a power of two), aligned to that same
1237 * '1 << order' power of two.
1238 *
1239 * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
1240 * Returns 0 in all other cases and reg_ops.
1241 */
1242
1243 enum {
1244 REG_OP_ISFREE, /* true if region is all zero bits */
1245 REG_OP_ALLOC, /* set all bits in region */
1246 REG_OP_RELEASE, /* clear all bits in region */
1247 };
1248
1249 static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op)
1250 {
1251 int nbits_reg; /* number of bits in region */
1252 int index; /* index first long of region in bitmap */
1253 int offset; /* bit offset region in bitmap[index] */
1254 int nlongs_reg; /* num longs spanned by region in bitmap */
1255 int nbitsinlong; /* num bits of region in each spanned long */
1256 unsigned long mask; /* bitmask for one long of region */
1257 int i; /* scans bitmap by longs */
1258 int ret = 0; /* return value */
1259
1260 /*
1261 * Either nlongs_reg == 1 (for small orders that fit in one long)
1262 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
1263 */
1264 nbits_reg = 1 << order;
1265 index = pos / BITS_PER_LONG;
1266 offset = pos - (index * BITS_PER_LONG);
1267 nlongs_reg = BITS_TO_LONGS(nbits_reg);
1268 nbitsinlong = min(nbits_reg, BITS_PER_LONG);
1269
1270 /*
1271 * Can't do "mask = (1UL << nbitsinlong) - 1", as that
1272 * overflows if nbitsinlong == BITS_PER_LONG.
1273 */
1274 mask = (1UL << (nbitsinlong - 1));
1275 mask += mask - 1;
1276 mask <<= offset;
1277
1278 switch (reg_op) {
1279 case REG_OP_ISFREE:
1280 for (i = 0; i < nlongs_reg; i++) {
1281 if (bitmap[index + i] & mask)
1282 goto done;
1283 }
1284 ret = 1; /* all bits in region free (zero) */
1285 break;
1286
1287 case REG_OP_ALLOC:
1288 for (i = 0; i < nlongs_reg; i++)
1289 bitmap[index + i] |= mask;
1290 break;
1291
1292 case REG_OP_RELEASE:
1293 for (i = 0; i < nlongs_reg; i++)
1294 bitmap[index + i] &= ~mask;
1295 break;
1296 }
1297 done:
1298 return ret;
1299 }
1300
1301 /**
1302 * bitmap_find_free_region - find a contiguous aligned mem region
1303 * @bitmap: array of unsigned longs corresponding to the bitmap
1304 * @bits: number of bits in the bitmap
1305 * @order: region size (log base 2 of number of bits) to find
1306 *
1307 * Find a region of free (zero) bits in a @bitmap of @bits bits and
1308 * allocate them (set them to one). Only consider regions of length
1309 * a power (@order) of two, aligned to that power of two, which
1310 * makes the search algorithm much faster.
1311 *
1312 * Return the bit offset in bitmap of the allocated region,
1313 * or -errno on failure.
1314 */
1315 int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order)
1316 {
1317 unsigned int pos, end; /* scans bitmap by regions of size order */
1318
1319 for (pos = 0 ; (end = pos + (1U << order)) <= bits; pos = end) {
1320 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1321 continue;
1322 __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1323 return pos;
1324 }
1325 return -ENOMEM;
1326 }
1327 EXPORT_SYMBOL(bitmap_find_free_region);
1328
1329 /**
1330 * bitmap_release_region - release allocated bitmap region
1331 * @bitmap: array of unsigned longs corresponding to the bitmap
1332 * @pos: beginning of bit region to release
1333 * @order: region size (log base 2 of number of bits) to release
1334 *
1335 * This is the complement to __bitmap_find_free_region() and releases
1336 * the found region (by clearing it in the bitmap).
1337 *
1338 * No return value.
1339 */
1340 void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order)
1341 {
1342 __reg_op(bitmap, pos, order, REG_OP_RELEASE);
1343 }
1344 EXPORT_SYMBOL(bitmap_release_region);
1345
1346 /**
1347 * bitmap_allocate_region - allocate bitmap region
1348 * @bitmap: array of unsigned longs corresponding to the bitmap
1349 * @pos: beginning of bit region to allocate
1350 * @order: region size (log base 2 of number of bits) to allocate
1351 *
1352 * Allocate (set bits in) a specified region of a bitmap.
1353 *
1354 * Return 0 on success, or %-EBUSY if specified region wasn't
1355 * free (not all bits were zero).
1356 */
1357 int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order)
1358 {
1359 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1360 return -EBUSY;
1361 return __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1362 }
1363 EXPORT_SYMBOL(bitmap_allocate_region);
1364
1365 /**
1366 * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
1367 * @dst: destination buffer
1368 * @src: bitmap to copy
1369 * @nbits: number of bits in the bitmap
1370 *
1371 * Require nbits % BITS_PER_LONG == 0.
1372 */
1373 #ifdef __BIG_ENDIAN
1374 void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits)
1375 {
1376 unsigned int i;
1377
1378 for (i = 0; i < nbits/BITS_PER_LONG; i++) {
1379 if (BITS_PER_LONG == 64)
1380 dst[i] = cpu_to_le64(src[i]);
1381 else
1382 dst[i] = cpu_to_le32(src[i]);
1383 }
1384 }
1385 EXPORT_SYMBOL(bitmap_copy_le);
1386 #endif
1387
1388 unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags)
1389 {
1390 return kmalloc_array(BITS_TO_LONGS(nbits), sizeof(unsigned long),
1391 flags);
1392 }
1393 EXPORT_SYMBOL(bitmap_alloc);
1394
1395 unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags)
1396 {
1397 return bitmap_alloc(nbits, flags | __GFP_ZERO);
1398 }
1399 EXPORT_SYMBOL(bitmap_zalloc);
1400
1401 void bitmap_free(const unsigned long *bitmap)
1402 {
1403 kfree(bitmap);
1404 }
1405 EXPORT_SYMBOL(bitmap_free);
1406
1407 static void devm_bitmap_free(void *data)
1408 {
1409 unsigned long *bitmap = data;
1410
1411 bitmap_free(bitmap);
1412 }
1413
1414 unsigned long *devm_bitmap_alloc(struct device *dev,
1415 unsigned int nbits, gfp_t flags)
1416 {
1417 unsigned long *bitmap;
1418 int ret;
1419
1420 bitmap = bitmap_alloc(nbits, flags);
1421 if (!bitmap)
1422 return NULL;
1423
1424 ret = devm_add_action_or_reset(dev, devm_bitmap_free, bitmap);
1425 if (ret)
1426 return NULL;
1427
1428 return bitmap;
1429 }
1430 EXPORT_SYMBOL_GPL(devm_bitmap_alloc);
1431
1432 unsigned long *devm_bitmap_zalloc(struct device *dev,
1433 unsigned int nbits, gfp_t flags)
1434 {
1435 return devm_bitmap_alloc(dev, nbits, flags | __GFP_ZERO);
1436 }
1437 EXPORT_SYMBOL_GPL(devm_bitmap_zalloc);
1438
1439 #if BITS_PER_LONG == 64
1440 /**
1441 * bitmap_from_arr32 - copy the contents of u32 array of bits to bitmap
1442 * @bitmap: array of unsigned longs, the destination bitmap
1443 * @buf: array of u32 (in host byte order), the source bitmap
1444 * @nbits: number of bits in @bitmap
1445 */
1446 void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf, unsigned int nbits)
1447 {
1448 unsigned int i, halfwords;
1449
1450 halfwords = DIV_ROUND_UP(nbits, 32);
1451 for (i = 0; i < halfwords; i++) {
1452 bitmap[i/2] = (unsigned long) buf[i];
1453 if (++i < halfwords)
1454 bitmap[i/2] |= ((unsigned long) buf[i]) << 32;
1455 }
1456
1457 /* Clear tail bits in last word beyond nbits. */
1458 if (nbits % BITS_PER_LONG)
1459 bitmap[(halfwords - 1) / 2] &= BITMAP_LAST_WORD_MASK(nbits);
1460 }
1461 EXPORT_SYMBOL(bitmap_from_arr32);
1462
1463 /**
1464 * bitmap_to_arr32 - copy the contents of bitmap to a u32 array of bits
1465 * @buf: array of u32 (in host byte order), the dest bitmap
1466 * @bitmap: array of unsigned longs, the source bitmap
1467 * @nbits: number of bits in @bitmap
1468 */
1469 void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap, unsigned int nbits)
1470 {
1471 unsigned int i, halfwords;
1472
1473 halfwords = DIV_ROUND_UP(nbits, 32);
1474 for (i = 0; i < halfwords; i++) {
1475 buf[i] = (u32) (bitmap[i/2] & UINT_MAX);
1476 if (++i < halfwords)
1477 buf[i] = (u32) (bitmap[i/2] >> 32);
1478 }
1479
1480 /* Clear tail bits in last element of array beyond nbits. */
1481 if (nbits % BITS_PER_LONG)
1482 buf[halfwords - 1] &= (u32) (UINT_MAX >> ((-nbits) & 31));
1483 }
1484 EXPORT_SYMBOL(bitmap_to_arr32);
1485
1486 #endif