]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - lib/bitmap.c
lib: bitmap: add alignment offset for bitmap_find_next_zero_area()
[mirror_ubuntu-artful-kernel.git] / lib / bitmap.c
1 /*
2 * lib/bitmap.c
3 * Helper functions for bitmap.h.
4 *
5 * This source code is licensed under the GNU General Public License,
6 * Version 2. See the file COPYING for more details.
7 */
8 #include <linux/export.h>
9 #include <linux/thread_info.h>
10 #include <linux/ctype.h>
11 #include <linux/errno.h>
12 #include <linux/bitmap.h>
13 #include <linux/bitops.h>
14 #include <linux/bug.h>
15 #include <asm/uaccess.h>
16
17 /*
18 * bitmaps provide an array of bits, implemented using an an
19 * array of unsigned longs. The number of valid bits in a
20 * given bitmap does _not_ need to be an exact multiple of
21 * BITS_PER_LONG.
22 *
23 * The possible unused bits in the last, partially used word
24 * of a bitmap are 'don't care'. The implementation makes
25 * no particular effort to keep them zero. It ensures that
26 * their value will not affect the results of any operation.
27 * The bitmap operations that return Boolean (bitmap_empty,
28 * for example) or scalar (bitmap_weight, for example) results
29 * carefully filter out these unused bits from impacting their
30 * results.
31 *
32 * These operations actually hold to a slightly stronger rule:
33 * if you don't input any bitmaps to these ops that have some
34 * unused bits set, then they won't output any set unused bits
35 * in output bitmaps.
36 *
37 * The byte ordering of bitmaps is more natural on little
38 * endian architectures. See the big-endian headers
39 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
40 * for the best explanations of this ordering.
41 */
42
43 int __bitmap_empty(const unsigned long *bitmap, unsigned int bits)
44 {
45 unsigned int k, lim = bits/BITS_PER_LONG;
46 for (k = 0; k < lim; ++k)
47 if (bitmap[k])
48 return 0;
49
50 if (bits % BITS_PER_LONG)
51 if (bitmap[k] & BITMAP_LAST_WORD_MASK(bits))
52 return 0;
53
54 return 1;
55 }
56 EXPORT_SYMBOL(__bitmap_empty);
57
58 int __bitmap_full(const unsigned long *bitmap, unsigned int bits)
59 {
60 unsigned int k, lim = bits/BITS_PER_LONG;
61 for (k = 0; k < lim; ++k)
62 if (~bitmap[k])
63 return 0;
64
65 if (bits % BITS_PER_LONG)
66 if (~bitmap[k] & BITMAP_LAST_WORD_MASK(bits))
67 return 0;
68
69 return 1;
70 }
71 EXPORT_SYMBOL(__bitmap_full);
72
73 int __bitmap_equal(const unsigned long *bitmap1,
74 const unsigned long *bitmap2, unsigned int bits)
75 {
76 unsigned int k, lim = bits/BITS_PER_LONG;
77 for (k = 0; k < lim; ++k)
78 if (bitmap1[k] != bitmap2[k])
79 return 0;
80
81 if (bits % BITS_PER_LONG)
82 if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
83 return 0;
84
85 return 1;
86 }
87 EXPORT_SYMBOL(__bitmap_equal);
88
89 void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits)
90 {
91 unsigned int k, lim = bits/BITS_PER_LONG;
92 for (k = 0; k < lim; ++k)
93 dst[k] = ~src[k];
94
95 if (bits % BITS_PER_LONG)
96 dst[k] = ~src[k];
97 }
98 EXPORT_SYMBOL(__bitmap_complement);
99
100 /**
101 * __bitmap_shift_right - logical right shift of the bits in a bitmap
102 * @dst : destination bitmap
103 * @src : source bitmap
104 * @shift : shift by this many bits
105 * @bits : bitmap size, in bits
106 *
107 * Shifting right (dividing) means moving bits in the MS -> LS bit
108 * direction. Zeros are fed into the vacated MS positions and the
109 * LS bits shifted off the bottom are lost.
110 */
111 void __bitmap_shift_right(unsigned long *dst,
112 const unsigned long *src, int shift, int bits)
113 {
114 int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG;
115 int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
116 unsigned long mask = (1UL << left) - 1;
117 for (k = 0; off + k < lim; ++k) {
118 unsigned long upper, lower;
119
120 /*
121 * If shift is not word aligned, take lower rem bits of
122 * word above and make them the top rem bits of result.
123 */
124 if (!rem || off + k + 1 >= lim)
125 upper = 0;
126 else {
127 upper = src[off + k + 1];
128 if (off + k + 1 == lim - 1 && left)
129 upper &= mask;
130 }
131 lower = src[off + k];
132 if (left && off + k == lim - 1)
133 lower &= mask;
134 dst[k] = lower >> rem;
135 if (rem)
136 dst[k] |= upper << (BITS_PER_LONG - rem);
137 if (left && k == lim - 1)
138 dst[k] &= mask;
139 }
140 if (off)
141 memset(&dst[lim - off], 0, off*sizeof(unsigned long));
142 }
143 EXPORT_SYMBOL(__bitmap_shift_right);
144
145
146 /**
147 * __bitmap_shift_left - logical left shift of the bits in a bitmap
148 * @dst : destination bitmap
149 * @src : source bitmap
150 * @shift : shift by this many bits
151 * @bits : bitmap size, in bits
152 *
153 * Shifting left (multiplying) means moving bits in the LS -> MS
154 * direction. Zeros are fed into the vacated LS bit positions
155 * and those MS bits shifted off the top are lost.
156 */
157
158 void __bitmap_shift_left(unsigned long *dst,
159 const unsigned long *src, int shift, int bits)
160 {
161 int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG;
162 int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
163 for (k = lim - off - 1; k >= 0; --k) {
164 unsigned long upper, lower;
165
166 /*
167 * If shift is not word aligned, take upper rem bits of
168 * word below and make them the bottom rem bits of result.
169 */
170 if (rem && k > 0)
171 lower = src[k - 1];
172 else
173 lower = 0;
174 upper = src[k];
175 if (left && k == lim - 1)
176 upper &= (1UL << left) - 1;
177 dst[k + off] = upper << rem;
178 if (rem)
179 dst[k + off] |= lower >> (BITS_PER_LONG - rem);
180 if (left && k + off == lim - 1)
181 dst[k + off] &= (1UL << left) - 1;
182 }
183 if (off)
184 memset(dst, 0, off*sizeof(unsigned long));
185 }
186 EXPORT_SYMBOL(__bitmap_shift_left);
187
188 int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
189 const unsigned long *bitmap2, unsigned int bits)
190 {
191 unsigned int k;
192 unsigned int lim = bits/BITS_PER_LONG;
193 unsigned long result = 0;
194
195 for (k = 0; k < lim; k++)
196 result |= (dst[k] = bitmap1[k] & bitmap2[k]);
197 if (bits % BITS_PER_LONG)
198 result |= (dst[k] = bitmap1[k] & bitmap2[k] &
199 BITMAP_LAST_WORD_MASK(bits));
200 return result != 0;
201 }
202 EXPORT_SYMBOL(__bitmap_and);
203
204 void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
205 const unsigned long *bitmap2, unsigned int bits)
206 {
207 unsigned int k;
208 unsigned int nr = BITS_TO_LONGS(bits);
209
210 for (k = 0; k < nr; k++)
211 dst[k] = bitmap1[k] | bitmap2[k];
212 }
213 EXPORT_SYMBOL(__bitmap_or);
214
215 void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
216 const unsigned long *bitmap2, unsigned int bits)
217 {
218 unsigned int k;
219 unsigned int nr = BITS_TO_LONGS(bits);
220
221 for (k = 0; k < nr; k++)
222 dst[k] = bitmap1[k] ^ bitmap2[k];
223 }
224 EXPORT_SYMBOL(__bitmap_xor);
225
226 int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
227 const unsigned long *bitmap2, unsigned int bits)
228 {
229 unsigned int k;
230 unsigned int lim = bits/BITS_PER_LONG;
231 unsigned long result = 0;
232
233 for (k = 0; k < lim; k++)
234 result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
235 if (bits % BITS_PER_LONG)
236 result |= (dst[k] = bitmap1[k] & ~bitmap2[k] &
237 BITMAP_LAST_WORD_MASK(bits));
238 return result != 0;
239 }
240 EXPORT_SYMBOL(__bitmap_andnot);
241
242 int __bitmap_intersects(const unsigned long *bitmap1,
243 const unsigned long *bitmap2, unsigned int bits)
244 {
245 unsigned int k, lim = bits/BITS_PER_LONG;
246 for (k = 0; k < lim; ++k)
247 if (bitmap1[k] & bitmap2[k])
248 return 1;
249
250 if (bits % BITS_PER_LONG)
251 if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
252 return 1;
253 return 0;
254 }
255 EXPORT_SYMBOL(__bitmap_intersects);
256
257 int __bitmap_subset(const unsigned long *bitmap1,
258 const unsigned long *bitmap2, unsigned int bits)
259 {
260 unsigned int k, lim = bits/BITS_PER_LONG;
261 for (k = 0; k < lim; ++k)
262 if (bitmap1[k] & ~bitmap2[k])
263 return 0;
264
265 if (bits % BITS_PER_LONG)
266 if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
267 return 0;
268 return 1;
269 }
270 EXPORT_SYMBOL(__bitmap_subset);
271
272 int __bitmap_weight(const unsigned long *bitmap, unsigned int bits)
273 {
274 unsigned int k, lim = bits/BITS_PER_LONG;
275 int w = 0;
276
277 for (k = 0; k < lim; k++)
278 w += hweight_long(bitmap[k]);
279
280 if (bits % BITS_PER_LONG)
281 w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
282
283 return w;
284 }
285 EXPORT_SYMBOL(__bitmap_weight);
286
287 void bitmap_set(unsigned long *map, unsigned int start, int len)
288 {
289 unsigned long *p = map + BIT_WORD(start);
290 const unsigned int size = start + len;
291 int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
292 unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
293
294 while (len - bits_to_set >= 0) {
295 *p |= mask_to_set;
296 len -= bits_to_set;
297 bits_to_set = BITS_PER_LONG;
298 mask_to_set = ~0UL;
299 p++;
300 }
301 if (len) {
302 mask_to_set &= BITMAP_LAST_WORD_MASK(size);
303 *p |= mask_to_set;
304 }
305 }
306 EXPORT_SYMBOL(bitmap_set);
307
308 void bitmap_clear(unsigned long *map, unsigned int start, int len)
309 {
310 unsigned long *p = map + BIT_WORD(start);
311 const unsigned int size = start + len;
312 int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
313 unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
314
315 while (len - bits_to_clear >= 0) {
316 *p &= ~mask_to_clear;
317 len -= bits_to_clear;
318 bits_to_clear = BITS_PER_LONG;
319 mask_to_clear = ~0UL;
320 p++;
321 }
322 if (len) {
323 mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
324 *p &= ~mask_to_clear;
325 }
326 }
327 EXPORT_SYMBOL(bitmap_clear);
328
329 /**
330 * bitmap_find_next_zero_area_off - find a contiguous aligned zero area
331 * @map: The address to base the search on
332 * @size: The bitmap size in bits
333 * @start: The bitnumber to start searching at
334 * @nr: The number of zeroed bits we're looking for
335 * @align_mask: Alignment mask for zero area
336 * @align_offset: Alignment offset for zero area.
337 *
338 * The @align_mask should be one less than a power of 2; the effect is that
339 * the bit offset of all zero areas this function finds plus @align_offset
340 * is multiple of that power of 2.
341 */
342 unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
343 unsigned long size,
344 unsigned long start,
345 unsigned int nr,
346 unsigned long align_mask,
347 unsigned long align_offset)
348 {
349 unsigned long index, end, i;
350 again:
351 index = find_next_zero_bit(map, size, start);
352
353 /* Align allocation */
354 index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset;
355
356 end = index + nr;
357 if (end > size)
358 return end;
359 i = find_next_bit(map, end, index);
360 if (i < end) {
361 start = i + 1;
362 goto again;
363 }
364 return index;
365 }
366 EXPORT_SYMBOL(bitmap_find_next_zero_area_off);
367
368 /*
369 * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers,
370 * second version by Paul Jackson, third by Joe Korty.
371 */
372
373 #define CHUNKSZ 32
374 #define nbits_to_hold_value(val) fls(val)
375 #define BASEDEC 10 /* fancier cpuset lists input in decimal */
376
377 /**
378 * bitmap_scnprintf - convert bitmap to an ASCII hex string.
379 * @buf: byte buffer into which string is placed
380 * @buflen: reserved size of @buf, in bytes
381 * @maskp: pointer to bitmap to convert
382 * @nmaskbits: size of bitmap, in bits
383 *
384 * Exactly @nmaskbits bits are displayed. Hex digits are grouped into
385 * comma-separated sets of eight digits per set. Returns the number of
386 * characters which were written to *buf, excluding the trailing \0.
387 */
388 int bitmap_scnprintf(char *buf, unsigned int buflen,
389 const unsigned long *maskp, int nmaskbits)
390 {
391 int i, word, bit, len = 0;
392 unsigned long val;
393 const char *sep = "";
394 int chunksz;
395 u32 chunkmask;
396
397 chunksz = nmaskbits & (CHUNKSZ - 1);
398 if (chunksz == 0)
399 chunksz = CHUNKSZ;
400
401 i = ALIGN(nmaskbits, CHUNKSZ) - CHUNKSZ;
402 for (; i >= 0; i -= CHUNKSZ) {
403 chunkmask = ((1ULL << chunksz) - 1);
404 word = i / BITS_PER_LONG;
405 bit = i % BITS_PER_LONG;
406 val = (maskp[word] >> bit) & chunkmask;
407 len += scnprintf(buf+len, buflen-len, "%s%0*lx", sep,
408 (chunksz+3)/4, val);
409 chunksz = CHUNKSZ;
410 sep = ",";
411 }
412 return len;
413 }
414 EXPORT_SYMBOL(bitmap_scnprintf);
415
416 /**
417 * __bitmap_parse - convert an ASCII hex string into a bitmap.
418 * @buf: pointer to buffer containing string.
419 * @buflen: buffer size in bytes. If string is smaller than this
420 * then it must be terminated with a \0.
421 * @is_user: location of buffer, 0 indicates kernel space
422 * @maskp: pointer to bitmap array that will contain result.
423 * @nmaskbits: size of bitmap, in bits.
424 *
425 * Commas group hex digits into chunks. Each chunk defines exactly 32
426 * bits of the resultant bitmask. No chunk may specify a value larger
427 * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
428 * then leading 0-bits are prepended. %-EINVAL is returned for illegal
429 * characters and for grouping errors such as "1,,5", ",44", "," and "".
430 * Leading and trailing whitespace accepted, but not embedded whitespace.
431 */
432 int __bitmap_parse(const char *buf, unsigned int buflen,
433 int is_user, unsigned long *maskp,
434 int nmaskbits)
435 {
436 int c, old_c, totaldigits, ndigits, nchunks, nbits;
437 u32 chunk;
438 const char __user __force *ubuf = (const char __user __force *)buf;
439
440 bitmap_zero(maskp, nmaskbits);
441
442 nchunks = nbits = totaldigits = c = 0;
443 do {
444 chunk = ndigits = 0;
445
446 /* Get the next chunk of the bitmap */
447 while (buflen) {
448 old_c = c;
449 if (is_user) {
450 if (__get_user(c, ubuf++))
451 return -EFAULT;
452 }
453 else
454 c = *buf++;
455 buflen--;
456 if (isspace(c))
457 continue;
458
459 /*
460 * If the last character was a space and the current
461 * character isn't '\0', we've got embedded whitespace.
462 * This is a no-no, so throw an error.
463 */
464 if (totaldigits && c && isspace(old_c))
465 return -EINVAL;
466
467 /* A '\0' or a ',' signal the end of the chunk */
468 if (c == '\0' || c == ',')
469 break;
470
471 if (!isxdigit(c))
472 return -EINVAL;
473
474 /*
475 * Make sure there are at least 4 free bits in 'chunk'.
476 * If not, this hexdigit will overflow 'chunk', so
477 * throw an error.
478 */
479 if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1))
480 return -EOVERFLOW;
481
482 chunk = (chunk << 4) | hex_to_bin(c);
483 ndigits++; totaldigits++;
484 }
485 if (ndigits == 0)
486 return -EINVAL;
487 if (nchunks == 0 && chunk == 0)
488 continue;
489
490 __bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits);
491 *maskp |= chunk;
492 nchunks++;
493 nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ;
494 if (nbits > nmaskbits)
495 return -EOVERFLOW;
496 } while (buflen && c == ',');
497
498 return 0;
499 }
500 EXPORT_SYMBOL(__bitmap_parse);
501
502 /**
503 * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap
504 *
505 * @ubuf: pointer to user buffer containing string.
506 * @ulen: buffer size in bytes. If string is smaller than this
507 * then it must be terminated with a \0.
508 * @maskp: pointer to bitmap array that will contain result.
509 * @nmaskbits: size of bitmap, in bits.
510 *
511 * Wrapper for __bitmap_parse(), providing it with user buffer.
512 *
513 * We cannot have this as an inline function in bitmap.h because it needs
514 * linux/uaccess.h to get the access_ok() declaration and this causes
515 * cyclic dependencies.
516 */
517 int bitmap_parse_user(const char __user *ubuf,
518 unsigned int ulen, unsigned long *maskp,
519 int nmaskbits)
520 {
521 if (!access_ok(VERIFY_READ, ubuf, ulen))
522 return -EFAULT;
523 return __bitmap_parse((const char __force *)ubuf,
524 ulen, 1, maskp, nmaskbits);
525
526 }
527 EXPORT_SYMBOL(bitmap_parse_user);
528
529 /*
530 * bscnl_emit(buf, buflen, rbot, rtop, bp)
531 *
532 * Helper routine for bitmap_scnlistprintf(). Write decimal number
533 * or range to buf, suppressing output past buf+buflen, with optional
534 * comma-prefix. Return len of what was written to *buf, excluding the
535 * trailing \0.
536 */
537 static inline int bscnl_emit(char *buf, int buflen, int rbot, int rtop, int len)
538 {
539 if (len > 0)
540 len += scnprintf(buf + len, buflen - len, ",");
541 if (rbot == rtop)
542 len += scnprintf(buf + len, buflen - len, "%d", rbot);
543 else
544 len += scnprintf(buf + len, buflen - len, "%d-%d", rbot, rtop);
545 return len;
546 }
547
548 /**
549 * bitmap_scnlistprintf - convert bitmap to list format ASCII string
550 * @buf: byte buffer into which string is placed
551 * @buflen: reserved size of @buf, in bytes
552 * @maskp: pointer to bitmap to convert
553 * @nmaskbits: size of bitmap, in bits
554 *
555 * Output format is a comma-separated list of decimal numbers and
556 * ranges. Consecutively set bits are shown as two hyphen-separated
557 * decimal numbers, the smallest and largest bit numbers set in
558 * the range. Output format is compatible with the format
559 * accepted as input by bitmap_parselist().
560 *
561 * The return value is the number of characters which were written to *buf
562 * excluding the trailing '\0', as per ISO C99's scnprintf.
563 */
564 int bitmap_scnlistprintf(char *buf, unsigned int buflen,
565 const unsigned long *maskp, int nmaskbits)
566 {
567 int len = 0;
568 /* current bit is 'cur', most recently seen range is [rbot, rtop] */
569 int cur, rbot, rtop;
570
571 if (buflen == 0)
572 return 0;
573 buf[0] = 0;
574
575 rbot = cur = find_first_bit(maskp, nmaskbits);
576 while (cur < nmaskbits) {
577 rtop = cur;
578 cur = find_next_bit(maskp, nmaskbits, cur+1);
579 if (cur >= nmaskbits || cur > rtop + 1) {
580 len = bscnl_emit(buf, buflen, rbot, rtop, len);
581 rbot = cur;
582 }
583 }
584 return len;
585 }
586 EXPORT_SYMBOL(bitmap_scnlistprintf);
587
588 /**
589 * __bitmap_parselist - convert list format ASCII string to bitmap
590 * @buf: read nul-terminated user string from this buffer
591 * @buflen: buffer size in bytes. If string is smaller than this
592 * then it must be terminated with a \0.
593 * @is_user: location of buffer, 0 indicates kernel space
594 * @maskp: write resulting mask here
595 * @nmaskbits: number of bits in mask to be written
596 *
597 * Input format is a comma-separated list of decimal numbers and
598 * ranges. Consecutively set bits are shown as two hyphen-separated
599 * decimal numbers, the smallest and largest bit numbers set in
600 * the range.
601 *
602 * Returns 0 on success, -errno on invalid input strings.
603 * Error values:
604 * %-EINVAL: second number in range smaller than first
605 * %-EINVAL: invalid character in string
606 * %-ERANGE: bit number specified too large for mask
607 */
608 static int __bitmap_parselist(const char *buf, unsigned int buflen,
609 int is_user, unsigned long *maskp,
610 int nmaskbits)
611 {
612 unsigned a, b;
613 int c, old_c, totaldigits;
614 const char __user __force *ubuf = (const char __user __force *)buf;
615 int exp_digit, in_range;
616
617 totaldigits = c = 0;
618 bitmap_zero(maskp, nmaskbits);
619 do {
620 exp_digit = 1;
621 in_range = 0;
622 a = b = 0;
623
624 /* Get the next cpu# or a range of cpu#'s */
625 while (buflen) {
626 old_c = c;
627 if (is_user) {
628 if (__get_user(c, ubuf++))
629 return -EFAULT;
630 } else
631 c = *buf++;
632 buflen--;
633 if (isspace(c))
634 continue;
635
636 /*
637 * If the last character was a space and the current
638 * character isn't '\0', we've got embedded whitespace.
639 * This is a no-no, so throw an error.
640 */
641 if (totaldigits && c && isspace(old_c))
642 return -EINVAL;
643
644 /* A '\0' or a ',' signal the end of a cpu# or range */
645 if (c == '\0' || c == ',')
646 break;
647
648 if (c == '-') {
649 if (exp_digit || in_range)
650 return -EINVAL;
651 b = 0;
652 in_range = 1;
653 exp_digit = 1;
654 continue;
655 }
656
657 if (!isdigit(c))
658 return -EINVAL;
659
660 b = b * 10 + (c - '0');
661 if (!in_range)
662 a = b;
663 exp_digit = 0;
664 totaldigits++;
665 }
666 if (!(a <= b))
667 return -EINVAL;
668 if (b >= nmaskbits)
669 return -ERANGE;
670 while (a <= b) {
671 set_bit(a, maskp);
672 a++;
673 }
674 } while (buflen && c == ',');
675 return 0;
676 }
677
678 int bitmap_parselist(const char *bp, unsigned long *maskp, int nmaskbits)
679 {
680 char *nl = strchrnul(bp, '\n');
681 int len = nl - bp;
682
683 return __bitmap_parselist(bp, len, 0, maskp, nmaskbits);
684 }
685 EXPORT_SYMBOL(bitmap_parselist);
686
687
688 /**
689 * bitmap_parselist_user()
690 *
691 * @ubuf: pointer to user buffer containing string.
692 * @ulen: buffer size in bytes. If string is smaller than this
693 * then it must be terminated with a \0.
694 * @maskp: pointer to bitmap array that will contain result.
695 * @nmaskbits: size of bitmap, in bits.
696 *
697 * Wrapper for bitmap_parselist(), providing it with user buffer.
698 *
699 * We cannot have this as an inline function in bitmap.h because it needs
700 * linux/uaccess.h to get the access_ok() declaration and this causes
701 * cyclic dependencies.
702 */
703 int bitmap_parselist_user(const char __user *ubuf,
704 unsigned int ulen, unsigned long *maskp,
705 int nmaskbits)
706 {
707 if (!access_ok(VERIFY_READ, ubuf, ulen))
708 return -EFAULT;
709 return __bitmap_parselist((const char __force *)ubuf,
710 ulen, 1, maskp, nmaskbits);
711 }
712 EXPORT_SYMBOL(bitmap_parselist_user);
713
714
715 /**
716 * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
717 * @buf: pointer to a bitmap
718 * @pos: a bit position in @buf (0 <= @pos < @bits)
719 * @bits: number of valid bit positions in @buf
720 *
721 * Map the bit at position @pos in @buf (of length @bits) to the
722 * ordinal of which set bit it is. If it is not set or if @pos
723 * is not a valid bit position, map to -1.
724 *
725 * If for example, just bits 4 through 7 are set in @buf, then @pos
726 * values 4 through 7 will get mapped to 0 through 3, respectively,
727 * and other @pos values will get mapped to -1. When @pos value 7
728 * gets mapped to (returns) @ord value 3 in this example, that means
729 * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
730 *
731 * The bit positions 0 through @bits are valid positions in @buf.
732 */
733 static int bitmap_pos_to_ord(const unsigned long *buf, int pos, int bits)
734 {
735 int i, ord;
736
737 if (pos < 0 || pos >= bits || !test_bit(pos, buf))
738 return -1;
739
740 i = find_first_bit(buf, bits);
741 ord = 0;
742 while (i < pos) {
743 i = find_next_bit(buf, bits, i + 1);
744 ord++;
745 }
746 BUG_ON(i != pos);
747
748 return ord;
749 }
750
751 /**
752 * bitmap_ord_to_pos - find position of n-th set bit in bitmap
753 * @buf: pointer to bitmap
754 * @ord: ordinal bit position (n-th set bit, n >= 0)
755 * @bits: number of valid bit positions in @buf
756 *
757 * Map the ordinal offset of bit @ord in @buf to its position in @buf.
758 * Value of @ord should be in range 0 <= @ord < weight(buf), else
759 * results are undefined.
760 *
761 * If for example, just bits 4 through 7 are set in @buf, then @ord
762 * values 0 through 3 will get mapped to 4 through 7, respectively,
763 * and all other @ord values return undefined values. When @ord value 3
764 * gets mapped to (returns) @pos value 7 in this example, that means
765 * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
766 *
767 * The bit positions 0 through @bits are valid positions in @buf.
768 */
769 int bitmap_ord_to_pos(const unsigned long *buf, int ord, int bits)
770 {
771 int pos = 0;
772
773 if (ord >= 0 && ord < bits) {
774 int i;
775
776 for (i = find_first_bit(buf, bits);
777 i < bits && ord > 0;
778 i = find_next_bit(buf, bits, i + 1))
779 ord--;
780 if (i < bits && ord == 0)
781 pos = i;
782 }
783
784 return pos;
785 }
786
787 /**
788 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
789 * @dst: remapped result
790 * @src: subset to be remapped
791 * @old: defines domain of map
792 * @new: defines range of map
793 * @bits: number of bits in each of these bitmaps
794 *
795 * Let @old and @new define a mapping of bit positions, such that
796 * whatever position is held by the n-th set bit in @old is mapped
797 * to the n-th set bit in @new. In the more general case, allowing
798 * for the possibility that the weight 'w' of @new is less than the
799 * weight of @old, map the position of the n-th set bit in @old to
800 * the position of the m-th set bit in @new, where m == n % w.
801 *
802 * If either of the @old and @new bitmaps are empty, or if @src and
803 * @dst point to the same location, then this routine copies @src
804 * to @dst.
805 *
806 * The positions of unset bits in @old are mapped to themselves
807 * (the identify map).
808 *
809 * Apply the above specified mapping to @src, placing the result in
810 * @dst, clearing any bits previously set in @dst.
811 *
812 * For example, lets say that @old has bits 4 through 7 set, and
813 * @new has bits 12 through 15 set. This defines the mapping of bit
814 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
815 * bit positions unchanged. So if say @src comes into this routine
816 * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
817 * 13 and 15 set.
818 */
819 void bitmap_remap(unsigned long *dst, const unsigned long *src,
820 const unsigned long *old, const unsigned long *new,
821 int bits)
822 {
823 int oldbit, w;
824
825 if (dst == src) /* following doesn't handle inplace remaps */
826 return;
827 bitmap_zero(dst, bits);
828
829 w = bitmap_weight(new, bits);
830 for_each_set_bit(oldbit, src, bits) {
831 int n = bitmap_pos_to_ord(old, oldbit, bits);
832
833 if (n < 0 || w == 0)
834 set_bit(oldbit, dst); /* identity map */
835 else
836 set_bit(bitmap_ord_to_pos(new, n % w, bits), dst);
837 }
838 }
839 EXPORT_SYMBOL(bitmap_remap);
840
841 /**
842 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
843 * @oldbit: bit position to be mapped
844 * @old: defines domain of map
845 * @new: defines range of map
846 * @bits: number of bits in each of these bitmaps
847 *
848 * Let @old and @new define a mapping of bit positions, such that
849 * whatever position is held by the n-th set bit in @old is mapped
850 * to the n-th set bit in @new. In the more general case, allowing
851 * for the possibility that the weight 'w' of @new is less than the
852 * weight of @old, map the position of the n-th set bit in @old to
853 * the position of the m-th set bit in @new, where m == n % w.
854 *
855 * The positions of unset bits in @old are mapped to themselves
856 * (the identify map).
857 *
858 * Apply the above specified mapping to bit position @oldbit, returning
859 * the new bit position.
860 *
861 * For example, lets say that @old has bits 4 through 7 set, and
862 * @new has bits 12 through 15 set. This defines the mapping of bit
863 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
864 * bit positions unchanged. So if say @oldbit is 5, then this routine
865 * returns 13.
866 */
867 int bitmap_bitremap(int oldbit, const unsigned long *old,
868 const unsigned long *new, int bits)
869 {
870 int w = bitmap_weight(new, bits);
871 int n = bitmap_pos_to_ord(old, oldbit, bits);
872 if (n < 0 || w == 0)
873 return oldbit;
874 else
875 return bitmap_ord_to_pos(new, n % w, bits);
876 }
877 EXPORT_SYMBOL(bitmap_bitremap);
878
879 /**
880 * bitmap_onto - translate one bitmap relative to another
881 * @dst: resulting translated bitmap
882 * @orig: original untranslated bitmap
883 * @relmap: bitmap relative to which translated
884 * @bits: number of bits in each of these bitmaps
885 *
886 * Set the n-th bit of @dst iff there exists some m such that the
887 * n-th bit of @relmap is set, the m-th bit of @orig is set, and
888 * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
889 * (If you understood the previous sentence the first time your
890 * read it, you're overqualified for your current job.)
891 *
892 * In other words, @orig is mapped onto (surjectively) @dst,
893 * using the map { <n, m> | the n-th bit of @relmap is the
894 * m-th set bit of @relmap }.
895 *
896 * Any set bits in @orig above bit number W, where W is the
897 * weight of (number of set bits in) @relmap are mapped nowhere.
898 * In particular, if for all bits m set in @orig, m >= W, then
899 * @dst will end up empty. In situations where the possibility
900 * of such an empty result is not desired, one way to avoid it is
901 * to use the bitmap_fold() operator, below, to first fold the
902 * @orig bitmap over itself so that all its set bits x are in the
903 * range 0 <= x < W. The bitmap_fold() operator does this by
904 * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
905 *
906 * Example [1] for bitmap_onto():
907 * Let's say @relmap has bits 30-39 set, and @orig has bits
908 * 1, 3, 5, 7, 9 and 11 set. Then on return from this routine,
909 * @dst will have bits 31, 33, 35, 37 and 39 set.
910 *
911 * When bit 0 is set in @orig, it means turn on the bit in
912 * @dst corresponding to whatever is the first bit (if any)
913 * that is turned on in @relmap. Since bit 0 was off in the
914 * above example, we leave off that bit (bit 30) in @dst.
915 *
916 * When bit 1 is set in @orig (as in the above example), it
917 * means turn on the bit in @dst corresponding to whatever
918 * is the second bit that is turned on in @relmap. The second
919 * bit in @relmap that was turned on in the above example was
920 * bit 31, so we turned on bit 31 in @dst.
921 *
922 * Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
923 * because they were the 4th, 6th, 8th and 10th set bits
924 * set in @relmap, and the 4th, 6th, 8th and 10th bits of
925 * @orig (i.e. bits 3, 5, 7 and 9) were also set.
926 *
927 * When bit 11 is set in @orig, it means turn on the bit in
928 * @dst corresponding to whatever is the twelfth bit that is
929 * turned on in @relmap. In the above example, there were
930 * only ten bits turned on in @relmap (30..39), so that bit
931 * 11 was set in @orig had no affect on @dst.
932 *
933 * Example [2] for bitmap_fold() + bitmap_onto():
934 * Let's say @relmap has these ten bits set:
935 * 40 41 42 43 45 48 53 61 74 95
936 * (for the curious, that's 40 plus the first ten terms of the
937 * Fibonacci sequence.)
938 *
939 * Further lets say we use the following code, invoking
940 * bitmap_fold() then bitmap_onto, as suggested above to
941 * avoid the possibility of an empty @dst result:
942 *
943 * unsigned long *tmp; // a temporary bitmap's bits
944 *
945 * bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
946 * bitmap_onto(dst, tmp, relmap, bits);
947 *
948 * Then this table shows what various values of @dst would be, for
949 * various @orig's. I list the zero-based positions of each set bit.
950 * The tmp column shows the intermediate result, as computed by
951 * using bitmap_fold() to fold the @orig bitmap modulo ten
952 * (the weight of @relmap).
953 *
954 * @orig tmp @dst
955 * 0 0 40
956 * 1 1 41
957 * 9 9 95
958 * 10 0 40 (*)
959 * 1 3 5 7 1 3 5 7 41 43 48 61
960 * 0 1 2 3 4 0 1 2 3 4 40 41 42 43 45
961 * 0 9 18 27 0 9 8 7 40 61 74 95
962 * 0 10 20 30 0 40
963 * 0 11 22 33 0 1 2 3 40 41 42 43
964 * 0 12 24 36 0 2 4 6 40 42 45 53
965 * 78 102 211 1 2 8 41 42 74 (*)
966 *
967 * (*) For these marked lines, if we hadn't first done bitmap_fold()
968 * into tmp, then the @dst result would have been empty.
969 *
970 * If either of @orig or @relmap is empty (no set bits), then @dst
971 * will be returned empty.
972 *
973 * If (as explained above) the only set bits in @orig are in positions
974 * m where m >= W, (where W is the weight of @relmap) then @dst will
975 * once again be returned empty.
976 *
977 * All bits in @dst not set by the above rule are cleared.
978 */
979 void bitmap_onto(unsigned long *dst, const unsigned long *orig,
980 const unsigned long *relmap, int bits)
981 {
982 int n, m; /* same meaning as in above comment */
983
984 if (dst == orig) /* following doesn't handle inplace mappings */
985 return;
986 bitmap_zero(dst, bits);
987
988 /*
989 * The following code is a more efficient, but less
990 * obvious, equivalent to the loop:
991 * for (m = 0; m < bitmap_weight(relmap, bits); m++) {
992 * n = bitmap_ord_to_pos(orig, m, bits);
993 * if (test_bit(m, orig))
994 * set_bit(n, dst);
995 * }
996 */
997
998 m = 0;
999 for_each_set_bit(n, relmap, bits) {
1000 /* m == bitmap_pos_to_ord(relmap, n, bits) */
1001 if (test_bit(m, orig))
1002 set_bit(n, dst);
1003 m++;
1004 }
1005 }
1006 EXPORT_SYMBOL(bitmap_onto);
1007
1008 /**
1009 * bitmap_fold - fold larger bitmap into smaller, modulo specified size
1010 * @dst: resulting smaller bitmap
1011 * @orig: original larger bitmap
1012 * @sz: specified size
1013 * @bits: number of bits in each of these bitmaps
1014 *
1015 * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
1016 * Clear all other bits in @dst. See further the comment and
1017 * Example [2] for bitmap_onto() for why and how to use this.
1018 */
1019 void bitmap_fold(unsigned long *dst, const unsigned long *orig,
1020 int sz, int bits)
1021 {
1022 int oldbit;
1023
1024 if (dst == orig) /* following doesn't handle inplace mappings */
1025 return;
1026 bitmap_zero(dst, bits);
1027
1028 for_each_set_bit(oldbit, orig, bits)
1029 set_bit(oldbit % sz, dst);
1030 }
1031 EXPORT_SYMBOL(bitmap_fold);
1032
1033 /*
1034 * Common code for bitmap_*_region() routines.
1035 * bitmap: array of unsigned longs corresponding to the bitmap
1036 * pos: the beginning of the region
1037 * order: region size (log base 2 of number of bits)
1038 * reg_op: operation(s) to perform on that region of bitmap
1039 *
1040 * Can set, verify and/or release a region of bits in a bitmap,
1041 * depending on which combination of REG_OP_* flag bits is set.
1042 *
1043 * A region of a bitmap is a sequence of bits in the bitmap, of
1044 * some size '1 << order' (a power of two), aligned to that same
1045 * '1 << order' power of two.
1046 *
1047 * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
1048 * Returns 0 in all other cases and reg_ops.
1049 */
1050
1051 enum {
1052 REG_OP_ISFREE, /* true if region is all zero bits */
1053 REG_OP_ALLOC, /* set all bits in region */
1054 REG_OP_RELEASE, /* clear all bits in region */
1055 };
1056
1057 static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op)
1058 {
1059 int nbits_reg; /* number of bits in region */
1060 int index; /* index first long of region in bitmap */
1061 int offset; /* bit offset region in bitmap[index] */
1062 int nlongs_reg; /* num longs spanned by region in bitmap */
1063 int nbitsinlong; /* num bits of region in each spanned long */
1064 unsigned long mask; /* bitmask for one long of region */
1065 int i; /* scans bitmap by longs */
1066 int ret = 0; /* return value */
1067
1068 /*
1069 * Either nlongs_reg == 1 (for small orders that fit in one long)
1070 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
1071 */
1072 nbits_reg = 1 << order;
1073 index = pos / BITS_PER_LONG;
1074 offset = pos - (index * BITS_PER_LONG);
1075 nlongs_reg = BITS_TO_LONGS(nbits_reg);
1076 nbitsinlong = min(nbits_reg, BITS_PER_LONG);
1077
1078 /*
1079 * Can't do "mask = (1UL << nbitsinlong) - 1", as that
1080 * overflows if nbitsinlong == BITS_PER_LONG.
1081 */
1082 mask = (1UL << (nbitsinlong - 1));
1083 mask += mask - 1;
1084 mask <<= offset;
1085
1086 switch (reg_op) {
1087 case REG_OP_ISFREE:
1088 for (i = 0; i < nlongs_reg; i++) {
1089 if (bitmap[index + i] & mask)
1090 goto done;
1091 }
1092 ret = 1; /* all bits in region free (zero) */
1093 break;
1094
1095 case REG_OP_ALLOC:
1096 for (i = 0; i < nlongs_reg; i++)
1097 bitmap[index + i] |= mask;
1098 break;
1099
1100 case REG_OP_RELEASE:
1101 for (i = 0; i < nlongs_reg; i++)
1102 bitmap[index + i] &= ~mask;
1103 break;
1104 }
1105 done:
1106 return ret;
1107 }
1108
1109 /**
1110 * bitmap_find_free_region - find a contiguous aligned mem region
1111 * @bitmap: array of unsigned longs corresponding to the bitmap
1112 * @bits: number of bits in the bitmap
1113 * @order: region size (log base 2 of number of bits) to find
1114 *
1115 * Find a region of free (zero) bits in a @bitmap of @bits bits and
1116 * allocate them (set them to one). Only consider regions of length
1117 * a power (@order) of two, aligned to that power of two, which
1118 * makes the search algorithm much faster.
1119 *
1120 * Return the bit offset in bitmap of the allocated region,
1121 * or -errno on failure.
1122 */
1123 int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order)
1124 {
1125 unsigned int pos, end; /* scans bitmap by regions of size order */
1126
1127 for (pos = 0 ; (end = pos + (1U << order)) <= bits; pos = end) {
1128 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1129 continue;
1130 __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1131 return pos;
1132 }
1133 return -ENOMEM;
1134 }
1135 EXPORT_SYMBOL(bitmap_find_free_region);
1136
1137 /**
1138 * bitmap_release_region - release allocated bitmap region
1139 * @bitmap: array of unsigned longs corresponding to the bitmap
1140 * @pos: beginning of bit region to release
1141 * @order: region size (log base 2 of number of bits) to release
1142 *
1143 * This is the complement to __bitmap_find_free_region() and releases
1144 * the found region (by clearing it in the bitmap).
1145 *
1146 * No return value.
1147 */
1148 void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order)
1149 {
1150 __reg_op(bitmap, pos, order, REG_OP_RELEASE);
1151 }
1152 EXPORT_SYMBOL(bitmap_release_region);
1153
1154 /**
1155 * bitmap_allocate_region - allocate bitmap region
1156 * @bitmap: array of unsigned longs corresponding to the bitmap
1157 * @pos: beginning of bit region to allocate
1158 * @order: region size (log base 2 of number of bits) to allocate
1159 *
1160 * Allocate (set bits in) a specified region of a bitmap.
1161 *
1162 * Return 0 on success, or %-EBUSY if specified region wasn't
1163 * free (not all bits were zero).
1164 */
1165 int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order)
1166 {
1167 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1168 return -EBUSY;
1169 return __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1170 }
1171 EXPORT_SYMBOL(bitmap_allocate_region);
1172
1173 /**
1174 * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
1175 * @dst: destination buffer
1176 * @src: bitmap to copy
1177 * @nbits: number of bits in the bitmap
1178 *
1179 * Require nbits % BITS_PER_LONG == 0.
1180 */
1181 void bitmap_copy_le(void *dst, const unsigned long *src, int nbits)
1182 {
1183 unsigned long *d = dst;
1184 int i;
1185
1186 for (i = 0; i < nbits/BITS_PER_LONG; i++) {
1187 if (BITS_PER_LONG == 64)
1188 d[i] = cpu_to_le64(src[i]);
1189 else
1190 d[i] = cpu_to_le32(src[i]);
1191 }
1192 }
1193 EXPORT_SYMBOL(bitmap_copy_le);