]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - lib/bitmap.c
Merge tag 'ktest-v5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt...
[mirror_ubuntu-jammy-kernel.git] / lib / bitmap.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * lib/bitmap.c
4 * Helper functions for bitmap.h.
5 */
6 #include <linux/export.h>
7 #include <linux/thread_info.h>
8 #include <linux/ctype.h>
9 #include <linux/errno.h>
10 #include <linux/bitmap.h>
11 #include <linux/bitops.h>
12 #include <linux/bug.h>
13 #include <linux/kernel.h>
14 #include <linux/mm.h>
15 #include <linux/slab.h>
16 #include <linux/string.h>
17 #include <linux/uaccess.h>
18
19 #include <asm/page.h>
20
21 #include "kstrtox.h"
22
23 /**
24 * DOC: bitmap introduction
25 *
26 * bitmaps provide an array of bits, implemented using an
27 * array of unsigned longs. The number of valid bits in a
28 * given bitmap does _not_ need to be an exact multiple of
29 * BITS_PER_LONG.
30 *
31 * The possible unused bits in the last, partially used word
32 * of a bitmap are 'don't care'. The implementation makes
33 * no particular effort to keep them zero. It ensures that
34 * their value will not affect the results of any operation.
35 * The bitmap operations that return Boolean (bitmap_empty,
36 * for example) or scalar (bitmap_weight, for example) results
37 * carefully filter out these unused bits from impacting their
38 * results.
39 *
40 * The byte ordering of bitmaps is more natural on little
41 * endian architectures. See the big-endian headers
42 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
43 * for the best explanations of this ordering.
44 */
45
46 int __bitmap_equal(const unsigned long *bitmap1,
47 const unsigned long *bitmap2, unsigned int bits)
48 {
49 unsigned int k, lim = bits/BITS_PER_LONG;
50 for (k = 0; k < lim; ++k)
51 if (bitmap1[k] != bitmap2[k])
52 return 0;
53
54 if (bits % BITS_PER_LONG)
55 if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
56 return 0;
57
58 return 1;
59 }
60 EXPORT_SYMBOL(__bitmap_equal);
61
62 bool __bitmap_or_equal(const unsigned long *bitmap1,
63 const unsigned long *bitmap2,
64 const unsigned long *bitmap3,
65 unsigned int bits)
66 {
67 unsigned int k, lim = bits / BITS_PER_LONG;
68 unsigned long tmp;
69
70 for (k = 0; k < lim; ++k) {
71 if ((bitmap1[k] | bitmap2[k]) != bitmap3[k])
72 return false;
73 }
74
75 if (!(bits % BITS_PER_LONG))
76 return true;
77
78 tmp = (bitmap1[k] | bitmap2[k]) ^ bitmap3[k];
79 return (tmp & BITMAP_LAST_WORD_MASK(bits)) == 0;
80 }
81
82 void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits)
83 {
84 unsigned int k, lim = BITS_TO_LONGS(bits);
85 for (k = 0; k < lim; ++k)
86 dst[k] = ~src[k];
87 }
88 EXPORT_SYMBOL(__bitmap_complement);
89
90 /**
91 * __bitmap_shift_right - logical right shift of the bits in a bitmap
92 * @dst : destination bitmap
93 * @src : source bitmap
94 * @shift : shift by this many bits
95 * @nbits : bitmap size, in bits
96 *
97 * Shifting right (dividing) means moving bits in the MS -> LS bit
98 * direction. Zeros are fed into the vacated MS positions and the
99 * LS bits shifted off the bottom are lost.
100 */
101 void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
102 unsigned shift, unsigned nbits)
103 {
104 unsigned k, lim = BITS_TO_LONGS(nbits);
105 unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
106 unsigned long mask = BITMAP_LAST_WORD_MASK(nbits);
107 for (k = 0; off + k < lim; ++k) {
108 unsigned long upper, lower;
109
110 /*
111 * If shift is not word aligned, take lower rem bits of
112 * word above and make them the top rem bits of result.
113 */
114 if (!rem || off + k + 1 >= lim)
115 upper = 0;
116 else {
117 upper = src[off + k + 1];
118 if (off + k + 1 == lim - 1)
119 upper &= mask;
120 upper <<= (BITS_PER_LONG - rem);
121 }
122 lower = src[off + k];
123 if (off + k == lim - 1)
124 lower &= mask;
125 lower >>= rem;
126 dst[k] = lower | upper;
127 }
128 if (off)
129 memset(&dst[lim - off], 0, off*sizeof(unsigned long));
130 }
131 EXPORT_SYMBOL(__bitmap_shift_right);
132
133
134 /**
135 * __bitmap_shift_left - logical left shift of the bits in a bitmap
136 * @dst : destination bitmap
137 * @src : source bitmap
138 * @shift : shift by this many bits
139 * @nbits : bitmap size, in bits
140 *
141 * Shifting left (multiplying) means moving bits in the LS -> MS
142 * direction. Zeros are fed into the vacated LS bit positions
143 * and those MS bits shifted off the top are lost.
144 */
145
146 void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
147 unsigned int shift, unsigned int nbits)
148 {
149 int k;
150 unsigned int lim = BITS_TO_LONGS(nbits);
151 unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
152 for (k = lim - off - 1; k >= 0; --k) {
153 unsigned long upper, lower;
154
155 /*
156 * If shift is not word aligned, take upper rem bits of
157 * word below and make them the bottom rem bits of result.
158 */
159 if (rem && k > 0)
160 lower = src[k - 1] >> (BITS_PER_LONG - rem);
161 else
162 lower = 0;
163 upper = src[k] << rem;
164 dst[k + off] = lower | upper;
165 }
166 if (off)
167 memset(dst, 0, off*sizeof(unsigned long));
168 }
169 EXPORT_SYMBOL(__bitmap_shift_left);
170
171 /**
172 * bitmap_cut() - remove bit region from bitmap and right shift remaining bits
173 * @dst: destination bitmap, might overlap with src
174 * @src: source bitmap
175 * @first: start bit of region to be removed
176 * @cut: number of bits to remove
177 * @nbits: bitmap size, in bits
178 *
179 * Set the n-th bit of @dst iff the n-th bit of @src is set and
180 * n is less than @first, or the m-th bit of @src is set for any
181 * m such that @first <= n < nbits, and m = n + @cut.
182 *
183 * In pictures, example for a big-endian 32-bit architecture:
184 *
185 * The @src bitmap is::
186 *
187 * 31 63
188 * | |
189 * 10000000 11000001 11110010 00010101 10000000 11000001 01110010 00010101
190 * | | | |
191 * 16 14 0 32
192 *
193 * if @cut is 3, and @first is 14, bits 14-16 in @src are cut and @dst is::
194 *
195 * 31 63
196 * | |
197 * 10110000 00011000 00110010 00010101 00010000 00011000 00101110 01000010
198 * | | |
199 * 14 (bit 17 0 32
200 * from @src)
201 *
202 * Note that @dst and @src might overlap partially or entirely.
203 *
204 * This is implemented in the obvious way, with a shift and carry
205 * step for each moved bit. Optimisation is left as an exercise
206 * for the compiler.
207 */
208 void bitmap_cut(unsigned long *dst, const unsigned long *src,
209 unsigned int first, unsigned int cut, unsigned int nbits)
210 {
211 unsigned int len = BITS_TO_LONGS(nbits);
212 unsigned long keep = 0, carry;
213 int i;
214
215 if (first % BITS_PER_LONG) {
216 keep = src[first / BITS_PER_LONG] &
217 (~0UL >> (BITS_PER_LONG - first % BITS_PER_LONG));
218 }
219
220 memmove(dst, src, len * sizeof(*dst));
221
222 while (cut--) {
223 for (i = first / BITS_PER_LONG; i < len; i++) {
224 if (i < len - 1)
225 carry = dst[i + 1] & 1UL;
226 else
227 carry = 0;
228
229 dst[i] = (dst[i] >> 1) | (carry << (BITS_PER_LONG - 1));
230 }
231 }
232
233 dst[first / BITS_PER_LONG] &= ~0UL << (first % BITS_PER_LONG);
234 dst[first / BITS_PER_LONG] |= keep;
235 }
236 EXPORT_SYMBOL(bitmap_cut);
237
238 int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
239 const unsigned long *bitmap2, unsigned int bits)
240 {
241 unsigned int k;
242 unsigned int lim = bits/BITS_PER_LONG;
243 unsigned long result = 0;
244
245 for (k = 0; k < lim; k++)
246 result |= (dst[k] = bitmap1[k] & bitmap2[k]);
247 if (bits % BITS_PER_LONG)
248 result |= (dst[k] = bitmap1[k] & bitmap2[k] &
249 BITMAP_LAST_WORD_MASK(bits));
250 return result != 0;
251 }
252 EXPORT_SYMBOL(__bitmap_and);
253
254 void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
255 const unsigned long *bitmap2, unsigned int bits)
256 {
257 unsigned int k;
258 unsigned int nr = BITS_TO_LONGS(bits);
259
260 for (k = 0; k < nr; k++)
261 dst[k] = bitmap1[k] | bitmap2[k];
262 }
263 EXPORT_SYMBOL(__bitmap_or);
264
265 void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
266 const unsigned long *bitmap2, unsigned int bits)
267 {
268 unsigned int k;
269 unsigned int nr = BITS_TO_LONGS(bits);
270
271 for (k = 0; k < nr; k++)
272 dst[k] = bitmap1[k] ^ bitmap2[k];
273 }
274 EXPORT_SYMBOL(__bitmap_xor);
275
276 int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
277 const unsigned long *bitmap2, unsigned int bits)
278 {
279 unsigned int k;
280 unsigned int lim = bits/BITS_PER_LONG;
281 unsigned long result = 0;
282
283 for (k = 0; k < lim; k++)
284 result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
285 if (bits % BITS_PER_LONG)
286 result |= (dst[k] = bitmap1[k] & ~bitmap2[k] &
287 BITMAP_LAST_WORD_MASK(bits));
288 return result != 0;
289 }
290 EXPORT_SYMBOL(__bitmap_andnot);
291
292 void __bitmap_replace(unsigned long *dst,
293 const unsigned long *old, const unsigned long *new,
294 const unsigned long *mask, unsigned int nbits)
295 {
296 unsigned int k;
297 unsigned int nr = BITS_TO_LONGS(nbits);
298
299 for (k = 0; k < nr; k++)
300 dst[k] = (old[k] & ~mask[k]) | (new[k] & mask[k]);
301 }
302 EXPORT_SYMBOL(__bitmap_replace);
303
304 int __bitmap_intersects(const unsigned long *bitmap1,
305 const unsigned long *bitmap2, unsigned int bits)
306 {
307 unsigned int k, lim = bits/BITS_PER_LONG;
308 for (k = 0; k < lim; ++k)
309 if (bitmap1[k] & bitmap2[k])
310 return 1;
311
312 if (bits % BITS_PER_LONG)
313 if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
314 return 1;
315 return 0;
316 }
317 EXPORT_SYMBOL(__bitmap_intersects);
318
319 int __bitmap_subset(const unsigned long *bitmap1,
320 const unsigned long *bitmap2, unsigned int bits)
321 {
322 unsigned int k, lim = bits/BITS_PER_LONG;
323 for (k = 0; k < lim; ++k)
324 if (bitmap1[k] & ~bitmap2[k])
325 return 0;
326
327 if (bits % BITS_PER_LONG)
328 if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
329 return 0;
330 return 1;
331 }
332 EXPORT_SYMBOL(__bitmap_subset);
333
334 int __bitmap_weight(const unsigned long *bitmap, unsigned int bits)
335 {
336 unsigned int k, lim = bits/BITS_PER_LONG;
337 int w = 0;
338
339 for (k = 0; k < lim; k++)
340 w += hweight_long(bitmap[k]);
341
342 if (bits % BITS_PER_LONG)
343 w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
344
345 return w;
346 }
347 EXPORT_SYMBOL(__bitmap_weight);
348
349 void __bitmap_set(unsigned long *map, unsigned int start, int len)
350 {
351 unsigned long *p = map + BIT_WORD(start);
352 const unsigned int size = start + len;
353 int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
354 unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
355
356 while (len - bits_to_set >= 0) {
357 *p |= mask_to_set;
358 len -= bits_to_set;
359 bits_to_set = BITS_PER_LONG;
360 mask_to_set = ~0UL;
361 p++;
362 }
363 if (len) {
364 mask_to_set &= BITMAP_LAST_WORD_MASK(size);
365 *p |= mask_to_set;
366 }
367 }
368 EXPORT_SYMBOL(__bitmap_set);
369
370 void __bitmap_clear(unsigned long *map, unsigned int start, int len)
371 {
372 unsigned long *p = map + BIT_WORD(start);
373 const unsigned int size = start + len;
374 int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
375 unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
376
377 while (len - bits_to_clear >= 0) {
378 *p &= ~mask_to_clear;
379 len -= bits_to_clear;
380 bits_to_clear = BITS_PER_LONG;
381 mask_to_clear = ~0UL;
382 p++;
383 }
384 if (len) {
385 mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
386 *p &= ~mask_to_clear;
387 }
388 }
389 EXPORT_SYMBOL(__bitmap_clear);
390
391 /**
392 * bitmap_find_next_zero_area_off - find a contiguous aligned zero area
393 * @map: The address to base the search on
394 * @size: The bitmap size in bits
395 * @start: The bitnumber to start searching at
396 * @nr: The number of zeroed bits we're looking for
397 * @align_mask: Alignment mask for zero area
398 * @align_offset: Alignment offset for zero area.
399 *
400 * The @align_mask should be one less than a power of 2; the effect is that
401 * the bit offset of all zero areas this function finds plus @align_offset
402 * is multiple of that power of 2.
403 */
404 unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
405 unsigned long size,
406 unsigned long start,
407 unsigned int nr,
408 unsigned long align_mask,
409 unsigned long align_offset)
410 {
411 unsigned long index, end, i;
412 again:
413 index = find_next_zero_bit(map, size, start);
414
415 /* Align allocation */
416 index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset;
417
418 end = index + nr;
419 if (end > size)
420 return end;
421 i = find_next_bit(map, end, index);
422 if (i < end) {
423 start = i + 1;
424 goto again;
425 }
426 return index;
427 }
428 EXPORT_SYMBOL(bitmap_find_next_zero_area_off);
429
430 /*
431 * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers,
432 * second version by Paul Jackson, third by Joe Korty.
433 */
434
435 /**
436 * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap
437 *
438 * @ubuf: pointer to user buffer containing string.
439 * @ulen: buffer size in bytes. If string is smaller than this
440 * then it must be terminated with a \0.
441 * @maskp: pointer to bitmap array that will contain result.
442 * @nmaskbits: size of bitmap, in bits.
443 */
444 int bitmap_parse_user(const char __user *ubuf,
445 unsigned int ulen, unsigned long *maskp,
446 int nmaskbits)
447 {
448 char *buf;
449 int ret;
450
451 buf = memdup_user_nul(ubuf, ulen);
452 if (IS_ERR(buf))
453 return PTR_ERR(buf);
454
455 ret = bitmap_parse(buf, UINT_MAX, maskp, nmaskbits);
456
457 kfree(buf);
458 return ret;
459 }
460 EXPORT_SYMBOL(bitmap_parse_user);
461
462 /**
463 * bitmap_print_to_pagebuf - convert bitmap to list or hex format ASCII string
464 * @list: indicates whether the bitmap must be list
465 * @buf: page aligned buffer into which string is placed
466 * @maskp: pointer to bitmap to convert
467 * @nmaskbits: size of bitmap, in bits
468 *
469 * Output format is a comma-separated list of decimal numbers and
470 * ranges if list is specified or hex digits grouped into comma-separated
471 * sets of 8 digits/set. Returns the number of characters written to buf.
472 *
473 * It is assumed that @buf is a pointer into a PAGE_SIZE, page-aligned
474 * area and that sufficient storage remains at @buf to accommodate the
475 * bitmap_print_to_pagebuf() output. Returns the number of characters
476 * actually printed to @buf, excluding terminating '\0'.
477 */
478 int bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp,
479 int nmaskbits)
480 {
481 ptrdiff_t len = PAGE_SIZE - offset_in_page(buf);
482
483 return list ? scnprintf(buf, len, "%*pbl\n", nmaskbits, maskp) :
484 scnprintf(buf, len, "%*pb\n", nmaskbits, maskp);
485 }
486 EXPORT_SYMBOL(bitmap_print_to_pagebuf);
487
488 /*
489 * Region 9-38:4/10 describes the following bitmap structure:
490 * 0 9 12 18 38 N
491 * .........****......****......****..................
492 * ^ ^ ^ ^ ^
493 * start off group_len end nbits
494 */
495 struct region {
496 unsigned int start;
497 unsigned int off;
498 unsigned int group_len;
499 unsigned int end;
500 unsigned int nbits;
501 };
502
503 static void bitmap_set_region(const struct region *r, unsigned long *bitmap)
504 {
505 unsigned int start;
506
507 for (start = r->start; start <= r->end; start += r->group_len)
508 bitmap_set(bitmap, start, min(r->end - start + 1, r->off));
509 }
510
511 static int bitmap_check_region(const struct region *r)
512 {
513 if (r->start > r->end || r->group_len == 0 || r->off > r->group_len)
514 return -EINVAL;
515
516 if (r->end >= r->nbits)
517 return -ERANGE;
518
519 return 0;
520 }
521
522 static const char *bitmap_getnum(const char *str, unsigned int *num,
523 unsigned int lastbit)
524 {
525 unsigned long long n;
526 unsigned int len;
527
528 if (str[0] == 'N') {
529 *num = lastbit;
530 return str + 1;
531 }
532
533 len = _parse_integer(str, 10, &n);
534 if (!len)
535 return ERR_PTR(-EINVAL);
536 if (len & KSTRTOX_OVERFLOW || n != (unsigned int)n)
537 return ERR_PTR(-EOVERFLOW);
538
539 *num = n;
540 return str + len;
541 }
542
543 static inline bool end_of_str(char c)
544 {
545 return c == '\0' || c == '\n';
546 }
547
548 static inline bool __end_of_region(char c)
549 {
550 return isspace(c) || c == ',';
551 }
552
553 static inline bool end_of_region(char c)
554 {
555 return __end_of_region(c) || end_of_str(c);
556 }
557
558 /*
559 * The format allows commas and whitespaces at the beginning
560 * of the region.
561 */
562 static const char *bitmap_find_region(const char *str)
563 {
564 while (__end_of_region(*str))
565 str++;
566
567 return end_of_str(*str) ? NULL : str;
568 }
569
570 static const char *bitmap_find_region_reverse(const char *start, const char *end)
571 {
572 while (start <= end && __end_of_region(*end))
573 end--;
574
575 return end;
576 }
577
578 static const char *bitmap_parse_region(const char *str, struct region *r)
579 {
580 unsigned int lastbit = r->nbits - 1;
581
582 str = bitmap_getnum(str, &r->start, lastbit);
583 if (IS_ERR(str))
584 return str;
585
586 if (end_of_region(*str))
587 goto no_end;
588
589 if (*str != '-')
590 return ERR_PTR(-EINVAL);
591
592 str = bitmap_getnum(str + 1, &r->end, lastbit);
593 if (IS_ERR(str))
594 return str;
595
596 if (end_of_region(*str))
597 goto no_pattern;
598
599 if (*str != ':')
600 return ERR_PTR(-EINVAL);
601
602 str = bitmap_getnum(str + 1, &r->off, lastbit);
603 if (IS_ERR(str))
604 return str;
605
606 if (*str != '/')
607 return ERR_PTR(-EINVAL);
608
609 return bitmap_getnum(str + 1, &r->group_len, lastbit);
610
611 no_end:
612 r->end = r->start;
613 no_pattern:
614 r->off = r->end + 1;
615 r->group_len = r->end + 1;
616
617 return end_of_str(*str) ? NULL : str;
618 }
619
620 /**
621 * bitmap_parselist - convert list format ASCII string to bitmap
622 * @buf: read user string from this buffer; must be terminated
623 * with a \0 or \n.
624 * @maskp: write resulting mask here
625 * @nmaskbits: number of bits in mask to be written
626 *
627 * Input format is a comma-separated list of decimal numbers and
628 * ranges. Consecutively set bits are shown as two hyphen-separated
629 * decimal numbers, the smallest and largest bit numbers set in
630 * the range.
631 * Optionally each range can be postfixed to denote that only parts of it
632 * should be set. The range will divided to groups of specific size.
633 * From each group will be used only defined amount of bits.
634 * Syntax: range:used_size/group_size
635 * Example: 0-1023:2/256 ==> 0,1,256,257,512,513,768,769
636 * The value 'N' can be used as a dynamically substituted token for the
637 * maximum allowed value; i.e (nmaskbits - 1). Keep in mind that it is
638 * dynamic, so if system changes cause the bitmap width to change, such
639 * as more cores in a CPU list, then any ranges using N will also change.
640 *
641 * Returns: 0 on success, -errno on invalid input strings. Error values:
642 *
643 * - ``-EINVAL``: wrong region format
644 * - ``-EINVAL``: invalid character in string
645 * - ``-ERANGE``: bit number specified too large for mask
646 * - ``-EOVERFLOW``: integer overflow in the input parameters
647 */
648 int bitmap_parselist(const char *buf, unsigned long *maskp, int nmaskbits)
649 {
650 struct region r;
651 long ret;
652
653 r.nbits = nmaskbits;
654 bitmap_zero(maskp, r.nbits);
655
656 while (buf) {
657 buf = bitmap_find_region(buf);
658 if (buf == NULL)
659 return 0;
660
661 buf = bitmap_parse_region(buf, &r);
662 if (IS_ERR(buf))
663 return PTR_ERR(buf);
664
665 ret = bitmap_check_region(&r);
666 if (ret)
667 return ret;
668
669 bitmap_set_region(&r, maskp);
670 }
671
672 return 0;
673 }
674 EXPORT_SYMBOL(bitmap_parselist);
675
676
677 /**
678 * bitmap_parselist_user()
679 *
680 * @ubuf: pointer to user buffer containing string.
681 * @ulen: buffer size in bytes. If string is smaller than this
682 * then it must be terminated with a \0.
683 * @maskp: pointer to bitmap array that will contain result.
684 * @nmaskbits: size of bitmap, in bits.
685 *
686 * Wrapper for bitmap_parselist(), providing it with user buffer.
687 */
688 int bitmap_parselist_user(const char __user *ubuf,
689 unsigned int ulen, unsigned long *maskp,
690 int nmaskbits)
691 {
692 char *buf;
693 int ret;
694
695 buf = memdup_user_nul(ubuf, ulen);
696 if (IS_ERR(buf))
697 return PTR_ERR(buf);
698
699 ret = bitmap_parselist(buf, maskp, nmaskbits);
700
701 kfree(buf);
702 return ret;
703 }
704 EXPORT_SYMBOL(bitmap_parselist_user);
705
706 static const char *bitmap_get_x32_reverse(const char *start,
707 const char *end, u32 *num)
708 {
709 u32 ret = 0;
710 int c, i;
711
712 for (i = 0; i < 32; i += 4) {
713 c = hex_to_bin(*end--);
714 if (c < 0)
715 return ERR_PTR(-EINVAL);
716
717 ret |= c << i;
718
719 if (start > end || __end_of_region(*end))
720 goto out;
721 }
722
723 if (hex_to_bin(*end--) >= 0)
724 return ERR_PTR(-EOVERFLOW);
725 out:
726 *num = ret;
727 return end;
728 }
729
730 /**
731 * bitmap_parse - convert an ASCII hex string into a bitmap.
732 * @start: pointer to buffer containing string.
733 * @buflen: buffer size in bytes. If string is smaller than this
734 * then it must be terminated with a \0 or \n. In that case,
735 * UINT_MAX may be provided instead of string length.
736 * @maskp: pointer to bitmap array that will contain result.
737 * @nmaskbits: size of bitmap, in bits.
738 *
739 * Commas group hex digits into chunks. Each chunk defines exactly 32
740 * bits of the resultant bitmask. No chunk may specify a value larger
741 * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
742 * then leading 0-bits are prepended. %-EINVAL is returned for illegal
743 * characters. Grouping such as "1,,5", ",44", "," or "" is allowed.
744 * Leading, embedded and trailing whitespace accepted.
745 */
746 int bitmap_parse(const char *start, unsigned int buflen,
747 unsigned long *maskp, int nmaskbits)
748 {
749 const char *end = strnchrnul(start, buflen, '\n') - 1;
750 int chunks = BITS_TO_U32(nmaskbits);
751 u32 *bitmap = (u32 *)maskp;
752 int unset_bit;
753 int chunk;
754
755 for (chunk = 0; ; chunk++) {
756 end = bitmap_find_region_reverse(start, end);
757 if (start > end)
758 break;
759
760 if (!chunks--)
761 return -EOVERFLOW;
762
763 #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
764 end = bitmap_get_x32_reverse(start, end, &bitmap[chunk ^ 1]);
765 #else
766 end = bitmap_get_x32_reverse(start, end, &bitmap[chunk]);
767 #endif
768 if (IS_ERR(end))
769 return PTR_ERR(end);
770 }
771
772 unset_bit = (BITS_TO_U32(nmaskbits) - chunks) * 32;
773 if (unset_bit < nmaskbits) {
774 bitmap_clear(maskp, unset_bit, nmaskbits - unset_bit);
775 return 0;
776 }
777
778 if (find_next_bit(maskp, unset_bit, nmaskbits) != unset_bit)
779 return -EOVERFLOW;
780
781 return 0;
782 }
783 EXPORT_SYMBOL(bitmap_parse);
784
785
786 #ifdef CONFIG_NUMA
787 /**
788 * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
789 * @buf: pointer to a bitmap
790 * @pos: a bit position in @buf (0 <= @pos < @nbits)
791 * @nbits: number of valid bit positions in @buf
792 *
793 * Map the bit at position @pos in @buf (of length @nbits) to the
794 * ordinal of which set bit it is. If it is not set or if @pos
795 * is not a valid bit position, map to -1.
796 *
797 * If for example, just bits 4 through 7 are set in @buf, then @pos
798 * values 4 through 7 will get mapped to 0 through 3, respectively,
799 * and other @pos values will get mapped to -1. When @pos value 7
800 * gets mapped to (returns) @ord value 3 in this example, that means
801 * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
802 *
803 * The bit positions 0 through @bits are valid positions in @buf.
804 */
805 static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits)
806 {
807 if (pos >= nbits || !test_bit(pos, buf))
808 return -1;
809
810 return __bitmap_weight(buf, pos);
811 }
812
813 /**
814 * bitmap_ord_to_pos - find position of n-th set bit in bitmap
815 * @buf: pointer to bitmap
816 * @ord: ordinal bit position (n-th set bit, n >= 0)
817 * @nbits: number of valid bit positions in @buf
818 *
819 * Map the ordinal offset of bit @ord in @buf to its position in @buf.
820 * Value of @ord should be in range 0 <= @ord < weight(buf). If @ord
821 * >= weight(buf), returns @nbits.
822 *
823 * If for example, just bits 4 through 7 are set in @buf, then @ord
824 * values 0 through 3 will get mapped to 4 through 7, respectively,
825 * and all other @ord values returns @nbits. When @ord value 3
826 * gets mapped to (returns) @pos value 7 in this example, that means
827 * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
828 *
829 * The bit positions 0 through @nbits-1 are valid positions in @buf.
830 */
831 unsigned int bitmap_ord_to_pos(const unsigned long *buf, unsigned int ord, unsigned int nbits)
832 {
833 unsigned int pos;
834
835 for (pos = find_first_bit(buf, nbits);
836 pos < nbits && ord;
837 pos = find_next_bit(buf, nbits, pos + 1))
838 ord--;
839
840 return pos;
841 }
842
843 /**
844 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
845 * @dst: remapped result
846 * @src: subset to be remapped
847 * @old: defines domain of map
848 * @new: defines range of map
849 * @nbits: number of bits in each of these bitmaps
850 *
851 * Let @old and @new define a mapping of bit positions, such that
852 * whatever position is held by the n-th set bit in @old is mapped
853 * to the n-th set bit in @new. In the more general case, allowing
854 * for the possibility that the weight 'w' of @new is less than the
855 * weight of @old, map the position of the n-th set bit in @old to
856 * the position of the m-th set bit in @new, where m == n % w.
857 *
858 * If either of the @old and @new bitmaps are empty, or if @src and
859 * @dst point to the same location, then this routine copies @src
860 * to @dst.
861 *
862 * The positions of unset bits in @old are mapped to themselves
863 * (the identify map).
864 *
865 * Apply the above specified mapping to @src, placing the result in
866 * @dst, clearing any bits previously set in @dst.
867 *
868 * For example, lets say that @old has bits 4 through 7 set, and
869 * @new has bits 12 through 15 set. This defines the mapping of bit
870 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
871 * bit positions unchanged. So if say @src comes into this routine
872 * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
873 * 13 and 15 set.
874 */
875 void bitmap_remap(unsigned long *dst, const unsigned long *src,
876 const unsigned long *old, const unsigned long *new,
877 unsigned int nbits)
878 {
879 unsigned int oldbit, w;
880
881 if (dst == src) /* following doesn't handle inplace remaps */
882 return;
883 bitmap_zero(dst, nbits);
884
885 w = bitmap_weight(new, nbits);
886 for_each_set_bit(oldbit, src, nbits) {
887 int n = bitmap_pos_to_ord(old, oldbit, nbits);
888
889 if (n < 0 || w == 0)
890 set_bit(oldbit, dst); /* identity map */
891 else
892 set_bit(bitmap_ord_to_pos(new, n % w, nbits), dst);
893 }
894 }
895
896 /**
897 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
898 * @oldbit: bit position to be mapped
899 * @old: defines domain of map
900 * @new: defines range of map
901 * @bits: number of bits in each of these bitmaps
902 *
903 * Let @old and @new define a mapping of bit positions, such that
904 * whatever position is held by the n-th set bit in @old is mapped
905 * to the n-th set bit in @new. In the more general case, allowing
906 * for the possibility that the weight 'w' of @new is less than the
907 * weight of @old, map the position of the n-th set bit in @old to
908 * the position of the m-th set bit in @new, where m == n % w.
909 *
910 * The positions of unset bits in @old are mapped to themselves
911 * (the identify map).
912 *
913 * Apply the above specified mapping to bit position @oldbit, returning
914 * the new bit position.
915 *
916 * For example, lets say that @old has bits 4 through 7 set, and
917 * @new has bits 12 through 15 set. This defines the mapping of bit
918 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
919 * bit positions unchanged. So if say @oldbit is 5, then this routine
920 * returns 13.
921 */
922 int bitmap_bitremap(int oldbit, const unsigned long *old,
923 const unsigned long *new, int bits)
924 {
925 int w = bitmap_weight(new, bits);
926 int n = bitmap_pos_to_ord(old, oldbit, bits);
927 if (n < 0 || w == 0)
928 return oldbit;
929 else
930 return bitmap_ord_to_pos(new, n % w, bits);
931 }
932
933 /**
934 * bitmap_onto - translate one bitmap relative to another
935 * @dst: resulting translated bitmap
936 * @orig: original untranslated bitmap
937 * @relmap: bitmap relative to which translated
938 * @bits: number of bits in each of these bitmaps
939 *
940 * Set the n-th bit of @dst iff there exists some m such that the
941 * n-th bit of @relmap is set, the m-th bit of @orig is set, and
942 * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
943 * (If you understood the previous sentence the first time your
944 * read it, you're overqualified for your current job.)
945 *
946 * In other words, @orig is mapped onto (surjectively) @dst,
947 * using the map { <n, m> | the n-th bit of @relmap is the
948 * m-th set bit of @relmap }.
949 *
950 * Any set bits in @orig above bit number W, where W is the
951 * weight of (number of set bits in) @relmap are mapped nowhere.
952 * In particular, if for all bits m set in @orig, m >= W, then
953 * @dst will end up empty. In situations where the possibility
954 * of such an empty result is not desired, one way to avoid it is
955 * to use the bitmap_fold() operator, below, to first fold the
956 * @orig bitmap over itself so that all its set bits x are in the
957 * range 0 <= x < W. The bitmap_fold() operator does this by
958 * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
959 *
960 * Example [1] for bitmap_onto():
961 * Let's say @relmap has bits 30-39 set, and @orig has bits
962 * 1, 3, 5, 7, 9 and 11 set. Then on return from this routine,
963 * @dst will have bits 31, 33, 35, 37 and 39 set.
964 *
965 * When bit 0 is set in @orig, it means turn on the bit in
966 * @dst corresponding to whatever is the first bit (if any)
967 * that is turned on in @relmap. Since bit 0 was off in the
968 * above example, we leave off that bit (bit 30) in @dst.
969 *
970 * When bit 1 is set in @orig (as in the above example), it
971 * means turn on the bit in @dst corresponding to whatever
972 * is the second bit that is turned on in @relmap. The second
973 * bit in @relmap that was turned on in the above example was
974 * bit 31, so we turned on bit 31 in @dst.
975 *
976 * Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
977 * because they were the 4th, 6th, 8th and 10th set bits
978 * set in @relmap, and the 4th, 6th, 8th and 10th bits of
979 * @orig (i.e. bits 3, 5, 7 and 9) were also set.
980 *
981 * When bit 11 is set in @orig, it means turn on the bit in
982 * @dst corresponding to whatever is the twelfth bit that is
983 * turned on in @relmap. In the above example, there were
984 * only ten bits turned on in @relmap (30..39), so that bit
985 * 11 was set in @orig had no affect on @dst.
986 *
987 * Example [2] for bitmap_fold() + bitmap_onto():
988 * Let's say @relmap has these ten bits set::
989 *
990 * 40 41 42 43 45 48 53 61 74 95
991 *
992 * (for the curious, that's 40 plus the first ten terms of the
993 * Fibonacci sequence.)
994 *
995 * Further lets say we use the following code, invoking
996 * bitmap_fold() then bitmap_onto, as suggested above to
997 * avoid the possibility of an empty @dst result::
998 *
999 * unsigned long *tmp; // a temporary bitmap's bits
1000 *
1001 * bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
1002 * bitmap_onto(dst, tmp, relmap, bits);
1003 *
1004 * Then this table shows what various values of @dst would be, for
1005 * various @orig's. I list the zero-based positions of each set bit.
1006 * The tmp column shows the intermediate result, as computed by
1007 * using bitmap_fold() to fold the @orig bitmap modulo ten
1008 * (the weight of @relmap):
1009 *
1010 * =============== ============== =================
1011 * @orig tmp @dst
1012 * 0 0 40
1013 * 1 1 41
1014 * 9 9 95
1015 * 10 0 40 [#f1]_
1016 * 1 3 5 7 1 3 5 7 41 43 48 61
1017 * 0 1 2 3 4 0 1 2 3 4 40 41 42 43 45
1018 * 0 9 18 27 0 9 8 7 40 61 74 95
1019 * 0 10 20 30 0 40
1020 * 0 11 22 33 0 1 2 3 40 41 42 43
1021 * 0 12 24 36 0 2 4 6 40 42 45 53
1022 * 78 102 211 1 2 8 41 42 74 [#f1]_
1023 * =============== ============== =================
1024 *
1025 * .. [#f1]
1026 *
1027 * For these marked lines, if we hadn't first done bitmap_fold()
1028 * into tmp, then the @dst result would have been empty.
1029 *
1030 * If either of @orig or @relmap is empty (no set bits), then @dst
1031 * will be returned empty.
1032 *
1033 * If (as explained above) the only set bits in @orig are in positions
1034 * m where m >= W, (where W is the weight of @relmap) then @dst will
1035 * once again be returned empty.
1036 *
1037 * All bits in @dst not set by the above rule are cleared.
1038 */
1039 void bitmap_onto(unsigned long *dst, const unsigned long *orig,
1040 const unsigned long *relmap, unsigned int bits)
1041 {
1042 unsigned int n, m; /* same meaning as in above comment */
1043
1044 if (dst == orig) /* following doesn't handle inplace mappings */
1045 return;
1046 bitmap_zero(dst, bits);
1047
1048 /*
1049 * The following code is a more efficient, but less
1050 * obvious, equivalent to the loop:
1051 * for (m = 0; m < bitmap_weight(relmap, bits); m++) {
1052 * n = bitmap_ord_to_pos(orig, m, bits);
1053 * if (test_bit(m, orig))
1054 * set_bit(n, dst);
1055 * }
1056 */
1057
1058 m = 0;
1059 for_each_set_bit(n, relmap, bits) {
1060 /* m == bitmap_pos_to_ord(relmap, n, bits) */
1061 if (test_bit(m, orig))
1062 set_bit(n, dst);
1063 m++;
1064 }
1065 }
1066
1067 /**
1068 * bitmap_fold - fold larger bitmap into smaller, modulo specified size
1069 * @dst: resulting smaller bitmap
1070 * @orig: original larger bitmap
1071 * @sz: specified size
1072 * @nbits: number of bits in each of these bitmaps
1073 *
1074 * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
1075 * Clear all other bits in @dst. See further the comment and
1076 * Example [2] for bitmap_onto() for why and how to use this.
1077 */
1078 void bitmap_fold(unsigned long *dst, const unsigned long *orig,
1079 unsigned int sz, unsigned int nbits)
1080 {
1081 unsigned int oldbit;
1082
1083 if (dst == orig) /* following doesn't handle inplace mappings */
1084 return;
1085 bitmap_zero(dst, nbits);
1086
1087 for_each_set_bit(oldbit, orig, nbits)
1088 set_bit(oldbit % sz, dst);
1089 }
1090 #endif /* CONFIG_NUMA */
1091
1092 /*
1093 * Common code for bitmap_*_region() routines.
1094 * bitmap: array of unsigned longs corresponding to the bitmap
1095 * pos: the beginning of the region
1096 * order: region size (log base 2 of number of bits)
1097 * reg_op: operation(s) to perform on that region of bitmap
1098 *
1099 * Can set, verify and/or release a region of bits in a bitmap,
1100 * depending on which combination of REG_OP_* flag bits is set.
1101 *
1102 * A region of a bitmap is a sequence of bits in the bitmap, of
1103 * some size '1 << order' (a power of two), aligned to that same
1104 * '1 << order' power of two.
1105 *
1106 * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
1107 * Returns 0 in all other cases and reg_ops.
1108 */
1109
1110 enum {
1111 REG_OP_ISFREE, /* true if region is all zero bits */
1112 REG_OP_ALLOC, /* set all bits in region */
1113 REG_OP_RELEASE, /* clear all bits in region */
1114 };
1115
1116 static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op)
1117 {
1118 int nbits_reg; /* number of bits in region */
1119 int index; /* index first long of region in bitmap */
1120 int offset; /* bit offset region in bitmap[index] */
1121 int nlongs_reg; /* num longs spanned by region in bitmap */
1122 int nbitsinlong; /* num bits of region in each spanned long */
1123 unsigned long mask; /* bitmask for one long of region */
1124 int i; /* scans bitmap by longs */
1125 int ret = 0; /* return value */
1126
1127 /*
1128 * Either nlongs_reg == 1 (for small orders that fit in one long)
1129 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
1130 */
1131 nbits_reg = 1 << order;
1132 index = pos / BITS_PER_LONG;
1133 offset = pos - (index * BITS_PER_LONG);
1134 nlongs_reg = BITS_TO_LONGS(nbits_reg);
1135 nbitsinlong = min(nbits_reg, BITS_PER_LONG);
1136
1137 /*
1138 * Can't do "mask = (1UL << nbitsinlong) - 1", as that
1139 * overflows if nbitsinlong == BITS_PER_LONG.
1140 */
1141 mask = (1UL << (nbitsinlong - 1));
1142 mask += mask - 1;
1143 mask <<= offset;
1144
1145 switch (reg_op) {
1146 case REG_OP_ISFREE:
1147 for (i = 0; i < nlongs_reg; i++) {
1148 if (bitmap[index + i] & mask)
1149 goto done;
1150 }
1151 ret = 1; /* all bits in region free (zero) */
1152 break;
1153
1154 case REG_OP_ALLOC:
1155 for (i = 0; i < nlongs_reg; i++)
1156 bitmap[index + i] |= mask;
1157 break;
1158
1159 case REG_OP_RELEASE:
1160 for (i = 0; i < nlongs_reg; i++)
1161 bitmap[index + i] &= ~mask;
1162 break;
1163 }
1164 done:
1165 return ret;
1166 }
1167
1168 /**
1169 * bitmap_find_free_region - find a contiguous aligned mem region
1170 * @bitmap: array of unsigned longs corresponding to the bitmap
1171 * @bits: number of bits in the bitmap
1172 * @order: region size (log base 2 of number of bits) to find
1173 *
1174 * Find a region of free (zero) bits in a @bitmap of @bits bits and
1175 * allocate them (set them to one). Only consider regions of length
1176 * a power (@order) of two, aligned to that power of two, which
1177 * makes the search algorithm much faster.
1178 *
1179 * Return the bit offset in bitmap of the allocated region,
1180 * or -errno on failure.
1181 */
1182 int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order)
1183 {
1184 unsigned int pos, end; /* scans bitmap by regions of size order */
1185
1186 for (pos = 0 ; (end = pos + (1U << order)) <= bits; pos = end) {
1187 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1188 continue;
1189 __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1190 return pos;
1191 }
1192 return -ENOMEM;
1193 }
1194 EXPORT_SYMBOL(bitmap_find_free_region);
1195
1196 /**
1197 * bitmap_release_region - release allocated bitmap region
1198 * @bitmap: array of unsigned longs corresponding to the bitmap
1199 * @pos: beginning of bit region to release
1200 * @order: region size (log base 2 of number of bits) to release
1201 *
1202 * This is the complement to __bitmap_find_free_region() and releases
1203 * the found region (by clearing it in the bitmap).
1204 *
1205 * No return value.
1206 */
1207 void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order)
1208 {
1209 __reg_op(bitmap, pos, order, REG_OP_RELEASE);
1210 }
1211 EXPORT_SYMBOL(bitmap_release_region);
1212
1213 /**
1214 * bitmap_allocate_region - allocate bitmap region
1215 * @bitmap: array of unsigned longs corresponding to the bitmap
1216 * @pos: beginning of bit region to allocate
1217 * @order: region size (log base 2 of number of bits) to allocate
1218 *
1219 * Allocate (set bits in) a specified region of a bitmap.
1220 *
1221 * Return 0 on success, or %-EBUSY if specified region wasn't
1222 * free (not all bits were zero).
1223 */
1224 int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order)
1225 {
1226 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1227 return -EBUSY;
1228 return __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1229 }
1230 EXPORT_SYMBOL(bitmap_allocate_region);
1231
1232 /**
1233 * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
1234 * @dst: destination buffer
1235 * @src: bitmap to copy
1236 * @nbits: number of bits in the bitmap
1237 *
1238 * Require nbits % BITS_PER_LONG == 0.
1239 */
1240 #ifdef __BIG_ENDIAN
1241 void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits)
1242 {
1243 unsigned int i;
1244
1245 for (i = 0; i < nbits/BITS_PER_LONG; i++) {
1246 if (BITS_PER_LONG == 64)
1247 dst[i] = cpu_to_le64(src[i]);
1248 else
1249 dst[i] = cpu_to_le32(src[i]);
1250 }
1251 }
1252 EXPORT_SYMBOL(bitmap_copy_le);
1253 #endif
1254
1255 unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags)
1256 {
1257 return kmalloc_array(BITS_TO_LONGS(nbits), sizeof(unsigned long),
1258 flags);
1259 }
1260 EXPORT_SYMBOL(bitmap_alloc);
1261
1262 unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags)
1263 {
1264 return bitmap_alloc(nbits, flags | __GFP_ZERO);
1265 }
1266 EXPORT_SYMBOL(bitmap_zalloc);
1267
1268 void bitmap_free(const unsigned long *bitmap)
1269 {
1270 kfree(bitmap);
1271 }
1272 EXPORT_SYMBOL(bitmap_free);
1273
1274 #if BITS_PER_LONG == 64
1275 /**
1276 * bitmap_from_arr32 - copy the contents of u32 array of bits to bitmap
1277 * @bitmap: array of unsigned longs, the destination bitmap
1278 * @buf: array of u32 (in host byte order), the source bitmap
1279 * @nbits: number of bits in @bitmap
1280 */
1281 void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf, unsigned int nbits)
1282 {
1283 unsigned int i, halfwords;
1284
1285 halfwords = DIV_ROUND_UP(nbits, 32);
1286 for (i = 0; i < halfwords; i++) {
1287 bitmap[i/2] = (unsigned long) buf[i];
1288 if (++i < halfwords)
1289 bitmap[i/2] |= ((unsigned long) buf[i]) << 32;
1290 }
1291
1292 /* Clear tail bits in last word beyond nbits. */
1293 if (nbits % BITS_PER_LONG)
1294 bitmap[(halfwords - 1) / 2] &= BITMAP_LAST_WORD_MASK(nbits);
1295 }
1296 EXPORT_SYMBOL(bitmap_from_arr32);
1297
1298 /**
1299 * bitmap_to_arr32 - copy the contents of bitmap to a u32 array of bits
1300 * @buf: array of u32 (in host byte order), the dest bitmap
1301 * @bitmap: array of unsigned longs, the source bitmap
1302 * @nbits: number of bits in @bitmap
1303 */
1304 void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap, unsigned int nbits)
1305 {
1306 unsigned int i, halfwords;
1307
1308 halfwords = DIV_ROUND_UP(nbits, 32);
1309 for (i = 0; i < halfwords; i++) {
1310 buf[i] = (u32) (bitmap[i/2] & UINT_MAX);
1311 if (++i < halfwords)
1312 buf[i] = (u32) (bitmap[i/2] >> 32);
1313 }
1314
1315 /* Clear tail bits in last element of array beyond nbits. */
1316 if (nbits % BITS_PER_LONG)
1317 buf[halfwords - 1] &= (u32) (UINT_MAX >> ((-nbits) & 31));
1318 }
1319 EXPORT_SYMBOL(bitmap_to_arr32);
1320
1321 #endif