]> git.proxmox.com Git - mirror_ovs.git/blob - lib/ccmap.c
tests: windows ovsdb online compact
[mirror_ovs.git] / lib / ccmap.c
1 /*
2 * Copyright (c) 2014, 2016 Nicira, Inc.
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at:
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <config.h>
18 #include "ccmap.h"
19 #include "coverage.h"
20 #include "bitmap.h"
21 #include "hash.h"
22 #include "ovs-rcu.h"
23 #include "random.h"
24 #include "util.h"
25
26 COVERAGE_DEFINE(ccmap_expand);
27 COVERAGE_DEFINE(ccmap_shrink);
28
29 /* A count-only version of the cmap. */
30
31 /* Allow protected access to the value without atomic semantics. This makes
32 * the exclusive writer somewhat faster. */
33 typedef union {
34 unsigned long long protected_value;
35 ATOMIC(unsigned long long) atomic_value;
36 } ccmap_node_t;
37 BUILD_ASSERT_DECL(sizeof(ccmap_node_t) == sizeof(uint64_t));
38
39 static uint64_t
40 ccmap_node_get(const ccmap_node_t *node)
41 {
42 uint64_t value;
43
44 atomic_read_relaxed(&CONST_CAST(ccmap_node_t *, node)->atomic_value,
45 &value);
46
47 return value;
48 }
49
50 /* It is safe to allow compiler optimize reads by the exclusive writer. */
51 static uint64_t
52 ccmap_node_get_protected(const ccmap_node_t *node)
53 {
54 return node->protected_value;
55 }
56
57 static void
58 ccmap_node_set_protected(ccmap_node_t *node, uint64_t value)
59 {
60 atomic_store_relaxed(&node->atomic_value, value);
61 }
62
63 static uint64_t
64 ccmap_node(uint32_t count, uint32_t hash)
65 {
66 return (uint64_t)count << 32 | hash;
67 }
68
69 static uint32_t
70 ccmap_node_hash(uint64_t node)
71 {
72 return node;
73 }
74
75 static uint32_t
76 ccmap_node_count(uint64_t node)
77 {
78 return node >> 32;
79 }
80
81 /* Number of nodes per bucket. */
82 #define CCMAP_K (CACHE_LINE_SIZE / sizeof(ccmap_node_t))
83
84 /* A cuckoo hash bucket. Designed to be cache-aligned and exactly one cache
85 * line long. */
86 struct ccmap_bucket {
87 /* Each node incudes both the hash (low 32-bits) and the count (high
88 * 32-bits), allowing readers always getting a consistent pair. */
89 ccmap_node_t nodes[CCMAP_K];
90 };
91 BUILD_ASSERT_DECL(sizeof(struct ccmap_bucket) == CACHE_LINE_SIZE);
92
93 /* Default maximum load factor (as a fraction of UINT32_MAX + 1) before
94 * enlarging a ccmap. Reasonable values lie between about 75% and 93%. Smaller
95 * values waste memory; larger values increase the average insertion time. */
96 #define CCMAP_MAX_LOAD ((uint32_t) (UINT32_MAX * .85))
97
98 /* Default minimum load factor (as a fraction of UINT32_MAX + 1) before
99 * shrinking a ccmap. Currently, the value is chosen to be 20%, this
100 * means ccmap will have a 40% load factor after shrink. */
101 #define CCMAP_MIN_LOAD ((uint32_t) (UINT32_MAX * .20))
102
103 /* The implementation of a concurrent hash map. */
104 struct ccmap_impl {
105 unsigned int n_unique; /* Number of in-use nodes. */
106 unsigned int n; /* Number of hashes inserted. */
107 unsigned int max_n; /* Max nodes before enlarging. */
108 unsigned int min_n; /* Min nodes before shrinking. */
109 uint32_t mask; /* Number of 'buckets', minus one. */
110 uint32_t basis; /* Basis for rehashing client's hash values. */
111
112 /* Padding to make ccmap_impl exactly one cache line long. */
113 uint8_t pad[CACHE_LINE_SIZE - sizeof(unsigned int) * 6];
114
115 struct ccmap_bucket buckets[];
116 };
117 BUILD_ASSERT_DECL(sizeof(struct ccmap_impl) == CACHE_LINE_SIZE);
118
119 static struct ccmap_impl *ccmap_rehash(struct ccmap *, uint32_t mask);
120
121 /* Given a rehashed value 'hash', returns the other hash for that rehashed
122 * value. This is symmetric: other_hash(other_hash(x)) == x. (See also "Hash
123 * Functions" at the top of cmap.c.) */
124 static uint32_t
125 other_hash(uint32_t hash)
126 {
127 return (hash << 16) | (hash >> 16);
128 }
129
130 /* Returns the rehashed value for 'hash' within 'impl'. (See also "Hash
131 * Functions" at the top of this file.) */
132 static uint32_t
133 rehash(const struct ccmap_impl *impl, uint32_t hash)
134 {
135 return hash_finish(impl->basis, hash);
136 }
137
138 static struct ccmap_impl *
139 ccmap_get_impl(const struct ccmap *ccmap)
140 {
141 return ovsrcu_get(struct ccmap_impl *, &ccmap->impl);
142 }
143
144 static uint32_t
145 calc_max_n(uint32_t mask)
146 {
147 return ((uint64_t) (mask + 1) * CCMAP_K * CCMAP_MAX_LOAD) >> 32;
148 }
149
150 static uint32_t
151 calc_min_n(uint32_t mask)
152 {
153 return ((uint64_t) (mask + 1) * CCMAP_K * CCMAP_MIN_LOAD) >> 32;
154 }
155
156 static struct ccmap_impl *
157 ccmap_impl_create(uint32_t mask)
158 {
159 struct ccmap_impl *impl;
160
161 ovs_assert(is_pow2(mask + 1));
162
163 impl = xzalloc_cacheline(sizeof *impl
164 + (mask + 1) * sizeof *impl->buckets);
165 impl->n_unique = 0;
166 impl->n = 0;
167 impl->max_n = calc_max_n(mask);
168 impl->min_n = calc_min_n(mask);
169 impl->mask = mask;
170 impl->basis = random_uint32();
171
172 return impl;
173 }
174
175 /* Initializes 'ccmap' as an empty concurrent hash map. */
176 void
177 ccmap_init(struct ccmap *ccmap)
178 {
179 ovsrcu_set(&ccmap->impl, ccmap_impl_create(0));
180 }
181
182 /* Destroys 'ccmap'.
183 *
184 * The client is responsible for destroying any data previously held in
185 * 'ccmap'. */
186 void
187 ccmap_destroy(struct ccmap *ccmap)
188 {
189 if (ccmap) {
190 ovsrcu_postpone(free_cacheline, ccmap_get_impl(ccmap));
191 }
192 }
193
194 /* Returns the number of hashes inserted in 'ccmap', including duplicates. */
195 size_t
196 ccmap_count(const struct ccmap *ccmap)
197 {
198 return ccmap_get_impl(ccmap)->n;
199 }
200
201 /* Returns true if 'ccmap' is empty, false otherwise. */
202 bool
203 ccmap_is_empty(const struct ccmap *ccmap)
204 {
205 return ccmap_count(ccmap) == 0;
206 }
207
208 /* returns 0 if not found. Map does not contain zero counts. */
209 static uint32_t
210 ccmap_find_in_bucket(const struct ccmap_bucket *bucket, uint32_t hash)
211 {
212 for (int i = 0; i < CCMAP_K; i++) {
213 uint64_t node = ccmap_node_get(&bucket->nodes[i]);
214
215 if (ccmap_node_hash(node) == hash) {
216 return ccmap_node_count(node);
217 }
218 }
219 return 0;
220 }
221
222 /* Searches 'ccmap' for a node with the specified 'hash'. If one is
223 * found, returns the count associated with it, otherwise zero.
224 */
225 uint32_t
226 ccmap_find(const struct ccmap *ccmap, uint32_t hash)
227 {
228 const struct ccmap_impl *impl = ccmap_get_impl(ccmap);
229 uint32_t h = rehash(impl, hash);
230 uint32_t count;
231
232 count = ccmap_find_in_bucket(&impl->buckets[h & impl->mask], hash);
233 if (!count) {
234 h = other_hash(h);
235 count = ccmap_find_in_bucket(&impl->buckets[h & impl->mask], hash);
236 }
237 return count;
238 }
239
240 static int
241 ccmap_find_slot_protected(struct ccmap_bucket *b, uint32_t hash,
242 uint32_t *count)
243 {
244 for (int i = 0; i < CCMAP_K; i++) {
245 uint64_t node = ccmap_node_get_protected(&b->nodes[i]);
246
247 *count = ccmap_node_count(node);
248 if (ccmap_node_hash(node) == hash && *count) {
249 return i;
250 }
251 }
252 return -1;
253 }
254
255 static int
256 ccmap_find_empty_slot_protected(struct ccmap_bucket *b)
257 {
258 for (int i = 0; i < CCMAP_K; i++) {
259 uint64_t node = ccmap_node_get_protected(&b->nodes[i]);
260
261 if (!ccmap_node_count(node)) {
262 return i;
263 }
264 }
265 return -1;
266 }
267
268 static void
269 ccmap_set_bucket(struct ccmap_bucket *b, int i, uint32_t count, uint32_t hash)
270 {
271 ccmap_node_set_protected(&b->nodes[i], ccmap_node(count, hash));
272 }
273
274 /* Searches 'b' for a node with the given 'hash'. If it finds one, increments
275 * the associated count by 'inc' and returns the new value. Otherwise returns
276 * 0. */
277 static uint32_t
278 ccmap_inc_bucket_existing(struct ccmap_bucket *b, uint32_t hash, uint32_t inc)
279 {
280 uint32_t count;
281
282 int i = ccmap_find_slot_protected(b, hash, &count);
283 if (i < 0) {
284 return 0;
285 }
286 count += inc;
287 ccmap_set_bucket(b, i, count, hash);
288 return count;
289 }
290
291 /* Searches 'b' for an empty slot. If successful, stores 'inc' and 'hash' in
292 * the slot and returns 'inc'. Otherwise, returns 0. */
293 static uint32_t
294 ccmap_inc_bucket_new(struct ccmap_bucket *b, uint32_t hash, uint32_t inc)
295 {
296 int i = ccmap_find_empty_slot_protected(b);
297 if (i < 0) {
298 return 0;
299 }
300 ccmap_set_bucket(b, i, inc, hash);
301 return inc;
302 }
303
304 /* Returns the other bucket that b->nodes[slot] could occupy in 'impl'. (This
305 * might be the same as 'b'.) */
306 static struct ccmap_bucket *
307 other_bucket_protected(struct ccmap_impl *impl, struct ccmap_bucket *b, int slot)
308 {
309 uint64_t node = ccmap_node_get_protected(&b->nodes[slot]);
310
311 uint32_t h1 = rehash(impl, ccmap_node_hash(node));
312 uint32_t h2 = other_hash(h1);
313 uint32_t b_idx = b - impl->buckets;
314 uint32_t other_h = (h1 & impl->mask) == b_idx ? h2 : h1;
315
316 return &impl->buckets[other_h & impl->mask];
317 }
318
319 /* Count 'inc' for 'hash' is to be inserted into 'impl', but both candidate
320 * buckets 'b1' and 'b2' are full. This function attempts to rearrange buckets
321 * within 'impl' to make room for 'hash'.
322 *
323 * Returns 'inc' if the new count for the 'hash' was inserted, otherwise
324 * returns 0.
325 *
326 * The implementation is a general-purpose breadth-first search. At first
327 * glance, this is more complex than a random walk through 'impl' (suggested by
328 * some references), but random walks have a tendency to loop back through a
329 * single bucket. We have to move nodes backward along the path that we find,
330 * so that no node actually disappears from the hash table, which means a
331 * random walk would have to be careful to deal with loops. By contrast, a
332 * successful breadth-first search always finds a *shortest* path through the
333 * hash table, and a shortest path will never contain loops, so it avoids that
334 * problem entirely.
335 */
336 static uint32_t
337 ccmap_inc_bfs(struct ccmap_impl *impl, uint32_t hash,
338 struct ccmap_bucket *b1, struct ccmap_bucket *b2, uint32_t inc)
339 {
340 enum { MAX_DEPTH = 4 };
341
342 /* A path from 'start' to 'end' via the 'n' steps in 'slots[]'.
343 *
344 * One can follow the path via:
345 *
346 * struct ccmap_bucket *b;
347 * int i;
348 *
349 * b = path->start;
350 * for (i = 0; i < path->n; i++) {
351 * b = other_bucket_protected(impl, b, path->slots[i]);
352 * }
353 * ovs_assert(b == path->end);
354 */
355 struct ccmap_path {
356 struct ccmap_bucket *start; /* First bucket along the path. */
357 struct ccmap_bucket *end; /* Last bucket on the path. */
358 uint8_t slots[MAX_DEPTH]; /* Slots used for each hop. */
359 int n; /* Number of slots[]. */
360 };
361
362 /* We need to limit the amount of work we do trying to find a path. It
363 * might actually be impossible to rearrange the ccmap, and after some time
364 * it is likely to be easier to rehash the entire ccmap.
365 *
366 * This value of MAX_QUEUE is an arbitrary limit suggested by one of the
367 * references. Empirically, it seems to work OK. */
368 enum { MAX_QUEUE = 500 };
369 struct ccmap_path queue[MAX_QUEUE];
370 int head = 0;
371 int tail = 0;
372
373 /* Add 'b1' and 'b2' as starting points for the search. */
374 queue[head].start = b1;
375 queue[head].end = b1;
376 queue[head].n = 0;
377 head++;
378 if (b1 != b2) {
379 queue[head].start = b2;
380 queue[head].end = b2;
381 queue[head].n = 0;
382 head++;
383 }
384
385 while (tail < head) {
386 const struct ccmap_path *path = &queue[tail++];
387 struct ccmap_bucket *this = path->end;
388 int i;
389
390 for (i = 0; i < CCMAP_K; i++) {
391 struct ccmap_bucket *next = other_bucket_protected(impl, this, i);
392 int j;
393
394 if (this == next) {
395 continue;
396 }
397
398 j = ccmap_find_empty_slot_protected(next);
399 if (j >= 0) {
400 /* We've found a path along which we can rearrange the hash
401 * table: Start at path->start, follow all the slots in
402 * path->slots[], then follow slot 'i', then the bucket you
403 * arrive at has slot 'j' empty. */
404 struct ccmap_bucket *buckets[MAX_DEPTH + 2];
405 int slots[MAX_DEPTH + 2];
406 int k;
407
408 /* Figure out the full sequence of slots. */
409 for (k = 0; k < path->n; k++) {
410 slots[k] = path->slots[k];
411 }
412 slots[path->n] = i;
413 slots[path->n + 1] = j;
414
415 /* Figure out the full sequence of buckets. */
416 buckets[0] = path->start;
417 for (k = 0; k <= path->n; k++) {
418 buckets[k + 1] = other_bucket_protected(impl, buckets[k], slots[k]);
419 }
420
421 /* Now the path is fully expressed. One can start from
422 * buckets[0], go via slots[0] to buckets[1], via slots[1] to
423 * buckets[2], and so on.
424 *
425 * Move all the nodes across the path "backward". After each
426 * step some node appears in two buckets. Thus, every node is
427 * always visible to a concurrent search. */
428 for (k = path->n + 1; k > 0; k--) {
429 uint64_t node = ccmap_node_get_protected
430 (&buckets[k - 1]->nodes[slots[k - 1]]);
431 ccmap_node_set_protected(&buckets[k]->nodes[slots[k]],
432 node);
433 }
434
435 /* Finally, insert the count. */
436 ccmap_set_bucket(buckets[0], slots[0], inc, hash);
437
438 return inc;
439 }
440
441 if (path->n < MAX_DEPTH && head < MAX_QUEUE) {
442 struct ccmap_path *new_path = &queue[head++];
443
444 *new_path = *path;
445 new_path->end = next;
446 new_path->slots[new_path->n++] = i;
447 }
448 }
449 }
450
451 return 0;
452 }
453
454 /* Increments the count associated with 'hash', in 'impl', by 'inc'. */
455 static uint32_t
456 ccmap_try_inc(struct ccmap_impl *impl, uint32_t hash, uint32_t inc)
457 {
458 uint32_t h1 = rehash(impl, hash);
459 uint32_t h2 = other_hash(h1);
460 struct ccmap_bucket *b1 = &impl->buckets[h1 & impl->mask];
461 struct ccmap_bucket *b2 = &impl->buckets[h2 & impl->mask];
462 uint32_t count;
463
464 return OVS_UNLIKELY(count = ccmap_inc_bucket_existing(b1, hash, inc))
465 ? count : OVS_UNLIKELY(count = ccmap_inc_bucket_existing(b2, hash, inc))
466 ? count : OVS_LIKELY(count = ccmap_inc_bucket_new(b1, hash, inc))
467 ? count : OVS_LIKELY(count = ccmap_inc_bucket_new(b2, hash, inc))
468 ? count : ccmap_inc_bfs(impl, hash, b1, b2, inc);
469 }
470
471 /* Increments the count of 'hash' values in the 'ccmap'. The caller must
472 * ensure that 'ccmap' cannot change concurrently (from another thread).
473 *
474 * Returns the current count of the given hash value after the incremention. */
475 uint32_t
476 ccmap_inc(struct ccmap *ccmap, uint32_t hash)
477 {
478 struct ccmap_impl *impl = ccmap_get_impl(ccmap);
479 uint32_t count;
480
481 if (OVS_UNLIKELY(impl->n_unique >= impl->max_n)) {
482 COVERAGE_INC(ccmap_expand);
483 impl = ccmap_rehash(ccmap, (impl->mask << 1) | 1);
484 }
485
486 while (OVS_UNLIKELY(!(count = ccmap_try_inc(impl, hash, 1)))) {
487 impl = ccmap_rehash(ccmap, impl->mask);
488 }
489 ++impl->n;
490 if (count == 1) {
491 ++impl->n_unique;
492 }
493 return count;
494 }
495
496 /* Decrement the count associated with 'hash' in the bucket identified by
497 * 'h'. Return the OLD count if successful, or 0. */
498 static uint32_t
499 ccmap_dec__(struct ccmap_impl *impl, uint32_t hash, uint32_t h)
500 {
501 struct ccmap_bucket *b = &impl->buckets[h & impl->mask];
502 uint32_t count;
503
504 int slot = ccmap_find_slot_protected(b, hash, &count);
505 if (slot < 0) {
506 return 0;
507 }
508
509 ccmap_set_bucket(b, slot, count - 1, hash);
510 return count;
511 }
512
513 /* Decrements the count associated with 'hash'. The caller must
514 * ensure that 'ccmap' cannot change concurrently (from another thread).
515 *
516 * Returns the current count related to 'hash' in the ccmap after the
517 * decrement. */
518 uint32_t
519 ccmap_dec(struct ccmap *ccmap, uint32_t hash)
520 {
521 struct ccmap_impl *impl = ccmap_get_impl(ccmap);
522 uint32_t h1 = rehash(impl, hash);
523 uint32_t h2 = other_hash(h1);
524
525 uint32_t old_count = ccmap_dec__(impl, hash, h1);
526 if (!old_count) {
527 old_count = ccmap_dec__(impl, hash, h2);
528 }
529 ovs_assert(old_count);
530
531 old_count--;
532
533 if (old_count == 0) {
534 impl->n_unique--;
535 if (OVS_UNLIKELY(impl->n_unique < impl->min_n)) {
536 COVERAGE_INC(ccmap_shrink);
537 impl = ccmap_rehash(ccmap, impl->mask >> 1);
538 }
539 }
540 impl->n--;
541 return old_count;
542 }
543
544 static bool
545 ccmap_try_rehash(const struct ccmap_impl *old, struct ccmap_impl *new)
546 {
547 const struct ccmap_bucket *b;
548
549 for (b = old->buckets; b <= &old->buckets[old->mask]; b++) {
550 for (int i = 0; i < CCMAP_K; i++) {
551 uint64_t node = ccmap_node_get_protected(&b->nodes[i]);
552 uint32_t count = ccmap_node_count(node);
553
554 if (count && !ccmap_try_inc(new, ccmap_node_hash(node), count)) {
555 return false;
556 }
557 }
558 }
559 return true;
560 }
561
562 static struct ccmap_impl *
563 ccmap_rehash(struct ccmap *ccmap, uint32_t mask)
564 {
565 struct ccmap_impl *old = ccmap_get_impl(ccmap);
566 struct ccmap_impl *new = ccmap_impl_create(mask);
567
568 ovs_assert(old->n_unique < new->max_n);
569
570 while (!ccmap_try_rehash(old, new)) {
571 memset(new->buckets, 0, (mask + 1) * sizeof *new->buckets);
572 new->basis = random_uint32();
573 }
574
575 new->n = old->n;
576 new->n_unique = old->n_unique;
577 ovsrcu_set(&ccmap->impl, new);
578 ovsrcu_postpone(free_cacheline, old);
579
580 return new;
581 }