]> git.proxmox.com Git - mirror_ovs.git/blob - lib/ccmap.c
lldp: increase statsTLVsUnrecognizedTotal on unknown TLV
[mirror_ovs.git] / lib / ccmap.c
1 /*
2 * Copyright (c) 2014, 2016 Nicira, Inc.
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at:
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <config.h>
18 #include "ccmap.h"
19 #include "coverage.h"
20 #include "bitmap.h"
21 #include "hash.h"
22 #include "ovs-rcu.h"
23 #include "random.h"
24 #include "util.h"
25
26 COVERAGE_DEFINE(ccmap_expand);
27 COVERAGE_DEFINE(ccmap_shrink);
28
29 /* A count-only version of the cmap. */
30
31 /* Allow protected access to the value without atomic semantics. This makes
32 * the exclusive writer somewhat faster. */
33 typedef union {
34 unsigned long long protected_value;
35 ATOMIC(unsigned long long) atomic_value;
36 } ccmap_node_t;
37 BUILD_ASSERT_DECL(sizeof(ccmap_node_t) == sizeof(uint64_t));
38
39 static uint64_t
40 ccmap_node_get(const ccmap_node_t *node)
41 {
42 uint64_t value;
43
44 atomic_read_relaxed(&CONST_CAST(ccmap_node_t *, node)->atomic_value,
45 &value);
46
47 return value;
48 }
49
50 /* It is safe to allow compiler optimize reads by the exclusive writer. */
51 static uint64_t
52 ccmap_node_get_protected(const ccmap_node_t *node)
53 {
54 return node->protected_value;
55 }
56
57 static void
58 ccmap_node_set_protected(ccmap_node_t *node, uint64_t value)
59 {
60 atomic_store_relaxed(&node->atomic_value, value);
61 }
62
63 static uint64_t
64 ccmap_node(uint32_t count, uint32_t hash)
65 {
66 return (uint64_t)count << 32 | hash;
67 }
68
69 static uint32_t
70 ccmap_node_hash(uint64_t node)
71 {
72 return node;
73 }
74
75 static uint32_t
76 ccmap_node_count(uint64_t node)
77 {
78 return node >> 32;
79 }
80
81 /* Number of nodes per bucket. */
82 #define CCMAP_K (CACHE_LINE_SIZE / sizeof(ccmap_node_t))
83
84 /* A cuckoo hash bucket. Designed to be cache-aligned and exactly one cache
85 * line long. */
86 struct ccmap_bucket {
87 /* Each node incudes both the hash (low 32-bits) and the count (high
88 * 32-bits), allowing readers always getting a consistent pair. */
89 ccmap_node_t nodes[CCMAP_K];
90 };
91 BUILD_ASSERT_DECL(sizeof(struct ccmap_bucket) == CACHE_LINE_SIZE);
92
93 /* Default maximum load factor (as a fraction of UINT32_MAX + 1) before
94 * enlarging a ccmap. Reasonable values lie between about 75% and 93%. Smaller
95 * values waste memory; larger values increase the average insertion time. */
96 #define CCMAP_MAX_LOAD ((uint32_t) (UINT32_MAX * .85))
97
98 /* Default minimum load factor (as a fraction of UINT32_MAX + 1) before
99 * shrinking a ccmap. Currently, the value is chosen to be 20%, this
100 * means ccmap will have a 40% load factor after shrink. */
101 #define CCMAP_MIN_LOAD ((uint32_t) (UINT32_MAX * .20))
102
103 /* The implementation of a concurrent hash map. */
104 struct ccmap_impl {
105 PADDED_MEMBERS(CACHE_LINE_SIZE,
106 unsigned int n_unique; /* Number of in-use nodes. */
107 unsigned int n; /* Number of hashes inserted. */
108 unsigned int max_n; /* Max nodes before enlarging. */
109 unsigned int min_n; /* Min nodes before shrinking. */
110 uint32_t mask; /* Number of 'buckets', minus one. */
111 uint32_t basis; /* Basis for rehashing client's
112 hash values. */
113 );
114 struct ccmap_bucket buckets[];
115 };
116 BUILD_ASSERT_DECL(sizeof(struct ccmap_impl) == CACHE_LINE_SIZE);
117
118 static struct ccmap_impl *ccmap_rehash(struct ccmap *, uint32_t mask);
119
120 /* Given a rehashed value 'hash', returns the other hash for that rehashed
121 * value. This is symmetric: other_hash(other_hash(x)) == x. (See also "Hash
122 * Functions" at the top of cmap.c.) */
123 static uint32_t
124 other_hash(uint32_t hash)
125 {
126 return (hash << 16) | (hash >> 16);
127 }
128
129 /* Returns the rehashed value for 'hash' within 'impl'. (See also "Hash
130 * Functions" at the top of this file.) */
131 static uint32_t
132 rehash(const struct ccmap_impl *impl, uint32_t hash)
133 {
134 return hash_finish(impl->basis, hash);
135 }
136
137 static struct ccmap_impl *
138 ccmap_get_impl(const struct ccmap *ccmap)
139 {
140 return ovsrcu_get(struct ccmap_impl *, &ccmap->impl);
141 }
142
143 static uint32_t
144 calc_max_n(uint32_t mask)
145 {
146 return ((uint64_t) (mask + 1) * CCMAP_K * CCMAP_MAX_LOAD) >> 32;
147 }
148
149 static uint32_t
150 calc_min_n(uint32_t mask)
151 {
152 return ((uint64_t) (mask + 1) * CCMAP_K * CCMAP_MIN_LOAD) >> 32;
153 }
154
155 static struct ccmap_impl *
156 ccmap_impl_create(uint32_t mask)
157 {
158 struct ccmap_impl *impl;
159
160 ovs_assert(is_pow2(mask + 1));
161
162 impl = xzalloc_cacheline(sizeof *impl
163 + (mask + 1) * sizeof *impl->buckets);
164 impl->n_unique = 0;
165 impl->n = 0;
166 impl->max_n = calc_max_n(mask);
167 impl->min_n = calc_min_n(mask);
168 impl->mask = mask;
169 impl->basis = random_uint32();
170
171 return impl;
172 }
173
174 /* Initializes 'ccmap' as an empty concurrent hash map. */
175 void
176 ccmap_init(struct ccmap *ccmap)
177 {
178 ovsrcu_set(&ccmap->impl, ccmap_impl_create(0));
179 }
180
181 /* Destroys 'ccmap'.
182 *
183 * The client is responsible for destroying any data previously held in
184 * 'ccmap'. */
185 void
186 ccmap_destroy(struct ccmap *ccmap)
187 {
188 if (ccmap) {
189 ovsrcu_postpone(free_cacheline, ccmap_get_impl(ccmap));
190 }
191 }
192
193 /* Returns the number of hashes inserted in 'ccmap', including duplicates. */
194 size_t
195 ccmap_count(const struct ccmap *ccmap)
196 {
197 return ccmap_get_impl(ccmap)->n;
198 }
199
200 /* Returns true if 'ccmap' is empty, false otherwise. */
201 bool
202 ccmap_is_empty(const struct ccmap *ccmap)
203 {
204 return ccmap_count(ccmap) == 0;
205 }
206
207 /* returns 0 if not found. Map does not contain zero counts. */
208 static uint32_t
209 ccmap_find_in_bucket(const struct ccmap_bucket *bucket, uint32_t hash)
210 {
211 for (int i = 0; i < CCMAP_K; i++) {
212 uint64_t node = ccmap_node_get(&bucket->nodes[i]);
213
214 if (ccmap_node_hash(node) == hash) {
215 return ccmap_node_count(node);
216 }
217 }
218 return 0;
219 }
220
221 /* Searches 'ccmap' for a node with the specified 'hash'. If one is
222 * found, returns the count associated with it, otherwise zero.
223 */
224 uint32_t
225 ccmap_find(const struct ccmap *ccmap, uint32_t hash)
226 {
227 const struct ccmap_impl *impl = ccmap_get_impl(ccmap);
228 uint32_t h = rehash(impl, hash);
229 uint32_t count;
230
231 count = ccmap_find_in_bucket(&impl->buckets[h & impl->mask], hash);
232 if (!count) {
233 h = other_hash(h);
234 count = ccmap_find_in_bucket(&impl->buckets[h & impl->mask], hash);
235 }
236 return count;
237 }
238
239 static int
240 ccmap_find_slot_protected(struct ccmap_bucket *b, uint32_t hash,
241 uint32_t *count)
242 {
243 for (int i = 0; i < CCMAP_K; i++) {
244 uint64_t node = ccmap_node_get_protected(&b->nodes[i]);
245
246 *count = ccmap_node_count(node);
247 if (ccmap_node_hash(node) == hash && *count) {
248 return i;
249 }
250 }
251 return -1;
252 }
253
254 static int
255 ccmap_find_empty_slot_protected(struct ccmap_bucket *b)
256 {
257 for (int i = 0; i < CCMAP_K; i++) {
258 uint64_t node = ccmap_node_get_protected(&b->nodes[i]);
259
260 if (!ccmap_node_count(node)) {
261 return i;
262 }
263 }
264 return -1;
265 }
266
267 static void
268 ccmap_set_bucket(struct ccmap_bucket *b, int i, uint32_t count, uint32_t hash)
269 {
270 ccmap_node_set_protected(&b->nodes[i], ccmap_node(count, hash));
271 }
272
273 /* Searches 'b' for a node with the given 'hash'. If it finds one, increments
274 * the associated count by 'inc' and returns the new value. Otherwise returns
275 * 0. */
276 static uint32_t
277 ccmap_inc_bucket_existing(struct ccmap_bucket *b, uint32_t hash, uint32_t inc)
278 {
279 uint32_t count;
280
281 int i = ccmap_find_slot_protected(b, hash, &count);
282 if (i < 0) {
283 return 0;
284 }
285 count += inc;
286 ccmap_set_bucket(b, i, count, hash);
287 return count;
288 }
289
290 /* Searches 'b' for an empty slot. If successful, stores 'inc' and 'hash' in
291 * the slot and returns 'inc'. Otherwise, returns 0. */
292 static uint32_t
293 ccmap_inc_bucket_new(struct ccmap_bucket *b, uint32_t hash, uint32_t inc)
294 {
295 int i = ccmap_find_empty_slot_protected(b);
296 if (i < 0) {
297 return 0;
298 }
299 ccmap_set_bucket(b, i, inc, hash);
300 return inc;
301 }
302
303 /* Returns the other bucket that b->nodes[slot] could occupy in 'impl'. (This
304 * might be the same as 'b'.) */
305 static struct ccmap_bucket *
306 other_bucket_protected(struct ccmap_impl *impl, struct ccmap_bucket *b, int slot)
307 {
308 uint64_t node = ccmap_node_get_protected(&b->nodes[slot]);
309
310 uint32_t h1 = rehash(impl, ccmap_node_hash(node));
311 uint32_t h2 = other_hash(h1);
312 uint32_t b_idx = b - impl->buckets;
313 uint32_t other_h = (h1 & impl->mask) == b_idx ? h2 : h1;
314
315 return &impl->buckets[other_h & impl->mask];
316 }
317
318 /* Count 'inc' for 'hash' is to be inserted into 'impl', but both candidate
319 * buckets 'b1' and 'b2' are full. This function attempts to rearrange buckets
320 * within 'impl' to make room for 'hash'.
321 *
322 * Returns 'inc' if the new count for the 'hash' was inserted, otherwise
323 * returns 0.
324 *
325 * The implementation is a general-purpose breadth-first search. At first
326 * glance, this is more complex than a random walk through 'impl' (suggested by
327 * some references), but random walks have a tendency to loop back through a
328 * single bucket. We have to move nodes backward along the path that we find,
329 * so that no node actually disappears from the hash table, which means a
330 * random walk would have to be careful to deal with loops. By contrast, a
331 * successful breadth-first search always finds a *shortest* path through the
332 * hash table, and a shortest path will never contain loops, so it avoids that
333 * problem entirely.
334 */
335 static uint32_t
336 ccmap_inc_bfs(struct ccmap_impl *impl, uint32_t hash,
337 struct ccmap_bucket *b1, struct ccmap_bucket *b2, uint32_t inc)
338 {
339 enum { MAX_DEPTH = 4 };
340
341 /* A path from 'start' to 'end' via the 'n' steps in 'slots[]'.
342 *
343 * One can follow the path via:
344 *
345 * struct ccmap_bucket *b;
346 * int i;
347 *
348 * b = path->start;
349 * for (i = 0; i < path->n; i++) {
350 * b = other_bucket_protected(impl, b, path->slots[i]);
351 * }
352 * ovs_assert(b == path->end);
353 */
354 struct ccmap_path {
355 struct ccmap_bucket *start; /* First bucket along the path. */
356 struct ccmap_bucket *end; /* Last bucket on the path. */
357 uint8_t slots[MAX_DEPTH]; /* Slots used for each hop. */
358 int n; /* Number of slots[]. */
359 };
360
361 /* We need to limit the amount of work we do trying to find a path. It
362 * might actually be impossible to rearrange the ccmap, and after some time
363 * it is likely to be easier to rehash the entire ccmap.
364 *
365 * This value of MAX_QUEUE is an arbitrary limit suggested by one of the
366 * references. Empirically, it seems to work OK. */
367 enum { MAX_QUEUE = 500 };
368 struct ccmap_path queue[MAX_QUEUE];
369 int head = 0;
370 int tail = 0;
371
372 /* Add 'b1' and 'b2' as starting points for the search. */
373 queue[head].start = b1;
374 queue[head].end = b1;
375 queue[head].n = 0;
376 head++;
377 if (b1 != b2) {
378 queue[head].start = b2;
379 queue[head].end = b2;
380 queue[head].n = 0;
381 head++;
382 }
383
384 while (tail < head) {
385 const struct ccmap_path *path = &queue[tail++];
386 struct ccmap_bucket *this = path->end;
387 int i;
388
389 for (i = 0; i < CCMAP_K; i++) {
390 struct ccmap_bucket *next = other_bucket_protected(impl, this, i);
391 int j;
392
393 if (this == next) {
394 continue;
395 }
396
397 j = ccmap_find_empty_slot_protected(next);
398 if (j >= 0) {
399 /* We've found a path along which we can rearrange the hash
400 * table: Start at path->start, follow all the slots in
401 * path->slots[], then follow slot 'i', then the bucket you
402 * arrive at has slot 'j' empty. */
403 struct ccmap_bucket *buckets[MAX_DEPTH + 2];
404 int slots[MAX_DEPTH + 2];
405 int k;
406
407 /* Figure out the full sequence of slots. */
408 for (k = 0; k < path->n; k++) {
409 slots[k] = path->slots[k];
410 }
411 slots[path->n] = i;
412 slots[path->n + 1] = j;
413
414 /* Figure out the full sequence of buckets. */
415 buckets[0] = path->start;
416 for (k = 0; k <= path->n; k++) {
417 buckets[k + 1] = other_bucket_protected(impl, buckets[k], slots[k]);
418 }
419
420 /* Now the path is fully expressed. One can start from
421 * buckets[0], go via slots[0] to buckets[1], via slots[1] to
422 * buckets[2], and so on.
423 *
424 * Move all the nodes across the path "backward". After each
425 * step some node appears in two buckets. Thus, every node is
426 * always visible to a concurrent search. */
427 for (k = path->n + 1; k > 0; k--) {
428 uint64_t node = ccmap_node_get_protected
429 (&buckets[k - 1]->nodes[slots[k - 1]]);
430 ccmap_node_set_protected(&buckets[k]->nodes[slots[k]],
431 node);
432 }
433
434 /* Finally, insert the count. */
435 ccmap_set_bucket(buckets[0], slots[0], inc, hash);
436
437 return inc;
438 }
439
440 if (path->n < MAX_DEPTH && head < MAX_QUEUE) {
441 struct ccmap_path *new_path = &queue[head++];
442
443 *new_path = *path;
444 new_path->end = next;
445 new_path->slots[new_path->n++] = i;
446 }
447 }
448 }
449
450 return 0;
451 }
452
453 /* Increments the count associated with 'hash', in 'impl', by 'inc'. */
454 static uint32_t
455 ccmap_try_inc(struct ccmap_impl *impl, uint32_t hash, uint32_t inc)
456 {
457 uint32_t h1 = rehash(impl, hash);
458 uint32_t h2 = other_hash(h1);
459 struct ccmap_bucket *b1 = &impl->buckets[h1 & impl->mask];
460 struct ccmap_bucket *b2 = &impl->buckets[h2 & impl->mask];
461 uint32_t count;
462
463 return OVS_UNLIKELY(count = ccmap_inc_bucket_existing(b1, hash, inc))
464 ? count : OVS_UNLIKELY(count = ccmap_inc_bucket_existing(b2, hash, inc))
465 ? count : OVS_LIKELY(count = ccmap_inc_bucket_new(b1, hash, inc))
466 ? count : OVS_LIKELY(count = ccmap_inc_bucket_new(b2, hash, inc))
467 ? count : ccmap_inc_bfs(impl, hash, b1, b2, inc);
468 }
469
470 /* Increments the count of 'hash' values in the 'ccmap'. The caller must
471 * ensure that 'ccmap' cannot change concurrently (from another thread).
472 *
473 * Returns the current count of the given hash value after the incremention. */
474 uint32_t
475 ccmap_inc(struct ccmap *ccmap, uint32_t hash)
476 {
477 struct ccmap_impl *impl = ccmap_get_impl(ccmap);
478 uint32_t count;
479
480 if (OVS_UNLIKELY(impl->n_unique >= impl->max_n)) {
481 COVERAGE_INC(ccmap_expand);
482 impl = ccmap_rehash(ccmap, (impl->mask << 1) | 1);
483 }
484
485 while (OVS_UNLIKELY(!(count = ccmap_try_inc(impl, hash, 1)))) {
486 impl = ccmap_rehash(ccmap, impl->mask);
487 }
488 ++impl->n;
489 if (count == 1) {
490 ++impl->n_unique;
491 }
492 return count;
493 }
494
495 /* Decrement the count associated with 'hash' in the bucket identified by
496 * 'h'. Return the OLD count if successful, or 0. */
497 static uint32_t
498 ccmap_dec__(struct ccmap_impl *impl, uint32_t hash, uint32_t h)
499 {
500 struct ccmap_bucket *b = &impl->buckets[h & impl->mask];
501 uint32_t count;
502
503 int slot = ccmap_find_slot_protected(b, hash, &count);
504 if (slot < 0) {
505 return 0;
506 }
507
508 ccmap_set_bucket(b, slot, count - 1, hash);
509 return count;
510 }
511
512 /* Decrements the count associated with 'hash'. The caller must
513 * ensure that 'ccmap' cannot change concurrently (from another thread).
514 *
515 * Returns the current count related to 'hash' in the ccmap after the
516 * decrement. */
517 uint32_t
518 ccmap_dec(struct ccmap *ccmap, uint32_t hash)
519 {
520 struct ccmap_impl *impl = ccmap_get_impl(ccmap);
521 uint32_t h1 = rehash(impl, hash);
522 uint32_t h2 = other_hash(h1);
523
524 uint32_t old_count = ccmap_dec__(impl, hash, h1);
525 if (!old_count) {
526 old_count = ccmap_dec__(impl, hash, h2);
527 }
528 ovs_assert(old_count);
529
530 old_count--;
531
532 if (old_count == 0) {
533 impl->n_unique--;
534 if (OVS_UNLIKELY(impl->n_unique < impl->min_n)) {
535 COVERAGE_INC(ccmap_shrink);
536 impl = ccmap_rehash(ccmap, impl->mask >> 1);
537 }
538 }
539 impl->n--;
540 return old_count;
541 }
542
543 static bool
544 ccmap_try_rehash(const struct ccmap_impl *old, struct ccmap_impl *new)
545 {
546 const struct ccmap_bucket *b;
547
548 for (b = old->buckets; b <= &old->buckets[old->mask]; b++) {
549 for (int i = 0; i < CCMAP_K; i++) {
550 uint64_t node = ccmap_node_get_protected(&b->nodes[i]);
551 uint32_t count = ccmap_node_count(node);
552
553 if (count && !ccmap_try_inc(new, ccmap_node_hash(node), count)) {
554 return false;
555 }
556 }
557 }
558 return true;
559 }
560
561 static struct ccmap_impl *
562 ccmap_rehash(struct ccmap *ccmap, uint32_t mask)
563 {
564 struct ccmap_impl *old = ccmap_get_impl(ccmap);
565 struct ccmap_impl *new = ccmap_impl_create(mask);
566
567 ovs_assert(old->n_unique < new->max_n);
568
569 while (!ccmap_try_rehash(old, new)) {
570 memset(new->buckets, 0, (mask + 1) * sizeof *new->buckets);
571 new->basis = random_uint32();
572 }
573
574 new->n = old->n;
575 new->n_unique = old->n_unique;
576 ovsrcu_set(&ccmap->impl, new);
577 ovsrcu_postpone(free_cacheline, old);
578
579 return new;
580 }