]> git.proxmox.com Git - ovs.git/blob - lib/classifier.c
5add17588dfed8f31e9d3e1dcfb7ffd448195838
[ovs.git] / lib / classifier.c
1 /*
2 * Copyright (c) 2009, 2010, 2011, 2012 Nicira, Inc.
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at:
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <config.h>
18 #include "classifier.h"
19 #include <assert.h>
20 #include <errno.h>
21 #include <netinet/in.h>
22 #include "byte-order.h"
23 #include "dynamic-string.h"
24 #include "flow.h"
25 #include "hash.h"
26 #include "odp-util.h"
27 #include "ofp-util.h"
28 #include "packets.h"
29
30 static struct cls_table *find_table(const struct classifier *,
31 const struct flow_wildcards *);
32 static struct cls_table *insert_table(struct classifier *,
33 const struct flow_wildcards *);
34
35 static void destroy_table(struct classifier *, struct cls_table *);
36
37 static struct cls_rule *find_match(const struct cls_table *,
38 const struct flow *);
39 static struct cls_rule *find_equal(struct cls_table *, const struct flow *,
40 uint32_t hash);
41 static struct cls_rule *insert_rule(struct cls_table *, struct cls_rule *);
42
43 static bool flow_equal_except(const struct flow *, const struct flow *,
44 const struct flow_wildcards *);
45
46 /* Iterates RULE over HEAD and all of the cls_rules on HEAD->list. */
47 #define FOR_EACH_RULE_IN_LIST(RULE, HEAD) \
48 for ((RULE) = (HEAD); (RULE) != NULL; (RULE) = next_rule_in_list(RULE))
49 #define FOR_EACH_RULE_IN_LIST_SAFE(RULE, NEXT, HEAD) \
50 for ((RULE) = (HEAD); \
51 (RULE) != NULL && ((NEXT) = next_rule_in_list(RULE), true); \
52 (RULE) = (NEXT))
53
54 static struct cls_rule *next_rule_in_list__(struct cls_rule *);
55 static struct cls_rule *next_rule_in_list(struct cls_rule *);
56
57 /* Converts the flow in 'flow' into a cls_rule in 'rule', with the given
58 * 'wildcards' and 'priority'. */
59 void
60 cls_rule_init(const struct flow *flow, const struct flow_wildcards *wildcards,
61 unsigned int priority, struct cls_rule *rule)
62 {
63 rule->flow = *flow;
64 rule->wc = *wildcards;
65 rule->priority = priority;
66 cls_rule_zero_wildcarded_fields(rule);
67 }
68
69 /* Converts the flow in 'flow' into an exact-match cls_rule in 'rule', with the
70 * given 'priority'. (For OpenFlow 1.0, exact-match rule are always highest
71 * priority, so 'priority' should be at least 65535.) */
72 void
73 cls_rule_init_exact(const struct flow *flow,
74 unsigned int priority, struct cls_rule *rule)
75 {
76 rule->flow = *flow;
77 rule->flow.skb_priority = 0;
78 flow_wildcards_init_exact(&rule->wc);
79 rule->priority = priority;
80 }
81
82 /* Initializes 'rule' as a "catch-all" rule that matches every packet, with
83 * priority 'priority'. */
84 void
85 cls_rule_init_catchall(struct cls_rule *rule, unsigned int priority)
86 {
87 memset(&rule->flow, 0, sizeof rule->flow);
88 flow_wildcards_init_catchall(&rule->wc);
89 rule->priority = priority;
90 }
91
92 /* For each bit or field wildcarded in 'rule', sets the corresponding bit or
93 * field in 'flow' to all-0-bits. It is important to maintain this invariant
94 * in a clr_rule that might be inserted into a classifier.
95 *
96 * It is never necessary to call this function directly for a cls_rule that is
97 * initialized or modified only by cls_rule_*() functions. It is useful to
98 * restore the invariant in a cls_rule whose 'wc' member is modified by hand.
99 */
100 void
101 cls_rule_zero_wildcarded_fields(struct cls_rule *rule)
102 {
103 flow_zero_wildcards(&rule->flow, &rule->wc);
104 }
105
106 void
107 cls_rule_set_reg(struct cls_rule *rule, unsigned int reg_idx, uint32_t value)
108 {
109 cls_rule_set_reg_masked(rule, reg_idx, value, UINT32_MAX);
110 }
111
112 void
113 cls_rule_set_reg_masked(struct cls_rule *rule, unsigned int reg_idx,
114 uint32_t value, uint32_t mask)
115 {
116 assert(reg_idx < FLOW_N_REGS);
117 flow_wildcards_set_reg_mask(&rule->wc, reg_idx, mask);
118 rule->flow.regs[reg_idx] = value & mask;
119 }
120
121 void
122 cls_rule_set_metadata(struct cls_rule *rule, ovs_be64 metadata)
123 {
124 cls_rule_set_metadata_masked(rule, metadata, htonll(UINT64_MAX));
125 }
126
127 void
128 cls_rule_set_metadata_masked(struct cls_rule *rule, ovs_be64 metadata,
129 ovs_be64 mask)
130 {
131 rule->wc.metadata_mask = mask;
132 rule->flow.metadata = metadata & mask;
133 }
134
135 void
136 cls_rule_set_tun_id(struct cls_rule *rule, ovs_be64 tun_id)
137 {
138 cls_rule_set_tun_id_masked(rule, tun_id, htonll(UINT64_MAX));
139 }
140
141 void
142 cls_rule_set_tun_id_masked(struct cls_rule *rule,
143 ovs_be64 tun_id, ovs_be64 mask)
144 {
145 rule->wc.tun_id_mask = mask;
146 rule->flow.tun_id = tun_id & mask;
147 }
148
149 void
150 cls_rule_set_in_port(struct cls_rule *rule, uint16_t ofp_port)
151 {
152 rule->wc.wildcards &= ~FWW_IN_PORT;
153 rule->flow.in_port = ofp_port;
154 }
155
156 void
157 cls_rule_set_dl_type(struct cls_rule *rule, ovs_be16 dl_type)
158 {
159 rule->wc.wildcards &= ~FWW_DL_TYPE;
160 rule->flow.dl_type = dl_type;
161 }
162
163 /* Modifies 'value_src' so that the Ethernet address must match
164 * 'value_dst' exactly. 'mask_dst' is set to all 1s */
165 static void
166 cls_rule_set_eth(const uint8_t value_src[ETH_ADDR_LEN],
167 uint8_t value_dst[ETH_ADDR_LEN],
168 uint8_t mask_dst[ETH_ADDR_LEN])
169 {
170 memcpy(value_dst, value_src, ETH_ADDR_LEN);
171 memset(mask_dst, 0xff, ETH_ADDR_LEN);
172 }
173
174 /* Modifies 'value_src' so that the Ethernet address must match
175 * 'value_src' after each byte is ANDed with the appropriate byte in
176 * 'mask_src'. 'mask_dst' is set to 'mask_src' */
177 static void
178 cls_rule_set_eth_masked(const uint8_t value_src[ETH_ADDR_LEN],
179 const uint8_t mask_src[ETH_ADDR_LEN],
180 uint8_t value_dst[ETH_ADDR_LEN],
181 uint8_t mask_dst[ETH_ADDR_LEN])
182 {
183 size_t i;
184
185 for (i = 0; i < ETH_ADDR_LEN; i++) {
186 value_dst[i] = value_src[i] & mask_src[i];
187 mask_dst[i] = mask_src[i];
188 }
189 }
190
191 /* Modifies 'rule' so that the source Ethernet address
192 * must match 'dl_src' exactly. */
193 void
194 cls_rule_set_dl_src(struct cls_rule *rule, const uint8_t dl_src[ETH_ADDR_LEN])
195 {
196 cls_rule_set_eth(dl_src, rule->flow.dl_src, rule->wc.dl_src_mask);
197 }
198
199 /* Modifies 'rule' so that the source Ethernet address
200 * must match 'dl_src' after each byte is ANDed with
201 * the appropriate byte in 'mask'. */
202 void
203 cls_rule_set_dl_src_masked(struct cls_rule *rule,
204 const uint8_t dl_src[ETH_ADDR_LEN],
205 const uint8_t mask[ETH_ADDR_LEN])
206 {
207 cls_rule_set_eth_masked(dl_src, mask,
208 rule->flow.dl_src, rule->wc.dl_src_mask);
209 }
210
211 /* Modifies 'rule' so that the destination Ethernet address
212 * must match 'dl_dst' exactly. */
213 void
214 cls_rule_set_dl_dst(struct cls_rule *rule, const uint8_t dl_dst[ETH_ADDR_LEN])
215 {
216 cls_rule_set_eth(dl_dst, rule->flow.dl_dst, rule->wc.dl_dst_mask);
217 }
218
219 /* Modifies 'rule' so that the destination Ethernet address
220 * must match 'dl_src' after each byte is ANDed with
221 * the appropriate byte in 'mask'. */
222 void
223 cls_rule_set_dl_dst_masked(struct cls_rule *rule,
224 const uint8_t dl_dst[ETH_ADDR_LEN],
225 const uint8_t mask[ETH_ADDR_LEN])
226 {
227 cls_rule_set_eth_masked(dl_dst, mask,
228 rule->flow.dl_dst, rule->wc.dl_dst_mask);
229 }
230
231 void
232 cls_rule_set_dl_tci(struct cls_rule *rule, ovs_be16 tci)
233 {
234 cls_rule_set_dl_tci_masked(rule, tci, htons(0xffff));
235 }
236
237 void
238 cls_rule_set_dl_tci_masked(struct cls_rule *rule, ovs_be16 tci, ovs_be16 mask)
239 {
240 rule->flow.vlan_tci = tci & mask;
241 rule->wc.vlan_tci_mask = mask;
242 }
243
244 /* Modifies 'rule' so that the VLAN VID is wildcarded. If the PCP is already
245 * wildcarded, then 'rule' will match a packet regardless of whether it has an
246 * 802.1Q header or not. */
247 void
248 cls_rule_set_any_vid(struct cls_rule *rule)
249 {
250 if (rule->wc.vlan_tci_mask & htons(VLAN_PCP_MASK)) {
251 rule->wc.vlan_tci_mask &= ~htons(VLAN_VID_MASK);
252 rule->flow.vlan_tci &= ~htons(VLAN_VID_MASK);
253 } else {
254 cls_rule_set_dl_tci_masked(rule, htons(0), htons(0));
255 }
256 }
257
258 /* Modifies 'rule' depending on 'dl_vlan':
259 *
260 * - If 'dl_vlan' is htons(OFP_VLAN_NONE), makes 'rule' match only packets
261 * without an 802.1Q header.
262 *
263 * - Otherwise, makes 'rule' match only packets with an 802.1Q header whose
264 * VID equals the low 12 bits of 'dl_vlan'.
265 */
266 void
267 cls_rule_set_dl_vlan(struct cls_rule *rule, ovs_be16 dl_vlan)
268 {
269 flow_set_dl_vlan(&rule->flow, dl_vlan);
270 if (dl_vlan == htons(OFP10_VLAN_NONE)) {
271 rule->wc.vlan_tci_mask = htons(UINT16_MAX);
272 } else {
273 rule->wc.vlan_tci_mask |= htons(VLAN_VID_MASK | VLAN_CFI);
274 }
275 }
276
277 /* Sets the VLAN VID that 'flow' matches to 'vid', which is interpreted as an
278 * OpenFlow 1.2 "vlan_vid" value, that is, the low 13 bits of 'vlan_tci' (VID
279 * plus CFI). */
280 void
281 cls_rule_set_vlan_vid(struct cls_rule *rule, ovs_be16 vid)
282 {
283 cls_rule_set_vlan_vid_masked(rule, vid, htons(VLAN_VID_MASK | VLAN_CFI));
284 }
285
286
287 /* Sets the VLAN VID that 'flow' matches to 'vid', which is interpreted as an
288 * OpenFlow 1.2 "vlan_vid" value, that is, the low 13 bits of 'vlan_tci' (VID
289 * plus CFI), with the corresponding 'mask'. */
290 void
291 cls_rule_set_vlan_vid_masked(struct cls_rule *rule,
292 ovs_be16 vid, ovs_be16 mask)
293 {
294 ovs_be16 pcp_mask = htons(VLAN_PCP_MASK);
295 ovs_be16 vid_mask = htons(VLAN_VID_MASK | VLAN_CFI);
296
297 mask &= vid_mask;
298 flow_set_vlan_vid(&rule->flow, vid & mask);
299 rule->wc.vlan_tci_mask = mask | (rule->wc.vlan_tci_mask & pcp_mask);
300 }
301
302 /* Modifies 'rule' so that the VLAN PCP is wildcarded. If the VID is already
303 * wildcarded, then 'rule' will match a packet regardless of whether it has an
304 * 802.1Q header or not. */
305 void
306 cls_rule_set_any_pcp(struct cls_rule *rule)
307 {
308 if (rule->wc.vlan_tci_mask & htons(VLAN_VID_MASK)) {
309 rule->wc.vlan_tci_mask &= ~htons(VLAN_PCP_MASK);
310 rule->flow.vlan_tci &= ~htons(VLAN_PCP_MASK);
311 } else {
312 cls_rule_set_dl_tci_masked(rule, htons(0), htons(0));
313 }
314 }
315
316 /* Modifies 'rule' so that it matches only packets with an 802.1Q header whose
317 * PCP equals the low 3 bits of 'dl_vlan_pcp'. */
318 void
319 cls_rule_set_dl_vlan_pcp(struct cls_rule *rule, uint8_t dl_vlan_pcp)
320 {
321 flow_set_vlan_pcp(&rule->flow, dl_vlan_pcp);
322 rule->wc.vlan_tci_mask |= htons(VLAN_CFI | VLAN_PCP_MASK);
323 }
324
325 void
326 cls_rule_set_tp_src(struct cls_rule *rule, ovs_be16 tp_src)
327 {
328 cls_rule_set_tp_src_masked(rule, tp_src, htons(UINT16_MAX));
329 }
330
331 void
332 cls_rule_set_tp_src_masked(struct cls_rule *rule, ovs_be16 port, ovs_be16 mask)
333 {
334 rule->flow.tp_src = port & mask;
335 rule->wc.tp_src_mask = mask;
336 }
337
338 void
339 cls_rule_set_tp_dst(struct cls_rule *rule, ovs_be16 tp_dst)
340 {
341 cls_rule_set_tp_dst_masked(rule, tp_dst, htons(UINT16_MAX));
342 }
343
344 void
345 cls_rule_set_tp_dst_masked(struct cls_rule *rule, ovs_be16 port, ovs_be16 mask)
346 {
347 rule->flow.tp_dst = port & mask;
348 rule->wc.tp_dst_mask = mask;
349 }
350
351 void
352 cls_rule_set_nw_proto(struct cls_rule *rule, uint8_t nw_proto)
353 {
354 rule->wc.wildcards &= ~FWW_NW_PROTO;
355 rule->flow.nw_proto = nw_proto;
356 }
357
358 void
359 cls_rule_set_nw_src(struct cls_rule *rule, ovs_be32 nw_src)
360 {
361 rule->flow.nw_src = nw_src;
362 rule->wc.nw_src_mask = htonl(UINT32_MAX);
363 }
364
365 void
366 cls_rule_set_nw_src_masked(struct cls_rule *rule,
367 ovs_be32 nw_src, ovs_be32 mask)
368 {
369 rule->flow.nw_src = nw_src & mask;
370 rule->wc.nw_src_mask = mask;
371 }
372
373 void
374 cls_rule_set_nw_dst(struct cls_rule *rule, ovs_be32 nw_dst)
375 {
376 rule->flow.nw_dst = nw_dst;
377 rule->wc.nw_dst_mask = htonl(UINT32_MAX);
378 }
379
380 void
381 cls_rule_set_nw_dst_masked(struct cls_rule *rule, ovs_be32 ip, ovs_be32 mask)
382 {
383 rule->flow.nw_dst = ip & mask;
384 rule->wc.nw_dst_mask = mask;
385 }
386
387 void
388 cls_rule_set_nw_dscp(struct cls_rule *rule, uint8_t nw_dscp)
389 {
390 rule->wc.nw_tos_mask |= IP_DSCP_MASK;
391 rule->flow.nw_tos &= ~IP_DSCP_MASK;
392 rule->flow.nw_tos |= nw_dscp & IP_DSCP_MASK;
393 }
394
395 void
396 cls_rule_set_nw_ecn(struct cls_rule *rule, uint8_t nw_ecn)
397 {
398 rule->wc.nw_tos_mask |= IP_ECN_MASK;
399 rule->flow.nw_tos &= ~IP_ECN_MASK;
400 rule->flow.nw_tos |= nw_ecn & IP_ECN_MASK;
401 }
402
403 void
404 cls_rule_set_nw_ttl(struct cls_rule *rule, uint8_t nw_ttl)
405 {
406 rule->wc.nw_ttl_mask = UINT8_MAX;
407 rule->flow.nw_ttl = nw_ttl;
408 }
409
410 void
411 cls_rule_set_nw_frag(struct cls_rule *rule, uint8_t nw_frag)
412 {
413 rule->wc.nw_frag_mask |= FLOW_NW_FRAG_MASK;
414 rule->flow.nw_frag = nw_frag;
415 }
416
417 void
418 cls_rule_set_nw_frag_masked(struct cls_rule *rule,
419 uint8_t nw_frag, uint8_t mask)
420 {
421 rule->flow.nw_frag = nw_frag & mask;
422 rule->wc.nw_frag_mask = mask;
423 }
424
425 void
426 cls_rule_set_icmp_type(struct cls_rule *rule, uint8_t icmp_type)
427 {
428 cls_rule_set_tp_src(rule, htons(icmp_type));
429 }
430
431 void
432 cls_rule_set_icmp_code(struct cls_rule *rule, uint8_t icmp_code)
433 {
434 cls_rule_set_tp_dst(rule, htons(icmp_code));
435 }
436
437 void
438 cls_rule_set_arp_sha(struct cls_rule *rule, const uint8_t sha[ETH_ADDR_LEN])
439 {
440 cls_rule_set_eth(sha, rule->flow.arp_sha, rule->wc.arp_sha_mask);
441 }
442
443 void
444 cls_rule_set_arp_sha_masked(struct cls_rule *rule,
445 const uint8_t arp_sha[ETH_ADDR_LEN],
446 const uint8_t mask[ETH_ADDR_LEN])
447 {
448 cls_rule_set_eth_masked(arp_sha, mask,
449 rule->flow.arp_sha, rule->wc.arp_sha_mask);
450 }
451
452 void
453 cls_rule_set_arp_tha(struct cls_rule *rule, const uint8_t tha[ETH_ADDR_LEN])
454 {
455 cls_rule_set_eth(tha, rule->flow.arp_tha, rule->wc.arp_tha_mask);
456 }
457
458 void
459 cls_rule_set_arp_tha_masked(struct cls_rule *rule,
460 const uint8_t arp_tha[ETH_ADDR_LEN],
461 const uint8_t mask[ETH_ADDR_LEN])
462 {
463 cls_rule_set_eth_masked(arp_tha, mask,
464 rule->flow.arp_tha, rule->wc.arp_tha_mask);
465 }
466
467 void
468 cls_rule_set_ipv6_src(struct cls_rule *rule, const struct in6_addr *src)
469 {
470 rule->flow.ipv6_src = *src;
471 rule->wc.ipv6_src_mask = in6addr_exact;
472 }
473
474 void
475 cls_rule_set_ipv6_src_masked(struct cls_rule *rule, const struct in6_addr *src,
476 const struct in6_addr *mask)
477 {
478 rule->flow.ipv6_src = ipv6_addr_bitand(src, mask);
479 rule->wc.ipv6_src_mask = *mask;
480 }
481
482 void
483 cls_rule_set_ipv6_dst(struct cls_rule *rule, const struct in6_addr *dst)
484 {
485 rule->flow.ipv6_dst = *dst;
486 rule->wc.ipv6_dst_mask = in6addr_exact;
487 }
488
489 void
490 cls_rule_set_ipv6_dst_masked(struct cls_rule *rule, const struct in6_addr *dst,
491 const struct in6_addr *mask)
492 {
493 rule->flow.ipv6_dst = ipv6_addr_bitand(dst, mask);
494 rule->wc.ipv6_dst_mask = *mask;
495 }
496
497 void
498 cls_rule_set_ipv6_label(struct cls_rule *rule, ovs_be32 ipv6_label)
499 {
500 cls_rule_set_ipv6_label_masked(rule, ipv6_label, htonl(UINT32_MAX));
501 }
502
503 void
504 cls_rule_set_ipv6_label_masked(struct cls_rule *rule, ovs_be32 ipv6_label,
505 ovs_be32 mask)
506 {
507 rule->flow.ipv6_label = ipv6_label & mask;
508 rule->wc.ipv6_label_mask = mask;
509 }
510
511 void
512 cls_rule_set_nd_target(struct cls_rule *rule, const struct in6_addr *target)
513 {
514 rule->flow.nd_target = *target;
515 rule->wc.nd_target_mask = in6addr_exact;
516 }
517
518 void
519 cls_rule_set_nd_target_masked(struct cls_rule *rule,
520 const struct in6_addr *target,
521 const struct in6_addr *mask)
522 {
523 rule->flow.nd_target = ipv6_addr_bitand(target, mask);
524 rule->wc.nd_target_mask = *mask;
525 }
526
527 /* Returns true if 'a' and 'b' have the same priority, wildcard the same
528 * fields, and have the same values for fixed fields, otherwise false. */
529 bool
530 cls_rule_equal(const struct cls_rule *a, const struct cls_rule *b)
531 {
532 return (a->priority == b->priority
533 && flow_wildcards_equal(&a->wc, &b->wc)
534 && flow_equal(&a->flow, &b->flow));
535 }
536
537 /* Returns a hash value for the flow, wildcards, and priority in 'rule',
538 * starting from 'basis'. */
539 uint32_t
540 cls_rule_hash(const struct cls_rule *rule, uint32_t basis)
541 {
542 uint32_t h0 = flow_hash(&rule->flow, basis);
543 uint32_t h1 = flow_wildcards_hash(&rule->wc, h0);
544 return hash_int(rule->priority, h1);
545 }
546
547 static void
548 format_eth_masked(struct ds *s, const char *name, const uint8_t eth[6],
549 const uint8_t mask[6])
550 {
551 if (!eth_addr_is_zero(mask)) {
552 ds_put_format(s, "%s=", name);
553 eth_format_masked(eth, mask, s);
554 ds_put_char(s, ',');
555 }
556 }
557
558 static void
559 format_ip_netmask(struct ds *s, const char *name, ovs_be32 ip,
560 ovs_be32 netmask)
561 {
562 if (netmask) {
563 ds_put_format(s, "%s=", name);
564 ip_format_masked(ip, netmask, s);
565 ds_put_char(s, ',');
566 }
567 }
568
569 static void
570 format_ipv6_netmask(struct ds *s, const char *name,
571 const struct in6_addr *addr,
572 const struct in6_addr *netmask)
573 {
574 if (!ipv6_mask_is_any(netmask)) {
575 ds_put_format(s, "%s=", name);
576 print_ipv6_masked(s, addr, netmask);
577 ds_put_char(s, ',');
578 }
579 }
580
581
582 static void
583 format_be16_masked(struct ds *s, const char *name,
584 ovs_be16 value, ovs_be16 mask)
585 {
586 if (mask != htons(0)) {
587 ds_put_format(s, "%s=", name);
588 if (mask == htons(UINT16_MAX)) {
589 ds_put_format(s, "%"PRIu16, ntohs(value));
590 } else {
591 ds_put_format(s, "0x%"PRIx16"/0x%"PRIx16,
592 ntohs(value), ntohs(mask));
593 }
594 ds_put_char(s, ',');
595 }
596 }
597
598 void
599 cls_rule_format(const struct cls_rule *rule, struct ds *s)
600 {
601 const struct flow_wildcards *wc = &rule->wc;
602 size_t start_len = s->length;
603 flow_wildcards_t w = wc->wildcards;
604 const struct flow *f = &rule->flow;
605 bool skip_type = false;
606 bool skip_proto = false;
607
608 int i;
609
610 BUILD_ASSERT_DECL(FLOW_WC_SEQ == 15);
611
612 if (rule->priority != OFP_DEFAULT_PRIORITY) {
613 ds_put_format(s, "priority=%d,", rule->priority);
614 }
615
616 if (!(w & FWW_DL_TYPE)) {
617 skip_type = true;
618 if (f->dl_type == htons(ETH_TYPE_IP)) {
619 if (!(w & FWW_NW_PROTO)) {
620 skip_proto = true;
621 if (f->nw_proto == IPPROTO_ICMP) {
622 ds_put_cstr(s, "icmp,");
623 } else if (f->nw_proto == IPPROTO_TCP) {
624 ds_put_cstr(s, "tcp,");
625 } else if (f->nw_proto == IPPROTO_UDP) {
626 ds_put_cstr(s, "udp,");
627 } else {
628 ds_put_cstr(s, "ip,");
629 skip_proto = false;
630 }
631 } else {
632 ds_put_cstr(s, "ip,");
633 }
634 } else if (f->dl_type == htons(ETH_TYPE_IPV6)) {
635 if (!(w & FWW_NW_PROTO)) {
636 skip_proto = true;
637 if (f->nw_proto == IPPROTO_ICMPV6) {
638 ds_put_cstr(s, "icmp6,");
639 } else if (f->nw_proto == IPPROTO_TCP) {
640 ds_put_cstr(s, "tcp6,");
641 } else if (f->nw_proto == IPPROTO_UDP) {
642 ds_put_cstr(s, "udp6,");
643 } else {
644 ds_put_cstr(s, "ipv6,");
645 skip_proto = false;
646 }
647 } else {
648 ds_put_cstr(s, "ipv6,");
649 }
650 } else if (f->dl_type == htons(ETH_TYPE_ARP)) {
651 ds_put_cstr(s, "arp,");
652 } else {
653 skip_type = false;
654 }
655 }
656 for (i = 0; i < FLOW_N_REGS; i++) {
657 switch (wc->reg_masks[i]) {
658 case 0:
659 break;
660 case UINT32_MAX:
661 ds_put_format(s, "reg%d=0x%"PRIx32",", i, f->regs[i]);
662 break;
663 default:
664 ds_put_format(s, "reg%d=0x%"PRIx32"/0x%"PRIx32",",
665 i, f->regs[i], wc->reg_masks[i]);
666 break;
667 }
668 }
669 switch (wc->tun_id_mask) {
670 case 0:
671 break;
672 case CONSTANT_HTONLL(UINT64_MAX):
673 ds_put_format(s, "tun_id=%#"PRIx64",", ntohll(f->tun_id));
674 break;
675 default:
676 ds_put_format(s, "tun_id=%#"PRIx64"/%#"PRIx64",",
677 ntohll(f->tun_id), ntohll(wc->tun_id_mask));
678 break;
679 }
680 switch (wc->metadata_mask) {
681 case 0:
682 break;
683 case CONSTANT_HTONLL(UINT64_MAX):
684 ds_put_format(s, "metadata=%#"PRIx64",", ntohll(f->metadata));
685 break;
686 default:
687 ds_put_format(s, "metadata=%#"PRIx64"/%#"PRIx64",",
688 ntohll(f->metadata), ntohll(wc->metadata_mask));
689 break;
690 }
691 if (!(w & FWW_IN_PORT)) {
692 ds_put_format(s, "in_port=%"PRIu16",", f->in_port);
693 }
694 if (wc->vlan_tci_mask) {
695 ovs_be16 vid_mask = wc->vlan_tci_mask & htons(VLAN_VID_MASK);
696 ovs_be16 pcp_mask = wc->vlan_tci_mask & htons(VLAN_PCP_MASK);
697 ovs_be16 cfi = wc->vlan_tci_mask & htons(VLAN_CFI);
698
699 if (cfi && f->vlan_tci & htons(VLAN_CFI)
700 && (!vid_mask || vid_mask == htons(VLAN_VID_MASK))
701 && (!pcp_mask || pcp_mask == htons(VLAN_PCP_MASK))
702 && (vid_mask || pcp_mask)) {
703 if (vid_mask) {
704 ds_put_format(s, "dl_vlan=%"PRIu16",",
705 vlan_tci_to_vid(f->vlan_tci));
706 }
707 if (pcp_mask) {
708 ds_put_format(s, "dl_vlan_pcp=%d,",
709 vlan_tci_to_pcp(f->vlan_tci));
710 }
711 } else if (wc->vlan_tci_mask == htons(0xffff)) {
712 ds_put_format(s, "vlan_tci=0x%04"PRIx16",", ntohs(f->vlan_tci));
713 } else {
714 ds_put_format(s, "vlan_tci=0x%04"PRIx16"/0x%04"PRIx16",",
715 ntohs(f->vlan_tci), ntohs(wc->vlan_tci_mask));
716 }
717 }
718 format_eth_masked(s, "dl_src", f->dl_src, wc->dl_src_mask);
719 format_eth_masked(s, "dl_dst", f->dl_dst, wc->dl_dst_mask);
720 if (!skip_type && !(w & FWW_DL_TYPE)) {
721 ds_put_format(s, "dl_type=0x%04"PRIx16",", ntohs(f->dl_type));
722 }
723 if (f->dl_type == htons(ETH_TYPE_IPV6)) {
724 format_ipv6_netmask(s, "ipv6_src", &f->ipv6_src, &wc->ipv6_src_mask);
725 format_ipv6_netmask(s, "ipv6_dst", &f->ipv6_dst, &wc->ipv6_dst_mask);
726 if (wc->ipv6_label_mask) {
727 if (wc->ipv6_label_mask == htonl(UINT32_MAX)) {
728 ds_put_format(s, "ipv6_label=0x%05"PRIx32",",
729 ntohl(f->ipv6_label));
730 } else {
731 ds_put_format(s, "ipv6_label=0x%05"PRIx32"/0x%05"PRIx32",",
732 ntohl(f->ipv6_label),
733 ntohl(wc->ipv6_label_mask));
734 }
735 }
736 } else {
737 format_ip_netmask(s, "nw_src", f->nw_src, wc->nw_src_mask);
738 format_ip_netmask(s, "nw_dst", f->nw_dst, wc->nw_dst_mask);
739 }
740 if (!skip_proto && !(w & FWW_NW_PROTO)) {
741 if (f->dl_type == htons(ETH_TYPE_ARP)) {
742 ds_put_format(s, "arp_op=%"PRIu8",", f->nw_proto);
743 } else {
744 ds_put_format(s, "nw_proto=%"PRIu8",", f->nw_proto);
745 }
746 }
747 if (f->dl_type == htons(ETH_TYPE_ARP)) {
748 format_eth_masked(s, "arp_sha", f->arp_sha, wc->arp_sha_mask);
749 format_eth_masked(s, "arp_tha", f->arp_tha, wc->arp_tha_mask);
750 }
751 if (wc->nw_tos_mask & IP_DSCP_MASK) {
752 ds_put_format(s, "nw_tos=%"PRIu8",", f->nw_tos & IP_DSCP_MASK);
753 }
754 if (wc->nw_tos_mask & IP_ECN_MASK) {
755 ds_put_format(s, "nw_ecn=%"PRIu8",", f->nw_tos & IP_ECN_MASK);
756 }
757 if (wc->nw_ttl_mask) {
758 ds_put_format(s, "nw_ttl=%"PRIu8",", f->nw_ttl);
759 }
760 switch (wc->nw_frag_mask) {
761 case FLOW_NW_FRAG_ANY | FLOW_NW_FRAG_LATER:
762 ds_put_format(s, "nw_frag=%s,",
763 f->nw_frag & FLOW_NW_FRAG_ANY
764 ? (f->nw_frag & FLOW_NW_FRAG_LATER ? "later" : "first")
765 : (f->nw_frag & FLOW_NW_FRAG_LATER ? "<error>" : "no"));
766 break;
767
768 case FLOW_NW_FRAG_ANY:
769 ds_put_format(s, "nw_frag=%s,",
770 f->nw_frag & FLOW_NW_FRAG_ANY ? "yes" : "no");
771 break;
772
773 case FLOW_NW_FRAG_LATER:
774 ds_put_format(s, "nw_frag=%s,",
775 f->nw_frag & FLOW_NW_FRAG_LATER ? "later" : "not_later");
776 break;
777 }
778 if (f->nw_proto == IPPROTO_ICMP) {
779 format_be16_masked(s, "icmp_type", f->tp_src, wc->tp_src_mask);
780 format_be16_masked(s, "icmp_code", f->tp_dst, wc->tp_dst_mask);
781 } else if (f->nw_proto == IPPROTO_ICMPV6) {
782 format_be16_masked(s, "icmp_type", f->tp_src, wc->tp_src_mask);
783 format_be16_masked(s, "icmp_code", f->tp_dst, wc->tp_dst_mask);
784 format_ipv6_netmask(s, "nd_target", &f->nd_target,
785 &wc->nd_target_mask);
786 format_eth_masked(s, "nd_sll", f->arp_sha, wc->arp_sha_mask);
787 format_eth_masked(s, "nd_tll", f->arp_tha, wc->arp_tha_mask);
788 } else {
789 format_be16_masked(s, "tp_src", f->tp_src, wc->tp_src_mask);
790 format_be16_masked(s, "tp_dst", f->tp_dst, wc->tp_dst_mask);
791 }
792
793 if (s->length > start_len && ds_last(s) == ',') {
794 s->length--;
795 }
796 }
797
798 /* Converts 'rule' to a string and returns the string. The caller must free
799 * the string (with free()). */
800 char *
801 cls_rule_to_string(const struct cls_rule *rule)
802 {
803 struct ds s = DS_EMPTY_INITIALIZER;
804 cls_rule_format(rule, &s);
805 return ds_steal_cstr(&s);
806 }
807
808 void
809 cls_rule_print(const struct cls_rule *rule)
810 {
811 char *s = cls_rule_to_string(rule);
812 puts(s);
813 free(s);
814 }
815 \f
816 /* Initializes 'cls' as a classifier that initially contains no classification
817 * rules. */
818 void
819 classifier_init(struct classifier *cls)
820 {
821 cls->n_rules = 0;
822 hmap_init(&cls->tables);
823 }
824
825 /* Destroys 'cls'. Rules within 'cls', if any, are not freed; this is the
826 * caller's responsibility. */
827 void
828 classifier_destroy(struct classifier *cls)
829 {
830 if (cls) {
831 struct cls_table *table, *next_table;
832
833 HMAP_FOR_EACH_SAFE (table, next_table, hmap_node, &cls->tables) {
834 hmap_destroy(&table->rules);
835 hmap_remove(&cls->tables, &table->hmap_node);
836 free(table);
837 }
838 hmap_destroy(&cls->tables);
839 }
840 }
841
842 /* Returns true if 'cls' contains no classification rules, false otherwise. */
843 bool
844 classifier_is_empty(const struct classifier *cls)
845 {
846 return cls->n_rules == 0;
847 }
848
849 /* Returns the number of rules in 'classifier'. */
850 int
851 classifier_count(const struct classifier *cls)
852 {
853 return cls->n_rules;
854 }
855
856 /* Inserts 'rule' into 'cls'. Until 'rule' is removed from 'cls', the caller
857 * must not modify or free it.
858 *
859 * If 'cls' already contains an identical rule (including wildcards, values of
860 * fixed fields, and priority), replaces the old rule by 'rule' and returns the
861 * rule that was replaced. The caller takes ownership of the returned rule and
862 * is thus responsible for freeing it, etc., as necessary.
863 *
864 * Returns NULL if 'cls' does not contain a rule with an identical key, after
865 * inserting the new rule. In this case, no rules are displaced by the new
866 * rule, even rules that cannot have any effect because the new rule matches a
867 * superset of their flows and has higher priority. */
868 struct cls_rule *
869 classifier_replace(struct classifier *cls, struct cls_rule *rule)
870 {
871 struct cls_rule *old_rule;
872 struct cls_table *table;
873
874 table = find_table(cls, &rule->wc);
875 if (!table) {
876 table = insert_table(cls, &rule->wc);
877 }
878
879 old_rule = insert_rule(table, rule);
880 if (!old_rule) {
881 table->n_table_rules++;
882 cls->n_rules++;
883 }
884 return old_rule;
885 }
886
887 /* Inserts 'rule' into 'cls'. Until 'rule' is removed from 'cls', the caller
888 * must not modify or free it.
889 *
890 * 'cls' must not contain an identical rule (including wildcards, values of
891 * fixed fields, and priority). Use classifier_find_rule_exactly() to find
892 * such a rule. */
893 void
894 classifier_insert(struct classifier *cls, struct cls_rule *rule)
895 {
896 struct cls_rule *displaced_rule = classifier_replace(cls, rule);
897 assert(!displaced_rule);
898 }
899
900 /* Removes 'rule' from 'cls'. It is the caller's responsibility to free
901 * 'rule', if this is desirable. */
902 void
903 classifier_remove(struct classifier *cls, struct cls_rule *rule)
904 {
905 struct cls_rule *head;
906 struct cls_table *table;
907
908 table = find_table(cls, &rule->wc);
909 head = find_equal(table, &rule->flow, rule->hmap_node.hash);
910 if (head != rule) {
911 list_remove(&rule->list);
912 } else if (list_is_empty(&rule->list)) {
913 hmap_remove(&table->rules, &rule->hmap_node);
914 } else {
915 struct cls_rule *next = CONTAINER_OF(rule->list.next,
916 struct cls_rule, list);
917
918 list_remove(&rule->list);
919 hmap_replace(&table->rules, &rule->hmap_node, &next->hmap_node);
920 }
921
922 if (--table->n_table_rules == 0) {
923 destroy_table(cls, table);
924 }
925
926 cls->n_rules--;
927 }
928
929 /* Finds and returns the highest-priority rule in 'cls' that matches 'flow'.
930 * Returns a null pointer if no rules in 'cls' match 'flow'. If multiple rules
931 * of equal priority match 'flow', returns one arbitrarily. */
932 struct cls_rule *
933 classifier_lookup(const struct classifier *cls, const struct flow *flow)
934 {
935 struct cls_table *table;
936 struct cls_rule *best;
937
938 best = NULL;
939 HMAP_FOR_EACH (table, hmap_node, &cls->tables) {
940 struct cls_rule *rule = find_match(table, flow);
941 if (rule && (!best || rule->priority > best->priority)) {
942 best = rule;
943 }
944 }
945 return best;
946 }
947
948 /* Finds and returns a rule in 'cls' with exactly the same priority and
949 * matching criteria as 'target'. Returns a null pointer if 'cls' doesn't
950 * contain an exact match. */
951 struct cls_rule *
952 classifier_find_rule_exactly(const struct classifier *cls,
953 const struct cls_rule *target)
954 {
955 struct cls_rule *head, *rule;
956 struct cls_table *table;
957
958 table = find_table(cls, &target->wc);
959 if (!table) {
960 return NULL;
961 }
962
963 head = find_equal(table, &target->flow, flow_hash(&target->flow, 0));
964 FOR_EACH_RULE_IN_LIST (rule, head) {
965 if (target->priority >= rule->priority) {
966 return target->priority == rule->priority ? rule : NULL;
967 }
968 }
969 return NULL;
970 }
971
972 /* Checks if 'target' would overlap any other rule in 'cls'. Two rules are
973 * considered to overlap if both rules have the same priority and a packet
974 * could match both. */
975 bool
976 classifier_rule_overlaps(const struct classifier *cls,
977 const struct cls_rule *target)
978 {
979 struct cls_table *table;
980
981 HMAP_FOR_EACH (table, hmap_node, &cls->tables) {
982 struct flow_wildcards wc;
983 struct cls_rule *head;
984
985 flow_wildcards_combine(&wc, &target->wc, &table->wc);
986 HMAP_FOR_EACH (head, hmap_node, &table->rules) {
987 struct cls_rule *rule;
988
989 FOR_EACH_RULE_IN_LIST (rule, head) {
990 if (rule->priority == target->priority
991 && flow_equal_except(&target->flow, &rule->flow, &wc)) {
992 return true;
993 }
994 }
995 }
996 }
997
998 return false;
999 }
1000
1001 /* Returns true if 'rule' exactly matches 'criteria' or if 'rule' is more
1002 * specific than 'criteria'. That is, 'rule' matches 'criteria' and this
1003 * function returns true if, for every field:
1004 *
1005 * - 'criteria' and 'rule' specify the same (non-wildcarded) value for the
1006 * field, or
1007 *
1008 * - 'criteria' wildcards the field,
1009 *
1010 * Conversely, 'rule' does not match 'criteria' and this function returns false
1011 * if, for at least one field:
1012 *
1013 * - 'criteria' and 'rule' specify different values for the field, or
1014 *
1015 * - 'criteria' specifies a value for the field but 'rule' wildcards it.
1016 *
1017 * Equivalently, the truth table for whether a field matches is:
1018 *
1019 * rule
1020 *
1021 * c wildcard exact
1022 * r +---------+---------+
1023 * i wild | yes | yes |
1024 * t card | | |
1025 * e +---------+---------+
1026 * r exact | no |if values|
1027 * i | |are equal|
1028 * a +---------+---------+
1029 *
1030 * This is the matching rule used by OpenFlow 1.0 non-strict OFPT_FLOW_MOD
1031 * commands and by OpenFlow 1.0 aggregate and flow stats.
1032 *
1033 * Ignores rule->priority and criteria->priority. */
1034 bool
1035 cls_rule_is_loose_match(const struct cls_rule *rule,
1036 const struct cls_rule *criteria)
1037 {
1038 return (!flow_wildcards_has_extra(&rule->wc, &criteria->wc)
1039 && flow_equal_except(&rule->flow, &criteria->flow, &criteria->wc));
1040 }
1041 \f
1042 /* Iteration. */
1043
1044 static bool
1045 rule_matches(const struct cls_rule *rule, const struct cls_rule *target)
1046 {
1047 return (!target
1048 || flow_equal_except(&rule->flow, &target->flow, &target->wc));
1049 }
1050
1051 static struct cls_rule *
1052 search_table(const struct cls_table *table, const struct cls_rule *target)
1053 {
1054 if (!target || !flow_wildcards_has_extra(&table->wc, &target->wc)) {
1055 struct cls_rule *rule;
1056
1057 HMAP_FOR_EACH (rule, hmap_node, &table->rules) {
1058 if (rule_matches(rule, target)) {
1059 return rule;
1060 }
1061 }
1062 }
1063 return NULL;
1064 }
1065
1066 /* Initializes 'cursor' for iterating through rules in 'cls':
1067 *
1068 * - If 'target' is null, the cursor will visit every rule in 'cls'.
1069 *
1070 * - If 'target' is nonnull, the cursor will visit each 'rule' in 'cls'
1071 * such that cls_rule_is_loose_match(rule, target) returns true.
1072 *
1073 * Ignores target->priority. */
1074 void
1075 cls_cursor_init(struct cls_cursor *cursor, const struct classifier *cls,
1076 const struct cls_rule *target)
1077 {
1078 cursor->cls = cls;
1079 cursor->target = target;
1080 }
1081
1082 /* Returns the first matching cls_rule in 'cursor''s iteration, or a null
1083 * pointer if there are no matches. */
1084 struct cls_rule *
1085 cls_cursor_first(struct cls_cursor *cursor)
1086 {
1087 struct cls_table *table;
1088
1089 HMAP_FOR_EACH (table, hmap_node, &cursor->cls->tables) {
1090 struct cls_rule *rule = search_table(table, cursor->target);
1091 if (rule) {
1092 cursor->table = table;
1093 return rule;
1094 }
1095 }
1096
1097 return NULL;
1098 }
1099
1100 /* Returns the next matching cls_rule in 'cursor''s iteration, or a null
1101 * pointer if there are no more matches. */
1102 struct cls_rule *
1103 cls_cursor_next(struct cls_cursor *cursor, struct cls_rule *rule)
1104 {
1105 const struct cls_table *table;
1106 struct cls_rule *next;
1107
1108 next = next_rule_in_list__(rule);
1109 if (next->priority < rule->priority) {
1110 return next;
1111 }
1112
1113 /* 'next' is the head of the list, that is, the rule that is included in
1114 * the table's hmap. (This is important when the classifier contains rules
1115 * that differ only in priority.) */
1116 rule = next;
1117 HMAP_FOR_EACH_CONTINUE (rule, hmap_node, &cursor->table->rules) {
1118 if (rule_matches(rule, cursor->target)) {
1119 return rule;
1120 }
1121 }
1122
1123 table = cursor->table;
1124 HMAP_FOR_EACH_CONTINUE (table, hmap_node, &cursor->cls->tables) {
1125 rule = search_table(table, cursor->target);
1126 if (rule) {
1127 cursor->table = table;
1128 return rule;
1129 }
1130 }
1131
1132 return NULL;
1133 }
1134 \f
1135 static struct cls_table *
1136 find_table(const struct classifier *cls, const struct flow_wildcards *wc)
1137 {
1138 struct cls_table *table;
1139
1140 HMAP_FOR_EACH_IN_BUCKET (table, hmap_node, flow_wildcards_hash(wc, 0),
1141 &cls->tables) {
1142 if (flow_wildcards_equal(wc, &table->wc)) {
1143 return table;
1144 }
1145 }
1146 return NULL;
1147 }
1148
1149 static struct cls_table *
1150 insert_table(struct classifier *cls, const struct flow_wildcards *wc)
1151 {
1152 struct cls_table *table;
1153
1154 table = xzalloc(sizeof *table);
1155 hmap_init(&table->rules);
1156 table->wc = *wc;
1157 table->is_catchall = flow_wildcards_is_catchall(&table->wc);
1158 hmap_insert(&cls->tables, &table->hmap_node, flow_wildcards_hash(wc, 0));
1159
1160 return table;
1161 }
1162
1163 static void
1164 destroy_table(struct classifier *cls, struct cls_table *table)
1165 {
1166 hmap_remove(&cls->tables, &table->hmap_node);
1167 hmap_destroy(&table->rules);
1168 free(table);
1169 }
1170
1171 static struct cls_rule *
1172 find_match(const struct cls_table *table, const struct flow *flow)
1173 {
1174 struct cls_rule *rule;
1175
1176 if (table->is_catchall) {
1177 HMAP_FOR_EACH (rule, hmap_node, &table->rules) {
1178 return rule;
1179 }
1180 } else {
1181 struct flow f;
1182
1183 f = *flow;
1184 flow_zero_wildcards(&f, &table->wc);
1185 HMAP_FOR_EACH_WITH_HASH (rule, hmap_node, flow_hash(&f, 0),
1186 &table->rules) {
1187 if (flow_equal(&f, &rule->flow)) {
1188 return rule;
1189 }
1190 }
1191 }
1192
1193 return NULL;
1194 }
1195
1196 static struct cls_rule *
1197 find_equal(struct cls_table *table, const struct flow *flow, uint32_t hash)
1198 {
1199 struct cls_rule *head;
1200
1201 HMAP_FOR_EACH_WITH_HASH (head, hmap_node, hash, &table->rules) {
1202 if (flow_equal(&head->flow, flow)) {
1203 return head;
1204 }
1205 }
1206 return NULL;
1207 }
1208
1209 static struct cls_rule *
1210 insert_rule(struct cls_table *table, struct cls_rule *new)
1211 {
1212 struct cls_rule *head;
1213
1214 new->hmap_node.hash = flow_hash(&new->flow, 0);
1215
1216 head = find_equal(table, &new->flow, new->hmap_node.hash);
1217 if (!head) {
1218 hmap_insert(&table->rules, &new->hmap_node, new->hmap_node.hash);
1219 list_init(&new->list);
1220 return NULL;
1221 } else {
1222 /* Scan the list for the insertion point that will keep the list in
1223 * order of decreasing priority. */
1224 struct cls_rule *rule;
1225 FOR_EACH_RULE_IN_LIST (rule, head) {
1226 if (new->priority >= rule->priority) {
1227 if (rule == head) {
1228 /* 'new' is the new highest-priority flow in the list. */
1229 hmap_replace(&table->rules,
1230 &rule->hmap_node, &new->hmap_node);
1231 }
1232
1233 if (new->priority == rule->priority) {
1234 list_replace(&new->list, &rule->list);
1235 return rule;
1236 } else {
1237 list_insert(&rule->list, &new->list);
1238 return NULL;
1239 }
1240 }
1241 }
1242
1243 /* Insert 'new' at the end of the list. */
1244 list_push_back(&head->list, &new->list);
1245 return NULL;
1246 }
1247 }
1248
1249 static struct cls_rule *
1250 next_rule_in_list__(struct cls_rule *rule)
1251 {
1252 struct cls_rule *next = OBJECT_CONTAINING(rule->list.next, next, list);
1253 return next;
1254 }
1255
1256 static struct cls_rule *
1257 next_rule_in_list(struct cls_rule *rule)
1258 {
1259 struct cls_rule *next = next_rule_in_list__(rule);
1260 return next->priority < rule->priority ? next : NULL;
1261 }
1262
1263 static bool
1264 ipv6_equal_except(const struct in6_addr *a, const struct in6_addr *b,
1265 const struct in6_addr *mask)
1266 {
1267 int i;
1268
1269 #ifdef s6_addr32
1270 for (i=0; i<4; i++) {
1271 if ((a->s6_addr32[i] ^ b->s6_addr32[i]) & mask->s6_addr32[i]) {
1272 return false;
1273 }
1274 }
1275 #else
1276 for (i=0; i<16; i++) {
1277 if ((a->s6_addr[i] ^ b->s6_addr[i]) & mask->s6_addr[i]) {
1278 return false;
1279 }
1280 }
1281 #endif
1282
1283 return true;
1284 }
1285
1286
1287 static bool
1288 flow_equal_except(const struct flow *a, const struct flow *b,
1289 const struct flow_wildcards *wildcards)
1290 {
1291 const flow_wildcards_t wc = wildcards->wildcards;
1292 int i;
1293
1294 BUILD_ASSERT_DECL(FLOW_WC_SEQ == 15);
1295
1296 for (i = 0; i < FLOW_N_REGS; i++) {
1297 if ((a->regs[i] ^ b->regs[i]) & wildcards->reg_masks[i]) {
1298 return false;
1299 }
1300 }
1301
1302 return (!((a->tun_id ^ b->tun_id) & wildcards->tun_id_mask)
1303 && !((a->metadata ^ b->metadata) & wildcards->metadata_mask)
1304 && !((a->nw_src ^ b->nw_src) & wildcards->nw_src_mask)
1305 && !((a->nw_dst ^ b->nw_dst) & wildcards->nw_dst_mask)
1306 && (wc & FWW_IN_PORT || a->in_port == b->in_port)
1307 && !((a->vlan_tci ^ b->vlan_tci) & wildcards->vlan_tci_mask)
1308 && (wc & FWW_DL_TYPE || a->dl_type == b->dl_type)
1309 && !((a->tp_src ^ b->tp_src) & wildcards->tp_src_mask)
1310 && !((a->tp_dst ^ b->tp_dst) & wildcards->tp_dst_mask)
1311 && eth_addr_equal_except(a->dl_src, b->dl_src,
1312 wildcards->dl_src_mask)
1313 && eth_addr_equal_except(a->dl_dst, b->dl_dst,
1314 wildcards->dl_dst_mask)
1315 && (wc & FWW_NW_PROTO || a->nw_proto == b->nw_proto)
1316 && !((a->nw_ttl ^ b->nw_ttl) & wildcards->nw_ttl_mask)
1317 && !((a->nw_tos ^ b->nw_tos) & wildcards->nw_tos_mask)
1318 && !((a->nw_frag ^ b->nw_frag) & wildcards->nw_frag_mask)
1319 && eth_addr_equal_except(a->arp_sha, b->arp_sha,
1320 wildcards->arp_sha_mask)
1321 && eth_addr_equal_except(a->arp_tha, b->arp_tha,
1322 wildcards->arp_tha_mask)
1323 && !((a->ipv6_label ^ b->ipv6_label) & wildcards->ipv6_label_mask)
1324 && ipv6_equal_except(&a->ipv6_src, &b->ipv6_src,
1325 &wildcards->ipv6_src_mask)
1326 && ipv6_equal_except(&a->ipv6_dst, &b->ipv6_dst,
1327 &wildcards->ipv6_dst_mask)
1328 && ipv6_equal_except(&a->nd_target, &b->nd_target,
1329 &wildcards->nd_target_mask));
1330 }