]> git.proxmox.com Git - mirror_ovs.git/blob - lib/classifier.c
datapath-windows: Correct endianness for deleting zone.
[mirror_ovs.git] / lib / classifier.c
1 /*
2 * Copyright (c) 2009-2017 Nicira, Inc.
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at:
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <config.h>
18 #include "classifier.h"
19 #include "classifier-private.h"
20 #include <errno.h>
21 #include <netinet/in.h>
22 #include "byte-order.h"
23 #include "openvswitch/dynamic-string.h"
24 #include "odp-util.h"
25 #include "openvswitch/ofp-util.h"
26 #include "packets.h"
27 #include "util.h"
28
29 struct trie_ctx;
30
31 /* A collection of "struct cls_conjunction"s currently embedded into a
32 * cls_match. */
33 struct cls_conjunction_set {
34 /* Link back to the cls_match.
35 *
36 * cls_conjunction_set is mostly used during classifier lookup, and, in
37 * turn, during classifier lookup the most used member of
38 * cls_conjunction_set is the rule's priority, so we cache it here for fast
39 * access. */
40 struct cls_match *match;
41 int priority; /* Cached copy of match->priority. */
42
43 /* Conjunction information.
44 *
45 * 'min_n_clauses' allows some optimization during classifier lookup. */
46 unsigned int n; /* Number of elements in 'conj'. */
47 unsigned int min_n_clauses; /* Smallest 'n' among elements of 'conj'. */
48 struct cls_conjunction conj[];
49 };
50
51 /* Ports trie depends on both ports sharing the same ovs_be32. */
52 #define TP_PORTS_OFS32 (offsetof(struct flow, tp_src) / 4)
53 BUILD_ASSERT_DECL(TP_PORTS_OFS32 == offsetof(struct flow, tp_dst) / 4);
54 BUILD_ASSERT_DECL(TP_PORTS_OFS32 % 2 == 0);
55 #define TP_PORTS_OFS64 (TP_PORTS_OFS32 / 2)
56
57 static size_t
58 cls_conjunction_set_size(size_t n)
59 {
60 return (sizeof(struct cls_conjunction_set)
61 + n * sizeof(struct cls_conjunction));
62 }
63
64 static struct cls_conjunction_set *
65 cls_conjunction_set_alloc(struct cls_match *match,
66 const struct cls_conjunction conj[], size_t n)
67 {
68 if (n) {
69 size_t min_n_clauses = conj[0].n_clauses;
70 for (size_t i = 1; i < n; i++) {
71 min_n_clauses = MIN(min_n_clauses, conj[i].n_clauses);
72 }
73
74 struct cls_conjunction_set *set = xmalloc(cls_conjunction_set_size(n));
75 set->match = match;
76 set->priority = match->priority;
77 set->n = n;
78 set->min_n_clauses = min_n_clauses;
79 memcpy(set->conj, conj, n * sizeof *conj);
80 return set;
81 } else {
82 return NULL;
83 }
84 }
85
86 static struct cls_match *
87 cls_match_alloc(const struct cls_rule *rule, ovs_version_t version,
88 const struct cls_conjunction conj[], size_t n)
89 {
90 size_t count = miniflow_n_values(rule->match.flow);
91
92 struct cls_match *cls_match
93 = xmalloc(sizeof *cls_match + MINIFLOW_VALUES_SIZE(count));
94
95 ovsrcu_init(&cls_match->next, NULL);
96 *CONST_CAST(const struct cls_rule **, &cls_match->cls_rule) = rule;
97 *CONST_CAST(int *, &cls_match->priority) = rule->priority;
98 /* Make rule initially invisible. */
99 cls_match->versions = VERSIONS_INITIALIZER(version, version);
100 miniflow_clone(CONST_CAST(struct miniflow *, &cls_match->flow),
101 rule->match.flow, count);
102 ovsrcu_set_hidden(&cls_match->conj_set,
103 cls_conjunction_set_alloc(cls_match, conj, n));
104
105 return cls_match;
106 }
107
108 static struct cls_subtable *find_subtable(const struct classifier *cls,
109 const struct minimask *);
110 static struct cls_subtable *insert_subtable(struct classifier *cls,
111 const struct minimask *);
112 static void destroy_subtable(struct classifier *cls, struct cls_subtable *);
113
114 static const struct cls_match *find_match_wc(const struct cls_subtable *,
115 ovs_version_t version,
116 const struct flow *,
117 struct trie_ctx *,
118 unsigned int n_tries,
119 struct flow_wildcards *);
120 static struct cls_match *find_equal(const struct cls_subtable *,
121 const struct miniflow *, uint32_t hash);
122
123 /* Return the next visible (lower-priority) rule in the list. Multiple
124 * identical rules with the same priority may exist transitionally, but when
125 * versioning is used at most one of them is ever visible for lookups on any
126 * given 'version'. */
127 static inline const struct cls_match *
128 next_visible_rule_in_list(const struct cls_match *rule, ovs_version_t version)
129 {
130 do {
131 rule = cls_match_next(rule);
132 } while (rule && !cls_match_visible_in_version(rule, version));
133
134 return rule;
135 }
136
137 /* Type with maximum supported prefix length. */
138 union trie_prefix {
139 struct in6_addr ipv6; /* For sizing. */
140 ovs_be32 be32; /* For access. */
141 };
142
143 static unsigned int minimask_get_prefix_len(const struct minimask *,
144 const struct mf_field *);
145 static void trie_init(struct classifier *cls, int trie_idx,
146 const struct mf_field *);
147 static unsigned int trie_lookup(const struct cls_trie *, const struct flow *,
148 union trie_prefix *plens);
149 static unsigned int trie_lookup_value(const rcu_trie_ptr *,
150 const ovs_be32 value[], ovs_be32 plens[],
151 unsigned int value_bits);
152 static void trie_destroy(rcu_trie_ptr *);
153 static void trie_insert(struct cls_trie *, const struct cls_rule *, int mlen);
154 static void trie_insert_prefix(rcu_trie_ptr *, const ovs_be32 *prefix,
155 int mlen);
156 static void trie_remove(struct cls_trie *, const struct cls_rule *, int mlen);
157 static void trie_remove_prefix(rcu_trie_ptr *, const ovs_be32 *prefix,
158 int mlen);
159 static void mask_set_prefix_bits(struct flow_wildcards *, uint8_t be32ofs,
160 unsigned int n_bits);
161 static bool mask_prefix_bits_set(const struct flow_wildcards *,
162 uint8_t be32ofs, unsigned int n_bits);
163 \f
164 /* cls_rule. */
165
166 static inline void
167 cls_rule_init__(struct cls_rule *rule, unsigned int priority)
168 {
169 rculist_init(&rule->node);
170 *CONST_CAST(int *, &rule->priority) = priority;
171 ovsrcu_init(&rule->cls_match, NULL);
172 }
173
174 /* Initializes 'rule' to match packets specified by 'match' at the given
175 * 'priority'. 'match' must satisfy the invariant described in the comment at
176 * the definition of struct match.
177 *
178 * The caller must eventually destroy 'rule' with cls_rule_destroy().
179 *
180 * Clients should not use priority INT_MIN. (OpenFlow uses priorities between
181 * 0 and UINT16_MAX, inclusive.) */
182 void
183 cls_rule_init(struct cls_rule *rule, const struct match *match, int priority)
184 {
185 cls_rule_init__(rule, priority);
186 minimatch_init(CONST_CAST(struct minimatch *, &rule->match), match);
187 }
188
189 /* Same as cls_rule_init() for initialization from a "struct minimatch". */
190 void
191 cls_rule_init_from_minimatch(struct cls_rule *rule,
192 const struct minimatch *match, int priority)
193 {
194 cls_rule_init__(rule, priority);
195 minimatch_clone(CONST_CAST(struct minimatch *, &rule->match), match);
196 }
197
198 /* Initializes 'dst' as a copy of 'src'.
199 *
200 * The caller must eventually destroy 'dst' with cls_rule_destroy(). */
201 void
202 cls_rule_clone(struct cls_rule *dst, const struct cls_rule *src)
203 {
204 cls_rule_init__(dst, src->priority);
205 minimatch_clone(CONST_CAST(struct minimatch *, &dst->match), &src->match);
206 }
207
208 /* Initializes 'dst' with the data in 'src', destroying 'src'.
209 *
210 * 'src' must be a cls_rule NOT in a classifier.
211 *
212 * The caller must eventually destroy 'dst' with cls_rule_destroy(). */
213 void
214 cls_rule_move(struct cls_rule *dst, struct cls_rule *src)
215 {
216 cls_rule_init__(dst, src->priority);
217 minimatch_move(CONST_CAST(struct minimatch *, &dst->match),
218 CONST_CAST(struct minimatch *, &src->match));
219 }
220
221 /* Frees memory referenced by 'rule'. Doesn't free 'rule' itself (it's
222 * normally embedded into a larger structure).
223 *
224 * ('rule' must not currently be in a classifier.) */
225 void
226 cls_rule_destroy(struct cls_rule *rule)
227 OVS_NO_THREAD_SAFETY_ANALYSIS
228 {
229 /* Must not be in a classifier. */
230 ovs_assert(!get_cls_match_protected(rule));
231
232 /* Check that the rule has been properly removed from the classifier. */
233 ovs_assert(rule->node.prev == RCULIST_POISON
234 || rculist_is_empty(&rule->node));
235 rculist_poison__(&rule->node); /* Poisons also the next pointer. */
236
237 minimatch_destroy(CONST_CAST(struct minimatch *, &rule->match));
238 }
239
240 /* This may only be called by the exclusive writer. */
241 void
242 cls_rule_set_conjunctions(struct cls_rule *cr,
243 const struct cls_conjunction *conj, size_t n)
244 {
245 struct cls_match *match = get_cls_match_protected(cr);
246 struct cls_conjunction_set *old
247 = ovsrcu_get_protected(struct cls_conjunction_set *, &match->conj_set);
248 struct cls_conjunction *old_conj = old ? old->conj : NULL;
249 unsigned int old_n = old ? old->n : 0;
250
251 if (old_n != n || (n && memcmp(old_conj, conj, n * sizeof *conj))) {
252 if (old) {
253 ovsrcu_postpone(free, old);
254 }
255 ovsrcu_set(&match->conj_set,
256 cls_conjunction_set_alloc(match, conj, n));
257 }
258 }
259
260
261 /* Returns true if 'a' and 'b' match the same packets at the same priority,
262 * false if they differ in some way. */
263 bool
264 cls_rule_equal(const struct cls_rule *a, const struct cls_rule *b)
265 {
266 return a->priority == b->priority && minimatch_equal(&a->match, &b->match);
267 }
268
269 /* Appends a string describing 'rule' to 's'. */
270 void
271 cls_rule_format(const struct cls_rule *rule, const struct tun_table *tun_table,
272 const struct ofputil_port_map *port_map, struct ds *s)
273 {
274 minimatch_format(&rule->match, tun_table, port_map, s, rule->priority);
275 }
276
277 /* Returns true if 'rule' matches every packet, false otherwise. */
278 bool
279 cls_rule_is_catchall(const struct cls_rule *rule)
280 {
281 return minimask_is_catchall(rule->match.mask);
282 }
283
284 /* Makes 'rule' invisible in 'remove_version'. Once that version is used in
285 * lookups, the caller should remove 'rule' via ovsrcu_postpone().
286 *
287 * 'rule' must be in a classifier.
288 * This may only be called by the exclusive writer. */
289 void
290 cls_rule_make_invisible_in_version(const struct cls_rule *rule,
291 ovs_version_t remove_version)
292 {
293 struct cls_match *cls_match = get_cls_match_protected(rule);
294
295 ovs_assert(remove_version >= cls_match->versions.add_version);
296
297 cls_match_set_remove_version(cls_match, remove_version);
298 }
299
300 /* This undoes the change made by cls_rule_make_invisible_in_version().
301 *
302 * 'rule' must be in a classifier.
303 * This may only be called by the exclusive writer. */
304 void
305 cls_rule_restore_visibility(const struct cls_rule *rule)
306 {
307 cls_match_set_remove_version(get_cls_match_protected(rule),
308 OVS_VERSION_NOT_REMOVED);
309 }
310
311 /* Return true if 'rule' is visible in 'version'.
312 *
313 * 'rule' must be in a classifier. */
314 bool
315 cls_rule_visible_in_version(const struct cls_rule *rule, ovs_version_t version)
316 {
317 struct cls_match *cls_match = get_cls_match(rule);
318
319 return cls_match && cls_match_visible_in_version(cls_match, version);
320 }
321 \f
322 /* Initializes 'cls' as a classifier that initially contains no classification
323 * rules. */
324 void
325 classifier_init(struct classifier *cls, const uint8_t *flow_segments)
326 {
327 cls->n_rules = 0;
328 cmap_init(&cls->subtables_map);
329 pvector_init(&cls->subtables);
330 cls->n_flow_segments = 0;
331 if (flow_segments) {
332 while (cls->n_flow_segments < CLS_MAX_INDICES
333 && *flow_segments < FLOW_U64S) {
334 cls->flow_segments[cls->n_flow_segments++] = *flow_segments++;
335 }
336 }
337 cls->n_tries = 0;
338 for (int i = 0; i < CLS_MAX_TRIES; i++) {
339 trie_init(cls, i, NULL);
340 }
341 cls->publish = true;
342 }
343
344 /* Destroys 'cls'. Rules within 'cls', if any, are not freed; this is the
345 * caller's responsibility.
346 * May only be called after all the readers have been terminated. */
347 void
348 classifier_destroy(struct classifier *cls)
349 {
350 if (cls) {
351 struct cls_subtable *subtable;
352 int i;
353
354 for (i = 0; i < cls->n_tries; i++) {
355 trie_destroy(&cls->tries[i].root);
356 }
357
358 CMAP_FOR_EACH (subtable, cmap_node, &cls->subtables_map) {
359 destroy_subtable(cls, subtable);
360 }
361 cmap_destroy(&cls->subtables_map);
362
363 pvector_destroy(&cls->subtables);
364 }
365 }
366
367 /* Set the fields for which prefix lookup should be performed. */
368 bool
369 classifier_set_prefix_fields(struct classifier *cls,
370 const enum mf_field_id *trie_fields,
371 unsigned int n_fields)
372 {
373 const struct mf_field * new_fields[CLS_MAX_TRIES];
374 struct mf_bitmap fields = MF_BITMAP_INITIALIZER;
375 int i, n_tries = 0;
376 bool changed = false;
377
378 for (i = 0; i < n_fields && n_tries < CLS_MAX_TRIES; i++) {
379 const struct mf_field *field = mf_from_id(trie_fields[i]);
380 if (field->flow_be32ofs < 0 || field->n_bits % 32) {
381 /* Incompatible field. This is the only place where we
382 * enforce these requirements, but the rest of the trie code
383 * depends on the flow_be32ofs to be non-negative and the
384 * field length to be a multiple of 32 bits. */
385 continue;
386 }
387
388 if (bitmap_is_set(fields.bm, trie_fields[i])) {
389 /* Duplicate field, there is no need to build more than
390 * one index for any one field. */
391 continue;
392 }
393 bitmap_set1(fields.bm, trie_fields[i]);
394
395 new_fields[n_tries] = NULL;
396 if (n_tries >= cls->n_tries || field != cls->tries[n_tries].field) {
397 new_fields[n_tries] = field;
398 changed = true;
399 }
400 n_tries++;
401 }
402
403 if (changed || n_tries < cls->n_tries) {
404 struct cls_subtable *subtable;
405
406 /* Trie configuration needs to change. Disable trie lookups
407 * for the tries that are changing and wait all the current readers
408 * with the old configuration to be done. */
409 changed = false;
410 CMAP_FOR_EACH (subtable, cmap_node, &cls->subtables_map) {
411 for (i = 0; i < cls->n_tries; i++) {
412 if ((i < n_tries && new_fields[i]) || i >= n_tries) {
413 if (subtable->trie_plen[i]) {
414 subtable->trie_plen[i] = 0;
415 changed = true;
416 }
417 }
418 }
419 }
420 /* Synchronize if any readers were using tries. The readers may
421 * temporarily function without the trie lookup based optimizations. */
422 if (changed) {
423 /* ovsrcu_synchronize() functions as a memory barrier, so it does
424 * not matter that subtable->trie_plen is not atomic. */
425 ovsrcu_synchronize();
426 }
427
428 /* Now set up the tries. */
429 for (i = 0; i < n_tries; i++) {
430 if (new_fields[i]) {
431 trie_init(cls, i, new_fields[i]);
432 }
433 }
434 /* Destroy the rest, if any. */
435 for (; i < cls->n_tries; i++) {
436 trie_init(cls, i, NULL);
437 }
438
439 cls->n_tries = n_tries;
440 return true;
441 }
442
443 return false; /* No change. */
444 }
445
446 static void
447 trie_init(struct classifier *cls, int trie_idx, const struct mf_field *field)
448 {
449 struct cls_trie *trie = &cls->tries[trie_idx];
450 struct cls_subtable *subtable;
451
452 if (trie_idx < cls->n_tries) {
453 trie_destroy(&trie->root);
454 } else {
455 ovsrcu_set_hidden(&trie->root, NULL);
456 }
457 trie->field = field;
458
459 /* Add existing rules to the new trie. */
460 CMAP_FOR_EACH (subtable, cmap_node, &cls->subtables_map) {
461 unsigned int plen;
462
463 plen = field ? minimask_get_prefix_len(&subtable->mask, field) : 0;
464 if (plen) {
465 struct cls_match *head;
466
467 CMAP_FOR_EACH (head, cmap_node, &subtable->rules) {
468 trie_insert(trie, head->cls_rule, plen);
469 }
470 }
471 /* Initialize subtable's prefix length on this field. This will
472 * allow readers to use the trie. */
473 atomic_thread_fence(memory_order_release);
474 subtable->trie_plen[trie_idx] = plen;
475 }
476 }
477
478 /* Returns true if 'cls' contains no classification rules, false otherwise.
479 * Checking the cmap requires no locking. */
480 bool
481 classifier_is_empty(const struct classifier *cls)
482 {
483 return cmap_is_empty(&cls->subtables_map);
484 }
485
486 /* Returns the number of rules in 'cls'. */
487 int
488 classifier_count(const struct classifier *cls)
489 {
490 /* n_rules is an int, so in the presence of concurrent writers this will
491 * return either the old or a new value. */
492 return cls->n_rules;
493 }
494
495 static inline ovs_be32 minimatch_get_ports(const struct minimatch *match)
496 {
497 /* Could optimize to use the same map if needed for fast path. */
498 return MINIFLOW_GET_BE32(match->flow, tp_src)
499 & MINIFLOW_GET_BE32(&match->mask->masks, tp_src);
500 }
501
502 /* Inserts 'rule' into 'cls' in 'version'. Until 'rule' is removed from 'cls',
503 * the caller must not modify or free it.
504 *
505 * If 'cls' already contains an identical rule (including wildcards, values of
506 * fixed fields, and priority) that is visible in 'version', replaces the old
507 * rule by 'rule' and returns the rule that was replaced. The caller takes
508 * ownership of the returned rule and is thus responsible for destroying it
509 * with cls_rule_destroy(), after RCU grace period has passed (see
510 * ovsrcu_postpone()).
511 *
512 * Returns NULL if 'cls' does not contain a rule with an identical key, after
513 * inserting the new rule. In this case, no rules are displaced by the new
514 * rule, even rules that cannot have any effect because the new rule matches a
515 * superset of their flows and has higher priority.
516 */
517 const struct cls_rule *
518 classifier_replace(struct classifier *cls, const struct cls_rule *rule,
519 ovs_version_t version,
520 const struct cls_conjunction *conjs, size_t n_conjs)
521 {
522 struct cls_match *new;
523 struct cls_subtable *subtable;
524 uint32_t ihash[CLS_MAX_INDICES];
525 struct cls_match *head;
526 unsigned int mask_offset;
527 size_t n_rules = 0;
528 uint32_t basis;
529 uint32_t hash;
530 unsigned int i;
531
532 /* 'new' is initially invisible to lookups. */
533 new = cls_match_alloc(rule, version, conjs, n_conjs);
534 ovsrcu_set(&CONST_CAST(struct cls_rule *, rule)->cls_match, new);
535
536 subtable = find_subtable(cls, rule->match.mask);
537 if (!subtable) {
538 subtable = insert_subtable(cls, rule->match.mask);
539 }
540
541 /* Compute hashes in segments. */
542 basis = 0;
543 mask_offset = 0;
544 for (i = 0; i < subtable->n_indices; i++) {
545 ihash[i] = minimatch_hash_range(&rule->match, subtable->index_maps[i],
546 &mask_offset, &basis);
547 }
548 hash = minimatch_hash_range(&rule->match, subtable->index_maps[i],
549 &mask_offset, &basis);
550
551 head = find_equal(subtable, rule->match.flow, hash);
552 if (!head) {
553 /* Add rule to tries.
554 *
555 * Concurrent readers might miss seeing the rule until this update,
556 * which might require being fixed up by revalidation later. */
557 for (i = 0; i < cls->n_tries; i++) {
558 if (subtable->trie_plen[i]) {
559 trie_insert(&cls->tries[i], rule, subtable->trie_plen[i]);
560 }
561 }
562
563 /* Add rule to ports trie. */
564 if (subtable->ports_mask_len) {
565 /* We mask the value to be inserted to always have the wildcarded
566 * bits in known (zero) state, so we can include them in comparison
567 * and they will always match (== their original value does not
568 * matter). */
569 ovs_be32 masked_ports = minimatch_get_ports(&rule->match);
570
571 trie_insert_prefix(&subtable->ports_trie, &masked_ports,
572 subtable->ports_mask_len);
573 }
574
575 /* Add new node to segment indices. */
576 for (i = 0; i < subtable->n_indices; i++) {
577 ccmap_inc(&subtable->indices[i], ihash[i]);
578 }
579 n_rules = cmap_insert(&subtable->rules, &new->cmap_node, hash);
580 } else { /* Equal rules exist in the classifier already. */
581 struct cls_match *prev, *iter;
582
583 /* Scan the list for the insertion point that will keep the list in
584 * order of decreasing priority. Insert after rules marked invisible
585 * in any version of the same priority. */
586 FOR_EACH_RULE_IN_LIST_PROTECTED (iter, prev, head) {
587 if (rule->priority > iter->priority
588 || (rule->priority == iter->priority
589 && !cls_match_is_eventually_invisible(iter))) {
590 break;
591 }
592 }
593
594 /* Replace 'iter' with 'new' or insert 'new' between 'prev' and
595 * 'iter'. */
596 if (iter) {
597 struct cls_rule *old;
598
599 if (rule->priority == iter->priority) {
600 cls_match_replace(prev, iter, new);
601 old = CONST_CAST(struct cls_rule *, iter->cls_rule);
602 } else {
603 cls_match_insert(prev, iter, new);
604 old = NULL;
605 }
606
607 /* Replace the existing head in data structures, if rule is the new
608 * head. */
609 if (iter == head) {
610 cmap_replace(&subtable->rules, &head->cmap_node,
611 &new->cmap_node, hash);
612 }
613
614 if (old) {
615 struct cls_conjunction_set *conj_set;
616
617 conj_set = ovsrcu_get_protected(struct cls_conjunction_set *,
618 &iter->conj_set);
619 if (conj_set) {
620 ovsrcu_postpone(free, conj_set);
621 }
622
623 ovsrcu_set(&old->cls_match, NULL); /* Marks old rule as removed
624 * from the classifier. */
625 ovsrcu_postpone(cls_match_free_cb, iter);
626
627 /* No change in subtable's max priority or max count. */
628
629 /* Make 'new' visible to lookups in the appropriate version. */
630 cls_match_set_remove_version(new, OVS_VERSION_NOT_REMOVED);
631
632 /* Make rule visible to iterators (immediately). */
633 rculist_replace(CONST_CAST(struct rculist *, &rule->node),
634 &old->node);
635
636 /* Return displaced rule. Caller is responsible for keeping it
637 * around until all threads quiesce. */
638 return old;
639 }
640 } else {
641 /* 'new' is new node after 'prev' */
642 cls_match_insert(prev, iter, new);
643 }
644 }
645
646 /* Make 'new' visible to lookups in the appropriate version. */
647 cls_match_set_remove_version(new, OVS_VERSION_NOT_REMOVED);
648
649 /* Make rule visible to iterators (immediately). */
650 rculist_push_back(&subtable->rules_list,
651 CONST_CAST(struct rculist *, &rule->node));
652
653 /* Rule was added, not replaced. Update 'subtable's 'max_priority' and
654 * 'max_count', if necessary.
655 *
656 * The rule was already inserted, but concurrent readers may not see the
657 * rule yet as the subtables vector is not updated yet. This will have to
658 * be fixed by revalidation later. */
659 if (n_rules == 1) {
660 subtable->max_priority = rule->priority;
661 subtable->max_count = 1;
662 pvector_insert(&cls->subtables, subtable, rule->priority);
663 } else if (rule->priority == subtable->max_priority) {
664 ++subtable->max_count;
665 } else if (rule->priority > subtable->max_priority) {
666 subtable->max_priority = rule->priority;
667 subtable->max_count = 1;
668 pvector_change_priority(&cls->subtables, subtable, rule->priority);
669 }
670
671 /* Nothing was replaced. */
672 cls->n_rules++;
673
674 if (cls->publish) {
675 pvector_publish(&cls->subtables);
676 }
677
678 return NULL;
679 }
680
681 /* Inserts 'rule' into 'cls'. Until 'rule' is removed from 'cls', the caller
682 * must not modify or free it.
683 *
684 * 'cls' must not contain an identical rule (including wildcards, values of
685 * fixed fields, and priority). Use classifier_find_rule_exactly() to find
686 * such a rule. */
687 void
688 classifier_insert(struct classifier *cls, const struct cls_rule *rule,
689 ovs_version_t version, const struct cls_conjunction conj[],
690 size_t n_conj)
691 {
692 const struct cls_rule *displaced_rule
693 = classifier_replace(cls, rule, version, conj, n_conj);
694 ovs_assert(!displaced_rule);
695 }
696
697 /* Removes 'rule' from 'cls'. It is the caller's responsibility to destroy
698 * 'rule' with cls_rule_destroy(), freeing the memory block in which 'rule'
699 * resides, etc., as necessary.
700 *
701 * Does nothing if 'rule' has been already removed, or was never inserted.
702 *
703 * Returns the removed rule, or NULL, if it was already removed.
704 */
705 const struct cls_rule *
706 classifier_remove(struct classifier *cls, const struct cls_rule *cls_rule)
707 {
708 struct cls_match *rule, *prev, *next, *head;
709 struct cls_conjunction_set *conj_set;
710 struct cls_subtable *subtable;
711 uint32_t basis = 0, hash, ihash[CLS_MAX_INDICES];
712 unsigned int mask_offset;
713 size_t n_rules;
714 unsigned int i;
715
716 rule = get_cls_match_protected(cls_rule);
717 if (!rule) {
718 return NULL;
719 }
720 /* Mark as removed. */
721 ovsrcu_set(&CONST_CAST(struct cls_rule *, cls_rule)->cls_match, NULL);
722
723 /* Remove 'cls_rule' from the subtable's rules list. */
724 rculist_remove(CONST_CAST(struct rculist *, &cls_rule->node));
725
726 subtable = find_subtable(cls, cls_rule->match.mask);
727 ovs_assert(subtable);
728
729 mask_offset = 0;
730 for (i = 0; i < subtable->n_indices; i++) {
731 ihash[i] = minimatch_hash_range(&cls_rule->match,
732 subtable->index_maps[i],
733 &mask_offset, &basis);
734 }
735 hash = minimatch_hash_range(&cls_rule->match, subtable->index_maps[i],
736 &mask_offset, &basis);
737
738 head = find_equal(subtable, cls_rule->match.flow, hash);
739
740 /* Check if the rule is not the head rule. */
741 if (rule != head) {
742 struct cls_match *iter;
743
744 /* Not the head rule, but potentially one with the same priority. */
745 /* Remove from the list of equal rules. */
746 FOR_EACH_RULE_IN_LIST_PROTECTED (iter, prev, head) {
747 if (rule == iter) {
748 break;
749 }
750 }
751 ovs_assert(iter == rule);
752
753 cls_match_remove(prev, rule);
754
755 goto check_priority;
756 }
757
758 /* 'rule' is the head rule. Check if there is another rule to
759 * replace 'rule' in the data structures. */
760 next = cls_match_next_protected(rule);
761 if (next) {
762 cmap_replace(&subtable->rules, &rule->cmap_node, &next->cmap_node,
763 hash);
764 goto check_priority;
765 }
766
767 /* 'rule' is last of the kind in the classifier, must remove from all the
768 * data structures. */
769
770 if (subtable->ports_mask_len) {
771 ovs_be32 masked_ports = minimatch_get_ports(&cls_rule->match);
772
773 trie_remove_prefix(&subtable->ports_trie,
774 &masked_ports, subtable->ports_mask_len);
775 }
776 for (i = 0; i < cls->n_tries; i++) {
777 if (subtable->trie_plen[i]) {
778 trie_remove(&cls->tries[i], cls_rule, subtable->trie_plen[i]);
779 }
780 }
781
782 /* Remove rule node from indices. */
783 for (i = 0; i < subtable->n_indices; i++) {
784 ccmap_dec(&subtable->indices[i], ihash[i]);
785 }
786 n_rules = cmap_remove(&subtable->rules, &rule->cmap_node, hash);
787
788 if (n_rules == 0) {
789 destroy_subtable(cls, subtable);
790 } else {
791 check_priority:
792 if (subtable->max_priority == rule->priority
793 && --subtable->max_count == 0) {
794 /* Find the new 'max_priority' and 'max_count'. */
795 int max_priority = INT_MIN;
796 CMAP_FOR_EACH (head, cmap_node, &subtable->rules) {
797 if (head->priority > max_priority) {
798 max_priority = head->priority;
799 subtable->max_count = 1;
800 } else if (head->priority == max_priority) {
801 ++subtable->max_count;
802 }
803 }
804 subtable->max_priority = max_priority;
805 pvector_change_priority(&cls->subtables, subtable, max_priority);
806 }
807 }
808
809 if (cls->publish) {
810 pvector_publish(&cls->subtables);
811 }
812
813 /* free the rule. */
814 conj_set = ovsrcu_get_protected(struct cls_conjunction_set *,
815 &rule->conj_set);
816 if (conj_set) {
817 ovsrcu_postpone(free, conj_set);
818 }
819 ovsrcu_postpone(cls_match_free_cb, rule);
820 cls->n_rules--;
821
822 return cls_rule;
823 }
824
825 /* Prefix tree context. Valid when 'lookup_done' is true. Can skip all
826 * subtables which have a prefix match on the trie field, but whose prefix
827 * length is not indicated in 'match_plens'. For example, a subtable that
828 * has a 8-bit trie field prefix match can be skipped if
829 * !be_get_bit_at(&match_plens, 8 - 1). If skipped, 'maskbits' prefix bits
830 * must be unwildcarded to make datapath flow only match packets it should. */
831 struct trie_ctx {
832 const struct cls_trie *trie;
833 bool lookup_done; /* Status of the lookup. */
834 uint8_t be32ofs; /* U32 offset of the field in question. */
835 unsigned int maskbits; /* Prefix length needed to avoid false matches. */
836 union trie_prefix match_plens; /* Bitmask of prefix lengths with possible
837 * matches. */
838 };
839
840 static void
841 trie_ctx_init(struct trie_ctx *ctx, const struct cls_trie *trie)
842 {
843 ctx->trie = trie;
844 ctx->be32ofs = trie->field->flow_be32ofs;
845 ctx->lookup_done = false;
846 }
847
848 struct conjunctive_match {
849 struct hmap_node hmap_node;
850 uint32_t id;
851 uint64_t clauses;
852 };
853
854 static struct conjunctive_match *
855 find_conjunctive_match__(struct hmap *matches, uint64_t id, uint32_t hash)
856 {
857 struct conjunctive_match *m;
858
859 HMAP_FOR_EACH_IN_BUCKET (m, hmap_node, hash, matches) {
860 if (m->id == id) {
861 return m;
862 }
863 }
864 return NULL;
865 }
866
867 static bool
868 find_conjunctive_match(const struct cls_conjunction_set *set,
869 unsigned int max_n_clauses, struct hmap *matches,
870 struct conjunctive_match *cm_stubs, size_t n_cm_stubs,
871 uint32_t *idp)
872 {
873 const struct cls_conjunction *c;
874
875 if (max_n_clauses < set->min_n_clauses) {
876 return false;
877 }
878
879 for (c = set->conj; c < &set->conj[set->n]; c++) {
880 struct conjunctive_match *cm;
881 uint32_t hash;
882
883 if (c->n_clauses > max_n_clauses) {
884 continue;
885 }
886
887 hash = hash_int(c->id, 0);
888 cm = find_conjunctive_match__(matches, c->id, hash);
889 if (!cm) {
890 size_t n = hmap_count(matches);
891
892 cm = n < n_cm_stubs ? &cm_stubs[n] : xmalloc(sizeof *cm);
893 hmap_insert(matches, &cm->hmap_node, hash);
894 cm->id = c->id;
895 cm->clauses = UINT64_MAX << (c->n_clauses & 63);
896 }
897 cm->clauses |= UINT64_C(1) << c->clause;
898 if (cm->clauses == UINT64_MAX) {
899 *idp = cm->id;
900 return true;
901 }
902 }
903 return false;
904 }
905
906 static void
907 free_conjunctive_matches(struct hmap *matches,
908 struct conjunctive_match *cm_stubs, size_t n_cm_stubs)
909 {
910 if (hmap_count(matches) > n_cm_stubs) {
911 struct conjunctive_match *cm, *next;
912
913 HMAP_FOR_EACH_SAFE (cm, next, hmap_node, matches) {
914 if (!(cm >= cm_stubs && cm < &cm_stubs[n_cm_stubs])) {
915 free(cm);
916 }
917 }
918 }
919 hmap_destroy(matches);
920 }
921
922 /* Like classifier_lookup(), except that support for conjunctive matches can be
923 * configured with 'allow_conjunctive_matches'. That feature is not exposed
924 * externally because turning off conjunctive matches is only useful to avoid
925 * recursion within this function itself.
926 *
927 * 'flow' is non-const to allow for temporary modifications during the lookup.
928 * Any changes are restored before returning. */
929 static const struct cls_rule *
930 classifier_lookup__(const struct classifier *cls, ovs_version_t version,
931 struct flow *flow, struct flow_wildcards *wc,
932 bool allow_conjunctive_matches)
933 {
934 struct trie_ctx trie_ctx[CLS_MAX_TRIES];
935 const struct cls_match *match;
936 /* Highest-priority flow in 'cls' that certainly matches 'flow'. */
937 const struct cls_match *hard = NULL;
938 int hard_pri = INT_MIN; /* hard ? hard->priority : INT_MIN. */
939
940 /* Highest-priority conjunctive flows in 'cls' matching 'flow'. Since
941 * these are (components of) conjunctive flows, we can only know whether
942 * the full conjunctive flow matches after seeing multiple of them. Thus,
943 * we refer to these as "soft matches". */
944 struct cls_conjunction_set *soft_stub[64];
945 struct cls_conjunction_set **soft = soft_stub;
946 size_t n_soft = 0, allocated_soft = ARRAY_SIZE(soft_stub);
947 int soft_pri = INT_MIN; /* n_soft ? MAX(soft[*]->priority) : INT_MIN. */
948
949 /* Synchronize for cls->n_tries and subtable->trie_plen. They can change
950 * when table configuration changes, which happens typically only on
951 * startup. */
952 atomic_thread_fence(memory_order_acquire);
953
954 /* Initialize trie contexts for find_match_wc(). */
955 for (int i = 0; i < cls->n_tries; i++) {
956 trie_ctx_init(&trie_ctx[i], &cls->tries[i]);
957 }
958
959 /* Main loop. */
960 struct cls_subtable *subtable;
961 PVECTOR_FOR_EACH_PRIORITY (subtable, hard_pri + 1, 2, sizeof *subtable,
962 &cls->subtables) {
963 struct cls_conjunction_set *conj_set;
964
965 /* Skip subtables with no match, or where the match is lower-priority
966 * than some certain match we've already found. */
967 match = find_match_wc(subtable, version, flow, trie_ctx, cls->n_tries,
968 wc);
969 if (!match || match->priority <= hard_pri) {
970 continue;
971 }
972
973 conj_set = ovsrcu_get(struct cls_conjunction_set *, &match->conj_set);
974 if (!conj_set) {
975 /* 'match' isn't part of a conjunctive match. It's the best
976 * certain match we've got so far, since we know that it's
977 * higher-priority than hard_pri.
978 *
979 * (There might be a higher-priority conjunctive match. We can't
980 * tell yet.) */
981 hard = match;
982 hard_pri = hard->priority;
983 } else if (allow_conjunctive_matches) {
984 /* 'match' is part of a conjunctive match. Add it to the list. */
985 if (OVS_UNLIKELY(n_soft >= allocated_soft)) {
986 struct cls_conjunction_set **old_soft = soft;
987
988 allocated_soft *= 2;
989 soft = xmalloc(allocated_soft * sizeof *soft);
990 memcpy(soft, old_soft, n_soft * sizeof *soft);
991 if (old_soft != soft_stub) {
992 free(old_soft);
993 }
994 }
995 soft[n_soft++] = conj_set;
996
997 /* Keep track of the highest-priority soft match. */
998 if (soft_pri < match->priority) {
999 soft_pri = match->priority;
1000 }
1001 }
1002 }
1003
1004 /* In the common case, at this point we have no soft matches and we can
1005 * return immediately. (We do the same thing if we have potential soft
1006 * matches but none of them are higher-priority than our hard match.) */
1007 if (hard_pri >= soft_pri) {
1008 if (soft != soft_stub) {
1009 free(soft);
1010 }
1011 return hard ? hard->cls_rule : NULL;
1012 }
1013
1014 /* At this point, we have some soft matches. We might also have a hard
1015 * match; if so, its priority is lower than the highest-priority soft
1016 * match. */
1017
1018 /* Soft match loop.
1019 *
1020 * Check whether soft matches are real matches. */
1021 for (;;) {
1022 /* Delete soft matches that are null. This only happens in second and
1023 * subsequent iterations of the soft match loop, when we drop back from
1024 * a high-priority soft match to a lower-priority one.
1025 *
1026 * Also, delete soft matches whose priority is less than or equal to
1027 * the hard match's priority. In the first iteration of the soft
1028 * match, these can be in 'soft' because the earlier main loop found
1029 * the soft match before the hard match. In second and later iteration
1030 * of the soft match loop, these can be in 'soft' because we dropped
1031 * back from a high-priority soft match to a lower-priority soft match.
1032 *
1033 * It is tempting to delete soft matches that cannot be satisfied
1034 * because there are fewer soft matches than required to satisfy any of
1035 * their conjunctions, but we cannot do that because there might be
1036 * lower priority soft or hard matches with otherwise identical
1037 * matches. (We could special case those here, but there's no
1038 * need--we'll do so at the bottom of the soft match loop anyway and
1039 * this duplicates less code.)
1040 *
1041 * It's also tempting to break out of the soft match loop if 'n_soft ==
1042 * 1' but that would also miss lower-priority hard matches. We could
1043 * special case that also but again there's no need. */
1044 for (int i = 0; i < n_soft; ) {
1045 if (!soft[i] || soft[i]->priority <= hard_pri) {
1046 soft[i] = soft[--n_soft];
1047 } else {
1048 i++;
1049 }
1050 }
1051 if (!n_soft) {
1052 break;
1053 }
1054
1055 /* Find the highest priority among the soft matches. (We know this
1056 * must be higher than the hard match's priority; otherwise we would
1057 * have deleted all of the soft matches in the previous loop.) Count
1058 * the number of soft matches that have that priority. */
1059 soft_pri = INT_MIN;
1060 int n_soft_pri = 0;
1061 for (int i = 0; i < n_soft; i++) {
1062 if (soft[i]->priority > soft_pri) {
1063 soft_pri = soft[i]->priority;
1064 n_soft_pri = 1;
1065 } else if (soft[i]->priority == soft_pri) {
1066 n_soft_pri++;
1067 }
1068 }
1069 ovs_assert(soft_pri > hard_pri);
1070
1071 /* Look for a real match among the highest-priority soft matches.
1072 *
1073 * It's unusual to have many conjunctive matches, so we use stubs to
1074 * avoid calling malloc() in the common case. An hmap has a built-in
1075 * stub for up to 2 hmap_nodes; possibly, we would benefit a variant
1076 * with a bigger stub. */
1077 struct conjunctive_match cm_stubs[16];
1078 struct hmap matches;
1079
1080 hmap_init(&matches);
1081 for (int i = 0; i < n_soft; i++) {
1082 uint32_t id;
1083
1084 if (soft[i]->priority == soft_pri
1085 && find_conjunctive_match(soft[i], n_soft_pri, &matches,
1086 cm_stubs, ARRAY_SIZE(cm_stubs),
1087 &id)) {
1088 uint32_t saved_conj_id = flow->conj_id;
1089 const struct cls_rule *rule;
1090
1091 flow->conj_id = id;
1092 rule = classifier_lookup__(cls, version, flow, wc, false);
1093 flow->conj_id = saved_conj_id;
1094
1095 if (rule) {
1096 free_conjunctive_matches(&matches,
1097 cm_stubs, ARRAY_SIZE(cm_stubs));
1098 if (soft != soft_stub) {
1099 free(soft);
1100 }
1101 return rule;
1102 }
1103 }
1104 }
1105 free_conjunctive_matches(&matches, cm_stubs, ARRAY_SIZE(cm_stubs));
1106
1107 /* There's no real match among the highest-priority soft matches.
1108 * However, if any of those soft matches has a lower-priority but
1109 * otherwise identical flow match, then we need to consider those for
1110 * soft or hard matches.
1111 *
1112 * The next iteration of the soft match loop will delete any null
1113 * pointers we put into 'soft' (and some others too). */
1114 for (int i = 0; i < n_soft; i++) {
1115 if (soft[i]->priority != soft_pri) {
1116 continue;
1117 }
1118
1119 /* Find next-lower-priority flow with identical flow match. */
1120 match = next_visible_rule_in_list(soft[i]->match, version);
1121 if (match) {
1122 soft[i] = ovsrcu_get(struct cls_conjunction_set *,
1123 &match->conj_set);
1124 if (!soft[i]) {
1125 /* The flow is a hard match; don't treat as a soft
1126 * match. */
1127 if (match->priority > hard_pri) {
1128 hard = match;
1129 hard_pri = hard->priority;
1130 }
1131 }
1132 } else {
1133 /* No such lower-priority flow (probably the common case). */
1134 soft[i] = NULL;
1135 }
1136 }
1137 }
1138
1139 if (soft != soft_stub) {
1140 free(soft);
1141 }
1142 return hard ? hard->cls_rule : NULL;
1143 }
1144
1145 /* Finds and returns the highest-priority rule in 'cls' that matches 'flow' and
1146 * that is visible in 'version'. Returns a null pointer if no rules in 'cls'
1147 * match 'flow'. If multiple rules of equal priority match 'flow', returns one
1148 * arbitrarily.
1149 *
1150 * If a rule is found and 'wc' is non-null, bitwise-OR's 'wc' with the
1151 * set of bits that were significant in the lookup. At some point
1152 * earlier, 'wc' should have been initialized (e.g., by
1153 * flow_wildcards_init_catchall()).
1154 *
1155 * 'flow' is non-const to allow for temporary modifications during the lookup.
1156 * Any changes are restored before returning. */
1157 const struct cls_rule *
1158 classifier_lookup(const struct classifier *cls, ovs_version_t version,
1159 struct flow *flow, struct flow_wildcards *wc)
1160 {
1161 return classifier_lookup__(cls, version, flow, wc, true);
1162 }
1163
1164 /* Finds and returns a rule in 'cls' with exactly the same priority and
1165 * matching criteria as 'target', and that is visible in 'version'.
1166 * Only one such rule may ever exist. Returns a null pointer if 'cls' doesn't
1167 * contain an exact match. */
1168 const struct cls_rule *
1169 classifier_find_rule_exactly(const struct classifier *cls,
1170 const struct cls_rule *target,
1171 ovs_version_t version)
1172 {
1173 const struct cls_match *head, *rule;
1174 const struct cls_subtable *subtable;
1175
1176 subtable = find_subtable(cls, target->match.mask);
1177 if (!subtable) {
1178 return NULL;
1179 }
1180
1181 head = find_equal(subtable, target->match.flow,
1182 miniflow_hash_in_minimask(target->match.flow,
1183 target->match.mask, 0));
1184 if (!head) {
1185 return NULL;
1186 }
1187 CLS_MATCH_FOR_EACH (rule, head) {
1188 if (rule->priority < target->priority) {
1189 break; /* Not found. */
1190 }
1191 if (rule->priority == target->priority
1192 && cls_match_visible_in_version(rule, version)) {
1193 return rule->cls_rule;
1194 }
1195 }
1196 return NULL;
1197 }
1198
1199 /* Finds and returns a rule in 'cls' with priority 'priority' and exactly the
1200 * same matching criteria as 'target', and that is visible in 'version'.
1201 * Returns a null pointer if 'cls' doesn't contain an exact match visible in
1202 * 'version'. */
1203 const struct cls_rule *
1204 classifier_find_match_exactly(const struct classifier *cls,
1205 const struct match *target, int priority,
1206 ovs_version_t version)
1207 {
1208 const struct cls_rule *retval;
1209 struct cls_rule cr;
1210
1211 cls_rule_init(&cr, target, priority);
1212 retval = classifier_find_rule_exactly(cls, &cr, version);
1213 cls_rule_destroy(&cr);
1214
1215 return retval;
1216 }
1217
1218 /* Checks if 'target' would overlap any other rule in 'cls' in 'version'. Two
1219 * rules are considered to overlap if both rules have the same priority and a
1220 * packet could match both, and if both rules are visible in the same version.
1221 *
1222 * A trivial example of overlapping rules is two rules matching disjoint sets
1223 * of fields. E.g., if one rule matches only on port number, while another only
1224 * on dl_type, any packet from that specific port and with that specific
1225 * dl_type could match both, if the rules also have the same priority. */
1226 bool
1227 classifier_rule_overlaps(const struct classifier *cls,
1228 const struct cls_rule *target, ovs_version_t version)
1229 {
1230 struct cls_subtable *subtable;
1231
1232 /* Iterate subtables in the descending max priority order. */
1233 PVECTOR_FOR_EACH_PRIORITY (subtable, target->priority, 2,
1234 sizeof(struct cls_subtable), &cls->subtables) {
1235 struct {
1236 struct minimask mask;
1237 uint64_t storage[FLOW_U64S];
1238 } m;
1239 const struct cls_rule *rule;
1240
1241 minimask_combine(&m.mask, target->match.mask, &subtable->mask,
1242 m.storage);
1243
1244 RCULIST_FOR_EACH (rule, node, &subtable->rules_list) {
1245 if (rule->priority == target->priority
1246 && miniflow_equal_in_minimask(target->match.flow,
1247 rule->match.flow, &m.mask)
1248 && cls_rule_visible_in_version(rule, version)) {
1249 return true;
1250 }
1251 }
1252 }
1253 return false;
1254 }
1255
1256 /* Returns true if 'rule' exactly matches 'criteria' or if 'rule' is more
1257 * specific than 'criteria'. That is, 'rule' matches 'criteria' and this
1258 * function returns true if, for every field:
1259 *
1260 * - 'criteria' and 'rule' specify the same (non-wildcarded) value for the
1261 * field, or
1262 *
1263 * - 'criteria' wildcards the field,
1264 *
1265 * Conversely, 'rule' does not match 'criteria' and this function returns false
1266 * if, for at least one field:
1267 *
1268 * - 'criteria' and 'rule' specify different values for the field, or
1269 *
1270 * - 'criteria' specifies a value for the field but 'rule' wildcards it.
1271 *
1272 * Equivalently, the truth table for whether a field matches is:
1273 *
1274 * rule
1275 *
1276 * c wildcard exact
1277 * r +---------+---------+
1278 * i wild | yes | yes |
1279 * t card | | |
1280 * e +---------+---------+
1281 * r exact | no |if values|
1282 * i | |are equal|
1283 * a +---------+---------+
1284 *
1285 * This is the matching rule used by OpenFlow 1.0 non-strict OFPT_FLOW_MOD
1286 * commands and by OpenFlow 1.0 aggregate and flow stats.
1287 *
1288 * Ignores rule->priority. */
1289 bool
1290 cls_rule_is_loose_match(const struct cls_rule *rule,
1291 const struct minimatch *criteria)
1292 {
1293 return (!minimask_has_extra(rule->match.mask, criteria->mask)
1294 && miniflow_equal_in_minimask(rule->match.flow, criteria->flow,
1295 criteria->mask));
1296 }
1297 \f
1298 /* Iteration. */
1299
1300 static bool
1301 rule_matches(const struct cls_rule *rule, const struct cls_rule *target,
1302 ovs_version_t version)
1303 {
1304 /* Rule may only match a target if it is visible in target's version. */
1305 return cls_rule_visible_in_version(rule, version)
1306 && (!target || miniflow_equal_in_minimask(rule->match.flow,
1307 target->match.flow,
1308 target->match.mask));
1309 }
1310
1311 static const struct cls_rule *
1312 search_subtable(const struct cls_subtable *subtable,
1313 struct cls_cursor *cursor)
1314 {
1315 if (!cursor->target
1316 || !minimask_has_extra(&subtable->mask, cursor->target->match.mask)) {
1317 const struct cls_rule *rule;
1318
1319 RCULIST_FOR_EACH (rule, node, &subtable->rules_list) {
1320 if (rule_matches(rule, cursor->target, cursor->version)) {
1321 return rule;
1322 }
1323 }
1324 }
1325 return NULL;
1326 }
1327
1328 /* Initializes 'cursor' for iterating through rules in 'cls', and returns the
1329 * cursor.
1330 *
1331 * - If 'target' is null, or if the 'target' is a catchall target, the
1332 * cursor will visit every rule in 'cls' that is visible in 'version'.
1333 *
1334 * - If 'target' is nonnull, the cursor will visit each 'rule' in 'cls'
1335 * such that cls_rule_is_loose_match(rule, target) returns true and that
1336 * the rule is visible in 'version'.
1337 *
1338 * Ignores target->priority. */
1339 struct cls_cursor
1340 cls_cursor_start(const struct classifier *cls, const struct cls_rule *target,
1341 ovs_version_t version)
1342 {
1343 struct cls_cursor cursor;
1344 struct cls_subtable *subtable;
1345
1346 cursor.cls = cls;
1347 cursor.target = target && !cls_rule_is_catchall(target) ? target : NULL;
1348 cursor.version = version;
1349 cursor.rule = NULL;
1350
1351 /* Find first rule. */
1352 PVECTOR_CURSOR_FOR_EACH (subtable, &cursor.subtables,
1353 &cursor.cls->subtables) {
1354 const struct cls_rule *rule = search_subtable(subtable, &cursor);
1355
1356 if (rule) {
1357 cursor.subtable = subtable;
1358 cursor.rule = rule;
1359 break;
1360 }
1361 }
1362
1363 return cursor;
1364 }
1365
1366 static const struct cls_rule *
1367 cls_cursor_next(struct cls_cursor *cursor)
1368 {
1369 const struct cls_rule *rule;
1370 const struct cls_subtable *subtable;
1371
1372 rule = cursor->rule;
1373 subtable = cursor->subtable;
1374 RCULIST_FOR_EACH_CONTINUE (rule, node, &subtable->rules_list) {
1375 if (rule_matches(rule, cursor->target, cursor->version)) {
1376 return rule;
1377 }
1378 }
1379
1380 PVECTOR_CURSOR_FOR_EACH_CONTINUE (subtable, &cursor->subtables) {
1381 rule = search_subtable(subtable, cursor);
1382 if (rule) {
1383 cursor->subtable = subtable;
1384 return rule;
1385 }
1386 }
1387
1388 return NULL;
1389 }
1390
1391 /* Sets 'cursor->rule' to the next matching cls_rule in 'cursor''s iteration,
1392 * or to null if all matching rules have been visited. */
1393 void
1394 cls_cursor_advance(struct cls_cursor *cursor)
1395 {
1396 cursor->rule = cls_cursor_next(cursor);
1397 }
1398 \f
1399 static struct cls_subtable *
1400 find_subtable(const struct classifier *cls, const struct minimask *mask)
1401 {
1402 struct cls_subtable *subtable;
1403
1404 CMAP_FOR_EACH_WITH_HASH (subtable, cmap_node, minimask_hash(mask, 0),
1405 &cls->subtables_map) {
1406 if (minimask_equal(mask, &subtable->mask)) {
1407 return subtable;
1408 }
1409 }
1410 return NULL;
1411 }
1412
1413 /* Initializes 'map' with a subset of 'miniflow''s maps that includes only the
1414 * portions with u64-offset 'i' such that 'start' <= i < 'end'. Does not copy
1415 * any data from 'miniflow' to 'map'. */
1416 static struct flowmap
1417 miniflow_get_map_in_range(const struct miniflow *miniflow, uint8_t start,
1418 uint8_t end)
1419 {
1420 struct flowmap map;
1421 size_t ofs = 0;
1422
1423 map = miniflow->map;
1424
1425 /* Clear the bits before 'start'. */
1426 while (start >= MAP_T_BITS) {
1427 start -= MAP_T_BITS;
1428 ofs += MAP_T_BITS;
1429 map.bits[start / MAP_T_BITS] = 0;
1430 }
1431 if (start > 0) {
1432 flowmap_clear(&map, ofs, start);
1433 }
1434
1435 /* Clear the bits starting at 'end'. */
1436 if (end < FLOW_U64S) {
1437 /* flowmap_clear() can handle at most MAP_T_BITS at a time. */
1438 ovs_assert(FLOW_U64S - end <= MAP_T_BITS);
1439 flowmap_clear(&map, end, FLOW_U64S - end);
1440 }
1441 return map;
1442 }
1443
1444 /* The new subtable will be visible to the readers only after this. */
1445 static struct cls_subtable *
1446 insert_subtable(struct classifier *cls, const struct minimask *mask)
1447 {
1448 uint32_t hash = minimask_hash(mask, 0);
1449 struct cls_subtable *subtable;
1450 int i, index = 0;
1451 struct flowmap stage_map;
1452 uint8_t prev;
1453 size_t count = miniflow_n_values(&mask->masks);
1454
1455 subtable = xzalloc(sizeof *subtable + MINIFLOW_VALUES_SIZE(count));
1456 cmap_init(&subtable->rules);
1457 miniflow_clone(CONST_CAST(struct miniflow *, &subtable->mask.masks),
1458 &mask->masks, count);
1459
1460 /* Init indices for segmented lookup, if any. */
1461 prev = 0;
1462 for (i = 0; i < cls->n_flow_segments; i++) {
1463 stage_map = miniflow_get_map_in_range(&mask->masks, prev,
1464 cls->flow_segments[i]);
1465 /* Add an index if it adds mask bits. */
1466 if (!flowmap_is_empty(stage_map)) {
1467 ccmap_init(&subtable->indices[index]);
1468 *CONST_CAST(struct flowmap *, &subtable->index_maps[index])
1469 = stage_map;
1470 index++;
1471 }
1472 prev = cls->flow_segments[i];
1473 }
1474 /* Map for the final stage. */
1475 *CONST_CAST(struct flowmap *, &subtable->index_maps[index])
1476 = miniflow_get_map_in_range(&mask->masks, prev, FLOW_U64S);
1477 /* Check if the final stage adds any bits. */
1478 if (index > 0) {
1479 if (flowmap_is_empty(subtable->index_maps[index])) {
1480 /* Remove the last index, as it has the same fields as the rules
1481 * map. */
1482 --index;
1483 ccmap_destroy(&subtable->indices[index]);
1484 }
1485 }
1486 *CONST_CAST(uint8_t *, &subtable->n_indices) = index;
1487
1488 for (i = 0; i < cls->n_tries; i++) {
1489 subtable->trie_plen[i] = minimask_get_prefix_len(mask,
1490 cls->tries[i].field);
1491 }
1492
1493 /* Ports trie. */
1494 ovsrcu_set_hidden(&subtable->ports_trie, NULL);
1495 *CONST_CAST(int *, &subtable->ports_mask_len)
1496 = 32 - ctz32(ntohl(MINIFLOW_GET_BE32(&mask->masks, tp_src)));
1497
1498 /* List of rules. */
1499 rculist_init(&subtable->rules_list);
1500
1501 cmap_insert(&cls->subtables_map, &subtable->cmap_node, hash);
1502
1503 return subtable;
1504 }
1505
1506 /* RCU readers may still access the subtable before it is actually freed. */
1507 static void
1508 destroy_subtable(struct classifier *cls, struct cls_subtable *subtable)
1509 {
1510 int i;
1511
1512 pvector_remove(&cls->subtables, subtable);
1513 cmap_remove(&cls->subtables_map, &subtable->cmap_node,
1514 minimask_hash(&subtable->mask, 0));
1515
1516 ovs_assert(ovsrcu_get_protected(struct trie_node *, &subtable->ports_trie)
1517 == NULL);
1518 ovs_assert(cmap_is_empty(&subtable->rules));
1519 ovs_assert(rculist_is_empty(&subtable->rules_list));
1520
1521 for (i = 0; i < subtable->n_indices; i++) {
1522 ccmap_destroy(&subtable->indices[i]);
1523 }
1524 cmap_destroy(&subtable->rules);
1525 ovsrcu_postpone(free, subtable);
1526 }
1527
1528 static unsigned int be_get_bit_at(const ovs_be32 value[], unsigned int ofs);
1529
1530 /* Return 'true' if can skip rest of the subtable based on the prefix trie
1531 * lookup results. */
1532 static inline bool
1533 check_tries(struct trie_ctx trie_ctx[CLS_MAX_TRIES], unsigned int n_tries,
1534 const unsigned int field_plen[CLS_MAX_TRIES],
1535 const struct flowmap range_map, const struct flow *flow,
1536 struct flow_wildcards *wc)
1537 {
1538 int j;
1539
1540 /* Check if we could avoid fully unwildcarding the next level of
1541 * fields using the prefix tries. The trie checks are done only as
1542 * needed to avoid folding in additional bits to the wildcards mask. */
1543 for (j = 0; j < n_tries; j++) {
1544 /* Is the trie field relevant for this subtable, and
1545 is the trie field within the current range of fields? */
1546 if (field_plen[j] &&
1547 flowmap_is_set(&range_map, trie_ctx[j].be32ofs / 2)) {
1548 struct trie_ctx *ctx = &trie_ctx[j];
1549
1550 /* On-demand trie lookup. */
1551 if (!ctx->lookup_done) {
1552 memset(&ctx->match_plens, 0, sizeof ctx->match_plens);
1553 ctx->maskbits = trie_lookup(ctx->trie, flow, &ctx->match_plens);
1554 ctx->lookup_done = true;
1555 }
1556 /* Possible to skip the rest of the subtable if subtable's
1557 * prefix on the field is not included in the lookup result. */
1558 if (!be_get_bit_at(&ctx->match_plens.be32, field_plen[j] - 1)) {
1559 /* We want the trie lookup to never result in unwildcarding
1560 * any bits that would not be unwildcarded otherwise.
1561 * Since the trie is shared by the whole classifier, it is
1562 * possible that the 'maskbits' contain bits that are
1563 * irrelevant for the partition relevant for the current
1564 * packet. Hence the checks below. */
1565
1566 /* Check that the trie result will not unwildcard more bits
1567 * than this subtable would otherwise. */
1568 if (ctx->maskbits <= field_plen[j]) {
1569 /* Unwildcard the bits and skip the rest. */
1570 mask_set_prefix_bits(wc, ctx->be32ofs, ctx->maskbits);
1571 /* Note: Prerequisite already unwildcarded, as the only
1572 * prerequisite of the supported trie lookup fields is
1573 * the ethertype, which is always unwildcarded. */
1574 return true;
1575 }
1576 /* Can skip if the field is already unwildcarded. */
1577 if (mask_prefix_bits_set(wc, ctx->be32ofs, ctx->maskbits)) {
1578 return true;
1579 }
1580 }
1581 }
1582 }
1583 return false;
1584 }
1585
1586 /* Returns true if 'target' satisifies 'flow'/'mask', that is, if each bit
1587 * for which 'flow', for which 'mask' has a bit set, specifies a particular
1588 * value has the correct value in 'target'.
1589 *
1590 * This function is equivalent to miniflow_equal_flow_in_minimask(flow,
1591 * target, mask) but this is faster because of the invariant that
1592 * flow->map and mask->masks.map are the same, and that this version
1593 * takes the 'wc'. */
1594 static inline bool
1595 miniflow_and_mask_matches_flow(const struct miniflow *flow,
1596 const struct minimask *mask,
1597 const struct flow *target)
1598 {
1599 const uint64_t *flowp = miniflow_get_values(flow);
1600 const uint64_t *maskp = miniflow_get_values(&mask->masks);
1601 const uint64_t *target_u64 = (const uint64_t *)target;
1602 map_t map;
1603
1604 FLOWMAP_FOR_EACH_MAP (map, mask->masks.map) {
1605 size_t idx;
1606
1607 MAP_FOR_EACH_INDEX (idx, map) {
1608 if ((*flowp++ ^ target_u64[idx]) & *maskp++) {
1609 return false;
1610 }
1611 }
1612 target_u64 += MAP_T_BITS;
1613 }
1614 return true;
1615 }
1616
1617 static inline const struct cls_match *
1618 find_match(const struct cls_subtable *subtable, ovs_version_t version,
1619 const struct flow *flow, uint32_t hash)
1620 {
1621 const struct cls_match *head, *rule;
1622
1623 CMAP_FOR_EACH_WITH_HASH (head, cmap_node, hash, &subtable->rules) {
1624 if (OVS_LIKELY(miniflow_and_mask_matches_flow(&head->flow,
1625 &subtable->mask,
1626 flow))) {
1627 /* Return highest priority rule that is visible. */
1628 CLS_MATCH_FOR_EACH (rule, head) {
1629 if (OVS_LIKELY(cls_match_visible_in_version(rule, version))) {
1630 return rule;
1631 }
1632 }
1633 }
1634 }
1635
1636 return NULL;
1637 }
1638
1639 static const struct cls_match *
1640 find_match_wc(const struct cls_subtable *subtable, ovs_version_t version,
1641 const struct flow *flow, struct trie_ctx trie_ctx[CLS_MAX_TRIES],
1642 unsigned int n_tries, struct flow_wildcards *wc)
1643 {
1644 if (OVS_UNLIKELY(!wc)) {
1645 return find_match(subtable, version, flow,
1646 flow_hash_in_minimask(flow, &subtable->mask, 0));
1647 }
1648
1649 uint32_t basis = 0, hash;
1650 const struct cls_match *rule = NULL;
1651 struct flowmap stages_map = FLOWMAP_EMPTY_INITIALIZER;
1652 unsigned int mask_offset = 0;
1653 int i;
1654
1655 /* Try to finish early by checking fields in segments. */
1656 for (i = 0; i < subtable->n_indices; i++) {
1657 if (check_tries(trie_ctx, n_tries, subtable->trie_plen,
1658 subtable->index_maps[i], flow, wc)) {
1659 /* 'wc' bits for the trie field set, now unwildcard the preceding
1660 * bits used so far. */
1661 goto no_match;
1662 }
1663
1664 /* Accumulate the map used so far. */
1665 stages_map = flowmap_or(stages_map, subtable->index_maps[i]);
1666
1667 hash = flow_hash_in_minimask_range(flow, &subtable->mask,
1668 subtable->index_maps[i],
1669 &mask_offset, &basis);
1670
1671 if (!ccmap_find(&subtable->indices[i], hash)) {
1672 goto no_match;
1673 }
1674 }
1675 /* Trie check for the final range. */
1676 if (check_tries(trie_ctx, n_tries, subtable->trie_plen,
1677 subtable->index_maps[i], flow, wc)) {
1678 goto no_match;
1679 }
1680 hash = flow_hash_in_minimask_range(flow, &subtable->mask,
1681 subtable->index_maps[i],
1682 &mask_offset, &basis);
1683 rule = find_match(subtable, version, flow, hash);
1684 if (!rule && subtable->ports_mask_len) {
1685 /* The final stage had ports, but there was no match. Instead of
1686 * unwildcarding all the ports bits, use the ports trie to figure out a
1687 * smaller set of bits to unwildcard. */
1688 unsigned int mbits;
1689 ovs_be32 value, plens, mask;
1690
1691 mask = MINIFLOW_GET_BE32(&subtable->mask.masks, tp_src);
1692 value = ((OVS_FORCE ovs_be32 *)flow)[TP_PORTS_OFS32] & mask;
1693 mbits = trie_lookup_value(&subtable->ports_trie, &value, &plens, 32);
1694
1695 ((OVS_FORCE ovs_be32 *)&wc->masks)[TP_PORTS_OFS32] |=
1696 mask & be32_prefix_mask(mbits);
1697
1698 goto no_match;
1699 }
1700
1701 /* Must unwildcard all the fields, as they were looked at. */
1702 flow_wildcards_fold_minimask(wc, &subtable->mask);
1703 return rule;
1704
1705 no_match:
1706 /* Unwildcard the bits in stages so far, as they were used in determining
1707 * there is no match. */
1708 flow_wildcards_fold_minimask_in_map(wc, &subtable->mask, stages_map);
1709 return NULL;
1710 }
1711
1712 static struct cls_match *
1713 find_equal(const struct cls_subtable *subtable, const struct miniflow *flow,
1714 uint32_t hash)
1715 {
1716 struct cls_match *head;
1717
1718 CMAP_FOR_EACH_WITH_HASH (head, cmap_node, hash, &subtable->rules) {
1719 if (miniflow_equal(&head->flow, flow)) {
1720 return head;
1721 }
1722 }
1723 return NULL;
1724 }
1725 \f
1726 /* A longest-prefix match tree. */
1727
1728 /* Return at least 'plen' bits of the 'prefix', starting at bit offset 'ofs'.
1729 * Prefixes are in the network byte order, and the offset 0 corresponds to
1730 * the most significant bit of the first byte. The offset can be read as
1731 * "how many bits to skip from the start of the prefix starting at 'pr'". */
1732 static uint32_t
1733 raw_get_prefix(const ovs_be32 pr[], unsigned int ofs, unsigned int plen)
1734 {
1735 uint32_t prefix;
1736
1737 pr += ofs / 32; /* Where to start. */
1738 ofs %= 32; /* How many bits to skip at 'pr'. */
1739
1740 prefix = ntohl(*pr) << ofs; /* Get the first 32 - ofs bits. */
1741 if (plen > 32 - ofs) { /* Need more than we have already? */
1742 prefix |= ntohl(*++pr) >> (32 - ofs);
1743 }
1744 /* Return with possible unwanted bits at the end. */
1745 return prefix;
1746 }
1747
1748 /* Return min(TRIE_PREFIX_BITS, plen) bits of the 'prefix', starting at bit
1749 * offset 'ofs'. Prefixes are in the network byte order, and the offset 0
1750 * corresponds to the most significant bit of the first byte. The offset can
1751 * be read as "how many bits to skip from the start of the prefix starting at
1752 * 'pr'". */
1753 static uint32_t
1754 trie_get_prefix(const ovs_be32 pr[], unsigned int ofs, unsigned int plen)
1755 {
1756 if (!plen) {
1757 return 0;
1758 }
1759 if (plen > TRIE_PREFIX_BITS) {
1760 plen = TRIE_PREFIX_BITS; /* Get at most TRIE_PREFIX_BITS. */
1761 }
1762 /* Return with unwanted bits cleared. */
1763 return raw_get_prefix(pr, ofs, plen) & ~0u << (32 - plen);
1764 }
1765
1766 /* Return the number of equal bits in 'n_bits' of 'prefix's MSBs and a 'value'
1767 * starting at "MSB 0"-based offset 'ofs'. */
1768 static unsigned int
1769 prefix_equal_bits(uint32_t prefix, unsigned int n_bits, const ovs_be32 value[],
1770 unsigned int ofs)
1771 {
1772 uint64_t diff = prefix ^ raw_get_prefix(value, ofs, n_bits);
1773 /* Set the bit after the relevant bits to limit the result. */
1774 return raw_clz64(diff << 32 | UINT64_C(1) << (63 - n_bits));
1775 }
1776
1777 /* Return the number of equal bits in 'node' prefix and a 'prefix' of length
1778 * 'plen', starting at "MSB 0"-based offset 'ofs'. */
1779 static unsigned int
1780 trie_prefix_equal_bits(const struct trie_node *node, const ovs_be32 prefix[],
1781 unsigned int ofs, unsigned int plen)
1782 {
1783 return prefix_equal_bits(node->prefix, MIN(node->n_bits, plen - ofs),
1784 prefix, ofs);
1785 }
1786
1787 /* Return the bit at ("MSB 0"-based) offset 'ofs' as an int. 'ofs' can
1788 * be greater than 31. */
1789 static unsigned int
1790 be_get_bit_at(const ovs_be32 value[], unsigned int ofs)
1791 {
1792 return (((const uint8_t *)value)[ofs / 8] >> (7 - ofs % 8)) & 1u;
1793 }
1794
1795 /* Return the bit at ("MSB 0"-based) offset 'ofs' as an int. 'ofs' must
1796 * be between 0 and 31, inclusive. */
1797 static unsigned int
1798 get_bit_at(const uint32_t prefix, unsigned int ofs)
1799 {
1800 return (prefix >> (31 - ofs)) & 1u;
1801 }
1802
1803 /* Create new branch. */
1804 static struct trie_node *
1805 trie_branch_create(const ovs_be32 *prefix, unsigned int ofs, unsigned int plen,
1806 unsigned int n_rules)
1807 {
1808 struct trie_node *node = xmalloc(sizeof *node);
1809
1810 node->prefix = trie_get_prefix(prefix, ofs, plen);
1811
1812 if (plen <= TRIE_PREFIX_BITS) {
1813 node->n_bits = plen;
1814 ovsrcu_set_hidden(&node->edges[0], NULL);
1815 ovsrcu_set_hidden(&node->edges[1], NULL);
1816 node->n_rules = n_rules;
1817 } else { /* Need intermediate nodes. */
1818 struct trie_node *subnode = trie_branch_create(prefix,
1819 ofs + TRIE_PREFIX_BITS,
1820 plen - TRIE_PREFIX_BITS,
1821 n_rules);
1822 int bit = get_bit_at(subnode->prefix, 0);
1823 node->n_bits = TRIE_PREFIX_BITS;
1824 ovsrcu_set_hidden(&node->edges[bit], subnode);
1825 ovsrcu_set_hidden(&node->edges[!bit], NULL);
1826 node->n_rules = 0;
1827 }
1828 return node;
1829 }
1830
1831 static void
1832 trie_node_destroy(const struct trie_node *node)
1833 {
1834 ovsrcu_postpone(free, CONST_CAST(struct trie_node *, node));
1835 }
1836
1837 /* Copy a trie node for modification and postpone delete the old one. */
1838 static struct trie_node *
1839 trie_node_rcu_realloc(const struct trie_node *node)
1840 {
1841 struct trie_node *new_node = xmalloc(sizeof *node);
1842
1843 *new_node = *node;
1844 trie_node_destroy(node);
1845
1846 return new_node;
1847 }
1848
1849 static void
1850 trie_destroy(rcu_trie_ptr *trie)
1851 {
1852 struct trie_node *node = ovsrcu_get_protected(struct trie_node *, trie);
1853
1854 if (node) {
1855 ovsrcu_set_hidden(trie, NULL);
1856 trie_destroy(&node->edges[0]);
1857 trie_destroy(&node->edges[1]);
1858 trie_node_destroy(node);
1859 }
1860 }
1861
1862 static bool
1863 trie_is_leaf(const struct trie_node *trie)
1864 {
1865 /* No children? */
1866 return !ovsrcu_get(struct trie_node *, &trie->edges[0])
1867 && !ovsrcu_get(struct trie_node *, &trie->edges[1]);
1868 }
1869
1870 static void
1871 mask_set_prefix_bits(struct flow_wildcards *wc, uint8_t be32ofs,
1872 unsigned int n_bits)
1873 {
1874 ovs_be32 *mask = &((ovs_be32 *)&wc->masks)[be32ofs];
1875 unsigned int i;
1876
1877 for (i = 0; i < n_bits / 32; i++) {
1878 mask[i] = OVS_BE32_MAX;
1879 }
1880 if (n_bits % 32) {
1881 mask[i] |= htonl(~0u << (32 - n_bits % 32));
1882 }
1883 }
1884
1885 static bool
1886 mask_prefix_bits_set(const struct flow_wildcards *wc, uint8_t be32ofs,
1887 unsigned int n_bits)
1888 {
1889 ovs_be32 *mask = &((ovs_be32 *)&wc->masks)[be32ofs];
1890 unsigned int i;
1891 ovs_be32 zeroes = 0;
1892
1893 for (i = 0; i < n_bits / 32; i++) {
1894 zeroes |= ~mask[i];
1895 }
1896 if (n_bits % 32) {
1897 zeroes |= ~mask[i] & htonl(~0u << (32 - n_bits % 32));
1898 }
1899
1900 return !zeroes; /* All 'n_bits' bits set. */
1901 }
1902
1903 static rcu_trie_ptr *
1904 trie_next_edge(struct trie_node *node, const ovs_be32 value[],
1905 unsigned int ofs)
1906 {
1907 return node->edges + be_get_bit_at(value, ofs);
1908 }
1909
1910 static const struct trie_node *
1911 trie_next_node(const struct trie_node *node, const ovs_be32 value[],
1912 unsigned int ofs)
1913 {
1914 return ovsrcu_get(struct trie_node *,
1915 &node->edges[be_get_bit_at(value, ofs)]);
1916 }
1917
1918 /* Set the bit at ("MSB 0"-based) offset 'ofs'. 'ofs' can be greater than 31.
1919 */
1920 static void
1921 be_set_bit_at(ovs_be32 value[], unsigned int ofs)
1922 {
1923 ((uint8_t *)value)[ofs / 8] |= 1u << (7 - ofs % 8);
1924 }
1925
1926 /* Returns the number of bits in the prefix mask necessary to determine a
1927 * mismatch, in case there are longer prefixes in the tree below the one that
1928 * matched.
1929 * '*plens' will have a bit set for each prefix length that may have matching
1930 * rules. The caller is responsible for clearing the '*plens' prior to
1931 * calling this.
1932 */
1933 static unsigned int
1934 trie_lookup_value(const rcu_trie_ptr *trie, const ovs_be32 value[],
1935 ovs_be32 plens[], unsigned int n_bits)
1936 {
1937 const struct trie_node *prev = NULL;
1938 const struct trie_node *node = ovsrcu_get(struct trie_node *, trie);
1939 unsigned int match_len = 0; /* Number of matching bits. */
1940
1941 for (; node; prev = node, node = trie_next_node(node, value, match_len)) {
1942 unsigned int eqbits;
1943 /* Check if this edge can be followed. */
1944 eqbits = prefix_equal_bits(node->prefix, node->n_bits, value,
1945 match_len);
1946 match_len += eqbits;
1947 if (eqbits < node->n_bits) { /* Mismatch, nothing more to be found. */
1948 /* Bit at offset 'match_len' differed. */
1949 return match_len + 1; /* Includes the first mismatching bit. */
1950 }
1951 /* Full match, check if rules exist at this prefix length. */
1952 if (node->n_rules > 0) {
1953 be_set_bit_at(plens, match_len - 1);
1954 }
1955 if (match_len >= n_bits) {
1956 return n_bits; /* Full prefix. */
1957 }
1958 }
1959 /* node == NULL. Full match so far, but we tried to follow an
1960 * non-existing branch. Need to exclude the other branch if it exists
1961 * (it does not if we were called on an empty trie or 'prev' is a leaf
1962 * node). */
1963 return !prev || trie_is_leaf(prev) ? match_len : match_len + 1;
1964 }
1965
1966 static unsigned int
1967 trie_lookup(const struct cls_trie *trie, const struct flow *flow,
1968 union trie_prefix *plens)
1969 {
1970 const struct mf_field *mf = trie->field;
1971
1972 /* Check that current flow matches the prerequisites for the trie
1973 * field. Some match fields are used for multiple purposes, so we
1974 * must check that the trie is relevant for this flow. */
1975 if (mf_are_prereqs_ok(mf, flow, NULL)) {
1976 return trie_lookup_value(&trie->root,
1977 &((ovs_be32 *)flow)[mf->flow_be32ofs],
1978 &plens->be32, mf->n_bits);
1979 }
1980 memset(plens, 0xff, sizeof *plens); /* All prefixes, no skipping. */
1981 return 0; /* Value not used in this case. */
1982 }
1983
1984 /* Returns the length of a prefix match mask for the field 'mf' in 'minimask'.
1985 * Returns the u32 offset to the miniflow data in '*miniflow_index', if
1986 * 'miniflow_index' is not NULL. */
1987 static unsigned int
1988 minimask_get_prefix_len(const struct minimask *minimask,
1989 const struct mf_field *mf)
1990 {
1991 unsigned int n_bits = 0, mask_tz = 0; /* Non-zero when end of mask seen. */
1992 uint8_t be32_ofs = mf->flow_be32ofs;
1993 uint8_t be32_end = be32_ofs + mf->n_bytes / 4;
1994
1995 for (; be32_ofs < be32_end; ++be32_ofs) {
1996 uint32_t mask = ntohl(minimask_get_be32(minimask, be32_ofs));
1997
1998 /* Validate mask, count the mask length. */
1999 if (mask_tz) {
2000 if (mask) {
2001 return 0; /* No bits allowed after mask ended. */
2002 }
2003 } else {
2004 if (~mask & (~mask + 1)) {
2005 return 0; /* Mask not contiguous. */
2006 }
2007 mask_tz = ctz32(mask);
2008 n_bits += 32 - mask_tz;
2009 }
2010 }
2011
2012 return n_bits;
2013 }
2014
2015 /*
2016 * This is called only when mask prefix is known to be CIDR and non-zero.
2017 * Relies on the fact that the flow and mask have the same map, and since
2018 * the mask is CIDR, the storage for the flow field exists even if it
2019 * happened to be zeros.
2020 */
2021 static const ovs_be32 *
2022 minimatch_get_prefix(const struct minimatch *match, const struct mf_field *mf)
2023 {
2024 size_t u64_ofs = mf->flow_be32ofs / 2;
2025
2026 return (OVS_FORCE const ovs_be32 *)miniflow_get__(match->flow, u64_ofs)
2027 + (mf->flow_be32ofs & 1);
2028 }
2029
2030 /* Insert rule in to the prefix tree.
2031 * 'mlen' must be the (non-zero) CIDR prefix length of the 'trie->field' mask
2032 * in 'rule'. */
2033 static void
2034 trie_insert(struct cls_trie *trie, const struct cls_rule *rule, int mlen)
2035 {
2036 trie_insert_prefix(&trie->root,
2037 minimatch_get_prefix(&rule->match, trie->field), mlen);
2038 }
2039
2040 static void
2041 trie_insert_prefix(rcu_trie_ptr *edge, const ovs_be32 *prefix, int mlen)
2042 {
2043 struct trie_node *node;
2044 int ofs = 0;
2045
2046 /* Walk the tree. */
2047 for (; (node = ovsrcu_get_protected(struct trie_node *, edge));
2048 edge = trie_next_edge(node, prefix, ofs)) {
2049 unsigned int eqbits = trie_prefix_equal_bits(node, prefix, ofs, mlen);
2050 ofs += eqbits;
2051 if (eqbits < node->n_bits) {
2052 /* Mismatch, new node needs to be inserted above. */
2053 int old_branch = get_bit_at(node->prefix, eqbits);
2054 struct trie_node *new_parent;
2055
2056 new_parent = trie_branch_create(prefix, ofs - eqbits, eqbits,
2057 ofs == mlen ? 1 : 0);
2058 /* Copy the node to modify it. */
2059 node = trie_node_rcu_realloc(node);
2060 /* Adjust the new node for its new position in the tree. */
2061 node->prefix <<= eqbits;
2062 node->n_bits -= eqbits;
2063 ovsrcu_set_hidden(&new_parent->edges[old_branch], node);
2064
2065 /* Check if need a new branch for the new rule. */
2066 if (ofs < mlen) {
2067 ovsrcu_set_hidden(&new_parent->edges[!old_branch],
2068 trie_branch_create(prefix, ofs, mlen - ofs,
2069 1));
2070 }
2071 ovsrcu_set(edge, new_parent); /* Publish changes. */
2072 return;
2073 }
2074 /* Full match so far. */
2075
2076 if (ofs == mlen) {
2077 /* Full match at the current node, rule needs to be added here. */
2078 node->n_rules++;
2079 return;
2080 }
2081 }
2082 /* Must insert a new tree branch for the new rule. */
2083 ovsrcu_set(edge, trie_branch_create(prefix, ofs, mlen - ofs, 1));
2084 }
2085
2086 /* 'mlen' must be the (non-zero) CIDR prefix length of the 'trie->field' mask
2087 * in 'rule'. */
2088 static void
2089 trie_remove(struct cls_trie *trie, const struct cls_rule *rule, int mlen)
2090 {
2091 trie_remove_prefix(&trie->root,
2092 minimatch_get_prefix(&rule->match, trie->field), mlen);
2093 }
2094
2095 /* 'mlen' must be the (non-zero) CIDR prefix length of the 'trie->field' mask
2096 * in 'rule'. */
2097 static void
2098 trie_remove_prefix(rcu_trie_ptr *root, const ovs_be32 *prefix, int mlen)
2099 {
2100 struct trie_node *node;
2101 rcu_trie_ptr *edges[sizeof(union trie_prefix) * CHAR_BIT];
2102 int depth = 0, ofs = 0;
2103
2104 /* Walk the tree. */
2105 for (edges[0] = root;
2106 (node = ovsrcu_get_protected(struct trie_node *, edges[depth]));
2107 edges[++depth] = trie_next_edge(node, prefix, ofs)) {
2108 unsigned int eqbits = trie_prefix_equal_bits(node, prefix, ofs, mlen);
2109
2110 if (eqbits < node->n_bits) {
2111 /* Mismatch, nothing to be removed. This should never happen, as
2112 * only rules in the classifier are ever removed. */
2113 break; /* Log a warning. */
2114 }
2115 /* Full match so far. */
2116 ofs += eqbits;
2117
2118 if (ofs == mlen) {
2119 /* Full prefix match at the current node, remove rule here. */
2120 if (!node->n_rules) {
2121 break; /* Log a warning. */
2122 }
2123 node->n_rules--;
2124
2125 /* Check if can prune the tree. */
2126 while (!node->n_rules) {
2127 struct trie_node *next,
2128 *edge0 = ovsrcu_get_protected(struct trie_node *,
2129 &node->edges[0]),
2130 *edge1 = ovsrcu_get_protected(struct trie_node *,
2131 &node->edges[1]);
2132
2133 if (edge0 && edge1) {
2134 break; /* A branching point, cannot prune. */
2135 }
2136
2137 /* Else have at most one child node, remove this node. */
2138 next = edge0 ? edge0 : edge1;
2139
2140 if (next) {
2141 if (node->n_bits + next->n_bits > TRIE_PREFIX_BITS) {
2142 break; /* Cannot combine. */
2143 }
2144 next = trie_node_rcu_realloc(next); /* Modify. */
2145
2146 /* Combine node with next. */
2147 next->prefix = node->prefix | next->prefix >> node->n_bits;
2148 next->n_bits += node->n_bits;
2149 }
2150 /* Update the parent's edge. */
2151 ovsrcu_set(edges[depth], next); /* Publish changes. */
2152 trie_node_destroy(node);
2153
2154 if (next || !depth) {
2155 /* Branch not pruned or at root, nothing more to do. */
2156 break;
2157 }
2158 node = ovsrcu_get_protected(struct trie_node *,
2159 edges[--depth]);
2160 }
2161 return;
2162 }
2163 }
2164 /* Cannot go deeper. This should never happen, since only rules
2165 * that actually exist in the classifier are ever removed. */
2166 }
2167 \f
2168
2169 #define CLS_MATCH_POISON (struct cls_match *)(UINTPTR_MAX / 0xf * 0xb)
2170
2171 void
2172 cls_match_free_cb(struct cls_match *rule)
2173 {
2174 ovsrcu_set_hidden(&rule->next, CLS_MATCH_POISON);
2175 free(rule);
2176 }