]> git.proxmox.com Git - mirror_ovs.git/blob - lib/cmap.c
ovsdb-idl: Fix iteration over tracked rows with no actual data.
[mirror_ovs.git] / lib / cmap.c
1 /*
2 * Copyright (c) 2014, 2016 Nicira, Inc.
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at:
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <config.h>
18 #include "cmap.h"
19 #include "coverage.h"
20 #include "bitmap.h"
21 #include "hash.h"
22 #include "ovs-rcu.h"
23 #include "random.h"
24 #include "util.h"
25
26 COVERAGE_DEFINE(cmap_expand);
27 COVERAGE_DEFINE(cmap_shrink);
28
29 /* Optimistic Concurrent Cuckoo Hash
30 * =================================
31 *
32 * A "cuckoo hash" is an open addressing hash table schema, designed such that
33 * a given element can be in one of only a small number of buckets 'd', each of
34 * which holds up to a small number 'k' elements. Thus, the expected and
35 * worst-case lookup times are O(1) because they require comparing no more than
36 * a fixed number of elements (k * d). Inserting a new element can require
37 * moving around existing elements, but it is also O(1) amortized expected
38 * time.
39 *
40 * An optimistic concurrent hash table goes one step further, making it
41 * possible for a single writer to execute concurrently with any number of
42 * readers without requiring the readers to take any locks.
43 *
44 * This cuckoo hash implementation uses:
45 *
46 * - Two hash functions (d=2). More hash functions allow for a higher load
47 * factor, but increasing 'k' is easier and the benefits of increasing 'd'
48 * quickly fall off with the 'k' values used here. Also, the method of
49 * generating hashes used in this implementation is hard to reasonably
50 * extend beyond d=2. Finally, each additional hash function means that a
51 * lookup has to look at least one extra cache line.
52 *
53 * - 5 or 7 elements per bucket (k=5 or k=7), chosen to make buckets
54 * exactly one cache line in size.
55 *
56 * According to Erlingsson [4], these parameters suggest a maximum load factor
57 * of about 93%. The current implementation is conservative, expanding the
58 * hash table when it is over 85% full.
59 *
60 * When the load factor is below 20%, the hash table will be shrinked by half.
61 * This is to reduce the memory utilization of the hash table and to avoid
62 * the hash table occupying the top of heap chunk which prevents the trimming
63 * of heap.
64 *
65 * Hash Functions
66 * ==============
67 *
68 * A cuckoo hash requires multiple hash functions. When reorganizing the hash
69 * becomes too difficult, it also requires the ability to change the hash
70 * functions. Requiring the client to provide multiple hashes and to be able
71 * to change them to new hashes upon insertion is inconvenient.
72 *
73 * This implementation takes another approach. The client provides a single,
74 * fixed hash. The cuckoo hash internally "rehashes" this hash against a
75 * randomly selected basis value (see rehash()). This rehashed value is one of
76 * the two hashes. The other hash is computed by 16-bit circular rotation of
77 * the rehashed value. Updating the basis changes the hash functions.
78 *
79 * To work properly, the hash functions used by a cuckoo hash must be
80 * independent. If one hash function is a function of the other (e.g. h2(x) =
81 * h1(x) + 1, or h2(x) = hash(h1(x))), then insertion will eventually fail
82 * catastrophically (loop forever) because of collisions. With this rehashing
83 * technique, the two hashes are completely independent for masks up to 16 bits
84 * wide. For masks wider than 16 bits, only 32-n bits are independent between
85 * the two hashes. Thus, it becomes risky to grow a cuckoo hash table beyond
86 * about 2**24 buckets (about 71 million elements with k=5 and maximum load
87 * 85%). Fortunately, Open vSwitch does not normally deal with hash tables
88 * this large.
89 *
90 *
91 * Handling Duplicates
92 * ===================
93 *
94 * This cuckoo hash table implementation deals with duplicate client-provided
95 * hash values by chaining: the second and subsequent cmap_nodes with a given
96 * hash are chained off the initially inserted node's 'next' member. The hash
97 * table maintains the invariant that a single client-provided hash value
98 * exists in only a single chain in a single bucket (even though that hash
99 * could be stored in two buckets).
100 *
101 *
102 * References
103 * ==========
104 *
105 * [1] D. Zhou, B. Fan, H. Lim, M. Kaminsky, D. G. Andersen, "Scalable, High
106 * Performance Ethernet Forwarding with CuckooSwitch". In Proc. 9th
107 * CoNEXT, Dec. 2013.
108 *
109 * [2] B. Fan, D. G. Andersen, and M. Kaminsky. "MemC3: Compact and concurrent
110 * memcache with dumber caching and smarter hashing". In Proc. 10th USENIX
111 * NSDI, Apr. 2013
112 *
113 * [3] R. Pagh and F. Rodler. "Cuckoo hashing". Journal of Algorithms, 51(2):
114 * 122-144, May 2004.
115 *
116 * [4] U. Erlingsson, M. Manasse, F. McSherry, "A Cool and Practical
117 * Alternative to Traditional Hash Tables". In Proc. 7th Workshop on
118 * Distributed Data and Structures (WDAS'06), 2006.
119 */
120 /* An entry is an int and a pointer: 8 bytes on 32-bit, 12 bytes on 64-bit. */
121 #define CMAP_ENTRY_SIZE (4 + (UINTPTR_MAX == UINT32_MAX ? 4 : 8))
122
123 /* Number of entries per bucket: 7 on 32-bit, 5 on 64-bit for 64B cacheline. */
124 #define CMAP_K ((CACHE_LINE_SIZE - 4) / CMAP_ENTRY_SIZE)
125
126 /* A cuckoo hash bucket. Designed to be cache-aligned and exactly one cache
127 * line long. */
128 struct cmap_bucket {
129 /* Padding to make cmap_bucket exactly one cache line long. */
130 PADDED_MEMBERS(CACHE_LINE_SIZE,
131 /* Allows readers to track in-progress changes. Initially zero, each
132 * writer increments this value just before and just after each change
133 * (see cmap_set_bucket()). Thus, a reader can ensure that it gets a
134 * consistent snapshot by waiting for the counter to become even (see
135 * read_even_counter()), then checking that its value does not change
136 * while examining the bucket (see cmap_find()). */
137 atomic_uint32_t counter;
138
139 /* (hash, node) slots. They are parallel arrays instead of an array of
140 * structs to reduce the amount of space lost to padding.
141 *
142 * The slots are in no particular order. A null pointer indicates that
143 * a pair is unused. In-use slots are not necessarily in the earliest
144 * slots. */
145 uint32_t hashes[CMAP_K];
146 struct cmap_node nodes[CMAP_K];
147 );
148 };
149 BUILD_ASSERT_DECL(sizeof(struct cmap_bucket) == CACHE_LINE_SIZE);
150
151 /* Default maximum load factor (as a fraction of UINT32_MAX + 1) before
152 * enlarging a cmap. Reasonable values lie between about 75% and 93%. Smaller
153 * values waste memory; larger values increase the average insertion time. */
154 #define CMAP_MAX_LOAD ((uint32_t) (UINT32_MAX * .85))
155
156 /* Default minimum load factor (as a fraction of UINT32_MAX + 1) before
157 * shrinking a cmap. Currently, the value is chosen to be 20%, this
158 * means cmap will have a 40% load factor after shrink. */
159 #define CMAP_MIN_LOAD ((uint32_t) (UINT32_MAX * .20))
160
161 /* The implementation of a concurrent hash map. */
162 struct cmap_impl {
163 PADDED_MEMBERS_CACHELINE_MARKER(CACHE_LINE_SIZE, cacheline0,
164 unsigned int n; /* Number of in-use elements. */
165 unsigned int max_n; /* Max elements before enlarging. */
166 unsigned int min_n; /* Min elements before shrinking. */
167 uint32_t mask; /* Number of 'buckets', minus one. */
168 uint32_t basis; /* Basis for rehashing client's
169 hash values. */
170 );
171
172 PADDED_MEMBERS_CACHELINE_MARKER(CACHE_LINE_SIZE, cacheline1,
173 struct cmap_bucket buckets[1];
174 );
175 };
176 BUILD_ASSERT_DECL(sizeof(struct cmap_impl) == CACHE_LINE_SIZE * 2);
177
178 /* An empty cmap. */
179 OVS_ALIGNED_VAR(CACHE_LINE_SIZE) const struct cmap_impl empty_cmap;
180
181 static struct cmap_impl *cmap_rehash(struct cmap *, uint32_t mask);
182
183 /* Explicit inline keywords in utility functions seem to be necessary
184 * to prevent performance regression on cmap_find(). */
185
186 /* Given a rehashed value 'hash', returns the other hash for that rehashed
187 * value. This is symmetric: other_hash(other_hash(x)) == x. (See also "Hash
188 * Functions" at the top of this file.) */
189 static inline uint32_t
190 other_hash(uint32_t hash)
191 {
192 return (hash << 16) | (hash >> 16);
193 }
194
195 /* Returns the rehashed value for 'hash' within 'impl'. (See also "Hash
196 * Functions" at the top of this file.) */
197 static inline uint32_t
198 rehash(const struct cmap_impl *impl, uint32_t hash)
199 {
200 return hash_finish(impl->basis, hash);
201 }
202
203 /* Not always without the inline keyword. */
204 static inline struct cmap_impl *
205 cmap_get_impl(const struct cmap *cmap)
206 {
207 return ovsrcu_get(struct cmap_impl *, &cmap->impl);
208 }
209
210 static uint32_t
211 calc_max_n(uint32_t mask)
212 {
213 return ((uint64_t) (mask + 1) * CMAP_K * CMAP_MAX_LOAD) >> 32;
214 }
215
216 static uint32_t
217 calc_min_n(uint32_t mask)
218 {
219 return ((uint64_t) (mask + 1) * CMAP_K * CMAP_MIN_LOAD) >> 32;
220 }
221
222 static struct cmap_impl *
223 cmap_impl_create(uint32_t mask)
224 {
225 struct cmap_impl *impl;
226
227 ovs_assert(is_pow2(mask + 1));
228
229 /* There are 'mask + 1' buckets but struct cmap_impl has one bucket built
230 * in, so we only need to add space for the extra 'mask' buckets. */
231 impl = xzalloc_cacheline(sizeof *impl + mask * sizeof *impl->buckets);
232 impl->n = 0;
233 impl->max_n = calc_max_n(mask);
234 impl->min_n = calc_min_n(mask);
235 impl->mask = mask;
236 impl->basis = random_uint32();
237
238 return impl;
239 }
240
241 /* Initializes 'cmap' as an empty concurrent hash map. */
242 void
243 cmap_init(struct cmap *cmap)
244 {
245 ovsrcu_set(&cmap->impl, CONST_CAST(struct cmap_impl *, &empty_cmap));
246 }
247
248 /* Destroys 'cmap'.
249 *
250 * The client is responsible for destroying any data previously held in
251 * 'cmap'. */
252 void
253 cmap_destroy(struct cmap *cmap)
254 {
255 if (cmap) {
256 struct cmap_impl *impl = cmap_get_impl(cmap);
257 if (impl != &empty_cmap) {
258 ovsrcu_postpone(free_cacheline, impl);
259 }
260 }
261 }
262
263 /* Returns the number of elements in 'cmap'. */
264 size_t
265 cmap_count(const struct cmap *cmap)
266 {
267 return cmap_get_impl(cmap)->n;
268 }
269
270 /* Returns true if 'cmap' is empty, false otherwise. */
271 bool
272 cmap_is_empty(const struct cmap *cmap)
273 {
274 return cmap_count(cmap) == 0;
275 }
276
277 static inline uint32_t
278 read_counter(const struct cmap_bucket *bucket_)
279 {
280 struct cmap_bucket *bucket = CONST_CAST(struct cmap_bucket *, bucket_);
281 uint32_t counter;
282
283 atomic_read_explicit(&bucket->counter, &counter, memory_order_acquire);
284
285 return counter;
286 }
287
288 static inline uint32_t
289 read_even_counter(const struct cmap_bucket *bucket)
290 {
291 uint32_t counter;
292
293 do {
294 counter = read_counter(bucket);
295 } while (OVS_UNLIKELY(counter & 1));
296
297 return counter;
298 }
299
300 static inline bool
301 counter_changed(const struct cmap_bucket *b_, uint32_t c)
302 {
303 struct cmap_bucket *b = CONST_CAST(struct cmap_bucket *, b_);
304 uint32_t counter;
305
306 /* Need to make sure the counter read is not moved up, before the hash and
307 * cmap_node_next(). Using atomic_read_explicit with memory_order_acquire
308 * would allow prior reads to be moved after the barrier.
309 * atomic_thread_fence prevents all following memory accesses from moving
310 * prior to preceding loads. */
311 atomic_thread_fence(memory_order_acquire);
312 atomic_read_relaxed(&b->counter, &counter);
313
314 return OVS_UNLIKELY(counter != c);
315 }
316
317 static inline const struct cmap_node *
318 cmap_find_in_bucket(const struct cmap_bucket *bucket, uint32_t hash)
319 {
320 for (int i = 0; i < CMAP_K; i++) {
321 if (bucket->hashes[i] == hash) {
322 return cmap_node_next(&bucket->nodes[i]);
323 }
324 }
325 return NULL;
326 }
327
328 static inline const struct cmap_node *
329 cmap_find__(const struct cmap_bucket *b1, const struct cmap_bucket *b2,
330 uint32_t hash)
331 {
332 uint32_t c1, c2;
333 const struct cmap_node *node;
334
335 do {
336 do {
337 c1 = read_even_counter(b1);
338 node = cmap_find_in_bucket(b1, hash);
339 } while (OVS_UNLIKELY(counter_changed(b1, c1)));
340 if (node) {
341 break;
342 }
343 do {
344 c2 = read_even_counter(b2);
345 node = cmap_find_in_bucket(b2, hash);
346 } while (OVS_UNLIKELY(counter_changed(b2, c2)));
347 if (node) {
348 break;
349 }
350 } while (OVS_UNLIKELY(counter_changed(b1, c1)));
351
352 return node;
353 }
354
355 /* Searches 'cmap' for an element with the specified 'hash'. If one or more is
356 * found, returns a pointer to the first one, otherwise a null pointer. All of
357 * the nodes on the returned list are guaranteed to have exactly the given
358 * 'hash'.
359 *
360 * This function works even if 'cmap' is changing concurrently. If 'cmap' is
361 * not changing, then cmap_find_protected() is slightly faster.
362 *
363 * CMAP_FOR_EACH_WITH_HASH is usually more convenient. */
364 const struct cmap_node *
365 cmap_find(const struct cmap *cmap, uint32_t hash)
366 {
367 const struct cmap_impl *impl = cmap_get_impl(cmap);
368 uint32_t h1 = rehash(impl, hash);
369 uint32_t h2 = other_hash(h1);
370
371 return cmap_find__(&impl->buckets[h1 & impl->mask],
372 &impl->buckets[h2 & impl->mask],
373 hash);
374 }
375
376 /* Find a node by the index of the entry of cmap. Index N means the N/CMAP_K
377 * bucket and N%CMAP_K entry in that bucket.
378 * Notice that it is not protected by the optimistic lock (versioning) because
379 * it does not compare the hashes. Currently it is only used by the datapath
380 * SMC cache.
381 *
382 * Return node for the entry of index or NULL if the index beyond boundary */
383 const struct cmap_node *
384 cmap_find_by_index(const struct cmap *cmap, uint32_t index)
385 {
386 const struct cmap_impl *impl = cmap_get_impl(cmap);
387
388 uint32_t b = index / CMAP_K;
389 uint32_t e = index % CMAP_K;
390
391 if (b > impl->mask) {
392 return NULL;
393 }
394
395 const struct cmap_bucket *bucket = &impl->buckets[b];
396
397 return cmap_node_next(&bucket->nodes[e]);
398 }
399
400 /* Find the index of certain hash value. Currently only used by the datapath
401 * SMC cache.
402 *
403 * Return the index of the entry if found, or UINT32_MAX if not found. The
404 * function assumes entry index cannot be larger than UINT32_MAX. */
405 uint32_t
406 cmap_find_index(const struct cmap *cmap, uint32_t hash)
407 {
408 const struct cmap_impl *impl = cmap_get_impl(cmap);
409 uint32_t h1 = rehash(impl, hash);
410 uint32_t h2 = other_hash(h1);
411
412 uint32_t b_index1 = h1 & impl->mask;
413 uint32_t b_index2 = h2 & impl->mask;
414
415 uint32_t c1, c2;
416 uint32_t index = UINT32_MAX;
417
418 const struct cmap_bucket *b1 = &impl->buckets[b_index1];
419 const struct cmap_bucket *b2 = &impl->buckets[b_index2];
420
421 do {
422 do {
423 c1 = read_even_counter(b1);
424 for (int i = 0; i < CMAP_K; i++) {
425 if (b1->hashes[i] == hash) {
426 index = b_index1 * CMAP_K + i;
427 }
428 }
429 } while (OVS_UNLIKELY(counter_changed(b1, c1)));
430 if (index != UINT32_MAX) {
431 break;
432 }
433 do {
434 c2 = read_even_counter(b2);
435 for (int i = 0; i < CMAP_K; i++) {
436 if (b2->hashes[i] == hash) {
437 index = b_index2 * CMAP_K + i;
438 }
439 }
440 } while (OVS_UNLIKELY(counter_changed(b2, c2)));
441
442 if (index != UINT32_MAX) {
443 break;
444 }
445 } while (OVS_UNLIKELY(counter_changed(b1, c1)));
446
447 return index;
448 }
449
450 /* Looks up multiple 'hashes', when the corresponding bit in 'map' is 1,
451 * and sets the corresponding pointer in 'nodes', if the hash value was
452 * found from the 'cmap'. In other cases the 'nodes' values are not changed,
453 * i.e., no NULL pointers are stored there.
454 * Returns a map where a bit is set to 1 if the corresponding 'nodes' pointer
455 * was stored, 0 otherwise.
456 * Generally, the caller wants to use CMAP_NODE_FOR_EACH to verify for
457 * hash collisions. */
458 unsigned long
459 cmap_find_batch(const struct cmap *cmap, unsigned long map,
460 uint32_t hashes[], const struct cmap_node *nodes[])
461 {
462 const struct cmap_impl *impl = cmap_get_impl(cmap);
463 unsigned long result = map;
464 int i;
465 uint32_t h1s[sizeof map * CHAR_BIT];
466 const struct cmap_bucket *b1s[sizeof map * CHAR_BIT];
467 const struct cmap_bucket *b2s[sizeof map * CHAR_BIT];
468 uint32_t c1s[sizeof map * CHAR_BIT];
469
470 /* Compute hashes and prefetch 1st buckets. */
471 ULLONG_FOR_EACH_1(i, map) {
472 h1s[i] = rehash(impl, hashes[i]);
473 b1s[i] = &impl->buckets[h1s[i] & impl->mask];
474 OVS_PREFETCH(b1s[i]);
475 }
476 /* Lookups, Round 1. Only look up at the first bucket. */
477 ULLONG_FOR_EACH_1(i, map) {
478 uint32_t c1;
479 const struct cmap_bucket *b1 = b1s[i];
480 const struct cmap_node *node;
481
482 do {
483 c1 = read_even_counter(b1);
484 node = cmap_find_in_bucket(b1, hashes[i]);
485 } while (OVS_UNLIKELY(counter_changed(b1, c1)));
486
487 if (!node) {
488 /* Not found (yet); Prefetch the 2nd bucket. */
489 b2s[i] = &impl->buckets[other_hash(h1s[i]) & impl->mask];
490 OVS_PREFETCH(b2s[i]);
491 c1s[i] = c1; /* We may need to check this after Round 2. */
492 continue;
493 }
494 /* Found. */
495 ULLONG_SET0(map, i); /* Ignore this on round 2. */
496 OVS_PREFETCH(node);
497 nodes[i] = node;
498 }
499 /* Round 2. Look into the 2nd bucket, if needed. */
500 ULLONG_FOR_EACH_1(i, map) {
501 uint32_t c2;
502 const struct cmap_bucket *b2 = b2s[i];
503 const struct cmap_node *node;
504
505 do {
506 c2 = read_even_counter(b2);
507 node = cmap_find_in_bucket(b2, hashes[i]);
508 } while (OVS_UNLIKELY(counter_changed(b2, c2)));
509
510 if (!node) {
511 /* Not found, but the node may have been moved from b2 to b1 right
512 * after we finished with b1 earlier. We just got a clean reading
513 * of the 2nd bucket, so we check the counter of the 1st bucket
514 * only. However, we need to check both buckets again, as the
515 * entry may be moved again to the 2nd bucket. Basically, we
516 * need to loop as long as it takes to get stable readings of
517 * both buckets. cmap_find__() does that, and now that we have
518 * fetched both buckets we can just use it. */
519 if (OVS_UNLIKELY(counter_changed(b1s[i], c1s[i]))) {
520 node = cmap_find__(b1s[i], b2s[i], hashes[i]);
521 if (node) {
522 goto found;
523 }
524 }
525 /* Not found. */
526 ULLONG_SET0(result, i); /* Fix the result. */
527 continue;
528 }
529 found:
530 OVS_PREFETCH(node);
531 nodes[i] = node;
532 }
533 return result;
534 }
535
536 static int
537 cmap_find_slot_protected(struct cmap_bucket *b, uint32_t hash)
538 {
539 int i;
540
541 for (i = 0; i < CMAP_K; i++) {
542 if (b->hashes[i] == hash && cmap_node_next_protected(&b->nodes[i])) {
543 return i;
544 }
545 }
546 return -1;
547 }
548
549 static struct cmap_node *
550 cmap_find_bucket_protected(struct cmap_impl *impl, uint32_t hash, uint32_t h)
551 {
552 struct cmap_bucket *b = &impl->buckets[h & impl->mask];
553 int i;
554
555 for (i = 0; i < CMAP_K; i++) {
556 if (b->hashes[i] == hash) {
557 return cmap_node_next_protected(&b->nodes[i]);
558 }
559 }
560 return NULL;
561 }
562
563 /* Like cmap_find(), but only for use if 'cmap' cannot change concurrently.
564 *
565 * CMAP_FOR_EACH_WITH_HASH_PROTECTED is usually more convenient. */
566 struct cmap_node *
567 cmap_find_protected(const struct cmap *cmap, uint32_t hash)
568 {
569 struct cmap_impl *impl = cmap_get_impl(cmap);
570 uint32_t h1 = rehash(impl, hash);
571 uint32_t h2 = other_hash(h1);
572 struct cmap_node *node;
573
574 node = cmap_find_bucket_protected(impl, hash, h1);
575 if (node) {
576 return node;
577 }
578 return cmap_find_bucket_protected(impl, hash, h2);
579 }
580
581 static int
582 cmap_find_empty_slot_protected(const struct cmap_bucket *b)
583 {
584 int i;
585
586 for (i = 0; i < CMAP_K; i++) {
587 if (!cmap_node_next_protected(&b->nodes[i])) {
588 return i;
589 }
590 }
591 return -1;
592 }
593
594 static void
595 cmap_set_bucket(struct cmap_bucket *b, int i,
596 struct cmap_node *node, uint32_t hash)
597 {
598 uint32_t c;
599
600 atomic_read_explicit(&b->counter, &c, memory_order_acquire);
601 atomic_store_explicit(&b->counter, c + 1, memory_order_release);
602 ovsrcu_set(&b->nodes[i].next, node); /* Also atomic. */
603 b->hashes[i] = hash;
604 atomic_store_explicit(&b->counter, c + 2, memory_order_release);
605 }
606
607 /* Searches 'b' for a node with the given 'hash'. If it finds one, adds
608 * 'new_node' to the node's linked list and returns true. If it does not find
609 * one, returns false. */
610 static bool
611 cmap_insert_dup(struct cmap_node *new_node, uint32_t hash,
612 struct cmap_bucket *b)
613 {
614 int i;
615
616 for (i = 0; i < CMAP_K; i++) {
617 if (b->hashes[i] == hash) {
618 struct cmap_node *node = cmap_node_next_protected(&b->nodes[i]);
619
620 if (node) {
621 struct cmap_node *p;
622
623 /* The common case is that 'new_node' is a singleton,
624 * with a null 'next' pointer. Rehashing can add a
625 * longer chain, but due to our invariant of always
626 * having all nodes with the same (user) hash value at
627 * a single chain, rehashing will always insert the
628 * chain to an empty node. The only way we can end up
629 * here is by the user inserting a chain of nodes at
630 * once. Find the end of the chain starting at
631 * 'new_node', then splice 'node' to the end of that
632 * chain. */
633 p = new_node;
634 for (;;) {
635 struct cmap_node *next = cmap_node_next_protected(p);
636
637 if (!next) {
638 break;
639 }
640 p = next;
641 }
642 ovsrcu_set_hidden(&p->next, node);
643 } else {
644 /* The hash value is there from some previous insertion, but
645 * the associated node has been removed. We're not really
646 * inserting a duplicate, but we can still reuse the slot.
647 * Carry on. */
648 }
649
650 /* Change the bucket to point to 'new_node'. This is a degenerate
651 * form of cmap_set_bucket() that doesn't update the counter since
652 * we're only touching one field and in a way that doesn't change
653 * the bucket's meaning for readers. */
654 ovsrcu_set(&b->nodes[i].next, new_node);
655
656 return true;
657 }
658 }
659 return false;
660 }
661
662 /* Searches 'b' for an empty slot. If successful, stores 'node' and 'hash' in
663 * the slot and returns true. Otherwise, returns false. */
664 static bool
665 cmap_insert_bucket(struct cmap_node *node, uint32_t hash,
666 struct cmap_bucket *b)
667 {
668 int i;
669
670 for (i = 0; i < CMAP_K; i++) {
671 if (!cmap_node_next_protected(&b->nodes[i])) {
672 cmap_set_bucket(b, i, node, hash);
673 return true;
674 }
675 }
676 return false;
677 }
678
679 /* Returns the other bucket that b->nodes[slot] could occupy in 'impl'. (This
680 * might be the same as 'b'.) */
681 static struct cmap_bucket *
682 other_bucket_protected(struct cmap_impl *impl, struct cmap_bucket *b, int slot)
683 {
684 uint32_t h1 = rehash(impl, b->hashes[slot]);
685 uint32_t h2 = other_hash(h1);
686 uint32_t b_idx = b - impl->buckets;
687 uint32_t other_h = (h1 & impl->mask) == b_idx ? h2 : h1;
688
689 return &impl->buckets[other_h & impl->mask];
690 }
691
692 /* 'new_node' is to be inserted into 'impl', but both candidate buckets 'b1'
693 * and 'b2' are full. This function attempts to rearrange buckets within
694 * 'impl' to make room for 'new_node'.
695 *
696 * The implementation is a general-purpose breadth-first search. At first
697 * glance, this is more complex than a random walk through 'impl' (suggested by
698 * some references), but random walks have a tendency to loop back through a
699 * single bucket. We have to move nodes backward along the path that we find,
700 * so that no node actually disappears from the hash table, which means a
701 * random walk would have to be careful to deal with loops. By contrast, a
702 * successful breadth-first search always finds a *shortest* path through the
703 * hash table, and a shortest path will never contain loops, so it avoids that
704 * problem entirely.
705 */
706 static bool
707 cmap_insert_bfs(struct cmap_impl *impl, struct cmap_node *new_node,
708 uint32_t hash, struct cmap_bucket *b1, struct cmap_bucket *b2)
709 {
710 enum { MAX_DEPTH = 4 };
711
712 /* A path from 'start' to 'end' via the 'n' steps in 'slots[]'.
713 *
714 * One can follow the path via:
715 *
716 * struct cmap_bucket *b;
717 * int i;
718 *
719 * b = path->start;
720 * for (i = 0; i < path->n; i++) {
721 * b = other_bucket_protected(impl, b, path->slots[i]);
722 * }
723 * ovs_assert(b == path->end);
724 */
725 struct cmap_path {
726 struct cmap_bucket *start; /* First bucket along the path. */
727 struct cmap_bucket *end; /* Last bucket on the path. */
728 uint8_t slots[MAX_DEPTH]; /* Slots used for each hop. */
729 int n; /* Number of slots[]. */
730 };
731
732 /* We need to limit the amount of work we do trying to find a path. It
733 * might actually be impossible to rearrange the cmap, and after some time
734 * it is likely to be easier to rehash the entire cmap.
735 *
736 * This value of MAX_QUEUE is an arbitrary limit suggested by one of the
737 * references. Empirically, it seems to work OK. */
738 enum { MAX_QUEUE = 500 };
739 struct cmap_path queue[MAX_QUEUE];
740 int head = 0;
741 int tail = 0;
742
743 /* Add 'b1' and 'b2' as starting points for the search. */
744 queue[head].start = b1;
745 queue[head].end = b1;
746 queue[head].n = 0;
747 head++;
748 if (b1 != b2) {
749 queue[head].start = b2;
750 queue[head].end = b2;
751 queue[head].n = 0;
752 head++;
753 }
754
755 while (tail < head) {
756 const struct cmap_path *path = &queue[tail++];
757 struct cmap_bucket *this = path->end;
758 int i;
759
760 for (i = 0; i < CMAP_K; i++) {
761 struct cmap_bucket *next = other_bucket_protected(impl, this, i);
762 int j;
763
764 if (this == next) {
765 continue;
766 }
767
768 j = cmap_find_empty_slot_protected(next);
769 if (j >= 0) {
770 /* We've found a path along which we can rearrange the hash
771 * table: Start at path->start, follow all the slots in
772 * path->slots[], then follow slot 'i', then the bucket you
773 * arrive at has slot 'j' empty. */
774 struct cmap_bucket *buckets[MAX_DEPTH + 2];
775 int slots[MAX_DEPTH + 2];
776 int k;
777
778 /* Figure out the full sequence of slots. */
779 for (k = 0; k < path->n; k++) {
780 slots[k] = path->slots[k];
781 }
782 slots[path->n] = i;
783 slots[path->n + 1] = j;
784
785 /* Figure out the full sequence of buckets. */
786 buckets[0] = path->start;
787 for (k = 0; k <= path->n; k++) {
788 buckets[k + 1] = other_bucket_protected(impl, buckets[k], slots[k]);
789 }
790
791 /* Now the path is fully expressed. One can start from
792 * buckets[0], go via slots[0] to buckets[1], via slots[1] to
793 * buckets[2], and so on.
794 *
795 * Move all the nodes across the path "backward". After each
796 * step some node appears in two buckets. Thus, every node is
797 * always visible to a concurrent search. */
798 for (k = path->n + 1; k > 0; k--) {
799 int slot = slots[k - 1];
800
801 cmap_set_bucket(
802 buckets[k], slots[k],
803 cmap_node_next_protected(&buckets[k - 1]->nodes[slot]),
804 buckets[k - 1]->hashes[slot]);
805 }
806
807 /* Finally, replace the first node on the path by
808 * 'new_node'. */
809 cmap_set_bucket(buckets[0], slots[0], new_node, hash);
810
811 return true;
812 }
813
814 if (path->n < MAX_DEPTH && head < MAX_QUEUE) {
815 struct cmap_path *new_path = &queue[head++];
816
817 *new_path = *path;
818 new_path->end = next;
819 new_path->slots[new_path->n++] = i;
820 }
821 }
822 }
823
824 return false;
825 }
826
827 /* Adds 'node', with the given 'hash', to 'impl'.
828 *
829 * 'node' is ordinarily a single node, with a null 'next' pointer. When
830 * rehashing, however, it may be a longer chain of nodes. */
831 static bool
832 cmap_try_insert(struct cmap_impl *impl, struct cmap_node *node, uint32_t hash)
833 {
834 uint32_t h1 = rehash(impl, hash);
835 uint32_t h2 = other_hash(h1);
836 struct cmap_bucket *b1 = &impl->buckets[h1 & impl->mask];
837 struct cmap_bucket *b2 = &impl->buckets[h2 & impl->mask];
838
839 return (OVS_UNLIKELY(cmap_insert_dup(node, hash, b1) ||
840 cmap_insert_dup(node, hash, b2)) ||
841 OVS_LIKELY(cmap_insert_bucket(node, hash, b1) ||
842 cmap_insert_bucket(node, hash, b2)) ||
843 cmap_insert_bfs(impl, node, hash, b1, b2));
844 }
845
846 /* Inserts 'node', with the given 'hash', into 'cmap'. The caller must ensure
847 * that 'cmap' cannot change concurrently (from another thread). If duplicates
848 * are undesirable, the caller must have already verified that 'cmap' does not
849 * contain a duplicate of 'node'.
850 *
851 * Returns the current number of nodes in the cmap after the insertion. */
852 size_t
853 cmap_insert(struct cmap *cmap, struct cmap_node *node, uint32_t hash)
854 {
855 struct cmap_impl *impl = cmap_get_impl(cmap);
856
857 ovsrcu_set_hidden(&node->next, NULL);
858
859 if (OVS_UNLIKELY(impl->n >= impl->max_n)) {
860 COVERAGE_INC(cmap_expand);
861 impl = cmap_rehash(cmap, (impl->mask << 1) | 1);
862 }
863
864 while (OVS_UNLIKELY(!cmap_try_insert(impl, node, hash))) {
865 impl = cmap_rehash(cmap, impl->mask);
866 }
867 return ++impl->n;
868 }
869
870 static bool
871 cmap_replace__(struct cmap_impl *impl, struct cmap_node *node,
872 struct cmap_node *replacement, uint32_t hash, uint32_t h)
873 {
874 struct cmap_bucket *b = &impl->buckets[h & impl->mask];
875 int slot;
876
877 slot = cmap_find_slot_protected(b, hash);
878 if (slot < 0) {
879 return false;
880 }
881
882 /* The pointer to 'node' is changed to point to 'replacement',
883 * which is the next node if no replacement node is given. */
884 if (!replacement) {
885 replacement = cmap_node_next_protected(node);
886 } else {
887 /* 'replacement' takes the position of 'node' in the list. */
888 ovsrcu_set_hidden(&replacement->next, cmap_node_next_protected(node));
889 }
890
891 struct cmap_node *iter = &b->nodes[slot];
892 for (;;) {
893 struct cmap_node *next = cmap_node_next_protected(iter);
894
895 if (next == node) {
896 ovsrcu_set(&iter->next, replacement);
897 return true;
898 }
899 iter = next;
900 }
901 }
902
903 /* Replaces 'old_node' in 'cmap' with 'new_node'. The caller must
904 * ensure that 'cmap' cannot change concurrently (from another thread).
905 *
906 * 'old_node' must not be destroyed or modified or inserted back into 'cmap' or
907 * into any other concurrent hash map while any other thread might be accessing
908 * it. One correct way to do this is to free it from an RCU callback with
909 * ovsrcu_postpone().
910 *
911 * Returns the current number of nodes in the cmap after the replacement. The
912 * number of nodes decreases by one if 'new_node' is NULL. */
913 size_t
914 cmap_replace(struct cmap *cmap, struct cmap_node *old_node,
915 struct cmap_node *new_node, uint32_t hash)
916 {
917 struct cmap_impl *impl = cmap_get_impl(cmap);
918 uint32_t h1 = rehash(impl, hash);
919 uint32_t h2 = other_hash(h1);
920
921 ovs_assert(cmap_replace__(impl, old_node, new_node, hash, h1) ||
922 cmap_replace__(impl, old_node, new_node, hash, h2));
923
924 if (!new_node) {
925 impl->n--;
926 if (OVS_UNLIKELY(impl->n < impl->min_n)) {
927 COVERAGE_INC(cmap_shrink);
928 impl = cmap_rehash(cmap, impl->mask >> 1);
929 }
930 }
931 return impl->n;
932 }
933
934 static bool
935 cmap_try_rehash(const struct cmap_impl *old, struct cmap_impl *new)
936 {
937 const struct cmap_bucket *b;
938
939 for (b = old->buckets; b <= &old->buckets[old->mask]; b++) {
940 int i;
941
942 for (i = 0; i < CMAP_K; i++) {
943 /* possible optimization here because we know the hashes are
944 * unique */
945 struct cmap_node *node = cmap_node_next_protected(&b->nodes[i]);
946
947 if (node && !cmap_try_insert(new, node, b->hashes[i])) {
948 return false;
949 }
950 }
951 }
952 return true;
953 }
954
955 static struct cmap_impl *
956 cmap_rehash(struct cmap *cmap, uint32_t mask)
957 {
958 struct cmap_impl *old = cmap_get_impl(cmap);
959 struct cmap_impl *new;
960
961 new = cmap_impl_create(mask);
962 ovs_assert(old->n < new->max_n);
963
964 while (!cmap_try_rehash(old, new)) {
965 memset(new->buckets, 0, (mask + 1) * sizeof *new->buckets);
966 new->basis = random_uint32();
967 }
968
969 new->n = old->n;
970 ovsrcu_set(&cmap->impl, new);
971 if (old != &empty_cmap) {
972 ovsrcu_postpone(free_cacheline, old);
973 }
974
975 return new;
976 }
977
978 struct cmap_cursor
979 cmap_cursor_start(const struct cmap *cmap)
980 {
981 struct cmap_cursor cursor;
982
983 cursor.impl = cmap_get_impl(cmap);
984 cursor.bucket_idx = 0;
985 cursor.entry_idx = 0;
986 cursor.node = NULL;
987 cmap_cursor_advance(&cursor);
988
989 return cursor;
990 }
991
992 void
993 cmap_cursor_advance(struct cmap_cursor *cursor)
994 {
995 const struct cmap_impl *impl = cursor->impl;
996
997 if (cursor->node) {
998 cursor->node = cmap_node_next(cursor->node);
999 if (cursor->node) {
1000 return;
1001 }
1002 }
1003
1004 while (cursor->bucket_idx <= impl->mask) {
1005 const struct cmap_bucket *b = &impl->buckets[cursor->bucket_idx];
1006
1007 while (cursor->entry_idx < CMAP_K) {
1008 cursor->node = cmap_node_next(&b->nodes[cursor->entry_idx++]);
1009 if (cursor->node) {
1010 return;
1011 }
1012 }
1013
1014 cursor->bucket_idx++;
1015 cursor->entry_idx = 0;
1016 }
1017 }
1018
1019 /* Returns the next node in 'cmap' in hash order, or NULL if no nodes remain in
1020 * 'cmap'. Uses '*pos' to determine where to begin iteration, and updates
1021 * '*pos' to pass on the next iteration into them before returning.
1022 *
1023 * It's better to use plain CMAP_FOR_EACH and related functions, since they are
1024 * faster and better at dealing with cmaps that change during iteration.
1025 *
1026 * Before beginning iteration, set '*pos' to all zeros. */
1027 struct cmap_node *
1028 cmap_next_position(const struct cmap *cmap,
1029 struct cmap_position *pos)
1030 {
1031 struct cmap_impl *impl = cmap_get_impl(cmap);
1032 unsigned int bucket = pos->bucket;
1033 unsigned int entry = pos->entry;
1034 unsigned int offset = pos->offset;
1035
1036 while (bucket <= impl->mask) {
1037 const struct cmap_bucket *b = &impl->buckets[bucket];
1038
1039 while (entry < CMAP_K) {
1040 const struct cmap_node *node = cmap_node_next(&b->nodes[entry]);
1041 unsigned int i;
1042
1043 for (i = 0; node; i++, node = cmap_node_next(node)) {
1044 if (i == offset) {
1045 if (cmap_node_next(node)) {
1046 offset++;
1047 } else {
1048 entry++;
1049 offset = 0;
1050 }
1051 pos->bucket = bucket;
1052 pos->entry = entry;
1053 pos->offset = offset;
1054 return CONST_CAST(struct cmap_node *, node);
1055 }
1056 }
1057
1058 entry++;
1059 offset = 0;
1060 }
1061
1062 bucket++;
1063 entry = offset = 0;
1064 }
1065
1066 pos->bucket = pos->entry = pos->offset = 0;
1067 return NULL;
1068 }