]> git.proxmox.com Git - mirror_ovs.git/blob - lib/dpif-netdev-lookup-generic.c
ofproto-dpif-upcall: Echo HASH attribute back to datapath.
[mirror_ovs.git] / lib / dpif-netdev-lookup-generic.c
1 /*
2 * Copyright (c) 2009, 2010, 2011, 2012, 2013, 2014, 2016, 2017 Nicira, Inc.
3 * Copyright (c) 2019 Intel Corporation.
4 *
5 * Licensed under the Apache License, Version 2.0 (the "License");
6 * you may not use this file except in compliance with the License.
7 * You may obtain a copy of the License at:
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17
18 #include <config.h>
19 #include "dpif-netdev.h"
20 #include "dpif-netdev-private.h"
21
22 #include "bitmap.h"
23 #include "cmap.h"
24
25 #include "dp-packet.h"
26 #include "dpif.h"
27 #include "dpif-netdev-perf.h"
28 #include "dpif-provider.h"
29 #include "flow.h"
30 #include "ovs-thread.h"
31 #include "packets.h"
32 #include "pvector.h"
33
34 VLOG_DEFINE_THIS_MODULE(dpif_lookup_generic);
35
36 /* Lookup functions below depends on the internal structure of flowmap. */
37 BUILD_ASSERT_DECL(FLOWMAP_UNITS == 2);
38
39 struct block_array {
40 uint32_t count; /* Number of items allocated in 'blocks' */
41 uint64_t blocks[];
42 };
43
44 DEFINE_PER_THREAD_MALLOCED_DATA(struct block_array *, block_array);
45
46 static inline uint64_t *
47 get_blocks_scratch(uint32_t required_count)
48 {
49 struct block_array *array = block_array_get();
50
51 /* Check if this thread already has a large enough array allocated.
52 * This is a predictable and unlikely branch, as it occurs only once at
53 * startup, or if a subtable with higher block count is added.
54 */
55 if (OVS_UNLIKELY(!array || array->count < required_count)) {
56 array = xrealloc(array, sizeof *array +
57 (required_count * sizeof array->blocks[0]));
58 array->count = required_count;
59 block_array_set_unsafe(array);
60 VLOG_DBG("Block array resized to %"PRIu32, required_count);
61 }
62
63 return &array->blocks[0];
64 }
65
66 static inline void
67 netdev_flow_key_flatten_unit(const uint64_t *pkt_blocks,
68 const uint64_t *tbl_blocks,
69 const uint64_t *mf_masks,
70 uint64_t *blocks_scratch,
71 const uint64_t pkt_mf_bits,
72 const uint32_t count)
73 {
74 uint32_t i;
75
76 for (i = 0; i < count; i++) {
77 uint64_t mf_mask = mf_masks[i];
78 /* Calculate the block index for the packet metadata. */
79 uint64_t idx_bits = mf_mask & pkt_mf_bits;
80 const uint32_t pkt_idx = count_1bits(idx_bits);
81
82 /* Check if the packet has the subtable miniflow bit set. If yes, the
83 * block at the above pkt_idx will be stored, otherwise it is masked
84 * out to be zero.
85 */
86 uint64_t pkt_has_mf_bit = (mf_mask + 1) & pkt_mf_bits;
87 uint64_t no_bit = ((!pkt_has_mf_bit) > 0) - 1;
88
89 /* Mask packet block by table block, and mask to zero if packet
90 * doesn't actually contain this block of metadata.
91 */
92 blocks_scratch[i] = pkt_blocks[pkt_idx] & tbl_blocks[i] & no_bit;
93 }
94 }
95
96 /* This function takes a packet, and subtable and writes an array of uint64_t
97 * blocks. The blocks contain the metadata that the subtable matches on, in
98 * the same order as the subtable, allowing linear iteration over the blocks.
99 *
100 * To calculate the blocks contents, the netdev_flow_key_flatten_unit function
101 * is called twice, once for each "unit" of the miniflow. This call can be
102 * inlined by the compiler for performance.
103 *
104 * Note that the u0_count and u1_count variables can be compile-time constants,
105 * allowing the loop in the inlined flatten_unit() function to be compile-time
106 * unrolled, or possibly removed totally by unrolling by the loop iterations.
107 * The compile time optimizations enabled by this design improves performance.
108 */
109 static inline void
110 netdev_flow_key_flatten(const struct netdev_flow_key *key,
111 const struct netdev_flow_key *mask,
112 const uint64_t *mf_masks,
113 uint64_t *blocks_scratch,
114 const uint32_t u0_count,
115 const uint32_t u1_count)
116 {
117 /* Load mask from subtable, mask with packet mf, popcount to get idx. */
118 const uint64_t *pkt_blocks = miniflow_get_values(&key->mf);
119 const uint64_t *tbl_blocks = miniflow_get_values(&mask->mf);
120
121 /* Packet miniflow bits to be masked by pre-calculated mf_masks. */
122 const uint64_t pkt_bits_u0 = key->mf.map.bits[0];
123 const uint32_t pkt_bits_u0_pop = count_1bits(pkt_bits_u0);
124 const uint64_t pkt_bits_u1 = key->mf.map.bits[1];
125
126 /* Unit 0 flattening */
127 netdev_flow_key_flatten_unit(&pkt_blocks[0],
128 &tbl_blocks[0],
129 &mf_masks[0],
130 &blocks_scratch[0],
131 pkt_bits_u0,
132 u0_count);
133
134 /* Unit 1 flattening:
135 * Move the pointers forward in the arrays based on u0 offsets, NOTE:
136 * 1) pkt blocks indexed by actual popcount of u0, which is NOT always
137 * the same as the amount of bits set in the subtable.
138 * 2) mf_masks, tbl_block and blocks_scratch are all "flat" arrays, so
139 * the index is always u0_count.
140 */
141 netdev_flow_key_flatten_unit(&pkt_blocks[pkt_bits_u0_pop],
142 &tbl_blocks[u0_count],
143 &mf_masks[u0_count],
144 &blocks_scratch[u0_count],
145 pkt_bits_u1,
146 u1_count);
147 }
148
149 /* Compares a rule and the blocks representing a key, returns 1 on a match. */
150 static inline uint64_t
151 netdev_rule_matches_key(const struct dpcls_rule *rule,
152 const uint32_t mf_bits_total,
153 const uint64_t *blocks_scratch)
154 {
155 const uint64_t *keyp = miniflow_get_values(&rule->flow.mf);
156 const uint64_t *maskp = miniflow_get_values(&rule->mask->mf);
157 uint64_t not_match = 0;
158
159 for (int i = 0; i < mf_bits_total; i++) {
160 not_match |= (blocks_scratch[i] & maskp[i]) != keyp[i];
161 }
162
163 /* Invert result to show match as 1. */
164 return !not_match;
165 }
166
167 /* Const prop version of the function: note that mf bits total and u0 are
168 * explicitly passed in here, while they're also available at runtime from the
169 * subtable pointer. By making them compile time, we enable the compiler to
170 * unroll loops and flatten out code-sequences based on the knowledge of the
171 * mf_bits_* compile time values. This results in improved performance.
172 *
173 * Note: this function is marked with ALWAYS_INLINE to ensure the compiler
174 * inlines the below code, and then uses the compile time constants to make
175 * specialized versions of the runtime code. Without ALWAYS_INLINE, the
176 * compiler might decide to not inline, and performance will suffer.
177 */
178 static inline uint32_t ALWAYS_INLINE
179 lookup_generic_impl(struct dpcls_subtable *subtable,
180 uint32_t keys_map,
181 const struct netdev_flow_key *keys[],
182 struct dpcls_rule **rules,
183 const uint32_t bit_count_u0,
184 const uint32_t bit_count_u1)
185 {
186 const uint32_t n_pkts = count_1bits(keys_map);
187 ovs_assert(NETDEV_MAX_BURST >= n_pkts);
188 uint32_t hashes[NETDEV_MAX_BURST];
189
190 const uint32_t bit_count_total = bit_count_u0 + bit_count_u1;
191 const uint32_t block_count_required = bit_count_total * NETDEV_MAX_BURST;
192 uint64_t *mf_masks = subtable->mf_masks;
193 int i;
194
195 /* Blocks scratch is an optimization to re-use the same packet miniflow
196 * block data when doing rule-verify. This reduces work done during lookup
197 * and hence improves performance. The blocks_scratch array is stored as a
198 * thread local variable, as each thread requires its own blocks memory.
199 */
200 uint64_t *blocks_scratch = get_blocks_scratch(block_count_required);
201
202 /* Flatten the packet metadata into the blocks_scratch[] using subtable. */
203 ULLONG_FOR_EACH_1 (i, keys_map) {
204 netdev_flow_key_flatten(keys[i],
205 &subtable->mask,
206 mf_masks,
207 &blocks_scratch[i * bit_count_total],
208 bit_count_u0,
209 bit_count_u1);
210 }
211
212 /* Hash the now linearized blocks of packet metadata. */
213 ULLONG_FOR_EACH_1 (i, keys_map) {
214 uint64_t *block_ptr = &blocks_scratch[i * bit_count_total];
215 uint32_t hash = hash_add_words64(0, block_ptr, bit_count_total);
216 hashes[i] = hash_finish(hash, bit_count_total * 8);
217 }
218
219 /* Lookup: this returns a bitmask of packets where the hash table had
220 * an entry for the given hash key. Presence of a hash key does not
221 * guarantee matching the key, as there can be hash collisions.
222 */
223 uint32_t found_map;
224 const struct cmap_node *nodes[NETDEV_MAX_BURST];
225
226 found_map = cmap_find_batch(&subtable->rules, keys_map, hashes, nodes);
227
228 /* Verify that packet actually matched rule. If not found, a hash
229 * collision has taken place, so continue searching with the next node.
230 */
231 ULLONG_FOR_EACH_1 (i, found_map) {
232 struct dpcls_rule *rule;
233
234 CMAP_NODE_FOR_EACH (rule, cmap_node, nodes[i]) {
235 const uint32_t cidx = i * bit_count_total;
236 uint32_t match = netdev_rule_matches_key(rule, bit_count_total,
237 &blocks_scratch[cidx]);
238
239 if (OVS_LIKELY(match)) {
240 rules[i] = rule;
241 subtable->hit_cnt++;
242 goto next;
243 }
244 }
245
246 /* None of the found rules was a match. Reset the i-th bit to
247 * keep searching this key in the next subtable. */
248 ULLONG_SET0(found_map, i); /* Did not match. */
249 next:
250 ; /* Keep Sparse happy. */
251 }
252
253 return found_map;
254 }
255
256 /* Generic lookup function that uses runtime provided mf bits for iterating. */
257 uint32_t
258 dpcls_subtable_lookup_generic(struct dpcls_subtable *subtable,
259 uint32_t keys_map,
260 const struct netdev_flow_key *keys[],
261 struct dpcls_rule **rules)
262 {
263 /* Here the runtime subtable->mf_bits counts are used, which forces the
264 * compiler to iterate normal for() loops. Due to this limitation in the
265 * compilers available optimizations, this function has lower performance
266 * than the below specialized functions.
267 */
268 return lookup_generic_impl(subtable, keys_map, keys, rules,
269 subtable->mf_bits_set_unit0,
270 subtable->mf_bits_set_unit1);
271 }
272
273 /* Expand out specialized functions with U0 and U1 bit attributes. */
274 #define DECLARE_OPTIMIZED_LOOKUP_FUNCTION(U0, U1) \
275 static uint32_t \
276 dpcls_subtable_lookup_mf_u0w##U0##_u1w##U1( \
277 struct dpcls_subtable *subtable, \
278 uint32_t keys_map, \
279 const struct netdev_flow_key *keys[],\
280 struct dpcls_rule **rules) \
281 { \
282 return lookup_generic_impl(subtable, keys_map, keys, rules, U0, U1); \
283 } \
284
285 DECLARE_OPTIMIZED_LOOKUP_FUNCTION(5, 1)
286 DECLARE_OPTIMIZED_LOOKUP_FUNCTION(4, 1)
287 DECLARE_OPTIMIZED_LOOKUP_FUNCTION(4, 0)
288
289 /* Check if a specialized function is valid for the required subtable. */
290 #define CHECK_LOOKUP_FUNCTION(U0, U1) \
291 if (!f && u0_bits == U0 && u1_bits == U1) { \
292 f = dpcls_subtable_lookup_mf_u0w##U0##_u1w##U1; \
293 }
294
295 /* Probe function to lookup an available specialized function.
296 * If capable to run the requested miniflow fingerprint, this function returns
297 * the most optimal implementation for that miniflow fingerprint.
298 * @retval Non-NULL A valid function to handle the miniflow bit pattern
299 * @retval NULL The requested miniflow is not supported by this implementation.
300 */
301 dpcls_subtable_lookup_func
302 dpcls_subtable_generic_probe(uint32_t u0_bits, uint32_t u1_bits)
303 {
304 dpcls_subtable_lookup_func f = NULL;
305
306 CHECK_LOOKUP_FUNCTION(5, 1);
307 CHECK_LOOKUP_FUNCTION(4, 1);
308 CHECK_LOOKUP_FUNCTION(4, 0);
309
310 if (f) {
311 VLOG_DBG("Subtable using Generic Optimized for u0 %d, u1 %d\n",
312 u0_bits, u1_bits);
313 }
314 return f;
315 }