]> git.proxmox.com Git - ovs.git/blob - lib/dpif-netdev.c
dpif-netdev: Polling threads directly call ofproto upcall functions.
[ovs.git] / lib / dpif-netdev.c
1 /*
2 * Copyright (c) 2009, 2010, 2011, 2012, 2013, 2014 Nicira, Inc.
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at:
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <config.h>
18 #include "dpif-netdev.h"
19
20 #include <ctype.h>
21 #include <errno.h>
22 #include <fcntl.h>
23 #include <inttypes.h>
24 #include <netinet/in.h>
25 #include <sys/socket.h>
26 #include <net/if.h>
27 #include <stdint.h>
28 #include <stdlib.h>
29 #include <string.h>
30 #include <sys/ioctl.h>
31 #include <sys/stat.h>
32 #include <unistd.h>
33
34 #include "classifier.h"
35 #include "cmap.h"
36 #include "csum.h"
37 #include "dpif.h"
38 #include "dpif-provider.h"
39 #include "dummy.h"
40 #include "dynamic-string.h"
41 #include "fat-rwlock.h"
42 #include "flow.h"
43 #include "cmap.h"
44 #include "latch.h"
45 #include "list.h"
46 #include "meta-flow.h"
47 #include "netdev.h"
48 #include "netdev-dpdk.h"
49 #include "netdev-vport.h"
50 #include "netlink.h"
51 #include "odp-execute.h"
52 #include "odp-util.h"
53 #include "ofp-print.h"
54 #include "ofpbuf.h"
55 #include "ovs-rcu.h"
56 #include "packet-dpif.h"
57 #include "packets.h"
58 #include "poll-loop.h"
59 #include "random.h"
60 #include "seq.h"
61 #include "shash.h"
62 #include "sset.h"
63 #include "timeval.h"
64 #include "unixctl.h"
65 #include "util.h"
66 #include "vlog.h"
67
68 VLOG_DEFINE_THIS_MODULE(dpif_netdev);
69
70 /* By default, choose a priority in the middle. */
71 #define NETDEV_RULE_PRIORITY 0x8000
72
73 #define FLOW_DUMP_MAX_BATCH 50
74 /* Use per thread recirc_depth to prevent recirculation loop. */
75 #define MAX_RECIRC_DEPTH 5
76 DEFINE_STATIC_PER_THREAD_DATA(uint32_t, recirc_depth, 0)
77
78 /* Configuration parameters. */
79 enum { MAX_FLOWS = 65536 }; /* Maximum number of flows in flow table. */
80
81 /* Protects against changes to 'dp_netdevs'. */
82 static struct ovs_mutex dp_netdev_mutex = OVS_MUTEX_INITIALIZER;
83
84 /* Contains all 'struct dp_netdev's. */
85 static struct shash dp_netdevs OVS_GUARDED_BY(dp_netdev_mutex)
86 = SHASH_INITIALIZER(&dp_netdevs);
87
88 struct dp_netdev_queue {
89 unsigned int packet_count;
90
91 struct dpif_upcall upcalls[NETDEV_MAX_RX_BATCH];
92 struct ofpbuf bufs[NETDEV_MAX_RX_BATCH];
93 };
94
95 #define DP_NETDEV_QUEUE_INITIALIZER { .packet_count = 0 }
96
97 /* Datapath based on the network device interface from netdev.h.
98 *
99 *
100 * Thread-safety
101 * =============
102 *
103 * Some members, marked 'const', are immutable. Accessing other members
104 * requires synchronization, as noted in more detail below.
105 *
106 * Acquisition order is, from outermost to innermost:
107 *
108 * dp_netdev_mutex (global)
109 * port_mutex
110 * flow_mutex
111 */
112 struct dp_netdev {
113 const struct dpif_class *const class;
114 const char *const name;
115 struct dpif *dpif;
116 struct ovs_refcount ref_cnt;
117 atomic_flag destroyed;
118
119 /* Flows.
120 *
121 * Writers of 'flow_table' must take the 'flow_mutex'. Corresponding
122 * changes to 'cls' must be made while still holding the 'flow_mutex'.
123 */
124 struct ovs_mutex flow_mutex;
125 struct classifier cls;
126 struct cmap flow_table OVS_GUARDED; /* Flow table. */
127
128 /* Statistics.
129 *
130 * ovsthread_stats is internally synchronized. */
131 struct ovsthread_stats stats; /* Contains 'struct dp_netdev_stats *'. */
132
133 /* Ports.
134 *
135 * Protected by RCU. Take the mutex to add or remove ports. */
136 struct ovs_mutex port_mutex;
137 struct cmap ports;
138 struct seq *port_seq; /* Incremented whenever a port changes. */
139
140 /* Protects access to ofproto-dpif-upcall interface during revalidator
141 * thread synchronization. */
142 struct fat_rwlock upcall_rwlock;
143 exec_upcall_cb *upcall_cb; /* Callback function for executing upcalls. */
144
145 /* Forwarding threads. */
146 struct latch exit_latch;
147 struct pmd_thread *pmd_threads;
148 size_t n_pmd_threads;
149 int pmd_count;
150 };
151
152 static struct dp_netdev_port *dp_netdev_lookup_port(const struct dp_netdev *dp,
153 odp_port_t);
154
155 enum dp_stat_type {
156 DP_STAT_HIT, /* Packets that matched in the flow table. */
157 DP_STAT_MISS, /* Packets that did not match. */
158 DP_STAT_LOST, /* Packets not passed up to the client. */
159 DP_N_STATS
160 };
161
162 /* Contained by struct dp_netdev's 'stats' member. */
163 struct dp_netdev_stats {
164 struct ovs_mutex mutex; /* Protects 'n'. */
165
166 /* Indexed by DP_STAT_*, protected by 'mutex'. */
167 unsigned long long int n[DP_N_STATS] OVS_GUARDED;
168 };
169
170
171 /* A port in a netdev-based datapath. */
172 struct dp_netdev_port {
173 struct cmap_node node; /* Node in dp_netdev's 'ports'. */
174 odp_port_t port_no;
175 struct netdev *netdev;
176 struct netdev_saved_flags *sf;
177 struct netdev_rxq **rxq;
178 struct ovs_refcount ref_cnt;
179 char *type; /* Port type as requested by user. */
180 };
181
182
183 /* Stores a miniflow */
184
185 /* There are fields in the flow structure that we never use. Therefore we can
186 * save a few words of memory */
187 #define NETDEV_KEY_BUF_SIZE_U32 (FLOW_U32S - MINI_N_INLINE \
188 - FLOW_U32_SIZE(regs) \
189 - FLOW_U32_SIZE(metadata) \
190 )
191 struct netdev_flow_key {
192 struct miniflow flow;
193 uint32_t buf[NETDEV_KEY_BUF_SIZE_U32];
194 };
195
196 /* A flow in dp_netdev's 'flow_table'.
197 *
198 *
199 * Thread-safety
200 * =============
201 *
202 * Except near the beginning or ending of its lifespan, rule 'rule' belongs to
203 * its dp_netdev's classifier. The text below calls this classifier 'cls'.
204 *
205 * Motivation
206 * ----------
207 *
208 * The thread safety rules described here for "struct dp_netdev_flow" are
209 * motivated by two goals:
210 *
211 * - Prevent threads that read members of "struct dp_netdev_flow" from
212 * reading bad data due to changes by some thread concurrently modifying
213 * those members.
214 *
215 * - Prevent two threads making changes to members of a given "struct
216 * dp_netdev_flow" from interfering with each other.
217 *
218 *
219 * Rules
220 * -----
221 *
222 * A flow 'flow' may be accessed without a risk of being freed by code that
223 * holds a read-lock or write-lock on 'cls->rwlock' or that owns a reference to
224 * 'flow->ref_cnt' (or both). Code that needs to hold onto a flow for a while
225 * should take 'cls->rwlock', find the flow it needs, increment 'flow->ref_cnt'
226 * with dpif_netdev_flow_ref(), and drop 'cls->rwlock'.
227 *
228 * 'flow->ref_cnt' protects 'flow' from being freed. It doesn't protect the
229 * flow from being deleted from 'cls' (that's 'cls->rwlock') and it doesn't
230 * protect members of 'flow' from modification.
231 *
232 * Some members, marked 'const', are immutable. Accessing other members
233 * requires synchronization, as noted in more detail below.
234 */
235 struct dp_netdev_flow {
236 /* Packet classification. */
237 const struct cls_rule cr; /* In owning dp_netdev's 'cls'. */
238
239 /* Hash table index by unmasked flow. */
240 const struct cmap_node node; /* In owning dp_netdev's 'flow_table'. */
241 const struct flow flow; /* The flow that created this entry. */
242
243 /* Statistics.
244 *
245 * Reading or writing these members requires 'mutex'. */
246 struct ovsthread_stats stats; /* Contains "struct dp_netdev_flow_stats". */
247
248 /* Actions. */
249 OVSRCU_TYPE(struct dp_netdev_actions *) actions;
250 };
251
252 static void dp_netdev_flow_free(struct dp_netdev_flow *);
253
254 /* Contained by struct dp_netdev_flow's 'stats' member. */
255 struct dp_netdev_flow_stats {
256 struct ovs_mutex mutex; /* Guards all the other members. */
257
258 long long int used OVS_GUARDED; /* Last used time, in monotonic msecs. */
259 long long int packet_count OVS_GUARDED; /* Number of packets matched. */
260 long long int byte_count OVS_GUARDED; /* Number of bytes matched. */
261 uint16_t tcp_flags OVS_GUARDED; /* Bitwise-OR of seen tcp_flags values. */
262 };
263
264 /* A set of datapath actions within a "struct dp_netdev_flow".
265 *
266 *
267 * Thread-safety
268 * =============
269 *
270 * A struct dp_netdev_actions 'actions' is protected with RCU. */
271 struct dp_netdev_actions {
272 /* These members are immutable: they do not change during the struct's
273 * lifetime. */
274 struct nlattr *actions; /* Sequence of OVS_ACTION_ATTR_* attributes. */
275 unsigned int size; /* Size of 'actions', in bytes. */
276 };
277
278 struct dp_netdev_actions *dp_netdev_actions_create(const struct nlattr *,
279 size_t);
280 struct dp_netdev_actions *dp_netdev_flow_get_actions(
281 const struct dp_netdev_flow *);
282 static void dp_netdev_actions_free(struct dp_netdev_actions *);
283
284 /* PMD: Poll modes drivers. PMD accesses devices via polling to eliminate
285 * the performance overhead of interrupt processing. Therefore netdev can
286 * not implement rx-wait for these devices. dpif-netdev needs to poll
287 * these device to check for recv buffer. pmd-thread does polling for
288 * devices assigned to itself thread.
289 *
290 * DPDK used PMD for accessing NIC.
291 *
292 * A thread that receives packets from PMD ports, looks them up in the flow
293 * table, and executes the actions it finds.
294 **/
295 struct pmd_thread {
296 struct dp_netdev *dp;
297 pthread_t thread;
298 int id;
299 atomic_uint change_seq;
300 };
301
302 /* Interface to netdev-based datapath. */
303 struct dpif_netdev {
304 struct dpif dpif;
305 struct dp_netdev *dp;
306 uint64_t last_port_seq;
307 };
308
309 static int get_port_by_number(struct dp_netdev *dp, odp_port_t port_no,
310 struct dp_netdev_port **portp);
311 static int get_port_by_name(struct dp_netdev *dp, const char *devname,
312 struct dp_netdev_port **portp);
313 static void dp_netdev_free(struct dp_netdev *)
314 OVS_REQUIRES(dp_netdev_mutex);
315 static void dp_netdev_flow_flush(struct dp_netdev *);
316 static int do_add_port(struct dp_netdev *dp, const char *devname,
317 const char *type, odp_port_t port_no)
318 OVS_REQUIRES(dp->port_mutex);
319 static void do_del_port(struct dp_netdev *dp, struct dp_netdev_port *)
320 OVS_REQUIRES(dp->port_mutex);
321 static int dpif_netdev_open(const struct dpif_class *, const char *name,
322 bool create, struct dpif **);
323 static int dp_netdev_queue_userspace_packet(struct dp_netdev_queue *,
324 struct ofpbuf *, int type,
325 const struct miniflow *,
326 const struct nlattr *);
327 static void dp_netdev_execute_userspace_queue(struct dp_netdev_queue *,
328 struct dp_netdev *);
329 static void dp_netdev_execute_actions(struct dp_netdev *dp,
330 struct dpif_packet **, int c,
331 bool may_steal, struct pkt_metadata *,
332 const struct nlattr *actions,
333 size_t actions_len);
334 static void dp_netdev_port_input(struct dp_netdev *dp,
335 struct dpif_packet **packets, int cnt,
336 odp_port_t port_no);
337
338 static void dp_netdev_set_pmd_threads(struct dp_netdev *, int n);
339 static void dp_netdev_disable_upcall(struct dp_netdev *);
340
341 static struct dpif_netdev *
342 dpif_netdev_cast(const struct dpif *dpif)
343 {
344 ovs_assert(dpif->dpif_class->open == dpif_netdev_open);
345 return CONTAINER_OF(dpif, struct dpif_netdev, dpif);
346 }
347
348 static struct dp_netdev *
349 get_dp_netdev(const struct dpif *dpif)
350 {
351 return dpif_netdev_cast(dpif)->dp;
352 }
353
354 static int
355 dpif_netdev_enumerate(struct sset *all_dps,
356 const struct dpif_class *dpif_class)
357 {
358 struct shash_node *node;
359
360 ovs_mutex_lock(&dp_netdev_mutex);
361 SHASH_FOR_EACH(node, &dp_netdevs) {
362 struct dp_netdev *dp = node->data;
363 if (dpif_class != dp->class) {
364 /* 'dp_netdevs' contains both "netdev" and "dummy" dpifs.
365 * If the class doesn't match, skip this dpif. */
366 continue;
367 }
368 sset_add(all_dps, node->name);
369 }
370 ovs_mutex_unlock(&dp_netdev_mutex);
371
372 return 0;
373 }
374
375 static bool
376 dpif_netdev_class_is_dummy(const struct dpif_class *class)
377 {
378 return class != &dpif_netdev_class;
379 }
380
381 static const char *
382 dpif_netdev_port_open_type(const struct dpif_class *class, const char *type)
383 {
384 return strcmp(type, "internal") ? type
385 : dpif_netdev_class_is_dummy(class) ? "dummy"
386 : "tap";
387 }
388
389 static struct dpif *
390 create_dpif_netdev(struct dp_netdev *dp)
391 {
392 uint16_t netflow_id = hash_string(dp->name, 0);
393 struct dpif_netdev *dpif;
394
395 ovs_refcount_ref(&dp->ref_cnt);
396
397 dpif = xmalloc(sizeof *dpif);
398 dpif_init(&dpif->dpif, dp->class, dp->name, netflow_id >> 8, netflow_id);
399 dpif->dp = dp;
400 dpif->last_port_seq = seq_read(dp->port_seq);
401
402 return &dpif->dpif;
403 }
404
405 /* Choose an unused, non-zero port number and return it on success.
406 * Return ODPP_NONE on failure. */
407 static odp_port_t
408 choose_port(struct dp_netdev *dp, const char *name)
409 OVS_REQUIRES(dp->port_mutex)
410 {
411 uint32_t port_no;
412
413 if (dp->class != &dpif_netdev_class) {
414 const char *p;
415 int start_no = 0;
416
417 /* If the port name begins with "br", start the number search at
418 * 100 to make writing tests easier. */
419 if (!strncmp(name, "br", 2)) {
420 start_no = 100;
421 }
422
423 /* If the port name contains a number, try to assign that port number.
424 * This can make writing unit tests easier because port numbers are
425 * predictable. */
426 for (p = name; *p != '\0'; p++) {
427 if (isdigit((unsigned char) *p)) {
428 port_no = start_no + strtol(p, NULL, 10);
429 if (port_no > 0 && port_no != odp_to_u32(ODPP_NONE)
430 && !dp_netdev_lookup_port(dp, u32_to_odp(port_no))) {
431 return u32_to_odp(port_no);
432 }
433 break;
434 }
435 }
436 }
437
438 for (port_no = 1; port_no <= UINT16_MAX; port_no++) {
439 if (!dp_netdev_lookup_port(dp, u32_to_odp(port_no))) {
440 return u32_to_odp(port_no);
441 }
442 }
443
444 return ODPP_NONE;
445 }
446
447 static int
448 create_dp_netdev(const char *name, const struct dpif_class *class,
449 struct dp_netdev **dpp)
450 OVS_REQUIRES(dp_netdev_mutex)
451 {
452 struct dp_netdev *dp;
453 int error;
454
455 dp = xzalloc(sizeof *dp);
456 shash_add(&dp_netdevs, name, dp);
457
458 *CONST_CAST(const struct dpif_class **, &dp->class) = class;
459 *CONST_CAST(const char **, &dp->name) = xstrdup(name);
460 ovs_refcount_init(&dp->ref_cnt);
461 atomic_flag_clear(&dp->destroyed);
462
463 ovs_mutex_init(&dp->flow_mutex);
464 classifier_init(&dp->cls, NULL);
465 cmap_init(&dp->flow_table);
466
467 ovsthread_stats_init(&dp->stats);
468
469 ovs_mutex_init(&dp->port_mutex);
470 cmap_init(&dp->ports);
471 dp->port_seq = seq_create();
472 latch_init(&dp->exit_latch);
473 fat_rwlock_init(&dp->upcall_rwlock);
474
475 /* Disable upcalls by default. */
476 dp_netdev_disable_upcall(dp);
477 dp->upcall_cb = NULL;
478
479 ovs_mutex_lock(&dp->port_mutex);
480 error = do_add_port(dp, name, "internal", ODPP_LOCAL);
481 ovs_mutex_unlock(&dp->port_mutex);
482 if (error) {
483 dp_netdev_free(dp);
484 return error;
485 }
486
487 *dpp = dp;
488 return 0;
489 }
490
491 static int
492 dpif_netdev_open(const struct dpif_class *class, const char *name,
493 bool create, struct dpif **dpifp)
494 {
495 struct dp_netdev *dp;
496 int error;
497
498 ovs_mutex_lock(&dp_netdev_mutex);
499 dp = shash_find_data(&dp_netdevs, name);
500 if (!dp) {
501 error = create ? create_dp_netdev(name, class, &dp) : ENODEV;
502 } else {
503 error = (dp->class != class ? EINVAL
504 : create ? EEXIST
505 : 0);
506 }
507 if (!error) {
508 *dpifp = create_dpif_netdev(dp);
509 dp->dpif = *dpifp;
510 }
511 ovs_mutex_unlock(&dp_netdev_mutex);
512
513 return error;
514 }
515
516 /* Requires dp_netdev_mutex so that we can't get a new reference to 'dp'
517 * through the 'dp_netdevs' shash while freeing 'dp'. */
518 static void
519 dp_netdev_free(struct dp_netdev *dp)
520 OVS_REQUIRES(dp_netdev_mutex)
521 {
522 struct dp_netdev_port *port;
523 struct dp_netdev_stats *bucket;
524 int i;
525
526 shash_find_and_delete(&dp_netdevs, dp->name);
527
528 dp_netdev_set_pmd_threads(dp, 0);
529 free(dp->pmd_threads);
530
531 dp_netdev_flow_flush(dp);
532 ovs_mutex_lock(&dp->port_mutex);
533 CMAP_FOR_EACH (port, node, &dp->ports) {
534 do_del_port(dp, port);
535 }
536 ovs_mutex_unlock(&dp->port_mutex);
537
538 OVSTHREAD_STATS_FOR_EACH_BUCKET (bucket, i, &dp->stats) {
539 ovs_mutex_destroy(&bucket->mutex);
540 free_cacheline(bucket);
541 }
542 ovsthread_stats_destroy(&dp->stats);
543
544 classifier_destroy(&dp->cls);
545 cmap_destroy(&dp->flow_table);
546 ovs_mutex_destroy(&dp->flow_mutex);
547 seq_destroy(dp->port_seq);
548 cmap_destroy(&dp->ports);
549 fat_rwlock_destroy(&dp->upcall_rwlock);
550 latch_destroy(&dp->exit_latch);
551 free(CONST_CAST(char *, dp->name));
552 free(dp);
553 }
554
555 static void
556 dp_netdev_unref(struct dp_netdev *dp)
557 {
558 if (dp) {
559 /* Take dp_netdev_mutex so that, if dp->ref_cnt falls to zero, we can't
560 * get a new reference to 'dp' through the 'dp_netdevs' shash. */
561 ovs_mutex_lock(&dp_netdev_mutex);
562 if (ovs_refcount_unref_relaxed(&dp->ref_cnt) == 1) {
563 dp_netdev_free(dp);
564 }
565 ovs_mutex_unlock(&dp_netdev_mutex);
566 }
567 }
568
569 static void
570 dpif_netdev_close(struct dpif *dpif)
571 {
572 struct dp_netdev *dp = get_dp_netdev(dpif);
573
574 dp_netdev_unref(dp);
575 free(dpif);
576 }
577
578 static int
579 dpif_netdev_destroy(struct dpif *dpif)
580 {
581 struct dp_netdev *dp = get_dp_netdev(dpif);
582
583 if (!atomic_flag_test_and_set(&dp->destroyed)) {
584 if (ovs_refcount_unref_relaxed(&dp->ref_cnt) == 1) {
585 /* Can't happen: 'dpif' still owns a reference to 'dp'. */
586 OVS_NOT_REACHED();
587 }
588 }
589
590 return 0;
591 }
592
593 static int
594 dpif_netdev_get_stats(const struct dpif *dpif, struct dpif_dp_stats *stats)
595 {
596 struct dp_netdev *dp = get_dp_netdev(dpif);
597 struct dp_netdev_stats *bucket;
598 size_t i;
599
600 stats->n_flows = cmap_count(&dp->flow_table);
601
602 stats->n_hit = stats->n_missed = stats->n_lost = 0;
603 OVSTHREAD_STATS_FOR_EACH_BUCKET (bucket, i, &dp->stats) {
604 ovs_mutex_lock(&bucket->mutex);
605 stats->n_hit += bucket->n[DP_STAT_HIT];
606 stats->n_missed += bucket->n[DP_STAT_MISS];
607 stats->n_lost += bucket->n[DP_STAT_LOST];
608 ovs_mutex_unlock(&bucket->mutex);
609 }
610 stats->n_masks = UINT32_MAX;
611 stats->n_mask_hit = UINT64_MAX;
612
613 return 0;
614 }
615
616 static void
617 dp_netdev_reload_pmd_threads(struct dp_netdev *dp)
618 {
619 int i;
620
621 for (i = 0; i < dp->n_pmd_threads; i++) {
622 struct pmd_thread *f = &dp->pmd_threads[i];
623 int id;
624
625 atomic_add(&f->change_seq, 1, &id);
626 }
627 }
628
629 static uint32_t
630 hash_port_no(odp_port_t port_no)
631 {
632 return hash_int(odp_to_u32(port_no), 0);
633 }
634
635 static int
636 do_add_port(struct dp_netdev *dp, const char *devname, const char *type,
637 odp_port_t port_no)
638 OVS_REQUIRES(dp->port_mutex)
639 {
640 struct netdev_saved_flags *sf;
641 struct dp_netdev_port *port;
642 struct netdev *netdev;
643 enum netdev_flags flags;
644 const char *open_type;
645 int error;
646 int i;
647
648 /* XXX reject devices already in some dp_netdev. */
649
650 /* Open and validate network device. */
651 open_type = dpif_netdev_port_open_type(dp->class, type);
652 error = netdev_open(devname, open_type, &netdev);
653 if (error) {
654 return error;
655 }
656 /* XXX reject non-Ethernet devices */
657
658 netdev_get_flags(netdev, &flags);
659 if (flags & NETDEV_LOOPBACK) {
660 VLOG_ERR("%s: cannot add a loopback device", devname);
661 netdev_close(netdev);
662 return EINVAL;
663 }
664
665 port = xzalloc(sizeof *port);
666 port->port_no = port_no;
667 port->netdev = netdev;
668 port->rxq = xmalloc(sizeof *port->rxq * netdev_n_rxq(netdev));
669 port->type = xstrdup(type);
670 for (i = 0; i < netdev_n_rxq(netdev); i++) {
671 error = netdev_rxq_open(netdev, &port->rxq[i], i);
672 if (error
673 && !(error == EOPNOTSUPP && dpif_netdev_class_is_dummy(dp->class))) {
674 VLOG_ERR("%s: cannot receive packets on this network device (%s)",
675 devname, ovs_strerror(errno));
676 netdev_close(netdev);
677 return error;
678 }
679 }
680
681 error = netdev_turn_flags_on(netdev, NETDEV_PROMISC, &sf);
682 if (error) {
683 for (i = 0; i < netdev_n_rxq(netdev); i++) {
684 netdev_rxq_close(port->rxq[i]);
685 }
686 netdev_close(netdev);
687 free(port->rxq);
688 free(port);
689 return error;
690 }
691 port->sf = sf;
692
693 if (netdev_is_pmd(netdev)) {
694 dp->pmd_count++;
695 dp_netdev_set_pmd_threads(dp, NR_PMD_THREADS);
696 dp_netdev_reload_pmd_threads(dp);
697 }
698 ovs_refcount_init(&port->ref_cnt);
699
700 cmap_insert(&dp->ports, &port->node, hash_port_no(port_no));
701 seq_change(dp->port_seq);
702
703 return 0;
704 }
705
706 static int
707 dpif_netdev_port_add(struct dpif *dpif, struct netdev *netdev,
708 odp_port_t *port_nop)
709 {
710 struct dp_netdev *dp = get_dp_netdev(dpif);
711 char namebuf[NETDEV_VPORT_NAME_BUFSIZE];
712 const char *dpif_port;
713 odp_port_t port_no;
714 int error;
715
716 ovs_mutex_lock(&dp->port_mutex);
717 dpif_port = netdev_vport_get_dpif_port(netdev, namebuf, sizeof namebuf);
718 if (*port_nop != ODPP_NONE) {
719 port_no = *port_nop;
720 error = dp_netdev_lookup_port(dp, *port_nop) ? EBUSY : 0;
721 } else {
722 port_no = choose_port(dp, dpif_port);
723 error = port_no == ODPP_NONE ? EFBIG : 0;
724 }
725 if (!error) {
726 *port_nop = port_no;
727 error = do_add_port(dp, dpif_port, netdev_get_type(netdev), port_no);
728 }
729 ovs_mutex_unlock(&dp->port_mutex);
730
731 return error;
732 }
733
734 static int
735 dpif_netdev_port_del(struct dpif *dpif, odp_port_t port_no)
736 {
737 struct dp_netdev *dp = get_dp_netdev(dpif);
738 int error;
739
740 ovs_mutex_lock(&dp->port_mutex);
741 if (port_no == ODPP_LOCAL) {
742 error = EINVAL;
743 } else {
744 struct dp_netdev_port *port;
745
746 error = get_port_by_number(dp, port_no, &port);
747 if (!error) {
748 do_del_port(dp, port);
749 }
750 }
751 ovs_mutex_unlock(&dp->port_mutex);
752
753 return error;
754 }
755
756 static bool
757 is_valid_port_number(odp_port_t port_no)
758 {
759 return port_no != ODPP_NONE;
760 }
761
762 static struct dp_netdev_port *
763 dp_netdev_lookup_port(const struct dp_netdev *dp, odp_port_t port_no)
764 {
765 struct dp_netdev_port *port;
766
767 CMAP_FOR_EACH_WITH_HASH (port, node, hash_port_no(port_no), &dp->ports) {
768 if (port->port_no == port_no) {
769 return port;
770 }
771 }
772 return NULL;
773 }
774
775 static int
776 get_port_by_number(struct dp_netdev *dp,
777 odp_port_t port_no, struct dp_netdev_port **portp)
778 {
779 if (!is_valid_port_number(port_no)) {
780 *portp = NULL;
781 return EINVAL;
782 } else {
783 *portp = dp_netdev_lookup_port(dp, port_no);
784 return *portp ? 0 : ENOENT;
785 }
786 }
787
788 static void
789 port_ref(struct dp_netdev_port *port)
790 {
791 if (port) {
792 ovs_refcount_ref(&port->ref_cnt);
793 }
794 }
795
796 static void
797 port_destroy__(struct dp_netdev_port *port)
798 {
799 int n_rxq = netdev_n_rxq(port->netdev);
800 int i;
801
802 netdev_close(port->netdev);
803 netdev_restore_flags(port->sf);
804
805 for (i = 0; i < n_rxq; i++) {
806 netdev_rxq_close(port->rxq[i]);
807 }
808 free(port->rxq);
809 free(port->type);
810 free(port);
811 }
812
813 static void
814 port_unref(struct dp_netdev_port *port)
815 {
816 if (port && ovs_refcount_unref_relaxed(&port->ref_cnt) == 1) {
817 ovsrcu_postpone(port_destroy__, port);
818 }
819 }
820
821 static int
822 get_port_by_name(struct dp_netdev *dp,
823 const char *devname, struct dp_netdev_port **portp)
824 OVS_REQUIRES(dp->port_mutex)
825 {
826 struct dp_netdev_port *port;
827
828 CMAP_FOR_EACH (port, node, &dp->ports) {
829 if (!strcmp(netdev_get_name(port->netdev), devname)) {
830 *portp = port;
831 return 0;
832 }
833 }
834 return ENOENT;
835 }
836
837 static void
838 do_del_port(struct dp_netdev *dp, struct dp_netdev_port *port)
839 OVS_REQUIRES(dp->port_mutex)
840 {
841 cmap_remove(&dp->ports, &port->node, hash_odp_port(port->port_no));
842 seq_change(dp->port_seq);
843 if (netdev_is_pmd(port->netdev)) {
844 dp_netdev_reload_pmd_threads(dp);
845 }
846
847 port_unref(port);
848 }
849
850 static void
851 answer_port_query(const struct dp_netdev_port *port,
852 struct dpif_port *dpif_port)
853 {
854 dpif_port->name = xstrdup(netdev_get_name(port->netdev));
855 dpif_port->type = xstrdup(port->type);
856 dpif_port->port_no = port->port_no;
857 }
858
859 static int
860 dpif_netdev_port_query_by_number(const struct dpif *dpif, odp_port_t port_no,
861 struct dpif_port *dpif_port)
862 {
863 struct dp_netdev *dp = get_dp_netdev(dpif);
864 struct dp_netdev_port *port;
865 int error;
866
867 error = get_port_by_number(dp, port_no, &port);
868 if (!error && dpif_port) {
869 answer_port_query(port, dpif_port);
870 }
871
872 return error;
873 }
874
875 static int
876 dpif_netdev_port_query_by_name(const struct dpif *dpif, const char *devname,
877 struct dpif_port *dpif_port)
878 {
879 struct dp_netdev *dp = get_dp_netdev(dpif);
880 struct dp_netdev_port *port;
881 int error;
882
883 ovs_mutex_lock(&dp->port_mutex);
884 error = get_port_by_name(dp, devname, &port);
885 if (!error && dpif_port) {
886 answer_port_query(port, dpif_port);
887 }
888 ovs_mutex_unlock(&dp->port_mutex);
889
890 return error;
891 }
892
893 static void
894 dp_netdev_flow_free(struct dp_netdev_flow *flow)
895 {
896 struct dp_netdev_flow_stats *bucket;
897 size_t i;
898
899 OVSTHREAD_STATS_FOR_EACH_BUCKET (bucket, i, &flow->stats) {
900 ovs_mutex_destroy(&bucket->mutex);
901 free_cacheline(bucket);
902 }
903 ovsthread_stats_destroy(&flow->stats);
904
905 cls_rule_destroy(CONST_CAST(struct cls_rule *, &flow->cr));
906 dp_netdev_actions_free(dp_netdev_flow_get_actions(flow));
907 free(flow);
908 }
909
910 static void
911 dp_netdev_remove_flow(struct dp_netdev *dp, struct dp_netdev_flow *flow)
912 OVS_REQUIRES(dp->flow_mutex)
913 {
914 struct cls_rule *cr = CONST_CAST(struct cls_rule *, &flow->cr);
915 struct cmap_node *node = CONST_CAST(struct cmap_node *, &flow->node);
916
917 classifier_remove(&dp->cls, cr);
918 cmap_remove(&dp->flow_table, node, flow_hash(&flow->flow, 0));
919 ovsrcu_postpone(dp_netdev_flow_free, flow);
920 }
921
922 static void
923 dp_netdev_flow_flush(struct dp_netdev *dp)
924 {
925 struct dp_netdev_flow *netdev_flow;
926
927 ovs_mutex_lock(&dp->flow_mutex);
928 CMAP_FOR_EACH_SAFE (netdev_flow, node, &dp->flow_table) {
929 dp_netdev_remove_flow(dp, netdev_flow);
930 }
931 ovs_mutex_unlock(&dp->flow_mutex);
932 }
933
934 static int
935 dpif_netdev_flow_flush(struct dpif *dpif)
936 {
937 struct dp_netdev *dp = get_dp_netdev(dpif);
938
939 dp_netdev_flow_flush(dp);
940 return 0;
941 }
942
943 struct dp_netdev_port_state {
944 struct cmap_position position;
945 char *name;
946 };
947
948 static int
949 dpif_netdev_port_dump_start(const struct dpif *dpif OVS_UNUSED, void **statep)
950 {
951 *statep = xzalloc(sizeof(struct dp_netdev_port_state));
952 return 0;
953 }
954
955 static int
956 dpif_netdev_port_dump_next(const struct dpif *dpif, void *state_,
957 struct dpif_port *dpif_port)
958 {
959 struct dp_netdev_port_state *state = state_;
960 struct dp_netdev *dp = get_dp_netdev(dpif);
961 struct cmap_node *node;
962 int retval;
963
964 node = cmap_next_position(&dp->ports, &state->position);
965 if (node) {
966 struct dp_netdev_port *port;
967
968 port = CONTAINER_OF(node, struct dp_netdev_port, node);
969
970 free(state->name);
971 state->name = xstrdup(netdev_get_name(port->netdev));
972 dpif_port->name = state->name;
973 dpif_port->type = port->type;
974 dpif_port->port_no = port->port_no;
975
976 retval = 0;
977 } else {
978 retval = EOF;
979 }
980
981 return retval;
982 }
983
984 static int
985 dpif_netdev_port_dump_done(const struct dpif *dpif OVS_UNUSED, void *state_)
986 {
987 struct dp_netdev_port_state *state = state_;
988 free(state->name);
989 free(state);
990 return 0;
991 }
992
993 static int
994 dpif_netdev_port_poll(const struct dpif *dpif_, char **devnamep OVS_UNUSED)
995 {
996 struct dpif_netdev *dpif = dpif_netdev_cast(dpif_);
997 uint64_t new_port_seq;
998 int error;
999
1000 new_port_seq = seq_read(dpif->dp->port_seq);
1001 if (dpif->last_port_seq != new_port_seq) {
1002 dpif->last_port_seq = new_port_seq;
1003 error = ENOBUFS;
1004 } else {
1005 error = EAGAIN;
1006 }
1007
1008 return error;
1009 }
1010
1011 static void
1012 dpif_netdev_port_poll_wait(const struct dpif *dpif_)
1013 {
1014 struct dpif_netdev *dpif = dpif_netdev_cast(dpif_);
1015
1016 seq_wait(dpif->dp->port_seq, dpif->last_port_seq);
1017 }
1018
1019 static struct dp_netdev_flow *
1020 dp_netdev_flow_cast(const struct cls_rule *cr)
1021 {
1022 return cr ? CONTAINER_OF(cr, struct dp_netdev_flow, cr) : NULL;
1023 }
1024
1025 static struct dp_netdev_flow *
1026 dp_netdev_lookup_flow(const struct dp_netdev *dp, const struct miniflow *key)
1027 {
1028 struct dp_netdev_flow *netdev_flow;
1029 struct cls_rule *rule;
1030
1031 classifier_lookup_miniflow_batch(&dp->cls, &key, &rule, 1);
1032 netdev_flow = dp_netdev_flow_cast(rule);
1033
1034 return netdev_flow;
1035 }
1036
1037 static struct dp_netdev_flow *
1038 dp_netdev_find_flow(const struct dp_netdev *dp, const struct flow *flow)
1039 {
1040 struct dp_netdev_flow *netdev_flow;
1041
1042 CMAP_FOR_EACH_WITH_HASH (netdev_flow, node, flow_hash(flow, 0),
1043 &dp->flow_table) {
1044 if (flow_equal(&netdev_flow->flow, flow)) {
1045 return netdev_flow;
1046 }
1047 }
1048
1049 return NULL;
1050 }
1051
1052 static void
1053 get_dpif_flow_stats(struct dp_netdev_flow *netdev_flow,
1054 struct dpif_flow_stats *stats)
1055 {
1056 struct dp_netdev_flow_stats *bucket;
1057 size_t i;
1058
1059 memset(stats, 0, sizeof *stats);
1060 OVSTHREAD_STATS_FOR_EACH_BUCKET (bucket, i, &netdev_flow->stats) {
1061 ovs_mutex_lock(&bucket->mutex);
1062 stats->n_packets += bucket->packet_count;
1063 stats->n_bytes += bucket->byte_count;
1064 stats->used = MAX(stats->used, bucket->used);
1065 stats->tcp_flags |= bucket->tcp_flags;
1066 ovs_mutex_unlock(&bucket->mutex);
1067 }
1068 }
1069
1070 static int
1071 dpif_netdev_mask_from_nlattrs(const struct nlattr *key, uint32_t key_len,
1072 const struct nlattr *mask_key,
1073 uint32_t mask_key_len, const struct flow *flow,
1074 struct flow *mask)
1075 {
1076 if (mask_key_len) {
1077 enum odp_key_fitness fitness;
1078
1079 fitness = odp_flow_key_to_mask(mask_key, mask_key_len, mask, flow);
1080 if (fitness) {
1081 /* This should not happen: it indicates that
1082 * odp_flow_key_from_mask() and odp_flow_key_to_mask()
1083 * disagree on the acceptable form of a mask. Log the problem
1084 * as an error, with enough details to enable debugging. */
1085 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
1086
1087 if (!VLOG_DROP_ERR(&rl)) {
1088 struct ds s;
1089
1090 ds_init(&s);
1091 odp_flow_format(key, key_len, mask_key, mask_key_len, NULL, &s,
1092 true);
1093 VLOG_ERR("internal error parsing flow mask %s (%s)",
1094 ds_cstr(&s), odp_key_fitness_to_string(fitness));
1095 ds_destroy(&s);
1096 }
1097
1098 return EINVAL;
1099 }
1100 } else {
1101 enum mf_field_id id;
1102 /* No mask key, unwildcard everything except fields whose
1103 * prerequisities are not met. */
1104 memset(mask, 0x0, sizeof *mask);
1105
1106 for (id = 0; id < MFF_N_IDS; ++id) {
1107 /* Skip registers and metadata. */
1108 if (!(id >= MFF_REG0 && id < MFF_REG0 + FLOW_N_REGS)
1109 && id != MFF_METADATA) {
1110 const struct mf_field *mf = mf_from_id(id);
1111 if (mf_are_prereqs_ok(mf, flow)) {
1112 mf_mask_field(mf, mask);
1113 }
1114 }
1115 }
1116 }
1117
1118 /* Force unwildcard the in_port.
1119 *
1120 * We need to do this even in the case where we unwildcard "everything"
1121 * above because "everything" only includes the 16-bit OpenFlow port number
1122 * mask->in_port.ofp_port, which only covers half of the 32-bit datapath
1123 * port number mask->in_port.odp_port. */
1124 mask->in_port.odp_port = u32_to_odp(UINT32_MAX);
1125
1126 return 0;
1127 }
1128
1129 static int
1130 dpif_netdev_flow_from_nlattrs(const struct nlattr *key, uint32_t key_len,
1131 struct flow *flow)
1132 {
1133 odp_port_t in_port;
1134
1135 if (odp_flow_key_to_flow(key, key_len, flow)) {
1136 /* This should not happen: it indicates that odp_flow_key_from_flow()
1137 * and odp_flow_key_to_flow() disagree on the acceptable form of a
1138 * flow. Log the problem as an error, with enough details to enable
1139 * debugging. */
1140 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
1141
1142 if (!VLOG_DROP_ERR(&rl)) {
1143 struct ds s;
1144
1145 ds_init(&s);
1146 odp_flow_format(key, key_len, NULL, 0, NULL, &s, true);
1147 VLOG_ERR("internal error parsing flow key %s", ds_cstr(&s));
1148 ds_destroy(&s);
1149 }
1150
1151 return EINVAL;
1152 }
1153
1154 in_port = flow->in_port.odp_port;
1155 if (!is_valid_port_number(in_port) && in_port != ODPP_NONE) {
1156 return EINVAL;
1157 }
1158
1159 return 0;
1160 }
1161
1162 static int
1163 dpif_netdev_flow_get(const struct dpif *dpif,
1164 const struct nlattr *nl_key, size_t nl_key_len,
1165 struct ofpbuf **bufp,
1166 struct nlattr **maskp, size_t *mask_len,
1167 struct nlattr **actionsp, size_t *actions_len,
1168 struct dpif_flow_stats *stats)
1169 {
1170 struct dp_netdev *dp = get_dp_netdev(dpif);
1171 struct dp_netdev_flow *netdev_flow;
1172 struct flow key;
1173 int error;
1174
1175 error = dpif_netdev_flow_from_nlattrs(nl_key, nl_key_len, &key);
1176 if (error) {
1177 return error;
1178 }
1179
1180 netdev_flow = dp_netdev_find_flow(dp, &key);
1181
1182 if (netdev_flow) {
1183 if (stats) {
1184 get_dpif_flow_stats(netdev_flow, stats);
1185 }
1186
1187 if (maskp) {
1188 struct flow_wildcards wc;
1189
1190 *bufp = ofpbuf_new(sizeof(struct odputil_keybuf));
1191 minimask_expand(&netdev_flow->cr.match.mask, &wc);
1192 odp_flow_key_from_mask(*bufp, &wc.masks, &netdev_flow->flow,
1193 odp_to_u32(wc.masks.in_port.odp_port),
1194 SIZE_MAX, true);
1195 *maskp = ofpbuf_data(*bufp);
1196 *mask_len = ofpbuf_size(*bufp);
1197 }
1198 if (actionsp) {
1199 struct dp_netdev_actions *actions;
1200
1201 actions = dp_netdev_flow_get_actions(netdev_flow);
1202 *actionsp = actions->actions;
1203 *actions_len = actions->size;
1204 }
1205 } else {
1206 error = ENOENT;
1207 }
1208
1209 return error;
1210 }
1211
1212 static int
1213 dp_netdev_flow_add(struct dp_netdev *dp, const struct flow *flow,
1214 const struct flow_wildcards *wc,
1215 const struct nlattr *actions,
1216 size_t actions_len)
1217 OVS_REQUIRES(dp->flow_mutex)
1218 {
1219 struct dp_netdev_flow *netdev_flow;
1220 struct match match;
1221
1222 netdev_flow = xzalloc(sizeof *netdev_flow);
1223 *CONST_CAST(struct flow *, &netdev_flow->flow) = *flow;
1224
1225 ovsthread_stats_init(&netdev_flow->stats);
1226
1227 ovsrcu_set(&netdev_flow->actions,
1228 dp_netdev_actions_create(actions, actions_len));
1229
1230 match_init(&match, flow, wc);
1231 cls_rule_init(CONST_CAST(struct cls_rule *, &netdev_flow->cr),
1232 &match, NETDEV_RULE_PRIORITY);
1233 cmap_insert(&dp->flow_table,
1234 CONST_CAST(struct cmap_node *, &netdev_flow->node),
1235 flow_hash(flow, 0));
1236 classifier_insert(&dp->cls,
1237 CONST_CAST(struct cls_rule *, &netdev_flow->cr));
1238
1239 return 0;
1240 }
1241
1242 static void
1243 clear_stats(struct dp_netdev_flow *netdev_flow)
1244 {
1245 struct dp_netdev_flow_stats *bucket;
1246 size_t i;
1247
1248 OVSTHREAD_STATS_FOR_EACH_BUCKET (bucket, i, &netdev_flow->stats) {
1249 ovs_mutex_lock(&bucket->mutex);
1250 bucket->used = 0;
1251 bucket->packet_count = 0;
1252 bucket->byte_count = 0;
1253 bucket->tcp_flags = 0;
1254 ovs_mutex_unlock(&bucket->mutex);
1255 }
1256 }
1257
1258 static int
1259 dpif_netdev_flow_put(struct dpif *dpif, const struct dpif_flow_put *put)
1260 {
1261 struct dp_netdev *dp = get_dp_netdev(dpif);
1262 struct dp_netdev_flow *netdev_flow;
1263 struct flow flow;
1264 struct miniflow miniflow;
1265 struct flow_wildcards wc;
1266 int error;
1267
1268 error = dpif_netdev_flow_from_nlattrs(put->key, put->key_len, &flow);
1269 if (error) {
1270 return error;
1271 }
1272 error = dpif_netdev_mask_from_nlattrs(put->key, put->key_len,
1273 put->mask, put->mask_len,
1274 &flow, &wc.masks);
1275 if (error) {
1276 return error;
1277 }
1278 miniflow_init(&miniflow, &flow);
1279
1280 ovs_mutex_lock(&dp->flow_mutex);
1281 netdev_flow = dp_netdev_lookup_flow(dp, &miniflow);
1282 if (!netdev_flow) {
1283 if (put->flags & DPIF_FP_CREATE) {
1284 if (cmap_count(&dp->flow_table) < MAX_FLOWS) {
1285 if (put->stats) {
1286 memset(put->stats, 0, sizeof *put->stats);
1287 }
1288 error = dp_netdev_flow_add(dp, &flow, &wc, put->actions,
1289 put->actions_len);
1290 } else {
1291 error = EFBIG;
1292 }
1293 } else {
1294 error = ENOENT;
1295 }
1296 } else {
1297 if (put->flags & DPIF_FP_MODIFY
1298 && flow_equal(&flow, &netdev_flow->flow)) {
1299 struct dp_netdev_actions *new_actions;
1300 struct dp_netdev_actions *old_actions;
1301
1302 new_actions = dp_netdev_actions_create(put->actions,
1303 put->actions_len);
1304
1305 old_actions = dp_netdev_flow_get_actions(netdev_flow);
1306 ovsrcu_set(&netdev_flow->actions, new_actions);
1307
1308 if (put->stats) {
1309 get_dpif_flow_stats(netdev_flow, put->stats);
1310 }
1311 if (put->flags & DPIF_FP_ZERO_STATS) {
1312 clear_stats(netdev_flow);
1313 }
1314
1315 ovsrcu_postpone(dp_netdev_actions_free, old_actions);
1316 } else if (put->flags & DPIF_FP_CREATE) {
1317 error = EEXIST;
1318 } else {
1319 /* Overlapping flow. */
1320 error = EINVAL;
1321 }
1322 }
1323 ovs_mutex_unlock(&dp->flow_mutex);
1324 miniflow_destroy(&miniflow);
1325
1326 return error;
1327 }
1328
1329 static int
1330 dpif_netdev_flow_del(struct dpif *dpif, const struct dpif_flow_del *del)
1331 {
1332 struct dp_netdev *dp = get_dp_netdev(dpif);
1333 struct dp_netdev_flow *netdev_flow;
1334 struct flow key;
1335 int error;
1336
1337 error = dpif_netdev_flow_from_nlattrs(del->key, del->key_len, &key);
1338 if (error) {
1339 return error;
1340 }
1341
1342 ovs_mutex_lock(&dp->flow_mutex);
1343 netdev_flow = dp_netdev_find_flow(dp, &key);
1344 if (netdev_flow) {
1345 if (del->stats) {
1346 get_dpif_flow_stats(netdev_flow, del->stats);
1347 }
1348 dp_netdev_remove_flow(dp, netdev_flow);
1349 } else {
1350 error = ENOENT;
1351 }
1352 ovs_mutex_unlock(&dp->flow_mutex);
1353
1354 return error;
1355 }
1356
1357 struct dpif_netdev_flow_dump {
1358 struct dpif_flow_dump up;
1359 struct cmap_position pos;
1360 int status;
1361 struct ovs_mutex mutex;
1362 };
1363
1364 static struct dpif_netdev_flow_dump *
1365 dpif_netdev_flow_dump_cast(struct dpif_flow_dump *dump)
1366 {
1367 return CONTAINER_OF(dump, struct dpif_netdev_flow_dump, up);
1368 }
1369
1370 static struct dpif_flow_dump *
1371 dpif_netdev_flow_dump_create(const struct dpif *dpif_)
1372 {
1373 struct dpif_netdev_flow_dump *dump;
1374
1375 dump = xmalloc(sizeof *dump);
1376 dpif_flow_dump_init(&dump->up, dpif_);
1377 memset(&dump->pos, 0, sizeof dump->pos);
1378 dump->status = 0;
1379 ovs_mutex_init(&dump->mutex);
1380
1381 return &dump->up;
1382 }
1383
1384 static int
1385 dpif_netdev_flow_dump_destroy(struct dpif_flow_dump *dump_)
1386 {
1387 struct dpif_netdev_flow_dump *dump = dpif_netdev_flow_dump_cast(dump_);
1388
1389 ovs_mutex_destroy(&dump->mutex);
1390 free(dump);
1391 return 0;
1392 }
1393
1394 struct dpif_netdev_flow_dump_thread {
1395 struct dpif_flow_dump_thread up;
1396 struct dpif_netdev_flow_dump *dump;
1397 struct odputil_keybuf keybuf[FLOW_DUMP_MAX_BATCH];
1398 struct odputil_keybuf maskbuf[FLOW_DUMP_MAX_BATCH];
1399 };
1400
1401 static struct dpif_netdev_flow_dump_thread *
1402 dpif_netdev_flow_dump_thread_cast(struct dpif_flow_dump_thread *thread)
1403 {
1404 return CONTAINER_OF(thread, struct dpif_netdev_flow_dump_thread, up);
1405 }
1406
1407 static struct dpif_flow_dump_thread *
1408 dpif_netdev_flow_dump_thread_create(struct dpif_flow_dump *dump_)
1409 {
1410 struct dpif_netdev_flow_dump *dump = dpif_netdev_flow_dump_cast(dump_);
1411 struct dpif_netdev_flow_dump_thread *thread;
1412
1413 thread = xmalloc(sizeof *thread);
1414 dpif_flow_dump_thread_init(&thread->up, &dump->up);
1415 thread->dump = dump;
1416 return &thread->up;
1417 }
1418
1419 static void
1420 dpif_netdev_flow_dump_thread_destroy(struct dpif_flow_dump_thread *thread_)
1421 {
1422 struct dpif_netdev_flow_dump_thread *thread
1423 = dpif_netdev_flow_dump_thread_cast(thread_);
1424
1425 free(thread);
1426 }
1427
1428 static int
1429 dpif_netdev_flow_dump_next(struct dpif_flow_dump_thread *thread_,
1430 struct dpif_flow *flows, int max_flows)
1431 {
1432 struct dpif_netdev_flow_dump_thread *thread
1433 = dpif_netdev_flow_dump_thread_cast(thread_);
1434 struct dpif_netdev_flow_dump *dump = thread->dump;
1435 struct dpif_netdev *dpif = dpif_netdev_cast(thread->up.dpif);
1436 struct dp_netdev_flow *netdev_flows[FLOW_DUMP_MAX_BATCH];
1437 struct dp_netdev *dp = get_dp_netdev(&dpif->dpif);
1438 int n_flows = 0;
1439 int i;
1440
1441 ovs_mutex_lock(&dump->mutex);
1442 if (!dump->status) {
1443 for (n_flows = 0; n_flows < MIN(max_flows, FLOW_DUMP_MAX_BATCH);
1444 n_flows++) {
1445 struct cmap_node *node;
1446
1447 node = cmap_next_position(&dp->flow_table, &dump->pos);
1448 if (!node) {
1449 dump->status = EOF;
1450 break;
1451 }
1452 netdev_flows[n_flows] = CONTAINER_OF(node, struct dp_netdev_flow,
1453 node);
1454 }
1455 }
1456 ovs_mutex_unlock(&dump->mutex);
1457
1458 for (i = 0; i < n_flows; i++) {
1459 struct odputil_keybuf *maskbuf = &thread->maskbuf[i];
1460 struct odputil_keybuf *keybuf = &thread->keybuf[i];
1461 struct dp_netdev_flow *netdev_flow = netdev_flows[i];
1462 struct dpif_flow *f = &flows[i];
1463 struct dp_netdev_actions *dp_actions;
1464 struct flow_wildcards wc;
1465 struct ofpbuf buf;
1466
1467 minimask_expand(&netdev_flow->cr.match.mask, &wc);
1468
1469 /* Key. */
1470 ofpbuf_use_stack(&buf, keybuf, sizeof *keybuf);
1471 odp_flow_key_from_flow(&buf, &netdev_flow->flow, &wc.masks,
1472 netdev_flow->flow.in_port.odp_port, true);
1473 f->key = ofpbuf_data(&buf);
1474 f->key_len = ofpbuf_size(&buf);
1475
1476 /* Mask. */
1477 ofpbuf_use_stack(&buf, maskbuf, sizeof *maskbuf);
1478 odp_flow_key_from_mask(&buf, &wc.masks, &netdev_flow->flow,
1479 odp_to_u32(wc.masks.in_port.odp_port),
1480 SIZE_MAX, true);
1481 f->mask = ofpbuf_data(&buf);
1482 f->mask_len = ofpbuf_size(&buf);
1483
1484 /* Actions. */
1485 dp_actions = dp_netdev_flow_get_actions(netdev_flow);
1486 f->actions = dp_actions->actions;
1487 f->actions_len = dp_actions->size;
1488
1489 /* Stats. */
1490 get_dpif_flow_stats(netdev_flow, &f->stats);
1491 }
1492
1493 return n_flows;
1494 }
1495
1496 static int
1497 dpif_netdev_execute(struct dpif *dpif, struct dpif_execute *execute)
1498 {
1499 struct dp_netdev *dp = get_dp_netdev(dpif);
1500 struct dpif_packet packet, *pp;
1501 struct pkt_metadata *md = &execute->md;
1502
1503 if (ofpbuf_size(execute->packet) < ETH_HEADER_LEN ||
1504 ofpbuf_size(execute->packet) > UINT16_MAX) {
1505 return EINVAL;
1506 }
1507
1508 packet.ofpbuf = *execute->packet;
1509 pp = &packet;
1510
1511 dp_netdev_execute_actions(dp, &pp, 1, false, md,
1512 execute->actions, execute->actions_len);
1513
1514 /* Even though may_steal is set to false, some actions could modify or
1515 * reallocate the ofpbuf memory. We need to pass those changes to the
1516 * caller */
1517 *execute->packet = packet.ofpbuf;
1518
1519 return 0;
1520 }
1521
1522 static int
1523 dpif_netdev_queue_to_priority(const struct dpif *dpif OVS_UNUSED,
1524 uint32_t queue_id, uint32_t *priority)
1525 {
1526 *priority = queue_id;
1527 return 0;
1528 }
1529
1530 \f
1531 /* Creates and returns a new 'struct dp_netdev_actions', with a reference count
1532 * of 1, whose actions are a copy of from the 'ofpacts_len' bytes of
1533 * 'ofpacts'. */
1534 struct dp_netdev_actions *
1535 dp_netdev_actions_create(const struct nlattr *actions, size_t size)
1536 {
1537 struct dp_netdev_actions *netdev_actions;
1538
1539 netdev_actions = xmalloc(sizeof *netdev_actions);
1540 netdev_actions->actions = xmemdup(actions, size);
1541 netdev_actions->size = size;
1542
1543 return netdev_actions;
1544 }
1545
1546 struct dp_netdev_actions *
1547 dp_netdev_flow_get_actions(const struct dp_netdev_flow *flow)
1548 {
1549 return ovsrcu_get(struct dp_netdev_actions *, &flow->actions);
1550 }
1551
1552 static void
1553 dp_netdev_actions_free(struct dp_netdev_actions *actions)
1554 {
1555 free(actions->actions);
1556 free(actions);
1557 }
1558 \f
1559
1560 static void
1561 dp_netdev_process_rxq_port(struct dp_netdev *dp,
1562 struct dp_netdev_port *port,
1563 struct netdev_rxq *rxq)
1564 {
1565 struct dpif_packet *packets[NETDEV_MAX_RX_BATCH];
1566 int error, cnt;
1567
1568 error = netdev_rxq_recv(rxq, packets, &cnt);
1569 if (!error) {
1570 dp_netdev_port_input(dp, packets, cnt, port->port_no);
1571 } else if (error != EAGAIN && error != EOPNOTSUPP) {
1572 static struct vlog_rate_limit rl
1573 = VLOG_RATE_LIMIT_INIT(1, 5);
1574
1575 VLOG_ERR_RL(&rl, "error receiving data from %s: %s",
1576 netdev_get_name(port->netdev),
1577 ovs_strerror(error));
1578 }
1579 }
1580
1581 static void
1582 dpif_netdev_run(struct dpif *dpif)
1583 {
1584 struct dp_netdev_port *port;
1585 struct dp_netdev *dp = get_dp_netdev(dpif);
1586
1587 CMAP_FOR_EACH (port, node, &dp->ports) {
1588 if (!netdev_is_pmd(port->netdev)) {
1589 int i;
1590
1591 for (i = 0; i < netdev_n_rxq(port->netdev); i++) {
1592 dp_netdev_process_rxq_port(dp, port, port->rxq[i]);
1593 }
1594 }
1595 }
1596 }
1597
1598 static void
1599 dpif_netdev_wait(struct dpif *dpif)
1600 {
1601 struct dp_netdev_port *port;
1602 struct dp_netdev *dp = get_dp_netdev(dpif);
1603
1604 ovs_mutex_lock(&dp_netdev_mutex);
1605 CMAP_FOR_EACH (port, node, &dp->ports) {
1606 if (!netdev_is_pmd(port->netdev)) {
1607 int i;
1608
1609 for (i = 0; i < netdev_n_rxq(port->netdev); i++) {
1610 netdev_rxq_wait(port->rxq[i]);
1611 }
1612 }
1613 }
1614 ovs_mutex_unlock(&dp_netdev_mutex);
1615 }
1616
1617 struct rxq_poll {
1618 struct dp_netdev_port *port;
1619 struct netdev_rxq *rx;
1620 };
1621
1622 static int
1623 pmd_load_queues(struct pmd_thread *f,
1624 struct rxq_poll **ppoll_list, int poll_cnt)
1625 {
1626 struct dp_netdev *dp = f->dp;
1627 struct rxq_poll *poll_list = *ppoll_list;
1628 struct dp_netdev_port *port;
1629 int id = f->id;
1630 int index;
1631 int i;
1632
1633 /* Simple scheduler for netdev rx polling. */
1634 for (i = 0; i < poll_cnt; i++) {
1635 port_unref(poll_list[i].port);
1636 }
1637
1638 poll_cnt = 0;
1639 index = 0;
1640
1641 CMAP_FOR_EACH (port, node, &f->dp->ports) {
1642 if (netdev_is_pmd(port->netdev)) {
1643 int i;
1644
1645 for (i = 0; i < netdev_n_rxq(port->netdev); i++) {
1646 if ((index % dp->n_pmd_threads) == id) {
1647 poll_list = xrealloc(poll_list, sizeof *poll_list * (poll_cnt + 1));
1648
1649 port_ref(port);
1650 poll_list[poll_cnt].port = port;
1651 poll_list[poll_cnt].rx = port->rxq[i];
1652 poll_cnt++;
1653 }
1654 index++;
1655 }
1656 }
1657 }
1658
1659 *ppoll_list = poll_list;
1660 return poll_cnt;
1661 }
1662
1663 static void *
1664 pmd_thread_main(void *f_)
1665 {
1666 struct pmd_thread *f = f_;
1667 struct dp_netdev *dp = f->dp;
1668 unsigned int lc = 0;
1669 struct rxq_poll *poll_list;
1670 unsigned int port_seq;
1671 int poll_cnt;
1672 int i;
1673
1674 poll_cnt = 0;
1675 poll_list = NULL;
1676
1677 pmd_thread_setaffinity_cpu(f->id);
1678 reload:
1679 poll_cnt = pmd_load_queues(f, &poll_list, poll_cnt);
1680 atomic_read(&f->change_seq, &port_seq);
1681
1682 for (;;) {
1683 unsigned int c_port_seq;
1684 int i;
1685
1686 for (i = 0; i < poll_cnt; i++) {
1687 dp_netdev_process_rxq_port(dp, poll_list[i].port, poll_list[i].rx);
1688 }
1689
1690 if (lc++ > 1024) {
1691 ovsrcu_quiesce();
1692
1693 /* TODO: need completely userspace based signaling method.
1694 * to keep this thread entirely in userspace.
1695 * For now using atomic counter. */
1696 lc = 0;
1697 atomic_read_explicit(&f->change_seq, &c_port_seq, memory_order_consume);
1698 if (c_port_seq != port_seq) {
1699 break;
1700 }
1701 }
1702 }
1703
1704 if (!latch_is_set(&f->dp->exit_latch)){
1705 goto reload;
1706 }
1707
1708 for (i = 0; i < poll_cnt; i++) {
1709 port_unref(poll_list[i].port);
1710 }
1711
1712 free(poll_list);
1713 return NULL;
1714 }
1715
1716 static void
1717 dp_netdev_disable_upcall(struct dp_netdev *dp)
1718 OVS_ACQUIRES(dp->upcall_rwlock)
1719 {
1720 fat_rwlock_wrlock(&dp->upcall_rwlock);
1721 }
1722
1723 static void
1724 dpif_netdev_disable_upcall(struct dpif *dpif)
1725 OVS_NO_THREAD_SAFETY_ANALYSIS
1726 {
1727 struct dp_netdev *dp = get_dp_netdev(dpif);
1728 dp_netdev_disable_upcall(dp);
1729 }
1730
1731 static void
1732 dp_netdev_enable_upcall(struct dp_netdev *dp)
1733 OVS_RELEASES(dp->upcall_rwlock)
1734 {
1735 fat_rwlock_unlock(&dp->upcall_rwlock);
1736 }
1737
1738 static void
1739 dpif_netdev_enable_upcall(struct dpif *dpif)
1740 OVS_NO_THREAD_SAFETY_ANALYSIS
1741 {
1742 struct dp_netdev *dp = get_dp_netdev(dpif);
1743 dp_netdev_enable_upcall(dp);
1744 }
1745
1746 static void
1747 dp_netdev_set_pmd_threads(struct dp_netdev *dp, int n)
1748 {
1749 int i;
1750
1751 if (n == dp->n_pmd_threads) {
1752 return;
1753 }
1754
1755 /* Stop existing threads. */
1756 latch_set(&dp->exit_latch);
1757 dp_netdev_reload_pmd_threads(dp);
1758 for (i = 0; i < dp->n_pmd_threads; i++) {
1759 struct pmd_thread *f = &dp->pmd_threads[i];
1760
1761 xpthread_join(f->thread, NULL);
1762 }
1763 latch_poll(&dp->exit_latch);
1764 free(dp->pmd_threads);
1765
1766 /* Start new threads. */
1767 dp->pmd_threads = xmalloc(n * sizeof *dp->pmd_threads);
1768 dp->n_pmd_threads = n;
1769
1770 for (i = 0; i < n; i++) {
1771 struct pmd_thread *f = &dp->pmd_threads[i];
1772
1773 f->dp = dp;
1774 f->id = i;
1775 atomic_store(&f->change_seq, 1);
1776
1777 /* Each thread will distribute all devices rx-queues among
1778 * themselves. */
1779 f->thread = ovs_thread_create("pmd", pmd_thread_main, f);
1780 }
1781 }
1782
1783 \f
1784 static void *
1785 dp_netdev_flow_stats_new_cb(void)
1786 {
1787 struct dp_netdev_flow_stats *bucket = xzalloc_cacheline(sizeof *bucket);
1788 ovs_mutex_init(&bucket->mutex);
1789 return bucket;
1790 }
1791
1792 static void
1793 dp_netdev_flow_used(struct dp_netdev_flow *netdev_flow,
1794 int cnt, int size,
1795 uint16_t tcp_flags)
1796 {
1797 long long int now = time_msec();
1798 struct dp_netdev_flow_stats *bucket;
1799
1800 bucket = ovsthread_stats_bucket_get(&netdev_flow->stats,
1801 dp_netdev_flow_stats_new_cb);
1802
1803 ovs_mutex_lock(&bucket->mutex);
1804 bucket->used = MAX(now, bucket->used);
1805 bucket->packet_count += cnt;
1806 bucket->byte_count += size;
1807 bucket->tcp_flags |= tcp_flags;
1808 ovs_mutex_unlock(&bucket->mutex);
1809 }
1810
1811 static void *
1812 dp_netdev_stats_new_cb(void)
1813 {
1814 struct dp_netdev_stats *bucket = xzalloc_cacheline(sizeof *bucket);
1815 ovs_mutex_init(&bucket->mutex);
1816 return bucket;
1817 }
1818
1819 static void
1820 dp_netdev_count_packet(struct dp_netdev *dp, enum dp_stat_type type, int cnt)
1821 {
1822 struct dp_netdev_stats *bucket;
1823
1824 bucket = ovsthread_stats_bucket_get(&dp->stats, dp_netdev_stats_new_cb);
1825 ovs_mutex_lock(&bucket->mutex);
1826 bucket->n[type] += cnt;
1827 ovs_mutex_unlock(&bucket->mutex);
1828 }
1829
1830 struct packet_batch {
1831 unsigned int packet_count;
1832 unsigned int byte_count;
1833 uint16_t tcp_flags;
1834
1835 struct dp_netdev_flow *flow;
1836
1837 struct dpif_packet *packets[NETDEV_MAX_RX_BATCH];
1838 struct pkt_metadata md;
1839 };
1840
1841 static inline void
1842 packet_batch_update(struct packet_batch *batch,
1843 struct dpif_packet *packet, const struct miniflow *mf)
1844 {
1845 batch->tcp_flags |= miniflow_get_tcp_flags(mf);
1846 batch->packets[batch->packet_count++] = packet;
1847 batch->byte_count += ofpbuf_size(&packet->ofpbuf);
1848 }
1849
1850 static inline void
1851 packet_batch_init(struct packet_batch *batch, struct dp_netdev_flow *flow,
1852 struct pkt_metadata *md)
1853 {
1854 batch->flow = flow;
1855 batch->md = *md;
1856
1857 batch->packet_count = 0;
1858 batch->byte_count = 0;
1859 batch->tcp_flags = 0;
1860 }
1861
1862 static inline void
1863 packet_batch_execute(struct packet_batch *batch, struct dp_netdev *dp)
1864 {
1865 struct dp_netdev_actions *actions;
1866 struct dp_netdev_flow *flow = batch->flow;
1867
1868 dp_netdev_flow_used(batch->flow, batch->packet_count, batch->byte_count,
1869 batch->tcp_flags);
1870
1871 actions = dp_netdev_flow_get_actions(flow);
1872
1873 dp_netdev_execute_actions(dp, batch->packets,
1874 batch->packet_count, true, &batch->md,
1875 actions->actions, actions->size);
1876
1877 dp_netdev_count_packet(dp, DP_STAT_HIT, batch->packet_count);
1878 }
1879
1880 static void
1881 dp_netdev_input(struct dp_netdev *dp, struct dpif_packet **packets, int cnt,
1882 struct pkt_metadata *md)
1883 {
1884 struct dp_netdev_queue q = DP_NETDEV_QUEUE_INITIALIZER;
1885 struct packet_batch batches[NETDEV_MAX_RX_BATCH];
1886 struct netdev_flow_key keys[NETDEV_MAX_RX_BATCH];
1887 const struct miniflow *mfs[NETDEV_MAX_RX_BATCH]; /* NULL at bad packets. */
1888 struct cls_rule *rules[NETDEV_MAX_RX_BATCH];
1889 size_t n_batches, i;
1890
1891 for (i = 0; i < cnt; i++) {
1892 if (OVS_UNLIKELY(ofpbuf_size(&packets[i]->ofpbuf) < ETH_HEADER_LEN)) {
1893 dpif_packet_delete(packets[i]);
1894 mfs[i] = NULL;
1895 continue;
1896 }
1897
1898 miniflow_initialize(&keys[i].flow, keys[i].buf);
1899 miniflow_extract(&packets[i]->ofpbuf, md, &keys[i].flow);
1900 mfs[i] = &keys[i].flow;
1901 }
1902
1903 classifier_lookup_miniflow_batch(&dp->cls, mfs, rules, cnt);
1904
1905 n_batches = 0;
1906 for (i = 0; i < cnt; i++) {
1907 struct dp_netdev_flow *flow;
1908 struct packet_batch *batch;
1909 size_t j;
1910
1911 if (OVS_UNLIKELY(!mfs[i])) {
1912 continue;
1913 }
1914
1915 if (OVS_UNLIKELY(!rules[i])) {
1916 struct ofpbuf *buf = &packets[i]->ofpbuf;
1917
1918 dp_netdev_count_packet(dp, DP_STAT_MISS, 1);
1919 dp_netdev_queue_userspace_packet(&q, buf, DPIF_UC_MISS,
1920 mfs[i], NULL);
1921 dpif_packet_delete(packets[i]);
1922 continue;
1923 }
1924
1925 /* XXX: This O(n^2) algortihm makes sense if we're operating under the
1926 * assumption that the number of distinct flows (and therefore the
1927 * number of distinct batches) is quite small. If this turns out not
1928 * to be the case, it may make sense to pre sort based on the
1929 * netdev_flow pointer. That done we can get the appropriate batching
1930 * in O(n * log(n)) instead. */
1931 batch = NULL;
1932 flow = dp_netdev_flow_cast(rules[i]);
1933 for (j = 0; j < n_batches; j++) {
1934 if (batches[j].flow == flow) {
1935 batch = &batches[j];
1936 break;
1937 }
1938 }
1939
1940 if (!batch) {
1941 batch = &batches[n_batches++];
1942 packet_batch_init(batch, flow, md);
1943 }
1944 packet_batch_update(batch, packets[i], mfs[i]);
1945 }
1946
1947 for (i = 0; i < n_batches; i++) {
1948 packet_batch_execute(&batches[i], dp);
1949 }
1950
1951 if (q.packet_count) {
1952 dp_netdev_execute_userspace_queue(&q, dp);
1953 }
1954 }
1955
1956 static void
1957 dp_netdev_port_input(struct dp_netdev *dp, struct dpif_packet **packets,
1958 int cnt, odp_port_t port_no)
1959 {
1960 uint32_t *recirc_depth = recirc_depth_get();
1961 struct pkt_metadata md = PKT_METADATA_INITIALIZER(port_no);
1962
1963 *recirc_depth = 0;
1964 dp_netdev_input(dp, packets, cnt, &md);
1965 }
1966
1967 static int
1968 dp_netdev_queue_userspace_packet(struct dp_netdev_queue *q,
1969 struct ofpbuf *packet, int type,
1970 const struct miniflow *key,
1971 const struct nlattr *userdata)
1972 {
1973 if (q->packet_count < NETDEV_MAX_RX_BATCH) {
1974 int cnt = q->packet_count;
1975 struct dpif_upcall *upcall = &q->upcalls[cnt];
1976 struct ofpbuf *buf = &q->bufs[cnt];
1977 size_t buf_size;
1978 struct flow flow;
1979 void *data;
1980
1981 upcall->type = type;
1982
1983 /* Allocate buffer big enough for everything. */
1984 buf_size = ODPUTIL_FLOW_KEY_BYTES;
1985 if (userdata) {
1986 buf_size += NLA_ALIGN(userdata->nla_len);
1987 }
1988 buf_size += ofpbuf_size(packet);
1989 ofpbuf_init(buf, buf_size);
1990
1991 /* Put ODP flow. */
1992 miniflow_expand(key, &flow);
1993 odp_flow_key_from_flow(buf, &flow, NULL, flow.in_port.odp_port, true);
1994 upcall->key = ofpbuf_data(buf);
1995 upcall->key_len = ofpbuf_size(buf);
1996
1997 /* Put userdata. */
1998 if (userdata) {
1999 upcall->userdata = ofpbuf_put(buf, userdata,
2000 NLA_ALIGN(userdata->nla_len));
2001 }
2002
2003 /* We have to perform a copy of the packet, because we cannot send DPDK
2004 * mbufs to a non pmd thread. When the upcall processing will be done
2005 * in the pmd thread, this copy can be avoided */
2006 data = ofpbuf_put(buf, ofpbuf_data(packet), ofpbuf_size(packet));
2007 ofpbuf_use_stub(&upcall->packet, data, ofpbuf_size(packet));
2008 ofpbuf_set_size(&upcall->packet, ofpbuf_size(packet));
2009
2010 q->packet_count++;
2011 return 0;
2012 } else {
2013 return ENOBUFS;
2014 }
2015 }
2016
2017 static void
2018 dp_netdev_execute_userspace_queue(struct dp_netdev_queue *q,
2019 struct dp_netdev *dp)
2020 {
2021 struct dpif_upcall *upcalls = q->upcalls;
2022 struct ofpbuf *bufs = q->bufs;
2023 int cnt = q->packet_count;
2024
2025 if (!fat_rwlock_tryrdlock(&dp->upcall_rwlock)) {
2026 ovs_assert(dp->upcall_cb);
2027 dp->upcall_cb(dp->dpif, upcalls, bufs, cnt);
2028 fat_rwlock_unlock(&dp->upcall_rwlock);
2029 } else {
2030 int i;
2031
2032 for (i = 0; i < cnt; i++) {
2033 ofpbuf_uninit(&bufs[i]);
2034 ofpbuf_uninit(&upcalls[i].packet);
2035 }
2036 }
2037 }
2038
2039 struct dp_netdev_execute_aux {
2040 struct dp_netdev *dp;
2041 };
2042
2043 static void
2044 dpif_netdev_register_upcall_cb(struct dpif *dpif, exec_upcall_cb *cb)
2045 {
2046 struct dp_netdev *dp = get_dp_netdev(dpif);
2047 dp->upcall_cb = cb;
2048 }
2049
2050 static void
2051 dp_execute_cb(void *aux_, struct dpif_packet **packets, int cnt,
2052 struct pkt_metadata *md,
2053 const struct nlattr *a, bool may_steal)
2054 OVS_NO_THREAD_SAFETY_ANALYSIS
2055 {
2056 struct dp_netdev_execute_aux *aux = aux_;
2057 int type = nl_attr_type(a);
2058 struct dp_netdev_port *p;
2059 uint32_t *depth = recirc_depth_get();
2060 int i;
2061
2062 switch ((enum ovs_action_attr)type) {
2063 case OVS_ACTION_ATTR_OUTPUT:
2064 p = dp_netdev_lookup_port(aux->dp, u32_to_odp(nl_attr_get_u32(a)));
2065 if (OVS_LIKELY(p)) {
2066 netdev_send(p->netdev, packets, cnt, may_steal);
2067 } else if (may_steal) {
2068 for (i = 0; i < cnt; i++) {
2069 dpif_packet_delete(packets[i]);
2070 }
2071 }
2072 break;
2073
2074 case OVS_ACTION_ATTR_USERSPACE: {
2075 const struct nlattr *userdata;
2076 struct netdev_flow_key key;
2077 struct dp_netdev_queue q = DP_NETDEV_QUEUE_INITIALIZER;
2078
2079 userdata = nl_attr_find_nested(a, OVS_USERSPACE_ATTR_USERDATA);
2080
2081 miniflow_initialize(&key.flow, key.buf);
2082
2083 for (i = 0; i < cnt; i++) {
2084 struct ofpbuf *packet;
2085
2086 packet = &packets[i]->ofpbuf;
2087
2088 miniflow_extract(packet, md, &key.flow);
2089
2090 dp_netdev_queue_userspace_packet(&q, packet,
2091 DPIF_UC_ACTION, &key.flow,
2092 userdata);
2093 if (may_steal) {
2094 dpif_packet_delete(packets[i]);
2095 }
2096 }
2097
2098 if (q.packet_count) {
2099 dp_netdev_execute_userspace_queue(&q, aux->dp);
2100 }
2101 break;
2102 }
2103
2104 case OVS_ACTION_ATTR_HASH: {
2105 const struct ovs_action_hash *hash_act;
2106 struct netdev_flow_key key;
2107 uint32_t hash;
2108
2109 hash_act = nl_attr_get(a);
2110
2111 miniflow_initialize(&key.flow, key.buf);
2112
2113 for (i = 0; i < cnt; i++) {
2114
2115 /* TODO: this is slow. Use RSS hash in the future */
2116 miniflow_extract(&packets[i]->ofpbuf, md, &key.flow);
2117
2118 if (hash_act->hash_alg == OVS_HASH_ALG_L4) {
2119 /* Hash need not be symmetric, nor does it need to include
2120 * L2 fields. */
2121 hash = miniflow_hash_5tuple(&key.flow, hash_act->hash_basis);
2122 } else {
2123 VLOG_WARN("Unknown hash algorithm specified "
2124 "for the hash action.");
2125 hash = 2;
2126 }
2127
2128 if (!hash) {
2129 hash = 1; /* 0 is not valid */
2130 }
2131
2132 if (i == 0) {
2133 md->dp_hash = hash;
2134 }
2135 packets[i]->dp_hash = hash;
2136 }
2137 break;
2138 }
2139
2140 case OVS_ACTION_ATTR_RECIRC:
2141 if (*depth < MAX_RECIRC_DEPTH) {
2142
2143 (*depth)++;
2144 for (i = 0; i < cnt; i++) {
2145 struct dpif_packet *recirc_pkt;
2146 struct pkt_metadata recirc_md = *md;
2147
2148 recirc_pkt = (may_steal) ? packets[i]
2149 : dpif_packet_clone(packets[i]);
2150
2151 recirc_md.recirc_id = nl_attr_get_u32(a);
2152
2153 /* Hash is private to each packet */
2154 recirc_md.dp_hash = packets[i]->dp_hash;
2155
2156 dp_netdev_input(aux->dp, &recirc_pkt, 1, &recirc_md);
2157 }
2158 (*depth)--;
2159
2160 break;
2161 } else {
2162 VLOG_WARN("Packet dropped. Max recirculation depth exceeded.");
2163 if (may_steal) {
2164 for (i = 0; i < cnt; i++) {
2165 dpif_packet_delete(packets[i]);
2166 }
2167 }
2168 }
2169 break;
2170
2171 case OVS_ACTION_ATTR_PUSH_VLAN:
2172 case OVS_ACTION_ATTR_POP_VLAN:
2173 case OVS_ACTION_ATTR_PUSH_MPLS:
2174 case OVS_ACTION_ATTR_POP_MPLS:
2175 case OVS_ACTION_ATTR_SET:
2176 case OVS_ACTION_ATTR_SAMPLE:
2177 case OVS_ACTION_ATTR_UNSPEC:
2178 case __OVS_ACTION_ATTR_MAX:
2179 OVS_NOT_REACHED();
2180 }
2181 }
2182
2183 static void
2184 dp_netdev_execute_actions(struct dp_netdev *dp,
2185 struct dpif_packet **packets, int cnt,
2186 bool may_steal, struct pkt_metadata *md,
2187 const struct nlattr *actions, size_t actions_len)
2188 {
2189 struct dp_netdev_execute_aux aux = {dp};
2190
2191 odp_execute_actions(&aux, packets, cnt, may_steal, md, actions,
2192 actions_len, dp_execute_cb);
2193 }
2194
2195 const struct dpif_class dpif_netdev_class = {
2196 "netdev",
2197 dpif_netdev_enumerate,
2198 dpif_netdev_port_open_type,
2199 dpif_netdev_open,
2200 dpif_netdev_close,
2201 dpif_netdev_destroy,
2202 dpif_netdev_run,
2203 dpif_netdev_wait,
2204 dpif_netdev_get_stats,
2205 dpif_netdev_port_add,
2206 dpif_netdev_port_del,
2207 dpif_netdev_port_query_by_number,
2208 dpif_netdev_port_query_by_name,
2209 NULL, /* port_get_pid */
2210 dpif_netdev_port_dump_start,
2211 dpif_netdev_port_dump_next,
2212 dpif_netdev_port_dump_done,
2213 dpif_netdev_port_poll,
2214 dpif_netdev_port_poll_wait,
2215 dpif_netdev_flow_get,
2216 dpif_netdev_flow_put,
2217 dpif_netdev_flow_del,
2218 dpif_netdev_flow_flush,
2219 dpif_netdev_flow_dump_create,
2220 dpif_netdev_flow_dump_destroy,
2221 dpif_netdev_flow_dump_thread_create,
2222 dpif_netdev_flow_dump_thread_destroy,
2223 dpif_netdev_flow_dump_next,
2224 dpif_netdev_execute,
2225 NULL, /* operate */
2226 NULL, /* recv_set */
2227 NULL, /* handlers_set */
2228 dpif_netdev_queue_to_priority,
2229 NULL, /* recv */
2230 NULL, /* recv_wait */
2231 NULL, /* recv_purge */
2232 dpif_netdev_register_upcall_cb,
2233 dpif_netdev_enable_upcall,
2234 dpif_netdev_disable_upcall,
2235 };
2236
2237 static void
2238 dpif_dummy_change_port_number(struct unixctl_conn *conn, int argc OVS_UNUSED,
2239 const char *argv[], void *aux OVS_UNUSED)
2240 {
2241 struct dp_netdev_port *old_port;
2242 struct dp_netdev_port *new_port;
2243 struct dp_netdev *dp;
2244 odp_port_t port_no;
2245
2246 ovs_mutex_lock(&dp_netdev_mutex);
2247 dp = shash_find_data(&dp_netdevs, argv[1]);
2248 if (!dp || !dpif_netdev_class_is_dummy(dp->class)) {
2249 ovs_mutex_unlock(&dp_netdev_mutex);
2250 unixctl_command_reply_error(conn, "unknown datapath or not a dummy");
2251 return;
2252 }
2253 ovs_refcount_ref(&dp->ref_cnt);
2254 ovs_mutex_unlock(&dp_netdev_mutex);
2255
2256 ovs_mutex_lock(&dp->port_mutex);
2257 if (get_port_by_name(dp, argv[2], &old_port)) {
2258 unixctl_command_reply_error(conn, "unknown port");
2259 goto exit;
2260 }
2261
2262 port_no = u32_to_odp(atoi(argv[3]));
2263 if (!port_no || port_no == ODPP_NONE) {
2264 unixctl_command_reply_error(conn, "bad port number");
2265 goto exit;
2266 }
2267 if (dp_netdev_lookup_port(dp, port_no)) {
2268 unixctl_command_reply_error(conn, "port number already in use");
2269 goto exit;
2270 }
2271
2272 /* Remove old port. */
2273 cmap_remove(&dp->ports, &old_port->node, hash_port_no(old_port->port_no));
2274 ovsrcu_postpone(free, old_port);
2275
2276 /* Insert new port (cmap semantics mean we cannot re-insert 'old_port'). */
2277 new_port = xmemdup(old_port, sizeof *old_port);
2278 new_port->port_no = port_no;
2279 cmap_insert(&dp->ports, &new_port->node, hash_port_no(port_no));
2280
2281 seq_change(dp->port_seq);
2282 unixctl_command_reply(conn, NULL);
2283
2284 exit:
2285 ovs_mutex_unlock(&dp->port_mutex);
2286 dp_netdev_unref(dp);
2287 }
2288
2289 static void
2290 dpif_dummy_delete_port(struct unixctl_conn *conn, int argc OVS_UNUSED,
2291 const char *argv[], void *aux OVS_UNUSED)
2292 {
2293 struct dp_netdev_port *port;
2294 struct dp_netdev *dp;
2295
2296 ovs_mutex_lock(&dp_netdev_mutex);
2297 dp = shash_find_data(&dp_netdevs, argv[1]);
2298 if (!dp || !dpif_netdev_class_is_dummy(dp->class)) {
2299 ovs_mutex_unlock(&dp_netdev_mutex);
2300 unixctl_command_reply_error(conn, "unknown datapath or not a dummy");
2301 return;
2302 }
2303 ovs_refcount_ref(&dp->ref_cnt);
2304 ovs_mutex_unlock(&dp_netdev_mutex);
2305
2306 ovs_mutex_lock(&dp->port_mutex);
2307 if (get_port_by_name(dp, argv[2], &port)) {
2308 unixctl_command_reply_error(conn, "unknown port");
2309 } else if (port->port_no == ODPP_LOCAL) {
2310 unixctl_command_reply_error(conn, "can't delete local port");
2311 } else {
2312 do_del_port(dp, port);
2313 unixctl_command_reply(conn, NULL);
2314 }
2315 ovs_mutex_unlock(&dp->port_mutex);
2316
2317 dp_netdev_unref(dp);
2318 }
2319
2320 static void
2321 dpif_dummy_register__(const char *type)
2322 {
2323 struct dpif_class *class;
2324
2325 class = xmalloc(sizeof *class);
2326 *class = dpif_netdev_class;
2327 class->type = xstrdup(type);
2328 dp_register_provider(class);
2329 }
2330
2331 void
2332 dpif_dummy_register(bool override)
2333 {
2334 if (override) {
2335 struct sset types;
2336 const char *type;
2337
2338 sset_init(&types);
2339 dp_enumerate_types(&types);
2340 SSET_FOR_EACH (type, &types) {
2341 if (!dp_unregister_provider(type)) {
2342 dpif_dummy_register__(type);
2343 }
2344 }
2345 sset_destroy(&types);
2346 }
2347
2348 dpif_dummy_register__("dummy");
2349
2350 unixctl_command_register("dpif-dummy/change-port-number",
2351 "DP PORT NEW-NUMBER",
2352 3, 3, dpif_dummy_change_port_number, NULL);
2353 unixctl_command_register("dpif-dummy/delete-port", "DP PORT",
2354 2, 2, dpif_dummy_delete_port, NULL);
2355 }