]> git.proxmox.com Git - mirror_ovs.git/blob - lib/dpif-netdev.c
list: Remove lib/list.h completely.
[mirror_ovs.git] / lib / dpif-netdev.c
1 /*
2 * Copyright (c) 2009, 2010, 2011, 2012, 2013, 2014, 2016 Nicira, Inc.
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at:
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <config.h>
18 #include "dpif-netdev.h"
19
20 #include <ctype.h>
21 #include <errno.h>
22 #include <fcntl.h>
23 #include <inttypes.h>
24 #include <net/if.h>
25 #include <netinet/in.h>
26 #include <stdint.h>
27 #include <stdlib.h>
28 #include <string.h>
29 #include <sys/ioctl.h>
30 #include <sys/socket.h>
31 #include <sys/stat.h>
32 #include <unistd.h>
33
34 #include "bitmap.h"
35 #include "cmap.h"
36 #include "coverage.h"
37 #include "csum.h"
38 #include "dp-packet.h"
39 #include "dpif.h"
40 #include "dpif-provider.h"
41 #include "dummy.h"
42 #include "openvswitch/dynamic-string.h"
43 #include "fat-rwlock.h"
44 #include "flow.h"
45 #include "hmapx.h"
46 #include "latch.h"
47 #include "openvswitch/list.h"
48 #include "match.h"
49 #include "netdev.h"
50 #include "netdev-dpdk.h"
51 #include "netdev-vport.h"
52 #include "netlink.h"
53 #include "odp-execute.h"
54 #include "odp-util.h"
55 #include "ofp-print.h"
56 #include "ofpbuf.h"
57 #include "ovs-numa.h"
58 #include "ovs-rcu.h"
59 #include "packets.h"
60 #include "poll-loop.h"
61 #include "pvector.h"
62 #include "random.h"
63 #include "seq.h"
64 #include "shash.h"
65 #include "sset.h"
66 #include "timeval.h"
67 #include "tnl-neigh-cache.h"
68 #include "tnl-ports.h"
69 #include "unixctl.h"
70 #include "util.h"
71
72 #include "openvswitch/vlog.h"
73
74 VLOG_DEFINE_THIS_MODULE(dpif_netdev);
75
76 #define FLOW_DUMP_MAX_BATCH 50
77 /* Use per thread recirc_depth to prevent recirculation loop. */
78 #define MAX_RECIRC_DEPTH 5
79 DEFINE_STATIC_PER_THREAD_DATA(uint32_t, recirc_depth, 0)
80
81 /* Configuration parameters. */
82 enum { MAX_FLOWS = 65536 }; /* Maximum number of flows in flow table. */
83
84 /* Protects against changes to 'dp_netdevs'. */
85 static struct ovs_mutex dp_netdev_mutex = OVS_MUTEX_INITIALIZER;
86
87 /* Contains all 'struct dp_netdev's. */
88 static struct shash dp_netdevs OVS_GUARDED_BY(dp_netdev_mutex)
89 = SHASH_INITIALIZER(&dp_netdevs);
90
91 static struct vlog_rate_limit upcall_rl = VLOG_RATE_LIMIT_INIT(600, 600);
92
93 static struct odp_support dp_netdev_support = {
94 .max_mpls_depth = SIZE_MAX,
95 .recirc = true,
96 };
97
98 /* Stores a miniflow with inline values */
99
100 struct netdev_flow_key {
101 uint32_t hash; /* Hash function differs for different users. */
102 uint32_t len; /* Length of the following miniflow (incl. map). */
103 struct miniflow mf;
104 uint64_t buf[FLOW_MAX_PACKET_U64S];
105 };
106
107 /* Exact match cache for frequently used flows
108 *
109 * The cache uses a 32-bit hash of the packet (which can be the RSS hash) to
110 * search its entries for a miniflow that matches exactly the miniflow of the
111 * packet. It stores the 'dpcls_rule' (rule) that matches the miniflow.
112 *
113 * A cache entry holds a reference to its 'dp_netdev_flow'.
114 *
115 * A miniflow with a given hash can be in one of EM_FLOW_HASH_SEGS different
116 * entries. The 32-bit hash is split into EM_FLOW_HASH_SEGS values (each of
117 * them is EM_FLOW_HASH_SHIFT bits wide and the remainder is thrown away). Each
118 * value is the index of a cache entry where the miniflow could be.
119 *
120 *
121 * Thread-safety
122 * =============
123 *
124 * Each pmd_thread has its own private exact match cache.
125 * If dp_netdev_input is not called from a pmd thread, a mutex is used.
126 */
127
128 #define EM_FLOW_HASH_SHIFT 13
129 #define EM_FLOW_HASH_ENTRIES (1u << EM_FLOW_HASH_SHIFT)
130 #define EM_FLOW_HASH_MASK (EM_FLOW_HASH_ENTRIES - 1)
131 #define EM_FLOW_HASH_SEGS 2
132
133 struct emc_entry {
134 struct dp_netdev_flow *flow;
135 struct netdev_flow_key key; /* key.hash used for emc hash value. */
136 };
137
138 struct emc_cache {
139 struct emc_entry entries[EM_FLOW_HASH_ENTRIES];
140 int sweep_idx; /* For emc_cache_slow_sweep(). */
141 };
142
143 /* Iterate in the exact match cache through every entry that might contain a
144 * miniflow with hash 'HASH'. */
145 #define EMC_FOR_EACH_POS_WITH_HASH(EMC, CURRENT_ENTRY, HASH) \
146 for (uint32_t i__ = 0, srch_hash__ = (HASH); \
147 (CURRENT_ENTRY) = &(EMC)->entries[srch_hash__ & EM_FLOW_HASH_MASK], \
148 i__ < EM_FLOW_HASH_SEGS; \
149 i__++, srch_hash__ >>= EM_FLOW_HASH_SHIFT)
150 \f
151 /* Simple non-wildcarding single-priority classifier. */
152
153 struct dpcls {
154 struct cmap subtables_map;
155 struct pvector subtables;
156 };
157
158 /* A rule to be inserted to the classifier. */
159 struct dpcls_rule {
160 struct cmap_node cmap_node; /* Within struct dpcls_subtable 'rules'. */
161 struct netdev_flow_key *mask; /* Subtable's mask. */
162 struct netdev_flow_key flow; /* Matching key. */
163 /* 'flow' must be the last field, additional space is allocated here. */
164 };
165
166 static void dpcls_init(struct dpcls *);
167 static void dpcls_destroy(struct dpcls *);
168 static void dpcls_insert(struct dpcls *, struct dpcls_rule *,
169 const struct netdev_flow_key *mask);
170 static void dpcls_remove(struct dpcls *, struct dpcls_rule *);
171 static bool dpcls_lookup(const struct dpcls *cls,
172 const struct netdev_flow_key keys[],
173 struct dpcls_rule **rules, size_t cnt);
174 \f
175 /* Datapath based on the network device interface from netdev.h.
176 *
177 *
178 * Thread-safety
179 * =============
180 *
181 * Some members, marked 'const', are immutable. Accessing other members
182 * requires synchronization, as noted in more detail below.
183 *
184 * Acquisition order is, from outermost to innermost:
185 *
186 * dp_netdev_mutex (global)
187 * port_mutex
188 */
189 struct dp_netdev {
190 const struct dpif_class *const class;
191 const char *const name;
192 struct dpif *dpif;
193 struct ovs_refcount ref_cnt;
194 atomic_flag destroyed;
195
196 /* Ports.
197 *
198 * Protected by RCU. Take the mutex to add or remove ports. */
199 struct ovs_mutex port_mutex;
200 struct cmap ports;
201 struct seq *port_seq; /* Incremented whenever a port changes. */
202
203 /* Protects access to ofproto-dpif-upcall interface during revalidator
204 * thread synchronization. */
205 struct fat_rwlock upcall_rwlock;
206 upcall_callback *upcall_cb; /* Callback function for executing upcalls. */
207 void *upcall_aux;
208
209 /* Callback function for notifying the purging of dp flows (during
210 * reseting pmd deletion). */
211 dp_purge_callback *dp_purge_cb;
212 void *dp_purge_aux;
213
214 /* Stores all 'struct dp_netdev_pmd_thread's. */
215 struct cmap poll_threads;
216
217 /* Protects the access of the 'struct dp_netdev_pmd_thread'
218 * instance for non-pmd thread. */
219 struct ovs_mutex non_pmd_mutex;
220
221 /* Each pmd thread will store its pointer to
222 * 'struct dp_netdev_pmd_thread' in 'per_pmd_key'. */
223 ovsthread_key_t per_pmd_key;
224
225 /* Cpu mask for pin of pmd threads. */
226 char *pmd_cmask;
227 uint64_t last_tnl_conf_seq;
228 };
229
230 static struct dp_netdev_port *dp_netdev_lookup_port(const struct dp_netdev *dp,
231 odp_port_t);
232
233 enum dp_stat_type {
234 DP_STAT_EXACT_HIT, /* Packets that had an exact match (emc). */
235 DP_STAT_MASKED_HIT, /* Packets that matched in the flow table. */
236 DP_STAT_MISS, /* Packets that did not match. */
237 DP_STAT_LOST, /* Packets not passed up to the client. */
238 DP_N_STATS
239 };
240
241 enum pmd_cycles_counter_type {
242 PMD_CYCLES_POLLING, /* Cycles spent polling NICs. */
243 PMD_CYCLES_PROCESSING, /* Cycles spent processing packets */
244 PMD_N_CYCLES
245 };
246
247 /* A port in a netdev-based datapath. */
248 struct dp_netdev_port {
249 odp_port_t port_no;
250 struct netdev *netdev;
251 struct cmap_node node; /* Node in dp_netdev's 'ports'. */
252 struct netdev_saved_flags *sf;
253 struct netdev_rxq **rxq;
254 struct ovs_refcount ref_cnt;
255 char *type; /* Port type as requested by user. */
256 int latest_requested_n_rxq; /* Latest requested from netdev number
257 of rx queues. */
258 };
259
260 /* Contained by struct dp_netdev_flow's 'stats' member. */
261 struct dp_netdev_flow_stats {
262 atomic_llong used; /* Last used time, in monotonic msecs. */
263 atomic_ullong packet_count; /* Number of packets matched. */
264 atomic_ullong byte_count; /* Number of bytes matched. */
265 atomic_uint16_t tcp_flags; /* Bitwise-OR of seen tcp_flags values. */
266 };
267
268 /* A flow in 'dp_netdev_pmd_thread's 'flow_table'.
269 *
270 *
271 * Thread-safety
272 * =============
273 *
274 * Except near the beginning or ending of its lifespan, rule 'rule' belongs to
275 * its pmd thread's classifier. The text below calls this classifier 'cls'.
276 *
277 * Motivation
278 * ----------
279 *
280 * The thread safety rules described here for "struct dp_netdev_flow" are
281 * motivated by two goals:
282 *
283 * - Prevent threads that read members of "struct dp_netdev_flow" from
284 * reading bad data due to changes by some thread concurrently modifying
285 * those members.
286 *
287 * - Prevent two threads making changes to members of a given "struct
288 * dp_netdev_flow" from interfering with each other.
289 *
290 *
291 * Rules
292 * -----
293 *
294 * A flow 'flow' may be accessed without a risk of being freed during an RCU
295 * grace period. Code that needs to hold onto a flow for a while
296 * should try incrementing 'flow->ref_cnt' with dp_netdev_flow_ref().
297 *
298 * 'flow->ref_cnt' protects 'flow' from being freed. It doesn't protect the
299 * flow from being deleted from 'cls' and it doesn't protect members of 'flow'
300 * from modification.
301 *
302 * Some members, marked 'const', are immutable. Accessing other members
303 * requires synchronization, as noted in more detail below.
304 */
305 struct dp_netdev_flow {
306 const struct flow flow; /* Unmasked flow that created this entry. */
307 /* Hash table index by unmasked flow. */
308 const struct cmap_node node; /* In owning dp_netdev_pmd_thread's */
309 /* 'flow_table'. */
310 const ovs_u128 ufid; /* Unique flow identifier. */
311 const unsigned pmd_id; /* The 'core_id' of pmd thread owning this */
312 /* flow. */
313
314 /* Number of references.
315 * The classifier owns one reference.
316 * Any thread trying to keep a rule from being freed should hold its own
317 * reference. */
318 struct ovs_refcount ref_cnt;
319
320 bool dead;
321
322 /* Statistics. */
323 struct dp_netdev_flow_stats stats;
324
325 /* Actions. */
326 OVSRCU_TYPE(struct dp_netdev_actions *) actions;
327
328 /* While processing a group of input packets, the datapath uses the next
329 * member to store a pointer to the output batch for the flow. It is
330 * reset after the batch has been sent out (See dp_netdev_queue_batches(),
331 * packet_batch_init() and packet_batch_execute()). */
332 struct packet_batch *batch;
333
334 /* Packet classification. */
335 struct dpcls_rule cr; /* In owning dp_netdev's 'cls'. */
336 /* 'cr' must be the last member. */
337 };
338
339 static void dp_netdev_flow_unref(struct dp_netdev_flow *);
340 static bool dp_netdev_flow_ref(struct dp_netdev_flow *);
341 static int dpif_netdev_flow_from_nlattrs(const struct nlattr *, uint32_t,
342 struct flow *);
343
344 /* A set of datapath actions within a "struct dp_netdev_flow".
345 *
346 *
347 * Thread-safety
348 * =============
349 *
350 * A struct dp_netdev_actions 'actions' is protected with RCU. */
351 struct dp_netdev_actions {
352 /* These members are immutable: they do not change during the struct's
353 * lifetime. */
354 unsigned int size; /* Size of 'actions', in bytes. */
355 struct nlattr actions[]; /* Sequence of OVS_ACTION_ATTR_* attributes. */
356 };
357
358 struct dp_netdev_actions *dp_netdev_actions_create(const struct nlattr *,
359 size_t);
360 struct dp_netdev_actions *dp_netdev_flow_get_actions(
361 const struct dp_netdev_flow *);
362 static void dp_netdev_actions_free(struct dp_netdev_actions *);
363
364 /* Contained by struct dp_netdev_pmd_thread's 'stats' member. */
365 struct dp_netdev_pmd_stats {
366 /* Indexed by DP_STAT_*. */
367 atomic_ullong n[DP_N_STATS];
368 };
369
370 /* Contained by struct dp_netdev_pmd_thread's 'cycle' member. */
371 struct dp_netdev_pmd_cycles {
372 /* Indexed by PMD_CYCLES_*. */
373 atomic_ullong n[PMD_N_CYCLES];
374 };
375
376 /* Contained by struct dp_netdev_pmd_thread's 'poll_list' member. */
377 struct rxq_poll {
378 struct dp_netdev_port *port;
379 struct netdev_rxq *rx;
380 struct ovs_list node;
381 };
382
383 /* PMD: Poll modes drivers. PMD accesses devices via polling to eliminate
384 * the performance overhead of interrupt processing. Therefore netdev can
385 * not implement rx-wait for these devices. dpif-netdev needs to poll
386 * these device to check for recv buffer. pmd-thread does polling for
387 * devices assigned to itself.
388 *
389 * DPDK used PMD for accessing NIC.
390 *
391 * Note, instance with cpu core id NON_PMD_CORE_ID will be reserved for
392 * I/O of all non-pmd threads. There will be no actual thread created
393 * for the instance.
394 *
395 * Each struct has its own flow table and classifier. Packets received
396 * from managed ports are looked up in the corresponding pmd thread's
397 * flow table, and are executed with the found actions.
398 * */
399 struct dp_netdev_pmd_thread {
400 struct dp_netdev *dp;
401 struct ovs_refcount ref_cnt; /* Every reference must be refcount'ed. */
402 struct cmap_node node; /* In 'dp->poll_threads'. */
403
404 pthread_cond_t cond; /* For synchronizing pmd thread reload. */
405 struct ovs_mutex cond_mutex; /* Mutex for condition variable. */
406
407 /* Per thread exact-match cache. Note, the instance for cpu core
408 * NON_PMD_CORE_ID can be accessed by multiple threads, and thusly
409 * need to be protected (e.g. by 'dp_netdev_mutex'). All other
410 * instances will only be accessed by its own pmd thread. */
411 struct emc_cache flow_cache;
412
413 /* Classifier and Flow-Table.
414 *
415 * Writers of 'flow_table' must take the 'flow_mutex'. Corresponding
416 * changes to 'cls' must be made while still holding the 'flow_mutex'.
417 */
418 struct ovs_mutex flow_mutex;
419 struct dpcls cls;
420 struct cmap flow_table OVS_GUARDED; /* Flow table. */
421
422 /* Statistics. */
423 struct dp_netdev_pmd_stats stats;
424
425 /* Cycles counters */
426 struct dp_netdev_pmd_cycles cycles;
427
428 /* Used to count cicles. See 'cycles_counter_end()' */
429 unsigned long long last_cycles;
430
431 struct latch exit_latch; /* For terminating the pmd thread. */
432 atomic_uint change_seq; /* For reloading pmd ports. */
433 pthread_t thread;
434 int index; /* Idx of this pmd thread among pmd*/
435 /* threads on same numa node. */
436 unsigned core_id; /* CPU core id of this pmd thread. */
437 int numa_id; /* numa node id of this pmd thread. */
438 atomic_int tx_qid; /* Queue id used by this pmd thread to
439 * send packets on all netdevs */
440
441 struct ovs_mutex poll_mutex; /* Mutex for poll_list. */
442 /* List of rx queues to poll. */
443 struct ovs_list poll_list OVS_GUARDED;
444 int poll_cnt; /* Number of elemints in poll_list. */
445
446 /* Only a pmd thread can write on its own 'cycles' and 'stats'.
447 * The main thread keeps 'stats_zero' and 'cycles_zero' as base
448 * values and subtracts them from 'stats' and 'cycles' before
449 * reporting to the user */
450 unsigned long long stats_zero[DP_N_STATS];
451 uint64_t cycles_zero[PMD_N_CYCLES];
452 };
453
454 #define PMD_INITIAL_SEQ 1
455
456 /* Interface to netdev-based datapath. */
457 struct dpif_netdev {
458 struct dpif dpif;
459 struct dp_netdev *dp;
460 uint64_t last_port_seq;
461 };
462
463 static int get_port_by_number(struct dp_netdev *dp, odp_port_t port_no,
464 struct dp_netdev_port **portp);
465 static int get_port_by_name(struct dp_netdev *dp, const char *devname,
466 struct dp_netdev_port **portp);
467 static void dp_netdev_free(struct dp_netdev *)
468 OVS_REQUIRES(dp_netdev_mutex);
469 static int do_add_port(struct dp_netdev *dp, const char *devname,
470 const char *type, odp_port_t port_no)
471 OVS_REQUIRES(dp->port_mutex);
472 static void do_del_port(struct dp_netdev *dp, struct dp_netdev_port *)
473 OVS_REQUIRES(dp->port_mutex);
474 static int dpif_netdev_open(const struct dpif_class *, const char *name,
475 bool create, struct dpif **);
476 static void dp_netdev_execute_actions(struct dp_netdev_pmd_thread *pmd,
477 struct dp_packet **, int c,
478 bool may_steal,
479 const struct nlattr *actions,
480 size_t actions_len);
481 static void dp_netdev_input(struct dp_netdev_pmd_thread *,
482 struct dp_packet **, int cnt, odp_port_t port_no);
483 static void dp_netdev_recirculate(struct dp_netdev_pmd_thread *,
484 struct dp_packet **, int cnt);
485
486 static void dp_netdev_disable_upcall(struct dp_netdev *);
487 static void dp_netdev_pmd_reload_done(struct dp_netdev_pmd_thread *pmd);
488 static void dp_netdev_configure_pmd(struct dp_netdev_pmd_thread *pmd,
489 struct dp_netdev *dp, int index,
490 unsigned core_id, int numa_id);
491 static void dp_netdev_destroy_pmd(struct dp_netdev_pmd_thread *pmd);
492 static void dp_netdev_set_nonpmd(struct dp_netdev *dp);
493 static struct dp_netdev_pmd_thread *dp_netdev_get_pmd(struct dp_netdev *dp,
494 unsigned core_id);
495 static struct dp_netdev_pmd_thread *
496 dp_netdev_pmd_get_next(struct dp_netdev *dp, struct cmap_position *pos);
497 static void dp_netdev_destroy_all_pmds(struct dp_netdev *dp);
498 static void dp_netdev_del_pmds_on_numa(struct dp_netdev *dp, int numa_id);
499 static void dp_netdev_set_pmds_on_numa(struct dp_netdev *dp, int numa_id);
500 static void dp_netdev_pmd_clear_poll_list(struct dp_netdev_pmd_thread *pmd);
501 static void dp_netdev_del_port_from_pmd(struct dp_netdev_port *port,
502 struct dp_netdev_pmd_thread *pmd);
503 static void dp_netdev_del_port_from_all_pmds(struct dp_netdev *dp,
504 struct dp_netdev_port *port);
505 static void
506 dp_netdev_add_port_to_pmds(struct dp_netdev *dp, struct dp_netdev_port *port);
507 static void
508 dp_netdev_add_rxq_to_pmd(struct dp_netdev_pmd_thread *pmd,
509 struct dp_netdev_port *port, struct netdev_rxq *rx);
510 static struct dp_netdev_pmd_thread *
511 dp_netdev_less_loaded_pmd_on_numa(struct dp_netdev *dp, int numa_id);
512 static void dp_netdev_reset_pmd_threads(struct dp_netdev *dp);
513 static bool dp_netdev_pmd_try_ref(struct dp_netdev_pmd_thread *pmd);
514 static void dp_netdev_pmd_unref(struct dp_netdev_pmd_thread *pmd);
515 static void dp_netdev_pmd_flow_flush(struct dp_netdev_pmd_thread *pmd);
516
517 static inline bool emc_entry_alive(struct emc_entry *ce);
518 static void emc_clear_entry(struct emc_entry *ce);
519
520 static void
521 emc_cache_init(struct emc_cache *flow_cache)
522 {
523 int i;
524
525 flow_cache->sweep_idx = 0;
526 for (i = 0; i < ARRAY_SIZE(flow_cache->entries); i++) {
527 flow_cache->entries[i].flow = NULL;
528 flow_cache->entries[i].key.hash = 0;
529 flow_cache->entries[i].key.len = sizeof(struct miniflow);
530 flowmap_init(&flow_cache->entries[i].key.mf.map);
531 }
532 }
533
534 static void
535 emc_cache_uninit(struct emc_cache *flow_cache)
536 {
537 int i;
538
539 for (i = 0; i < ARRAY_SIZE(flow_cache->entries); i++) {
540 emc_clear_entry(&flow_cache->entries[i]);
541 }
542 }
543
544 /* Check and clear dead flow references slowly (one entry at each
545 * invocation). */
546 static void
547 emc_cache_slow_sweep(struct emc_cache *flow_cache)
548 {
549 struct emc_entry *entry = &flow_cache->entries[flow_cache->sweep_idx];
550
551 if (!emc_entry_alive(entry)) {
552 emc_clear_entry(entry);
553 }
554 flow_cache->sweep_idx = (flow_cache->sweep_idx + 1) & EM_FLOW_HASH_MASK;
555 }
556
557 /* Returns true if 'dpif' is a netdev or dummy dpif, false otherwise. */
558 bool
559 dpif_is_netdev(const struct dpif *dpif)
560 {
561 return dpif->dpif_class->open == dpif_netdev_open;
562 }
563
564 static struct dpif_netdev *
565 dpif_netdev_cast(const struct dpif *dpif)
566 {
567 ovs_assert(dpif_is_netdev(dpif));
568 return CONTAINER_OF(dpif, struct dpif_netdev, dpif);
569 }
570
571 static struct dp_netdev *
572 get_dp_netdev(const struct dpif *dpif)
573 {
574 return dpif_netdev_cast(dpif)->dp;
575 }
576 \f
577 enum pmd_info_type {
578 PMD_INFO_SHOW_STATS, /* Show how cpu cycles are spent. */
579 PMD_INFO_CLEAR_STATS, /* Set the cycles count to 0. */
580 PMD_INFO_SHOW_RXQ /* Show poll-lists of pmd threads. */
581 };
582
583 static void
584 pmd_info_show_stats(struct ds *reply,
585 struct dp_netdev_pmd_thread *pmd,
586 unsigned long long stats[DP_N_STATS],
587 uint64_t cycles[PMD_N_CYCLES])
588 {
589 unsigned long long total_packets = 0;
590 uint64_t total_cycles = 0;
591 int i;
592
593 /* These loops subtracts reference values ('*_zero') from the counters.
594 * Since loads and stores are relaxed, it might be possible for a '*_zero'
595 * value to be more recent than the current value we're reading from the
596 * counter. This is not a big problem, since these numbers are not
597 * supposed to be too accurate, but we should at least make sure that
598 * the result is not negative. */
599 for (i = 0; i < DP_N_STATS; i++) {
600 if (stats[i] > pmd->stats_zero[i]) {
601 stats[i] -= pmd->stats_zero[i];
602 } else {
603 stats[i] = 0;
604 }
605
606 if (i != DP_STAT_LOST) {
607 /* Lost packets are already included in DP_STAT_MISS */
608 total_packets += stats[i];
609 }
610 }
611
612 for (i = 0; i < PMD_N_CYCLES; i++) {
613 if (cycles[i] > pmd->cycles_zero[i]) {
614 cycles[i] -= pmd->cycles_zero[i];
615 } else {
616 cycles[i] = 0;
617 }
618
619 total_cycles += cycles[i];
620 }
621
622 ds_put_cstr(reply, (pmd->core_id == NON_PMD_CORE_ID)
623 ? "main thread" : "pmd thread");
624
625 if (pmd->numa_id != OVS_NUMA_UNSPEC) {
626 ds_put_format(reply, " numa_id %d", pmd->numa_id);
627 }
628 if (pmd->core_id != OVS_CORE_UNSPEC && pmd->core_id != NON_PMD_CORE_ID) {
629 ds_put_format(reply, " core_id %u", pmd->core_id);
630 }
631 ds_put_cstr(reply, ":\n");
632
633 ds_put_format(reply,
634 "\temc hits:%llu\n\tmegaflow hits:%llu\n"
635 "\tmiss:%llu\n\tlost:%llu\n",
636 stats[DP_STAT_EXACT_HIT], stats[DP_STAT_MASKED_HIT],
637 stats[DP_STAT_MISS], stats[DP_STAT_LOST]);
638
639 if (total_cycles == 0) {
640 return;
641 }
642
643 ds_put_format(reply,
644 "\tpolling cycles:%"PRIu64" (%.02f%%)\n"
645 "\tprocessing cycles:%"PRIu64" (%.02f%%)\n",
646 cycles[PMD_CYCLES_POLLING],
647 cycles[PMD_CYCLES_POLLING] / (double)total_cycles * 100,
648 cycles[PMD_CYCLES_PROCESSING],
649 cycles[PMD_CYCLES_PROCESSING] / (double)total_cycles * 100);
650
651 if (total_packets == 0) {
652 return;
653 }
654
655 ds_put_format(reply,
656 "\tavg cycles per packet: %.02f (%"PRIu64"/%llu)\n",
657 total_cycles / (double)total_packets,
658 total_cycles, total_packets);
659
660 ds_put_format(reply,
661 "\tavg processing cycles per packet: "
662 "%.02f (%"PRIu64"/%llu)\n",
663 cycles[PMD_CYCLES_PROCESSING] / (double)total_packets,
664 cycles[PMD_CYCLES_PROCESSING], total_packets);
665 }
666
667 static void
668 pmd_info_clear_stats(struct ds *reply OVS_UNUSED,
669 struct dp_netdev_pmd_thread *pmd,
670 unsigned long long stats[DP_N_STATS],
671 uint64_t cycles[PMD_N_CYCLES])
672 {
673 int i;
674
675 /* We cannot write 'stats' and 'cycles' (because they're written by other
676 * threads) and we shouldn't change 'stats' (because they're used to count
677 * datapath stats, which must not be cleared here). Instead, we save the
678 * current values and subtract them from the values to be displayed in the
679 * future */
680 for (i = 0; i < DP_N_STATS; i++) {
681 pmd->stats_zero[i] = stats[i];
682 }
683 for (i = 0; i < PMD_N_CYCLES; i++) {
684 pmd->cycles_zero[i] = cycles[i];
685 }
686 }
687
688 static void
689 pmd_info_show_rxq(struct ds *reply, struct dp_netdev_pmd_thread *pmd)
690 {
691 if (pmd->core_id != NON_PMD_CORE_ID) {
692 struct rxq_poll *poll;
693 const char *prev_name = NULL;
694
695 ds_put_format(reply, "pmd thread numa_id %d core_id %u:\n",
696 pmd->numa_id, pmd->core_id);
697
698 ovs_mutex_lock(&pmd->poll_mutex);
699 LIST_FOR_EACH (poll, node, &pmd->poll_list) {
700 const char *name = netdev_get_name(poll->port->netdev);
701
702 if (!prev_name || strcmp(name, prev_name)) {
703 if (prev_name) {
704 ds_put_cstr(reply, "\n");
705 }
706 ds_put_format(reply, "\tport: %s\tqueue-id:",
707 netdev_get_name(poll->port->netdev));
708 }
709 ds_put_format(reply, " %d", netdev_rxq_get_queue_id(poll->rx));
710 prev_name = name;
711 }
712 ovs_mutex_unlock(&pmd->poll_mutex);
713 ds_put_cstr(reply, "\n");
714 }
715 }
716
717 static void
718 dpif_netdev_pmd_info(struct unixctl_conn *conn, int argc, const char *argv[],
719 void *aux)
720 {
721 struct ds reply = DS_EMPTY_INITIALIZER;
722 struct dp_netdev_pmd_thread *pmd;
723 struct dp_netdev *dp = NULL;
724 enum pmd_info_type type = *(enum pmd_info_type *) aux;
725
726 ovs_mutex_lock(&dp_netdev_mutex);
727
728 if (argc == 2) {
729 dp = shash_find_data(&dp_netdevs, argv[1]);
730 } else if (shash_count(&dp_netdevs) == 1) {
731 /* There's only one datapath */
732 dp = shash_first(&dp_netdevs)->data;
733 }
734
735 if (!dp) {
736 ovs_mutex_unlock(&dp_netdev_mutex);
737 unixctl_command_reply_error(conn,
738 "please specify an existing datapath");
739 return;
740 }
741
742 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
743 if (type == PMD_INFO_SHOW_RXQ) {
744 pmd_info_show_rxq(&reply, pmd);
745 } else {
746 unsigned long long stats[DP_N_STATS];
747 uint64_t cycles[PMD_N_CYCLES];
748 int i;
749
750 /* Read current stats and cycle counters */
751 for (i = 0; i < ARRAY_SIZE(stats); i++) {
752 atomic_read_relaxed(&pmd->stats.n[i], &stats[i]);
753 }
754 for (i = 0; i < ARRAY_SIZE(cycles); i++) {
755 atomic_read_relaxed(&pmd->cycles.n[i], &cycles[i]);
756 }
757
758 if (type == PMD_INFO_CLEAR_STATS) {
759 pmd_info_clear_stats(&reply, pmd, stats, cycles);
760 } else if (type == PMD_INFO_SHOW_STATS) {
761 pmd_info_show_stats(&reply, pmd, stats, cycles);
762 }
763 }
764 }
765
766 ovs_mutex_unlock(&dp_netdev_mutex);
767
768 unixctl_command_reply(conn, ds_cstr(&reply));
769 ds_destroy(&reply);
770 }
771 \f
772 static int
773 dpif_netdev_init(void)
774 {
775 static enum pmd_info_type show_aux = PMD_INFO_SHOW_STATS,
776 clear_aux = PMD_INFO_CLEAR_STATS,
777 poll_aux = PMD_INFO_SHOW_RXQ;
778
779 unixctl_command_register("dpif-netdev/pmd-stats-show", "[dp]",
780 0, 1, dpif_netdev_pmd_info,
781 (void *)&show_aux);
782 unixctl_command_register("dpif-netdev/pmd-stats-clear", "[dp]",
783 0, 1, dpif_netdev_pmd_info,
784 (void *)&clear_aux);
785 unixctl_command_register("dpif-netdev/pmd-rxq-show", "[dp]",
786 0, 1, dpif_netdev_pmd_info,
787 (void *)&poll_aux);
788 return 0;
789 }
790
791 static int
792 dpif_netdev_enumerate(struct sset *all_dps,
793 const struct dpif_class *dpif_class)
794 {
795 struct shash_node *node;
796
797 ovs_mutex_lock(&dp_netdev_mutex);
798 SHASH_FOR_EACH(node, &dp_netdevs) {
799 struct dp_netdev *dp = node->data;
800 if (dpif_class != dp->class) {
801 /* 'dp_netdevs' contains both "netdev" and "dummy" dpifs.
802 * If the class doesn't match, skip this dpif. */
803 continue;
804 }
805 sset_add(all_dps, node->name);
806 }
807 ovs_mutex_unlock(&dp_netdev_mutex);
808
809 return 0;
810 }
811
812 static bool
813 dpif_netdev_class_is_dummy(const struct dpif_class *class)
814 {
815 return class != &dpif_netdev_class;
816 }
817
818 static const char *
819 dpif_netdev_port_open_type(const struct dpif_class *class, const char *type)
820 {
821 return strcmp(type, "internal") ? type
822 : dpif_netdev_class_is_dummy(class) ? "dummy"
823 : "tap";
824 }
825
826 static struct dpif *
827 create_dpif_netdev(struct dp_netdev *dp)
828 {
829 uint16_t netflow_id = hash_string(dp->name, 0);
830 struct dpif_netdev *dpif;
831
832 ovs_refcount_ref(&dp->ref_cnt);
833
834 dpif = xmalloc(sizeof *dpif);
835 dpif_init(&dpif->dpif, dp->class, dp->name, netflow_id >> 8, netflow_id);
836 dpif->dp = dp;
837 dpif->last_port_seq = seq_read(dp->port_seq);
838
839 return &dpif->dpif;
840 }
841
842 /* Choose an unused, non-zero port number and return it on success.
843 * Return ODPP_NONE on failure. */
844 static odp_port_t
845 choose_port(struct dp_netdev *dp, const char *name)
846 OVS_REQUIRES(dp->port_mutex)
847 {
848 uint32_t port_no;
849
850 if (dp->class != &dpif_netdev_class) {
851 const char *p;
852 int start_no = 0;
853
854 /* If the port name begins with "br", start the number search at
855 * 100 to make writing tests easier. */
856 if (!strncmp(name, "br", 2)) {
857 start_no = 100;
858 }
859
860 /* If the port name contains a number, try to assign that port number.
861 * This can make writing unit tests easier because port numbers are
862 * predictable. */
863 for (p = name; *p != '\0'; p++) {
864 if (isdigit((unsigned char) *p)) {
865 port_no = start_no + strtol(p, NULL, 10);
866 if (port_no > 0 && port_no != odp_to_u32(ODPP_NONE)
867 && !dp_netdev_lookup_port(dp, u32_to_odp(port_no))) {
868 return u32_to_odp(port_no);
869 }
870 break;
871 }
872 }
873 }
874
875 for (port_no = 1; port_no <= UINT16_MAX; port_no++) {
876 if (!dp_netdev_lookup_port(dp, u32_to_odp(port_no))) {
877 return u32_to_odp(port_no);
878 }
879 }
880
881 return ODPP_NONE;
882 }
883
884 static int
885 create_dp_netdev(const char *name, const struct dpif_class *class,
886 struct dp_netdev **dpp)
887 OVS_REQUIRES(dp_netdev_mutex)
888 {
889 struct dp_netdev *dp;
890 int error;
891
892 dp = xzalloc(sizeof *dp);
893 shash_add(&dp_netdevs, name, dp);
894
895 *CONST_CAST(const struct dpif_class **, &dp->class) = class;
896 *CONST_CAST(const char **, &dp->name) = xstrdup(name);
897 ovs_refcount_init(&dp->ref_cnt);
898 atomic_flag_clear(&dp->destroyed);
899
900 ovs_mutex_init(&dp->port_mutex);
901 cmap_init(&dp->ports);
902 dp->port_seq = seq_create();
903 fat_rwlock_init(&dp->upcall_rwlock);
904
905 /* Disable upcalls by default. */
906 dp_netdev_disable_upcall(dp);
907 dp->upcall_aux = NULL;
908 dp->upcall_cb = NULL;
909
910 cmap_init(&dp->poll_threads);
911 ovs_mutex_init_recursive(&dp->non_pmd_mutex);
912 ovsthread_key_create(&dp->per_pmd_key, NULL);
913
914 dp_netdev_set_nonpmd(dp);
915
916 ovs_mutex_lock(&dp->port_mutex);
917 error = do_add_port(dp, name, "internal", ODPP_LOCAL);
918 ovs_mutex_unlock(&dp->port_mutex);
919 if (error) {
920 dp_netdev_free(dp);
921 return error;
922 }
923
924 dp->last_tnl_conf_seq = seq_read(tnl_conf_seq);
925 *dpp = dp;
926 return 0;
927 }
928
929 static int
930 dpif_netdev_open(const struct dpif_class *class, const char *name,
931 bool create, struct dpif **dpifp)
932 {
933 struct dp_netdev *dp;
934 int error;
935
936 ovs_mutex_lock(&dp_netdev_mutex);
937 dp = shash_find_data(&dp_netdevs, name);
938 if (!dp) {
939 error = create ? create_dp_netdev(name, class, &dp) : ENODEV;
940 } else {
941 error = (dp->class != class ? EINVAL
942 : create ? EEXIST
943 : 0);
944 }
945 if (!error) {
946 *dpifp = create_dpif_netdev(dp);
947 dp->dpif = *dpifp;
948 }
949 ovs_mutex_unlock(&dp_netdev_mutex);
950
951 return error;
952 }
953
954 static void
955 dp_netdev_destroy_upcall_lock(struct dp_netdev *dp)
956 OVS_NO_THREAD_SAFETY_ANALYSIS
957 {
958 /* Check that upcalls are disabled, i.e. that the rwlock is taken */
959 ovs_assert(fat_rwlock_tryrdlock(&dp->upcall_rwlock));
960
961 /* Before freeing a lock we should release it */
962 fat_rwlock_unlock(&dp->upcall_rwlock);
963 fat_rwlock_destroy(&dp->upcall_rwlock);
964 }
965
966 /* Requires dp_netdev_mutex so that we can't get a new reference to 'dp'
967 * through the 'dp_netdevs' shash while freeing 'dp'. */
968 static void
969 dp_netdev_free(struct dp_netdev *dp)
970 OVS_REQUIRES(dp_netdev_mutex)
971 {
972 struct dp_netdev_port *port;
973
974 shash_find_and_delete(&dp_netdevs, dp->name);
975
976 dp_netdev_destroy_all_pmds(dp);
977 ovs_mutex_destroy(&dp->non_pmd_mutex);
978 ovsthread_key_delete(dp->per_pmd_key);
979
980 ovs_mutex_lock(&dp->port_mutex);
981 CMAP_FOR_EACH (port, node, &dp->ports) {
982 /* PMD threads are destroyed here. do_del_port() cannot quiesce */
983 do_del_port(dp, port);
984 }
985 ovs_mutex_unlock(&dp->port_mutex);
986 cmap_destroy(&dp->poll_threads);
987
988 seq_destroy(dp->port_seq);
989 cmap_destroy(&dp->ports);
990
991 /* Upcalls must be disabled at this point */
992 dp_netdev_destroy_upcall_lock(dp);
993
994 free(dp->pmd_cmask);
995 free(CONST_CAST(char *, dp->name));
996 free(dp);
997 }
998
999 static void
1000 dp_netdev_unref(struct dp_netdev *dp)
1001 {
1002 if (dp) {
1003 /* Take dp_netdev_mutex so that, if dp->ref_cnt falls to zero, we can't
1004 * get a new reference to 'dp' through the 'dp_netdevs' shash. */
1005 ovs_mutex_lock(&dp_netdev_mutex);
1006 if (ovs_refcount_unref_relaxed(&dp->ref_cnt) == 1) {
1007 dp_netdev_free(dp);
1008 }
1009 ovs_mutex_unlock(&dp_netdev_mutex);
1010 }
1011 }
1012
1013 static void
1014 dpif_netdev_close(struct dpif *dpif)
1015 {
1016 struct dp_netdev *dp = get_dp_netdev(dpif);
1017
1018 dp_netdev_unref(dp);
1019 free(dpif);
1020 }
1021
1022 static int
1023 dpif_netdev_destroy(struct dpif *dpif)
1024 {
1025 struct dp_netdev *dp = get_dp_netdev(dpif);
1026
1027 if (!atomic_flag_test_and_set(&dp->destroyed)) {
1028 if (ovs_refcount_unref_relaxed(&dp->ref_cnt) == 1) {
1029 /* Can't happen: 'dpif' still owns a reference to 'dp'. */
1030 OVS_NOT_REACHED();
1031 }
1032 }
1033
1034 return 0;
1035 }
1036
1037 /* Add 'n' to the atomic variable 'var' non-atomically and using relaxed
1038 * load/store semantics. While the increment is not atomic, the load and
1039 * store operations are, making it impossible to read inconsistent values.
1040 *
1041 * This is used to update thread local stats counters. */
1042 static void
1043 non_atomic_ullong_add(atomic_ullong *var, unsigned long long n)
1044 {
1045 unsigned long long tmp;
1046
1047 atomic_read_relaxed(var, &tmp);
1048 tmp += n;
1049 atomic_store_relaxed(var, tmp);
1050 }
1051
1052 static int
1053 dpif_netdev_get_stats(const struct dpif *dpif, struct dpif_dp_stats *stats)
1054 {
1055 struct dp_netdev *dp = get_dp_netdev(dpif);
1056 struct dp_netdev_pmd_thread *pmd;
1057
1058 stats->n_flows = stats->n_hit = stats->n_missed = stats->n_lost = 0;
1059 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
1060 unsigned long long n;
1061 stats->n_flows += cmap_count(&pmd->flow_table);
1062
1063 atomic_read_relaxed(&pmd->stats.n[DP_STAT_MASKED_HIT], &n);
1064 stats->n_hit += n;
1065 atomic_read_relaxed(&pmd->stats.n[DP_STAT_EXACT_HIT], &n);
1066 stats->n_hit += n;
1067 atomic_read_relaxed(&pmd->stats.n[DP_STAT_MISS], &n);
1068 stats->n_missed += n;
1069 atomic_read_relaxed(&pmd->stats.n[DP_STAT_LOST], &n);
1070 stats->n_lost += n;
1071 }
1072 stats->n_masks = UINT32_MAX;
1073 stats->n_mask_hit = UINT64_MAX;
1074
1075 return 0;
1076 }
1077
1078 static void
1079 dp_netdev_reload_pmd__(struct dp_netdev_pmd_thread *pmd)
1080 {
1081 int old_seq;
1082
1083 if (pmd->core_id == NON_PMD_CORE_ID) {
1084 return;
1085 }
1086
1087 ovs_mutex_lock(&pmd->cond_mutex);
1088 atomic_add_relaxed(&pmd->change_seq, 1, &old_seq);
1089 ovs_mutex_cond_wait(&pmd->cond, &pmd->cond_mutex);
1090 ovs_mutex_unlock(&pmd->cond_mutex);
1091 }
1092
1093 static uint32_t
1094 hash_port_no(odp_port_t port_no)
1095 {
1096 return hash_int(odp_to_u32(port_no), 0);
1097 }
1098
1099 static int
1100 do_add_port(struct dp_netdev *dp, const char *devname, const char *type,
1101 odp_port_t port_no)
1102 OVS_REQUIRES(dp->port_mutex)
1103 {
1104 struct netdev_saved_flags *sf;
1105 struct dp_netdev_port *port;
1106 struct netdev *netdev;
1107 enum netdev_flags flags;
1108 const char *open_type;
1109 int error;
1110 int i;
1111
1112 /* Reject devices already in 'dp'. */
1113 if (!get_port_by_name(dp, devname, &port)) {
1114 return EEXIST;
1115 }
1116
1117 /* Open and validate network device. */
1118 open_type = dpif_netdev_port_open_type(dp->class, type);
1119 error = netdev_open(devname, open_type, &netdev);
1120 if (error) {
1121 return error;
1122 }
1123 /* XXX reject non-Ethernet devices */
1124
1125 netdev_get_flags(netdev, &flags);
1126 if (flags & NETDEV_LOOPBACK) {
1127 VLOG_ERR("%s: cannot add a loopback device", devname);
1128 netdev_close(netdev);
1129 return EINVAL;
1130 }
1131
1132 if (netdev_is_pmd(netdev)) {
1133 int n_cores = ovs_numa_get_n_cores();
1134
1135 if (n_cores == OVS_CORE_UNSPEC) {
1136 VLOG_ERR("%s, cannot get cpu core info", devname);
1137 return ENOENT;
1138 }
1139 /* There can only be ovs_numa_get_n_cores() pmd threads,
1140 * so creates a txq for each, and one extra for the non
1141 * pmd threads. */
1142 error = netdev_set_multiq(netdev, n_cores + 1,
1143 netdev_requested_n_rxq(netdev));
1144 if (error && (error != EOPNOTSUPP)) {
1145 VLOG_ERR("%s, cannot set multiq", devname);
1146 return errno;
1147 }
1148 }
1149 port = xzalloc(sizeof *port);
1150 port->port_no = port_no;
1151 port->netdev = netdev;
1152 port->rxq = xmalloc(sizeof *port->rxq * netdev_n_rxq(netdev));
1153 port->type = xstrdup(type);
1154 port->latest_requested_n_rxq = netdev_requested_n_rxq(netdev);
1155 for (i = 0; i < netdev_n_rxq(netdev); i++) {
1156 error = netdev_rxq_open(netdev, &port->rxq[i], i);
1157 if (error
1158 && !(error == EOPNOTSUPP && dpif_netdev_class_is_dummy(dp->class))) {
1159 VLOG_ERR("%s: cannot receive packets on this network device (%s)",
1160 devname, ovs_strerror(errno));
1161 netdev_close(netdev);
1162 free(port->type);
1163 free(port->rxq);
1164 free(port);
1165 return error;
1166 }
1167 }
1168
1169 error = netdev_turn_flags_on(netdev, NETDEV_PROMISC, &sf);
1170 if (error) {
1171 for (i = 0; i < netdev_n_rxq(netdev); i++) {
1172 netdev_rxq_close(port->rxq[i]);
1173 }
1174 netdev_close(netdev);
1175 free(port->type);
1176 free(port->rxq);
1177 free(port);
1178 return error;
1179 }
1180 port->sf = sf;
1181
1182 ovs_refcount_init(&port->ref_cnt);
1183 cmap_insert(&dp->ports, &port->node, hash_port_no(port_no));
1184
1185 if (netdev_is_pmd(netdev)) {
1186 dp_netdev_add_port_to_pmds(dp, port);
1187 }
1188 seq_change(dp->port_seq);
1189
1190 return 0;
1191 }
1192
1193 static int
1194 dpif_netdev_port_add(struct dpif *dpif, struct netdev *netdev,
1195 odp_port_t *port_nop)
1196 {
1197 struct dp_netdev *dp = get_dp_netdev(dpif);
1198 char namebuf[NETDEV_VPORT_NAME_BUFSIZE];
1199 const char *dpif_port;
1200 odp_port_t port_no;
1201 int error;
1202
1203 ovs_mutex_lock(&dp->port_mutex);
1204 dpif_port = netdev_vport_get_dpif_port(netdev, namebuf, sizeof namebuf);
1205 if (*port_nop != ODPP_NONE) {
1206 port_no = *port_nop;
1207 error = dp_netdev_lookup_port(dp, *port_nop) ? EBUSY : 0;
1208 } else {
1209 port_no = choose_port(dp, dpif_port);
1210 error = port_no == ODPP_NONE ? EFBIG : 0;
1211 }
1212 if (!error) {
1213 *port_nop = port_no;
1214 error = do_add_port(dp, dpif_port, netdev_get_type(netdev), port_no);
1215 }
1216 ovs_mutex_unlock(&dp->port_mutex);
1217
1218 return error;
1219 }
1220
1221 static int
1222 dpif_netdev_port_del(struct dpif *dpif, odp_port_t port_no)
1223 {
1224 struct dp_netdev *dp = get_dp_netdev(dpif);
1225 int error;
1226
1227 ovs_mutex_lock(&dp->port_mutex);
1228 if (port_no == ODPP_LOCAL) {
1229 error = EINVAL;
1230 } else {
1231 struct dp_netdev_port *port;
1232
1233 error = get_port_by_number(dp, port_no, &port);
1234 if (!error) {
1235 do_del_port(dp, port);
1236 }
1237 }
1238 ovs_mutex_unlock(&dp->port_mutex);
1239
1240 return error;
1241 }
1242
1243 static bool
1244 is_valid_port_number(odp_port_t port_no)
1245 {
1246 return port_no != ODPP_NONE;
1247 }
1248
1249 static struct dp_netdev_port *
1250 dp_netdev_lookup_port(const struct dp_netdev *dp, odp_port_t port_no)
1251 {
1252 struct dp_netdev_port *port;
1253
1254 CMAP_FOR_EACH_WITH_HASH (port, node, hash_port_no(port_no), &dp->ports) {
1255 if (port->port_no == port_no) {
1256 return port;
1257 }
1258 }
1259 return NULL;
1260 }
1261
1262 static int
1263 get_port_by_number(struct dp_netdev *dp,
1264 odp_port_t port_no, struct dp_netdev_port **portp)
1265 {
1266 if (!is_valid_port_number(port_no)) {
1267 *portp = NULL;
1268 return EINVAL;
1269 } else {
1270 *portp = dp_netdev_lookup_port(dp, port_no);
1271 return *portp ? 0 : ENOENT;
1272 }
1273 }
1274
1275 static void
1276 port_ref(struct dp_netdev_port *port)
1277 {
1278 if (port) {
1279 ovs_refcount_ref(&port->ref_cnt);
1280 }
1281 }
1282
1283 static void
1284 port_unref(struct dp_netdev_port *port)
1285 {
1286 if (port && ovs_refcount_unref_relaxed(&port->ref_cnt) == 1) {
1287 int n_rxq = netdev_n_rxq(port->netdev);
1288 int i;
1289
1290 netdev_close(port->netdev);
1291 netdev_restore_flags(port->sf);
1292
1293 for (i = 0; i < n_rxq; i++) {
1294 netdev_rxq_close(port->rxq[i]);
1295 }
1296 free(port->rxq);
1297 free(port->type);
1298 free(port);
1299 }
1300 }
1301
1302 static int
1303 get_port_by_name(struct dp_netdev *dp,
1304 const char *devname, struct dp_netdev_port **portp)
1305 OVS_REQUIRES(dp->port_mutex)
1306 {
1307 struct dp_netdev_port *port;
1308
1309 CMAP_FOR_EACH (port, node, &dp->ports) {
1310 if (!strcmp(netdev_get_name(port->netdev), devname)) {
1311 *portp = port;
1312 return 0;
1313 }
1314 }
1315 return ENOENT;
1316 }
1317
1318 static int
1319 get_n_pmd_threads(struct dp_netdev *dp)
1320 {
1321 /* There is one non pmd thread in dp->poll_threads */
1322 return cmap_count(&dp->poll_threads) - 1;
1323 }
1324
1325 static int
1326 get_n_pmd_threads_on_numa(struct dp_netdev *dp, int numa_id)
1327 {
1328 struct dp_netdev_pmd_thread *pmd;
1329 int n_pmds = 0;
1330
1331 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
1332 if (pmd->numa_id == numa_id) {
1333 n_pmds++;
1334 }
1335 }
1336
1337 return n_pmds;
1338 }
1339
1340 /* Returns 'true' if there is a port with pmd netdev and the netdev
1341 * is on numa node 'numa_id'. */
1342 static bool
1343 has_pmd_port_for_numa(struct dp_netdev *dp, int numa_id)
1344 {
1345 struct dp_netdev_port *port;
1346
1347 CMAP_FOR_EACH (port, node, &dp->ports) {
1348 if (netdev_is_pmd(port->netdev)
1349 && netdev_get_numa_id(port->netdev) == numa_id) {
1350 return true;
1351 }
1352 }
1353
1354 return false;
1355 }
1356
1357
1358 static void
1359 do_del_port(struct dp_netdev *dp, struct dp_netdev_port *port)
1360 OVS_REQUIRES(dp->port_mutex)
1361 {
1362 cmap_remove(&dp->ports, &port->node, hash_odp_port(port->port_no));
1363 seq_change(dp->port_seq);
1364 if (netdev_is_pmd(port->netdev)) {
1365 int numa_id = netdev_get_numa_id(port->netdev);
1366
1367 /* PMD threads can not be on invalid numa node. */
1368 ovs_assert(ovs_numa_numa_id_is_valid(numa_id));
1369 /* If there is no netdev on the numa node, deletes the pmd threads
1370 * for that numa. Else, deletes the queues from polling lists. */
1371 if (!has_pmd_port_for_numa(dp, numa_id)) {
1372 dp_netdev_del_pmds_on_numa(dp, numa_id);
1373 } else {
1374 dp_netdev_del_port_from_all_pmds(dp, port);
1375 }
1376 }
1377
1378 port_unref(port);
1379 }
1380
1381 static void
1382 answer_port_query(const struct dp_netdev_port *port,
1383 struct dpif_port *dpif_port)
1384 {
1385 dpif_port->name = xstrdup(netdev_get_name(port->netdev));
1386 dpif_port->type = xstrdup(port->type);
1387 dpif_port->port_no = port->port_no;
1388 }
1389
1390 static int
1391 dpif_netdev_port_query_by_number(const struct dpif *dpif, odp_port_t port_no,
1392 struct dpif_port *dpif_port)
1393 {
1394 struct dp_netdev *dp = get_dp_netdev(dpif);
1395 struct dp_netdev_port *port;
1396 int error;
1397
1398 error = get_port_by_number(dp, port_no, &port);
1399 if (!error && dpif_port) {
1400 answer_port_query(port, dpif_port);
1401 }
1402
1403 return error;
1404 }
1405
1406 static int
1407 dpif_netdev_port_query_by_name(const struct dpif *dpif, const char *devname,
1408 struct dpif_port *dpif_port)
1409 {
1410 struct dp_netdev *dp = get_dp_netdev(dpif);
1411 struct dp_netdev_port *port;
1412 int error;
1413
1414 ovs_mutex_lock(&dp->port_mutex);
1415 error = get_port_by_name(dp, devname, &port);
1416 if (!error && dpif_port) {
1417 answer_port_query(port, dpif_port);
1418 }
1419 ovs_mutex_unlock(&dp->port_mutex);
1420
1421 return error;
1422 }
1423
1424 static void
1425 dp_netdev_flow_free(struct dp_netdev_flow *flow)
1426 {
1427 dp_netdev_actions_free(dp_netdev_flow_get_actions(flow));
1428 free(flow);
1429 }
1430
1431 static void dp_netdev_flow_unref(struct dp_netdev_flow *flow)
1432 {
1433 if (ovs_refcount_unref_relaxed(&flow->ref_cnt) == 1) {
1434 ovsrcu_postpone(dp_netdev_flow_free, flow);
1435 }
1436 }
1437
1438 static uint32_t
1439 dp_netdev_flow_hash(const ovs_u128 *ufid)
1440 {
1441 return ufid->u32[0];
1442 }
1443
1444 static void
1445 dp_netdev_pmd_remove_flow(struct dp_netdev_pmd_thread *pmd,
1446 struct dp_netdev_flow *flow)
1447 OVS_REQUIRES(pmd->flow_mutex)
1448 {
1449 struct cmap_node *node = CONST_CAST(struct cmap_node *, &flow->node);
1450
1451 dpcls_remove(&pmd->cls, &flow->cr);
1452 flow->cr.mask = NULL; /* Accessing rule's mask after this is not safe. */
1453
1454 cmap_remove(&pmd->flow_table, node, dp_netdev_flow_hash(&flow->ufid));
1455 flow->dead = true;
1456
1457 dp_netdev_flow_unref(flow);
1458 }
1459
1460 static void
1461 dp_netdev_pmd_flow_flush(struct dp_netdev_pmd_thread *pmd)
1462 {
1463 struct dp_netdev_flow *netdev_flow;
1464
1465 ovs_mutex_lock(&pmd->flow_mutex);
1466 CMAP_FOR_EACH (netdev_flow, node, &pmd->flow_table) {
1467 dp_netdev_pmd_remove_flow(pmd, netdev_flow);
1468 }
1469 ovs_mutex_unlock(&pmd->flow_mutex);
1470 }
1471
1472 static int
1473 dpif_netdev_flow_flush(struct dpif *dpif)
1474 {
1475 struct dp_netdev *dp = get_dp_netdev(dpif);
1476 struct dp_netdev_pmd_thread *pmd;
1477
1478 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
1479 dp_netdev_pmd_flow_flush(pmd);
1480 }
1481
1482 return 0;
1483 }
1484
1485 struct dp_netdev_port_state {
1486 struct cmap_position position;
1487 char *name;
1488 };
1489
1490 static int
1491 dpif_netdev_port_dump_start(const struct dpif *dpif OVS_UNUSED, void **statep)
1492 {
1493 *statep = xzalloc(sizeof(struct dp_netdev_port_state));
1494 return 0;
1495 }
1496
1497 static int
1498 dpif_netdev_port_dump_next(const struct dpif *dpif, void *state_,
1499 struct dpif_port *dpif_port)
1500 {
1501 struct dp_netdev_port_state *state = state_;
1502 struct dp_netdev *dp = get_dp_netdev(dpif);
1503 struct cmap_node *node;
1504 int retval;
1505
1506 node = cmap_next_position(&dp->ports, &state->position);
1507 if (node) {
1508 struct dp_netdev_port *port;
1509
1510 port = CONTAINER_OF(node, struct dp_netdev_port, node);
1511
1512 free(state->name);
1513 state->name = xstrdup(netdev_get_name(port->netdev));
1514 dpif_port->name = state->name;
1515 dpif_port->type = port->type;
1516 dpif_port->port_no = port->port_no;
1517
1518 retval = 0;
1519 } else {
1520 retval = EOF;
1521 }
1522
1523 return retval;
1524 }
1525
1526 static int
1527 dpif_netdev_port_dump_done(const struct dpif *dpif OVS_UNUSED, void *state_)
1528 {
1529 struct dp_netdev_port_state *state = state_;
1530 free(state->name);
1531 free(state);
1532 return 0;
1533 }
1534
1535 static int
1536 dpif_netdev_port_poll(const struct dpif *dpif_, char **devnamep OVS_UNUSED)
1537 {
1538 struct dpif_netdev *dpif = dpif_netdev_cast(dpif_);
1539 uint64_t new_port_seq;
1540 int error;
1541
1542 new_port_seq = seq_read(dpif->dp->port_seq);
1543 if (dpif->last_port_seq != new_port_seq) {
1544 dpif->last_port_seq = new_port_seq;
1545 error = ENOBUFS;
1546 } else {
1547 error = EAGAIN;
1548 }
1549
1550 return error;
1551 }
1552
1553 static void
1554 dpif_netdev_port_poll_wait(const struct dpif *dpif_)
1555 {
1556 struct dpif_netdev *dpif = dpif_netdev_cast(dpif_);
1557
1558 seq_wait(dpif->dp->port_seq, dpif->last_port_seq);
1559 }
1560
1561 static struct dp_netdev_flow *
1562 dp_netdev_flow_cast(const struct dpcls_rule *cr)
1563 {
1564 return cr ? CONTAINER_OF(cr, struct dp_netdev_flow, cr) : NULL;
1565 }
1566
1567 static bool dp_netdev_flow_ref(struct dp_netdev_flow *flow)
1568 {
1569 return ovs_refcount_try_ref_rcu(&flow->ref_cnt);
1570 }
1571
1572 /* netdev_flow_key utilities.
1573 *
1574 * netdev_flow_key is basically a miniflow. We use these functions
1575 * (netdev_flow_key_clone, netdev_flow_key_equal, ...) instead of the miniflow
1576 * functions (miniflow_clone_inline, miniflow_equal, ...), because:
1577 *
1578 * - Since we are dealing exclusively with miniflows created by
1579 * miniflow_extract(), if the map is different the miniflow is different.
1580 * Therefore we can be faster by comparing the map and the miniflow in a
1581 * single memcmp().
1582 * - These functions can be inlined by the compiler. */
1583
1584 /* Given the number of bits set in miniflow's maps, returns the size of the
1585 * 'netdev_flow_key.mf' */
1586 static inline size_t
1587 netdev_flow_key_size(size_t flow_u64s)
1588 {
1589 return sizeof(struct miniflow) + MINIFLOW_VALUES_SIZE(flow_u64s);
1590 }
1591
1592 static inline bool
1593 netdev_flow_key_equal(const struct netdev_flow_key *a,
1594 const struct netdev_flow_key *b)
1595 {
1596 /* 'b->len' may be not set yet. */
1597 return a->hash == b->hash && !memcmp(&a->mf, &b->mf, a->len);
1598 }
1599
1600 /* Used to compare 'netdev_flow_key' in the exact match cache to a miniflow.
1601 * The maps are compared bitwise, so both 'key->mf' and 'mf' must have been
1602 * generated by miniflow_extract. */
1603 static inline bool
1604 netdev_flow_key_equal_mf(const struct netdev_flow_key *key,
1605 const struct miniflow *mf)
1606 {
1607 return !memcmp(&key->mf, mf, key->len);
1608 }
1609
1610 static inline void
1611 netdev_flow_key_clone(struct netdev_flow_key *dst,
1612 const struct netdev_flow_key *src)
1613 {
1614 memcpy(dst, src,
1615 offsetof(struct netdev_flow_key, mf) + src->len);
1616 }
1617
1618 /* Slow. */
1619 static void
1620 netdev_flow_key_from_flow(struct netdev_flow_key *dst,
1621 const struct flow *src)
1622 {
1623 struct dp_packet packet;
1624 uint64_t buf_stub[512 / 8];
1625
1626 dp_packet_use_stub(&packet, buf_stub, sizeof buf_stub);
1627 pkt_metadata_from_flow(&packet.md, src);
1628 flow_compose(&packet, src);
1629 miniflow_extract(&packet, &dst->mf);
1630 dp_packet_uninit(&packet);
1631
1632 dst->len = netdev_flow_key_size(miniflow_n_values(&dst->mf));
1633 dst->hash = 0; /* Not computed yet. */
1634 }
1635
1636 /* Initialize a netdev_flow_key 'mask' from 'match'. */
1637 static inline void
1638 netdev_flow_mask_init(struct netdev_flow_key *mask,
1639 const struct match *match)
1640 {
1641 uint64_t *dst = miniflow_values(&mask->mf);
1642 struct flowmap fmap;
1643 uint32_t hash = 0;
1644 size_t idx;
1645
1646 /* Only check masks that make sense for the flow. */
1647 flow_wc_map(&match->flow, &fmap);
1648 flowmap_init(&mask->mf.map);
1649
1650 FLOWMAP_FOR_EACH_INDEX(idx, fmap) {
1651 uint64_t mask_u64 = flow_u64_value(&match->wc.masks, idx);
1652
1653 if (mask_u64) {
1654 flowmap_set(&mask->mf.map, idx, 1);
1655 *dst++ = mask_u64;
1656 hash = hash_add64(hash, mask_u64);
1657 }
1658 }
1659
1660 map_t map;
1661
1662 FLOWMAP_FOR_EACH_MAP (map, mask->mf.map) {
1663 hash = hash_add64(hash, map);
1664 }
1665
1666 size_t n = dst - miniflow_get_values(&mask->mf);
1667
1668 mask->hash = hash_finish(hash, n * 8);
1669 mask->len = netdev_flow_key_size(n);
1670 }
1671
1672 /* Initializes 'dst' as a copy of 'flow' masked with 'mask'. */
1673 static inline void
1674 netdev_flow_key_init_masked(struct netdev_flow_key *dst,
1675 const struct flow *flow,
1676 const struct netdev_flow_key *mask)
1677 {
1678 uint64_t *dst_u64 = miniflow_values(&dst->mf);
1679 const uint64_t *mask_u64 = miniflow_get_values(&mask->mf);
1680 uint32_t hash = 0;
1681 uint64_t value;
1682
1683 dst->len = mask->len;
1684 dst->mf = mask->mf; /* Copy maps. */
1685
1686 FLOW_FOR_EACH_IN_MAPS(value, flow, mask->mf.map) {
1687 *dst_u64 = value & *mask_u64++;
1688 hash = hash_add64(hash, *dst_u64++);
1689 }
1690 dst->hash = hash_finish(hash,
1691 (dst_u64 - miniflow_get_values(&dst->mf)) * 8);
1692 }
1693
1694 /* Iterate through netdev_flow_key TNL u64 values specified by 'FLOWMAP'. */
1695 #define NETDEV_FLOW_KEY_FOR_EACH_IN_FLOWMAP(VALUE, KEY, FLOWMAP) \
1696 MINIFLOW_FOR_EACH_IN_FLOWMAP(VALUE, &(KEY)->mf, FLOWMAP)
1697
1698 /* Returns a hash value for the bits of 'key' where there are 1-bits in
1699 * 'mask'. */
1700 static inline uint32_t
1701 netdev_flow_key_hash_in_mask(const struct netdev_flow_key *key,
1702 const struct netdev_flow_key *mask)
1703 {
1704 const uint64_t *p = miniflow_get_values(&mask->mf);
1705 uint32_t hash = 0;
1706 uint64_t value;
1707
1708 NETDEV_FLOW_KEY_FOR_EACH_IN_FLOWMAP(value, key, mask->mf.map) {
1709 hash = hash_add64(hash, value & *p++);
1710 }
1711
1712 return hash_finish(hash, (p - miniflow_get_values(&mask->mf)) * 8);
1713 }
1714
1715 static inline bool
1716 emc_entry_alive(struct emc_entry *ce)
1717 {
1718 return ce->flow && !ce->flow->dead;
1719 }
1720
1721 static void
1722 emc_clear_entry(struct emc_entry *ce)
1723 {
1724 if (ce->flow) {
1725 dp_netdev_flow_unref(ce->flow);
1726 ce->flow = NULL;
1727 }
1728 }
1729
1730 static inline void
1731 emc_change_entry(struct emc_entry *ce, struct dp_netdev_flow *flow,
1732 const struct netdev_flow_key *key)
1733 {
1734 if (ce->flow != flow) {
1735 if (ce->flow) {
1736 dp_netdev_flow_unref(ce->flow);
1737 }
1738
1739 if (dp_netdev_flow_ref(flow)) {
1740 ce->flow = flow;
1741 } else {
1742 ce->flow = NULL;
1743 }
1744 }
1745 if (key) {
1746 netdev_flow_key_clone(&ce->key, key);
1747 }
1748 }
1749
1750 static inline void
1751 emc_insert(struct emc_cache *cache, const struct netdev_flow_key *key,
1752 struct dp_netdev_flow *flow)
1753 {
1754 struct emc_entry *to_be_replaced = NULL;
1755 struct emc_entry *current_entry;
1756
1757 EMC_FOR_EACH_POS_WITH_HASH(cache, current_entry, key->hash) {
1758 if (netdev_flow_key_equal(&current_entry->key, key)) {
1759 /* We found the entry with the 'mf' miniflow */
1760 emc_change_entry(current_entry, flow, NULL);
1761 return;
1762 }
1763
1764 /* Replacement policy: put the flow in an empty (not alive) entry, or
1765 * in the first entry where it can be */
1766 if (!to_be_replaced
1767 || (emc_entry_alive(to_be_replaced)
1768 && !emc_entry_alive(current_entry))
1769 || current_entry->key.hash < to_be_replaced->key.hash) {
1770 to_be_replaced = current_entry;
1771 }
1772 }
1773 /* We didn't find the miniflow in the cache.
1774 * The 'to_be_replaced' entry is where the new flow will be stored */
1775
1776 emc_change_entry(to_be_replaced, flow, key);
1777 }
1778
1779 static inline struct dp_netdev_flow *
1780 emc_lookup(struct emc_cache *cache, const struct netdev_flow_key *key)
1781 {
1782 struct emc_entry *current_entry;
1783
1784 EMC_FOR_EACH_POS_WITH_HASH(cache, current_entry, key->hash) {
1785 if (current_entry->key.hash == key->hash
1786 && emc_entry_alive(current_entry)
1787 && netdev_flow_key_equal_mf(&current_entry->key, &key->mf)) {
1788
1789 /* We found the entry with the 'key->mf' miniflow */
1790 return current_entry->flow;
1791 }
1792 }
1793
1794 return NULL;
1795 }
1796
1797 static struct dp_netdev_flow *
1798 dp_netdev_pmd_lookup_flow(const struct dp_netdev_pmd_thread *pmd,
1799 const struct netdev_flow_key *key)
1800 {
1801 struct dp_netdev_flow *netdev_flow;
1802 struct dpcls_rule *rule;
1803
1804 dpcls_lookup(&pmd->cls, key, &rule, 1);
1805 netdev_flow = dp_netdev_flow_cast(rule);
1806
1807 return netdev_flow;
1808 }
1809
1810 static struct dp_netdev_flow *
1811 dp_netdev_pmd_find_flow(const struct dp_netdev_pmd_thread *pmd,
1812 const ovs_u128 *ufidp, const struct nlattr *key,
1813 size_t key_len)
1814 {
1815 struct dp_netdev_flow *netdev_flow;
1816 struct flow flow;
1817 ovs_u128 ufid;
1818
1819 /* If a UFID is not provided, determine one based on the key. */
1820 if (!ufidp && key && key_len
1821 && !dpif_netdev_flow_from_nlattrs(key, key_len, &flow)) {
1822 dpif_flow_hash(pmd->dp->dpif, &flow, sizeof flow, &ufid);
1823 ufidp = &ufid;
1824 }
1825
1826 if (ufidp) {
1827 CMAP_FOR_EACH_WITH_HASH (netdev_flow, node, dp_netdev_flow_hash(ufidp),
1828 &pmd->flow_table) {
1829 if (ovs_u128_equals(&netdev_flow->ufid, ufidp)) {
1830 return netdev_flow;
1831 }
1832 }
1833 }
1834
1835 return NULL;
1836 }
1837
1838 static void
1839 get_dpif_flow_stats(const struct dp_netdev_flow *netdev_flow_,
1840 struct dpif_flow_stats *stats)
1841 {
1842 struct dp_netdev_flow *netdev_flow;
1843 unsigned long long n;
1844 long long used;
1845 uint16_t flags;
1846
1847 netdev_flow = CONST_CAST(struct dp_netdev_flow *, netdev_flow_);
1848
1849 atomic_read_relaxed(&netdev_flow->stats.packet_count, &n);
1850 stats->n_packets = n;
1851 atomic_read_relaxed(&netdev_flow->stats.byte_count, &n);
1852 stats->n_bytes = n;
1853 atomic_read_relaxed(&netdev_flow->stats.used, &used);
1854 stats->used = used;
1855 atomic_read_relaxed(&netdev_flow->stats.tcp_flags, &flags);
1856 stats->tcp_flags = flags;
1857 }
1858
1859 /* Converts to the dpif_flow format, using 'key_buf' and 'mask_buf' for
1860 * storing the netlink-formatted key/mask. 'key_buf' may be the same as
1861 * 'mask_buf'. Actions will be returned without copying, by relying on RCU to
1862 * protect them. */
1863 static void
1864 dp_netdev_flow_to_dpif_flow(const struct dp_netdev_flow *netdev_flow,
1865 struct ofpbuf *key_buf, struct ofpbuf *mask_buf,
1866 struct dpif_flow *flow, bool terse)
1867 {
1868 if (terse) {
1869 memset(flow, 0, sizeof *flow);
1870 } else {
1871 struct flow_wildcards wc;
1872 struct dp_netdev_actions *actions;
1873 size_t offset;
1874 struct odp_flow_key_parms odp_parms = {
1875 .flow = &netdev_flow->flow,
1876 .mask = &wc.masks,
1877 .support = dp_netdev_support,
1878 };
1879
1880 miniflow_expand(&netdev_flow->cr.mask->mf, &wc.masks);
1881
1882 /* Key */
1883 offset = key_buf->size;
1884 flow->key = ofpbuf_tail(key_buf);
1885 odp_parms.odp_in_port = netdev_flow->flow.in_port.odp_port;
1886 odp_flow_key_from_flow(&odp_parms, key_buf);
1887 flow->key_len = key_buf->size - offset;
1888
1889 /* Mask */
1890 offset = mask_buf->size;
1891 flow->mask = ofpbuf_tail(mask_buf);
1892 odp_parms.odp_in_port = wc.masks.in_port.odp_port;
1893 odp_parms.key_buf = key_buf;
1894 odp_flow_key_from_mask(&odp_parms, mask_buf);
1895 flow->mask_len = mask_buf->size - offset;
1896
1897 /* Actions */
1898 actions = dp_netdev_flow_get_actions(netdev_flow);
1899 flow->actions = actions->actions;
1900 flow->actions_len = actions->size;
1901 }
1902
1903 flow->ufid = netdev_flow->ufid;
1904 flow->ufid_present = true;
1905 flow->pmd_id = netdev_flow->pmd_id;
1906 get_dpif_flow_stats(netdev_flow, &flow->stats);
1907 }
1908
1909 static int
1910 dpif_netdev_mask_from_nlattrs(const struct nlattr *key, uint32_t key_len,
1911 const struct nlattr *mask_key,
1912 uint32_t mask_key_len, const struct flow *flow,
1913 struct flow_wildcards *wc)
1914 {
1915 enum odp_key_fitness fitness;
1916
1917 fitness = odp_flow_key_to_mask_udpif(mask_key, mask_key_len, key,
1918 key_len, wc, flow);
1919 if (fitness) {
1920 /* This should not happen: it indicates that
1921 * odp_flow_key_from_mask() and odp_flow_key_to_mask()
1922 * disagree on the acceptable form of a mask. Log the problem
1923 * as an error, with enough details to enable debugging. */
1924 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
1925
1926 if (!VLOG_DROP_ERR(&rl)) {
1927 struct ds s;
1928
1929 ds_init(&s);
1930 odp_flow_format(key, key_len, mask_key, mask_key_len, NULL, &s,
1931 true);
1932 VLOG_ERR("internal error parsing flow mask %s (%s)",
1933 ds_cstr(&s), odp_key_fitness_to_string(fitness));
1934 ds_destroy(&s);
1935 }
1936
1937 return EINVAL;
1938 }
1939
1940 return 0;
1941 }
1942
1943 static int
1944 dpif_netdev_flow_from_nlattrs(const struct nlattr *key, uint32_t key_len,
1945 struct flow *flow)
1946 {
1947 odp_port_t in_port;
1948
1949 if (odp_flow_key_to_flow_udpif(key, key_len, flow)) {
1950 /* This should not happen: it indicates that odp_flow_key_from_flow()
1951 * and odp_flow_key_to_flow() disagree on the acceptable form of a
1952 * flow. Log the problem as an error, with enough details to enable
1953 * debugging. */
1954 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
1955
1956 if (!VLOG_DROP_ERR(&rl)) {
1957 struct ds s;
1958
1959 ds_init(&s);
1960 odp_flow_format(key, key_len, NULL, 0, NULL, &s, true);
1961 VLOG_ERR("internal error parsing flow key %s", ds_cstr(&s));
1962 ds_destroy(&s);
1963 }
1964
1965 return EINVAL;
1966 }
1967
1968 in_port = flow->in_port.odp_port;
1969 if (!is_valid_port_number(in_port) && in_port != ODPP_NONE) {
1970 return EINVAL;
1971 }
1972
1973 /* Userspace datapath doesn't support conntrack. */
1974 if (flow->ct_state || flow->ct_zone || flow->ct_mark
1975 || !ovs_u128_is_zero(&flow->ct_label)) {
1976 return EINVAL;
1977 }
1978
1979 return 0;
1980 }
1981
1982 static int
1983 dpif_netdev_flow_get(const struct dpif *dpif, const struct dpif_flow_get *get)
1984 {
1985 struct dp_netdev *dp = get_dp_netdev(dpif);
1986 struct dp_netdev_flow *netdev_flow;
1987 struct dp_netdev_pmd_thread *pmd;
1988 unsigned pmd_id = get->pmd_id == PMD_ID_NULL
1989 ? NON_PMD_CORE_ID : get->pmd_id;
1990 int error = 0;
1991
1992 pmd = dp_netdev_get_pmd(dp, pmd_id);
1993 if (!pmd) {
1994 return EINVAL;
1995 }
1996
1997 netdev_flow = dp_netdev_pmd_find_flow(pmd, get->ufid, get->key,
1998 get->key_len);
1999 if (netdev_flow) {
2000 dp_netdev_flow_to_dpif_flow(netdev_flow, get->buffer, get->buffer,
2001 get->flow, false);
2002 } else {
2003 error = ENOENT;
2004 }
2005 dp_netdev_pmd_unref(pmd);
2006
2007
2008 return error;
2009 }
2010
2011 static struct dp_netdev_flow *
2012 dp_netdev_flow_add(struct dp_netdev_pmd_thread *pmd,
2013 struct match *match, const ovs_u128 *ufid,
2014 const struct nlattr *actions, size_t actions_len)
2015 OVS_REQUIRES(pmd->flow_mutex)
2016 {
2017 struct dp_netdev_flow *flow;
2018 struct netdev_flow_key mask;
2019
2020 netdev_flow_mask_init(&mask, match);
2021 /* Make sure wc does not have metadata. */
2022 ovs_assert(!FLOWMAP_HAS_FIELD(&mask.mf.map, metadata)
2023 && !FLOWMAP_HAS_FIELD(&mask.mf.map, regs));
2024
2025 /* Do not allocate extra space. */
2026 flow = xmalloc(sizeof *flow - sizeof flow->cr.flow.mf + mask.len);
2027 memset(&flow->stats, 0, sizeof flow->stats);
2028 flow->dead = false;
2029 flow->batch = NULL;
2030 *CONST_CAST(unsigned *, &flow->pmd_id) = pmd->core_id;
2031 *CONST_CAST(struct flow *, &flow->flow) = match->flow;
2032 *CONST_CAST(ovs_u128 *, &flow->ufid) = *ufid;
2033 ovs_refcount_init(&flow->ref_cnt);
2034 ovsrcu_set(&flow->actions, dp_netdev_actions_create(actions, actions_len));
2035
2036 netdev_flow_key_init_masked(&flow->cr.flow, &match->flow, &mask);
2037 dpcls_insert(&pmd->cls, &flow->cr, &mask);
2038
2039 cmap_insert(&pmd->flow_table, CONST_CAST(struct cmap_node *, &flow->node),
2040 dp_netdev_flow_hash(&flow->ufid));
2041
2042 if (OVS_UNLIKELY(VLOG_IS_DBG_ENABLED())) {
2043 struct match match;
2044 struct ds ds = DS_EMPTY_INITIALIZER;
2045
2046 match.tun_md.valid = false;
2047 match.flow = flow->flow;
2048 miniflow_expand(&flow->cr.mask->mf, &match.wc.masks);
2049
2050 ds_put_cstr(&ds, "flow_add: ");
2051 odp_format_ufid(ufid, &ds);
2052 ds_put_cstr(&ds, " ");
2053 match_format(&match, &ds, OFP_DEFAULT_PRIORITY);
2054 ds_put_cstr(&ds, ", actions:");
2055 format_odp_actions(&ds, actions, actions_len);
2056
2057 VLOG_DBG_RL(&upcall_rl, "%s", ds_cstr(&ds));
2058
2059 ds_destroy(&ds);
2060 }
2061
2062 return flow;
2063 }
2064
2065 static int
2066 dpif_netdev_flow_put(struct dpif *dpif, const struct dpif_flow_put *put)
2067 {
2068 struct dp_netdev *dp = get_dp_netdev(dpif);
2069 struct dp_netdev_flow *netdev_flow;
2070 struct netdev_flow_key key;
2071 struct dp_netdev_pmd_thread *pmd;
2072 struct match match;
2073 ovs_u128 ufid;
2074 unsigned pmd_id = put->pmd_id == PMD_ID_NULL
2075 ? NON_PMD_CORE_ID : put->pmd_id;
2076 int error;
2077
2078 error = dpif_netdev_flow_from_nlattrs(put->key, put->key_len, &match.flow);
2079 if (error) {
2080 return error;
2081 }
2082 error = dpif_netdev_mask_from_nlattrs(put->key, put->key_len,
2083 put->mask, put->mask_len,
2084 &match.flow, &match.wc);
2085 if (error) {
2086 return error;
2087 }
2088
2089 pmd = dp_netdev_get_pmd(dp, pmd_id);
2090 if (!pmd) {
2091 return EINVAL;
2092 }
2093
2094 /* Must produce a netdev_flow_key for lookup.
2095 * This interface is no longer performance critical, since it is not used
2096 * for upcall processing any more. */
2097 netdev_flow_key_from_flow(&key, &match.flow);
2098
2099 if (put->ufid) {
2100 ufid = *put->ufid;
2101 } else {
2102 dpif_flow_hash(dpif, &match.flow, sizeof match.flow, &ufid);
2103 }
2104
2105 ovs_mutex_lock(&pmd->flow_mutex);
2106 netdev_flow = dp_netdev_pmd_lookup_flow(pmd, &key);
2107 if (!netdev_flow) {
2108 if (put->flags & DPIF_FP_CREATE) {
2109 if (cmap_count(&pmd->flow_table) < MAX_FLOWS) {
2110 if (put->stats) {
2111 memset(put->stats, 0, sizeof *put->stats);
2112 }
2113 dp_netdev_flow_add(pmd, &match, &ufid, put->actions,
2114 put->actions_len);
2115 error = 0;
2116 } else {
2117 error = EFBIG;
2118 }
2119 } else {
2120 error = ENOENT;
2121 }
2122 } else {
2123 if (put->flags & DPIF_FP_MODIFY
2124 && flow_equal(&match.flow, &netdev_flow->flow)) {
2125 struct dp_netdev_actions *new_actions;
2126 struct dp_netdev_actions *old_actions;
2127
2128 new_actions = dp_netdev_actions_create(put->actions,
2129 put->actions_len);
2130
2131 old_actions = dp_netdev_flow_get_actions(netdev_flow);
2132 ovsrcu_set(&netdev_flow->actions, new_actions);
2133
2134 if (put->stats) {
2135 get_dpif_flow_stats(netdev_flow, put->stats);
2136 }
2137 if (put->flags & DPIF_FP_ZERO_STATS) {
2138 /* XXX: The userspace datapath uses thread local statistics
2139 * (for flows), which should be updated only by the owning
2140 * thread. Since we cannot write on stats memory here,
2141 * we choose not to support this flag. Please note:
2142 * - This feature is currently used only by dpctl commands with
2143 * option --clear.
2144 * - Should the need arise, this operation can be implemented
2145 * by keeping a base value (to be update here) for each
2146 * counter, and subtracting it before outputting the stats */
2147 error = EOPNOTSUPP;
2148 }
2149
2150 ovsrcu_postpone(dp_netdev_actions_free, old_actions);
2151 } else if (put->flags & DPIF_FP_CREATE) {
2152 error = EEXIST;
2153 } else {
2154 /* Overlapping flow. */
2155 error = EINVAL;
2156 }
2157 }
2158 ovs_mutex_unlock(&pmd->flow_mutex);
2159 dp_netdev_pmd_unref(pmd);
2160
2161 return error;
2162 }
2163
2164 static int
2165 dpif_netdev_flow_del(struct dpif *dpif, const struct dpif_flow_del *del)
2166 {
2167 struct dp_netdev *dp = get_dp_netdev(dpif);
2168 struct dp_netdev_flow *netdev_flow;
2169 struct dp_netdev_pmd_thread *pmd;
2170 unsigned pmd_id = del->pmd_id == PMD_ID_NULL
2171 ? NON_PMD_CORE_ID : del->pmd_id;
2172 int error = 0;
2173
2174 pmd = dp_netdev_get_pmd(dp, pmd_id);
2175 if (!pmd) {
2176 return EINVAL;
2177 }
2178
2179 ovs_mutex_lock(&pmd->flow_mutex);
2180 netdev_flow = dp_netdev_pmd_find_flow(pmd, del->ufid, del->key,
2181 del->key_len);
2182 if (netdev_flow) {
2183 if (del->stats) {
2184 get_dpif_flow_stats(netdev_flow, del->stats);
2185 }
2186 dp_netdev_pmd_remove_flow(pmd, netdev_flow);
2187 } else {
2188 error = ENOENT;
2189 }
2190 ovs_mutex_unlock(&pmd->flow_mutex);
2191 dp_netdev_pmd_unref(pmd);
2192
2193 return error;
2194 }
2195
2196 struct dpif_netdev_flow_dump {
2197 struct dpif_flow_dump up;
2198 struct cmap_position poll_thread_pos;
2199 struct cmap_position flow_pos;
2200 struct dp_netdev_pmd_thread *cur_pmd;
2201 int status;
2202 struct ovs_mutex mutex;
2203 };
2204
2205 static struct dpif_netdev_flow_dump *
2206 dpif_netdev_flow_dump_cast(struct dpif_flow_dump *dump)
2207 {
2208 return CONTAINER_OF(dump, struct dpif_netdev_flow_dump, up);
2209 }
2210
2211 static struct dpif_flow_dump *
2212 dpif_netdev_flow_dump_create(const struct dpif *dpif_, bool terse)
2213 {
2214 struct dpif_netdev_flow_dump *dump;
2215
2216 dump = xzalloc(sizeof *dump);
2217 dpif_flow_dump_init(&dump->up, dpif_);
2218 dump->up.terse = terse;
2219 ovs_mutex_init(&dump->mutex);
2220
2221 return &dump->up;
2222 }
2223
2224 static int
2225 dpif_netdev_flow_dump_destroy(struct dpif_flow_dump *dump_)
2226 {
2227 struct dpif_netdev_flow_dump *dump = dpif_netdev_flow_dump_cast(dump_);
2228
2229 ovs_mutex_destroy(&dump->mutex);
2230 free(dump);
2231 return 0;
2232 }
2233
2234 struct dpif_netdev_flow_dump_thread {
2235 struct dpif_flow_dump_thread up;
2236 struct dpif_netdev_flow_dump *dump;
2237 struct odputil_keybuf keybuf[FLOW_DUMP_MAX_BATCH];
2238 struct odputil_keybuf maskbuf[FLOW_DUMP_MAX_BATCH];
2239 };
2240
2241 static struct dpif_netdev_flow_dump_thread *
2242 dpif_netdev_flow_dump_thread_cast(struct dpif_flow_dump_thread *thread)
2243 {
2244 return CONTAINER_OF(thread, struct dpif_netdev_flow_dump_thread, up);
2245 }
2246
2247 static struct dpif_flow_dump_thread *
2248 dpif_netdev_flow_dump_thread_create(struct dpif_flow_dump *dump_)
2249 {
2250 struct dpif_netdev_flow_dump *dump = dpif_netdev_flow_dump_cast(dump_);
2251 struct dpif_netdev_flow_dump_thread *thread;
2252
2253 thread = xmalloc(sizeof *thread);
2254 dpif_flow_dump_thread_init(&thread->up, &dump->up);
2255 thread->dump = dump;
2256 return &thread->up;
2257 }
2258
2259 static void
2260 dpif_netdev_flow_dump_thread_destroy(struct dpif_flow_dump_thread *thread_)
2261 {
2262 struct dpif_netdev_flow_dump_thread *thread
2263 = dpif_netdev_flow_dump_thread_cast(thread_);
2264
2265 free(thread);
2266 }
2267
2268 static int
2269 dpif_netdev_flow_dump_next(struct dpif_flow_dump_thread *thread_,
2270 struct dpif_flow *flows, int max_flows)
2271 {
2272 struct dpif_netdev_flow_dump_thread *thread
2273 = dpif_netdev_flow_dump_thread_cast(thread_);
2274 struct dpif_netdev_flow_dump *dump = thread->dump;
2275 struct dp_netdev_flow *netdev_flows[FLOW_DUMP_MAX_BATCH];
2276 int n_flows = 0;
2277 int i;
2278
2279 ovs_mutex_lock(&dump->mutex);
2280 if (!dump->status) {
2281 struct dpif_netdev *dpif = dpif_netdev_cast(thread->up.dpif);
2282 struct dp_netdev *dp = get_dp_netdev(&dpif->dpif);
2283 struct dp_netdev_pmd_thread *pmd = dump->cur_pmd;
2284 int flow_limit = MIN(max_flows, FLOW_DUMP_MAX_BATCH);
2285
2286 /* First call to dump_next(), extracts the first pmd thread.
2287 * If there is no pmd thread, returns immediately. */
2288 if (!pmd) {
2289 pmd = dp_netdev_pmd_get_next(dp, &dump->poll_thread_pos);
2290 if (!pmd) {
2291 ovs_mutex_unlock(&dump->mutex);
2292 return n_flows;
2293
2294 }
2295 }
2296
2297 do {
2298 for (n_flows = 0; n_flows < flow_limit; n_flows++) {
2299 struct cmap_node *node;
2300
2301 node = cmap_next_position(&pmd->flow_table, &dump->flow_pos);
2302 if (!node) {
2303 break;
2304 }
2305 netdev_flows[n_flows] = CONTAINER_OF(node,
2306 struct dp_netdev_flow,
2307 node);
2308 }
2309 /* When finishing dumping the current pmd thread, moves to
2310 * the next. */
2311 if (n_flows < flow_limit) {
2312 memset(&dump->flow_pos, 0, sizeof dump->flow_pos);
2313 dp_netdev_pmd_unref(pmd);
2314 pmd = dp_netdev_pmd_get_next(dp, &dump->poll_thread_pos);
2315 if (!pmd) {
2316 dump->status = EOF;
2317 break;
2318 }
2319 }
2320 /* Keeps the reference to next caller. */
2321 dump->cur_pmd = pmd;
2322
2323 /* If the current dump is empty, do not exit the loop, since the
2324 * remaining pmds could have flows to be dumped. Just dumps again
2325 * on the new 'pmd'. */
2326 } while (!n_flows);
2327 }
2328 ovs_mutex_unlock(&dump->mutex);
2329
2330 for (i = 0; i < n_flows; i++) {
2331 struct odputil_keybuf *maskbuf = &thread->maskbuf[i];
2332 struct odputil_keybuf *keybuf = &thread->keybuf[i];
2333 struct dp_netdev_flow *netdev_flow = netdev_flows[i];
2334 struct dpif_flow *f = &flows[i];
2335 struct ofpbuf key, mask;
2336
2337 ofpbuf_use_stack(&key, keybuf, sizeof *keybuf);
2338 ofpbuf_use_stack(&mask, maskbuf, sizeof *maskbuf);
2339 dp_netdev_flow_to_dpif_flow(netdev_flow, &key, &mask, f,
2340 dump->up.terse);
2341 }
2342
2343 return n_flows;
2344 }
2345
2346 static int
2347 dpif_netdev_execute(struct dpif *dpif, struct dpif_execute *execute)
2348 OVS_NO_THREAD_SAFETY_ANALYSIS
2349 {
2350 struct dp_netdev *dp = get_dp_netdev(dpif);
2351 struct dp_netdev_pmd_thread *pmd;
2352 struct dp_packet *pp;
2353
2354 if (dp_packet_size(execute->packet) < ETH_HEADER_LEN ||
2355 dp_packet_size(execute->packet) > UINT16_MAX) {
2356 return EINVAL;
2357 }
2358
2359 /* Tries finding the 'pmd'. If NULL is returned, that means
2360 * the current thread is a non-pmd thread and should use
2361 * dp_netdev_get_pmd(dp, NON_PMD_CORE_ID). */
2362 pmd = ovsthread_getspecific(dp->per_pmd_key);
2363 if (!pmd) {
2364 pmd = dp_netdev_get_pmd(dp, NON_PMD_CORE_ID);
2365 }
2366
2367 /* If the current thread is non-pmd thread, acquires
2368 * the 'non_pmd_mutex'. */
2369 if (pmd->core_id == NON_PMD_CORE_ID) {
2370 ovs_mutex_lock(&dp->non_pmd_mutex);
2371 ovs_mutex_lock(&dp->port_mutex);
2372 }
2373
2374 pp = execute->packet;
2375 dp_netdev_execute_actions(pmd, &pp, 1, false, execute->actions,
2376 execute->actions_len);
2377 if (pmd->core_id == NON_PMD_CORE_ID) {
2378 dp_netdev_pmd_unref(pmd);
2379 ovs_mutex_unlock(&dp->port_mutex);
2380 ovs_mutex_unlock(&dp->non_pmd_mutex);
2381 }
2382
2383 return 0;
2384 }
2385
2386 static void
2387 dpif_netdev_operate(struct dpif *dpif, struct dpif_op **ops, size_t n_ops)
2388 {
2389 size_t i;
2390
2391 for (i = 0; i < n_ops; i++) {
2392 struct dpif_op *op = ops[i];
2393
2394 switch (op->type) {
2395 case DPIF_OP_FLOW_PUT:
2396 op->error = dpif_netdev_flow_put(dpif, &op->u.flow_put);
2397 break;
2398
2399 case DPIF_OP_FLOW_DEL:
2400 op->error = dpif_netdev_flow_del(dpif, &op->u.flow_del);
2401 break;
2402
2403 case DPIF_OP_EXECUTE:
2404 op->error = dpif_netdev_execute(dpif, &op->u.execute);
2405 break;
2406
2407 case DPIF_OP_FLOW_GET:
2408 op->error = dpif_netdev_flow_get(dpif, &op->u.flow_get);
2409 break;
2410 }
2411 }
2412 }
2413
2414 /* Returns true if the configuration for rx queues or cpu mask
2415 * is changed. */
2416 static bool
2417 pmd_config_changed(const struct dp_netdev *dp, const char *cmask)
2418 {
2419 struct dp_netdev_port *port;
2420
2421 CMAP_FOR_EACH (port, node, &dp->ports) {
2422 struct netdev *netdev = port->netdev;
2423 int requested_n_rxq = netdev_requested_n_rxq(netdev);
2424 if (netdev_is_pmd(netdev)
2425 && port->latest_requested_n_rxq != requested_n_rxq) {
2426 return true;
2427 }
2428 }
2429
2430 if (dp->pmd_cmask != NULL && cmask != NULL) {
2431 return strcmp(dp->pmd_cmask, cmask);
2432 } else {
2433 return (dp->pmd_cmask != NULL || cmask != NULL);
2434 }
2435 }
2436
2437 /* Resets pmd threads if the configuration for 'rxq's or cpu mask changes. */
2438 static int
2439 dpif_netdev_pmd_set(struct dpif *dpif, const char *cmask)
2440 {
2441 struct dp_netdev *dp = get_dp_netdev(dpif);
2442
2443 if (pmd_config_changed(dp, cmask)) {
2444 struct dp_netdev_port *port;
2445
2446 dp_netdev_destroy_all_pmds(dp);
2447
2448 CMAP_FOR_EACH (port, node, &dp->ports) {
2449 struct netdev *netdev = port->netdev;
2450 int requested_n_rxq = netdev_requested_n_rxq(netdev);
2451 if (netdev_is_pmd(port->netdev)
2452 && port->latest_requested_n_rxq != requested_n_rxq) {
2453 int i, err;
2454
2455 /* Closes the existing 'rxq's. */
2456 for (i = 0; i < netdev_n_rxq(port->netdev); i++) {
2457 netdev_rxq_close(port->rxq[i]);
2458 port->rxq[i] = NULL;
2459 }
2460
2461 /* Sets the new rx queue config. */
2462 err = netdev_set_multiq(port->netdev,
2463 ovs_numa_get_n_cores() + 1,
2464 requested_n_rxq);
2465 if (err && (err != EOPNOTSUPP)) {
2466 VLOG_ERR("Failed to set dpdk interface %s rx_queue to:"
2467 " %u", netdev_get_name(port->netdev),
2468 requested_n_rxq);
2469 return err;
2470 }
2471 port->latest_requested_n_rxq = requested_n_rxq;
2472 /* If the set_multiq() above succeeds, reopens the 'rxq's. */
2473 port->rxq = xrealloc(port->rxq, sizeof *port->rxq
2474 * netdev_n_rxq(port->netdev));
2475 for (i = 0; i < netdev_n_rxq(port->netdev); i++) {
2476 netdev_rxq_open(port->netdev, &port->rxq[i], i);
2477 }
2478 }
2479 }
2480 /* Reconfigures the cpu mask. */
2481 ovs_numa_set_cpu_mask(cmask);
2482 free(dp->pmd_cmask);
2483 dp->pmd_cmask = cmask ? xstrdup(cmask) : NULL;
2484
2485 /* Restores the non-pmd. */
2486 dp_netdev_set_nonpmd(dp);
2487 /* Restores all pmd threads. */
2488 dp_netdev_reset_pmd_threads(dp);
2489 }
2490
2491 return 0;
2492 }
2493
2494 static int
2495 dpif_netdev_queue_to_priority(const struct dpif *dpif OVS_UNUSED,
2496 uint32_t queue_id, uint32_t *priority)
2497 {
2498 *priority = queue_id;
2499 return 0;
2500 }
2501
2502 \f
2503 /* Creates and returns a new 'struct dp_netdev_actions', whose actions are
2504 * a copy of the 'ofpacts_len' bytes of 'ofpacts'. */
2505 struct dp_netdev_actions *
2506 dp_netdev_actions_create(const struct nlattr *actions, size_t size)
2507 {
2508 struct dp_netdev_actions *netdev_actions;
2509
2510 netdev_actions = xmalloc(sizeof *netdev_actions + size);
2511 memcpy(netdev_actions->actions, actions, size);
2512 netdev_actions->size = size;
2513
2514 return netdev_actions;
2515 }
2516
2517 struct dp_netdev_actions *
2518 dp_netdev_flow_get_actions(const struct dp_netdev_flow *flow)
2519 {
2520 return ovsrcu_get(struct dp_netdev_actions *, &flow->actions);
2521 }
2522
2523 static void
2524 dp_netdev_actions_free(struct dp_netdev_actions *actions)
2525 {
2526 free(actions);
2527 }
2528 \f
2529 static inline unsigned long long
2530 cycles_counter(void)
2531 {
2532 #ifdef DPDK_NETDEV
2533 return rte_get_tsc_cycles();
2534 #else
2535 return 0;
2536 #endif
2537 }
2538
2539 /* Fake mutex to make sure that the calls to cycles_count_* are balanced */
2540 extern struct ovs_mutex cycles_counter_fake_mutex;
2541
2542 /* Start counting cycles. Must be followed by 'cycles_count_end()' */
2543 static inline void
2544 cycles_count_start(struct dp_netdev_pmd_thread *pmd)
2545 OVS_ACQUIRES(&cycles_counter_fake_mutex)
2546 OVS_NO_THREAD_SAFETY_ANALYSIS
2547 {
2548 pmd->last_cycles = cycles_counter();
2549 }
2550
2551 /* Stop counting cycles and add them to the counter 'type' */
2552 static inline void
2553 cycles_count_end(struct dp_netdev_pmd_thread *pmd,
2554 enum pmd_cycles_counter_type type)
2555 OVS_RELEASES(&cycles_counter_fake_mutex)
2556 OVS_NO_THREAD_SAFETY_ANALYSIS
2557 {
2558 unsigned long long interval = cycles_counter() - pmd->last_cycles;
2559
2560 non_atomic_ullong_add(&pmd->cycles.n[type], interval);
2561 }
2562
2563 static void
2564 dp_netdev_process_rxq_port(struct dp_netdev_pmd_thread *pmd,
2565 struct dp_netdev_port *port,
2566 struct netdev_rxq *rxq)
2567 {
2568 struct dp_packet *packets[NETDEV_MAX_BURST];
2569 int error, cnt;
2570
2571 cycles_count_start(pmd);
2572 error = netdev_rxq_recv(rxq, packets, &cnt);
2573 cycles_count_end(pmd, PMD_CYCLES_POLLING);
2574 if (!error) {
2575 *recirc_depth_get() = 0;
2576
2577 cycles_count_start(pmd);
2578 dp_netdev_input(pmd, packets, cnt, port->port_no);
2579 cycles_count_end(pmd, PMD_CYCLES_PROCESSING);
2580 } else if (error != EAGAIN && error != EOPNOTSUPP) {
2581 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
2582
2583 VLOG_ERR_RL(&rl, "error receiving data from %s: %s",
2584 netdev_get_name(port->netdev), ovs_strerror(error));
2585 }
2586 }
2587
2588 /* Return true if needs to revalidate datapath flows. */
2589 static bool
2590 dpif_netdev_run(struct dpif *dpif)
2591 {
2592 struct dp_netdev_port *port;
2593 struct dp_netdev *dp = get_dp_netdev(dpif);
2594 struct dp_netdev_pmd_thread *non_pmd = dp_netdev_get_pmd(dp,
2595 NON_PMD_CORE_ID);
2596 uint64_t new_tnl_seq;
2597
2598 ovs_mutex_lock(&dp->non_pmd_mutex);
2599 CMAP_FOR_EACH (port, node, &dp->ports) {
2600 if (!netdev_is_pmd(port->netdev)) {
2601 int i;
2602
2603 for (i = 0; i < netdev_n_rxq(port->netdev); i++) {
2604 dp_netdev_process_rxq_port(non_pmd, port, port->rxq[i]);
2605 }
2606 }
2607 }
2608 ovs_mutex_unlock(&dp->non_pmd_mutex);
2609 dp_netdev_pmd_unref(non_pmd);
2610
2611 tnl_neigh_cache_run();
2612 tnl_port_map_run();
2613 new_tnl_seq = seq_read(tnl_conf_seq);
2614
2615 if (dp->last_tnl_conf_seq != new_tnl_seq) {
2616 dp->last_tnl_conf_seq = new_tnl_seq;
2617 return true;
2618 }
2619 return false;
2620 }
2621
2622 static void
2623 dpif_netdev_wait(struct dpif *dpif)
2624 {
2625 struct dp_netdev_port *port;
2626 struct dp_netdev *dp = get_dp_netdev(dpif);
2627
2628 ovs_mutex_lock(&dp_netdev_mutex);
2629 CMAP_FOR_EACH (port, node, &dp->ports) {
2630 if (!netdev_is_pmd(port->netdev)) {
2631 int i;
2632
2633 for (i = 0; i < netdev_n_rxq(port->netdev); i++) {
2634 netdev_rxq_wait(port->rxq[i]);
2635 }
2636 }
2637 }
2638 ovs_mutex_unlock(&dp_netdev_mutex);
2639 seq_wait(tnl_conf_seq, dp->last_tnl_conf_seq);
2640 }
2641
2642 static int
2643 pmd_load_queues(struct dp_netdev_pmd_thread *pmd,
2644 struct rxq_poll **ppoll_list, int poll_cnt)
2645 OVS_REQUIRES(pmd->poll_mutex)
2646 {
2647 struct rxq_poll *poll_list = *ppoll_list;
2648 struct rxq_poll *poll;
2649 int i;
2650
2651 for (i = 0; i < poll_cnt; i++) {
2652 port_unref(poll_list[i].port);
2653 }
2654
2655 poll_list = xrealloc(poll_list, pmd->poll_cnt * sizeof *poll_list);
2656
2657 i = 0;
2658 LIST_FOR_EACH (poll, node, &pmd->poll_list) {
2659 port_ref(poll->port);
2660 poll_list[i++] = *poll;
2661 }
2662
2663 *ppoll_list = poll_list;
2664 return pmd->poll_cnt;
2665 }
2666
2667 static void *
2668 pmd_thread_main(void *f_)
2669 {
2670 struct dp_netdev_pmd_thread *pmd = f_;
2671 unsigned int lc = 0;
2672 struct rxq_poll *poll_list;
2673 unsigned int port_seq = PMD_INITIAL_SEQ;
2674 int poll_cnt;
2675 int i;
2676
2677 poll_cnt = 0;
2678 poll_list = NULL;
2679
2680 /* Stores the pmd thread's 'pmd' to 'per_pmd_key'. */
2681 ovsthread_setspecific(pmd->dp->per_pmd_key, pmd);
2682 pmd_thread_setaffinity_cpu(pmd->core_id);
2683 reload:
2684 emc_cache_init(&pmd->flow_cache);
2685
2686 ovs_mutex_lock(&pmd->poll_mutex);
2687 poll_cnt = pmd_load_queues(pmd, &poll_list, poll_cnt);
2688 ovs_mutex_unlock(&pmd->poll_mutex);
2689
2690 /* List port/core affinity */
2691 for (i = 0; i < poll_cnt; i++) {
2692 VLOG_DBG("Core %d processing port \'%s\' with queue-id %d\n",
2693 pmd->core_id, netdev_get_name(poll_list[i].port->netdev),
2694 netdev_rxq_get_queue_id(poll_list[i].rx));
2695 }
2696
2697 /* Signal here to make sure the pmd finishes
2698 * reloading the updated configuration. */
2699 dp_netdev_pmd_reload_done(pmd);
2700
2701 for (;;) {
2702 for (i = 0; i < poll_cnt; i++) {
2703 dp_netdev_process_rxq_port(pmd, poll_list[i].port, poll_list[i].rx);
2704 }
2705
2706 if (lc++ > 1024) {
2707 unsigned int seq;
2708
2709 lc = 0;
2710
2711 emc_cache_slow_sweep(&pmd->flow_cache);
2712 coverage_try_clear();
2713 ovsrcu_quiesce();
2714
2715 atomic_read_relaxed(&pmd->change_seq, &seq);
2716 if (seq != port_seq) {
2717 port_seq = seq;
2718 break;
2719 }
2720 }
2721 }
2722
2723 emc_cache_uninit(&pmd->flow_cache);
2724
2725 if (!latch_is_set(&pmd->exit_latch)){
2726 goto reload;
2727 }
2728
2729 for (i = 0; i < poll_cnt; i++) {
2730 port_unref(poll_list[i].port);
2731 }
2732
2733 dp_netdev_pmd_reload_done(pmd);
2734
2735 free(poll_list);
2736 return NULL;
2737 }
2738
2739 static void
2740 dp_netdev_disable_upcall(struct dp_netdev *dp)
2741 OVS_ACQUIRES(dp->upcall_rwlock)
2742 {
2743 fat_rwlock_wrlock(&dp->upcall_rwlock);
2744 }
2745
2746 static void
2747 dpif_netdev_disable_upcall(struct dpif *dpif)
2748 OVS_NO_THREAD_SAFETY_ANALYSIS
2749 {
2750 struct dp_netdev *dp = get_dp_netdev(dpif);
2751 dp_netdev_disable_upcall(dp);
2752 }
2753
2754 static void
2755 dp_netdev_enable_upcall(struct dp_netdev *dp)
2756 OVS_RELEASES(dp->upcall_rwlock)
2757 {
2758 fat_rwlock_unlock(&dp->upcall_rwlock);
2759 }
2760
2761 static void
2762 dpif_netdev_enable_upcall(struct dpif *dpif)
2763 OVS_NO_THREAD_SAFETY_ANALYSIS
2764 {
2765 struct dp_netdev *dp = get_dp_netdev(dpif);
2766 dp_netdev_enable_upcall(dp);
2767 }
2768
2769 static void
2770 dp_netdev_pmd_reload_done(struct dp_netdev_pmd_thread *pmd)
2771 {
2772 ovs_mutex_lock(&pmd->cond_mutex);
2773 xpthread_cond_signal(&pmd->cond);
2774 ovs_mutex_unlock(&pmd->cond_mutex);
2775 }
2776
2777 /* Finds and refs the dp_netdev_pmd_thread on core 'core_id'. Returns
2778 * the pointer if succeeds, otherwise, NULL.
2779 *
2780 * Caller must unrefs the returned reference. */
2781 static struct dp_netdev_pmd_thread *
2782 dp_netdev_get_pmd(struct dp_netdev *dp, unsigned core_id)
2783 {
2784 struct dp_netdev_pmd_thread *pmd;
2785 const struct cmap_node *pnode;
2786
2787 pnode = cmap_find(&dp->poll_threads, hash_int(core_id, 0));
2788 if (!pnode) {
2789 return NULL;
2790 }
2791 pmd = CONTAINER_OF(pnode, struct dp_netdev_pmd_thread, node);
2792
2793 return dp_netdev_pmd_try_ref(pmd) ? pmd : NULL;
2794 }
2795
2796 /* Sets the 'struct dp_netdev_pmd_thread' for non-pmd threads. */
2797 static void
2798 dp_netdev_set_nonpmd(struct dp_netdev *dp)
2799 {
2800 struct dp_netdev_pmd_thread *non_pmd;
2801
2802 non_pmd = xzalloc(sizeof *non_pmd);
2803 dp_netdev_configure_pmd(non_pmd, dp, 0, NON_PMD_CORE_ID,
2804 OVS_NUMA_UNSPEC);
2805 }
2806
2807 /* Caller must have valid pointer to 'pmd'. */
2808 static bool
2809 dp_netdev_pmd_try_ref(struct dp_netdev_pmd_thread *pmd)
2810 {
2811 return ovs_refcount_try_ref_rcu(&pmd->ref_cnt);
2812 }
2813
2814 static void
2815 dp_netdev_pmd_unref(struct dp_netdev_pmd_thread *pmd)
2816 {
2817 if (pmd && ovs_refcount_unref(&pmd->ref_cnt) == 1) {
2818 ovsrcu_postpone(dp_netdev_destroy_pmd, pmd);
2819 }
2820 }
2821
2822 /* Given cmap position 'pos', tries to ref the next node. If try_ref()
2823 * fails, keeps checking for next node until reaching the end of cmap.
2824 *
2825 * Caller must unrefs the returned reference. */
2826 static struct dp_netdev_pmd_thread *
2827 dp_netdev_pmd_get_next(struct dp_netdev *dp, struct cmap_position *pos)
2828 {
2829 struct dp_netdev_pmd_thread *next;
2830
2831 do {
2832 struct cmap_node *node;
2833
2834 node = cmap_next_position(&dp->poll_threads, pos);
2835 next = node ? CONTAINER_OF(node, struct dp_netdev_pmd_thread, node)
2836 : NULL;
2837 } while (next && !dp_netdev_pmd_try_ref(next));
2838
2839 return next;
2840 }
2841
2842 /* Configures the 'pmd' based on the input argument. */
2843 static void
2844 dp_netdev_configure_pmd(struct dp_netdev_pmd_thread *pmd, struct dp_netdev *dp,
2845 int index, unsigned core_id, int numa_id)
2846 {
2847 pmd->dp = dp;
2848 pmd->index = index;
2849 pmd->core_id = core_id;
2850 pmd->numa_id = numa_id;
2851 pmd->poll_cnt = 0;
2852
2853 atomic_init(&pmd->tx_qid,
2854 (core_id == NON_PMD_CORE_ID)
2855 ? ovs_numa_get_n_cores()
2856 : get_n_pmd_threads(dp));
2857
2858 ovs_refcount_init(&pmd->ref_cnt);
2859 latch_init(&pmd->exit_latch);
2860 atomic_init(&pmd->change_seq, PMD_INITIAL_SEQ);
2861 xpthread_cond_init(&pmd->cond, NULL);
2862 ovs_mutex_init(&pmd->cond_mutex);
2863 ovs_mutex_init(&pmd->flow_mutex);
2864 ovs_mutex_init(&pmd->poll_mutex);
2865 dpcls_init(&pmd->cls);
2866 cmap_init(&pmd->flow_table);
2867 list_init(&pmd->poll_list);
2868 /* init the 'flow_cache' since there is no
2869 * actual thread created for NON_PMD_CORE_ID. */
2870 if (core_id == NON_PMD_CORE_ID) {
2871 emc_cache_init(&pmd->flow_cache);
2872 }
2873 cmap_insert(&dp->poll_threads, CONST_CAST(struct cmap_node *, &pmd->node),
2874 hash_int(core_id, 0));
2875 }
2876
2877 static void
2878 dp_netdev_destroy_pmd(struct dp_netdev_pmd_thread *pmd)
2879 {
2880 dp_netdev_pmd_flow_flush(pmd);
2881 dpcls_destroy(&pmd->cls);
2882 cmap_destroy(&pmd->flow_table);
2883 ovs_mutex_destroy(&pmd->flow_mutex);
2884 latch_destroy(&pmd->exit_latch);
2885 xpthread_cond_destroy(&pmd->cond);
2886 ovs_mutex_destroy(&pmd->cond_mutex);
2887 ovs_mutex_destroy(&pmd->poll_mutex);
2888 free(pmd);
2889 }
2890
2891 /* Stops the pmd thread, removes it from the 'dp->poll_threads',
2892 * and unrefs the struct. */
2893 static void
2894 dp_netdev_del_pmd(struct dp_netdev *dp, struct dp_netdev_pmd_thread *pmd)
2895 {
2896 /* Uninit the 'flow_cache' since there is
2897 * no actual thread uninit it for NON_PMD_CORE_ID. */
2898 if (pmd->core_id == NON_PMD_CORE_ID) {
2899 emc_cache_uninit(&pmd->flow_cache);
2900 } else {
2901 latch_set(&pmd->exit_latch);
2902 dp_netdev_reload_pmd__(pmd);
2903 ovs_numa_unpin_core(pmd->core_id);
2904 xpthread_join(pmd->thread, NULL);
2905 }
2906
2907 /* Unref all ports and free poll_list. */
2908 dp_netdev_pmd_clear_poll_list(pmd);
2909
2910 /* Purges the 'pmd''s flows after stopping the thread, but before
2911 * destroying the flows, so that the flow stats can be collected. */
2912 if (dp->dp_purge_cb) {
2913 dp->dp_purge_cb(dp->dp_purge_aux, pmd->core_id);
2914 }
2915 cmap_remove(&pmd->dp->poll_threads, &pmd->node, hash_int(pmd->core_id, 0));
2916 dp_netdev_pmd_unref(pmd);
2917 }
2918
2919 /* Destroys all pmd threads. */
2920 static void
2921 dp_netdev_destroy_all_pmds(struct dp_netdev *dp)
2922 {
2923 struct dp_netdev_pmd_thread *pmd;
2924 struct dp_netdev_pmd_thread **pmd_list;
2925 size_t k = 0, n_pmds;
2926
2927 n_pmds = cmap_count(&dp->poll_threads);
2928 pmd_list = xcalloc(n_pmds, sizeof *pmd_list);
2929
2930 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
2931 /* We cannot call dp_netdev_del_pmd(), since it alters
2932 * 'dp->poll_threads' (while we're iterating it) and it
2933 * might quiesce. */
2934 ovs_assert(k < n_pmds);
2935 pmd_list[k++] = pmd;
2936 }
2937
2938 for (size_t i = 0; i < k; i++) {
2939 dp_netdev_del_pmd(dp, pmd_list[i]);
2940 }
2941 free(pmd_list);
2942 }
2943
2944 /* Deletes all pmd threads on numa node 'numa_id' and
2945 * fixes tx_qids of other threads to keep them sequential. */
2946 static void
2947 dp_netdev_del_pmds_on_numa(struct dp_netdev *dp, int numa_id)
2948 {
2949 struct dp_netdev_pmd_thread *pmd;
2950 int n_pmds_on_numa, n_pmds;
2951 int *free_idx, k = 0;
2952 struct dp_netdev_pmd_thread **pmd_list;
2953
2954 n_pmds_on_numa = get_n_pmd_threads_on_numa(dp, numa_id);
2955 free_idx = xcalloc(n_pmds_on_numa, sizeof *free_idx);
2956 pmd_list = xcalloc(n_pmds_on_numa, sizeof *pmd_list);
2957
2958 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
2959 /* We cannot call dp_netdev_del_pmd(), since it alters
2960 * 'dp->poll_threads' (while we're iterating it) and it
2961 * might quiesce. */
2962 if (pmd->numa_id == numa_id) {
2963 atomic_read_relaxed(&pmd->tx_qid, &free_idx[k]);
2964 pmd_list[k] = pmd;
2965 ovs_assert(k < n_pmds_on_numa);
2966 k++;
2967 }
2968 }
2969
2970 for (int i = 0; i < k; i++) {
2971 dp_netdev_del_pmd(dp, pmd_list[i]);
2972 }
2973
2974 n_pmds = get_n_pmd_threads(dp);
2975 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
2976 int old_tx_qid;
2977
2978 atomic_read_relaxed(&pmd->tx_qid, &old_tx_qid);
2979
2980 if (old_tx_qid >= n_pmds) {
2981 int new_tx_qid = free_idx[--k];
2982
2983 atomic_store_relaxed(&pmd->tx_qid, new_tx_qid);
2984 }
2985 }
2986
2987 free(pmd_list);
2988 free(free_idx);
2989 }
2990
2991 /* Deletes all rx queues from pmd->poll_list. */
2992 static void
2993 dp_netdev_pmd_clear_poll_list(struct dp_netdev_pmd_thread *pmd)
2994 {
2995 struct rxq_poll *poll;
2996
2997 ovs_mutex_lock(&pmd->poll_mutex);
2998 LIST_FOR_EACH_POP (poll, node, &pmd->poll_list) {
2999 port_unref(poll->port);
3000 free(poll);
3001 }
3002 pmd->poll_cnt = 0;
3003 ovs_mutex_unlock(&pmd->poll_mutex);
3004 }
3005
3006 /* Deletes all rx queues of 'port' from poll_list of pmd thread and
3007 * reloads it if poll_list was changed. */
3008 static void
3009 dp_netdev_del_port_from_pmd(struct dp_netdev_port *port,
3010 struct dp_netdev_pmd_thread *pmd)
3011 {
3012 struct rxq_poll *poll, *next;
3013 bool found = false;
3014
3015 ovs_mutex_lock(&pmd->poll_mutex);
3016 LIST_FOR_EACH_SAFE (poll, next, node, &pmd->poll_list) {
3017 if (poll->port == port) {
3018 found = true;
3019 port_unref(poll->port);
3020 list_remove(&poll->node);
3021 pmd->poll_cnt--;
3022 free(poll);
3023 }
3024 }
3025 ovs_mutex_unlock(&pmd->poll_mutex);
3026 if (found) {
3027 dp_netdev_reload_pmd__(pmd);
3028 }
3029 }
3030
3031 /* Deletes all rx queues of 'port' from all pmd threads of dp and
3032 * reloads them if needed. */
3033 static void
3034 dp_netdev_del_port_from_all_pmds(struct dp_netdev *dp,
3035 struct dp_netdev_port *port)
3036 {
3037 int numa_id = netdev_get_numa_id(port->netdev);
3038 struct dp_netdev_pmd_thread *pmd;
3039
3040 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
3041 if (pmd->numa_id == numa_id) {
3042 dp_netdev_del_port_from_pmd(port, pmd);
3043 }
3044 }
3045 }
3046
3047 /* Returns PMD thread from this numa node with fewer rx queues to poll.
3048 * Returns NULL if there is no PMD threads on this numa node.
3049 * Can be called safely only by main thread. */
3050 static struct dp_netdev_pmd_thread *
3051 dp_netdev_less_loaded_pmd_on_numa(struct dp_netdev *dp, int numa_id)
3052 {
3053 int min_cnt = -1;
3054 struct dp_netdev_pmd_thread *pmd, *res = NULL;
3055
3056 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
3057 if (pmd->numa_id == numa_id
3058 && (min_cnt > pmd->poll_cnt || res == NULL)) {
3059 min_cnt = pmd->poll_cnt;
3060 res = pmd;
3061 }
3062 }
3063
3064 return res;
3065 }
3066
3067 /* Adds rx queue to poll_list of PMD thread. */
3068 static void
3069 dp_netdev_add_rxq_to_pmd(struct dp_netdev_pmd_thread *pmd,
3070 struct dp_netdev_port *port, struct netdev_rxq *rx)
3071 OVS_REQUIRES(pmd->poll_mutex)
3072 {
3073 struct rxq_poll *poll = xmalloc(sizeof *poll);
3074
3075 port_ref(port);
3076 poll->port = port;
3077 poll->rx = rx;
3078
3079 list_push_back(&pmd->poll_list, &poll->node);
3080 pmd->poll_cnt++;
3081 }
3082
3083 /* Distributes all rx queues of 'port' between all PMD threads and reloads
3084 * them if needed. */
3085 static void
3086 dp_netdev_add_port_to_pmds(struct dp_netdev *dp, struct dp_netdev_port *port)
3087 {
3088 int numa_id = netdev_get_numa_id(port->netdev);
3089 struct dp_netdev_pmd_thread *pmd;
3090 struct hmapx to_reload;
3091 struct hmapx_node *node;
3092 int i;
3093
3094 hmapx_init(&to_reload);
3095 /* Cannot create pmd threads for invalid numa node. */
3096 ovs_assert(ovs_numa_numa_id_is_valid(numa_id));
3097
3098 for (i = 0; i < netdev_n_rxq(port->netdev); i++) {
3099 pmd = dp_netdev_less_loaded_pmd_on_numa(dp, numa_id);
3100 if (!pmd) {
3101 /* There is no pmd threads on this numa node. */
3102 dp_netdev_set_pmds_on_numa(dp, numa_id);
3103 /* Assigning of rx queues done. */
3104 break;
3105 }
3106
3107 ovs_mutex_lock(&pmd->poll_mutex);
3108 dp_netdev_add_rxq_to_pmd(pmd, port, port->rxq[i]);
3109 ovs_mutex_unlock(&pmd->poll_mutex);
3110
3111 hmapx_add(&to_reload, pmd);
3112 }
3113
3114 HMAPX_FOR_EACH (node, &to_reload) {
3115 pmd = (struct dp_netdev_pmd_thread *) node->data;
3116 dp_netdev_reload_pmd__(pmd);
3117 }
3118
3119 hmapx_destroy(&to_reload);
3120 }
3121
3122 /* Checks the numa node id of 'netdev' and starts pmd threads for
3123 * the numa node. */
3124 static void
3125 dp_netdev_set_pmds_on_numa(struct dp_netdev *dp, int numa_id)
3126 {
3127 int n_pmds;
3128
3129 if (!ovs_numa_numa_id_is_valid(numa_id)) {
3130 VLOG_ERR("Cannot create pmd threads due to numa id (%d)"
3131 "invalid", numa_id);
3132 return ;
3133 }
3134
3135 n_pmds = get_n_pmd_threads_on_numa(dp, numa_id);
3136
3137 /* If there are already pmd threads created for the numa node
3138 * in which 'netdev' is on, do nothing. Else, creates the
3139 * pmd threads for the numa node. */
3140 if (!n_pmds) {
3141 int can_have, n_unpinned, i, index = 0;
3142 struct dp_netdev_pmd_thread **pmds;
3143 struct dp_netdev_port *port;
3144
3145 n_unpinned = ovs_numa_get_n_unpinned_cores_on_numa(numa_id);
3146 if (!n_unpinned) {
3147 VLOG_ERR("Cannot create pmd threads due to out of unpinned "
3148 "cores on numa node");
3149 return;
3150 }
3151
3152 /* If cpu mask is specified, uses all unpinned cores, otherwise
3153 * tries creating NR_PMD_THREADS pmd threads. */
3154 can_have = dp->pmd_cmask ? n_unpinned : MIN(n_unpinned, NR_PMD_THREADS);
3155 pmds = xzalloc(can_have * sizeof *pmds);
3156 for (i = 0; i < can_have; i++) {
3157 unsigned core_id = ovs_numa_get_unpinned_core_on_numa(numa_id);
3158 pmds[i] = xzalloc(sizeof **pmds);
3159 dp_netdev_configure_pmd(pmds[i], dp, i, core_id, numa_id);
3160 }
3161
3162 /* Distributes rx queues of this numa node between new pmd threads. */
3163 CMAP_FOR_EACH (port, node, &dp->ports) {
3164 if (netdev_is_pmd(port->netdev)
3165 && netdev_get_numa_id(port->netdev) == numa_id) {
3166 for (i = 0; i < netdev_n_rxq(port->netdev); i++) {
3167 /* Make thread-safety analyser happy. */
3168 ovs_mutex_lock(&pmds[index]->poll_mutex);
3169 dp_netdev_add_rxq_to_pmd(pmds[index], port, port->rxq[i]);
3170 ovs_mutex_unlock(&pmds[index]->poll_mutex);
3171 index = (index + 1) % can_have;
3172 }
3173 }
3174 }
3175
3176 /* Actual start of pmd threads. */
3177 for (i = 0; i < can_have; i++) {
3178 pmds[i]->thread = ovs_thread_create("pmd", pmd_thread_main, pmds[i]);
3179 }
3180 free(pmds);
3181 VLOG_INFO("Created %d pmd threads on numa node %d", can_have, numa_id);
3182 }
3183 }
3184
3185 \f
3186 /* Called after pmd threads config change. Restarts pmd threads with
3187 * new configuration. */
3188 static void
3189 dp_netdev_reset_pmd_threads(struct dp_netdev *dp)
3190 {
3191 struct dp_netdev_port *port;
3192
3193 CMAP_FOR_EACH (port, node, &dp->ports) {
3194 if (netdev_is_pmd(port->netdev)) {
3195 int numa_id = netdev_get_numa_id(port->netdev);
3196
3197 dp_netdev_set_pmds_on_numa(dp, numa_id);
3198 }
3199 }
3200 }
3201
3202 static char *
3203 dpif_netdev_get_datapath_version(void)
3204 {
3205 return xstrdup("<built-in>");
3206 }
3207
3208 static void
3209 dp_netdev_flow_used(struct dp_netdev_flow *netdev_flow, int cnt, int size,
3210 uint16_t tcp_flags, long long now)
3211 {
3212 uint16_t flags;
3213
3214 atomic_store_relaxed(&netdev_flow->stats.used, now);
3215 non_atomic_ullong_add(&netdev_flow->stats.packet_count, cnt);
3216 non_atomic_ullong_add(&netdev_flow->stats.byte_count, size);
3217 atomic_read_relaxed(&netdev_flow->stats.tcp_flags, &flags);
3218 flags |= tcp_flags;
3219 atomic_store_relaxed(&netdev_flow->stats.tcp_flags, flags);
3220 }
3221
3222 static void
3223 dp_netdev_count_packet(struct dp_netdev_pmd_thread *pmd,
3224 enum dp_stat_type type, int cnt)
3225 {
3226 non_atomic_ullong_add(&pmd->stats.n[type], cnt);
3227 }
3228
3229 static int
3230 dp_netdev_upcall(struct dp_netdev_pmd_thread *pmd, struct dp_packet *packet_,
3231 struct flow *flow, struct flow_wildcards *wc, ovs_u128 *ufid,
3232 enum dpif_upcall_type type, const struct nlattr *userdata,
3233 struct ofpbuf *actions, struct ofpbuf *put_actions)
3234 {
3235 struct dp_netdev *dp = pmd->dp;
3236 struct flow_tnl orig_tunnel;
3237 int err;
3238
3239 if (OVS_UNLIKELY(!dp->upcall_cb)) {
3240 return ENODEV;
3241 }
3242
3243 /* Upcall processing expects the Geneve options to be in the translated
3244 * format but we need to retain the raw format for datapath use. */
3245 orig_tunnel.flags = flow->tunnel.flags;
3246 if (flow->tunnel.flags & FLOW_TNL_F_UDPIF) {
3247 orig_tunnel.metadata.present.len = flow->tunnel.metadata.present.len;
3248 memcpy(orig_tunnel.metadata.opts.gnv, flow->tunnel.metadata.opts.gnv,
3249 flow->tunnel.metadata.present.len);
3250 err = tun_metadata_from_geneve_udpif(&orig_tunnel, &orig_tunnel,
3251 &flow->tunnel);
3252 if (err) {
3253 return err;
3254 }
3255 }
3256
3257 if (OVS_UNLIKELY(!VLOG_DROP_DBG(&upcall_rl))) {
3258 struct ds ds = DS_EMPTY_INITIALIZER;
3259 char *packet_str;
3260 struct ofpbuf key;
3261 struct odp_flow_key_parms odp_parms = {
3262 .flow = flow,
3263 .mask = &wc->masks,
3264 .odp_in_port = flow->in_port.odp_port,
3265 .support = dp_netdev_support,
3266 };
3267
3268 ofpbuf_init(&key, 0);
3269 odp_flow_key_from_flow(&odp_parms, &key);
3270 packet_str = ofp_packet_to_string(dp_packet_data(packet_),
3271 dp_packet_size(packet_));
3272
3273 odp_flow_key_format(key.data, key.size, &ds);
3274
3275 VLOG_DBG("%s: %s upcall:\n%s\n%s", dp->name,
3276 dpif_upcall_type_to_string(type), ds_cstr(&ds), packet_str);
3277
3278 ofpbuf_uninit(&key);
3279 free(packet_str);
3280
3281 ds_destroy(&ds);
3282 }
3283
3284 err = dp->upcall_cb(packet_, flow, ufid, pmd->core_id, type, userdata,
3285 actions, wc, put_actions, dp->upcall_aux);
3286 if (err && err != ENOSPC) {
3287 return err;
3288 }
3289
3290 /* Translate tunnel metadata masks to datapath format. */
3291 if (wc) {
3292 if (wc->masks.tunnel.metadata.present.map) {
3293 struct geneve_opt opts[TLV_TOT_OPT_SIZE /
3294 sizeof(struct geneve_opt)];
3295
3296 if (orig_tunnel.flags & FLOW_TNL_F_UDPIF) {
3297 tun_metadata_to_geneve_udpif_mask(&flow->tunnel,
3298 &wc->masks.tunnel,
3299 orig_tunnel.metadata.opts.gnv,
3300 orig_tunnel.metadata.present.len,
3301 opts);
3302 } else {
3303 orig_tunnel.metadata.present.len = 0;
3304 }
3305
3306 memset(&wc->masks.tunnel.metadata, 0,
3307 sizeof wc->masks.tunnel.metadata);
3308 memcpy(&wc->masks.tunnel.metadata.opts.gnv, opts,
3309 orig_tunnel.metadata.present.len);
3310 }
3311 wc->masks.tunnel.metadata.present.len = 0xff;
3312 }
3313
3314 /* Restore tunnel metadata. We need to use the saved options to ensure
3315 * that any unknown options are not lost. The generated mask will have
3316 * the same structure, matching on types and lengths but wildcarding
3317 * option data we don't care about. */
3318 if (orig_tunnel.flags & FLOW_TNL_F_UDPIF) {
3319 memcpy(&flow->tunnel.metadata.opts.gnv, orig_tunnel.metadata.opts.gnv,
3320 orig_tunnel.metadata.present.len);
3321 flow->tunnel.metadata.present.len = orig_tunnel.metadata.present.len;
3322 flow->tunnel.flags |= FLOW_TNL_F_UDPIF;
3323 }
3324
3325 return err;
3326 }
3327
3328 static inline uint32_t
3329 dpif_netdev_packet_get_rss_hash(struct dp_packet *packet,
3330 const struct miniflow *mf)
3331 {
3332 uint32_t hash, recirc_depth;
3333
3334 if (OVS_LIKELY(dp_packet_rss_valid(packet))) {
3335 hash = dp_packet_get_rss_hash(packet);
3336 } else {
3337 hash = miniflow_hash_5tuple(mf, 0);
3338 dp_packet_set_rss_hash(packet, hash);
3339 }
3340
3341 /* The RSS hash must account for the recirculation depth to avoid
3342 * collisions in the exact match cache */
3343 recirc_depth = *recirc_depth_get_unsafe();
3344 if (OVS_UNLIKELY(recirc_depth)) {
3345 hash = hash_finish(hash, recirc_depth);
3346 dp_packet_set_rss_hash(packet, hash);
3347 }
3348 return hash;
3349 }
3350
3351 struct packet_batch {
3352 unsigned int packet_count;
3353 unsigned int byte_count;
3354 uint16_t tcp_flags;
3355
3356 struct dp_netdev_flow *flow;
3357
3358 struct dp_packet *packets[NETDEV_MAX_BURST];
3359 };
3360
3361 static inline void
3362 packet_batch_update(struct packet_batch *batch, struct dp_packet *packet,
3363 const struct miniflow *mf)
3364 {
3365 batch->tcp_flags |= miniflow_get_tcp_flags(mf);
3366 batch->packets[batch->packet_count++] = packet;
3367 batch->byte_count += dp_packet_size(packet);
3368 }
3369
3370 static inline void
3371 packet_batch_init(struct packet_batch *batch, struct dp_netdev_flow *flow)
3372 {
3373 flow->batch = batch;
3374
3375 batch->flow = flow;
3376 batch->packet_count = 0;
3377 batch->byte_count = 0;
3378 batch->tcp_flags = 0;
3379 }
3380
3381 static inline void
3382 packet_batch_execute(struct packet_batch *batch,
3383 struct dp_netdev_pmd_thread *pmd,
3384 long long now)
3385 {
3386 struct dp_netdev_actions *actions;
3387 struct dp_netdev_flow *flow = batch->flow;
3388
3389 dp_netdev_flow_used(flow, batch->packet_count, batch->byte_count,
3390 batch->tcp_flags, now);
3391
3392 actions = dp_netdev_flow_get_actions(flow);
3393
3394 dp_netdev_execute_actions(pmd, batch->packets, batch->packet_count, true,
3395 actions->actions, actions->size);
3396 }
3397
3398 static inline void
3399 dp_netdev_queue_batches(struct dp_packet *pkt,
3400 struct dp_netdev_flow *flow, const struct miniflow *mf,
3401 struct packet_batch *batches, size_t *n_batches)
3402 {
3403 struct packet_batch *batch = flow->batch;
3404
3405 if (OVS_UNLIKELY(!batch)) {
3406 batch = &batches[(*n_batches)++];
3407 packet_batch_init(batch, flow);
3408 }
3409
3410 packet_batch_update(batch, pkt, mf);
3411 }
3412
3413 /* Try to process all ('cnt') the 'packets' using only the exact match cache
3414 * 'pmd->flow_cache'. If a flow is not found for a packet 'packets[i]', the
3415 * miniflow is copied into 'keys' and the packet pointer is moved at the
3416 * beginning of the 'packets' array.
3417 *
3418 * The function returns the number of packets that needs to be processed in the
3419 * 'packets' array (they have been moved to the beginning of the vector).
3420 *
3421 * If 'md_is_valid' is false, the metadata in 'packets' is not valid and must be
3422 * initialized by this function using 'port_no'.
3423 */
3424 static inline size_t
3425 emc_processing(struct dp_netdev_pmd_thread *pmd, struct dp_packet **packets,
3426 size_t cnt, struct netdev_flow_key *keys,
3427 struct packet_batch batches[], size_t *n_batches,
3428 bool md_is_valid, odp_port_t port_no)
3429 {
3430 struct emc_cache *flow_cache = &pmd->flow_cache;
3431 struct netdev_flow_key *key = &keys[0];
3432 size_t i, n_missed = 0, n_dropped = 0;
3433
3434 for (i = 0; i < cnt; i++) {
3435 struct dp_netdev_flow *flow;
3436 struct dp_packet *packet = packets[i];
3437
3438 if (OVS_UNLIKELY(dp_packet_size(packet) < ETH_HEADER_LEN)) {
3439 dp_packet_delete(packet);
3440 n_dropped++;
3441 continue;
3442 }
3443
3444 if (i != cnt - 1) {
3445 /* Prefetch next packet data and metadata. */
3446 OVS_PREFETCH(dp_packet_data(packets[i+1]));
3447 pkt_metadata_prefetch_init(&packets[i+1]->md);
3448 }
3449
3450 if (!md_is_valid) {
3451 pkt_metadata_init(&packet->md, port_no);
3452 }
3453 miniflow_extract(packet, &key->mf);
3454 key->len = 0; /* Not computed yet. */
3455 key->hash = dpif_netdev_packet_get_rss_hash(packet, &key->mf);
3456
3457 flow = emc_lookup(flow_cache, key);
3458 if (OVS_LIKELY(flow)) {
3459 dp_netdev_queue_batches(packet, flow, &key->mf, batches,
3460 n_batches);
3461 } else {
3462 /* Exact match cache missed. Group missed packets together at
3463 * the beginning of the 'packets' array. */
3464 packets[n_missed] = packet;
3465 /* 'key[n_missed]' contains the key of the current packet and it
3466 * must be returned to the caller. The next key should be extracted
3467 * to 'keys[n_missed + 1]'. */
3468 key = &keys[++n_missed];
3469 }
3470 }
3471
3472 dp_netdev_count_packet(pmd, DP_STAT_EXACT_HIT, cnt - n_dropped - n_missed);
3473
3474 return n_missed;
3475 }
3476
3477 static inline void
3478 fast_path_processing(struct dp_netdev_pmd_thread *pmd,
3479 struct dp_packet **packets, size_t cnt,
3480 struct netdev_flow_key *keys,
3481 struct packet_batch batches[], size_t *n_batches)
3482 {
3483 #if !defined(__CHECKER__) && !defined(_WIN32)
3484 const size_t PKT_ARRAY_SIZE = cnt;
3485 #else
3486 /* Sparse or MSVC doesn't like variable length array. */
3487 enum { PKT_ARRAY_SIZE = NETDEV_MAX_BURST };
3488 #endif
3489 struct dpcls_rule *rules[PKT_ARRAY_SIZE];
3490 struct dp_netdev *dp = pmd->dp;
3491 struct emc_cache *flow_cache = &pmd->flow_cache;
3492 int miss_cnt = 0, lost_cnt = 0;
3493 bool any_miss;
3494 size_t i;
3495
3496 for (i = 0; i < cnt; i++) {
3497 /* Key length is needed in all the cases, hash computed on demand. */
3498 keys[i].len = netdev_flow_key_size(miniflow_n_values(&keys[i].mf));
3499 }
3500 any_miss = !dpcls_lookup(&pmd->cls, keys, rules, cnt);
3501 if (OVS_UNLIKELY(any_miss) && !fat_rwlock_tryrdlock(&dp->upcall_rwlock)) {
3502 uint64_t actions_stub[512 / 8], slow_stub[512 / 8];
3503 struct ofpbuf actions, put_actions;
3504 ovs_u128 ufid;
3505
3506 ofpbuf_use_stub(&actions, actions_stub, sizeof actions_stub);
3507 ofpbuf_use_stub(&put_actions, slow_stub, sizeof slow_stub);
3508
3509 for (i = 0; i < cnt; i++) {
3510 struct dp_netdev_flow *netdev_flow;
3511 struct ofpbuf *add_actions;
3512 struct match match;
3513 int error;
3514
3515 if (OVS_LIKELY(rules[i])) {
3516 continue;
3517 }
3518
3519 /* It's possible that an earlier slow path execution installed
3520 * a rule covering this flow. In this case, it's a lot cheaper
3521 * to catch it here than execute a miss. */
3522 netdev_flow = dp_netdev_pmd_lookup_flow(pmd, &keys[i]);
3523 if (netdev_flow) {
3524 rules[i] = &netdev_flow->cr;
3525 continue;
3526 }
3527
3528 miss_cnt++;
3529
3530 match.tun_md.valid = false;
3531 miniflow_expand(&keys[i].mf, &match.flow);
3532
3533 ofpbuf_clear(&actions);
3534 ofpbuf_clear(&put_actions);
3535
3536 dpif_flow_hash(dp->dpif, &match.flow, sizeof match.flow, &ufid);
3537 error = dp_netdev_upcall(pmd, packets[i], &match.flow, &match.wc,
3538 &ufid, DPIF_UC_MISS, NULL, &actions,
3539 &put_actions);
3540 if (OVS_UNLIKELY(error && error != ENOSPC)) {
3541 dp_packet_delete(packets[i]);
3542 lost_cnt++;
3543 continue;
3544 }
3545
3546 /* The Netlink encoding of datapath flow keys cannot express
3547 * wildcarding the presence of a VLAN tag. Instead, a missing VLAN
3548 * tag is interpreted as exact match on the fact that there is no
3549 * VLAN. Unless we refactor a lot of code that translates between
3550 * Netlink and struct flow representations, we have to do the same
3551 * here. */
3552 if (!match.wc.masks.vlan_tci) {
3553 match.wc.masks.vlan_tci = htons(0xffff);
3554 }
3555
3556 /* We can't allow the packet batching in the next loop to execute
3557 * the actions. Otherwise, if there are any slow path actions,
3558 * we'll send the packet up twice. */
3559 dp_netdev_execute_actions(pmd, &packets[i], 1, true,
3560 actions.data, actions.size);
3561
3562 add_actions = put_actions.size ? &put_actions : &actions;
3563 if (OVS_LIKELY(error != ENOSPC)) {
3564 /* XXX: There's a race window where a flow covering this packet
3565 * could have already been installed since we last did the flow
3566 * lookup before upcall. This could be solved by moving the
3567 * mutex lock outside the loop, but that's an awful long time
3568 * to be locking everyone out of making flow installs. If we
3569 * move to a per-core classifier, it would be reasonable. */
3570 ovs_mutex_lock(&pmd->flow_mutex);
3571 netdev_flow = dp_netdev_pmd_lookup_flow(pmd, &keys[i]);
3572 if (OVS_LIKELY(!netdev_flow)) {
3573 netdev_flow = dp_netdev_flow_add(pmd, &match, &ufid,
3574 add_actions->data,
3575 add_actions->size);
3576 }
3577 ovs_mutex_unlock(&pmd->flow_mutex);
3578
3579 emc_insert(flow_cache, &keys[i], netdev_flow);
3580 }
3581 }
3582
3583 ofpbuf_uninit(&actions);
3584 ofpbuf_uninit(&put_actions);
3585 fat_rwlock_unlock(&dp->upcall_rwlock);
3586 dp_netdev_count_packet(pmd, DP_STAT_LOST, lost_cnt);
3587 } else if (OVS_UNLIKELY(any_miss)) {
3588 for (i = 0; i < cnt; i++) {
3589 if (OVS_UNLIKELY(!rules[i])) {
3590 dp_packet_delete(packets[i]);
3591 lost_cnt++;
3592 miss_cnt++;
3593 }
3594 }
3595 }
3596
3597 for (i = 0; i < cnt; i++) {
3598 struct dp_packet *packet = packets[i];
3599 struct dp_netdev_flow *flow;
3600
3601 if (OVS_UNLIKELY(!rules[i])) {
3602 continue;
3603 }
3604
3605 flow = dp_netdev_flow_cast(rules[i]);
3606
3607 emc_insert(flow_cache, &keys[i], flow);
3608 dp_netdev_queue_batches(packet, flow, &keys[i].mf, batches, n_batches);
3609 }
3610
3611 dp_netdev_count_packet(pmd, DP_STAT_MASKED_HIT, cnt - miss_cnt);
3612 dp_netdev_count_packet(pmd, DP_STAT_MISS, miss_cnt);
3613 dp_netdev_count_packet(pmd, DP_STAT_LOST, lost_cnt);
3614 }
3615
3616 /* Packets enter the datapath from a port (or from recirculation) here.
3617 *
3618 * For performance reasons a caller may choose not to initialize the metadata
3619 * in 'packets': in this case 'mdinit' is false and this function needs to
3620 * initialize it using 'port_no'. If the metadata in 'packets' is already
3621 * valid, 'md_is_valid' must be true and 'port_no' will be ignored. */
3622 static void
3623 dp_netdev_input__(struct dp_netdev_pmd_thread *pmd,
3624 struct dp_packet **packets, int cnt,
3625 bool md_is_valid, odp_port_t port_no)
3626 {
3627 #if !defined(__CHECKER__) && !defined(_WIN32)
3628 const size_t PKT_ARRAY_SIZE = cnt;
3629 #else
3630 /* Sparse or MSVC doesn't like variable length array. */
3631 enum { PKT_ARRAY_SIZE = NETDEV_MAX_BURST };
3632 #endif
3633 struct netdev_flow_key keys[PKT_ARRAY_SIZE];
3634 struct packet_batch batches[PKT_ARRAY_SIZE];
3635 long long now = time_msec();
3636 size_t newcnt, n_batches, i;
3637
3638 n_batches = 0;
3639 newcnt = emc_processing(pmd, packets, cnt, keys, batches, &n_batches,
3640 md_is_valid, port_no);
3641 if (OVS_UNLIKELY(newcnt)) {
3642 fast_path_processing(pmd, packets, newcnt, keys, batches, &n_batches);
3643 }
3644
3645 for (i = 0; i < n_batches; i++) {
3646 batches[i].flow->batch = NULL;
3647 }
3648
3649 for (i = 0; i < n_batches; i++) {
3650 packet_batch_execute(&batches[i], pmd, now);
3651 }
3652 }
3653
3654 static void
3655 dp_netdev_input(struct dp_netdev_pmd_thread *pmd,
3656 struct dp_packet **packets, int cnt,
3657 odp_port_t port_no)
3658 {
3659 dp_netdev_input__(pmd, packets, cnt, false, port_no);
3660 }
3661
3662 static void
3663 dp_netdev_recirculate(struct dp_netdev_pmd_thread *pmd,
3664 struct dp_packet **packets, int cnt)
3665 {
3666 dp_netdev_input__(pmd, packets, cnt, true, 0);
3667 }
3668
3669 struct dp_netdev_execute_aux {
3670 struct dp_netdev_pmd_thread *pmd;
3671 };
3672
3673 static void
3674 dpif_netdev_register_dp_purge_cb(struct dpif *dpif, dp_purge_callback *cb,
3675 void *aux)
3676 {
3677 struct dp_netdev *dp = get_dp_netdev(dpif);
3678 dp->dp_purge_aux = aux;
3679 dp->dp_purge_cb = cb;
3680 }
3681
3682 static void
3683 dpif_netdev_register_upcall_cb(struct dpif *dpif, upcall_callback *cb,
3684 void *aux)
3685 {
3686 struct dp_netdev *dp = get_dp_netdev(dpif);
3687 dp->upcall_aux = aux;
3688 dp->upcall_cb = cb;
3689 }
3690
3691 static void
3692 dp_netdev_drop_packets(struct dp_packet **packets, int cnt, bool may_steal)
3693 {
3694 if (may_steal) {
3695 int i;
3696
3697 for (i = 0; i < cnt; i++) {
3698 dp_packet_delete(packets[i]);
3699 }
3700 }
3701 }
3702
3703 static int
3704 push_tnl_action(const struct dp_netdev *dp,
3705 const struct nlattr *attr,
3706 struct dp_packet **packets, int cnt)
3707 {
3708 struct dp_netdev_port *tun_port;
3709 const struct ovs_action_push_tnl *data;
3710
3711 data = nl_attr_get(attr);
3712
3713 tun_port = dp_netdev_lookup_port(dp, u32_to_odp(data->tnl_port));
3714 if (!tun_port) {
3715 return -EINVAL;
3716 }
3717 netdev_push_header(tun_port->netdev, packets, cnt, data);
3718
3719 return 0;
3720 }
3721
3722 static void
3723 dp_netdev_clone_pkt_batch(struct dp_packet **dst_pkts,
3724 struct dp_packet **src_pkts, int cnt)
3725 {
3726 int i;
3727
3728 for (i = 0; i < cnt; i++) {
3729 dst_pkts[i] = dp_packet_clone(src_pkts[i]);
3730 }
3731 }
3732
3733 static void
3734 dp_execute_cb(void *aux_, struct dp_packet **packets, int cnt,
3735 const struct nlattr *a, bool may_steal)
3736 OVS_NO_THREAD_SAFETY_ANALYSIS
3737 {
3738 struct dp_netdev_execute_aux *aux = aux_;
3739 uint32_t *depth = recirc_depth_get();
3740 struct dp_netdev_pmd_thread *pmd = aux->pmd;
3741 struct dp_netdev *dp = pmd->dp;
3742 int type = nl_attr_type(a);
3743 struct dp_netdev_port *p;
3744 int i;
3745
3746 switch ((enum ovs_action_attr)type) {
3747 case OVS_ACTION_ATTR_OUTPUT:
3748 p = dp_netdev_lookup_port(dp, u32_to_odp(nl_attr_get_u32(a)));
3749 if (OVS_LIKELY(p)) {
3750 int tx_qid;
3751
3752 atomic_read_relaxed(&pmd->tx_qid, &tx_qid);
3753
3754 netdev_send(p->netdev, tx_qid, packets, cnt, may_steal);
3755 return;
3756 }
3757 break;
3758
3759 case OVS_ACTION_ATTR_TUNNEL_PUSH:
3760 if (*depth < MAX_RECIRC_DEPTH) {
3761 struct dp_packet *tnl_pkt[NETDEV_MAX_BURST];
3762 int err;
3763
3764 if (!may_steal) {
3765 dp_netdev_clone_pkt_batch(tnl_pkt, packets, cnt);
3766 packets = tnl_pkt;
3767 }
3768
3769 err = push_tnl_action(dp, a, packets, cnt);
3770 if (!err) {
3771 (*depth)++;
3772 dp_netdev_recirculate(pmd, packets, cnt);
3773 (*depth)--;
3774 } else {
3775 dp_netdev_drop_packets(tnl_pkt, cnt, !may_steal);
3776 }
3777 return;
3778 }
3779 break;
3780
3781 case OVS_ACTION_ATTR_TUNNEL_POP:
3782 if (*depth < MAX_RECIRC_DEPTH) {
3783 odp_port_t portno = u32_to_odp(nl_attr_get_u32(a));
3784
3785 p = dp_netdev_lookup_port(dp, portno);
3786 if (p) {
3787 struct dp_packet *tnl_pkt[NETDEV_MAX_BURST];
3788 int err;
3789
3790 if (!may_steal) {
3791 dp_netdev_clone_pkt_batch(tnl_pkt, packets, cnt);
3792 packets = tnl_pkt;
3793 }
3794
3795 err = netdev_pop_header(p->netdev, packets, cnt);
3796 if (!err) {
3797
3798 for (i = 0; i < cnt; i++) {
3799 packets[i]->md.in_port.odp_port = portno;
3800 }
3801
3802 (*depth)++;
3803 dp_netdev_recirculate(pmd, packets, cnt);
3804 (*depth)--;
3805 } else {
3806 dp_netdev_drop_packets(tnl_pkt, cnt, !may_steal);
3807 }
3808 return;
3809 }
3810 }
3811 break;
3812
3813 case OVS_ACTION_ATTR_USERSPACE:
3814 if (!fat_rwlock_tryrdlock(&dp->upcall_rwlock)) {
3815 const struct nlattr *userdata;
3816 struct ofpbuf actions;
3817 struct flow flow;
3818 ovs_u128 ufid;
3819
3820 userdata = nl_attr_find_nested(a, OVS_USERSPACE_ATTR_USERDATA);
3821 ofpbuf_init(&actions, 0);
3822
3823 for (i = 0; i < cnt; i++) {
3824 int error;
3825
3826 ofpbuf_clear(&actions);
3827
3828 flow_extract(packets[i], &flow);
3829 dpif_flow_hash(dp->dpif, &flow, sizeof flow, &ufid);
3830 error = dp_netdev_upcall(pmd, packets[i], &flow, NULL, &ufid,
3831 DPIF_UC_ACTION, userdata,&actions,
3832 NULL);
3833 if (!error || error == ENOSPC) {
3834 dp_netdev_execute_actions(pmd, &packets[i], 1, may_steal,
3835 actions.data, actions.size);
3836 } else if (may_steal) {
3837 dp_packet_delete(packets[i]);
3838 }
3839 }
3840 ofpbuf_uninit(&actions);
3841 fat_rwlock_unlock(&dp->upcall_rwlock);
3842
3843 return;
3844 }
3845 break;
3846
3847 case OVS_ACTION_ATTR_RECIRC:
3848 if (*depth < MAX_RECIRC_DEPTH) {
3849 struct dp_packet *recirc_pkts[NETDEV_MAX_BURST];
3850
3851 if (!may_steal) {
3852 dp_netdev_clone_pkt_batch(recirc_pkts, packets, cnt);
3853 packets = recirc_pkts;
3854 }
3855
3856 for (i = 0; i < cnt; i++) {
3857 packets[i]->md.recirc_id = nl_attr_get_u32(a);
3858 }
3859
3860 (*depth)++;
3861 dp_netdev_recirculate(pmd, packets, cnt);
3862 (*depth)--;
3863
3864 return;
3865 }
3866
3867 VLOG_WARN("Packet dropped. Max recirculation depth exceeded.");
3868 break;
3869
3870 case OVS_ACTION_ATTR_CT:
3871 /* If a flow with this action is slow-pathed, datapath assistance is
3872 * required to implement it. However, we don't support this action
3873 * in the userspace datapath. */
3874 VLOG_WARN("Cannot execute conntrack action in userspace.");
3875 break;
3876
3877 case OVS_ACTION_ATTR_PUSH_VLAN:
3878 case OVS_ACTION_ATTR_POP_VLAN:
3879 case OVS_ACTION_ATTR_PUSH_MPLS:
3880 case OVS_ACTION_ATTR_POP_MPLS:
3881 case OVS_ACTION_ATTR_SET:
3882 case OVS_ACTION_ATTR_SET_MASKED:
3883 case OVS_ACTION_ATTR_SAMPLE:
3884 case OVS_ACTION_ATTR_HASH:
3885 case OVS_ACTION_ATTR_UNSPEC:
3886 case __OVS_ACTION_ATTR_MAX:
3887 OVS_NOT_REACHED();
3888 }
3889
3890 dp_netdev_drop_packets(packets, cnt, may_steal);
3891 }
3892
3893 static void
3894 dp_netdev_execute_actions(struct dp_netdev_pmd_thread *pmd,
3895 struct dp_packet **packets, int cnt,
3896 bool may_steal,
3897 const struct nlattr *actions, size_t actions_len)
3898 {
3899 struct dp_netdev_execute_aux aux = { pmd };
3900
3901 odp_execute_actions(&aux, packets, cnt, may_steal, actions,
3902 actions_len, dp_execute_cb);
3903 }
3904
3905 const struct dpif_class dpif_netdev_class = {
3906 "netdev",
3907 dpif_netdev_init,
3908 dpif_netdev_enumerate,
3909 dpif_netdev_port_open_type,
3910 dpif_netdev_open,
3911 dpif_netdev_close,
3912 dpif_netdev_destroy,
3913 dpif_netdev_run,
3914 dpif_netdev_wait,
3915 dpif_netdev_get_stats,
3916 dpif_netdev_port_add,
3917 dpif_netdev_port_del,
3918 dpif_netdev_port_query_by_number,
3919 dpif_netdev_port_query_by_name,
3920 NULL, /* port_get_pid */
3921 dpif_netdev_port_dump_start,
3922 dpif_netdev_port_dump_next,
3923 dpif_netdev_port_dump_done,
3924 dpif_netdev_port_poll,
3925 dpif_netdev_port_poll_wait,
3926 dpif_netdev_flow_flush,
3927 dpif_netdev_flow_dump_create,
3928 dpif_netdev_flow_dump_destroy,
3929 dpif_netdev_flow_dump_thread_create,
3930 dpif_netdev_flow_dump_thread_destroy,
3931 dpif_netdev_flow_dump_next,
3932 dpif_netdev_operate,
3933 NULL, /* recv_set */
3934 NULL, /* handlers_set */
3935 dpif_netdev_pmd_set,
3936 dpif_netdev_queue_to_priority,
3937 NULL, /* recv */
3938 NULL, /* recv_wait */
3939 NULL, /* recv_purge */
3940 dpif_netdev_register_dp_purge_cb,
3941 dpif_netdev_register_upcall_cb,
3942 dpif_netdev_enable_upcall,
3943 dpif_netdev_disable_upcall,
3944 dpif_netdev_get_datapath_version,
3945 NULL, /* ct_dump_start */
3946 NULL, /* ct_dump_next */
3947 NULL, /* ct_dump_done */
3948 NULL, /* ct_flush */
3949 };
3950
3951 static void
3952 dpif_dummy_change_port_number(struct unixctl_conn *conn, int argc OVS_UNUSED,
3953 const char *argv[], void *aux OVS_UNUSED)
3954 {
3955 struct dp_netdev_port *old_port;
3956 struct dp_netdev_port *new_port;
3957 struct dp_netdev *dp;
3958 odp_port_t port_no;
3959
3960 ovs_mutex_lock(&dp_netdev_mutex);
3961 dp = shash_find_data(&dp_netdevs, argv[1]);
3962 if (!dp || !dpif_netdev_class_is_dummy(dp->class)) {
3963 ovs_mutex_unlock(&dp_netdev_mutex);
3964 unixctl_command_reply_error(conn, "unknown datapath or not a dummy");
3965 return;
3966 }
3967 ovs_refcount_ref(&dp->ref_cnt);
3968 ovs_mutex_unlock(&dp_netdev_mutex);
3969
3970 ovs_mutex_lock(&dp->port_mutex);
3971 if (get_port_by_name(dp, argv[2], &old_port)) {
3972 unixctl_command_reply_error(conn, "unknown port");
3973 goto exit;
3974 }
3975
3976 port_no = u32_to_odp(atoi(argv[3]));
3977 if (!port_no || port_no == ODPP_NONE) {
3978 unixctl_command_reply_error(conn, "bad port number");
3979 goto exit;
3980 }
3981 if (dp_netdev_lookup_port(dp, port_no)) {
3982 unixctl_command_reply_error(conn, "port number already in use");
3983 goto exit;
3984 }
3985
3986 /* Remove old port. */
3987 cmap_remove(&dp->ports, &old_port->node, hash_port_no(old_port->port_no));
3988 ovsrcu_postpone(free, old_port);
3989
3990 /* Insert new port (cmap semantics mean we cannot re-insert 'old_port'). */
3991 new_port = xmemdup(old_port, sizeof *old_port);
3992 new_port->port_no = port_no;
3993 cmap_insert(&dp->ports, &new_port->node, hash_port_no(port_no));
3994
3995 seq_change(dp->port_seq);
3996 unixctl_command_reply(conn, NULL);
3997
3998 exit:
3999 ovs_mutex_unlock(&dp->port_mutex);
4000 dp_netdev_unref(dp);
4001 }
4002
4003 static void
4004 dpif_dummy_delete_port(struct unixctl_conn *conn, int argc OVS_UNUSED,
4005 const char *argv[], void *aux OVS_UNUSED)
4006 {
4007 struct dp_netdev_port *port;
4008 struct dp_netdev *dp;
4009
4010 ovs_mutex_lock(&dp_netdev_mutex);
4011 dp = shash_find_data(&dp_netdevs, argv[1]);
4012 if (!dp || !dpif_netdev_class_is_dummy(dp->class)) {
4013 ovs_mutex_unlock(&dp_netdev_mutex);
4014 unixctl_command_reply_error(conn, "unknown datapath or not a dummy");
4015 return;
4016 }
4017 ovs_refcount_ref(&dp->ref_cnt);
4018 ovs_mutex_unlock(&dp_netdev_mutex);
4019
4020 ovs_mutex_lock(&dp->port_mutex);
4021 if (get_port_by_name(dp, argv[2], &port)) {
4022 unixctl_command_reply_error(conn, "unknown port");
4023 } else if (port->port_no == ODPP_LOCAL) {
4024 unixctl_command_reply_error(conn, "can't delete local port");
4025 } else {
4026 do_del_port(dp, port);
4027 unixctl_command_reply(conn, NULL);
4028 }
4029 ovs_mutex_unlock(&dp->port_mutex);
4030
4031 dp_netdev_unref(dp);
4032 }
4033
4034 static void
4035 dpif_dummy_register__(const char *type)
4036 {
4037 struct dpif_class *class;
4038
4039 class = xmalloc(sizeof *class);
4040 *class = dpif_netdev_class;
4041 class->type = xstrdup(type);
4042 dp_register_provider(class);
4043 }
4044
4045 static void
4046 dpif_dummy_override(const char *type)
4047 {
4048 int error;
4049
4050 /*
4051 * Ignore EAFNOSUPPORT to allow --enable-dummy=system with
4052 * a userland-only build. It's useful for testsuite.
4053 */
4054 error = dp_unregister_provider(type);
4055 if (error == 0 || error == EAFNOSUPPORT) {
4056 dpif_dummy_register__(type);
4057 }
4058 }
4059
4060 void
4061 dpif_dummy_register(enum dummy_level level)
4062 {
4063 if (level == DUMMY_OVERRIDE_ALL) {
4064 struct sset types;
4065 const char *type;
4066
4067 sset_init(&types);
4068 dp_enumerate_types(&types);
4069 SSET_FOR_EACH (type, &types) {
4070 dpif_dummy_override(type);
4071 }
4072 sset_destroy(&types);
4073 } else if (level == DUMMY_OVERRIDE_SYSTEM) {
4074 dpif_dummy_override("system");
4075 }
4076
4077 dpif_dummy_register__("dummy");
4078
4079 unixctl_command_register("dpif-dummy/change-port-number",
4080 "dp port new-number",
4081 3, 3, dpif_dummy_change_port_number, NULL);
4082 unixctl_command_register("dpif-dummy/delete-port", "dp port",
4083 2, 2, dpif_dummy_delete_port, NULL);
4084 }
4085 \f
4086 /* Datapath Classifier. */
4087
4088 /* A set of rules that all have the same fields wildcarded. */
4089 struct dpcls_subtable {
4090 /* The fields are only used by writers. */
4091 struct cmap_node cmap_node OVS_GUARDED; /* Within dpcls 'subtables_map'. */
4092
4093 /* These fields are accessed by readers. */
4094 struct cmap rules; /* Contains "struct dpcls_rule"s. */
4095 struct netdev_flow_key mask; /* Wildcards for fields (const). */
4096 /* 'mask' must be the last field, additional space is allocated here. */
4097 };
4098
4099 /* Initializes 'cls' as a classifier that initially contains no classification
4100 * rules. */
4101 static void
4102 dpcls_init(struct dpcls *cls)
4103 {
4104 cmap_init(&cls->subtables_map);
4105 pvector_init(&cls->subtables);
4106 }
4107
4108 static void
4109 dpcls_destroy_subtable(struct dpcls *cls, struct dpcls_subtable *subtable)
4110 {
4111 pvector_remove(&cls->subtables, subtable);
4112 cmap_remove(&cls->subtables_map, &subtable->cmap_node,
4113 subtable->mask.hash);
4114 cmap_destroy(&subtable->rules);
4115 ovsrcu_postpone(free, subtable);
4116 }
4117
4118 /* Destroys 'cls'. Rules within 'cls', if any, are not freed; this is the
4119 * caller's responsibility.
4120 * May only be called after all the readers have been terminated. */
4121 static void
4122 dpcls_destroy(struct dpcls *cls)
4123 {
4124 if (cls) {
4125 struct dpcls_subtable *subtable;
4126
4127 CMAP_FOR_EACH (subtable, cmap_node, &cls->subtables_map) {
4128 ovs_assert(cmap_count(&subtable->rules) == 0);
4129 dpcls_destroy_subtable(cls, subtable);
4130 }
4131 cmap_destroy(&cls->subtables_map);
4132 pvector_destroy(&cls->subtables);
4133 }
4134 }
4135
4136 static struct dpcls_subtable *
4137 dpcls_create_subtable(struct dpcls *cls, const struct netdev_flow_key *mask)
4138 {
4139 struct dpcls_subtable *subtable;
4140
4141 /* Need to add one. */
4142 subtable = xmalloc(sizeof *subtable
4143 - sizeof subtable->mask.mf + mask->len);
4144 cmap_init(&subtable->rules);
4145 netdev_flow_key_clone(&subtable->mask, mask);
4146 cmap_insert(&cls->subtables_map, &subtable->cmap_node, mask->hash);
4147 pvector_insert(&cls->subtables, subtable, 0);
4148 pvector_publish(&cls->subtables);
4149
4150 return subtable;
4151 }
4152
4153 static inline struct dpcls_subtable *
4154 dpcls_find_subtable(struct dpcls *cls, const struct netdev_flow_key *mask)
4155 {
4156 struct dpcls_subtable *subtable;
4157
4158 CMAP_FOR_EACH_WITH_HASH (subtable, cmap_node, mask->hash,
4159 &cls->subtables_map) {
4160 if (netdev_flow_key_equal(&subtable->mask, mask)) {
4161 return subtable;
4162 }
4163 }
4164 return dpcls_create_subtable(cls, mask);
4165 }
4166
4167 /* Insert 'rule' into 'cls'. */
4168 static void
4169 dpcls_insert(struct dpcls *cls, struct dpcls_rule *rule,
4170 const struct netdev_flow_key *mask)
4171 {
4172 struct dpcls_subtable *subtable = dpcls_find_subtable(cls, mask);
4173
4174 rule->mask = &subtable->mask;
4175 cmap_insert(&subtable->rules, &rule->cmap_node, rule->flow.hash);
4176 }
4177
4178 /* Removes 'rule' from 'cls', also destructing the 'rule'. */
4179 static void
4180 dpcls_remove(struct dpcls *cls, struct dpcls_rule *rule)
4181 {
4182 struct dpcls_subtable *subtable;
4183
4184 ovs_assert(rule->mask);
4185
4186 INIT_CONTAINER(subtable, rule->mask, mask);
4187
4188 if (cmap_remove(&subtable->rules, &rule->cmap_node, rule->flow.hash)
4189 == 0) {
4190 dpcls_destroy_subtable(cls, subtable);
4191 pvector_publish(&cls->subtables);
4192 }
4193 }
4194
4195 /* Returns true if 'target' satisfies 'key' in 'mask', that is, if each 1-bit
4196 * in 'mask' the values in 'key' and 'target' are the same. */
4197 static inline bool
4198 dpcls_rule_matches_key(const struct dpcls_rule *rule,
4199 const struct netdev_flow_key *target)
4200 {
4201 const uint64_t *keyp = miniflow_get_values(&rule->flow.mf);
4202 const uint64_t *maskp = miniflow_get_values(&rule->mask->mf);
4203 uint64_t value;
4204
4205 NETDEV_FLOW_KEY_FOR_EACH_IN_FLOWMAP(value, target, rule->flow.mf.map) {
4206 if (OVS_UNLIKELY((value & *maskp++) != *keyp++)) {
4207 return false;
4208 }
4209 }
4210 return true;
4211 }
4212
4213 /* For each miniflow in 'flows' performs a classifier lookup writing the result
4214 * into the corresponding slot in 'rules'. If a particular entry in 'flows' is
4215 * NULL it is skipped.
4216 *
4217 * This function is optimized for use in the userspace datapath and therefore
4218 * does not implement a lot of features available in the standard
4219 * classifier_lookup() function. Specifically, it does not implement
4220 * priorities, instead returning any rule which matches the flow.
4221 *
4222 * Returns true if all flows found a corresponding rule. */
4223 static bool
4224 dpcls_lookup(const struct dpcls *cls, const struct netdev_flow_key keys[],
4225 struct dpcls_rule **rules, const size_t cnt)
4226 {
4227 /* The batch size 16 was experimentally found faster than 8 or 32. */
4228 typedef uint16_t map_type;
4229 #define MAP_BITS (sizeof(map_type) * CHAR_BIT)
4230
4231 #if !defined(__CHECKER__) && !defined(_WIN32)
4232 const int N_MAPS = DIV_ROUND_UP(cnt, MAP_BITS);
4233 #else
4234 enum { N_MAPS = DIV_ROUND_UP(NETDEV_MAX_BURST, MAP_BITS) };
4235 #endif
4236 map_type maps[N_MAPS];
4237 struct dpcls_subtable *subtable;
4238
4239 memset(maps, 0xff, sizeof maps);
4240 if (cnt % MAP_BITS) {
4241 maps[N_MAPS - 1] >>= MAP_BITS - cnt % MAP_BITS; /* Clear extra bits. */
4242 }
4243 memset(rules, 0, cnt * sizeof *rules);
4244
4245 PVECTOR_FOR_EACH (subtable, &cls->subtables) {
4246 const struct netdev_flow_key *mkeys = keys;
4247 struct dpcls_rule **mrules = rules;
4248 map_type remains = 0;
4249 int m;
4250
4251 BUILD_ASSERT_DECL(sizeof remains == sizeof *maps);
4252
4253 for (m = 0; m < N_MAPS; m++, mkeys += MAP_BITS, mrules += MAP_BITS) {
4254 uint32_t hashes[MAP_BITS];
4255 const struct cmap_node *nodes[MAP_BITS];
4256 unsigned long map = maps[m];
4257 int i;
4258
4259 if (!map) {
4260 continue; /* Skip empty maps. */
4261 }
4262
4263 /* Compute hashes for the remaining keys. */
4264 ULLONG_FOR_EACH_1(i, map) {
4265 hashes[i] = netdev_flow_key_hash_in_mask(&mkeys[i],
4266 &subtable->mask);
4267 }
4268 /* Lookup. */
4269 map = cmap_find_batch(&subtable->rules, map, hashes, nodes);
4270 /* Check results. */
4271 ULLONG_FOR_EACH_1(i, map) {
4272 struct dpcls_rule *rule;
4273
4274 CMAP_NODE_FOR_EACH (rule, cmap_node, nodes[i]) {
4275 if (OVS_LIKELY(dpcls_rule_matches_key(rule, &mkeys[i]))) {
4276 mrules[i] = rule;
4277 goto next;
4278 }
4279 }
4280 ULLONG_SET0(map, i); /* Did not match. */
4281 next:
4282 ; /* Keep Sparse happy. */
4283 }
4284 maps[m] &= ~map; /* Clear the found rules. */
4285 remains |= maps[m];
4286 }
4287 if (!remains) {
4288 return true; /* All found. */
4289 }
4290 }
4291 return false; /* Some misses. */
4292 }