]> git.proxmox.com Git - ovs.git/blob - lib/dpif-netdev.c
dpif-netdev: Store miniflow length in exact match cache
[ovs.git] / lib / dpif-netdev.c
1 /*
2 * Copyright (c) 2009, 2010, 2011, 2012, 2013, 2014 Nicira, Inc.
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at:
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <config.h>
18 #include "dpif-netdev.h"
19
20 #include <ctype.h>
21 #include <errno.h>
22 #include <fcntl.h>
23 #include <inttypes.h>
24 #include <netinet/in.h>
25 #include <sys/socket.h>
26 #include <net/if.h>
27 #include <stdint.h>
28 #include <stdlib.h>
29 #include <string.h>
30 #include <sys/ioctl.h>
31 #include <sys/stat.h>
32 #include <unistd.h>
33
34 #include "classifier.h"
35 #include "cmap.h"
36 #include "csum.h"
37 #include "dpif.h"
38 #include "dpif-provider.h"
39 #include "dummy.h"
40 #include "dynamic-string.h"
41 #include "fat-rwlock.h"
42 #include "flow.h"
43 #include "cmap.h"
44 #include "latch.h"
45 #include "list.h"
46 #include "meta-flow.h"
47 #include "netdev.h"
48 #include "netdev-dpdk.h"
49 #include "netdev-vport.h"
50 #include "netlink.h"
51 #include "odp-execute.h"
52 #include "odp-util.h"
53 #include "ofp-print.h"
54 #include "ofpbuf.h"
55 #include "ovs-numa.h"
56 #include "ovs-rcu.h"
57 #include "packet-dpif.h"
58 #include "packets.h"
59 #include "poll-loop.h"
60 #include "random.h"
61 #include "seq.h"
62 #include "shash.h"
63 #include "sset.h"
64 #include "timeval.h"
65 #include "unixctl.h"
66 #include "util.h"
67 #include "vlog.h"
68
69 VLOG_DEFINE_THIS_MODULE(dpif_netdev);
70
71 /* By default, choose a priority in the middle. */
72 #define NETDEV_RULE_PRIORITY 0x8000
73
74 #define FLOW_DUMP_MAX_BATCH 50
75 /* Use per thread recirc_depth to prevent recirculation loop. */
76 #define MAX_RECIRC_DEPTH 5
77 DEFINE_STATIC_PER_THREAD_DATA(uint32_t, recirc_depth, 0)
78
79 /* Configuration parameters. */
80 enum { MAX_FLOWS = 65536 }; /* Maximum number of flows in flow table. */
81
82 /* Protects against changes to 'dp_netdevs'. */
83 static struct ovs_mutex dp_netdev_mutex = OVS_MUTEX_INITIALIZER;
84
85 /* Contains all 'struct dp_netdev's. */
86 static struct shash dp_netdevs OVS_GUARDED_BY(dp_netdev_mutex)
87 = SHASH_INITIALIZER(&dp_netdevs);
88
89 static struct vlog_rate_limit upcall_rl = VLOG_RATE_LIMIT_INIT(600, 600);
90
91 /* Stores a miniflow with inline values */
92
93 /* There are fields in the flow structure that we never use. Therefore we can
94 * save a few words of memory */
95 #define NETDEV_KEY_BUF_SIZE_U32 (FLOW_U32S \
96 - MINI_N_INLINE \
97 - FLOW_U32_SIZE(regs) \
98 - FLOW_U32_SIZE(metadata) \
99 )
100 struct netdev_flow_key {
101 struct miniflow flow;
102 uint32_t buf[NETDEV_KEY_BUF_SIZE_U32];
103 };
104
105 /* Exact match cache for frequently used flows
106 *
107 * The cache uses a 32-bit hash of the packet (which can be the RSS hash) to
108 * search its entries for a miniflow that matches exactly the miniflow of the
109 * packet. It stores the 'cls_rule'(rule) that matches the miniflow.
110 *
111 * A cache entry holds a reference to its 'dp_netdev_flow'.
112 *
113 * A miniflow with a given hash can be in one of EM_FLOW_HASH_SEGS different
114 * entries. The 32-bit hash is split into EM_FLOW_HASH_SEGS values (each of
115 * them is EM_FLOW_HASH_SHIFT bits wide and the remainder is thrown away). Each
116 * value is the index of a cache entry where the miniflow could be.
117 *
118 *
119 * Thread-safety
120 * =============
121 *
122 * Each pmd_thread has its own private exact match cache.
123 * If dp_netdev_input is not called from a pmd thread, a mutex is used.
124 */
125
126 #define EM_FLOW_HASH_SHIFT 10
127 #define EM_FLOW_HASH_ENTRIES (1u << EM_FLOW_HASH_SHIFT)
128 #define EM_FLOW_HASH_MASK (EM_FLOW_HASH_ENTRIES - 1)
129 #define EM_FLOW_HASH_SEGS 2
130
131 struct emc_entry {
132 uint32_t hash;
133 uint32_t mf_len;
134 struct netdev_flow_key mf;
135 struct dp_netdev_flow *flow;
136 };
137
138 struct emc_cache {
139 struct emc_entry entries[EM_FLOW_HASH_ENTRIES];
140 };
141
142 /* Iterate in the exact match cache through every entry that might contain a
143 * miniflow with hash 'HASH'. */
144 #define EMC_FOR_EACH_POS_WITH_HASH(EMC, CURRENT_ENTRY, HASH) \
145 for (uint32_t i__ = 0, srch_hash__ = (HASH); \
146 (CURRENT_ENTRY) = &(EMC)->entries[srch_hash__ & EM_FLOW_HASH_MASK], \
147 i__ < EM_FLOW_HASH_SEGS; \
148 i__++, srch_hash__ >>= EM_FLOW_HASH_SHIFT)
149
150 /* Datapath based on the network device interface from netdev.h.
151 *
152 *
153 * Thread-safety
154 * =============
155 *
156 * Some members, marked 'const', are immutable. Accessing other members
157 * requires synchronization, as noted in more detail below.
158 *
159 * Acquisition order is, from outermost to innermost:
160 *
161 * dp_netdev_mutex (global)
162 * port_mutex
163 * flow_mutex
164 */
165 struct dp_netdev {
166 const struct dpif_class *const class;
167 const char *const name;
168 struct dpif *dpif;
169 struct ovs_refcount ref_cnt;
170 atomic_flag destroyed;
171
172 /* Flows.
173 *
174 * Writers of 'flow_table' must take the 'flow_mutex'. Corresponding
175 * changes to 'cls' must be made while still holding the 'flow_mutex'.
176 */
177 struct ovs_mutex flow_mutex;
178 struct classifier cls;
179 struct cmap flow_table OVS_GUARDED; /* Flow table. */
180
181 /* Statistics.
182 *
183 * ovsthread_stats is internally synchronized. */
184 struct ovsthread_stats stats; /* Contains 'struct dp_netdev_stats *'. */
185
186 /* Ports.
187 *
188 * Protected by RCU. Take the mutex to add or remove ports. */
189 struct ovs_mutex port_mutex;
190 struct cmap ports;
191 struct seq *port_seq; /* Incremented whenever a port changes. */
192
193 /* Protects access to ofproto-dpif-upcall interface during revalidator
194 * thread synchronization. */
195 struct fat_rwlock upcall_rwlock;
196 upcall_callback *upcall_cb; /* Callback function for executing upcalls. */
197 void *upcall_aux;
198
199 /* Stores all 'struct dp_netdev_pmd_thread's. */
200 struct cmap poll_threads;
201
202 /* Protects the access of the 'struct dp_netdev_pmd_thread'
203 * instance for non-pmd thread. */
204 struct ovs_mutex non_pmd_mutex;
205
206 /* Each pmd thread will store its pointer to
207 * 'struct dp_netdev_pmd_thread' in 'per_pmd_key'. */
208 ovsthread_key_t per_pmd_key;
209 };
210
211 static struct dp_netdev_port *dp_netdev_lookup_port(const struct dp_netdev *dp,
212 odp_port_t);
213
214 enum dp_stat_type {
215 DP_STAT_HIT, /* Packets that matched in the flow table. */
216 DP_STAT_MISS, /* Packets that did not match. */
217 DP_STAT_LOST, /* Packets not passed up to the client. */
218 DP_N_STATS
219 };
220
221 /* Contained by struct dp_netdev's 'stats' member. */
222 struct dp_netdev_stats {
223 struct ovs_mutex mutex; /* Protects 'n'. */
224
225 /* Indexed by DP_STAT_*, protected by 'mutex'. */
226 unsigned long long int n[DP_N_STATS] OVS_GUARDED;
227 };
228
229
230 /* A port in a netdev-based datapath. */
231 struct dp_netdev_port {
232 struct cmap_node node; /* Node in dp_netdev's 'ports'. */
233 odp_port_t port_no;
234 struct netdev *netdev;
235 struct netdev_saved_flags *sf;
236 struct netdev_rxq **rxq;
237 struct ovs_refcount ref_cnt;
238 char *type; /* Port type as requested by user. */
239 };
240
241 /* A flow in dp_netdev's 'flow_table'.
242 *
243 *
244 * Thread-safety
245 * =============
246 *
247 * Except near the beginning or ending of its lifespan, rule 'rule' belongs to
248 * its dp_netdev's classifier. The text below calls this classifier 'cls'.
249 *
250 * Motivation
251 * ----------
252 *
253 * The thread safety rules described here for "struct dp_netdev_flow" are
254 * motivated by two goals:
255 *
256 * - Prevent threads that read members of "struct dp_netdev_flow" from
257 * reading bad data due to changes by some thread concurrently modifying
258 * those members.
259 *
260 * - Prevent two threads making changes to members of a given "struct
261 * dp_netdev_flow" from interfering with each other.
262 *
263 *
264 * Rules
265 * -----
266 *
267 * A flow 'flow' may be accessed without a risk of being freed during an RCU
268 * grace period. Code that needs to hold onto a flow for a while
269 * should try incrementing 'flow->ref_cnt' with dp_netdev_flow_ref().
270 *
271 * 'flow->ref_cnt' protects 'flow' from being freed. It doesn't protect the
272 * flow from being deleted from 'cls' and it doesn't protect members of 'flow'
273 * from modification.
274 *
275 * Some members, marked 'const', are immutable. Accessing other members
276 * requires synchronization, as noted in more detail below.
277 */
278 struct dp_netdev_flow {
279 bool dead;
280 /* Packet classification. */
281 const struct cls_rule cr; /* In owning dp_netdev's 'cls'. */
282
283 /* Hash table index by unmasked flow. */
284 const struct cmap_node node; /* In owning dp_netdev's 'flow_table'. */
285 const struct flow flow; /* The flow that created this entry. */
286
287 /* Number of references.
288 * The classifier owns one reference.
289 * Any thread trying to keep a rule from being freed should hold its own
290 * reference. */
291 struct ovs_refcount ref_cnt;
292
293 /* Statistics.
294 *
295 * Reading or writing these members requires 'mutex'. */
296 struct ovsthread_stats stats; /* Contains "struct dp_netdev_flow_stats". */
297
298 /* Actions. */
299 OVSRCU_TYPE(struct dp_netdev_actions *) actions;
300 };
301
302 static void dp_netdev_flow_unref(struct dp_netdev_flow *);
303 static bool dp_netdev_flow_ref(struct dp_netdev_flow *);
304
305 /* Contained by struct dp_netdev_flow's 'stats' member. */
306 struct dp_netdev_flow_stats {
307 struct ovs_mutex mutex; /* Guards all the other members. */
308
309 long long int used OVS_GUARDED; /* Last used time, in monotonic msecs. */
310 long long int packet_count OVS_GUARDED; /* Number of packets matched. */
311 long long int byte_count OVS_GUARDED; /* Number of bytes matched. */
312 uint16_t tcp_flags OVS_GUARDED; /* Bitwise-OR of seen tcp_flags values. */
313 };
314
315 /* A set of datapath actions within a "struct dp_netdev_flow".
316 *
317 *
318 * Thread-safety
319 * =============
320 *
321 * A struct dp_netdev_actions 'actions' is protected with RCU. */
322 struct dp_netdev_actions {
323 /* These members are immutable: they do not change during the struct's
324 * lifetime. */
325 struct nlattr *actions; /* Sequence of OVS_ACTION_ATTR_* attributes. */
326 unsigned int size; /* Size of 'actions', in bytes. */
327 };
328
329 struct dp_netdev_actions *dp_netdev_actions_create(const struct nlattr *,
330 size_t);
331 struct dp_netdev_actions *dp_netdev_flow_get_actions(
332 const struct dp_netdev_flow *);
333 static void dp_netdev_actions_free(struct dp_netdev_actions *);
334
335 /* PMD: Poll modes drivers. PMD accesses devices via polling to eliminate
336 * the performance overhead of interrupt processing. Therefore netdev can
337 * not implement rx-wait for these devices. dpif-netdev needs to poll
338 * these device to check for recv buffer. pmd-thread does polling for
339 * devices assigned to itself thread.
340 *
341 * DPDK used PMD for accessing NIC.
342 *
343 * Note, instance with cpu core id NON_PMD_CORE_ID will be reserved for
344 * I/O of all non-pmd threads. There will be no actual thread created
345 * for the instance.
346 **/
347 struct dp_netdev_pmd_thread {
348 struct dp_netdev *dp;
349 struct cmap_node node; /* In 'dp->poll_threads'. */
350 /* Per thread exact-match cache. Note, the instance for cpu core
351 * NON_PMD_CORE_ID can be accessed by multiple threads, and thusly
352 * need to be protected (e.g. by 'dp_netdev_mutex'). All other
353 * instances will only be accessed by its own pmd thread. */
354 struct emc_cache flow_cache;
355 struct latch exit_latch; /* For terminating the pmd thread. */
356 atomic_uint change_seq; /* For reloading pmd ports. */
357 pthread_t thread;
358 int index; /* Idx of this pmd thread among pmd*/
359 /* threads on same numa node. */
360 int core_id; /* CPU core id of this pmd thread. */
361 int numa_id; /* numa node id of this pmd thread. */
362 };
363
364 #define PMD_INITIAL_SEQ 1
365
366 /* Interface to netdev-based datapath. */
367 struct dpif_netdev {
368 struct dpif dpif;
369 struct dp_netdev *dp;
370 uint64_t last_port_seq;
371 };
372
373 static int get_port_by_number(struct dp_netdev *dp, odp_port_t port_no,
374 struct dp_netdev_port **portp);
375 static int get_port_by_name(struct dp_netdev *dp, const char *devname,
376 struct dp_netdev_port **portp);
377 static void dp_netdev_free(struct dp_netdev *)
378 OVS_REQUIRES(dp_netdev_mutex);
379 static void dp_netdev_flow_flush(struct dp_netdev *);
380 static int do_add_port(struct dp_netdev *dp, const char *devname,
381 const char *type, odp_port_t port_no)
382 OVS_REQUIRES(dp->port_mutex);
383 static void do_del_port(struct dp_netdev *dp, struct dp_netdev_port *)
384 OVS_REQUIRES(dp->port_mutex);
385 static int dpif_netdev_open(const struct dpif_class *, const char *name,
386 bool create, struct dpif **);
387 static void dp_netdev_execute_actions(struct dp_netdev_pmd_thread *pmd,
388 struct dpif_packet **, int c,
389 bool may_steal, struct pkt_metadata *,
390 const struct nlattr *actions,
391 size_t actions_len);
392 static void dp_netdev_input(struct dp_netdev_pmd_thread *,
393 struct dpif_packet **, int cnt,
394 struct pkt_metadata *);
395 static void dp_netdev_disable_upcall(struct dp_netdev *);
396 static void dp_netdev_configure_pmd(struct dp_netdev_pmd_thread *pmd,
397 struct dp_netdev *dp, int index,
398 int core_id, int numa_id);
399 static struct dp_netdev_pmd_thread *dp_netdev_get_nonpmd(struct dp_netdev *dp);
400 static void dp_netdev_destroy_all_pmds(struct dp_netdev *dp);
401 static void dp_netdev_del_pmds_on_numa(struct dp_netdev *dp, int numa_id);
402 static void dp_netdev_set_pmds_on_numa(struct dp_netdev *dp, int numa_id);
403
404 static void emc_clear_entry(struct emc_entry *ce);
405
406 static void
407 emc_cache_init(struct emc_cache *flow_cache)
408 {
409 int i;
410
411 for (i = 0; i < ARRAY_SIZE(flow_cache->entries); i++) {
412 flow_cache->entries[i].flow = NULL;
413 flow_cache->entries[i].hash = 0;
414 flow_cache->entries[i].mf_len = 0;
415 miniflow_initialize(&flow_cache->entries[i].mf.flow,
416 flow_cache->entries[i].mf.buf);
417 }
418 }
419
420 static void
421 emc_cache_uninit(struct emc_cache *flow_cache)
422 {
423 int i;
424
425 for (i = 0; i < ARRAY_SIZE(flow_cache->entries); i++) {
426 emc_clear_entry(&flow_cache->entries[i]);
427 }
428 }
429
430 static struct dpif_netdev *
431 dpif_netdev_cast(const struct dpif *dpif)
432 {
433 ovs_assert(dpif->dpif_class->open == dpif_netdev_open);
434 return CONTAINER_OF(dpif, struct dpif_netdev, dpif);
435 }
436
437 static struct dp_netdev *
438 get_dp_netdev(const struct dpif *dpif)
439 {
440 return dpif_netdev_cast(dpif)->dp;
441 }
442
443 static int
444 dpif_netdev_enumerate(struct sset *all_dps,
445 const struct dpif_class *dpif_class)
446 {
447 struct shash_node *node;
448
449 ovs_mutex_lock(&dp_netdev_mutex);
450 SHASH_FOR_EACH(node, &dp_netdevs) {
451 struct dp_netdev *dp = node->data;
452 if (dpif_class != dp->class) {
453 /* 'dp_netdevs' contains both "netdev" and "dummy" dpifs.
454 * If the class doesn't match, skip this dpif. */
455 continue;
456 }
457 sset_add(all_dps, node->name);
458 }
459 ovs_mutex_unlock(&dp_netdev_mutex);
460
461 return 0;
462 }
463
464 static bool
465 dpif_netdev_class_is_dummy(const struct dpif_class *class)
466 {
467 return class != &dpif_netdev_class;
468 }
469
470 static const char *
471 dpif_netdev_port_open_type(const struct dpif_class *class, const char *type)
472 {
473 return strcmp(type, "internal") ? type
474 : dpif_netdev_class_is_dummy(class) ? "dummy"
475 : "tap";
476 }
477
478 static struct dpif *
479 create_dpif_netdev(struct dp_netdev *dp)
480 {
481 uint16_t netflow_id = hash_string(dp->name, 0);
482 struct dpif_netdev *dpif;
483
484 ovs_refcount_ref(&dp->ref_cnt);
485
486 dpif = xmalloc(sizeof *dpif);
487 dpif_init(&dpif->dpif, dp->class, dp->name, netflow_id >> 8, netflow_id);
488 dpif->dp = dp;
489 dpif->last_port_seq = seq_read(dp->port_seq);
490
491 return &dpif->dpif;
492 }
493
494 /* Choose an unused, non-zero port number and return it on success.
495 * Return ODPP_NONE on failure. */
496 static odp_port_t
497 choose_port(struct dp_netdev *dp, const char *name)
498 OVS_REQUIRES(dp->port_mutex)
499 {
500 uint32_t port_no;
501
502 if (dp->class != &dpif_netdev_class) {
503 const char *p;
504 int start_no = 0;
505
506 /* If the port name begins with "br", start the number search at
507 * 100 to make writing tests easier. */
508 if (!strncmp(name, "br", 2)) {
509 start_no = 100;
510 }
511
512 /* If the port name contains a number, try to assign that port number.
513 * This can make writing unit tests easier because port numbers are
514 * predictable. */
515 for (p = name; *p != '\0'; p++) {
516 if (isdigit((unsigned char) *p)) {
517 port_no = start_no + strtol(p, NULL, 10);
518 if (port_no > 0 && port_no != odp_to_u32(ODPP_NONE)
519 && !dp_netdev_lookup_port(dp, u32_to_odp(port_no))) {
520 return u32_to_odp(port_no);
521 }
522 break;
523 }
524 }
525 }
526
527 for (port_no = 1; port_no <= UINT16_MAX; port_no++) {
528 if (!dp_netdev_lookup_port(dp, u32_to_odp(port_no))) {
529 return u32_to_odp(port_no);
530 }
531 }
532
533 return ODPP_NONE;
534 }
535
536 static int
537 create_dp_netdev(const char *name, const struct dpif_class *class,
538 struct dp_netdev **dpp)
539 OVS_REQUIRES(dp_netdev_mutex)
540 {
541 struct dp_netdev *dp;
542 struct dp_netdev_pmd_thread *non_pmd;
543 int error;
544
545 dp = xzalloc(sizeof *dp);
546 shash_add(&dp_netdevs, name, dp);
547
548 *CONST_CAST(const struct dpif_class **, &dp->class) = class;
549 *CONST_CAST(const char **, &dp->name) = xstrdup(name);
550 ovs_refcount_init(&dp->ref_cnt);
551 atomic_flag_clear(&dp->destroyed);
552
553 ovs_mutex_init(&dp->flow_mutex);
554 classifier_init(&dp->cls, NULL);
555 cmap_init(&dp->flow_table);
556
557 ovsthread_stats_init(&dp->stats);
558
559 ovs_mutex_init(&dp->port_mutex);
560 cmap_init(&dp->ports);
561 dp->port_seq = seq_create();
562 fat_rwlock_init(&dp->upcall_rwlock);
563
564 /* Disable upcalls by default. */
565 dp_netdev_disable_upcall(dp);
566 dp->upcall_aux = NULL;
567 dp->upcall_cb = NULL;
568
569 cmap_init(&dp->poll_threads);
570 ovs_mutex_init_recursive(&dp->non_pmd_mutex);
571 ovsthread_key_create(&dp->per_pmd_key, NULL);
572
573 /* Reserves the core NON_PMD_CORE_ID for all non-pmd threads. */
574 ovs_numa_try_pin_core_specific(NON_PMD_CORE_ID);
575 non_pmd = xzalloc(sizeof *non_pmd);
576 dp_netdev_configure_pmd(non_pmd, dp, 0, NON_PMD_CORE_ID,
577 OVS_NUMA_UNSPEC);
578
579 ovs_mutex_lock(&dp->port_mutex);
580 error = do_add_port(dp, name, "internal", ODPP_LOCAL);
581 ovs_mutex_unlock(&dp->port_mutex);
582 if (error) {
583 dp_netdev_free(dp);
584 return error;
585 }
586
587 *dpp = dp;
588 return 0;
589 }
590
591 static int
592 dpif_netdev_open(const struct dpif_class *class, const char *name,
593 bool create, struct dpif **dpifp)
594 {
595 struct dp_netdev *dp;
596 int error;
597
598 ovs_mutex_lock(&dp_netdev_mutex);
599 dp = shash_find_data(&dp_netdevs, name);
600 if (!dp) {
601 error = create ? create_dp_netdev(name, class, &dp) : ENODEV;
602 } else {
603 error = (dp->class != class ? EINVAL
604 : create ? EEXIST
605 : 0);
606 }
607 if (!error) {
608 *dpifp = create_dpif_netdev(dp);
609 dp->dpif = *dpifp;
610 }
611 ovs_mutex_unlock(&dp_netdev_mutex);
612
613 return error;
614 }
615
616 /* Requires dp_netdev_mutex so that we can't get a new reference to 'dp'
617 * through the 'dp_netdevs' shash while freeing 'dp'. */
618 static void
619 dp_netdev_free(struct dp_netdev *dp)
620 OVS_REQUIRES(dp_netdev_mutex)
621 {
622 struct dp_netdev_port *port;
623 struct dp_netdev_stats *bucket;
624 int i;
625
626 shash_find_and_delete(&dp_netdevs, dp->name);
627
628 dp_netdev_destroy_all_pmds(dp);
629 ovs_mutex_destroy(&dp->non_pmd_mutex);
630 ovsthread_key_delete(dp->per_pmd_key);
631
632 dp_netdev_flow_flush(dp);
633 ovs_mutex_lock(&dp->port_mutex);
634 CMAP_FOR_EACH (port, node, &dp->ports) {
635 do_del_port(dp, port);
636 }
637 ovs_mutex_unlock(&dp->port_mutex);
638
639 OVSTHREAD_STATS_FOR_EACH_BUCKET (bucket, i, &dp->stats) {
640 ovs_mutex_destroy(&bucket->mutex);
641 free_cacheline(bucket);
642 }
643 ovsthread_stats_destroy(&dp->stats);
644
645 classifier_destroy(&dp->cls);
646 cmap_destroy(&dp->flow_table);
647 ovs_mutex_destroy(&dp->flow_mutex);
648 seq_destroy(dp->port_seq);
649 cmap_destroy(&dp->ports);
650 fat_rwlock_destroy(&dp->upcall_rwlock);
651
652 free(CONST_CAST(char *, dp->name));
653 free(dp);
654 }
655
656 static void
657 dp_netdev_unref(struct dp_netdev *dp)
658 {
659 if (dp) {
660 /* Take dp_netdev_mutex so that, if dp->ref_cnt falls to zero, we can't
661 * get a new reference to 'dp' through the 'dp_netdevs' shash. */
662 ovs_mutex_lock(&dp_netdev_mutex);
663 if (ovs_refcount_unref_relaxed(&dp->ref_cnt) == 1) {
664 dp_netdev_free(dp);
665 }
666 ovs_mutex_unlock(&dp_netdev_mutex);
667 }
668 }
669
670 static void
671 dpif_netdev_close(struct dpif *dpif)
672 {
673 struct dp_netdev *dp = get_dp_netdev(dpif);
674
675 dp_netdev_unref(dp);
676 free(dpif);
677 }
678
679 static int
680 dpif_netdev_destroy(struct dpif *dpif)
681 {
682 struct dp_netdev *dp = get_dp_netdev(dpif);
683
684 if (!atomic_flag_test_and_set(&dp->destroyed)) {
685 if (ovs_refcount_unref_relaxed(&dp->ref_cnt) == 1) {
686 /* Can't happen: 'dpif' still owns a reference to 'dp'. */
687 OVS_NOT_REACHED();
688 }
689 }
690
691 return 0;
692 }
693
694 static int
695 dpif_netdev_get_stats(const struct dpif *dpif, struct dpif_dp_stats *stats)
696 {
697 struct dp_netdev *dp = get_dp_netdev(dpif);
698 struct dp_netdev_stats *bucket;
699 size_t i;
700
701 stats->n_flows = cmap_count(&dp->flow_table);
702
703 stats->n_hit = stats->n_missed = stats->n_lost = 0;
704 OVSTHREAD_STATS_FOR_EACH_BUCKET (bucket, i, &dp->stats) {
705 ovs_mutex_lock(&bucket->mutex);
706 stats->n_hit += bucket->n[DP_STAT_HIT];
707 stats->n_missed += bucket->n[DP_STAT_MISS];
708 stats->n_lost += bucket->n[DP_STAT_LOST];
709 ovs_mutex_unlock(&bucket->mutex);
710 }
711 stats->n_masks = UINT32_MAX;
712 stats->n_mask_hit = UINT64_MAX;
713
714 return 0;
715 }
716
717 static void
718 dp_netdev_reload_pmd__(struct dp_netdev_pmd_thread *pmd)
719 {
720 int old_seq;
721
722 atomic_add_relaxed(&pmd->change_seq, 1, &old_seq);
723 }
724
725 /* Causes all pmd threads to reload its tx/rx devices.
726 * Must be called after adding/removing ports. */
727 static void
728 dp_netdev_reload_pmds(struct dp_netdev *dp)
729 {
730 struct dp_netdev_pmd_thread *pmd;
731
732 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
733 dp_netdev_reload_pmd__(pmd);
734 }
735 }
736
737 static uint32_t
738 hash_port_no(odp_port_t port_no)
739 {
740 return hash_int(odp_to_u32(port_no), 0);
741 }
742
743 static int
744 do_add_port(struct dp_netdev *dp, const char *devname, const char *type,
745 odp_port_t port_no)
746 OVS_REQUIRES(dp->port_mutex)
747 {
748 struct netdev_saved_flags *sf;
749 struct dp_netdev_port *port;
750 struct netdev *netdev;
751 enum netdev_flags flags;
752 const char *open_type;
753 int error;
754 int i;
755
756 /* XXX reject devices already in some dp_netdev. */
757
758 /* Open and validate network device. */
759 open_type = dpif_netdev_port_open_type(dp->class, type);
760 error = netdev_open(devname, open_type, &netdev);
761 if (error) {
762 return error;
763 }
764 /* XXX reject non-Ethernet devices */
765
766 netdev_get_flags(netdev, &flags);
767 if (flags & NETDEV_LOOPBACK) {
768 VLOG_ERR("%s: cannot add a loopback device", devname);
769 netdev_close(netdev);
770 return EINVAL;
771 }
772
773 if (netdev_is_pmd(netdev)) {
774 int n_cores = ovs_numa_get_n_cores();
775
776 if (n_cores == OVS_CORE_UNSPEC) {
777 VLOG_ERR("%s, cannot get cpu core info", devname);
778 return ENOENT;
779 }
780 /* There can only be ovs_numa_get_n_cores() pmd threads,
781 * so creates a tx_q for each. */
782 error = netdev_set_multiq(netdev, n_cores, NR_QUEUE);
783 if (error) {
784 VLOG_ERR("%s, cannot set multiq", devname);
785 return errno;
786 }
787 }
788 port = xzalloc(sizeof *port);
789 port->port_no = port_no;
790 port->netdev = netdev;
791 port->rxq = xmalloc(sizeof *port->rxq * netdev_n_rxq(netdev));
792 port->type = xstrdup(type);
793 for (i = 0; i < netdev_n_rxq(netdev); i++) {
794 error = netdev_rxq_open(netdev, &port->rxq[i], i);
795 if (error
796 && !(error == EOPNOTSUPP && dpif_netdev_class_is_dummy(dp->class))) {
797 VLOG_ERR("%s: cannot receive packets on this network device (%s)",
798 devname, ovs_strerror(errno));
799 netdev_close(netdev);
800 free(port->type);
801 free(port->rxq);
802 free(port);
803 return error;
804 }
805 }
806
807 error = netdev_turn_flags_on(netdev, NETDEV_PROMISC, &sf);
808 if (error) {
809 for (i = 0; i < netdev_n_rxq(netdev); i++) {
810 netdev_rxq_close(port->rxq[i]);
811 }
812 netdev_close(netdev);
813 free(port->type);
814 free(port->rxq);
815 free(port);
816 return error;
817 }
818 port->sf = sf;
819
820 if (netdev_is_pmd(netdev)) {
821 dp_netdev_set_pmds_on_numa(dp, netdev_get_numa_id(netdev));
822 dp_netdev_reload_pmds(dp);
823 }
824 ovs_refcount_init(&port->ref_cnt);
825
826 cmap_insert(&dp->ports, &port->node, hash_port_no(port_no));
827 seq_change(dp->port_seq);
828
829 return 0;
830 }
831
832 static int
833 dpif_netdev_port_add(struct dpif *dpif, struct netdev *netdev,
834 odp_port_t *port_nop)
835 {
836 struct dp_netdev *dp = get_dp_netdev(dpif);
837 char namebuf[NETDEV_VPORT_NAME_BUFSIZE];
838 const char *dpif_port;
839 odp_port_t port_no;
840 int error;
841
842 ovs_mutex_lock(&dp->port_mutex);
843 dpif_port = netdev_vport_get_dpif_port(netdev, namebuf, sizeof namebuf);
844 if (*port_nop != ODPP_NONE) {
845 port_no = *port_nop;
846 error = dp_netdev_lookup_port(dp, *port_nop) ? EBUSY : 0;
847 } else {
848 port_no = choose_port(dp, dpif_port);
849 error = port_no == ODPP_NONE ? EFBIG : 0;
850 }
851 if (!error) {
852 *port_nop = port_no;
853 error = do_add_port(dp, dpif_port, netdev_get_type(netdev), port_no);
854 }
855 ovs_mutex_unlock(&dp->port_mutex);
856
857 return error;
858 }
859
860 static int
861 dpif_netdev_port_del(struct dpif *dpif, odp_port_t port_no)
862 {
863 struct dp_netdev *dp = get_dp_netdev(dpif);
864 int error;
865
866 ovs_mutex_lock(&dp->port_mutex);
867 if (port_no == ODPP_LOCAL) {
868 error = EINVAL;
869 } else {
870 struct dp_netdev_port *port;
871
872 error = get_port_by_number(dp, port_no, &port);
873 if (!error) {
874 do_del_port(dp, port);
875 }
876 }
877 ovs_mutex_unlock(&dp->port_mutex);
878
879 return error;
880 }
881
882 static bool
883 is_valid_port_number(odp_port_t port_no)
884 {
885 return port_no != ODPP_NONE;
886 }
887
888 static struct dp_netdev_port *
889 dp_netdev_lookup_port(const struct dp_netdev *dp, odp_port_t port_no)
890 {
891 struct dp_netdev_port *port;
892
893 CMAP_FOR_EACH_WITH_HASH (port, node, hash_port_no(port_no), &dp->ports) {
894 if (port->port_no == port_no) {
895 return port;
896 }
897 }
898 return NULL;
899 }
900
901 static int
902 get_port_by_number(struct dp_netdev *dp,
903 odp_port_t port_no, struct dp_netdev_port **portp)
904 {
905 if (!is_valid_port_number(port_no)) {
906 *portp = NULL;
907 return EINVAL;
908 } else {
909 *portp = dp_netdev_lookup_port(dp, port_no);
910 return *portp ? 0 : ENOENT;
911 }
912 }
913
914 static void
915 port_ref(struct dp_netdev_port *port)
916 {
917 if (port) {
918 ovs_refcount_ref(&port->ref_cnt);
919 }
920 }
921
922 static bool
923 port_try_ref(struct dp_netdev_port *port)
924 {
925 if (port) {
926 return ovs_refcount_try_ref_rcu(&port->ref_cnt);
927 }
928
929 return false;
930 }
931
932 static void
933 port_destroy__(struct dp_netdev_port *port)
934 {
935 int n_rxq = netdev_n_rxq(port->netdev);
936 int i;
937
938 netdev_close(port->netdev);
939 netdev_restore_flags(port->sf);
940
941 for (i = 0; i < n_rxq; i++) {
942 netdev_rxq_close(port->rxq[i]);
943 }
944 free(port->rxq);
945 free(port->type);
946 free(port);
947 }
948
949 static void
950 port_unref(struct dp_netdev_port *port)
951 {
952 if (port && ovs_refcount_unref_relaxed(&port->ref_cnt) == 1) {
953 ovsrcu_postpone(port_destroy__, port);
954 }
955 }
956
957 static int
958 get_port_by_name(struct dp_netdev *dp,
959 const char *devname, struct dp_netdev_port **portp)
960 OVS_REQUIRES(dp->port_mutex)
961 {
962 struct dp_netdev_port *port;
963
964 CMAP_FOR_EACH (port, node, &dp->ports) {
965 if (!strcmp(netdev_get_name(port->netdev), devname)) {
966 *portp = port;
967 return 0;
968 }
969 }
970 return ENOENT;
971 }
972
973 static int
974 get_n_pmd_threads_on_numa(struct dp_netdev *dp, int numa_id)
975 {
976 struct dp_netdev_pmd_thread *pmd;
977 int n_pmds = 0;
978
979 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
980 if (pmd->numa_id == numa_id) {
981 n_pmds++;
982 }
983 }
984
985 return n_pmds;
986 }
987
988 /* Returns 'true' if there is a port with pmd netdev and the netdev
989 * is on numa node 'numa_id'. */
990 static bool
991 has_pmd_port_for_numa(struct dp_netdev *dp, int numa_id)
992 {
993 struct dp_netdev_port *port;
994
995 CMAP_FOR_EACH (port, node, &dp->ports) {
996 if (netdev_is_pmd(port->netdev)
997 && netdev_get_numa_id(port->netdev) == numa_id) {
998 return true;
999 }
1000 }
1001
1002 return false;
1003 }
1004
1005
1006 static void
1007 do_del_port(struct dp_netdev *dp, struct dp_netdev_port *port)
1008 OVS_REQUIRES(dp->port_mutex)
1009 {
1010 cmap_remove(&dp->ports, &port->node, hash_odp_port(port->port_no));
1011 seq_change(dp->port_seq);
1012 if (netdev_is_pmd(port->netdev)) {
1013 int numa_id = netdev_get_numa_id(port->netdev);
1014
1015 /* If there is no netdev on the numa node, deletes the pmd threads
1016 * for that numa. Else, just reloads the queues. */
1017 if (!has_pmd_port_for_numa(dp, numa_id)) {
1018 dp_netdev_del_pmds_on_numa(dp, numa_id);
1019 }
1020 dp_netdev_reload_pmds(dp);
1021 }
1022
1023 port_unref(port);
1024 }
1025
1026 static void
1027 answer_port_query(const struct dp_netdev_port *port,
1028 struct dpif_port *dpif_port)
1029 {
1030 dpif_port->name = xstrdup(netdev_get_name(port->netdev));
1031 dpif_port->type = xstrdup(port->type);
1032 dpif_port->port_no = port->port_no;
1033 }
1034
1035 static int
1036 dpif_netdev_port_query_by_number(const struct dpif *dpif, odp_port_t port_no,
1037 struct dpif_port *dpif_port)
1038 {
1039 struct dp_netdev *dp = get_dp_netdev(dpif);
1040 struct dp_netdev_port *port;
1041 int error;
1042
1043 error = get_port_by_number(dp, port_no, &port);
1044 if (!error && dpif_port) {
1045 answer_port_query(port, dpif_port);
1046 }
1047
1048 return error;
1049 }
1050
1051 static int
1052 dpif_netdev_port_query_by_name(const struct dpif *dpif, const char *devname,
1053 struct dpif_port *dpif_port)
1054 {
1055 struct dp_netdev *dp = get_dp_netdev(dpif);
1056 struct dp_netdev_port *port;
1057 int error;
1058
1059 ovs_mutex_lock(&dp->port_mutex);
1060 error = get_port_by_name(dp, devname, &port);
1061 if (!error && dpif_port) {
1062 answer_port_query(port, dpif_port);
1063 }
1064 ovs_mutex_unlock(&dp->port_mutex);
1065
1066 return error;
1067 }
1068
1069 static void
1070 dp_netdev_flow_free(struct dp_netdev_flow *flow)
1071 {
1072 struct dp_netdev_flow_stats *bucket;
1073 size_t i;
1074
1075 OVSTHREAD_STATS_FOR_EACH_BUCKET (bucket, i, &flow->stats) {
1076 ovs_mutex_destroy(&bucket->mutex);
1077 free_cacheline(bucket);
1078 }
1079 ovsthread_stats_destroy(&flow->stats);
1080
1081 cls_rule_destroy(CONST_CAST(struct cls_rule *, &flow->cr));
1082 dp_netdev_actions_free(dp_netdev_flow_get_actions(flow));
1083 free(flow);
1084 }
1085
1086 static void dp_netdev_flow_unref(struct dp_netdev_flow *flow)
1087 {
1088 if (ovs_refcount_unref_relaxed(&flow->ref_cnt) == 1) {
1089 ovsrcu_postpone(dp_netdev_flow_free, flow);
1090 }
1091 }
1092
1093 static void
1094 dp_netdev_remove_flow(struct dp_netdev *dp, struct dp_netdev_flow *flow)
1095 OVS_REQUIRES(dp->flow_mutex)
1096 {
1097 struct cls_rule *cr = CONST_CAST(struct cls_rule *, &flow->cr);
1098 struct cmap_node *node = CONST_CAST(struct cmap_node *, &flow->node);
1099
1100 classifier_remove(&dp->cls, cr);
1101 cmap_remove(&dp->flow_table, node, flow_hash(&flow->flow, 0));
1102 flow->dead = true;
1103
1104 dp_netdev_flow_unref(flow);
1105 }
1106
1107 static void
1108 dp_netdev_flow_flush(struct dp_netdev *dp)
1109 {
1110 struct dp_netdev_flow *netdev_flow;
1111
1112 ovs_mutex_lock(&dp->flow_mutex);
1113 CMAP_FOR_EACH (netdev_flow, node, &dp->flow_table) {
1114 dp_netdev_remove_flow(dp, netdev_flow);
1115 }
1116 ovs_mutex_unlock(&dp->flow_mutex);
1117 }
1118
1119 static int
1120 dpif_netdev_flow_flush(struct dpif *dpif)
1121 {
1122 struct dp_netdev *dp = get_dp_netdev(dpif);
1123
1124 dp_netdev_flow_flush(dp);
1125 return 0;
1126 }
1127
1128 struct dp_netdev_port_state {
1129 struct cmap_position position;
1130 char *name;
1131 };
1132
1133 static int
1134 dpif_netdev_port_dump_start(const struct dpif *dpif OVS_UNUSED, void **statep)
1135 {
1136 *statep = xzalloc(sizeof(struct dp_netdev_port_state));
1137 return 0;
1138 }
1139
1140 static int
1141 dpif_netdev_port_dump_next(const struct dpif *dpif, void *state_,
1142 struct dpif_port *dpif_port)
1143 {
1144 struct dp_netdev_port_state *state = state_;
1145 struct dp_netdev *dp = get_dp_netdev(dpif);
1146 struct cmap_node *node;
1147 int retval;
1148
1149 node = cmap_next_position(&dp->ports, &state->position);
1150 if (node) {
1151 struct dp_netdev_port *port;
1152
1153 port = CONTAINER_OF(node, struct dp_netdev_port, node);
1154
1155 free(state->name);
1156 state->name = xstrdup(netdev_get_name(port->netdev));
1157 dpif_port->name = state->name;
1158 dpif_port->type = port->type;
1159 dpif_port->port_no = port->port_no;
1160
1161 retval = 0;
1162 } else {
1163 retval = EOF;
1164 }
1165
1166 return retval;
1167 }
1168
1169 static int
1170 dpif_netdev_port_dump_done(const struct dpif *dpif OVS_UNUSED, void *state_)
1171 {
1172 struct dp_netdev_port_state *state = state_;
1173 free(state->name);
1174 free(state);
1175 return 0;
1176 }
1177
1178 static int
1179 dpif_netdev_port_poll(const struct dpif *dpif_, char **devnamep OVS_UNUSED)
1180 {
1181 struct dpif_netdev *dpif = dpif_netdev_cast(dpif_);
1182 uint64_t new_port_seq;
1183 int error;
1184
1185 new_port_seq = seq_read(dpif->dp->port_seq);
1186 if (dpif->last_port_seq != new_port_seq) {
1187 dpif->last_port_seq = new_port_seq;
1188 error = ENOBUFS;
1189 } else {
1190 error = EAGAIN;
1191 }
1192
1193 return error;
1194 }
1195
1196 static void
1197 dpif_netdev_port_poll_wait(const struct dpif *dpif_)
1198 {
1199 struct dpif_netdev *dpif = dpif_netdev_cast(dpif_);
1200
1201 seq_wait(dpif->dp->port_seq, dpif->last_port_seq);
1202 }
1203
1204 static struct dp_netdev_flow *
1205 dp_netdev_flow_cast(const struct cls_rule *cr)
1206 {
1207 return cr ? CONTAINER_OF(cr, struct dp_netdev_flow, cr) : NULL;
1208 }
1209
1210 static bool dp_netdev_flow_ref(struct dp_netdev_flow *flow)
1211 {
1212 return ovs_refcount_try_ref_rcu(&flow->ref_cnt);
1213 }
1214
1215 /* netdev_flow_key utilities.
1216 *
1217 * netdev_flow_key is basically a miniflow. We use these functions
1218 * (netdev_flow_key_clone, netdev_flow_key_equal, ...) instead of the miniflow
1219 * functions (miniflow_clone_inline, miniflow_equal, ...), because:
1220 *
1221 * - Since we are dealing exclusively with miniflows created by
1222 * miniflow_extract(), if the map is different the miniflow is different.
1223 * Therefore we can be faster by comparing the map and the miniflow in a
1224 * single memcmp().
1225 * _ netdev_flow_key's miniflow has always inline values.
1226 * - These functions can be inlined by the compiler.
1227 *
1228 * The following assertions make sure that what we're doing with miniflow is
1229 * safe
1230 */
1231 BUILD_ASSERT_DECL(offsetof(struct miniflow, inline_values)
1232 == sizeof(uint64_t));
1233 BUILD_ASSERT_DECL(offsetof(struct netdev_flow_key, flow) == 0);
1234
1235 static inline struct netdev_flow_key *
1236 miniflow_to_netdev_flow_key(const struct miniflow *mf)
1237 {
1238 return (struct netdev_flow_key *) CONST_CAST(struct miniflow *, mf);
1239 }
1240
1241 /* Given the number of bits set in the miniflow map, returns the size of the
1242 * netdev_flow key */
1243 static inline uint32_t
1244 netdev_flow_key_size(uint32_t flow_u32s)
1245 {
1246 return MINIFLOW_VALUES_SIZE(flow_u32s)
1247 + offsetof(struct miniflow, inline_values);
1248 }
1249
1250 /* Used to compare 'netdev_flow_key's (miniflows) in the exact match cache. */
1251 static inline bool
1252 netdev_flow_key_equal(const struct netdev_flow_key *a,
1253 const struct netdev_flow_key *b,
1254 uint32_t size)
1255 {
1256 return !memcmp(a, b, size);
1257 }
1258
1259 static inline void
1260 netdev_flow_key_clone(struct netdev_flow_key *dst,
1261 const struct netdev_flow_key *src,
1262 uint32_t size)
1263 {
1264 memcpy(dst, src, size);
1265 }
1266
1267 static inline bool
1268 emc_entry_alive(struct emc_entry *ce)
1269 {
1270 return ce->flow && !ce->flow->dead;
1271 }
1272
1273 static void
1274 emc_clear_entry(struct emc_entry *ce)
1275 {
1276 if (ce->flow) {
1277 dp_netdev_flow_unref(ce->flow);
1278 ce->flow = NULL;
1279 }
1280 }
1281
1282 static inline void
1283 emc_change_entry(struct emc_entry *ce, struct dp_netdev_flow *flow,
1284 const struct netdev_flow_key *mf, uint32_t hash)
1285 {
1286 if (ce->flow != flow) {
1287 if (ce->flow) {
1288 dp_netdev_flow_unref(ce->flow);
1289 }
1290
1291 if (dp_netdev_flow_ref(flow)) {
1292 ce->flow = flow;
1293 } else {
1294 ce->flow = NULL;
1295 }
1296 }
1297 if (mf) {
1298 uint32_t mf_len = netdev_flow_key_size(count_1bits(mf->flow.map));
1299
1300 netdev_flow_key_clone(&ce->mf, mf, mf_len);
1301 ce->hash = hash;
1302 ce->mf_len = mf_len;
1303 }
1304 }
1305
1306 static inline void
1307 emc_insert(struct emc_cache *cache, const struct miniflow *mf, uint32_t hash,
1308 struct dp_netdev_flow *flow)
1309 {
1310 struct emc_entry *to_be_replaced = NULL;
1311 struct emc_entry *current_entry;
1312
1313 EMC_FOR_EACH_POS_WITH_HASH(cache, current_entry, hash) {
1314 if (current_entry->hash == hash
1315 && netdev_flow_key_equal(&current_entry->mf,
1316 miniflow_to_netdev_flow_key(mf),
1317 current_entry->mf_len)) {
1318
1319 /* We found the entry with the 'mf' miniflow */
1320 emc_change_entry(current_entry, flow, NULL, 0);
1321 return;
1322 }
1323
1324 /* Replacement policy: put the flow in an empty (not alive) entry, or
1325 * in the first entry where it can be */
1326 if (!to_be_replaced
1327 || (emc_entry_alive(to_be_replaced)
1328 && !emc_entry_alive(current_entry))
1329 || current_entry->hash < to_be_replaced->hash) {
1330 to_be_replaced = current_entry;
1331 }
1332 }
1333 /* We didn't find the miniflow in the cache.
1334 * The 'to_be_replaced' entry is where the new flow will be stored */
1335
1336 emc_change_entry(to_be_replaced, flow, miniflow_to_netdev_flow_key(mf),
1337 hash);
1338 }
1339
1340 static inline struct dp_netdev_flow *
1341 emc_lookup(struct emc_cache *cache, const struct miniflow *mf, uint32_t hash)
1342 {
1343 struct emc_entry *current_entry;
1344
1345 EMC_FOR_EACH_POS_WITH_HASH(cache, current_entry, hash) {
1346 if (current_entry->hash == hash && emc_entry_alive(current_entry)
1347 && netdev_flow_key_equal(&current_entry->mf,
1348 miniflow_to_netdev_flow_key(mf),
1349 current_entry->mf_len)) {
1350
1351 /* We found the entry with the 'mf' miniflow */
1352 return current_entry->flow;
1353 }
1354 }
1355
1356 return NULL;
1357 }
1358
1359 static struct dp_netdev_flow *
1360 dp_netdev_lookup_flow(const struct dp_netdev *dp, const struct miniflow *key)
1361 {
1362 struct dp_netdev_flow *netdev_flow;
1363 struct cls_rule *rule;
1364
1365 classifier_lookup_miniflow_batch(&dp->cls, &key, &rule, 1);
1366 netdev_flow = dp_netdev_flow_cast(rule);
1367
1368 return netdev_flow;
1369 }
1370
1371 static struct dp_netdev_flow *
1372 dp_netdev_find_flow(const struct dp_netdev *dp, const struct flow *flow)
1373 {
1374 struct dp_netdev_flow *netdev_flow;
1375
1376 CMAP_FOR_EACH_WITH_HASH (netdev_flow, node, flow_hash(flow, 0),
1377 &dp->flow_table) {
1378 if (flow_equal(&netdev_flow->flow, flow)) {
1379 return netdev_flow;
1380 }
1381 }
1382
1383 return NULL;
1384 }
1385
1386 static void
1387 get_dpif_flow_stats(const struct dp_netdev_flow *netdev_flow,
1388 struct dpif_flow_stats *stats)
1389 {
1390 struct dp_netdev_flow_stats *bucket;
1391 size_t i;
1392
1393 memset(stats, 0, sizeof *stats);
1394 OVSTHREAD_STATS_FOR_EACH_BUCKET (bucket, i, &netdev_flow->stats) {
1395 ovs_mutex_lock(&bucket->mutex);
1396 stats->n_packets += bucket->packet_count;
1397 stats->n_bytes += bucket->byte_count;
1398 stats->used = MAX(stats->used, bucket->used);
1399 stats->tcp_flags |= bucket->tcp_flags;
1400 ovs_mutex_unlock(&bucket->mutex);
1401 }
1402 }
1403
1404 static void
1405 dp_netdev_flow_to_dpif_flow(const struct dp_netdev_flow *netdev_flow,
1406 struct ofpbuf *buffer, struct dpif_flow *flow)
1407 {
1408 struct flow_wildcards wc;
1409 struct dp_netdev_actions *actions;
1410
1411 minimask_expand(&netdev_flow->cr.match.mask, &wc);
1412 odp_flow_key_from_mask(buffer, &wc.masks, &netdev_flow->flow,
1413 odp_to_u32(wc.masks.in_port.odp_port),
1414 SIZE_MAX, true);
1415 flow->mask = ofpbuf_data(buffer);
1416 flow->mask_len = ofpbuf_size(buffer);
1417
1418 actions = dp_netdev_flow_get_actions(netdev_flow);
1419 flow->actions = actions->actions;
1420 flow->actions_len = actions->size;
1421
1422 get_dpif_flow_stats(netdev_flow, &flow->stats);
1423 }
1424
1425 static int
1426 dpif_netdev_mask_from_nlattrs(const struct nlattr *key, uint32_t key_len,
1427 const struct nlattr *mask_key,
1428 uint32_t mask_key_len, const struct flow *flow,
1429 struct flow *mask)
1430 {
1431 if (mask_key_len) {
1432 enum odp_key_fitness fitness;
1433
1434 fitness = odp_flow_key_to_mask(mask_key, mask_key_len, mask, flow);
1435 if (fitness) {
1436 /* This should not happen: it indicates that
1437 * odp_flow_key_from_mask() and odp_flow_key_to_mask()
1438 * disagree on the acceptable form of a mask. Log the problem
1439 * as an error, with enough details to enable debugging. */
1440 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
1441
1442 if (!VLOG_DROP_ERR(&rl)) {
1443 struct ds s;
1444
1445 ds_init(&s);
1446 odp_flow_format(key, key_len, mask_key, mask_key_len, NULL, &s,
1447 true);
1448 VLOG_ERR("internal error parsing flow mask %s (%s)",
1449 ds_cstr(&s), odp_key_fitness_to_string(fitness));
1450 ds_destroy(&s);
1451 }
1452
1453 return EINVAL;
1454 }
1455 } else {
1456 enum mf_field_id id;
1457 /* No mask key, unwildcard everything except fields whose
1458 * prerequisities are not met. */
1459 memset(mask, 0x0, sizeof *mask);
1460
1461 for (id = 0; id < MFF_N_IDS; ++id) {
1462 /* Skip registers and metadata. */
1463 if (!(id >= MFF_REG0 && id < MFF_REG0 + FLOW_N_REGS)
1464 && id != MFF_METADATA) {
1465 const struct mf_field *mf = mf_from_id(id);
1466 if (mf_are_prereqs_ok(mf, flow)) {
1467 mf_mask_field(mf, mask);
1468 }
1469 }
1470 }
1471 }
1472
1473 /* Force unwildcard the in_port.
1474 *
1475 * We need to do this even in the case where we unwildcard "everything"
1476 * above because "everything" only includes the 16-bit OpenFlow port number
1477 * mask->in_port.ofp_port, which only covers half of the 32-bit datapath
1478 * port number mask->in_port.odp_port. */
1479 mask->in_port.odp_port = u32_to_odp(UINT32_MAX);
1480
1481 return 0;
1482 }
1483
1484 static int
1485 dpif_netdev_flow_from_nlattrs(const struct nlattr *key, uint32_t key_len,
1486 struct flow *flow)
1487 {
1488 odp_port_t in_port;
1489
1490 if (odp_flow_key_to_flow(key, key_len, flow)) {
1491 /* This should not happen: it indicates that odp_flow_key_from_flow()
1492 * and odp_flow_key_to_flow() disagree on the acceptable form of a
1493 * flow. Log the problem as an error, with enough details to enable
1494 * debugging. */
1495 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
1496
1497 if (!VLOG_DROP_ERR(&rl)) {
1498 struct ds s;
1499
1500 ds_init(&s);
1501 odp_flow_format(key, key_len, NULL, 0, NULL, &s, true);
1502 VLOG_ERR("internal error parsing flow key %s", ds_cstr(&s));
1503 ds_destroy(&s);
1504 }
1505
1506 return EINVAL;
1507 }
1508
1509 in_port = flow->in_port.odp_port;
1510 if (!is_valid_port_number(in_port) && in_port != ODPP_NONE) {
1511 return EINVAL;
1512 }
1513
1514 return 0;
1515 }
1516
1517 static int
1518 dpif_netdev_flow_get(const struct dpif *dpif, const struct dpif_flow_get *get)
1519 {
1520 struct dp_netdev *dp = get_dp_netdev(dpif);
1521 struct dp_netdev_flow *netdev_flow;
1522 struct flow key;
1523 int error;
1524
1525 error = dpif_netdev_flow_from_nlattrs(get->key, get->key_len, &key);
1526 if (error) {
1527 return error;
1528 }
1529
1530 netdev_flow = dp_netdev_find_flow(dp, &key);
1531
1532 if (netdev_flow) {
1533 dp_netdev_flow_to_dpif_flow(netdev_flow, get->buffer, get->flow);
1534 } else {
1535 error = ENOENT;
1536 }
1537
1538 return error;
1539 }
1540
1541 static int
1542 dp_netdev_flow_add(struct dp_netdev *dp, struct match *match,
1543 const struct nlattr *actions, size_t actions_len)
1544 OVS_REQUIRES(dp->flow_mutex)
1545 {
1546 struct dp_netdev_flow *netdev_flow;
1547
1548 netdev_flow = xzalloc(sizeof *netdev_flow);
1549 *CONST_CAST(struct flow *, &netdev_flow->flow) = match->flow;
1550
1551 ovs_refcount_init(&netdev_flow->ref_cnt);
1552
1553 ovsthread_stats_init(&netdev_flow->stats);
1554
1555 ovsrcu_set(&netdev_flow->actions,
1556 dp_netdev_actions_create(actions, actions_len));
1557
1558 cls_rule_init(CONST_CAST(struct cls_rule *, &netdev_flow->cr),
1559 match, NETDEV_RULE_PRIORITY);
1560 cmap_insert(&dp->flow_table,
1561 CONST_CAST(struct cmap_node *, &netdev_flow->node),
1562 flow_hash(&match->flow, 0));
1563 classifier_insert(&dp->cls,
1564 CONST_CAST(struct cls_rule *, &netdev_flow->cr));
1565
1566 if (OVS_UNLIKELY(VLOG_IS_DBG_ENABLED())) {
1567 struct ds ds = DS_EMPTY_INITIALIZER;
1568
1569 ds_put_cstr(&ds, "flow_add: ");
1570 match_format(match, &ds, OFP_DEFAULT_PRIORITY);
1571 ds_put_cstr(&ds, ", actions:");
1572 format_odp_actions(&ds, actions, actions_len);
1573
1574 VLOG_DBG_RL(&upcall_rl, "%s", ds_cstr(&ds));
1575
1576 ds_destroy(&ds);
1577 }
1578
1579 return 0;
1580 }
1581
1582 static void
1583 clear_stats(struct dp_netdev_flow *netdev_flow)
1584 {
1585 struct dp_netdev_flow_stats *bucket;
1586 size_t i;
1587
1588 OVSTHREAD_STATS_FOR_EACH_BUCKET (bucket, i, &netdev_flow->stats) {
1589 ovs_mutex_lock(&bucket->mutex);
1590 bucket->used = 0;
1591 bucket->packet_count = 0;
1592 bucket->byte_count = 0;
1593 bucket->tcp_flags = 0;
1594 ovs_mutex_unlock(&bucket->mutex);
1595 }
1596 }
1597
1598 static int
1599 dpif_netdev_flow_put(struct dpif *dpif, const struct dpif_flow_put *put)
1600 {
1601 struct dp_netdev *dp = get_dp_netdev(dpif);
1602 struct dp_netdev_flow *netdev_flow;
1603 struct miniflow miniflow;
1604 struct match match;
1605 int error;
1606
1607 error = dpif_netdev_flow_from_nlattrs(put->key, put->key_len, &match.flow);
1608 if (error) {
1609 return error;
1610 }
1611 error = dpif_netdev_mask_from_nlattrs(put->key, put->key_len,
1612 put->mask, put->mask_len,
1613 &match.flow, &match.wc.masks);
1614 if (error) {
1615 return error;
1616 }
1617 miniflow_init(&miniflow, &match.flow);
1618
1619 ovs_mutex_lock(&dp->flow_mutex);
1620 netdev_flow = dp_netdev_lookup_flow(dp, &miniflow);
1621 if (!netdev_flow) {
1622 if (put->flags & DPIF_FP_CREATE) {
1623 if (cmap_count(&dp->flow_table) < MAX_FLOWS) {
1624 if (put->stats) {
1625 memset(put->stats, 0, sizeof *put->stats);
1626 }
1627 error = dp_netdev_flow_add(dp, &match, put->actions,
1628 put->actions_len);
1629 } else {
1630 error = EFBIG;
1631 }
1632 } else {
1633 error = ENOENT;
1634 }
1635 } else {
1636 if (put->flags & DPIF_FP_MODIFY
1637 && flow_equal(&match.flow, &netdev_flow->flow)) {
1638 struct dp_netdev_actions *new_actions;
1639 struct dp_netdev_actions *old_actions;
1640
1641 new_actions = dp_netdev_actions_create(put->actions,
1642 put->actions_len);
1643
1644 old_actions = dp_netdev_flow_get_actions(netdev_flow);
1645 ovsrcu_set(&netdev_flow->actions, new_actions);
1646
1647 if (put->stats) {
1648 get_dpif_flow_stats(netdev_flow, put->stats);
1649 }
1650 if (put->flags & DPIF_FP_ZERO_STATS) {
1651 clear_stats(netdev_flow);
1652 }
1653
1654 ovsrcu_postpone(dp_netdev_actions_free, old_actions);
1655 } else if (put->flags & DPIF_FP_CREATE) {
1656 error = EEXIST;
1657 } else {
1658 /* Overlapping flow. */
1659 error = EINVAL;
1660 }
1661 }
1662 ovs_mutex_unlock(&dp->flow_mutex);
1663 miniflow_destroy(&miniflow);
1664
1665 return error;
1666 }
1667
1668 static int
1669 dpif_netdev_flow_del(struct dpif *dpif, const struct dpif_flow_del *del)
1670 {
1671 struct dp_netdev *dp = get_dp_netdev(dpif);
1672 struct dp_netdev_flow *netdev_flow;
1673 struct flow key;
1674 int error;
1675
1676 error = dpif_netdev_flow_from_nlattrs(del->key, del->key_len, &key);
1677 if (error) {
1678 return error;
1679 }
1680
1681 ovs_mutex_lock(&dp->flow_mutex);
1682 netdev_flow = dp_netdev_find_flow(dp, &key);
1683 if (netdev_flow) {
1684 if (del->stats) {
1685 get_dpif_flow_stats(netdev_flow, del->stats);
1686 }
1687 dp_netdev_remove_flow(dp, netdev_flow);
1688 } else {
1689 error = ENOENT;
1690 }
1691 ovs_mutex_unlock(&dp->flow_mutex);
1692
1693 return error;
1694 }
1695
1696 struct dpif_netdev_flow_dump {
1697 struct dpif_flow_dump up;
1698 struct cmap_position pos;
1699 int status;
1700 struct ovs_mutex mutex;
1701 };
1702
1703 static struct dpif_netdev_flow_dump *
1704 dpif_netdev_flow_dump_cast(struct dpif_flow_dump *dump)
1705 {
1706 return CONTAINER_OF(dump, struct dpif_netdev_flow_dump, up);
1707 }
1708
1709 static struct dpif_flow_dump *
1710 dpif_netdev_flow_dump_create(const struct dpif *dpif_)
1711 {
1712 struct dpif_netdev_flow_dump *dump;
1713
1714 dump = xmalloc(sizeof *dump);
1715 dpif_flow_dump_init(&dump->up, dpif_);
1716 memset(&dump->pos, 0, sizeof dump->pos);
1717 dump->status = 0;
1718 ovs_mutex_init(&dump->mutex);
1719
1720 return &dump->up;
1721 }
1722
1723 static int
1724 dpif_netdev_flow_dump_destroy(struct dpif_flow_dump *dump_)
1725 {
1726 struct dpif_netdev_flow_dump *dump = dpif_netdev_flow_dump_cast(dump_);
1727
1728 ovs_mutex_destroy(&dump->mutex);
1729 free(dump);
1730 return 0;
1731 }
1732
1733 struct dpif_netdev_flow_dump_thread {
1734 struct dpif_flow_dump_thread up;
1735 struct dpif_netdev_flow_dump *dump;
1736 struct odputil_keybuf keybuf[FLOW_DUMP_MAX_BATCH];
1737 struct odputil_keybuf maskbuf[FLOW_DUMP_MAX_BATCH];
1738 };
1739
1740 static struct dpif_netdev_flow_dump_thread *
1741 dpif_netdev_flow_dump_thread_cast(struct dpif_flow_dump_thread *thread)
1742 {
1743 return CONTAINER_OF(thread, struct dpif_netdev_flow_dump_thread, up);
1744 }
1745
1746 static struct dpif_flow_dump_thread *
1747 dpif_netdev_flow_dump_thread_create(struct dpif_flow_dump *dump_)
1748 {
1749 struct dpif_netdev_flow_dump *dump = dpif_netdev_flow_dump_cast(dump_);
1750 struct dpif_netdev_flow_dump_thread *thread;
1751
1752 thread = xmalloc(sizeof *thread);
1753 dpif_flow_dump_thread_init(&thread->up, &dump->up);
1754 thread->dump = dump;
1755 return &thread->up;
1756 }
1757
1758 static void
1759 dpif_netdev_flow_dump_thread_destroy(struct dpif_flow_dump_thread *thread_)
1760 {
1761 struct dpif_netdev_flow_dump_thread *thread
1762 = dpif_netdev_flow_dump_thread_cast(thread_);
1763
1764 free(thread);
1765 }
1766
1767 static int
1768 dpif_netdev_flow_dump_next(struct dpif_flow_dump_thread *thread_,
1769 struct dpif_flow *flows, int max_flows)
1770 {
1771 struct dpif_netdev_flow_dump_thread *thread
1772 = dpif_netdev_flow_dump_thread_cast(thread_);
1773 struct dpif_netdev_flow_dump *dump = thread->dump;
1774 struct dpif_netdev *dpif = dpif_netdev_cast(thread->up.dpif);
1775 struct dp_netdev_flow *netdev_flows[FLOW_DUMP_MAX_BATCH];
1776 struct dp_netdev *dp = get_dp_netdev(&dpif->dpif);
1777 int n_flows = 0;
1778 int i;
1779
1780 ovs_mutex_lock(&dump->mutex);
1781 if (!dump->status) {
1782 for (n_flows = 0; n_flows < MIN(max_flows, FLOW_DUMP_MAX_BATCH);
1783 n_flows++) {
1784 struct cmap_node *node;
1785
1786 node = cmap_next_position(&dp->flow_table, &dump->pos);
1787 if (!node) {
1788 dump->status = EOF;
1789 break;
1790 }
1791 netdev_flows[n_flows] = CONTAINER_OF(node, struct dp_netdev_flow,
1792 node);
1793 }
1794 }
1795 ovs_mutex_unlock(&dump->mutex);
1796
1797 for (i = 0; i < n_flows; i++) {
1798 struct odputil_keybuf *maskbuf = &thread->maskbuf[i];
1799 struct odputil_keybuf *keybuf = &thread->keybuf[i];
1800 struct dp_netdev_flow *netdev_flow = netdev_flows[i];
1801 struct dpif_flow *f = &flows[i];
1802 struct dp_netdev_actions *dp_actions;
1803 struct flow_wildcards wc;
1804 struct ofpbuf buf;
1805
1806 minimask_expand(&netdev_flow->cr.match.mask, &wc);
1807
1808 /* Key. */
1809 ofpbuf_use_stack(&buf, keybuf, sizeof *keybuf);
1810 odp_flow_key_from_flow(&buf, &netdev_flow->flow, &wc.masks,
1811 netdev_flow->flow.in_port.odp_port, true);
1812 f->key = ofpbuf_data(&buf);
1813 f->key_len = ofpbuf_size(&buf);
1814
1815 /* Mask. */
1816 ofpbuf_use_stack(&buf, maskbuf, sizeof *maskbuf);
1817 odp_flow_key_from_mask(&buf, &wc.masks, &netdev_flow->flow,
1818 odp_to_u32(wc.masks.in_port.odp_port),
1819 SIZE_MAX, true);
1820 f->mask = ofpbuf_data(&buf);
1821 f->mask_len = ofpbuf_size(&buf);
1822
1823 /* Actions. */
1824 dp_actions = dp_netdev_flow_get_actions(netdev_flow);
1825 f->actions = dp_actions->actions;
1826 f->actions_len = dp_actions->size;
1827
1828 /* Stats. */
1829 get_dpif_flow_stats(netdev_flow, &f->stats);
1830 }
1831
1832 return n_flows;
1833 }
1834
1835 static int
1836 dpif_netdev_execute(struct dpif *dpif, struct dpif_execute *execute)
1837 OVS_NO_THREAD_SAFETY_ANALYSIS
1838 {
1839 struct dp_netdev *dp = get_dp_netdev(dpif);
1840 struct dp_netdev_pmd_thread *pmd;
1841 struct dpif_packet packet, *pp;
1842 struct pkt_metadata *md = &execute->md;
1843
1844 if (ofpbuf_size(execute->packet) < ETH_HEADER_LEN ||
1845 ofpbuf_size(execute->packet) > UINT16_MAX) {
1846 return EINVAL;
1847 }
1848
1849 packet.ofpbuf = *execute->packet;
1850 pp = &packet;
1851
1852 /* Tries finding the 'pmd'. If NULL is returned, that means
1853 * the current thread is a non-pmd thread and should use
1854 * dp_netdev_get_nonpmd(). */
1855 pmd = ovsthread_getspecific(dp->per_pmd_key);
1856 if (!pmd) {
1857 pmd = dp_netdev_get_nonpmd(dp);
1858 }
1859
1860 /* If the current thread is non-pmd thread, acquires
1861 * the 'non_pmd_mutex'. */
1862 if (pmd->core_id == NON_PMD_CORE_ID) {
1863 ovs_mutex_lock(&dp->non_pmd_mutex);
1864 }
1865 dp_netdev_execute_actions(pmd, &pp, 1, false, md, execute->actions,
1866 execute->actions_len);
1867 if (pmd->core_id == NON_PMD_CORE_ID) {
1868 ovs_mutex_unlock(&dp->non_pmd_mutex);
1869 }
1870
1871 /* Even though may_steal is set to false, some actions could modify or
1872 * reallocate the ofpbuf memory. We need to pass those changes to the
1873 * caller */
1874 *execute->packet = packet.ofpbuf;
1875
1876 return 0;
1877 }
1878
1879 static void
1880 dpif_netdev_operate(struct dpif *dpif, struct dpif_op **ops, size_t n_ops)
1881 {
1882 size_t i;
1883
1884 for (i = 0; i < n_ops; i++) {
1885 struct dpif_op *op = ops[i];
1886
1887 switch (op->type) {
1888 case DPIF_OP_FLOW_PUT:
1889 op->error = dpif_netdev_flow_put(dpif, &op->u.flow_put);
1890 break;
1891
1892 case DPIF_OP_FLOW_DEL:
1893 op->error = dpif_netdev_flow_del(dpif, &op->u.flow_del);
1894 break;
1895
1896 case DPIF_OP_EXECUTE:
1897 op->error = dpif_netdev_execute(dpif, &op->u.execute);
1898 break;
1899
1900 case DPIF_OP_FLOW_GET:
1901 op->error = dpif_netdev_flow_get(dpif, &op->u.flow_get);
1902 break;
1903 }
1904 }
1905 }
1906
1907 static int
1908 dpif_netdev_queue_to_priority(const struct dpif *dpif OVS_UNUSED,
1909 uint32_t queue_id, uint32_t *priority)
1910 {
1911 *priority = queue_id;
1912 return 0;
1913 }
1914
1915 \f
1916 /* Creates and returns a new 'struct dp_netdev_actions', with a reference count
1917 * of 1, whose actions are a copy of from the 'ofpacts_len' bytes of
1918 * 'ofpacts'. */
1919 struct dp_netdev_actions *
1920 dp_netdev_actions_create(const struct nlattr *actions, size_t size)
1921 {
1922 struct dp_netdev_actions *netdev_actions;
1923
1924 netdev_actions = xmalloc(sizeof *netdev_actions);
1925 netdev_actions->actions = xmemdup(actions, size);
1926 netdev_actions->size = size;
1927
1928 return netdev_actions;
1929 }
1930
1931 struct dp_netdev_actions *
1932 dp_netdev_flow_get_actions(const struct dp_netdev_flow *flow)
1933 {
1934 return ovsrcu_get(struct dp_netdev_actions *, &flow->actions);
1935 }
1936
1937 static void
1938 dp_netdev_actions_free(struct dp_netdev_actions *actions)
1939 {
1940 free(actions->actions);
1941 free(actions);
1942 }
1943 \f
1944
1945 static void
1946 dp_netdev_process_rxq_port(struct dp_netdev_pmd_thread *pmd,
1947 struct dp_netdev_port *port,
1948 struct netdev_rxq *rxq)
1949 {
1950 struct dpif_packet *packets[NETDEV_MAX_RX_BATCH];
1951 int error, cnt;
1952
1953 error = netdev_rxq_recv(rxq, packets, &cnt);
1954 if (!error) {
1955 struct pkt_metadata md = PKT_METADATA_INITIALIZER(port->port_no);
1956
1957 *recirc_depth_get() = 0;
1958 dp_netdev_input(pmd, packets, cnt, &md);
1959 } else if (error != EAGAIN && error != EOPNOTSUPP) {
1960 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
1961
1962 VLOG_ERR_RL(&rl, "error receiving data from %s: %s",
1963 netdev_get_name(port->netdev), ovs_strerror(error));
1964 }
1965 }
1966
1967 static void
1968 dpif_netdev_run(struct dpif *dpif)
1969 {
1970 struct dp_netdev_port *port;
1971 struct dp_netdev *dp = get_dp_netdev(dpif);
1972 struct dp_netdev_pmd_thread *non_pmd = dp_netdev_get_nonpmd(dp);
1973
1974 ovs_mutex_lock(&dp->non_pmd_mutex);
1975 CMAP_FOR_EACH (port, node, &dp->ports) {
1976 if (!netdev_is_pmd(port->netdev)) {
1977 int i;
1978
1979 for (i = 0; i < netdev_n_rxq(port->netdev); i++) {
1980 dp_netdev_process_rxq_port(non_pmd, port, port->rxq[i]);
1981 }
1982 }
1983 }
1984 ovs_mutex_unlock(&dp->non_pmd_mutex);
1985 }
1986
1987 static void
1988 dpif_netdev_wait(struct dpif *dpif)
1989 {
1990 struct dp_netdev_port *port;
1991 struct dp_netdev *dp = get_dp_netdev(dpif);
1992
1993 ovs_mutex_lock(&dp_netdev_mutex);
1994 CMAP_FOR_EACH (port, node, &dp->ports) {
1995 if (!netdev_is_pmd(port->netdev)) {
1996 int i;
1997
1998 for (i = 0; i < netdev_n_rxq(port->netdev); i++) {
1999 netdev_rxq_wait(port->rxq[i]);
2000 }
2001 }
2002 }
2003 ovs_mutex_unlock(&dp_netdev_mutex);
2004 }
2005
2006 struct rxq_poll {
2007 struct dp_netdev_port *port;
2008 struct netdev_rxq *rx;
2009 };
2010
2011 static int
2012 pmd_load_queues(struct dp_netdev_pmd_thread *pmd,
2013 struct rxq_poll **ppoll_list, int poll_cnt)
2014 {
2015 struct rxq_poll *poll_list = *ppoll_list;
2016 struct dp_netdev_port *port;
2017 int n_pmds_on_numa, index, i;
2018
2019 /* Simple scheduler for netdev rx polling. */
2020 for (i = 0; i < poll_cnt; i++) {
2021 port_unref(poll_list[i].port);
2022 }
2023
2024 poll_cnt = 0;
2025 n_pmds_on_numa = get_n_pmd_threads_on_numa(pmd->dp, pmd->numa_id);
2026 index = 0;
2027
2028 CMAP_FOR_EACH (port, node, &pmd->dp->ports) {
2029 /* Calls port_try_ref() to prevent the main thread
2030 * from deleting the port. */
2031 if (port_try_ref(port)) {
2032 if (netdev_is_pmd(port->netdev)
2033 && netdev_get_numa_id(port->netdev) == pmd->numa_id) {
2034 int i;
2035
2036 for (i = 0; i < netdev_n_rxq(port->netdev); i++) {
2037 if ((index % n_pmds_on_numa) == pmd->index) {
2038 poll_list = xrealloc(poll_list,
2039 sizeof *poll_list * (poll_cnt + 1));
2040
2041 port_ref(port);
2042 poll_list[poll_cnt].port = port;
2043 poll_list[poll_cnt].rx = port->rxq[i];
2044 poll_cnt++;
2045 }
2046 index++;
2047 }
2048 }
2049 /* Unrefs the port_try_ref(). */
2050 port_unref(port);
2051 }
2052 }
2053
2054 *ppoll_list = poll_list;
2055 return poll_cnt;
2056 }
2057
2058 static void *
2059 pmd_thread_main(void *f_)
2060 {
2061 struct dp_netdev_pmd_thread *pmd = f_;
2062 unsigned int lc = 0;
2063 struct rxq_poll *poll_list;
2064 unsigned int port_seq = PMD_INITIAL_SEQ;
2065 int poll_cnt;
2066 int i;
2067
2068 poll_cnt = 0;
2069 poll_list = NULL;
2070
2071 /* Stores the pmd thread's 'pmd' to 'per_pmd_key'. */
2072 ovsthread_setspecific(pmd->dp->per_pmd_key, pmd);
2073 pmd_thread_setaffinity_cpu(pmd->core_id);
2074 reload:
2075 emc_cache_init(&pmd->flow_cache);
2076 poll_cnt = pmd_load_queues(pmd, &poll_list, poll_cnt);
2077
2078 for (;;) {
2079 int i;
2080
2081 for (i = 0; i < poll_cnt; i++) {
2082 dp_netdev_process_rxq_port(pmd, poll_list[i].port, poll_list[i].rx);
2083 }
2084
2085 if (lc++ > 1024) {
2086 unsigned int seq;
2087
2088 lc = 0;
2089
2090 ovsrcu_quiesce();
2091
2092 atomic_read_relaxed(&pmd->change_seq, &seq);
2093 if (seq != port_seq) {
2094 port_seq = seq;
2095 break;
2096 }
2097 }
2098 }
2099
2100 emc_cache_uninit(&pmd->flow_cache);
2101
2102 if (!latch_is_set(&pmd->exit_latch)){
2103 goto reload;
2104 }
2105
2106 for (i = 0; i < poll_cnt; i++) {
2107 port_unref(poll_list[i].port);
2108 }
2109
2110 free(poll_list);
2111 return NULL;
2112 }
2113
2114 static void
2115 dp_netdev_disable_upcall(struct dp_netdev *dp)
2116 OVS_ACQUIRES(dp->upcall_rwlock)
2117 {
2118 fat_rwlock_wrlock(&dp->upcall_rwlock);
2119 }
2120
2121 static void
2122 dpif_netdev_disable_upcall(struct dpif *dpif)
2123 OVS_NO_THREAD_SAFETY_ANALYSIS
2124 {
2125 struct dp_netdev *dp = get_dp_netdev(dpif);
2126 dp_netdev_disable_upcall(dp);
2127 }
2128
2129 static void
2130 dp_netdev_enable_upcall(struct dp_netdev *dp)
2131 OVS_RELEASES(dp->upcall_rwlock)
2132 {
2133 fat_rwlock_unlock(&dp->upcall_rwlock);
2134 }
2135
2136 static void
2137 dpif_netdev_enable_upcall(struct dpif *dpif)
2138 OVS_NO_THREAD_SAFETY_ANALYSIS
2139 {
2140 struct dp_netdev *dp = get_dp_netdev(dpif);
2141 dp_netdev_enable_upcall(dp);
2142 }
2143
2144 /* Returns the pointer to the dp_netdev_pmd_thread for non-pmd threads. */
2145 static struct dp_netdev_pmd_thread *
2146 dp_netdev_get_nonpmd(struct dp_netdev *dp)
2147 {
2148 struct dp_netdev_pmd_thread *pmd;
2149 struct cmap_node *pnode;
2150
2151 pnode = cmap_find(&dp->poll_threads, hash_int(NON_PMD_CORE_ID, 0));
2152 ovs_assert(pnode);
2153 pmd = CONTAINER_OF(pnode, struct dp_netdev_pmd_thread, node);
2154
2155 return pmd;
2156 }
2157
2158 /* Configures the 'pmd' based on the input argument. */
2159 static void
2160 dp_netdev_configure_pmd(struct dp_netdev_pmd_thread *pmd, struct dp_netdev *dp,
2161 int index, int core_id, int numa_id)
2162 {
2163 pmd->dp = dp;
2164 pmd->index = index;
2165 pmd->core_id = core_id;
2166 pmd->numa_id = numa_id;
2167 latch_init(&pmd->exit_latch);
2168 atomic_init(&pmd->change_seq, PMD_INITIAL_SEQ);
2169 /* init the 'flow_cache' since there is no
2170 * actual thread created for NON_PMD_CORE_ID. */
2171 if (core_id == NON_PMD_CORE_ID) {
2172 emc_cache_init(&pmd->flow_cache);
2173 }
2174 cmap_insert(&dp->poll_threads, CONST_CAST(struct cmap_node *, &pmd->node),
2175 hash_int(core_id, 0));
2176 }
2177
2178 /* Stops the pmd thread, removes it from the 'dp->poll_threads'
2179 * and destroys the struct. */
2180 static void
2181 dp_netdev_del_pmd(struct dp_netdev_pmd_thread *pmd)
2182 {
2183 /* Uninit the 'flow_cache' since there is
2184 * no actual thread uninit it. */
2185 if (pmd->core_id == NON_PMD_CORE_ID) {
2186 emc_cache_uninit(&pmd->flow_cache);
2187 } else {
2188 latch_set(&pmd->exit_latch);
2189 dp_netdev_reload_pmd__(pmd);
2190 ovs_numa_unpin_core(pmd->core_id);
2191 xpthread_join(pmd->thread, NULL);
2192 }
2193 cmap_remove(&pmd->dp->poll_threads, &pmd->node, hash_int(pmd->core_id, 0));
2194 latch_destroy(&pmd->exit_latch);
2195 free(pmd);
2196 }
2197
2198 /* Destroys all pmd threads. */
2199 static void
2200 dp_netdev_destroy_all_pmds(struct dp_netdev *dp)
2201 {
2202 struct dp_netdev_pmd_thread *pmd;
2203
2204 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
2205 dp_netdev_del_pmd(pmd);
2206 }
2207 }
2208
2209 /* Deletes all pmd threads on numa node 'numa_id'. */
2210 static void
2211 dp_netdev_del_pmds_on_numa(struct dp_netdev *dp, int numa_id)
2212 {
2213 struct dp_netdev_pmd_thread *pmd;
2214
2215 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
2216 if (pmd->numa_id == numa_id) {
2217 dp_netdev_del_pmd(pmd);
2218 }
2219 }
2220 }
2221
2222 /* Checks the numa node id of 'netdev' and starts pmd threads for
2223 * the numa node. */
2224 static void
2225 dp_netdev_set_pmds_on_numa(struct dp_netdev *dp, int numa_id)
2226 {
2227 int n_pmds;
2228
2229 if (!ovs_numa_numa_id_is_valid(numa_id)) {
2230 VLOG_ERR("Cannot create pmd threads due to numa id (%d)"
2231 "invalid", numa_id);
2232 return ;
2233 }
2234
2235 n_pmds = get_n_pmd_threads_on_numa(dp, numa_id);
2236
2237 /* If there are already pmd threads created for the numa node
2238 * in which 'netdev' is on, do nothing. Else, creates the
2239 * pmd threads for the numa node. */
2240 if (!n_pmds) {
2241 int can_have, n_unpinned, i;
2242
2243 n_unpinned = ovs_numa_get_n_unpinned_cores_on_numa(numa_id);
2244 if (!n_unpinned) {
2245 VLOG_ERR("Cannot create pmd threads due to out of unpinned "
2246 "cores on numa node");
2247 return;
2248 }
2249
2250 /* Tries creating NR_PMD_THREADS pmd threads on the numa node. */
2251 can_have = MIN(n_unpinned, NR_PMD_THREADS);
2252 for (i = 0; i < can_have; i++) {
2253 struct dp_netdev_pmd_thread *pmd = xzalloc(sizeof *pmd);
2254 int core_id = ovs_numa_get_unpinned_core_on_numa(numa_id);
2255
2256 dp_netdev_configure_pmd(pmd, dp, i, core_id, numa_id);
2257 /* Each thread will distribute all devices rx-queues among
2258 * themselves. */
2259 pmd->thread = ovs_thread_create("pmd", pmd_thread_main, pmd);
2260 }
2261 VLOG_INFO("Created %d pmd threads on numa node %d", can_have, numa_id);
2262 }
2263 }
2264
2265 \f
2266 static void *
2267 dp_netdev_flow_stats_new_cb(void)
2268 {
2269 struct dp_netdev_flow_stats *bucket = xzalloc_cacheline(sizeof *bucket);
2270 ovs_mutex_init(&bucket->mutex);
2271 return bucket;
2272 }
2273
2274 static void
2275 dp_netdev_flow_used(struct dp_netdev_flow *netdev_flow,
2276 int cnt, int size,
2277 uint16_t tcp_flags)
2278 {
2279 long long int now = time_msec();
2280 struct dp_netdev_flow_stats *bucket;
2281
2282 bucket = ovsthread_stats_bucket_get(&netdev_flow->stats,
2283 dp_netdev_flow_stats_new_cb);
2284
2285 ovs_mutex_lock(&bucket->mutex);
2286 bucket->used = MAX(now, bucket->used);
2287 bucket->packet_count += cnt;
2288 bucket->byte_count += size;
2289 bucket->tcp_flags |= tcp_flags;
2290 ovs_mutex_unlock(&bucket->mutex);
2291 }
2292
2293 static void *
2294 dp_netdev_stats_new_cb(void)
2295 {
2296 struct dp_netdev_stats *bucket = xzalloc_cacheline(sizeof *bucket);
2297 ovs_mutex_init(&bucket->mutex);
2298 return bucket;
2299 }
2300
2301 static void
2302 dp_netdev_count_packet(struct dp_netdev *dp, enum dp_stat_type type, int cnt)
2303 {
2304 struct dp_netdev_stats *bucket;
2305
2306 bucket = ovsthread_stats_bucket_get(&dp->stats, dp_netdev_stats_new_cb);
2307 ovs_mutex_lock(&bucket->mutex);
2308 bucket->n[type] += cnt;
2309 ovs_mutex_unlock(&bucket->mutex);
2310 }
2311
2312 static int
2313 dp_netdev_upcall(struct dp_netdev *dp, struct dpif_packet *packet_,
2314 struct flow *flow, struct flow_wildcards *wc,
2315 enum dpif_upcall_type type, const struct nlattr *userdata,
2316 struct ofpbuf *actions, struct ofpbuf *put_actions)
2317 {
2318 struct ofpbuf *packet = &packet_->ofpbuf;
2319
2320 if (type == DPIF_UC_MISS) {
2321 dp_netdev_count_packet(dp, DP_STAT_MISS, 1);
2322 }
2323
2324 if (OVS_UNLIKELY(!dp->upcall_cb)) {
2325 return ENODEV;
2326 }
2327
2328 if (OVS_UNLIKELY(!VLOG_DROP_DBG(&upcall_rl))) {
2329 struct ds ds = DS_EMPTY_INITIALIZER;
2330 struct ofpbuf key;
2331 char *packet_str;
2332
2333 ofpbuf_init(&key, 0);
2334 odp_flow_key_from_flow(&key, flow, &wc->masks, flow->in_port.odp_port,
2335 true);
2336
2337 packet_str = ofp_packet_to_string(ofpbuf_data(packet),
2338 ofpbuf_size(packet));
2339
2340 odp_flow_key_format(ofpbuf_data(&key), ofpbuf_size(&key), &ds);
2341
2342 VLOG_DBG("%s: %s upcall:\n%s\n%s", dp->name,
2343 dpif_upcall_type_to_string(type), ds_cstr(&ds), packet_str);
2344
2345 ofpbuf_uninit(&key);
2346 free(packet_str);
2347 ds_destroy(&ds);
2348 }
2349
2350 return dp->upcall_cb(packet, flow, type, userdata, actions, wc,
2351 put_actions, dp->upcall_aux);
2352 }
2353
2354 static inline uint32_t
2355 dpif_netdev_packet_get_dp_hash(struct dpif_packet *packet,
2356 const struct miniflow *mf)
2357 {
2358 uint32_t hash;
2359
2360 hash = dpif_packet_get_dp_hash(packet);
2361 if (OVS_UNLIKELY(!hash)) {
2362 hash = miniflow_hash_5tuple(mf, 0);
2363 dpif_packet_set_dp_hash(packet, hash);
2364 }
2365 return hash;
2366 }
2367
2368 struct packet_batch {
2369 unsigned int packet_count;
2370 unsigned int byte_count;
2371 uint16_t tcp_flags;
2372
2373 struct dp_netdev_flow *flow;
2374
2375 struct dpif_packet *packets[NETDEV_MAX_RX_BATCH];
2376 struct pkt_metadata md;
2377 };
2378
2379 static inline void
2380 packet_batch_update(struct packet_batch *batch, struct dpif_packet *packet,
2381 const struct miniflow *mf)
2382 {
2383 batch->tcp_flags |= miniflow_get_tcp_flags(mf);
2384 batch->packets[batch->packet_count++] = packet;
2385 batch->byte_count += ofpbuf_size(&packet->ofpbuf);
2386 }
2387
2388 static inline void
2389 packet_batch_init(struct packet_batch *batch, struct dp_netdev_flow *flow,
2390 struct pkt_metadata *md)
2391 {
2392 batch->flow = flow;
2393 batch->md = *md;
2394
2395 batch->packet_count = 0;
2396 batch->byte_count = 0;
2397 batch->tcp_flags = 0;
2398 }
2399
2400 static inline void
2401 packet_batch_execute(struct packet_batch *batch,
2402 struct dp_netdev_pmd_thread *pmd)
2403 {
2404 struct dp_netdev_actions *actions;
2405 struct dp_netdev_flow *flow = batch->flow;
2406
2407 dp_netdev_flow_used(batch->flow, batch->packet_count, batch->byte_count,
2408 batch->tcp_flags);
2409
2410 actions = dp_netdev_flow_get_actions(flow);
2411
2412 dp_netdev_execute_actions(pmd, batch->packets, batch->packet_count, true,
2413 &batch->md, actions->actions, actions->size);
2414
2415 dp_netdev_count_packet(pmd->dp, DP_STAT_HIT, batch->packet_count);
2416 }
2417
2418 static inline bool
2419 dp_netdev_queue_batches(struct dpif_packet *pkt, struct pkt_metadata *md,
2420 struct dp_netdev_flow *flow, const struct miniflow *mf,
2421 struct packet_batch *batches, size_t *n_batches,
2422 size_t max_batches)
2423 {
2424 struct packet_batch *batch = NULL;
2425 int j;
2426
2427 if (OVS_UNLIKELY(!flow)) {
2428 return false;
2429 }
2430 /* XXX: This O(n^2) algortihm makes sense if we're operating under the
2431 * assumption that the number of distinct flows (and therefore the
2432 * number of distinct batches) is quite small. If this turns out not
2433 * to be the case, it may make sense to pre sort based on the
2434 * netdev_flow pointer. That done we can get the appropriate batching
2435 * in O(n * log(n)) instead. */
2436 for (j = *n_batches - 1; j >= 0; j--) {
2437 if (batches[j].flow == flow) {
2438 batch = &batches[j];
2439 packet_batch_update(batch, pkt, mf);
2440 return true;
2441 }
2442 }
2443 if (OVS_UNLIKELY(*n_batches >= max_batches)) {
2444 return false;
2445 }
2446
2447 batch = &batches[(*n_batches)++];
2448 packet_batch_init(batch, flow, md);
2449 packet_batch_update(batch, pkt, mf);
2450 return true;
2451 }
2452
2453 static inline void
2454 dpif_packet_swap(struct dpif_packet **a, struct dpif_packet **b)
2455 {
2456 struct dpif_packet *tmp = *a;
2457 *a = *b;
2458 *b = tmp;
2459 }
2460
2461 /* Try to process all ('cnt') the 'packets' using only the exact match cache
2462 * 'flow_cache'. If a flow is not found for a packet 'packets[i]', or if there
2463 * is no matching batch for a packet's flow, the miniflow is copied into 'keys'
2464 * and the packet pointer is moved at the beginning of the 'packets' array.
2465 *
2466 * The function returns the number of packets that needs to be processed in the
2467 * 'packets' array (they have been moved to the beginning of the vector).
2468 */
2469 static inline size_t
2470 emc_processing(struct dp_netdev_pmd_thread *pmd, struct dpif_packet **packets,
2471 size_t cnt, struct pkt_metadata *md,
2472 struct netdev_flow_key *keys)
2473 {
2474 struct netdev_flow_key key;
2475 struct packet_batch batches[4];
2476 struct emc_cache *flow_cache = &pmd->flow_cache;
2477 size_t n_batches, i;
2478 size_t notfound_cnt = 0;
2479
2480 n_batches = 0;
2481 miniflow_initialize(&key.flow, key.buf);
2482 for (i = 0; i < cnt; i++) {
2483 struct dp_netdev_flow *flow;
2484 uint32_t hash;
2485
2486 if (OVS_UNLIKELY(ofpbuf_size(&packets[i]->ofpbuf) < ETH_HEADER_LEN)) {
2487 dpif_packet_delete(packets[i]);
2488 continue;
2489 }
2490
2491 miniflow_extract(&packets[i]->ofpbuf, md, &key.flow);
2492
2493 hash = dpif_netdev_packet_get_dp_hash(packets[i], &key.flow);
2494
2495 flow = emc_lookup(flow_cache, &key.flow, hash);
2496 if (OVS_UNLIKELY(!dp_netdev_queue_batches(packets[i], md,
2497 flow, &key.flow,
2498 batches, &n_batches,
2499 ARRAY_SIZE(batches)))) {
2500 if (i != notfound_cnt) {
2501 dpif_packet_swap(&packets[i], &packets[notfound_cnt]);
2502 }
2503
2504 keys[notfound_cnt++] = key;
2505 }
2506 }
2507
2508 for (i = 0; i < n_batches; i++) {
2509 packet_batch_execute(&batches[i], pmd);
2510 }
2511
2512 return notfound_cnt;
2513 }
2514
2515 static inline void
2516 fast_path_processing(struct dp_netdev_pmd_thread *pmd,
2517 struct dpif_packet **packets, size_t cnt,
2518 struct pkt_metadata *md, struct netdev_flow_key *keys)
2519 {
2520 #if !defined(__CHECKER__) && !defined(_WIN32)
2521 const size_t PKT_ARRAY_SIZE = cnt;
2522 #else
2523 /* Sparse or MSVC doesn't like variable length array. */
2524 enum { PKT_ARRAY_SIZE = NETDEV_MAX_RX_BATCH };
2525 #endif
2526 struct packet_batch batches[PKT_ARRAY_SIZE];
2527 const struct miniflow *mfs[PKT_ARRAY_SIZE]; /* NULL at bad packets. */
2528 struct cls_rule *rules[PKT_ARRAY_SIZE];
2529 struct dp_netdev *dp = pmd->dp;
2530 struct emc_cache *flow_cache = &pmd->flow_cache;
2531 size_t n_batches, i;
2532 bool any_miss;
2533
2534 for (i = 0; i < cnt; i++) {
2535 mfs[i] = &keys[i].flow;
2536 }
2537 any_miss = !classifier_lookup_miniflow_batch(&dp->cls, mfs, rules, cnt);
2538 if (OVS_UNLIKELY(any_miss) && !fat_rwlock_tryrdlock(&dp->upcall_rwlock)) {
2539 uint64_t actions_stub[512 / 8], slow_stub[512 / 8];
2540 struct ofpbuf actions, put_actions;
2541 struct match match;
2542
2543 ofpbuf_use_stub(&actions, actions_stub, sizeof actions_stub);
2544 ofpbuf_use_stub(&put_actions, slow_stub, sizeof slow_stub);
2545
2546 for (i = 0; i < cnt; i++) {
2547 const struct dp_netdev_flow *netdev_flow;
2548 struct ofpbuf *add_actions;
2549 int error;
2550
2551 if (OVS_LIKELY(rules[i] || !mfs[i])) {
2552 continue;
2553 }
2554
2555 /* It's possible that an earlier slow path execution installed
2556 * the rule this flow needs. In this case, it's a lot cheaper
2557 * to catch it here than execute a miss. */
2558 netdev_flow = dp_netdev_lookup_flow(dp, mfs[i]);
2559 if (netdev_flow) {
2560 rules[i] = CONST_CAST(struct cls_rule *, &netdev_flow->cr);
2561 continue;
2562 }
2563
2564 miniflow_expand(mfs[i], &match.flow);
2565
2566 ofpbuf_clear(&actions);
2567 ofpbuf_clear(&put_actions);
2568
2569 error = dp_netdev_upcall(dp, packets[i], &match.flow, &match.wc,
2570 DPIF_UC_MISS, NULL, &actions,
2571 &put_actions);
2572 if (OVS_UNLIKELY(error && error != ENOSPC)) {
2573 continue;
2574 }
2575
2576 /* We can't allow the packet batching in the next loop to execute
2577 * the actions. Otherwise, if there are any slow path actions,
2578 * we'll send the packet up twice. */
2579 dp_netdev_execute_actions(pmd, &packets[i], 1, false, md,
2580 ofpbuf_data(&actions),
2581 ofpbuf_size(&actions));
2582
2583 add_actions = ofpbuf_size(&put_actions)
2584 ? &put_actions
2585 : &actions;
2586
2587 ovs_mutex_lock(&dp->flow_mutex);
2588 /* XXX: There's a brief race where this flow could have already
2589 * been installed since we last did the flow lookup. This could be
2590 * solved by moving the mutex lock outside the loop, but that's an
2591 * awful long time to be locking everyone out of making flow
2592 * installs. If we move to a per-core classifier, it would be
2593 * reasonable. */
2594 if (OVS_LIKELY(error != ENOSPC)
2595 && !dp_netdev_lookup_flow(dp, mfs[i])) {
2596 dp_netdev_flow_add(dp, &match, ofpbuf_data(add_actions),
2597 ofpbuf_size(add_actions));
2598 }
2599 ovs_mutex_unlock(&dp->flow_mutex);
2600 }
2601
2602 ofpbuf_uninit(&actions);
2603 ofpbuf_uninit(&put_actions);
2604 fat_rwlock_unlock(&dp->upcall_rwlock);
2605 }
2606
2607 n_batches = 0;
2608 for (i = 0; i < cnt; i++) {
2609 struct dpif_packet *packet = packets[i];
2610 struct dp_netdev_flow *flow;
2611
2612 if (OVS_UNLIKELY(!rules[i] || !mfs[i])) {
2613 continue;
2614 }
2615
2616 flow = dp_netdev_flow_cast(rules[i]);
2617 emc_insert(flow_cache, mfs[i], dpif_packet_get_dp_hash(packet),
2618 flow);
2619 dp_netdev_queue_batches(packet, md, flow, mfs[i], batches, &n_batches,
2620 ARRAY_SIZE(batches));
2621 }
2622
2623 for (i = 0; i < n_batches; i++) {
2624 packet_batch_execute(&batches[i], pmd);
2625 }
2626 }
2627
2628 static void
2629 dp_netdev_input(struct dp_netdev_pmd_thread *pmd,
2630 struct dpif_packet **packets, int cnt, struct pkt_metadata *md)
2631 {
2632 #if !defined(__CHECKER__) && !defined(_WIN32)
2633 const size_t PKT_ARRAY_SIZE = cnt;
2634 #else
2635 /* Sparse or MSVC doesn't like variable length array. */
2636 enum { PKT_ARRAY_SIZE = NETDEV_MAX_RX_BATCH };
2637 #endif
2638 struct netdev_flow_key keys[PKT_ARRAY_SIZE];
2639 size_t newcnt;
2640
2641 newcnt = emc_processing(pmd, packets, cnt, md, keys);
2642 if (OVS_UNLIKELY(newcnt)) {
2643 fast_path_processing(pmd, packets, newcnt, md, keys);
2644 }
2645 }
2646
2647 struct dp_netdev_execute_aux {
2648 struct dp_netdev_pmd_thread *pmd;
2649 };
2650
2651 static void
2652 dpif_netdev_register_upcall_cb(struct dpif *dpif, upcall_callback *cb,
2653 void *aux)
2654 {
2655 struct dp_netdev *dp = get_dp_netdev(dpif);
2656 dp->upcall_aux = aux;
2657 dp->upcall_cb = cb;
2658 }
2659
2660 static void
2661 dp_execute_cb(void *aux_, struct dpif_packet **packets, int cnt,
2662 struct pkt_metadata *md,
2663 const struct nlattr *a, bool may_steal)
2664 OVS_NO_THREAD_SAFETY_ANALYSIS
2665 {
2666 struct dp_netdev_execute_aux *aux = aux_;
2667 uint32_t *depth = recirc_depth_get();
2668 struct dp_netdev_pmd_thread *pmd= aux->pmd;
2669 struct dp_netdev *dp= pmd->dp;
2670 int type = nl_attr_type(a);
2671 struct dp_netdev_port *p;
2672 int i;
2673
2674 switch ((enum ovs_action_attr)type) {
2675 case OVS_ACTION_ATTR_OUTPUT:
2676 p = dp_netdev_lookup_port(dp, u32_to_odp(nl_attr_get_u32(a)));
2677 if (OVS_LIKELY(p)) {
2678 netdev_send(p->netdev, pmd->core_id, packets, cnt, may_steal);
2679 } else if (may_steal) {
2680 for (i = 0; i < cnt; i++) {
2681 dpif_packet_delete(packets[i]);
2682 }
2683 }
2684 break;
2685
2686 case OVS_ACTION_ATTR_USERSPACE:
2687 if (!fat_rwlock_tryrdlock(&dp->upcall_rwlock)) {
2688 const struct nlattr *userdata;
2689 struct ofpbuf actions;
2690 struct flow flow;
2691
2692 userdata = nl_attr_find_nested(a, OVS_USERSPACE_ATTR_USERDATA);
2693 ofpbuf_init(&actions, 0);
2694
2695 for (i = 0; i < cnt; i++) {
2696 int error;
2697
2698 ofpbuf_clear(&actions);
2699
2700 flow_extract(&packets[i]->ofpbuf, md, &flow);
2701 error = dp_netdev_upcall(dp, packets[i], &flow, NULL,
2702 DPIF_UC_ACTION, userdata, &actions,
2703 NULL);
2704 if (!error || error == ENOSPC) {
2705 dp_netdev_execute_actions(pmd, &packets[i], 1, false, md,
2706 ofpbuf_data(&actions),
2707 ofpbuf_size(&actions));
2708 }
2709
2710 if (may_steal) {
2711 dpif_packet_delete(packets[i]);
2712 }
2713 }
2714 ofpbuf_uninit(&actions);
2715 fat_rwlock_unlock(&dp->upcall_rwlock);
2716 }
2717
2718 break;
2719
2720 case OVS_ACTION_ATTR_HASH: {
2721 const struct ovs_action_hash *hash_act;
2722 uint32_t hash;
2723
2724 hash_act = nl_attr_get(a);
2725
2726 for (i = 0; i < cnt; i++) {
2727
2728 if (hash_act->hash_alg == OVS_HASH_ALG_L4) {
2729 /* Hash need not be symmetric, nor does it need to include
2730 * L2 fields. */
2731 hash = hash_2words(dpif_packet_get_dp_hash(packets[i]),
2732 hash_act->hash_basis);
2733 } else {
2734 VLOG_WARN("Unknown hash algorithm specified "
2735 "for the hash action.");
2736 hash = 2;
2737 }
2738
2739 if (!hash) {
2740 hash = 1; /* 0 is not valid */
2741 }
2742
2743 if (i == 0) {
2744 md->dp_hash = hash;
2745 }
2746 dpif_packet_set_dp_hash(packets[i], hash);
2747 }
2748 break;
2749 }
2750
2751 case OVS_ACTION_ATTR_RECIRC:
2752 if (*depth < MAX_RECIRC_DEPTH) {
2753
2754 (*depth)++;
2755 for (i = 0; i < cnt; i++) {
2756 struct dpif_packet *recirc_pkt;
2757 struct pkt_metadata recirc_md = *md;
2758
2759 recirc_pkt = (may_steal) ? packets[i]
2760 : dpif_packet_clone(packets[i]);
2761
2762 recirc_md.recirc_id = nl_attr_get_u32(a);
2763
2764 /* Hash is private to each packet */
2765 recirc_md.dp_hash = dpif_packet_get_dp_hash(packets[i]);
2766
2767 dp_netdev_input(pmd, &recirc_pkt, 1,
2768 &recirc_md);
2769 }
2770 (*depth)--;
2771
2772 break;
2773 } else {
2774 VLOG_WARN("Packet dropped. Max recirculation depth exceeded.");
2775 if (may_steal) {
2776 for (i = 0; i < cnt; i++) {
2777 dpif_packet_delete(packets[i]);
2778 }
2779 }
2780 }
2781 break;
2782
2783 case OVS_ACTION_ATTR_PUSH_VLAN:
2784 case OVS_ACTION_ATTR_POP_VLAN:
2785 case OVS_ACTION_ATTR_PUSH_MPLS:
2786 case OVS_ACTION_ATTR_POP_MPLS:
2787 case OVS_ACTION_ATTR_SET:
2788 case OVS_ACTION_ATTR_SET_MASKED:
2789 case OVS_ACTION_ATTR_SAMPLE:
2790 case OVS_ACTION_ATTR_UNSPEC:
2791 case __OVS_ACTION_ATTR_MAX:
2792 OVS_NOT_REACHED();
2793 }
2794 }
2795
2796 static void
2797 dp_netdev_execute_actions(struct dp_netdev_pmd_thread *pmd,
2798 struct dpif_packet **packets, int cnt,
2799 bool may_steal, struct pkt_metadata *md,
2800 const struct nlattr *actions, size_t actions_len)
2801 {
2802 struct dp_netdev_execute_aux aux = {pmd};
2803
2804 odp_execute_actions(&aux, packets, cnt, may_steal, md, actions,
2805 actions_len, dp_execute_cb);
2806 }
2807
2808 const struct dpif_class dpif_netdev_class = {
2809 "netdev",
2810 dpif_netdev_enumerate,
2811 dpif_netdev_port_open_type,
2812 dpif_netdev_open,
2813 dpif_netdev_close,
2814 dpif_netdev_destroy,
2815 dpif_netdev_run,
2816 dpif_netdev_wait,
2817 dpif_netdev_get_stats,
2818 dpif_netdev_port_add,
2819 dpif_netdev_port_del,
2820 dpif_netdev_port_query_by_number,
2821 dpif_netdev_port_query_by_name,
2822 NULL, /* port_get_pid */
2823 dpif_netdev_port_dump_start,
2824 dpif_netdev_port_dump_next,
2825 dpif_netdev_port_dump_done,
2826 dpif_netdev_port_poll,
2827 dpif_netdev_port_poll_wait,
2828 dpif_netdev_flow_flush,
2829 dpif_netdev_flow_dump_create,
2830 dpif_netdev_flow_dump_destroy,
2831 dpif_netdev_flow_dump_thread_create,
2832 dpif_netdev_flow_dump_thread_destroy,
2833 dpif_netdev_flow_dump_next,
2834 dpif_netdev_operate,
2835 NULL, /* recv_set */
2836 NULL, /* handlers_set */
2837 dpif_netdev_queue_to_priority,
2838 NULL, /* recv */
2839 NULL, /* recv_wait */
2840 NULL, /* recv_purge */
2841 dpif_netdev_register_upcall_cb,
2842 dpif_netdev_enable_upcall,
2843 dpif_netdev_disable_upcall,
2844 };
2845
2846 static void
2847 dpif_dummy_change_port_number(struct unixctl_conn *conn, int argc OVS_UNUSED,
2848 const char *argv[], void *aux OVS_UNUSED)
2849 {
2850 struct dp_netdev_port *old_port;
2851 struct dp_netdev_port *new_port;
2852 struct dp_netdev *dp;
2853 odp_port_t port_no;
2854
2855 ovs_mutex_lock(&dp_netdev_mutex);
2856 dp = shash_find_data(&dp_netdevs, argv[1]);
2857 if (!dp || !dpif_netdev_class_is_dummy(dp->class)) {
2858 ovs_mutex_unlock(&dp_netdev_mutex);
2859 unixctl_command_reply_error(conn, "unknown datapath or not a dummy");
2860 return;
2861 }
2862 ovs_refcount_ref(&dp->ref_cnt);
2863 ovs_mutex_unlock(&dp_netdev_mutex);
2864
2865 ovs_mutex_lock(&dp->port_mutex);
2866 if (get_port_by_name(dp, argv[2], &old_port)) {
2867 unixctl_command_reply_error(conn, "unknown port");
2868 goto exit;
2869 }
2870
2871 port_no = u32_to_odp(atoi(argv[3]));
2872 if (!port_no || port_no == ODPP_NONE) {
2873 unixctl_command_reply_error(conn, "bad port number");
2874 goto exit;
2875 }
2876 if (dp_netdev_lookup_port(dp, port_no)) {
2877 unixctl_command_reply_error(conn, "port number already in use");
2878 goto exit;
2879 }
2880
2881 /* Remove old port. */
2882 cmap_remove(&dp->ports, &old_port->node, hash_port_no(old_port->port_no));
2883 ovsrcu_postpone(free, old_port);
2884
2885 /* Insert new port (cmap semantics mean we cannot re-insert 'old_port'). */
2886 new_port = xmemdup(old_port, sizeof *old_port);
2887 new_port->port_no = port_no;
2888 cmap_insert(&dp->ports, &new_port->node, hash_port_no(port_no));
2889
2890 seq_change(dp->port_seq);
2891 unixctl_command_reply(conn, NULL);
2892
2893 exit:
2894 ovs_mutex_unlock(&dp->port_mutex);
2895 dp_netdev_unref(dp);
2896 }
2897
2898 static void
2899 dpif_dummy_delete_port(struct unixctl_conn *conn, int argc OVS_UNUSED,
2900 const char *argv[], void *aux OVS_UNUSED)
2901 {
2902 struct dp_netdev_port *port;
2903 struct dp_netdev *dp;
2904
2905 ovs_mutex_lock(&dp_netdev_mutex);
2906 dp = shash_find_data(&dp_netdevs, argv[1]);
2907 if (!dp || !dpif_netdev_class_is_dummy(dp->class)) {
2908 ovs_mutex_unlock(&dp_netdev_mutex);
2909 unixctl_command_reply_error(conn, "unknown datapath or not a dummy");
2910 return;
2911 }
2912 ovs_refcount_ref(&dp->ref_cnt);
2913 ovs_mutex_unlock(&dp_netdev_mutex);
2914
2915 ovs_mutex_lock(&dp->port_mutex);
2916 if (get_port_by_name(dp, argv[2], &port)) {
2917 unixctl_command_reply_error(conn, "unknown port");
2918 } else if (port->port_no == ODPP_LOCAL) {
2919 unixctl_command_reply_error(conn, "can't delete local port");
2920 } else {
2921 do_del_port(dp, port);
2922 unixctl_command_reply(conn, NULL);
2923 }
2924 ovs_mutex_unlock(&dp->port_mutex);
2925
2926 dp_netdev_unref(dp);
2927 }
2928
2929 static void
2930 dpif_dummy_register__(const char *type)
2931 {
2932 struct dpif_class *class;
2933
2934 class = xmalloc(sizeof *class);
2935 *class = dpif_netdev_class;
2936 class->type = xstrdup(type);
2937 dp_register_provider(class);
2938 }
2939
2940 void
2941 dpif_dummy_register(bool override)
2942 {
2943 if (override) {
2944 struct sset types;
2945 const char *type;
2946
2947 sset_init(&types);
2948 dp_enumerate_types(&types);
2949 SSET_FOR_EACH (type, &types) {
2950 if (!dp_unregister_provider(type)) {
2951 dpif_dummy_register__(type);
2952 }
2953 }
2954 sset_destroy(&types);
2955 }
2956
2957 dpif_dummy_register__("dummy");
2958
2959 unixctl_command_register("dpif-dummy/change-port-number",
2960 "dp port new-number",
2961 3, 3, dpif_dummy_change_port_number, NULL);
2962 unixctl_command_register("dpif-dummy/delete-port", "dp port",
2963 2, 2, dpif_dummy_delete_port, NULL);
2964 }