]> git.proxmox.com Git - mirror_ovs.git/blob - lib/dpif-netdev.c
netdev: Return number of packet from netdev_pop_header()
[mirror_ovs.git] / lib / dpif-netdev.c
1 /*
2 * Copyright (c) 2009, 2010, 2011, 2012, 2013, 2014, 2016 Nicira, Inc.
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at:
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <config.h>
18 #include "dpif-netdev.h"
19
20 #include <ctype.h>
21 #include <errno.h>
22 #include <fcntl.h>
23 #include <inttypes.h>
24 #include <net/if.h>
25 #include <netinet/in.h>
26 #include <stdint.h>
27 #include <stdlib.h>
28 #include <string.h>
29 #include <sys/ioctl.h>
30 #include <sys/socket.h>
31 #include <sys/stat.h>
32 #include <unistd.h>
33
34 #include "bitmap.h"
35 #include "cmap.h"
36 #include "coverage.h"
37 #include "csum.h"
38 #include "dp-packet.h"
39 #include "dpif.h"
40 #include "dpif-provider.h"
41 #include "dummy.h"
42 #include "fat-rwlock.h"
43 #include "flow.h"
44 #include "hmapx.h"
45 #include "latch.h"
46 #include "netdev.h"
47 #include "netdev-dpdk.h"
48 #include "netdev-vport.h"
49 #include "netlink.h"
50 #include "odp-execute.h"
51 #include "odp-util.h"
52 #include "openvswitch/dynamic-string.h"
53 #include "openvswitch/list.h"
54 #include "openvswitch/match.h"
55 #include "openvswitch/ofp-print.h"
56 #include "openvswitch/ofpbuf.h"
57 #include "openvswitch/vlog.h"
58 #include "ovs-numa.h"
59 #include "ovs-rcu.h"
60 #include "packets.h"
61 #include "poll-loop.h"
62 #include "pvector.h"
63 #include "random.h"
64 #include "seq.h"
65 #include "shash.h"
66 #include "sset.h"
67 #include "timeval.h"
68 #include "tnl-neigh-cache.h"
69 #include "tnl-ports.h"
70 #include "unixctl.h"
71 #include "util.h"
72
73 VLOG_DEFINE_THIS_MODULE(dpif_netdev);
74
75 #define FLOW_DUMP_MAX_BATCH 50
76 /* Use per thread recirc_depth to prevent recirculation loop. */
77 #define MAX_RECIRC_DEPTH 5
78 DEFINE_STATIC_PER_THREAD_DATA(uint32_t, recirc_depth, 0)
79
80 /* Configuration parameters. */
81 enum { MAX_FLOWS = 65536 }; /* Maximum number of flows in flow table. */
82
83 /* Protects against changes to 'dp_netdevs'. */
84 static struct ovs_mutex dp_netdev_mutex = OVS_MUTEX_INITIALIZER;
85
86 /* Contains all 'struct dp_netdev's. */
87 static struct shash dp_netdevs OVS_GUARDED_BY(dp_netdev_mutex)
88 = SHASH_INITIALIZER(&dp_netdevs);
89
90 static struct vlog_rate_limit upcall_rl = VLOG_RATE_LIMIT_INIT(600, 600);
91
92 static struct odp_support dp_netdev_support = {
93 .max_mpls_depth = SIZE_MAX,
94 .recirc = true,
95 };
96
97 /* Stores a miniflow with inline values */
98
99 struct netdev_flow_key {
100 uint32_t hash; /* Hash function differs for different users. */
101 uint32_t len; /* Length of the following miniflow (incl. map). */
102 struct miniflow mf;
103 uint64_t buf[FLOW_MAX_PACKET_U64S];
104 };
105
106 /* Exact match cache for frequently used flows
107 *
108 * The cache uses a 32-bit hash of the packet (which can be the RSS hash) to
109 * search its entries for a miniflow that matches exactly the miniflow of the
110 * packet. It stores the 'dpcls_rule' (rule) that matches the miniflow.
111 *
112 * A cache entry holds a reference to its 'dp_netdev_flow'.
113 *
114 * A miniflow with a given hash can be in one of EM_FLOW_HASH_SEGS different
115 * entries. The 32-bit hash is split into EM_FLOW_HASH_SEGS values (each of
116 * them is EM_FLOW_HASH_SHIFT bits wide and the remainder is thrown away). Each
117 * value is the index of a cache entry where the miniflow could be.
118 *
119 *
120 * Thread-safety
121 * =============
122 *
123 * Each pmd_thread has its own private exact match cache.
124 * If dp_netdev_input is not called from a pmd thread, a mutex is used.
125 */
126
127 #define EM_FLOW_HASH_SHIFT 13
128 #define EM_FLOW_HASH_ENTRIES (1u << EM_FLOW_HASH_SHIFT)
129 #define EM_FLOW_HASH_MASK (EM_FLOW_HASH_ENTRIES - 1)
130 #define EM_FLOW_HASH_SEGS 2
131
132 struct emc_entry {
133 struct dp_netdev_flow *flow;
134 struct netdev_flow_key key; /* key.hash used for emc hash value. */
135 };
136
137 struct emc_cache {
138 struct emc_entry entries[EM_FLOW_HASH_ENTRIES];
139 int sweep_idx; /* For emc_cache_slow_sweep(). */
140 };
141
142 /* Iterate in the exact match cache through every entry that might contain a
143 * miniflow with hash 'HASH'. */
144 #define EMC_FOR_EACH_POS_WITH_HASH(EMC, CURRENT_ENTRY, HASH) \
145 for (uint32_t i__ = 0, srch_hash__ = (HASH); \
146 (CURRENT_ENTRY) = &(EMC)->entries[srch_hash__ & EM_FLOW_HASH_MASK], \
147 i__ < EM_FLOW_HASH_SEGS; \
148 i__++, srch_hash__ >>= EM_FLOW_HASH_SHIFT)
149 \f
150 /* Simple non-wildcarding single-priority classifier. */
151
152 struct dpcls {
153 struct cmap subtables_map;
154 struct pvector subtables;
155 };
156
157 /* A rule to be inserted to the classifier. */
158 struct dpcls_rule {
159 struct cmap_node cmap_node; /* Within struct dpcls_subtable 'rules'. */
160 struct netdev_flow_key *mask; /* Subtable's mask. */
161 struct netdev_flow_key flow; /* Matching key. */
162 /* 'flow' must be the last field, additional space is allocated here. */
163 };
164
165 static void dpcls_init(struct dpcls *);
166 static void dpcls_destroy(struct dpcls *);
167 static void dpcls_insert(struct dpcls *, struct dpcls_rule *,
168 const struct netdev_flow_key *mask);
169 static void dpcls_remove(struct dpcls *, struct dpcls_rule *);
170 static bool dpcls_lookup(const struct dpcls *cls,
171 const struct netdev_flow_key keys[],
172 struct dpcls_rule **rules, size_t cnt);
173 \f
174 /* Datapath based on the network device interface from netdev.h.
175 *
176 *
177 * Thread-safety
178 * =============
179 *
180 * Some members, marked 'const', are immutable. Accessing other members
181 * requires synchronization, as noted in more detail below.
182 *
183 * Acquisition order is, from outermost to innermost:
184 *
185 * dp_netdev_mutex (global)
186 * port_mutex
187 */
188 struct dp_netdev {
189 const struct dpif_class *const class;
190 const char *const name;
191 struct dpif *dpif;
192 struct ovs_refcount ref_cnt;
193 atomic_flag destroyed;
194
195 /* Ports.
196 *
197 * Protected by RCU. Take the mutex to add or remove ports. */
198 struct ovs_mutex port_mutex;
199 struct cmap ports;
200 struct seq *port_seq; /* Incremented whenever a port changes. */
201
202 /* Protects access to ofproto-dpif-upcall interface during revalidator
203 * thread synchronization. */
204 struct fat_rwlock upcall_rwlock;
205 upcall_callback *upcall_cb; /* Callback function for executing upcalls. */
206 void *upcall_aux;
207
208 /* Callback function for notifying the purging of dp flows (during
209 * reseting pmd deletion). */
210 dp_purge_callback *dp_purge_cb;
211 void *dp_purge_aux;
212
213 /* Stores all 'struct dp_netdev_pmd_thread's. */
214 struct cmap poll_threads;
215
216 /* Protects the access of the 'struct dp_netdev_pmd_thread'
217 * instance for non-pmd thread. */
218 struct ovs_mutex non_pmd_mutex;
219
220 /* Each pmd thread will store its pointer to
221 * 'struct dp_netdev_pmd_thread' in 'per_pmd_key'. */
222 ovsthread_key_t per_pmd_key;
223
224 /* Cpu mask for pin of pmd threads. */
225 char *pmd_cmask;
226 uint64_t last_tnl_conf_seq;
227 };
228
229 static struct dp_netdev_port *dp_netdev_lookup_port(const struct dp_netdev *dp,
230 odp_port_t);
231
232 enum dp_stat_type {
233 DP_STAT_EXACT_HIT, /* Packets that had an exact match (emc). */
234 DP_STAT_MASKED_HIT, /* Packets that matched in the flow table. */
235 DP_STAT_MISS, /* Packets that did not match. */
236 DP_STAT_LOST, /* Packets not passed up to the client. */
237 DP_N_STATS
238 };
239
240 enum pmd_cycles_counter_type {
241 PMD_CYCLES_POLLING, /* Cycles spent polling NICs. */
242 PMD_CYCLES_PROCESSING, /* Cycles spent processing packets */
243 PMD_N_CYCLES
244 };
245
246 /* A port in a netdev-based datapath. */
247 struct dp_netdev_port {
248 odp_port_t port_no;
249 struct netdev *netdev;
250 struct cmap_node node; /* Node in dp_netdev's 'ports'. */
251 struct netdev_saved_flags *sf;
252 unsigned n_rxq; /* Number of elements in 'rxq' */
253 struct netdev_rxq **rxq;
254 char *type; /* Port type as requested by user. */
255 int latest_requested_n_rxq; /* Latest requested from netdev number
256 of rx queues. */
257 };
258
259 /* Contained by struct dp_netdev_flow's 'stats' member. */
260 struct dp_netdev_flow_stats {
261 atomic_llong used; /* Last used time, in monotonic msecs. */
262 atomic_ullong packet_count; /* Number of packets matched. */
263 atomic_ullong byte_count; /* Number of bytes matched. */
264 atomic_uint16_t tcp_flags; /* Bitwise-OR of seen tcp_flags values. */
265 };
266
267 /* A flow in 'dp_netdev_pmd_thread's 'flow_table'.
268 *
269 *
270 * Thread-safety
271 * =============
272 *
273 * Except near the beginning or ending of its lifespan, rule 'rule' belongs to
274 * its pmd thread's classifier. The text below calls this classifier 'cls'.
275 *
276 * Motivation
277 * ----------
278 *
279 * The thread safety rules described here for "struct dp_netdev_flow" are
280 * motivated by two goals:
281 *
282 * - Prevent threads that read members of "struct dp_netdev_flow" from
283 * reading bad data due to changes by some thread concurrently modifying
284 * those members.
285 *
286 * - Prevent two threads making changes to members of a given "struct
287 * dp_netdev_flow" from interfering with each other.
288 *
289 *
290 * Rules
291 * -----
292 *
293 * A flow 'flow' may be accessed without a risk of being freed during an RCU
294 * grace period. Code that needs to hold onto a flow for a while
295 * should try incrementing 'flow->ref_cnt' with dp_netdev_flow_ref().
296 *
297 * 'flow->ref_cnt' protects 'flow' from being freed. It doesn't protect the
298 * flow from being deleted from 'cls' and it doesn't protect members of 'flow'
299 * from modification.
300 *
301 * Some members, marked 'const', are immutable. Accessing other members
302 * requires synchronization, as noted in more detail below.
303 */
304 struct dp_netdev_flow {
305 const struct flow flow; /* Unmasked flow that created this entry. */
306 /* Hash table index by unmasked flow. */
307 const struct cmap_node node; /* In owning dp_netdev_pmd_thread's */
308 /* 'flow_table'. */
309 const ovs_u128 ufid; /* Unique flow identifier. */
310 const unsigned pmd_id; /* The 'core_id' of pmd thread owning this */
311 /* flow. */
312
313 /* Number of references.
314 * The classifier owns one reference.
315 * Any thread trying to keep a rule from being freed should hold its own
316 * reference. */
317 struct ovs_refcount ref_cnt;
318
319 bool dead;
320
321 /* Statistics. */
322 struct dp_netdev_flow_stats stats;
323
324 /* Actions. */
325 OVSRCU_TYPE(struct dp_netdev_actions *) actions;
326
327 /* While processing a group of input packets, the datapath uses the next
328 * member to store a pointer to the output batch for the flow. It is
329 * reset after the batch has been sent out (See dp_netdev_queue_batches(),
330 * packet_batch_init() and packet_batch_execute()). */
331 struct packet_batch *batch;
332
333 /* Packet classification. */
334 struct dpcls_rule cr; /* In owning dp_netdev's 'cls'. */
335 /* 'cr' must be the last member. */
336 };
337
338 static void dp_netdev_flow_unref(struct dp_netdev_flow *);
339 static bool dp_netdev_flow_ref(struct dp_netdev_flow *);
340 static int dpif_netdev_flow_from_nlattrs(const struct nlattr *, uint32_t,
341 struct flow *);
342
343 /* A set of datapath actions within a "struct dp_netdev_flow".
344 *
345 *
346 * Thread-safety
347 * =============
348 *
349 * A struct dp_netdev_actions 'actions' is protected with RCU. */
350 struct dp_netdev_actions {
351 /* These members are immutable: they do not change during the struct's
352 * lifetime. */
353 unsigned int size; /* Size of 'actions', in bytes. */
354 struct nlattr actions[]; /* Sequence of OVS_ACTION_ATTR_* attributes. */
355 };
356
357 struct dp_netdev_actions *dp_netdev_actions_create(const struct nlattr *,
358 size_t);
359 struct dp_netdev_actions *dp_netdev_flow_get_actions(
360 const struct dp_netdev_flow *);
361 static void dp_netdev_actions_free(struct dp_netdev_actions *);
362
363 /* Contained by struct dp_netdev_pmd_thread's 'stats' member. */
364 struct dp_netdev_pmd_stats {
365 /* Indexed by DP_STAT_*. */
366 atomic_ullong n[DP_N_STATS];
367 };
368
369 /* Contained by struct dp_netdev_pmd_thread's 'cycle' member. */
370 struct dp_netdev_pmd_cycles {
371 /* Indexed by PMD_CYCLES_*. */
372 atomic_ullong n[PMD_N_CYCLES];
373 };
374
375 /* Contained by struct dp_netdev_pmd_thread's 'poll_list' member. */
376 struct rxq_poll {
377 struct dp_netdev_port *port;
378 struct netdev_rxq *rx;
379 struct ovs_list node;
380 };
381
382 /* PMD: Poll modes drivers. PMD accesses devices via polling to eliminate
383 * the performance overhead of interrupt processing. Therefore netdev can
384 * not implement rx-wait for these devices. dpif-netdev needs to poll
385 * these device to check for recv buffer. pmd-thread does polling for
386 * devices assigned to itself.
387 *
388 * DPDK used PMD for accessing NIC.
389 *
390 * Note, instance with cpu core id NON_PMD_CORE_ID will be reserved for
391 * I/O of all non-pmd threads. There will be no actual thread created
392 * for the instance.
393 *
394 * Each struct has its own flow table and classifier. Packets received
395 * from managed ports are looked up in the corresponding pmd thread's
396 * flow table, and are executed with the found actions.
397 * */
398 struct dp_netdev_pmd_thread {
399 struct dp_netdev *dp;
400 struct ovs_refcount ref_cnt; /* Every reference must be refcount'ed. */
401 struct cmap_node node; /* In 'dp->poll_threads'. */
402
403 pthread_cond_t cond; /* For synchronizing pmd thread reload. */
404 struct ovs_mutex cond_mutex; /* Mutex for condition variable. */
405
406 /* Per thread exact-match cache. Note, the instance for cpu core
407 * NON_PMD_CORE_ID can be accessed by multiple threads, and thusly
408 * need to be protected (e.g. by 'dp_netdev_mutex'). All other
409 * instances will only be accessed by its own pmd thread. */
410 struct emc_cache flow_cache;
411
412 /* Classifier and Flow-Table.
413 *
414 * Writers of 'flow_table' must take the 'flow_mutex'. Corresponding
415 * changes to 'cls' must be made while still holding the 'flow_mutex'.
416 */
417 struct ovs_mutex flow_mutex;
418 struct dpcls cls;
419 struct cmap flow_table OVS_GUARDED; /* Flow table. */
420
421 /* Statistics. */
422 struct dp_netdev_pmd_stats stats;
423
424 /* Cycles counters */
425 struct dp_netdev_pmd_cycles cycles;
426
427 /* Used to count cicles. See 'cycles_counter_end()' */
428 unsigned long long last_cycles;
429
430 struct latch exit_latch; /* For terminating the pmd thread. */
431 atomic_uint change_seq; /* For reloading pmd ports. */
432 pthread_t thread;
433 int index; /* Idx of this pmd thread among pmd*/
434 /* threads on same numa node. */
435 unsigned core_id; /* CPU core id of this pmd thread. */
436 int numa_id; /* numa node id of this pmd thread. */
437 atomic_int tx_qid; /* Queue id used by this pmd thread to
438 * send packets on all netdevs */
439
440 struct ovs_mutex poll_mutex; /* Mutex for poll_list. */
441 /* List of rx queues to poll. */
442 struct ovs_list poll_list OVS_GUARDED;
443 int poll_cnt; /* Number of elemints in poll_list. */
444
445 /* Only a pmd thread can write on its own 'cycles' and 'stats'.
446 * The main thread keeps 'stats_zero' and 'cycles_zero' as base
447 * values and subtracts them from 'stats' and 'cycles' before
448 * reporting to the user */
449 unsigned long long stats_zero[DP_N_STATS];
450 uint64_t cycles_zero[PMD_N_CYCLES];
451 };
452
453 #define PMD_INITIAL_SEQ 1
454
455 /* Interface to netdev-based datapath. */
456 struct dpif_netdev {
457 struct dpif dpif;
458 struct dp_netdev *dp;
459 uint64_t last_port_seq;
460 };
461
462 static int get_port_by_number(struct dp_netdev *dp, odp_port_t port_no,
463 struct dp_netdev_port **portp);
464 static int get_port_by_name(struct dp_netdev *dp, const char *devname,
465 struct dp_netdev_port **portp);
466 static void dp_netdev_free(struct dp_netdev *)
467 OVS_REQUIRES(dp_netdev_mutex);
468 static int do_add_port(struct dp_netdev *dp, const char *devname,
469 const char *type, odp_port_t port_no)
470 OVS_REQUIRES(dp->port_mutex);
471 static void do_del_port(struct dp_netdev *dp, struct dp_netdev_port *)
472 OVS_REQUIRES(dp->port_mutex);
473 static int dpif_netdev_open(const struct dpif_class *, const char *name,
474 bool create, struct dpif **);
475 static void dp_netdev_execute_actions(struct dp_netdev_pmd_thread *pmd,
476 struct dp_packet **, int c,
477 bool may_steal,
478 const struct nlattr *actions,
479 size_t actions_len);
480 static void dp_netdev_input(struct dp_netdev_pmd_thread *,
481 struct dp_packet **, int cnt, odp_port_t port_no);
482 static void dp_netdev_recirculate(struct dp_netdev_pmd_thread *,
483 struct dp_packet **, int cnt);
484
485 static void dp_netdev_disable_upcall(struct dp_netdev *);
486 static void dp_netdev_pmd_reload_done(struct dp_netdev_pmd_thread *pmd);
487 static void dp_netdev_configure_pmd(struct dp_netdev_pmd_thread *pmd,
488 struct dp_netdev *dp, int index,
489 unsigned core_id, int numa_id);
490 static void dp_netdev_destroy_pmd(struct dp_netdev_pmd_thread *pmd);
491 static void dp_netdev_set_nonpmd(struct dp_netdev *dp);
492 static struct dp_netdev_pmd_thread *dp_netdev_get_pmd(struct dp_netdev *dp,
493 unsigned core_id);
494 static struct dp_netdev_pmd_thread *
495 dp_netdev_pmd_get_next(struct dp_netdev *dp, struct cmap_position *pos);
496 static void dp_netdev_destroy_all_pmds(struct dp_netdev *dp);
497 static void dp_netdev_del_pmds_on_numa(struct dp_netdev *dp, int numa_id);
498 static void dp_netdev_set_pmds_on_numa(struct dp_netdev *dp, int numa_id);
499 static void dp_netdev_pmd_clear_poll_list(struct dp_netdev_pmd_thread *pmd);
500 static void dp_netdev_del_port_from_pmd(struct dp_netdev_port *port,
501 struct dp_netdev_pmd_thread *pmd);
502 static void dp_netdev_del_port_from_all_pmds(struct dp_netdev *dp,
503 struct dp_netdev_port *port);
504 static void
505 dp_netdev_add_port_to_pmds(struct dp_netdev *dp, struct dp_netdev_port *port);
506 static void
507 dp_netdev_add_rxq_to_pmd(struct dp_netdev_pmd_thread *pmd,
508 struct dp_netdev_port *port, struct netdev_rxq *rx);
509 static struct dp_netdev_pmd_thread *
510 dp_netdev_less_loaded_pmd_on_numa(struct dp_netdev *dp, int numa_id);
511 static void dp_netdev_reset_pmd_threads(struct dp_netdev *dp);
512 static bool dp_netdev_pmd_try_ref(struct dp_netdev_pmd_thread *pmd);
513 static void dp_netdev_pmd_unref(struct dp_netdev_pmd_thread *pmd);
514 static void dp_netdev_pmd_flow_flush(struct dp_netdev_pmd_thread *pmd);
515
516 static inline bool emc_entry_alive(struct emc_entry *ce);
517 static void emc_clear_entry(struct emc_entry *ce);
518
519 static void
520 emc_cache_init(struct emc_cache *flow_cache)
521 {
522 int i;
523
524 flow_cache->sweep_idx = 0;
525 for (i = 0; i < ARRAY_SIZE(flow_cache->entries); i++) {
526 flow_cache->entries[i].flow = NULL;
527 flow_cache->entries[i].key.hash = 0;
528 flow_cache->entries[i].key.len = sizeof(struct miniflow);
529 flowmap_init(&flow_cache->entries[i].key.mf.map);
530 }
531 }
532
533 static void
534 emc_cache_uninit(struct emc_cache *flow_cache)
535 {
536 int i;
537
538 for (i = 0; i < ARRAY_SIZE(flow_cache->entries); i++) {
539 emc_clear_entry(&flow_cache->entries[i]);
540 }
541 }
542
543 /* Check and clear dead flow references slowly (one entry at each
544 * invocation). */
545 static void
546 emc_cache_slow_sweep(struct emc_cache *flow_cache)
547 {
548 struct emc_entry *entry = &flow_cache->entries[flow_cache->sweep_idx];
549
550 if (!emc_entry_alive(entry)) {
551 emc_clear_entry(entry);
552 }
553 flow_cache->sweep_idx = (flow_cache->sweep_idx + 1) & EM_FLOW_HASH_MASK;
554 }
555
556 /* Returns true if 'dpif' is a netdev or dummy dpif, false otherwise. */
557 bool
558 dpif_is_netdev(const struct dpif *dpif)
559 {
560 return dpif->dpif_class->open == dpif_netdev_open;
561 }
562
563 static struct dpif_netdev *
564 dpif_netdev_cast(const struct dpif *dpif)
565 {
566 ovs_assert(dpif_is_netdev(dpif));
567 return CONTAINER_OF(dpif, struct dpif_netdev, dpif);
568 }
569
570 static struct dp_netdev *
571 get_dp_netdev(const struct dpif *dpif)
572 {
573 return dpif_netdev_cast(dpif)->dp;
574 }
575 \f
576 enum pmd_info_type {
577 PMD_INFO_SHOW_STATS, /* Show how cpu cycles are spent. */
578 PMD_INFO_CLEAR_STATS, /* Set the cycles count to 0. */
579 PMD_INFO_SHOW_RXQ /* Show poll-lists of pmd threads. */
580 };
581
582 static void
583 pmd_info_show_stats(struct ds *reply,
584 struct dp_netdev_pmd_thread *pmd,
585 unsigned long long stats[DP_N_STATS],
586 uint64_t cycles[PMD_N_CYCLES])
587 {
588 unsigned long long total_packets = 0;
589 uint64_t total_cycles = 0;
590 int i;
591
592 /* These loops subtracts reference values ('*_zero') from the counters.
593 * Since loads and stores are relaxed, it might be possible for a '*_zero'
594 * value to be more recent than the current value we're reading from the
595 * counter. This is not a big problem, since these numbers are not
596 * supposed to be too accurate, but we should at least make sure that
597 * the result is not negative. */
598 for (i = 0; i < DP_N_STATS; i++) {
599 if (stats[i] > pmd->stats_zero[i]) {
600 stats[i] -= pmd->stats_zero[i];
601 } else {
602 stats[i] = 0;
603 }
604
605 if (i != DP_STAT_LOST) {
606 /* Lost packets are already included in DP_STAT_MISS */
607 total_packets += stats[i];
608 }
609 }
610
611 for (i = 0; i < PMD_N_CYCLES; i++) {
612 if (cycles[i] > pmd->cycles_zero[i]) {
613 cycles[i] -= pmd->cycles_zero[i];
614 } else {
615 cycles[i] = 0;
616 }
617
618 total_cycles += cycles[i];
619 }
620
621 ds_put_cstr(reply, (pmd->core_id == NON_PMD_CORE_ID)
622 ? "main thread" : "pmd thread");
623
624 if (pmd->numa_id != OVS_NUMA_UNSPEC) {
625 ds_put_format(reply, " numa_id %d", pmd->numa_id);
626 }
627 if (pmd->core_id != OVS_CORE_UNSPEC && pmd->core_id != NON_PMD_CORE_ID) {
628 ds_put_format(reply, " core_id %u", pmd->core_id);
629 }
630 ds_put_cstr(reply, ":\n");
631
632 ds_put_format(reply,
633 "\temc hits:%llu\n\tmegaflow hits:%llu\n"
634 "\tmiss:%llu\n\tlost:%llu\n",
635 stats[DP_STAT_EXACT_HIT], stats[DP_STAT_MASKED_HIT],
636 stats[DP_STAT_MISS], stats[DP_STAT_LOST]);
637
638 if (total_cycles == 0) {
639 return;
640 }
641
642 ds_put_format(reply,
643 "\tpolling cycles:%"PRIu64" (%.02f%%)\n"
644 "\tprocessing cycles:%"PRIu64" (%.02f%%)\n",
645 cycles[PMD_CYCLES_POLLING],
646 cycles[PMD_CYCLES_POLLING] / (double)total_cycles * 100,
647 cycles[PMD_CYCLES_PROCESSING],
648 cycles[PMD_CYCLES_PROCESSING] / (double)total_cycles * 100);
649
650 if (total_packets == 0) {
651 return;
652 }
653
654 ds_put_format(reply,
655 "\tavg cycles per packet: %.02f (%"PRIu64"/%llu)\n",
656 total_cycles / (double)total_packets,
657 total_cycles, total_packets);
658
659 ds_put_format(reply,
660 "\tavg processing cycles per packet: "
661 "%.02f (%"PRIu64"/%llu)\n",
662 cycles[PMD_CYCLES_PROCESSING] / (double)total_packets,
663 cycles[PMD_CYCLES_PROCESSING], total_packets);
664 }
665
666 static void
667 pmd_info_clear_stats(struct ds *reply OVS_UNUSED,
668 struct dp_netdev_pmd_thread *pmd,
669 unsigned long long stats[DP_N_STATS],
670 uint64_t cycles[PMD_N_CYCLES])
671 {
672 int i;
673
674 /* We cannot write 'stats' and 'cycles' (because they're written by other
675 * threads) and we shouldn't change 'stats' (because they're used to count
676 * datapath stats, which must not be cleared here). Instead, we save the
677 * current values and subtract them from the values to be displayed in the
678 * future */
679 for (i = 0; i < DP_N_STATS; i++) {
680 pmd->stats_zero[i] = stats[i];
681 }
682 for (i = 0; i < PMD_N_CYCLES; i++) {
683 pmd->cycles_zero[i] = cycles[i];
684 }
685 }
686
687 static void
688 pmd_info_show_rxq(struct ds *reply, struct dp_netdev_pmd_thread *pmd)
689 {
690 if (pmd->core_id != NON_PMD_CORE_ID) {
691 struct rxq_poll *poll;
692 const char *prev_name = NULL;
693
694 ds_put_format(reply, "pmd thread numa_id %d core_id %u:\n",
695 pmd->numa_id, pmd->core_id);
696
697 ovs_mutex_lock(&pmd->poll_mutex);
698 LIST_FOR_EACH (poll, node, &pmd->poll_list) {
699 const char *name = netdev_get_name(poll->port->netdev);
700
701 if (!prev_name || strcmp(name, prev_name)) {
702 if (prev_name) {
703 ds_put_cstr(reply, "\n");
704 }
705 ds_put_format(reply, "\tport: %s\tqueue-id:",
706 netdev_get_name(poll->port->netdev));
707 }
708 ds_put_format(reply, " %d", netdev_rxq_get_queue_id(poll->rx));
709 prev_name = name;
710 }
711 ovs_mutex_unlock(&pmd->poll_mutex);
712 ds_put_cstr(reply, "\n");
713 }
714 }
715
716 static void
717 dpif_netdev_pmd_info(struct unixctl_conn *conn, int argc, const char *argv[],
718 void *aux)
719 {
720 struct ds reply = DS_EMPTY_INITIALIZER;
721 struct dp_netdev_pmd_thread *pmd;
722 struct dp_netdev *dp = NULL;
723 enum pmd_info_type type = *(enum pmd_info_type *) aux;
724
725 ovs_mutex_lock(&dp_netdev_mutex);
726
727 if (argc == 2) {
728 dp = shash_find_data(&dp_netdevs, argv[1]);
729 } else if (shash_count(&dp_netdevs) == 1) {
730 /* There's only one datapath */
731 dp = shash_first(&dp_netdevs)->data;
732 }
733
734 if (!dp) {
735 ovs_mutex_unlock(&dp_netdev_mutex);
736 unixctl_command_reply_error(conn,
737 "please specify an existing datapath");
738 return;
739 }
740
741 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
742 if (type == PMD_INFO_SHOW_RXQ) {
743 pmd_info_show_rxq(&reply, pmd);
744 } else {
745 unsigned long long stats[DP_N_STATS];
746 uint64_t cycles[PMD_N_CYCLES];
747 int i;
748
749 /* Read current stats and cycle counters */
750 for (i = 0; i < ARRAY_SIZE(stats); i++) {
751 atomic_read_relaxed(&pmd->stats.n[i], &stats[i]);
752 }
753 for (i = 0; i < ARRAY_SIZE(cycles); i++) {
754 atomic_read_relaxed(&pmd->cycles.n[i], &cycles[i]);
755 }
756
757 if (type == PMD_INFO_CLEAR_STATS) {
758 pmd_info_clear_stats(&reply, pmd, stats, cycles);
759 } else if (type == PMD_INFO_SHOW_STATS) {
760 pmd_info_show_stats(&reply, pmd, stats, cycles);
761 }
762 }
763 }
764
765 ovs_mutex_unlock(&dp_netdev_mutex);
766
767 unixctl_command_reply(conn, ds_cstr(&reply));
768 ds_destroy(&reply);
769 }
770 \f
771 static int
772 dpif_netdev_init(void)
773 {
774 static enum pmd_info_type show_aux = PMD_INFO_SHOW_STATS,
775 clear_aux = PMD_INFO_CLEAR_STATS,
776 poll_aux = PMD_INFO_SHOW_RXQ;
777
778 unixctl_command_register("dpif-netdev/pmd-stats-show", "[dp]",
779 0, 1, dpif_netdev_pmd_info,
780 (void *)&show_aux);
781 unixctl_command_register("dpif-netdev/pmd-stats-clear", "[dp]",
782 0, 1, dpif_netdev_pmd_info,
783 (void *)&clear_aux);
784 unixctl_command_register("dpif-netdev/pmd-rxq-show", "[dp]",
785 0, 1, dpif_netdev_pmd_info,
786 (void *)&poll_aux);
787 return 0;
788 }
789
790 static int
791 dpif_netdev_enumerate(struct sset *all_dps,
792 const struct dpif_class *dpif_class)
793 {
794 struct shash_node *node;
795
796 ovs_mutex_lock(&dp_netdev_mutex);
797 SHASH_FOR_EACH(node, &dp_netdevs) {
798 struct dp_netdev *dp = node->data;
799 if (dpif_class != dp->class) {
800 /* 'dp_netdevs' contains both "netdev" and "dummy" dpifs.
801 * If the class doesn't match, skip this dpif. */
802 continue;
803 }
804 sset_add(all_dps, node->name);
805 }
806 ovs_mutex_unlock(&dp_netdev_mutex);
807
808 return 0;
809 }
810
811 static bool
812 dpif_netdev_class_is_dummy(const struct dpif_class *class)
813 {
814 return class != &dpif_netdev_class;
815 }
816
817 static const char *
818 dpif_netdev_port_open_type(const struct dpif_class *class, const char *type)
819 {
820 return strcmp(type, "internal") ? type
821 : dpif_netdev_class_is_dummy(class) ? "dummy"
822 : "tap";
823 }
824
825 static struct dpif *
826 create_dpif_netdev(struct dp_netdev *dp)
827 {
828 uint16_t netflow_id = hash_string(dp->name, 0);
829 struct dpif_netdev *dpif;
830
831 ovs_refcount_ref(&dp->ref_cnt);
832
833 dpif = xmalloc(sizeof *dpif);
834 dpif_init(&dpif->dpif, dp->class, dp->name, netflow_id >> 8, netflow_id);
835 dpif->dp = dp;
836 dpif->last_port_seq = seq_read(dp->port_seq);
837
838 return &dpif->dpif;
839 }
840
841 /* Choose an unused, non-zero port number and return it on success.
842 * Return ODPP_NONE on failure. */
843 static odp_port_t
844 choose_port(struct dp_netdev *dp, const char *name)
845 OVS_REQUIRES(dp->port_mutex)
846 {
847 uint32_t port_no;
848
849 if (dp->class != &dpif_netdev_class) {
850 const char *p;
851 int start_no = 0;
852
853 /* If the port name begins with "br", start the number search at
854 * 100 to make writing tests easier. */
855 if (!strncmp(name, "br", 2)) {
856 start_no = 100;
857 }
858
859 /* If the port name contains a number, try to assign that port number.
860 * This can make writing unit tests easier because port numbers are
861 * predictable. */
862 for (p = name; *p != '\0'; p++) {
863 if (isdigit((unsigned char) *p)) {
864 port_no = start_no + strtol(p, NULL, 10);
865 if (port_no > 0 && port_no != odp_to_u32(ODPP_NONE)
866 && !dp_netdev_lookup_port(dp, u32_to_odp(port_no))) {
867 return u32_to_odp(port_no);
868 }
869 break;
870 }
871 }
872 }
873
874 for (port_no = 1; port_no <= UINT16_MAX; port_no++) {
875 if (!dp_netdev_lookup_port(dp, u32_to_odp(port_no))) {
876 return u32_to_odp(port_no);
877 }
878 }
879
880 return ODPP_NONE;
881 }
882
883 static int
884 create_dp_netdev(const char *name, const struct dpif_class *class,
885 struct dp_netdev **dpp)
886 OVS_REQUIRES(dp_netdev_mutex)
887 {
888 struct dp_netdev *dp;
889 int error;
890
891 dp = xzalloc(sizeof *dp);
892 shash_add(&dp_netdevs, name, dp);
893
894 *CONST_CAST(const struct dpif_class **, &dp->class) = class;
895 *CONST_CAST(const char **, &dp->name) = xstrdup(name);
896 ovs_refcount_init(&dp->ref_cnt);
897 atomic_flag_clear(&dp->destroyed);
898
899 ovs_mutex_init(&dp->port_mutex);
900 cmap_init(&dp->ports);
901 dp->port_seq = seq_create();
902 fat_rwlock_init(&dp->upcall_rwlock);
903
904 /* Disable upcalls by default. */
905 dp_netdev_disable_upcall(dp);
906 dp->upcall_aux = NULL;
907 dp->upcall_cb = NULL;
908
909 cmap_init(&dp->poll_threads);
910 ovs_mutex_init_recursive(&dp->non_pmd_mutex);
911 ovsthread_key_create(&dp->per_pmd_key, NULL);
912
913 dp_netdev_set_nonpmd(dp);
914
915 ovs_mutex_lock(&dp->port_mutex);
916 error = do_add_port(dp, name, "internal", ODPP_LOCAL);
917 ovs_mutex_unlock(&dp->port_mutex);
918 if (error) {
919 dp_netdev_free(dp);
920 return error;
921 }
922
923 dp->last_tnl_conf_seq = seq_read(tnl_conf_seq);
924 *dpp = dp;
925 return 0;
926 }
927
928 static int
929 dpif_netdev_open(const struct dpif_class *class, const char *name,
930 bool create, struct dpif **dpifp)
931 {
932 struct dp_netdev *dp;
933 int error;
934
935 ovs_mutex_lock(&dp_netdev_mutex);
936 dp = shash_find_data(&dp_netdevs, name);
937 if (!dp) {
938 error = create ? create_dp_netdev(name, class, &dp) : ENODEV;
939 } else {
940 error = (dp->class != class ? EINVAL
941 : create ? EEXIST
942 : 0);
943 }
944 if (!error) {
945 *dpifp = create_dpif_netdev(dp);
946 dp->dpif = *dpifp;
947 }
948 ovs_mutex_unlock(&dp_netdev_mutex);
949
950 return error;
951 }
952
953 static void
954 dp_netdev_destroy_upcall_lock(struct dp_netdev *dp)
955 OVS_NO_THREAD_SAFETY_ANALYSIS
956 {
957 /* Check that upcalls are disabled, i.e. that the rwlock is taken */
958 ovs_assert(fat_rwlock_tryrdlock(&dp->upcall_rwlock));
959
960 /* Before freeing a lock we should release it */
961 fat_rwlock_unlock(&dp->upcall_rwlock);
962 fat_rwlock_destroy(&dp->upcall_rwlock);
963 }
964
965 /* Requires dp_netdev_mutex so that we can't get a new reference to 'dp'
966 * through the 'dp_netdevs' shash while freeing 'dp'. */
967 static void
968 dp_netdev_free(struct dp_netdev *dp)
969 OVS_REQUIRES(dp_netdev_mutex)
970 {
971 struct dp_netdev_port *port;
972
973 shash_find_and_delete(&dp_netdevs, dp->name);
974
975 dp_netdev_destroy_all_pmds(dp);
976 ovs_mutex_destroy(&dp->non_pmd_mutex);
977 ovsthread_key_delete(dp->per_pmd_key);
978
979 ovs_mutex_lock(&dp->port_mutex);
980 CMAP_FOR_EACH (port, node, &dp->ports) {
981 /* PMD threads are destroyed here. do_del_port() cannot quiesce */
982 do_del_port(dp, port);
983 }
984 ovs_mutex_unlock(&dp->port_mutex);
985 cmap_destroy(&dp->poll_threads);
986
987 seq_destroy(dp->port_seq);
988 cmap_destroy(&dp->ports);
989
990 /* Upcalls must be disabled at this point */
991 dp_netdev_destroy_upcall_lock(dp);
992
993 free(dp->pmd_cmask);
994 free(CONST_CAST(char *, dp->name));
995 free(dp);
996 }
997
998 static void
999 dp_netdev_unref(struct dp_netdev *dp)
1000 {
1001 if (dp) {
1002 /* Take dp_netdev_mutex so that, if dp->ref_cnt falls to zero, we can't
1003 * get a new reference to 'dp' through the 'dp_netdevs' shash. */
1004 ovs_mutex_lock(&dp_netdev_mutex);
1005 if (ovs_refcount_unref_relaxed(&dp->ref_cnt) == 1) {
1006 dp_netdev_free(dp);
1007 }
1008 ovs_mutex_unlock(&dp_netdev_mutex);
1009 }
1010 }
1011
1012 static void
1013 dpif_netdev_close(struct dpif *dpif)
1014 {
1015 struct dp_netdev *dp = get_dp_netdev(dpif);
1016
1017 dp_netdev_unref(dp);
1018 free(dpif);
1019 }
1020
1021 static int
1022 dpif_netdev_destroy(struct dpif *dpif)
1023 {
1024 struct dp_netdev *dp = get_dp_netdev(dpif);
1025
1026 if (!atomic_flag_test_and_set(&dp->destroyed)) {
1027 if (ovs_refcount_unref_relaxed(&dp->ref_cnt) == 1) {
1028 /* Can't happen: 'dpif' still owns a reference to 'dp'. */
1029 OVS_NOT_REACHED();
1030 }
1031 }
1032
1033 return 0;
1034 }
1035
1036 /* Add 'n' to the atomic variable 'var' non-atomically and using relaxed
1037 * load/store semantics. While the increment is not atomic, the load and
1038 * store operations are, making it impossible to read inconsistent values.
1039 *
1040 * This is used to update thread local stats counters. */
1041 static void
1042 non_atomic_ullong_add(atomic_ullong *var, unsigned long long n)
1043 {
1044 unsigned long long tmp;
1045
1046 atomic_read_relaxed(var, &tmp);
1047 tmp += n;
1048 atomic_store_relaxed(var, tmp);
1049 }
1050
1051 static int
1052 dpif_netdev_get_stats(const struct dpif *dpif, struct dpif_dp_stats *stats)
1053 {
1054 struct dp_netdev *dp = get_dp_netdev(dpif);
1055 struct dp_netdev_pmd_thread *pmd;
1056
1057 stats->n_flows = stats->n_hit = stats->n_missed = stats->n_lost = 0;
1058 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
1059 unsigned long long n;
1060 stats->n_flows += cmap_count(&pmd->flow_table);
1061
1062 atomic_read_relaxed(&pmd->stats.n[DP_STAT_MASKED_HIT], &n);
1063 stats->n_hit += n;
1064 atomic_read_relaxed(&pmd->stats.n[DP_STAT_EXACT_HIT], &n);
1065 stats->n_hit += n;
1066 atomic_read_relaxed(&pmd->stats.n[DP_STAT_MISS], &n);
1067 stats->n_missed += n;
1068 atomic_read_relaxed(&pmd->stats.n[DP_STAT_LOST], &n);
1069 stats->n_lost += n;
1070 }
1071 stats->n_masks = UINT32_MAX;
1072 stats->n_mask_hit = UINT64_MAX;
1073
1074 return 0;
1075 }
1076
1077 static void
1078 dp_netdev_reload_pmd__(struct dp_netdev_pmd_thread *pmd)
1079 {
1080 int old_seq;
1081
1082 if (pmd->core_id == NON_PMD_CORE_ID) {
1083 return;
1084 }
1085
1086 ovs_mutex_lock(&pmd->cond_mutex);
1087 atomic_add_relaxed(&pmd->change_seq, 1, &old_seq);
1088 ovs_mutex_cond_wait(&pmd->cond, &pmd->cond_mutex);
1089 ovs_mutex_unlock(&pmd->cond_mutex);
1090 }
1091
1092 static uint32_t
1093 hash_port_no(odp_port_t port_no)
1094 {
1095 return hash_int(odp_to_u32(port_no), 0);
1096 }
1097
1098 static int
1099 do_add_port(struct dp_netdev *dp, const char *devname, const char *type,
1100 odp_port_t port_no)
1101 OVS_REQUIRES(dp->port_mutex)
1102 {
1103 struct netdev_saved_flags *sf;
1104 struct dp_netdev_port *port;
1105 struct netdev *netdev;
1106 enum netdev_flags flags;
1107 const char *open_type;
1108 int error = 0;
1109 int i, n_open_rxqs = 0;
1110
1111 /* Reject devices already in 'dp'. */
1112 if (!get_port_by_name(dp, devname, &port)) {
1113 error = EEXIST;
1114 goto out;
1115 }
1116
1117 /* Open and validate network device. */
1118 open_type = dpif_netdev_port_open_type(dp->class, type);
1119 error = netdev_open(devname, open_type, &netdev);
1120 if (error) {
1121 goto out;
1122 }
1123 /* XXX reject non-Ethernet devices */
1124
1125 netdev_get_flags(netdev, &flags);
1126 if (flags & NETDEV_LOOPBACK) {
1127 VLOG_ERR("%s: cannot add a loopback device", devname);
1128 error = EINVAL;
1129 goto out_close;
1130 }
1131
1132 if (netdev_is_pmd(netdev)) {
1133 int n_cores = ovs_numa_get_n_cores();
1134
1135 if (n_cores == OVS_CORE_UNSPEC) {
1136 VLOG_ERR("%s, cannot get cpu core info", devname);
1137 error = ENOENT;
1138 goto out_close;
1139 }
1140 /* There can only be ovs_numa_get_n_cores() pmd threads,
1141 * so creates a txq for each, and one extra for the non
1142 * pmd threads. */
1143 error = netdev_set_multiq(netdev, n_cores + 1,
1144 netdev_requested_n_rxq(netdev));
1145 if (error && (error != EOPNOTSUPP)) {
1146 VLOG_ERR("%s, cannot set multiq", devname);
1147 goto out_close;
1148 }
1149 }
1150 port = xzalloc(sizeof *port);
1151 port->port_no = port_no;
1152 port->netdev = netdev;
1153 port->n_rxq = netdev_n_rxq(netdev);
1154 port->rxq = xmalloc(sizeof *port->rxq * port->n_rxq);
1155 port->type = xstrdup(type);
1156 port->latest_requested_n_rxq = netdev_requested_n_rxq(netdev);
1157
1158 for (i = 0; i < port->n_rxq; i++) {
1159 error = netdev_rxq_open(netdev, &port->rxq[i], i);
1160 if (error) {
1161 VLOG_ERR("%s: cannot receive packets on this network device (%s)",
1162 devname, ovs_strerror(errno));
1163 goto out_rxq_close;
1164 }
1165 n_open_rxqs++;
1166 }
1167
1168 error = netdev_turn_flags_on(netdev, NETDEV_PROMISC, &sf);
1169 if (error) {
1170 goto out_rxq_close;
1171 }
1172 port->sf = sf;
1173
1174 cmap_insert(&dp->ports, &port->node, hash_port_no(port_no));
1175
1176 if (netdev_is_pmd(netdev)) {
1177 dp_netdev_add_port_to_pmds(dp, port);
1178 }
1179 seq_change(dp->port_seq);
1180
1181 return 0;
1182
1183 out_rxq_close:
1184 for (i = 0; i < n_open_rxqs; i++) {
1185 netdev_rxq_close(port->rxq[i]);
1186 }
1187 free(port->type);
1188 free(port->rxq);
1189 free(port);
1190 out_close:
1191 netdev_close(netdev);
1192 out:
1193 return error;
1194 }
1195
1196 static int
1197 dpif_netdev_port_add(struct dpif *dpif, struct netdev *netdev,
1198 odp_port_t *port_nop)
1199 {
1200 struct dp_netdev *dp = get_dp_netdev(dpif);
1201 char namebuf[NETDEV_VPORT_NAME_BUFSIZE];
1202 const char *dpif_port;
1203 odp_port_t port_no;
1204 int error;
1205
1206 ovs_mutex_lock(&dp->port_mutex);
1207 dpif_port = netdev_vport_get_dpif_port(netdev, namebuf, sizeof namebuf);
1208 if (*port_nop != ODPP_NONE) {
1209 port_no = *port_nop;
1210 error = dp_netdev_lookup_port(dp, *port_nop) ? EBUSY : 0;
1211 } else {
1212 port_no = choose_port(dp, dpif_port);
1213 error = port_no == ODPP_NONE ? EFBIG : 0;
1214 }
1215 if (!error) {
1216 *port_nop = port_no;
1217 error = do_add_port(dp, dpif_port, netdev_get_type(netdev), port_no);
1218 }
1219 ovs_mutex_unlock(&dp->port_mutex);
1220
1221 return error;
1222 }
1223
1224 static int
1225 dpif_netdev_port_del(struct dpif *dpif, odp_port_t port_no)
1226 {
1227 struct dp_netdev *dp = get_dp_netdev(dpif);
1228 int error;
1229
1230 ovs_mutex_lock(&dp->port_mutex);
1231 if (port_no == ODPP_LOCAL) {
1232 error = EINVAL;
1233 } else {
1234 struct dp_netdev_port *port;
1235
1236 error = get_port_by_number(dp, port_no, &port);
1237 if (!error) {
1238 do_del_port(dp, port);
1239 }
1240 }
1241 ovs_mutex_unlock(&dp->port_mutex);
1242
1243 return error;
1244 }
1245
1246 static bool
1247 is_valid_port_number(odp_port_t port_no)
1248 {
1249 return port_no != ODPP_NONE;
1250 }
1251
1252 static struct dp_netdev_port *
1253 dp_netdev_lookup_port(const struct dp_netdev *dp, odp_port_t port_no)
1254 {
1255 struct dp_netdev_port *port;
1256
1257 CMAP_FOR_EACH_WITH_HASH (port, node, hash_port_no(port_no), &dp->ports) {
1258 if (port->port_no == port_no) {
1259 return port;
1260 }
1261 }
1262 return NULL;
1263 }
1264
1265 static int
1266 get_port_by_number(struct dp_netdev *dp,
1267 odp_port_t port_no, struct dp_netdev_port **portp)
1268 {
1269 if (!is_valid_port_number(port_no)) {
1270 *portp = NULL;
1271 return EINVAL;
1272 } else {
1273 *portp = dp_netdev_lookup_port(dp, port_no);
1274 return *portp ? 0 : ENOENT;
1275 }
1276 }
1277
1278 static void
1279 port_destroy(struct dp_netdev_port *port)
1280 {
1281 if (!port) {
1282 return;
1283 }
1284
1285 netdev_close(port->netdev);
1286 netdev_restore_flags(port->sf);
1287
1288 for (unsigned i = 0; i < port->n_rxq; i++) {
1289 netdev_rxq_close(port->rxq[i]);
1290 }
1291
1292 free(port->rxq);
1293 free(port->type);
1294 free(port);
1295 }
1296
1297 static int
1298 get_port_by_name(struct dp_netdev *dp,
1299 const char *devname, struct dp_netdev_port **portp)
1300 OVS_REQUIRES(dp->port_mutex)
1301 {
1302 struct dp_netdev_port *port;
1303
1304 CMAP_FOR_EACH (port, node, &dp->ports) {
1305 if (!strcmp(netdev_get_name(port->netdev), devname)) {
1306 *portp = port;
1307 return 0;
1308 }
1309 }
1310 return ENOENT;
1311 }
1312
1313 static int
1314 get_n_pmd_threads(struct dp_netdev *dp)
1315 {
1316 /* There is one non pmd thread in dp->poll_threads */
1317 return cmap_count(&dp->poll_threads) - 1;
1318 }
1319
1320 static int
1321 get_n_pmd_threads_on_numa(struct dp_netdev *dp, int numa_id)
1322 {
1323 struct dp_netdev_pmd_thread *pmd;
1324 int n_pmds = 0;
1325
1326 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
1327 if (pmd->numa_id == numa_id) {
1328 n_pmds++;
1329 }
1330 }
1331
1332 return n_pmds;
1333 }
1334
1335 /* Returns 'true' if there is a port with pmd netdev and the netdev
1336 * is on numa node 'numa_id'. */
1337 static bool
1338 has_pmd_port_for_numa(struct dp_netdev *dp, int numa_id)
1339 {
1340 struct dp_netdev_port *port;
1341
1342 CMAP_FOR_EACH (port, node, &dp->ports) {
1343 if (netdev_is_pmd(port->netdev)
1344 && netdev_get_numa_id(port->netdev) == numa_id) {
1345 return true;
1346 }
1347 }
1348
1349 return false;
1350 }
1351
1352
1353 static void
1354 do_del_port(struct dp_netdev *dp, struct dp_netdev_port *port)
1355 OVS_REQUIRES(dp->port_mutex)
1356 {
1357 cmap_remove(&dp->ports, &port->node, hash_odp_port(port->port_no));
1358 seq_change(dp->port_seq);
1359 if (netdev_is_pmd(port->netdev)) {
1360 int numa_id = netdev_get_numa_id(port->netdev);
1361
1362 /* PMD threads can not be on invalid numa node. */
1363 ovs_assert(ovs_numa_numa_id_is_valid(numa_id));
1364 /* If there is no netdev on the numa node, deletes the pmd threads
1365 * for that numa. Else, deletes the queues from polling lists. */
1366 if (!has_pmd_port_for_numa(dp, numa_id)) {
1367 dp_netdev_del_pmds_on_numa(dp, numa_id);
1368 } else {
1369 dp_netdev_del_port_from_all_pmds(dp, port);
1370 }
1371 }
1372
1373 port_destroy(port);
1374 }
1375
1376 static void
1377 answer_port_query(const struct dp_netdev_port *port,
1378 struct dpif_port *dpif_port)
1379 {
1380 dpif_port->name = xstrdup(netdev_get_name(port->netdev));
1381 dpif_port->type = xstrdup(port->type);
1382 dpif_port->port_no = port->port_no;
1383 }
1384
1385 static int
1386 dpif_netdev_port_query_by_number(const struct dpif *dpif, odp_port_t port_no,
1387 struct dpif_port *dpif_port)
1388 {
1389 struct dp_netdev *dp = get_dp_netdev(dpif);
1390 struct dp_netdev_port *port;
1391 int error;
1392
1393 error = get_port_by_number(dp, port_no, &port);
1394 if (!error && dpif_port) {
1395 answer_port_query(port, dpif_port);
1396 }
1397
1398 return error;
1399 }
1400
1401 static int
1402 dpif_netdev_port_query_by_name(const struct dpif *dpif, const char *devname,
1403 struct dpif_port *dpif_port)
1404 {
1405 struct dp_netdev *dp = get_dp_netdev(dpif);
1406 struct dp_netdev_port *port;
1407 int error;
1408
1409 ovs_mutex_lock(&dp->port_mutex);
1410 error = get_port_by_name(dp, devname, &port);
1411 if (!error && dpif_port) {
1412 answer_port_query(port, dpif_port);
1413 }
1414 ovs_mutex_unlock(&dp->port_mutex);
1415
1416 return error;
1417 }
1418
1419 static void
1420 dp_netdev_flow_free(struct dp_netdev_flow *flow)
1421 {
1422 dp_netdev_actions_free(dp_netdev_flow_get_actions(flow));
1423 free(flow);
1424 }
1425
1426 static void dp_netdev_flow_unref(struct dp_netdev_flow *flow)
1427 {
1428 if (ovs_refcount_unref_relaxed(&flow->ref_cnt) == 1) {
1429 ovsrcu_postpone(dp_netdev_flow_free, flow);
1430 }
1431 }
1432
1433 static uint32_t
1434 dp_netdev_flow_hash(const ovs_u128 *ufid)
1435 {
1436 return ufid->u32[0];
1437 }
1438
1439 static void
1440 dp_netdev_pmd_remove_flow(struct dp_netdev_pmd_thread *pmd,
1441 struct dp_netdev_flow *flow)
1442 OVS_REQUIRES(pmd->flow_mutex)
1443 {
1444 struct cmap_node *node = CONST_CAST(struct cmap_node *, &flow->node);
1445
1446 dpcls_remove(&pmd->cls, &flow->cr);
1447 cmap_remove(&pmd->flow_table, node, dp_netdev_flow_hash(&flow->ufid));
1448 flow->dead = true;
1449
1450 dp_netdev_flow_unref(flow);
1451 }
1452
1453 static void
1454 dp_netdev_pmd_flow_flush(struct dp_netdev_pmd_thread *pmd)
1455 {
1456 struct dp_netdev_flow *netdev_flow;
1457
1458 ovs_mutex_lock(&pmd->flow_mutex);
1459 CMAP_FOR_EACH (netdev_flow, node, &pmd->flow_table) {
1460 dp_netdev_pmd_remove_flow(pmd, netdev_flow);
1461 }
1462 ovs_mutex_unlock(&pmd->flow_mutex);
1463 }
1464
1465 static int
1466 dpif_netdev_flow_flush(struct dpif *dpif)
1467 {
1468 struct dp_netdev *dp = get_dp_netdev(dpif);
1469 struct dp_netdev_pmd_thread *pmd;
1470
1471 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
1472 dp_netdev_pmd_flow_flush(pmd);
1473 }
1474
1475 return 0;
1476 }
1477
1478 struct dp_netdev_port_state {
1479 struct cmap_position position;
1480 char *name;
1481 };
1482
1483 static int
1484 dpif_netdev_port_dump_start(const struct dpif *dpif OVS_UNUSED, void **statep)
1485 {
1486 *statep = xzalloc(sizeof(struct dp_netdev_port_state));
1487 return 0;
1488 }
1489
1490 static int
1491 dpif_netdev_port_dump_next(const struct dpif *dpif, void *state_,
1492 struct dpif_port *dpif_port)
1493 {
1494 struct dp_netdev_port_state *state = state_;
1495 struct dp_netdev *dp = get_dp_netdev(dpif);
1496 struct cmap_node *node;
1497 int retval;
1498
1499 node = cmap_next_position(&dp->ports, &state->position);
1500 if (node) {
1501 struct dp_netdev_port *port;
1502
1503 port = CONTAINER_OF(node, struct dp_netdev_port, node);
1504
1505 free(state->name);
1506 state->name = xstrdup(netdev_get_name(port->netdev));
1507 dpif_port->name = state->name;
1508 dpif_port->type = port->type;
1509 dpif_port->port_no = port->port_no;
1510
1511 retval = 0;
1512 } else {
1513 retval = EOF;
1514 }
1515
1516 return retval;
1517 }
1518
1519 static int
1520 dpif_netdev_port_dump_done(const struct dpif *dpif OVS_UNUSED, void *state_)
1521 {
1522 struct dp_netdev_port_state *state = state_;
1523 free(state->name);
1524 free(state);
1525 return 0;
1526 }
1527
1528 static int
1529 dpif_netdev_port_poll(const struct dpif *dpif_, char **devnamep OVS_UNUSED)
1530 {
1531 struct dpif_netdev *dpif = dpif_netdev_cast(dpif_);
1532 uint64_t new_port_seq;
1533 int error;
1534
1535 new_port_seq = seq_read(dpif->dp->port_seq);
1536 if (dpif->last_port_seq != new_port_seq) {
1537 dpif->last_port_seq = new_port_seq;
1538 error = ENOBUFS;
1539 } else {
1540 error = EAGAIN;
1541 }
1542
1543 return error;
1544 }
1545
1546 static void
1547 dpif_netdev_port_poll_wait(const struct dpif *dpif_)
1548 {
1549 struct dpif_netdev *dpif = dpif_netdev_cast(dpif_);
1550
1551 seq_wait(dpif->dp->port_seq, dpif->last_port_seq);
1552 }
1553
1554 static struct dp_netdev_flow *
1555 dp_netdev_flow_cast(const struct dpcls_rule *cr)
1556 {
1557 return cr ? CONTAINER_OF(cr, struct dp_netdev_flow, cr) : NULL;
1558 }
1559
1560 static bool dp_netdev_flow_ref(struct dp_netdev_flow *flow)
1561 {
1562 return ovs_refcount_try_ref_rcu(&flow->ref_cnt);
1563 }
1564
1565 /* netdev_flow_key utilities.
1566 *
1567 * netdev_flow_key is basically a miniflow. We use these functions
1568 * (netdev_flow_key_clone, netdev_flow_key_equal, ...) instead of the miniflow
1569 * functions (miniflow_clone_inline, miniflow_equal, ...), because:
1570 *
1571 * - Since we are dealing exclusively with miniflows created by
1572 * miniflow_extract(), if the map is different the miniflow is different.
1573 * Therefore we can be faster by comparing the map and the miniflow in a
1574 * single memcmp().
1575 * - These functions can be inlined by the compiler. */
1576
1577 /* Given the number of bits set in miniflow's maps, returns the size of the
1578 * 'netdev_flow_key.mf' */
1579 static inline size_t
1580 netdev_flow_key_size(size_t flow_u64s)
1581 {
1582 return sizeof(struct miniflow) + MINIFLOW_VALUES_SIZE(flow_u64s);
1583 }
1584
1585 static inline bool
1586 netdev_flow_key_equal(const struct netdev_flow_key *a,
1587 const struct netdev_flow_key *b)
1588 {
1589 /* 'b->len' may be not set yet. */
1590 return a->hash == b->hash && !memcmp(&a->mf, &b->mf, a->len);
1591 }
1592
1593 /* Used to compare 'netdev_flow_key' in the exact match cache to a miniflow.
1594 * The maps are compared bitwise, so both 'key->mf' and 'mf' must have been
1595 * generated by miniflow_extract. */
1596 static inline bool
1597 netdev_flow_key_equal_mf(const struct netdev_flow_key *key,
1598 const struct miniflow *mf)
1599 {
1600 return !memcmp(&key->mf, mf, key->len);
1601 }
1602
1603 static inline void
1604 netdev_flow_key_clone(struct netdev_flow_key *dst,
1605 const struct netdev_flow_key *src)
1606 {
1607 memcpy(dst, src,
1608 offsetof(struct netdev_flow_key, mf) + src->len);
1609 }
1610
1611 /* Slow. */
1612 static void
1613 netdev_flow_key_from_flow(struct netdev_flow_key *dst,
1614 const struct flow *src)
1615 {
1616 struct dp_packet packet;
1617 uint64_t buf_stub[512 / 8];
1618
1619 dp_packet_use_stub(&packet, buf_stub, sizeof buf_stub);
1620 pkt_metadata_from_flow(&packet.md, src);
1621 flow_compose(&packet, src);
1622 miniflow_extract(&packet, &dst->mf);
1623 dp_packet_uninit(&packet);
1624
1625 dst->len = netdev_flow_key_size(miniflow_n_values(&dst->mf));
1626 dst->hash = 0; /* Not computed yet. */
1627 }
1628
1629 /* Initialize a netdev_flow_key 'mask' from 'match'. */
1630 static inline void
1631 netdev_flow_mask_init(struct netdev_flow_key *mask,
1632 const struct match *match)
1633 {
1634 uint64_t *dst = miniflow_values(&mask->mf);
1635 struct flowmap fmap;
1636 uint32_t hash = 0;
1637 size_t idx;
1638
1639 /* Only check masks that make sense for the flow. */
1640 flow_wc_map(&match->flow, &fmap);
1641 flowmap_init(&mask->mf.map);
1642
1643 FLOWMAP_FOR_EACH_INDEX(idx, fmap) {
1644 uint64_t mask_u64 = flow_u64_value(&match->wc.masks, idx);
1645
1646 if (mask_u64) {
1647 flowmap_set(&mask->mf.map, idx, 1);
1648 *dst++ = mask_u64;
1649 hash = hash_add64(hash, mask_u64);
1650 }
1651 }
1652
1653 map_t map;
1654
1655 FLOWMAP_FOR_EACH_MAP (map, mask->mf.map) {
1656 hash = hash_add64(hash, map);
1657 }
1658
1659 size_t n = dst - miniflow_get_values(&mask->mf);
1660
1661 mask->hash = hash_finish(hash, n * 8);
1662 mask->len = netdev_flow_key_size(n);
1663 }
1664
1665 /* Initializes 'dst' as a copy of 'flow' masked with 'mask'. */
1666 static inline void
1667 netdev_flow_key_init_masked(struct netdev_flow_key *dst,
1668 const struct flow *flow,
1669 const struct netdev_flow_key *mask)
1670 {
1671 uint64_t *dst_u64 = miniflow_values(&dst->mf);
1672 const uint64_t *mask_u64 = miniflow_get_values(&mask->mf);
1673 uint32_t hash = 0;
1674 uint64_t value;
1675
1676 dst->len = mask->len;
1677 dst->mf = mask->mf; /* Copy maps. */
1678
1679 FLOW_FOR_EACH_IN_MAPS(value, flow, mask->mf.map) {
1680 *dst_u64 = value & *mask_u64++;
1681 hash = hash_add64(hash, *dst_u64++);
1682 }
1683 dst->hash = hash_finish(hash,
1684 (dst_u64 - miniflow_get_values(&dst->mf)) * 8);
1685 }
1686
1687 /* Iterate through netdev_flow_key TNL u64 values specified by 'FLOWMAP'. */
1688 #define NETDEV_FLOW_KEY_FOR_EACH_IN_FLOWMAP(VALUE, KEY, FLOWMAP) \
1689 MINIFLOW_FOR_EACH_IN_FLOWMAP(VALUE, &(KEY)->mf, FLOWMAP)
1690
1691 /* Returns a hash value for the bits of 'key' where there are 1-bits in
1692 * 'mask'. */
1693 static inline uint32_t
1694 netdev_flow_key_hash_in_mask(const struct netdev_flow_key *key,
1695 const struct netdev_flow_key *mask)
1696 {
1697 const uint64_t *p = miniflow_get_values(&mask->mf);
1698 uint32_t hash = 0;
1699 uint64_t value;
1700
1701 NETDEV_FLOW_KEY_FOR_EACH_IN_FLOWMAP(value, key, mask->mf.map) {
1702 hash = hash_add64(hash, value & *p++);
1703 }
1704
1705 return hash_finish(hash, (p - miniflow_get_values(&mask->mf)) * 8);
1706 }
1707
1708 static inline bool
1709 emc_entry_alive(struct emc_entry *ce)
1710 {
1711 return ce->flow && !ce->flow->dead;
1712 }
1713
1714 static void
1715 emc_clear_entry(struct emc_entry *ce)
1716 {
1717 if (ce->flow) {
1718 dp_netdev_flow_unref(ce->flow);
1719 ce->flow = NULL;
1720 }
1721 }
1722
1723 static inline void
1724 emc_change_entry(struct emc_entry *ce, struct dp_netdev_flow *flow,
1725 const struct netdev_flow_key *key)
1726 {
1727 if (ce->flow != flow) {
1728 if (ce->flow) {
1729 dp_netdev_flow_unref(ce->flow);
1730 }
1731
1732 if (dp_netdev_flow_ref(flow)) {
1733 ce->flow = flow;
1734 } else {
1735 ce->flow = NULL;
1736 }
1737 }
1738 if (key) {
1739 netdev_flow_key_clone(&ce->key, key);
1740 }
1741 }
1742
1743 static inline void
1744 emc_insert(struct emc_cache *cache, const struct netdev_flow_key *key,
1745 struct dp_netdev_flow *flow)
1746 {
1747 struct emc_entry *to_be_replaced = NULL;
1748 struct emc_entry *current_entry;
1749
1750 EMC_FOR_EACH_POS_WITH_HASH(cache, current_entry, key->hash) {
1751 if (netdev_flow_key_equal(&current_entry->key, key)) {
1752 /* We found the entry with the 'mf' miniflow */
1753 emc_change_entry(current_entry, flow, NULL);
1754 return;
1755 }
1756
1757 /* Replacement policy: put the flow in an empty (not alive) entry, or
1758 * in the first entry where it can be */
1759 if (!to_be_replaced
1760 || (emc_entry_alive(to_be_replaced)
1761 && !emc_entry_alive(current_entry))
1762 || current_entry->key.hash < to_be_replaced->key.hash) {
1763 to_be_replaced = current_entry;
1764 }
1765 }
1766 /* We didn't find the miniflow in the cache.
1767 * The 'to_be_replaced' entry is where the new flow will be stored */
1768
1769 emc_change_entry(to_be_replaced, flow, key);
1770 }
1771
1772 static inline struct dp_netdev_flow *
1773 emc_lookup(struct emc_cache *cache, const struct netdev_flow_key *key)
1774 {
1775 struct emc_entry *current_entry;
1776
1777 EMC_FOR_EACH_POS_WITH_HASH(cache, current_entry, key->hash) {
1778 if (current_entry->key.hash == key->hash
1779 && emc_entry_alive(current_entry)
1780 && netdev_flow_key_equal_mf(&current_entry->key, &key->mf)) {
1781
1782 /* We found the entry with the 'key->mf' miniflow */
1783 return current_entry->flow;
1784 }
1785 }
1786
1787 return NULL;
1788 }
1789
1790 static struct dp_netdev_flow *
1791 dp_netdev_pmd_lookup_flow(const struct dp_netdev_pmd_thread *pmd,
1792 const struct netdev_flow_key *key)
1793 {
1794 struct dp_netdev_flow *netdev_flow;
1795 struct dpcls_rule *rule;
1796
1797 dpcls_lookup(&pmd->cls, key, &rule, 1);
1798 netdev_flow = dp_netdev_flow_cast(rule);
1799
1800 return netdev_flow;
1801 }
1802
1803 static struct dp_netdev_flow *
1804 dp_netdev_pmd_find_flow(const struct dp_netdev_pmd_thread *pmd,
1805 const ovs_u128 *ufidp, const struct nlattr *key,
1806 size_t key_len)
1807 {
1808 struct dp_netdev_flow *netdev_flow;
1809 struct flow flow;
1810 ovs_u128 ufid;
1811
1812 /* If a UFID is not provided, determine one based on the key. */
1813 if (!ufidp && key && key_len
1814 && !dpif_netdev_flow_from_nlattrs(key, key_len, &flow)) {
1815 dpif_flow_hash(pmd->dp->dpif, &flow, sizeof flow, &ufid);
1816 ufidp = &ufid;
1817 }
1818
1819 if (ufidp) {
1820 CMAP_FOR_EACH_WITH_HASH (netdev_flow, node, dp_netdev_flow_hash(ufidp),
1821 &pmd->flow_table) {
1822 if (ovs_u128_equals(netdev_flow->ufid, *ufidp)) {
1823 return netdev_flow;
1824 }
1825 }
1826 }
1827
1828 return NULL;
1829 }
1830
1831 static void
1832 get_dpif_flow_stats(const struct dp_netdev_flow *netdev_flow_,
1833 struct dpif_flow_stats *stats)
1834 {
1835 struct dp_netdev_flow *netdev_flow;
1836 unsigned long long n;
1837 long long used;
1838 uint16_t flags;
1839
1840 netdev_flow = CONST_CAST(struct dp_netdev_flow *, netdev_flow_);
1841
1842 atomic_read_relaxed(&netdev_flow->stats.packet_count, &n);
1843 stats->n_packets = n;
1844 atomic_read_relaxed(&netdev_flow->stats.byte_count, &n);
1845 stats->n_bytes = n;
1846 atomic_read_relaxed(&netdev_flow->stats.used, &used);
1847 stats->used = used;
1848 atomic_read_relaxed(&netdev_flow->stats.tcp_flags, &flags);
1849 stats->tcp_flags = flags;
1850 }
1851
1852 /* Converts to the dpif_flow format, using 'key_buf' and 'mask_buf' for
1853 * storing the netlink-formatted key/mask. 'key_buf' may be the same as
1854 * 'mask_buf'. Actions will be returned without copying, by relying on RCU to
1855 * protect them. */
1856 static void
1857 dp_netdev_flow_to_dpif_flow(const struct dp_netdev_flow *netdev_flow,
1858 struct ofpbuf *key_buf, struct ofpbuf *mask_buf,
1859 struct dpif_flow *flow, bool terse)
1860 {
1861 if (terse) {
1862 memset(flow, 0, sizeof *flow);
1863 } else {
1864 struct flow_wildcards wc;
1865 struct dp_netdev_actions *actions;
1866 size_t offset;
1867 struct odp_flow_key_parms odp_parms = {
1868 .flow = &netdev_flow->flow,
1869 .mask = &wc.masks,
1870 .support = dp_netdev_support,
1871 };
1872
1873 miniflow_expand(&netdev_flow->cr.mask->mf, &wc.masks);
1874
1875 /* Key */
1876 offset = key_buf->size;
1877 flow->key = ofpbuf_tail(key_buf);
1878 odp_parms.odp_in_port = netdev_flow->flow.in_port.odp_port;
1879 odp_flow_key_from_flow(&odp_parms, key_buf);
1880 flow->key_len = key_buf->size - offset;
1881
1882 /* Mask */
1883 offset = mask_buf->size;
1884 flow->mask = ofpbuf_tail(mask_buf);
1885 odp_parms.odp_in_port = wc.masks.in_port.odp_port;
1886 odp_parms.key_buf = key_buf;
1887 odp_flow_key_from_mask(&odp_parms, mask_buf);
1888 flow->mask_len = mask_buf->size - offset;
1889
1890 /* Actions */
1891 actions = dp_netdev_flow_get_actions(netdev_flow);
1892 flow->actions = actions->actions;
1893 flow->actions_len = actions->size;
1894 }
1895
1896 flow->ufid = netdev_flow->ufid;
1897 flow->ufid_present = true;
1898 flow->pmd_id = netdev_flow->pmd_id;
1899 get_dpif_flow_stats(netdev_flow, &flow->stats);
1900 }
1901
1902 static int
1903 dpif_netdev_mask_from_nlattrs(const struct nlattr *key, uint32_t key_len,
1904 const struct nlattr *mask_key,
1905 uint32_t mask_key_len, const struct flow *flow,
1906 struct flow_wildcards *wc)
1907 {
1908 enum odp_key_fitness fitness;
1909
1910 fitness = odp_flow_key_to_mask_udpif(mask_key, mask_key_len, key,
1911 key_len, wc, flow);
1912 if (fitness) {
1913 /* This should not happen: it indicates that
1914 * odp_flow_key_from_mask() and odp_flow_key_to_mask()
1915 * disagree on the acceptable form of a mask. Log the problem
1916 * as an error, with enough details to enable debugging. */
1917 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
1918
1919 if (!VLOG_DROP_ERR(&rl)) {
1920 struct ds s;
1921
1922 ds_init(&s);
1923 odp_flow_format(key, key_len, mask_key, mask_key_len, NULL, &s,
1924 true);
1925 VLOG_ERR("internal error parsing flow mask %s (%s)",
1926 ds_cstr(&s), odp_key_fitness_to_string(fitness));
1927 ds_destroy(&s);
1928 }
1929
1930 return EINVAL;
1931 }
1932
1933 return 0;
1934 }
1935
1936 static int
1937 dpif_netdev_flow_from_nlattrs(const struct nlattr *key, uint32_t key_len,
1938 struct flow *flow)
1939 {
1940 odp_port_t in_port;
1941
1942 if (odp_flow_key_to_flow_udpif(key, key_len, flow)) {
1943 /* This should not happen: it indicates that odp_flow_key_from_flow()
1944 * and odp_flow_key_to_flow() disagree on the acceptable form of a
1945 * flow. Log the problem as an error, with enough details to enable
1946 * debugging. */
1947 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
1948
1949 if (!VLOG_DROP_ERR(&rl)) {
1950 struct ds s;
1951
1952 ds_init(&s);
1953 odp_flow_format(key, key_len, NULL, 0, NULL, &s, true);
1954 VLOG_ERR("internal error parsing flow key %s", ds_cstr(&s));
1955 ds_destroy(&s);
1956 }
1957
1958 return EINVAL;
1959 }
1960
1961 in_port = flow->in_port.odp_port;
1962 if (!is_valid_port_number(in_port) && in_port != ODPP_NONE) {
1963 return EINVAL;
1964 }
1965
1966 /* Userspace datapath doesn't support conntrack. */
1967 if (flow->ct_state || flow->ct_zone || flow->ct_mark
1968 || !ovs_u128_is_zero(flow->ct_label)) {
1969 return EINVAL;
1970 }
1971
1972 return 0;
1973 }
1974
1975 static int
1976 dpif_netdev_flow_get(const struct dpif *dpif, const struct dpif_flow_get *get)
1977 {
1978 struct dp_netdev *dp = get_dp_netdev(dpif);
1979 struct dp_netdev_flow *netdev_flow;
1980 struct dp_netdev_pmd_thread *pmd;
1981 unsigned pmd_id = get->pmd_id == PMD_ID_NULL
1982 ? NON_PMD_CORE_ID : get->pmd_id;
1983 int error = 0;
1984
1985 pmd = dp_netdev_get_pmd(dp, pmd_id);
1986 if (!pmd) {
1987 return EINVAL;
1988 }
1989
1990 netdev_flow = dp_netdev_pmd_find_flow(pmd, get->ufid, get->key,
1991 get->key_len);
1992 if (netdev_flow) {
1993 dp_netdev_flow_to_dpif_flow(netdev_flow, get->buffer, get->buffer,
1994 get->flow, false);
1995 } else {
1996 error = ENOENT;
1997 }
1998 dp_netdev_pmd_unref(pmd);
1999
2000
2001 return error;
2002 }
2003
2004 static struct dp_netdev_flow *
2005 dp_netdev_flow_add(struct dp_netdev_pmd_thread *pmd,
2006 struct match *match, const ovs_u128 *ufid,
2007 const struct nlattr *actions, size_t actions_len)
2008 OVS_REQUIRES(pmd->flow_mutex)
2009 {
2010 struct dp_netdev_flow *flow;
2011 struct netdev_flow_key mask;
2012
2013 netdev_flow_mask_init(&mask, match);
2014 /* Make sure wc does not have metadata. */
2015 ovs_assert(!FLOWMAP_HAS_FIELD(&mask.mf.map, metadata)
2016 && !FLOWMAP_HAS_FIELD(&mask.mf.map, regs));
2017
2018 /* Do not allocate extra space. */
2019 flow = xmalloc(sizeof *flow - sizeof flow->cr.flow.mf + mask.len);
2020 memset(&flow->stats, 0, sizeof flow->stats);
2021 flow->dead = false;
2022 flow->batch = NULL;
2023 *CONST_CAST(unsigned *, &flow->pmd_id) = pmd->core_id;
2024 *CONST_CAST(struct flow *, &flow->flow) = match->flow;
2025 *CONST_CAST(ovs_u128 *, &flow->ufid) = *ufid;
2026 ovs_refcount_init(&flow->ref_cnt);
2027 ovsrcu_set(&flow->actions, dp_netdev_actions_create(actions, actions_len));
2028
2029 netdev_flow_key_init_masked(&flow->cr.flow, &match->flow, &mask);
2030 dpcls_insert(&pmd->cls, &flow->cr, &mask);
2031
2032 cmap_insert(&pmd->flow_table, CONST_CAST(struct cmap_node *, &flow->node),
2033 dp_netdev_flow_hash(&flow->ufid));
2034
2035 if (OVS_UNLIKELY(VLOG_IS_DBG_ENABLED())) {
2036 struct match match;
2037 struct ds ds = DS_EMPTY_INITIALIZER;
2038
2039 match.tun_md.valid = false;
2040 match.flow = flow->flow;
2041 miniflow_expand(&flow->cr.mask->mf, &match.wc.masks);
2042
2043 ds_put_cstr(&ds, "flow_add: ");
2044 odp_format_ufid(ufid, &ds);
2045 ds_put_cstr(&ds, " ");
2046 match_format(&match, &ds, OFP_DEFAULT_PRIORITY);
2047 ds_put_cstr(&ds, ", actions:");
2048 format_odp_actions(&ds, actions, actions_len);
2049
2050 VLOG_DBG_RL(&upcall_rl, "%s", ds_cstr(&ds));
2051
2052 ds_destroy(&ds);
2053 }
2054
2055 return flow;
2056 }
2057
2058 static int
2059 dpif_netdev_flow_put(struct dpif *dpif, const struct dpif_flow_put *put)
2060 {
2061 struct dp_netdev *dp = get_dp_netdev(dpif);
2062 struct dp_netdev_flow *netdev_flow;
2063 struct netdev_flow_key key;
2064 struct dp_netdev_pmd_thread *pmd;
2065 struct match match;
2066 ovs_u128 ufid;
2067 unsigned pmd_id = put->pmd_id == PMD_ID_NULL
2068 ? NON_PMD_CORE_ID : put->pmd_id;
2069 int error;
2070
2071 error = dpif_netdev_flow_from_nlattrs(put->key, put->key_len, &match.flow);
2072 if (error) {
2073 return error;
2074 }
2075 error = dpif_netdev_mask_from_nlattrs(put->key, put->key_len,
2076 put->mask, put->mask_len,
2077 &match.flow, &match.wc);
2078 if (error) {
2079 return error;
2080 }
2081
2082 pmd = dp_netdev_get_pmd(dp, pmd_id);
2083 if (!pmd) {
2084 return EINVAL;
2085 }
2086
2087 /* Must produce a netdev_flow_key for lookup.
2088 * This interface is no longer performance critical, since it is not used
2089 * for upcall processing any more. */
2090 netdev_flow_key_from_flow(&key, &match.flow);
2091
2092 if (put->ufid) {
2093 ufid = *put->ufid;
2094 } else {
2095 dpif_flow_hash(dpif, &match.flow, sizeof match.flow, &ufid);
2096 }
2097
2098 ovs_mutex_lock(&pmd->flow_mutex);
2099 netdev_flow = dp_netdev_pmd_lookup_flow(pmd, &key);
2100 if (!netdev_flow) {
2101 if (put->flags & DPIF_FP_CREATE) {
2102 if (cmap_count(&pmd->flow_table) < MAX_FLOWS) {
2103 if (put->stats) {
2104 memset(put->stats, 0, sizeof *put->stats);
2105 }
2106 dp_netdev_flow_add(pmd, &match, &ufid, put->actions,
2107 put->actions_len);
2108 error = 0;
2109 } else {
2110 error = EFBIG;
2111 }
2112 } else {
2113 error = ENOENT;
2114 }
2115 } else {
2116 if (put->flags & DPIF_FP_MODIFY
2117 && flow_equal(&match.flow, &netdev_flow->flow)) {
2118 struct dp_netdev_actions *new_actions;
2119 struct dp_netdev_actions *old_actions;
2120
2121 new_actions = dp_netdev_actions_create(put->actions,
2122 put->actions_len);
2123
2124 old_actions = dp_netdev_flow_get_actions(netdev_flow);
2125 ovsrcu_set(&netdev_flow->actions, new_actions);
2126
2127 if (put->stats) {
2128 get_dpif_flow_stats(netdev_flow, put->stats);
2129 }
2130 if (put->flags & DPIF_FP_ZERO_STATS) {
2131 /* XXX: The userspace datapath uses thread local statistics
2132 * (for flows), which should be updated only by the owning
2133 * thread. Since we cannot write on stats memory here,
2134 * we choose not to support this flag. Please note:
2135 * - This feature is currently used only by dpctl commands with
2136 * option --clear.
2137 * - Should the need arise, this operation can be implemented
2138 * by keeping a base value (to be update here) for each
2139 * counter, and subtracting it before outputting the stats */
2140 error = EOPNOTSUPP;
2141 }
2142
2143 ovsrcu_postpone(dp_netdev_actions_free, old_actions);
2144 } else if (put->flags & DPIF_FP_CREATE) {
2145 error = EEXIST;
2146 } else {
2147 /* Overlapping flow. */
2148 error = EINVAL;
2149 }
2150 }
2151 ovs_mutex_unlock(&pmd->flow_mutex);
2152 dp_netdev_pmd_unref(pmd);
2153
2154 return error;
2155 }
2156
2157 static int
2158 dpif_netdev_flow_del(struct dpif *dpif, const struct dpif_flow_del *del)
2159 {
2160 struct dp_netdev *dp = get_dp_netdev(dpif);
2161 struct dp_netdev_flow *netdev_flow;
2162 struct dp_netdev_pmd_thread *pmd;
2163 unsigned pmd_id = del->pmd_id == PMD_ID_NULL
2164 ? NON_PMD_CORE_ID : del->pmd_id;
2165 int error = 0;
2166
2167 pmd = dp_netdev_get_pmd(dp, pmd_id);
2168 if (!pmd) {
2169 return EINVAL;
2170 }
2171
2172 ovs_mutex_lock(&pmd->flow_mutex);
2173 netdev_flow = dp_netdev_pmd_find_flow(pmd, del->ufid, del->key,
2174 del->key_len);
2175 if (netdev_flow) {
2176 if (del->stats) {
2177 get_dpif_flow_stats(netdev_flow, del->stats);
2178 }
2179 dp_netdev_pmd_remove_flow(pmd, netdev_flow);
2180 } else {
2181 error = ENOENT;
2182 }
2183 ovs_mutex_unlock(&pmd->flow_mutex);
2184 dp_netdev_pmd_unref(pmd);
2185
2186 return error;
2187 }
2188
2189 struct dpif_netdev_flow_dump {
2190 struct dpif_flow_dump up;
2191 struct cmap_position poll_thread_pos;
2192 struct cmap_position flow_pos;
2193 struct dp_netdev_pmd_thread *cur_pmd;
2194 int status;
2195 struct ovs_mutex mutex;
2196 };
2197
2198 static struct dpif_netdev_flow_dump *
2199 dpif_netdev_flow_dump_cast(struct dpif_flow_dump *dump)
2200 {
2201 return CONTAINER_OF(dump, struct dpif_netdev_flow_dump, up);
2202 }
2203
2204 static struct dpif_flow_dump *
2205 dpif_netdev_flow_dump_create(const struct dpif *dpif_, bool terse)
2206 {
2207 struct dpif_netdev_flow_dump *dump;
2208
2209 dump = xzalloc(sizeof *dump);
2210 dpif_flow_dump_init(&dump->up, dpif_);
2211 dump->up.terse = terse;
2212 ovs_mutex_init(&dump->mutex);
2213
2214 return &dump->up;
2215 }
2216
2217 static int
2218 dpif_netdev_flow_dump_destroy(struct dpif_flow_dump *dump_)
2219 {
2220 struct dpif_netdev_flow_dump *dump = dpif_netdev_flow_dump_cast(dump_);
2221
2222 ovs_mutex_destroy(&dump->mutex);
2223 free(dump);
2224 return 0;
2225 }
2226
2227 struct dpif_netdev_flow_dump_thread {
2228 struct dpif_flow_dump_thread up;
2229 struct dpif_netdev_flow_dump *dump;
2230 struct odputil_keybuf keybuf[FLOW_DUMP_MAX_BATCH];
2231 struct odputil_keybuf maskbuf[FLOW_DUMP_MAX_BATCH];
2232 };
2233
2234 static struct dpif_netdev_flow_dump_thread *
2235 dpif_netdev_flow_dump_thread_cast(struct dpif_flow_dump_thread *thread)
2236 {
2237 return CONTAINER_OF(thread, struct dpif_netdev_flow_dump_thread, up);
2238 }
2239
2240 static struct dpif_flow_dump_thread *
2241 dpif_netdev_flow_dump_thread_create(struct dpif_flow_dump *dump_)
2242 {
2243 struct dpif_netdev_flow_dump *dump = dpif_netdev_flow_dump_cast(dump_);
2244 struct dpif_netdev_flow_dump_thread *thread;
2245
2246 thread = xmalloc(sizeof *thread);
2247 dpif_flow_dump_thread_init(&thread->up, &dump->up);
2248 thread->dump = dump;
2249 return &thread->up;
2250 }
2251
2252 static void
2253 dpif_netdev_flow_dump_thread_destroy(struct dpif_flow_dump_thread *thread_)
2254 {
2255 struct dpif_netdev_flow_dump_thread *thread
2256 = dpif_netdev_flow_dump_thread_cast(thread_);
2257
2258 free(thread);
2259 }
2260
2261 static int
2262 dpif_netdev_flow_dump_next(struct dpif_flow_dump_thread *thread_,
2263 struct dpif_flow *flows, int max_flows)
2264 {
2265 struct dpif_netdev_flow_dump_thread *thread
2266 = dpif_netdev_flow_dump_thread_cast(thread_);
2267 struct dpif_netdev_flow_dump *dump = thread->dump;
2268 struct dp_netdev_flow *netdev_flows[FLOW_DUMP_MAX_BATCH];
2269 int n_flows = 0;
2270 int i;
2271
2272 ovs_mutex_lock(&dump->mutex);
2273 if (!dump->status) {
2274 struct dpif_netdev *dpif = dpif_netdev_cast(thread->up.dpif);
2275 struct dp_netdev *dp = get_dp_netdev(&dpif->dpif);
2276 struct dp_netdev_pmd_thread *pmd = dump->cur_pmd;
2277 int flow_limit = MIN(max_flows, FLOW_DUMP_MAX_BATCH);
2278
2279 /* First call to dump_next(), extracts the first pmd thread.
2280 * If there is no pmd thread, returns immediately. */
2281 if (!pmd) {
2282 pmd = dp_netdev_pmd_get_next(dp, &dump->poll_thread_pos);
2283 if (!pmd) {
2284 ovs_mutex_unlock(&dump->mutex);
2285 return n_flows;
2286
2287 }
2288 }
2289
2290 do {
2291 for (n_flows = 0; n_flows < flow_limit; n_flows++) {
2292 struct cmap_node *node;
2293
2294 node = cmap_next_position(&pmd->flow_table, &dump->flow_pos);
2295 if (!node) {
2296 break;
2297 }
2298 netdev_flows[n_flows] = CONTAINER_OF(node,
2299 struct dp_netdev_flow,
2300 node);
2301 }
2302 /* When finishing dumping the current pmd thread, moves to
2303 * the next. */
2304 if (n_flows < flow_limit) {
2305 memset(&dump->flow_pos, 0, sizeof dump->flow_pos);
2306 dp_netdev_pmd_unref(pmd);
2307 pmd = dp_netdev_pmd_get_next(dp, &dump->poll_thread_pos);
2308 if (!pmd) {
2309 dump->status = EOF;
2310 break;
2311 }
2312 }
2313 /* Keeps the reference to next caller. */
2314 dump->cur_pmd = pmd;
2315
2316 /* If the current dump is empty, do not exit the loop, since the
2317 * remaining pmds could have flows to be dumped. Just dumps again
2318 * on the new 'pmd'. */
2319 } while (!n_flows);
2320 }
2321 ovs_mutex_unlock(&dump->mutex);
2322
2323 for (i = 0; i < n_flows; i++) {
2324 struct odputil_keybuf *maskbuf = &thread->maskbuf[i];
2325 struct odputil_keybuf *keybuf = &thread->keybuf[i];
2326 struct dp_netdev_flow *netdev_flow = netdev_flows[i];
2327 struct dpif_flow *f = &flows[i];
2328 struct ofpbuf key, mask;
2329
2330 ofpbuf_use_stack(&key, keybuf, sizeof *keybuf);
2331 ofpbuf_use_stack(&mask, maskbuf, sizeof *maskbuf);
2332 dp_netdev_flow_to_dpif_flow(netdev_flow, &key, &mask, f,
2333 dump->up.terse);
2334 }
2335
2336 return n_flows;
2337 }
2338
2339 static int
2340 dpif_netdev_execute(struct dpif *dpif, struct dpif_execute *execute)
2341 OVS_NO_THREAD_SAFETY_ANALYSIS
2342 {
2343 struct dp_netdev *dp = get_dp_netdev(dpif);
2344 struct dp_netdev_pmd_thread *pmd;
2345 struct dp_packet *pp;
2346
2347 if (dp_packet_size(execute->packet) < ETH_HEADER_LEN ||
2348 dp_packet_size(execute->packet) > UINT16_MAX) {
2349 return EINVAL;
2350 }
2351
2352 /* Tries finding the 'pmd'. If NULL is returned, that means
2353 * the current thread is a non-pmd thread and should use
2354 * dp_netdev_get_pmd(dp, NON_PMD_CORE_ID). */
2355 pmd = ovsthread_getspecific(dp->per_pmd_key);
2356 if (!pmd) {
2357 pmd = dp_netdev_get_pmd(dp, NON_PMD_CORE_ID);
2358 }
2359
2360 /* If the current thread is non-pmd thread, acquires
2361 * the 'non_pmd_mutex'. */
2362 if (pmd->core_id == NON_PMD_CORE_ID) {
2363 ovs_mutex_lock(&dp->non_pmd_mutex);
2364 ovs_mutex_lock(&dp->port_mutex);
2365 }
2366
2367 pp = execute->packet;
2368 dp_netdev_execute_actions(pmd, &pp, 1, false, execute->actions,
2369 execute->actions_len);
2370 if (pmd->core_id == NON_PMD_CORE_ID) {
2371 dp_netdev_pmd_unref(pmd);
2372 ovs_mutex_unlock(&dp->port_mutex);
2373 ovs_mutex_unlock(&dp->non_pmd_mutex);
2374 }
2375
2376 return 0;
2377 }
2378
2379 static void
2380 dpif_netdev_operate(struct dpif *dpif, struct dpif_op **ops, size_t n_ops)
2381 {
2382 size_t i;
2383
2384 for (i = 0; i < n_ops; i++) {
2385 struct dpif_op *op = ops[i];
2386
2387 switch (op->type) {
2388 case DPIF_OP_FLOW_PUT:
2389 op->error = dpif_netdev_flow_put(dpif, &op->u.flow_put);
2390 break;
2391
2392 case DPIF_OP_FLOW_DEL:
2393 op->error = dpif_netdev_flow_del(dpif, &op->u.flow_del);
2394 break;
2395
2396 case DPIF_OP_EXECUTE:
2397 op->error = dpif_netdev_execute(dpif, &op->u.execute);
2398 break;
2399
2400 case DPIF_OP_FLOW_GET:
2401 op->error = dpif_netdev_flow_get(dpif, &op->u.flow_get);
2402 break;
2403 }
2404 }
2405 }
2406
2407 /* Returns true if the configuration for rx queues or cpu mask
2408 * is changed. */
2409 static bool
2410 pmd_config_changed(const struct dp_netdev *dp, const char *cmask)
2411 {
2412 struct dp_netdev_port *port;
2413
2414 CMAP_FOR_EACH (port, node, &dp->ports) {
2415 struct netdev *netdev = port->netdev;
2416 int requested_n_rxq = netdev_requested_n_rxq(netdev);
2417 if (netdev_is_pmd(netdev)
2418 && port->latest_requested_n_rxq != requested_n_rxq) {
2419 return true;
2420 }
2421 }
2422
2423 if (dp->pmd_cmask != NULL && cmask != NULL) {
2424 return strcmp(dp->pmd_cmask, cmask);
2425 } else {
2426 return (dp->pmd_cmask != NULL || cmask != NULL);
2427 }
2428 }
2429
2430 /* Resets pmd threads if the configuration for 'rxq's or cpu mask changes. */
2431 static int
2432 dpif_netdev_pmd_set(struct dpif *dpif, const char *cmask)
2433 {
2434 struct dp_netdev *dp = get_dp_netdev(dpif);
2435
2436 if (pmd_config_changed(dp, cmask)) {
2437 struct dp_netdev_port *port;
2438
2439 dp_netdev_destroy_all_pmds(dp);
2440
2441 CMAP_FOR_EACH (port, node, &dp->ports) {
2442 struct netdev *netdev = port->netdev;
2443 int requested_n_rxq = netdev_requested_n_rxq(netdev);
2444 if (netdev_is_pmd(port->netdev)
2445 && port->latest_requested_n_rxq != requested_n_rxq) {
2446 int i, err;
2447
2448 /* Closes the existing 'rxq's. */
2449 for (i = 0; i < netdev_n_rxq(port->netdev); i++) {
2450 netdev_rxq_close(port->rxq[i]);
2451 port->rxq[i] = NULL;
2452 }
2453 port->n_rxq = 0;
2454
2455 /* Sets the new rx queue config. */
2456 err = netdev_set_multiq(port->netdev,
2457 ovs_numa_get_n_cores() + 1,
2458 requested_n_rxq);
2459 if (err && (err != EOPNOTSUPP)) {
2460 VLOG_ERR("Failed to set dpdk interface %s rx_queue to:"
2461 " %u", netdev_get_name(port->netdev),
2462 requested_n_rxq);
2463 return err;
2464 }
2465 port->latest_requested_n_rxq = requested_n_rxq;
2466 /* If the set_multiq() above succeeds, reopens the 'rxq's. */
2467 port->n_rxq = netdev_n_rxq(port->netdev);
2468 port->rxq = xrealloc(port->rxq, sizeof *port->rxq * port->n_rxq);
2469 for (i = 0; i < port->n_rxq; i++) {
2470 netdev_rxq_open(port->netdev, &port->rxq[i], i);
2471 }
2472 }
2473 }
2474 /* Reconfigures the cpu mask. */
2475 ovs_numa_set_cpu_mask(cmask);
2476 free(dp->pmd_cmask);
2477 dp->pmd_cmask = cmask ? xstrdup(cmask) : NULL;
2478
2479 /* Restores the non-pmd. */
2480 dp_netdev_set_nonpmd(dp);
2481 /* Restores all pmd threads. */
2482 dp_netdev_reset_pmd_threads(dp);
2483 }
2484
2485 return 0;
2486 }
2487
2488 static int
2489 dpif_netdev_queue_to_priority(const struct dpif *dpif OVS_UNUSED,
2490 uint32_t queue_id, uint32_t *priority)
2491 {
2492 *priority = queue_id;
2493 return 0;
2494 }
2495
2496 \f
2497 /* Creates and returns a new 'struct dp_netdev_actions', whose actions are
2498 * a copy of the 'ofpacts_len' bytes of 'ofpacts'. */
2499 struct dp_netdev_actions *
2500 dp_netdev_actions_create(const struct nlattr *actions, size_t size)
2501 {
2502 struct dp_netdev_actions *netdev_actions;
2503
2504 netdev_actions = xmalloc(sizeof *netdev_actions + size);
2505 memcpy(netdev_actions->actions, actions, size);
2506 netdev_actions->size = size;
2507
2508 return netdev_actions;
2509 }
2510
2511 struct dp_netdev_actions *
2512 dp_netdev_flow_get_actions(const struct dp_netdev_flow *flow)
2513 {
2514 return ovsrcu_get(struct dp_netdev_actions *, &flow->actions);
2515 }
2516
2517 static void
2518 dp_netdev_actions_free(struct dp_netdev_actions *actions)
2519 {
2520 free(actions);
2521 }
2522 \f
2523 static inline unsigned long long
2524 cycles_counter(void)
2525 {
2526 #ifdef DPDK_NETDEV
2527 return rte_get_tsc_cycles();
2528 #else
2529 return 0;
2530 #endif
2531 }
2532
2533 /* Fake mutex to make sure that the calls to cycles_count_* are balanced */
2534 extern struct ovs_mutex cycles_counter_fake_mutex;
2535
2536 /* Start counting cycles. Must be followed by 'cycles_count_end()' */
2537 static inline void
2538 cycles_count_start(struct dp_netdev_pmd_thread *pmd)
2539 OVS_ACQUIRES(&cycles_counter_fake_mutex)
2540 OVS_NO_THREAD_SAFETY_ANALYSIS
2541 {
2542 pmd->last_cycles = cycles_counter();
2543 }
2544
2545 /* Stop counting cycles and add them to the counter 'type' */
2546 static inline void
2547 cycles_count_end(struct dp_netdev_pmd_thread *pmd,
2548 enum pmd_cycles_counter_type type)
2549 OVS_RELEASES(&cycles_counter_fake_mutex)
2550 OVS_NO_THREAD_SAFETY_ANALYSIS
2551 {
2552 unsigned long long interval = cycles_counter() - pmd->last_cycles;
2553
2554 non_atomic_ullong_add(&pmd->cycles.n[type], interval);
2555 }
2556
2557 static void
2558 dp_netdev_process_rxq_port(struct dp_netdev_pmd_thread *pmd,
2559 struct dp_netdev_port *port,
2560 struct netdev_rxq *rxq)
2561 {
2562 struct dp_packet *packets[NETDEV_MAX_BURST];
2563 int error, cnt;
2564
2565 cycles_count_start(pmd);
2566 error = netdev_rxq_recv(rxq, packets, &cnt);
2567 cycles_count_end(pmd, PMD_CYCLES_POLLING);
2568 if (!error) {
2569 *recirc_depth_get() = 0;
2570
2571 cycles_count_start(pmd);
2572 dp_netdev_input(pmd, packets, cnt, port->port_no);
2573 cycles_count_end(pmd, PMD_CYCLES_PROCESSING);
2574 } else if (error != EAGAIN && error != EOPNOTSUPP) {
2575 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
2576
2577 VLOG_ERR_RL(&rl, "error receiving data from %s: %s",
2578 netdev_get_name(port->netdev), ovs_strerror(error));
2579 }
2580 }
2581
2582 /* Return true if needs to revalidate datapath flows. */
2583 static bool
2584 dpif_netdev_run(struct dpif *dpif)
2585 {
2586 struct dp_netdev_port *port;
2587 struct dp_netdev *dp = get_dp_netdev(dpif);
2588 struct dp_netdev_pmd_thread *non_pmd = dp_netdev_get_pmd(dp,
2589 NON_PMD_CORE_ID);
2590 uint64_t new_tnl_seq;
2591
2592 ovs_mutex_lock(&dp->non_pmd_mutex);
2593 CMAP_FOR_EACH (port, node, &dp->ports) {
2594 if (!netdev_is_pmd(port->netdev)) {
2595 int i;
2596
2597 for (i = 0; i < port->n_rxq; i++) {
2598 dp_netdev_process_rxq_port(non_pmd, port, port->rxq[i]);
2599 }
2600 }
2601 }
2602 ovs_mutex_unlock(&dp->non_pmd_mutex);
2603 dp_netdev_pmd_unref(non_pmd);
2604
2605 tnl_neigh_cache_run();
2606 tnl_port_map_run();
2607 new_tnl_seq = seq_read(tnl_conf_seq);
2608
2609 if (dp->last_tnl_conf_seq != new_tnl_seq) {
2610 dp->last_tnl_conf_seq = new_tnl_seq;
2611 return true;
2612 }
2613 return false;
2614 }
2615
2616 static void
2617 dpif_netdev_wait(struct dpif *dpif)
2618 {
2619 struct dp_netdev_port *port;
2620 struct dp_netdev *dp = get_dp_netdev(dpif);
2621
2622 ovs_mutex_lock(&dp_netdev_mutex);
2623 CMAP_FOR_EACH (port, node, &dp->ports) {
2624 if (!netdev_is_pmd(port->netdev)) {
2625 int i;
2626
2627 for (i = 0; i < port->n_rxq; i++) {
2628 netdev_rxq_wait(port->rxq[i]);
2629 }
2630 }
2631 }
2632 ovs_mutex_unlock(&dp_netdev_mutex);
2633 seq_wait(tnl_conf_seq, dp->last_tnl_conf_seq);
2634 }
2635
2636 static int
2637 pmd_load_queues(struct dp_netdev_pmd_thread *pmd, struct rxq_poll **ppoll_list)
2638 OVS_REQUIRES(pmd->poll_mutex)
2639 {
2640 struct rxq_poll *poll_list = *ppoll_list;
2641 struct rxq_poll *poll;
2642 int i;
2643
2644 poll_list = xrealloc(poll_list, pmd->poll_cnt * sizeof *poll_list);
2645
2646 i = 0;
2647 LIST_FOR_EACH (poll, node, &pmd->poll_list) {
2648 poll_list[i++] = *poll;
2649 }
2650
2651 *ppoll_list = poll_list;
2652 return pmd->poll_cnt;
2653 }
2654
2655 static void *
2656 pmd_thread_main(void *f_)
2657 {
2658 struct dp_netdev_pmd_thread *pmd = f_;
2659 unsigned int lc = 0;
2660 struct rxq_poll *poll_list;
2661 unsigned int port_seq = PMD_INITIAL_SEQ;
2662 int poll_cnt;
2663 int i;
2664
2665 poll_cnt = 0;
2666 poll_list = NULL;
2667
2668 /* Stores the pmd thread's 'pmd' to 'per_pmd_key'. */
2669 ovsthread_setspecific(pmd->dp->per_pmd_key, pmd);
2670 pmd_thread_setaffinity_cpu(pmd->core_id);
2671 reload:
2672 emc_cache_init(&pmd->flow_cache);
2673
2674 ovs_mutex_lock(&pmd->poll_mutex);
2675 poll_cnt = pmd_load_queues(pmd, &poll_list);
2676 ovs_mutex_unlock(&pmd->poll_mutex);
2677
2678 /* List port/core affinity */
2679 for (i = 0; i < poll_cnt; i++) {
2680 VLOG_DBG("Core %d processing port \'%s\' with queue-id %d\n",
2681 pmd->core_id, netdev_get_name(poll_list[i].port->netdev),
2682 netdev_rxq_get_queue_id(poll_list[i].rx));
2683 }
2684
2685 /* Signal here to make sure the pmd finishes
2686 * reloading the updated configuration. */
2687 dp_netdev_pmd_reload_done(pmd);
2688
2689 for (;;) {
2690 for (i = 0; i < poll_cnt; i++) {
2691 dp_netdev_process_rxq_port(pmd, poll_list[i].port, poll_list[i].rx);
2692 }
2693
2694 if (lc++ > 1024) {
2695 unsigned int seq;
2696
2697 lc = 0;
2698
2699 emc_cache_slow_sweep(&pmd->flow_cache);
2700 coverage_try_clear();
2701 ovsrcu_quiesce();
2702
2703 atomic_read_relaxed(&pmd->change_seq, &seq);
2704 if (seq != port_seq) {
2705 port_seq = seq;
2706 break;
2707 }
2708 }
2709 }
2710
2711 emc_cache_uninit(&pmd->flow_cache);
2712
2713 if (!latch_is_set(&pmd->exit_latch)){
2714 goto reload;
2715 }
2716
2717 dp_netdev_pmd_reload_done(pmd);
2718
2719 free(poll_list);
2720 return NULL;
2721 }
2722
2723 static void
2724 dp_netdev_disable_upcall(struct dp_netdev *dp)
2725 OVS_ACQUIRES(dp->upcall_rwlock)
2726 {
2727 fat_rwlock_wrlock(&dp->upcall_rwlock);
2728 }
2729
2730 static void
2731 dpif_netdev_disable_upcall(struct dpif *dpif)
2732 OVS_NO_THREAD_SAFETY_ANALYSIS
2733 {
2734 struct dp_netdev *dp = get_dp_netdev(dpif);
2735 dp_netdev_disable_upcall(dp);
2736 }
2737
2738 static void
2739 dp_netdev_enable_upcall(struct dp_netdev *dp)
2740 OVS_RELEASES(dp->upcall_rwlock)
2741 {
2742 fat_rwlock_unlock(&dp->upcall_rwlock);
2743 }
2744
2745 static void
2746 dpif_netdev_enable_upcall(struct dpif *dpif)
2747 OVS_NO_THREAD_SAFETY_ANALYSIS
2748 {
2749 struct dp_netdev *dp = get_dp_netdev(dpif);
2750 dp_netdev_enable_upcall(dp);
2751 }
2752
2753 static void
2754 dp_netdev_pmd_reload_done(struct dp_netdev_pmd_thread *pmd)
2755 {
2756 ovs_mutex_lock(&pmd->cond_mutex);
2757 xpthread_cond_signal(&pmd->cond);
2758 ovs_mutex_unlock(&pmd->cond_mutex);
2759 }
2760
2761 /* Finds and refs the dp_netdev_pmd_thread on core 'core_id'. Returns
2762 * the pointer if succeeds, otherwise, NULL.
2763 *
2764 * Caller must unrefs the returned reference. */
2765 static struct dp_netdev_pmd_thread *
2766 dp_netdev_get_pmd(struct dp_netdev *dp, unsigned core_id)
2767 {
2768 struct dp_netdev_pmd_thread *pmd;
2769 const struct cmap_node *pnode;
2770
2771 pnode = cmap_find(&dp->poll_threads, hash_int(core_id, 0));
2772 if (!pnode) {
2773 return NULL;
2774 }
2775 pmd = CONTAINER_OF(pnode, struct dp_netdev_pmd_thread, node);
2776
2777 return dp_netdev_pmd_try_ref(pmd) ? pmd : NULL;
2778 }
2779
2780 /* Sets the 'struct dp_netdev_pmd_thread' for non-pmd threads. */
2781 static void
2782 dp_netdev_set_nonpmd(struct dp_netdev *dp)
2783 {
2784 struct dp_netdev_pmd_thread *non_pmd;
2785
2786 non_pmd = xzalloc(sizeof *non_pmd);
2787 dp_netdev_configure_pmd(non_pmd, dp, 0, NON_PMD_CORE_ID,
2788 OVS_NUMA_UNSPEC);
2789 }
2790
2791 /* Caller must have valid pointer to 'pmd'. */
2792 static bool
2793 dp_netdev_pmd_try_ref(struct dp_netdev_pmd_thread *pmd)
2794 {
2795 return ovs_refcount_try_ref_rcu(&pmd->ref_cnt);
2796 }
2797
2798 static void
2799 dp_netdev_pmd_unref(struct dp_netdev_pmd_thread *pmd)
2800 {
2801 if (pmd && ovs_refcount_unref(&pmd->ref_cnt) == 1) {
2802 ovsrcu_postpone(dp_netdev_destroy_pmd, pmd);
2803 }
2804 }
2805
2806 /* Given cmap position 'pos', tries to ref the next node. If try_ref()
2807 * fails, keeps checking for next node until reaching the end of cmap.
2808 *
2809 * Caller must unrefs the returned reference. */
2810 static struct dp_netdev_pmd_thread *
2811 dp_netdev_pmd_get_next(struct dp_netdev *dp, struct cmap_position *pos)
2812 {
2813 struct dp_netdev_pmd_thread *next;
2814
2815 do {
2816 struct cmap_node *node;
2817
2818 node = cmap_next_position(&dp->poll_threads, pos);
2819 next = node ? CONTAINER_OF(node, struct dp_netdev_pmd_thread, node)
2820 : NULL;
2821 } while (next && !dp_netdev_pmd_try_ref(next));
2822
2823 return next;
2824 }
2825
2826 /* Configures the 'pmd' based on the input argument. */
2827 static void
2828 dp_netdev_configure_pmd(struct dp_netdev_pmd_thread *pmd, struct dp_netdev *dp,
2829 int index, unsigned core_id, int numa_id)
2830 {
2831 pmd->dp = dp;
2832 pmd->index = index;
2833 pmd->core_id = core_id;
2834 pmd->numa_id = numa_id;
2835 pmd->poll_cnt = 0;
2836
2837 atomic_init(&pmd->tx_qid,
2838 (core_id == NON_PMD_CORE_ID)
2839 ? ovs_numa_get_n_cores()
2840 : get_n_pmd_threads(dp));
2841
2842 ovs_refcount_init(&pmd->ref_cnt);
2843 latch_init(&pmd->exit_latch);
2844 atomic_init(&pmd->change_seq, PMD_INITIAL_SEQ);
2845 xpthread_cond_init(&pmd->cond, NULL);
2846 ovs_mutex_init(&pmd->cond_mutex);
2847 ovs_mutex_init(&pmd->flow_mutex);
2848 ovs_mutex_init(&pmd->poll_mutex);
2849 dpcls_init(&pmd->cls);
2850 cmap_init(&pmd->flow_table);
2851 ovs_list_init(&pmd->poll_list);
2852 /* init the 'flow_cache' since there is no
2853 * actual thread created for NON_PMD_CORE_ID. */
2854 if (core_id == NON_PMD_CORE_ID) {
2855 emc_cache_init(&pmd->flow_cache);
2856 }
2857 cmap_insert(&dp->poll_threads, CONST_CAST(struct cmap_node *, &pmd->node),
2858 hash_int(core_id, 0));
2859 }
2860
2861 static void
2862 dp_netdev_destroy_pmd(struct dp_netdev_pmd_thread *pmd)
2863 {
2864 dp_netdev_pmd_flow_flush(pmd);
2865 dpcls_destroy(&pmd->cls);
2866 cmap_destroy(&pmd->flow_table);
2867 ovs_mutex_destroy(&pmd->flow_mutex);
2868 latch_destroy(&pmd->exit_latch);
2869 xpthread_cond_destroy(&pmd->cond);
2870 ovs_mutex_destroy(&pmd->cond_mutex);
2871 ovs_mutex_destroy(&pmd->poll_mutex);
2872 free(pmd);
2873 }
2874
2875 /* Stops the pmd thread, removes it from the 'dp->poll_threads',
2876 * and unrefs the struct. */
2877 static void
2878 dp_netdev_del_pmd(struct dp_netdev *dp, struct dp_netdev_pmd_thread *pmd)
2879 {
2880 /* Uninit the 'flow_cache' since there is
2881 * no actual thread uninit it for NON_PMD_CORE_ID. */
2882 if (pmd->core_id == NON_PMD_CORE_ID) {
2883 emc_cache_uninit(&pmd->flow_cache);
2884 } else {
2885 latch_set(&pmd->exit_latch);
2886 dp_netdev_reload_pmd__(pmd);
2887 ovs_numa_unpin_core(pmd->core_id);
2888 xpthread_join(pmd->thread, NULL);
2889 }
2890
2891 /* Unref all ports and free poll_list. */
2892 dp_netdev_pmd_clear_poll_list(pmd);
2893
2894 /* Purges the 'pmd''s flows after stopping the thread, but before
2895 * destroying the flows, so that the flow stats can be collected. */
2896 if (dp->dp_purge_cb) {
2897 dp->dp_purge_cb(dp->dp_purge_aux, pmd->core_id);
2898 }
2899 cmap_remove(&pmd->dp->poll_threads, &pmd->node, hash_int(pmd->core_id, 0));
2900 dp_netdev_pmd_unref(pmd);
2901 }
2902
2903 /* Destroys all pmd threads. */
2904 static void
2905 dp_netdev_destroy_all_pmds(struct dp_netdev *dp)
2906 {
2907 struct dp_netdev_pmd_thread *pmd;
2908 struct dp_netdev_pmd_thread **pmd_list;
2909 size_t k = 0, n_pmds;
2910
2911 n_pmds = cmap_count(&dp->poll_threads);
2912 pmd_list = xcalloc(n_pmds, sizeof *pmd_list);
2913
2914 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
2915 /* We cannot call dp_netdev_del_pmd(), since it alters
2916 * 'dp->poll_threads' (while we're iterating it) and it
2917 * might quiesce. */
2918 ovs_assert(k < n_pmds);
2919 pmd_list[k++] = pmd;
2920 }
2921
2922 for (size_t i = 0; i < k; i++) {
2923 dp_netdev_del_pmd(dp, pmd_list[i]);
2924 }
2925 free(pmd_list);
2926 }
2927
2928 /* Deletes all pmd threads on numa node 'numa_id' and
2929 * fixes tx_qids of other threads to keep them sequential. */
2930 static void
2931 dp_netdev_del_pmds_on_numa(struct dp_netdev *dp, int numa_id)
2932 {
2933 struct dp_netdev_pmd_thread *pmd;
2934 int n_pmds_on_numa, n_pmds;
2935 int *free_idx, k = 0;
2936 struct dp_netdev_pmd_thread **pmd_list;
2937
2938 n_pmds_on_numa = get_n_pmd_threads_on_numa(dp, numa_id);
2939 free_idx = xcalloc(n_pmds_on_numa, sizeof *free_idx);
2940 pmd_list = xcalloc(n_pmds_on_numa, sizeof *pmd_list);
2941
2942 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
2943 /* We cannot call dp_netdev_del_pmd(), since it alters
2944 * 'dp->poll_threads' (while we're iterating it) and it
2945 * might quiesce. */
2946 if (pmd->numa_id == numa_id) {
2947 atomic_read_relaxed(&pmd->tx_qid, &free_idx[k]);
2948 pmd_list[k] = pmd;
2949 ovs_assert(k < n_pmds_on_numa);
2950 k++;
2951 }
2952 }
2953
2954 for (int i = 0; i < k; i++) {
2955 dp_netdev_del_pmd(dp, pmd_list[i]);
2956 }
2957
2958 n_pmds = get_n_pmd_threads(dp);
2959 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
2960 int old_tx_qid;
2961
2962 atomic_read_relaxed(&pmd->tx_qid, &old_tx_qid);
2963
2964 if (old_tx_qid >= n_pmds) {
2965 int new_tx_qid = free_idx[--k];
2966
2967 atomic_store_relaxed(&pmd->tx_qid, new_tx_qid);
2968 }
2969 }
2970
2971 free(pmd_list);
2972 free(free_idx);
2973 }
2974
2975 /* Deletes all rx queues from pmd->poll_list. */
2976 static void
2977 dp_netdev_pmd_clear_poll_list(struct dp_netdev_pmd_thread *pmd)
2978 {
2979 struct rxq_poll *poll;
2980
2981 ovs_mutex_lock(&pmd->poll_mutex);
2982 LIST_FOR_EACH_POP (poll, node, &pmd->poll_list) {
2983 free(poll);
2984 }
2985 pmd->poll_cnt = 0;
2986 ovs_mutex_unlock(&pmd->poll_mutex);
2987 }
2988
2989 /* Deletes all rx queues of 'port' from poll_list of pmd thread and
2990 * reloads it if poll_list was changed. */
2991 static void
2992 dp_netdev_del_port_from_pmd(struct dp_netdev_port *port,
2993 struct dp_netdev_pmd_thread *pmd)
2994 {
2995 struct rxq_poll *poll, *next;
2996 bool found = false;
2997
2998 ovs_mutex_lock(&pmd->poll_mutex);
2999 LIST_FOR_EACH_SAFE (poll, next, node, &pmd->poll_list) {
3000 if (poll->port == port) {
3001 found = true;
3002 ovs_list_remove(&poll->node);
3003 pmd->poll_cnt--;
3004 free(poll);
3005 }
3006 }
3007 ovs_mutex_unlock(&pmd->poll_mutex);
3008 if (found) {
3009 dp_netdev_reload_pmd__(pmd);
3010 }
3011 }
3012
3013 /* Deletes all rx queues of 'port' from all pmd threads of dp and
3014 * reloads them if needed. */
3015 static void
3016 dp_netdev_del_port_from_all_pmds(struct dp_netdev *dp,
3017 struct dp_netdev_port *port)
3018 {
3019 int numa_id = netdev_get_numa_id(port->netdev);
3020 struct dp_netdev_pmd_thread *pmd;
3021
3022 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
3023 if (pmd->numa_id == numa_id) {
3024 dp_netdev_del_port_from_pmd(port, pmd);
3025 }
3026 }
3027 }
3028
3029 /* Returns PMD thread from this numa node with fewer rx queues to poll.
3030 * Returns NULL if there is no PMD threads on this numa node.
3031 * Can be called safely only by main thread. */
3032 static struct dp_netdev_pmd_thread *
3033 dp_netdev_less_loaded_pmd_on_numa(struct dp_netdev *dp, int numa_id)
3034 {
3035 int min_cnt = -1;
3036 struct dp_netdev_pmd_thread *pmd, *res = NULL;
3037
3038 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
3039 if (pmd->numa_id == numa_id
3040 && (min_cnt > pmd->poll_cnt || res == NULL)) {
3041 min_cnt = pmd->poll_cnt;
3042 res = pmd;
3043 }
3044 }
3045
3046 return res;
3047 }
3048
3049 /* Adds rx queue to poll_list of PMD thread. */
3050 static void
3051 dp_netdev_add_rxq_to_pmd(struct dp_netdev_pmd_thread *pmd,
3052 struct dp_netdev_port *port, struct netdev_rxq *rx)
3053 OVS_REQUIRES(pmd->poll_mutex)
3054 {
3055 struct rxq_poll *poll = xmalloc(sizeof *poll);
3056
3057 poll->port = port;
3058 poll->rx = rx;
3059
3060 ovs_list_push_back(&pmd->poll_list, &poll->node);
3061 pmd->poll_cnt++;
3062 }
3063
3064 /* Distributes all rx queues of 'port' between all PMD threads and reloads
3065 * them if needed. */
3066 static void
3067 dp_netdev_add_port_to_pmds(struct dp_netdev *dp, struct dp_netdev_port *port)
3068 {
3069 int numa_id = netdev_get_numa_id(port->netdev);
3070 struct dp_netdev_pmd_thread *pmd;
3071 struct hmapx to_reload;
3072 struct hmapx_node *node;
3073 int i;
3074
3075 hmapx_init(&to_reload);
3076 /* Cannot create pmd threads for invalid numa node. */
3077 ovs_assert(ovs_numa_numa_id_is_valid(numa_id));
3078
3079 for (i = 0; i < port->n_rxq; i++) {
3080 pmd = dp_netdev_less_loaded_pmd_on_numa(dp, numa_id);
3081 if (!pmd) {
3082 /* There is no pmd threads on this numa node. */
3083 dp_netdev_set_pmds_on_numa(dp, numa_id);
3084 /* Assigning of rx queues done. */
3085 break;
3086 }
3087
3088 ovs_mutex_lock(&pmd->poll_mutex);
3089 dp_netdev_add_rxq_to_pmd(pmd, port, port->rxq[i]);
3090 ovs_mutex_unlock(&pmd->poll_mutex);
3091
3092 hmapx_add(&to_reload, pmd);
3093 }
3094
3095 HMAPX_FOR_EACH (node, &to_reload) {
3096 pmd = (struct dp_netdev_pmd_thread *) node->data;
3097 dp_netdev_reload_pmd__(pmd);
3098 }
3099
3100 hmapx_destroy(&to_reload);
3101 }
3102
3103 /* Checks the numa node id of 'netdev' and starts pmd threads for
3104 * the numa node. */
3105 static void
3106 dp_netdev_set_pmds_on_numa(struct dp_netdev *dp, int numa_id)
3107 {
3108 int n_pmds;
3109
3110 if (!ovs_numa_numa_id_is_valid(numa_id)) {
3111 VLOG_ERR("Cannot create pmd threads due to numa id (%d)"
3112 "invalid", numa_id);
3113 return ;
3114 }
3115
3116 n_pmds = get_n_pmd_threads_on_numa(dp, numa_id);
3117
3118 /* If there are already pmd threads created for the numa node
3119 * in which 'netdev' is on, do nothing. Else, creates the
3120 * pmd threads for the numa node. */
3121 if (!n_pmds) {
3122 int can_have, n_unpinned, i, index = 0;
3123 struct dp_netdev_pmd_thread **pmds;
3124 struct dp_netdev_port *port;
3125
3126 n_unpinned = ovs_numa_get_n_unpinned_cores_on_numa(numa_id);
3127 if (!n_unpinned) {
3128 VLOG_ERR("Cannot create pmd threads due to out of unpinned "
3129 "cores on numa node %d", numa_id);
3130 return;
3131 }
3132
3133 /* If cpu mask is specified, uses all unpinned cores, otherwise
3134 * tries creating NR_PMD_THREADS pmd threads. */
3135 can_have = dp->pmd_cmask ? n_unpinned : MIN(n_unpinned, NR_PMD_THREADS);
3136 pmds = xzalloc(can_have * sizeof *pmds);
3137 for (i = 0; i < can_have; i++) {
3138 unsigned core_id = ovs_numa_get_unpinned_core_on_numa(numa_id);
3139 pmds[i] = xzalloc(sizeof **pmds);
3140 dp_netdev_configure_pmd(pmds[i], dp, i, core_id, numa_id);
3141 }
3142
3143 /* Distributes rx queues of this numa node between new pmd threads. */
3144 CMAP_FOR_EACH (port, node, &dp->ports) {
3145 if (netdev_is_pmd(port->netdev)
3146 && netdev_get_numa_id(port->netdev) == numa_id) {
3147 for (i = 0; i < port->n_rxq; i++) {
3148 /* Make thread-safety analyser happy. */
3149 ovs_mutex_lock(&pmds[index]->poll_mutex);
3150 dp_netdev_add_rxq_to_pmd(pmds[index], port, port->rxq[i]);
3151 ovs_mutex_unlock(&pmds[index]->poll_mutex);
3152 index = (index + 1) % can_have;
3153 }
3154 }
3155 }
3156
3157 /* Actual start of pmd threads. */
3158 for (i = 0; i < can_have; i++) {
3159 pmds[i]->thread = ovs_thread_create("pmd", pmd_thread_main, pmds[i]);
3160 }
3161 free(pmds);
3162 VLOG_INFO("Created %d pmd threads on numa node %d", can_have, numa_id);
3163 }
3164 }
3165
3166 \f
3167 /* Called after pmd threads config change. Restarts pmd threads with
3168 * new configuration. */
3169 static void
3170 dp_netdev_reset_pmd_threads(struct dp_netdev *dp)
3171 {
3172 struct dp_netdev_port *port;
3173
3174 CMAP_FOR_EACH (port, node, &dp->ports) {
3175 if (netdev_is_pmd(port->netdev)) {
3176 int numa_id = netdev_get_numa_id(port->netdev);
3177
3178 dp_netdev_set_pmds_on_numa(dp, numa_id);
3179 }
3180 }
3181 }
3182
3183 static char *
3184 dpif_netdev_get_datapath_version(void)
3185 {
3186 return xstrdup("<built-in>");
3187 }
3188
3189 static void
3190 dp_netdev_flow_used(struct dp_netdev_flow *netdev_flow, int cnt, int size,
3191 uint16_t tcp_flags, long long now)
3192 {
3193 uint16_t flags;
3194
3195 atomic_store_relaxed(&netdev_flow->stats.used, now);
3196 non_atomic_ullong_add(&netdev_flow->stats.packet_count, cnt);
3197 non_atomic_ullong_add(&netdev_flow->stats.byte_count, size);
3198 atomic_read_relaxed(&netdev_flow->stats.tcp_flags, &flags);
3199 flags |= tcp_flags;
3200 atomic_store_relaxed(&netdev_flow->stats.tcp_flags, flags);
3201 }
3202
3203 static void
3204 dp_netdev_count_packet(struct dp_netdev_pmd_thread *pmd,
3205 enum dp_stat_type type, int cnt)
3206 {
3207 non_atomic_ullong_add(&pmd->stats.n[type], cnt);
3208 }
3209
3210 static int
3211 dp_netdev_upcall(struct dp_netdev_pmd_thread *pmd, struct dp_packet *packet_,
3212 struct flow *flow, struct flow_wildcards *wc, ovs_u128 *ufid,
3213 enum dpif_upcall_type type, const struct nlattr *userdata,
3214 struct ofpbuf *actions, struct ofpbuf *put_actions)
3215 {
3216 struct dp_netdev *dp = pmd->dp;
3217 struct flow_tnl orig_tunnel;
3218 int err;
3219
3220 if (OVS_UNLIKELY(!dp->upcall_cb)) {
3221 return ENODEV;
3222 }
3223
3224 /* Upcall processing expects the Geneve options to be in the translated
3225 * format but we need to retain the raw format for datapath use. */
3226 orig_tunnel.flags = flow->tunnel.flags;
3227 if (flow->tunnel.flags & FLOW_TNL_F_UDPIF) {
3228 orig_tunnel.metadata.present.len = flow->tunnel.metadata.present.len;
3229 memcpy(orig_tunnel.metadata.opts.gnv, flow->tunnel.metadata.opts.gnv,
3230 flow->tunnel.metadata.present.len);
3231 err = tun_metadata_from_geneve_udpif(&orig_tunnel, &orig_tunnel,
3232 &flow->tunnel);
3233 if (err) {
3234 return err;
3235 }
3236 }
3237
3238 if (OVS_UNLIKELY(!VLOG_DROP_DBG(&upcall_rl))) {
3239 struct ds ds = DS_EMPTY_INITIALIZER;
3240 char *packet_str;
3241 struct ofpbuf key;
3242 struct odp_flow_key_parms odp_parms = {
3243 .flow = flow,
3244 .mask = &wc->masks,
3245 .odp_in_port = flow->in_port.odp_port,
3246 .support = dp_netdev_support,
3247 };
3248
3249 ofpbuf_init(&key, 0);
3250 odp_flow_key_from_flow(&odp_parms, &key);
3251 packet_str = ofp_packet_to_string(dp_packet_data(packet_),
3252 dp_packet_size(packet_));
3253
3254 odp_flow_key_format(key.data, key.size, &ds);
3255
3256 VLOG_DBG("%s: %s upcall:\n%s\n%s", dp->name,
3257 dpif_upcall_type_to_string(type), ds_cstr(&ds), packet_str);
3258
3259 ofpbuf_uninit(&key);
3260 free(packet_str);
3261
3262 ds_destroy(&ds);
3263 }
3264
3265 err = dp->upcall_cb(packet_, flow, ufid, pmd->core_id, type, userdata,
3266 actions, wc, put_actions, dp->upcall_aux);
3267 if (err && err != ENOSPC) {
3268 return err;
3269 }
3270
3271 /* Translate tunnel metadata masks to datapath format. */
3272 if (wc) {
3273 if (wc->masks.tunnel.metadata.present.map) {
3274 struct geneve_opt opts[TLV_TOT_OPT_SIZE /
3275 sizeof(struct geneve_opt)];
3276
3277 if (orig_tunnel.flags & FLOW_TNL_F_UDPIF) {
3278 tun_metadata_to_geneve_udpif_mask(&flow->tunnel,
3279 &wc->masks.tunnel,
3280 orig_tunnel.metadata.opts.gnv,
3281 orig_tunnel.metadata.present.len,
3282 opts);
3283 } else {
3284 orig_tunnel.metadata.present.len = 0;
3285 }
3286
3287 memset(&wc->masks.tunnel.metadata, 0,
3288 sizeof wc->masks.tunnel.metadata);
3289 memcpy(&wc->masks.tunnel.metadata.opts.gnv, opts,
3290 orig_tunnel.metadata.present.len);
3291 }
3292 wc->masks.tunnel.metadata.present.len = 0xff;
3293 }
3294
3295 /* Restore tunnel metadata. We need to use the saved options to ensure
3296 * that any unknown options are not lost. The generated mask will have
3297 * the same structure, matching on types and lengths but wildcarding
3298 * option data we don't care about. */
3299 if (orig_tunnel.flags & FLOW_TNL_F_UDPIF) {
3300 memcpy(&flow->tunnel.metadata.opts.gnv, orig_tunnel.metadata.opts.gnv,
3301 orig_tunnel.metadata.present.len);
3302 flow->tunnel.metadata.present.len = orig_tunnel.metadata.present.len;
3303 flow->tunnel.flags |= FLOW_TNL_F_UDPIF;
3304 }
3305
3306 return err;
3307 }
3308
3309 static inline uint32_t
3310 dpif_netdev_packet_get_rss_hash(struct dp_packet *packet,
3311 const struct miniflow *mf)
3312 {
3313 uint32_t hash, recirc_depth;
3314
3315 if (OVS_LIKELY(dp_packet_rss_valid(packet))) {
3316 hash = dp_packet_get_rss_hash(packet);
3317 } else {
3318 hash = miniflow_hash_5tuple(mf, 0);
3319 dp_packet_set_rss_hash(packet, hash);
3320 }
3321
3322 /* The RSS hash must account for the recirculation depth to avoid
3323 * collisions in the exact match cache */
3324 recirc_depth = *recirc_depth_get_unsafe();
3325 if (OVS_UNLIKELY(recirc_depth)) {
3326 hash = hash_finish(hash, recirc_depth);
3327 dp_packet_set_rss_hash(packet, hash);
3328 }
3329 return hash;
3330 }
3331
3332 struct packet_batch {
3333 unsigned int packet_count;
3334 unsigned int byte_count;
3335 uint16_t tcp_flags;
3336
3337 struct dp_netdev_flow *flow;
3338
3339 struct dp_packet *packets[NETDEV_MAX_BURST];
3340 };
3341
3342 static inline void
3343 packet_batch_update(struct packet_batch *batch, struct dp_packet *packet,
3344 const struct miniflow *mf)
3345 {
3346 batch->tcp_flags |= miniflow_get_tcp_flags(mf);
3347 batch->packets[batch->packet_count++] = packet;
3348 batch->byte_count += dp_packet_size(packet);
3349 }
3350
3351 static inline void
3352 packet_batch_init(struct packet_batch *batch, struct dp_netdev_flow *flow)
3353 {
3354 flow->batch = batch;
3355
3356 batch->flow = flow;
3357 batch->packet_count = 0;
3358 batch->byte_count = 0;
3359 batch->tcp_flags = 0;
3360 }
3361
3362 static inline void
3363 packet_batch_execute(struct packet_batch *batch,
3364 struct dp_netdev_pmd_thread *pmd,
3365 long long now)
3366 {
3367 struct dp_netdev_actions *actions;
3368 struct dp_netdev_flow *flow = batch->flow;
3369
3370 dp_netdev_flow_used(flow, batch->packet_count, batch->byte_count,
3371 batch->tcp_flags, now);
3372
3373 actions = dp_netdev_flow_get_actions(flow);
3374
3375 dp_netdev_execute_actions(pmd, batch->packets, batch->packet_count, true,
3376 actions->actions, actions->size);
3377 }
3378
3379 static inline void
3380 dp_netdev_queue_batches(struct dp_packet *pkt,
3381 struct dp_netdev_flow *flow, const struct miniflow *mf,
3382 struct packet_batch *batches, size_t *n_batches)
3383 {
3384 struct packet_batch *batch = flow->batch;
3385
3386 if (OVS_UNLIKELY(!batch)) {
3387 batch = &batches[(*n_batches)++];
3388 packet_batch_init(batch, flow);
3389 }
3390
3391 packet_batch_update(batch, pkt, mf);
3392 }
3393
3394 /* Try to process all ('cnt') the 'packets' using only the exact match cache
3395 * 'pmd->flow_cache'. If a flow is not found for a packet 'packets[i]', the
3396 * miniflow is copied into 'keys' and the packet pointer is moved at the
3397 * beginning of the 'packets' array.
3398 *
3399 * The function returns the number of packets that needs to be processed in the
3400 * 'packets' array (they have been moved to the beginning of the vector).
3401 *
3402 * If 'md_is_valid' is false, the metadata in 'packets' is not valid and must be
3403 * initialized by this function using 'port_no'.
3404 */
3405 static inline size_t
3406 emc_processing(struct dp_netdev_pmd_thread *pmd, struct dp_packet **packets,
3407 size_t cnt, struct netdev_flow_key *keys,
3408 struct packet_batch batches[], size_t *n_batches,
3409 bool md_is_valid, odp_port_t port_no)
3410 {
3411 struct emc_cache *flow_cache = &pmd->flow_cache;
3412 struct netdev_flow_key *key = &keys[0];
3413 size_t i, n_missed = 0, n_dropped = 0;
3414
3415 for (i = 0; i < cnt; i++) {
3416 struct dp_netdev_flow *flow;
3417 struct dp_packet *packet = packets[i];
3418
3419 if (OVS_UNLIKELY(dp_packet_size(packet) < ETH_HEADER_LEN)) {
3420 dp_packet_delete(packet);
3421 n_dropped++;
3422 continue;
3423 }
3424
3425 if (i != cnt - 1) {
3426 /* Prefetch next packet data and metadata. */
3427 OVS_PREFETCH(dp_packet_data(packets[i+1]));
3428 pkt_metadata_prefetch_init(&packets[i+1]->md);
3429 }
3430
3431 if (!md_is_valid) {
3432 pkt_metadata_init(&packet->md, port_no);
3433 }
3434 miniflow_extract(packet, &key->mf);
3435 key->len = 0; /* Not computed yet. */
3436 key->hash = dpif_netdev_packet_get_rss_hash(packet, &key->mf);
3437
3438 flow = emc_lookup(flow_cache, key);
3439 if (OVS_LIKELY(flow)) {
3440 dp_netdev_queue_batches(packet, flow, &key->mf, batches,
3441 n_batches);
3442 } else {
3443 /* Exact match cache missed. Group missed packets together at
3444 * the beginning of the 'packets' array. */
3445 packets[n_missed] = packet;
3446 /* 'key[n_missed]' contains the key of the current packet and it
3447 * must be returned to the caller. The next key should be extracted
3448 * to 'keys[n_missed + 1]'. */
3449 key = &keys[++n_missed];
3450 }
3451 }
3452
3453 dp_netdev_count_packet(pmd, DP_STAT_EXACT_HIT, cnt - n_dropped - n_missed);
3454
3455 return n_missed;
3456 }
3457
3458 static inline void
3459 fast_path_processing(struct dp_netdev_pmd_thread *pmd,
3460 struct dp_packet **packets, size_t cnt,
3461 struct netdev_flow_key *keys,
3462 struct packet_batch batches[], size_t *n_batches)
3463 {
3464 #if !defined(__CHECKER__) && !defined(_WIN32)
3465 const size_t PKT_ARRAY_SIZE = cnt;
3466 #else
3467 /* Sparse or MSVC doesn't like variable length array. */
3468 enum { PKT_ARRAY_SIZE = NETDEV_MAX_BURST };
3469 #endif
3470 struct dpcls_rule *rules[PKT_ARRAY_SIZE];
3471 struct dp_netdev *dp = pmd->dp;
3472 struct emc_cache *flow_cache = &pmd->flow_cache;
3473 int miss_cnt = 0, lost_cnt = 0;
3474 bool any_miss;
3475 size_t i;
3476
3477 for (i = 0; i < cnt; i++) {
3478 /* Key length is needed in all the cases, hash computed on demand. */
3479 keys[i].len = netdev_flow_key_size(miniflow_n_values(&keys[i].mf));
3480 }
3481 any_miss = !dpcls_lookup(&pmd->cls, keys, rules, cnt);
3482 if (OVS_UNLIKELY(any_miss) && !fat_rwlock_tryrdlock(&dp->upcall_rwlock)) {
3483 uint64_t actions_stub[512 / 8], slow_stub[512 / 8];
3484 struct ofpbuf actions, put_actions;
3485 ovs_u128 ufid;
3486
3487 ofpbuf_use_stub(&actions, actions_stub, sizeof actions_stub);
3488 ofpbuf_use_stub(&put_actions, slow_stub, sizeof slow_stub);
3489
3490 for (i = 0; i < cnt; i++) {
3491 struct dp_netdev_flow *netdev_flow;
3492 struct ofpbuf *add_actions;
3493 struct match match;
3494 int error;
3495
3496 if (OVS_LIKELY(rules[i])) {
3497 continue;
3498 }
3499
3500 /* It's possible that an earlier slow path execution installed
3501 * a rule covering this flow. In this case, it's a lot cheaper
3502 * to catch it here than execute a miss. */
3503 netdev_flow = dp_netdev_pmd_lookup_flow(pmd, &keys[i]);
3504 if (netdev_flow) {
3505 rules[i] = &netdev_flow->cr;
3506 continue;
3507 }
3508
3509 miss_cnt++;
3510
3511 match.tun_md.valid = false;
3512 miniflow_expand(&keys[i].mf, &match.flow);
3513
3514 ofpbuf_clear(&actions);
3515 ofpbuf_clear(&put_actions);
3516
3517 dpif_flow_hash(dp->dpif, &match.flow, sizeof match.flow, &ufid);
3518 error = dp_netdev_upcall(pmd, packets[i], &match.flow, &match.wc,
3519 &ufid, DPIF_UC_MISS, NULL, &actions,
3520 &put_actions);
3521 if (OVS_UNLIKELY(error && error != ENOSPC)) {
3522 dp_packet_delete(packets[i]);
3523 lost_cnt++;
3524 continue;
3525 }
3526
3527 /* The Netlink encoding of datapath flow keys cannot express
3528 * wildcarding the presence of a VLAN tag. Instead, a missing VLAN
3529 * tag is interpreted as exact match on the fact that there is no
3530 * VLAN. Unless we refactor a lot of code that translates between
3531 * Netlink and struct flow representations, we have to do the same
3532 * here. */
3533 if (!match.wc.masks.vlan_tci) {
3534 match.wc.masks.vlan_tci = htons(0xffff);
3535 }
3536
3537 /* We can't allow the packet batching in the next loop to execute
3538 * the actions. Otherwise, if there are any slow path actions,
3539 * we'll send the packet up twice. */
3540 dp_netdev_execute_actions(pmd, &packets[i], 1, true,
3541 actions.data, actions.size);
3542
3543 add_actions = put_actions.size ? &put_actions : &actions;
3544 if (OVS_LIKELY(error != ENOSPC)) {
3545 /* XXX: There's a race window where a flow covering this packet
3546 * could have already been installed since we last did the flow
3547 * lookup before upcall. This could be solved by moving the
3548 * mutex lock outside the loop, but that's an awful long time
3549 * to be locking everyone out of making flow installs. If we
3550 * move to a per-core classifier, it would be reasonable. */
3551 ovs_mutex_lock(&pmd->flow_mutex);
3552 netdev_flow = dp_netdev_pmd_lookup_flow(pmd, &keys[i]);
3553 if (OVS_LIKELY(!netdev_flow)) {
3554 netdev_flow = dp_netdev_flow_add(pmd, &match, &ufid,
3555 add_actions->data,
3556 add_actions->size);
3557 }
3558 ovs_mutex_unlock(&pmd->flow_mutex);
3559
3560 emc_insert(flow_cache, &keys[i], netdev_flow);
3561 }
3562 }
3563
3564 ofpbuf_uninit(&actions);
3565 ofpbuf_uninit(&put_actions);
3566 fat_rwlock_unlock(&dp->upcall_rwlock);
3567 dp_netdev_count_packet(pmd, DP_STAT_LOST, lost_cnt);
3568 } else if (OVS_UNLIKELY(any_miss)) {
3569 for (i = 0; i < cnt; i++) {
3570 if (OVS_UNLIKELY(!rules[i])) {
3571 dp_packet_delete(packets[i]);
3572 lost_cnt++;
3573 miss_cnt++;
3574 }
3575 }
3576 }
3577
3578 for (i = 0; i < cnt; i++) {
3579 struct dp_packet *packet = packets[i];
3580 struct dp_netdev_flow *flow;
3581
3582 if (OVS_UNLIKELY(!rules[i])) {
3583 continue;
3584 }
3585
3586 flow = dp_netdev_flow_cast(rules[i]);
3587
3588 emc_insert(flow_cache, &keys[i], flow);
3589 dp_netdev_queue_batches(packet, flow, &keys[i].mf, batches, n_batches);
3590 }
3591
3592 dp_netdev_count_packet(pmd, DP_STAT_MASKED_HIT, cnt - miss_cnt);
3593 dp_netdev_count_packet(pmd, DP_STAT_MISS, miss_cnt);
3594 dp_netdev_count_packet(pmd, DP_STAT_LOST, lost_cnt);
3595 }
3596
3597 /* Packets enter the datapath from a port (or from recirculation) here.
3598 *
3599 * For performance reasons a caller may choose not to initialize the metadata
3600 * in 'packets': in this case 'mdinit' is false and this function needs to
3601 * initialize it using 'port_no'. If the metadata in 'packets' is already
3602 * valid, 'md_is_valid' must be true and 'port_no' will be ignored. */
3603 static void
3604 dp_netdev_input__(struct dp_netdev_pmd_thread *pmd,
3605 struct dp_packet **packets, int cnt,
3606 bool md_is_valid, odp_port_t port_no)
3607 {
3608 #if !defined(__CHECKER__) && !defined(_WIN32)
3609 const size_t PKT_ARRAY_SIZE = cnt;
3610 #else
3611 /* Sparse or MSVC doesn't like variable length array. */
3612 enum { PKT_ARRAY_SIZE = NETDEV_MAX_BURST };
3613 #endif
3614 struct netdev_flow_key keys[PKT_ARRAY_SIZE];
3615 struct packet_batch batches[PKT_ARRAY_SIZE];
3616 long long now = time_msec();
3617 size_t newcnt, n_batches, i;
3618
3619 n_batches = 0;
3620 newcnt = emc_processing(pmd, packets, cnt, keys, batches, &n_batches,
3621 md_is_valid, port_no);
3622 if (OVS_UNLIKELY(newcnt)) {
3623 fast_path_processing(pmd, packets, newcnt, keys, batches, &n_batches);
3624 }
3625
3626 for (i = 0; i < n_batches; i++) {
3627 batches[i].flow->batch = NULL;
3628 }
3629
3630 for (i = 0; i < n_batches; i++) {
3631 packet_batch_execute(&batches[i], pmd, now);
3632 }
3633 }
3634
3635 static void
3636 dp_netdev_input(struct dp_netdev_pmd_thread *pmd,
3637 struct dp_packet **packets, int cnt,
3638 odp_port_t port_no)
3639 {
3640 dp_netdev_input__(pmd, packets, cnt, false, port_no);
3641 }
3642
3643 static void
3644 dp_netdev_recirculate(struct dp_netdev_pmd_thread *pmd,
3645 struct dp_packet **packets, int cnt)
3646 {
3647 dp_netdev_input__(pmd, packets, cnt, true, 0);
3648 }
3649
3650 struct dp_netdev_execute_aux {
3651 struct dp_netdev_pmd_thread *pmd;
3652 };
3653
3654 static void
3655 dpif_netdev_register_dp_purge_cb(struct dpif *dpif, dp_purge_callback *cb,
3656 void *aux)
3657 {
3658 struct dp_netdev *dp = get_dp_netdev(dpif);
3659 dp->dp_purge_aux = aux;
3660 dp->dp_purge_cb = cb;
3661 }
3662
3663 static void
3664 dpif_netdev_register_upcall_cb(struct dpif *dpif, upcall_callback *cb,
3665 void *aux)
3666 {
3667 struct dp_netdev *dp = get_dp_netdev(dpif);
3668 dp->upcall_aux = aux;
3669 dp->upcall_cb = cb;
3670 }
3671
3672 static void
3673 dp_netdev_drop_packets(struct dp_packet **packets, int cnt, bool may_steal)
3674 {
3675 if (may_steal) {
3676 int i;
3677
3678 for (i = 0; i < cnt; i++) {
3679 dp_packet_delete(packets[i]);
3680 }
3681 }
3682 }
3683
3684 static int
3685 push_tnl_action(const struct dp_netdev *dp,
3686 const struct nlattr *attr,
3687 struct dp_packet **packets, int cnt)
3688 {
3689 struct dp_netdev_port *tun_port;
3690 const struct ovs_action_push_tnl *data;
3691
3692 data = nl_attr_get(attr);
3693
3694 tun_port = dp_netdev_lookup_port(dp, u32_to_odp(data->tnl_port));
3695 if (!tun_port) {
3696 return -EINVAL;
3697 }
3698 netdev_push_header(tun_port->netdev, packets, cnt, data);
3699
3700 return 0;
3701 }
3702
3703 static void
3704 dp_netdev_clone_pkt_batch(struct dp_packet **dst_pkts,
3705 struct dp_packet **src_pkts, int cnt)
3706 {
3707 int i;
3708
3709 for (i = 0; i < cnt; i++) {
3710 dst_pkts[i] = dp_packet_clone(src_pkts[i]);
3711 }
3712 }
3713
3714 static void
3715 dp_execute_cb(void *aux_, struct dp_packet **packets, int cnt,
3716 const struct nlattr *a, bool may_steal)
3717 OVS_NO_THREAD_SAFETY_ANALYSIS
3718 {
3719 struct dp_netdev_execute_aux *aux = aux_;
3720 uint32_t *depth = recirc_depth_get();
3721 struct dp_netdev_pmd_thread *pmd = aux->pmd;
3722 struct dp_netdev *dp = pmd->dp;
3723 int type = nl_attr_type(a);
3724 struct dp_netdev_port *p;
3725
3726 switch ((enum ovs_action_attr)type) {
3727 case OVS_ACTION_ATTR_OUTPUT:
3728 p = dp_netdev_lookup_port(dp, u32_to_odp(nl_attr_get_u32(a)));
3729 if (OVS_LIKELY(p)) {
3730 int tx_qid;
3731
3732 atomic_read_relaxed(&pmd->tx_qid, &tx_qid);
3733
3734 netdev_send(p->netdev, tx_qid, packets, cnt, may_steal);
3735 return;
3736 }
3737 break;
3738
3739 case OVS_ACTION_ATTR_TUNNEL_PUSH:
3740 if (*depth < MAX_RECIRC_DEPTH) {
3741 struct dp_packet *tnl_pkt[NETDEV_MAX_BURST];
3742 int err;
3743
3744 if (!may_steal) {
3745 dp_netdev_clone_pkt_batch(tnl_pkt, packets, cnt);
3746 packets = tnl_pkt;
3747 }
3748
3749 err = push_tnl_action(dp, a, packets, cnt);
3750 if (!err) {
3751 (*depth)++;
3752 dp_netdev_recirculate(pmd, packets, cnt);
3753 (*depth)--;
3754 } else {
3755 dp_netdev_drop_packets(tnl_pkt, cnt, !may_steal);
3756 }
3757 return;
3758 }
3759 break;
3760
3761 case OVS_ACTION_ATTR_TUNNEL_POP:
3762 if (*depth < MAX_RECIRC_DEPTH) {
3763 odp_port_t portno = u32_to_odp(nl_attr_get_u32(a));
3764
3765 p = dp_netdev_lookup_port(dp, portno);
3766 if (p) {
3767 struct dp_packet *tnl_pkt[NETDEV_MAX_BURST];
3768 int err;
3769
3770 if (!may_steal) {
3771 dp_netdev_clone_pkt_batch(tnl_pkt, packets, cnt);
3772 packets = tnl_pkt;
3773 }
3774
3775 err = netdev_pop_header(p->netdev, packets, &cnt);
3776 if (!cnt) {
3777 return;
3778 }
3779 if (!err) {
3780 int i;
3781
3782 for (i = 0; i < cnt; i++) {
3783 packets[i]->md.in_port.odp_port = portno;
3784 }
3785
3786 (*depth)++;
3787 dp_netdev_recirculate(pmd, packets, cnt);
3788 (*depth)--;
3789 } else {
3790 dp_netdev_drop_packets(tnl_pkt, cnt, !may_steal);
3791 }
3792 return;
3793 }
3794 }
3795 break;
3796
3797 case OVS_ACTION_ATTR_USERSPACE:
3798 if (!fat_rwlock_tryrdlock(&dp->upcall_rwlock)) {
3799 const struct nlattr *userdata;
3800 struct ofpbuf actions;
3801 struct flow flow;
3802 ovs_u128 ufid;
3803 int i;
3804
3805 userdata = nl_attr_find_nested(a, OVS_USERSPACE_ATTR_USERDATA);
3806 ofpbuf_init(&actions, 0);
3807
3808 for (i = 0; i < cnt; i++) {
3809 int error;
3810
3811 ofpbuf_clear(&actions);
3812
3813 flow_extract(packets[i], &flow);
3814 dpif_flow_hash(dp->dpif, &flow, sizeof flow, &ufid);
3815 error = dp_netdev_upcall(pmd, packets[i], &flow, NULL, &ufid,
3816 DPIF_UC_ACTION, userdata,&actions,
3817 NULL);
3818 if (!error || error == ENOSPC) {
3819 dp_netdev_execute_actions(pmd, &packets[i], 1, may_steal,
3820 actions.data, actions.size);
3821 } else if (may_steal) {
3822 dp_packet_delete(packets[i]);
3823 }
3824 }
3825 ofpbuf_uninit(&actions);
3826 fat_rwlock_unlock(&dp->upcall_rwlock);
3827
3828 return;
3829 }
3830 break;
3831
3832 case OVS_ACTION_ATTR_RECIRC:
3833 if (*depth < MAX_RECIRC_DEPTH) {
3834 struct dp_packet *recirc_pkts[NETDEV_MAX_BURST];
3835 int i;
3836
3837 if (!may_steal) {
3838 dp_netdev_clone_pkt_batch(recirc_pkts, packets, cnt);
3839 packets = recirc_pkts;
3840 }
3841
3842 for (i = 0; i < cnt; i++) {
3843 packets[i]->md.recirc_id = nl_attr_get_u32(a);
3844 }
3845
3846 (*depth)++;
3847 dp_netdev_recirculate(pmd, packets, cnt);
3848 (*depth)--;
3849
3850 return;
3851 }
3852
3853 VLOG_WARN("Packet dropped. Max recirculation depth exceeded.");
3854 break;
3855
3856 case OVS_ACTION_ATTR_CT:
3857 /* If a flow with this action is slow-pathed, datapath assistance is
3858 * required to implement it. However, we don't support this action
3859 * in the userspace datapath. */
3860 VLOG_WARN("Cannot execute conntrack action in userspace.");
3861 break;
3862
3863 case OVS_ACTION_ATTR_PUSH_VLAN:
3864 case OVS_ACTION_ATTR_POP_VLAN:
3865 case OVS_ACTION_ATTR_PUSH_MPLS:
3866 case OVS_ACTION_ATTR_POP_MPLS:
3867 case OVS_ACTION_ATTR_SET:
3868 case OVS_ACTION_ATTR_SET_MASKED:
3869 case OVS_ACTION_ATTR_SAMPLE:
3870 case OVS_ACTION_ATTR_HASH:
3871 case OVS_ACTION_ATTR_UNSPEC:
3872 case __OVS_ACTION_ATTR_MAX:
3873 OVS_NOT_REACHED();
3874 }
3875
3876 dp_netdev_drop_packets(packets, cnt, may_steal);
3877 }
3878
3879 static void
3880 dp_netdev_execute_actions(struct dp_netdev_pmd_thread *pmd,
3881 struct dp_packet **packets, int cnt,
3882 bool may_steal,
3883 const struct nlattr *actions, size_t actions_len)
3884 {
3885 struct dp_netdev_execute_aux aux = { pmd };
3886
3887 odp_execute_actions(&aux, packets, cnt, may_steal, actions,
3888 actions_len, dp_execute_cb);
3889 }
3890
3891 const struct dpif_class dpif_netdev_class = {
3892 "netdev",
3893 dpif_netdev_init,
3894 dpif_netdev_enumerate,
3895 dpif_netdev_port_open_type,
3896 dpif_netdev_open,
3897 dpif_netdev_close,
3898 dpif_netdev_destroy,
3899 dpif_netdev_run,
3900 dpif_netdev_wait,
3901 dpif_netdev_get_stats,
3902 dpif_netdev_port_add,
3903 dpif_netdev_port_del,
3904 dpif_netdev_port_query_by_number,
3905 dpif_netdev_port_query_by_name,
3906 NULL, /* port_get_pid */
3907 dpif_netdev_port_dump_start,
3908 dpif_netdev_port_dump_next,
3909 dpif_netdev_port_dump_done,
3910 dpif_netdev_port_poll,
3911 dpif_netdev_port_poll_wait,
3912 dpif_netdev_flow_flush,
3913 dpif_netdev_flow_dump_create,
3914 dpif_netdev_flow_dump_destroy,
3915 dpif_netdev_flow_dump_thread_create,
3916 dpif_netdev_flow_dump_thread_destroy,
3917 dpif_netdev_flow_dump_next,
3918 dpif_netdev_operate,
3919 NULL, /* recv_set */
3920 NULL, /* handlers_set */
3921 dpif_netdev_pmd_set,
3922 dpif_netdev_queue_to_priority,
3923 NULL, /* recv */
3924 NULL, /* recv_wait */
3925 NULL, /* recv_purge */
3926 dpif_netdev_register_dp_purge_cb,
3927 dpif_netdev_register_upcall_cb,
3928 dpif_netdev_enable_upcall,
3929 dpif_netdev_disable_upcall,
3930 dpif_netdev_get_datapath_version,
3931 NULL, /* ct_dump_start */
3932 NULL, /* ct_dump_next */
3933 NULL, /* ct_dump_done */
3934 NULL, /* ct_flush */
3935 };
3936
3937 static void
3938 dpif_dummy_change_port_number(struct unixctl_conn *conn, int argc OVS_UNUSED,
3939 const char *argv[], void *aux OVS_UNUSED)
3940 {
3941 struct dp_netdev_port *old_port;
3942 struct dp_netdev_port *new_port;
3943 struct dp_netdev *dp;
3944 odp_port_t port_no;
3945
3946 ovs_mutex_lock(&dp_netdev_mutex);
3947 dp = shash_find_data(&dp_netdevs, argv[1]);
3948 if (!dp || !dpif_netdev_class_is_dummy(dp->class)) {
3949 ovs_mutex_unlock(&dp_netdev_mutex);
3950 unixctl_command_reply_error(conn, "unknown datapath or not a dummy");
3951 return;
3952 }
3953 ovs_refcount_ref(&dp->ref_cnt);
3954 ovs_mutex_unlock(&dp_netdev_mutex);
3955
3956 ovs_mutex_lock(&dp->port_mutex);
3957 if (get_port_by_name(dp, argv[2], &old_port)) {
3958 unixctl_command_reply_error(conn, "unknown port");
3959 goto exit;
3960 }
3961
3962 port_no = u32_to_odp(atoi(argv[3]));
3963 if (!port_no || port_no == ODPP_NONE) {
3964 unixctl_command_reply_error(conn, "bad port number");
3965 goto exit;
3966 }
3967 if (dp_netdev_lookup_port(dp, port_no)) {
3968 unixctl_command_reply_error(conn, "port number already in use");
3969 goto exit;
3970 }
3971
3972 /* Remove old port. */
3973 cmap_remove(&dp->ports, &old_port->node, hash_port_no(old_port->port_no));
3974 ovsrcu_postpone(free, old_port);
3975
3976 /* Insert new port (cmap semantics mean we cannot re-insert 'old_port'). */
3977 new_port = xmemdup(old_port, sizeof *old_port);
3978 new_port->port_no = port_no;
3979 cmap_insert(&dp->ports, &new_port->node, hash_port_no(port_no));
3980
3981 seq_change(dp->port_seq);
3982 unixctl_command_reply(conn, NULL);
3983
3984 exit:
3985 ovs_mutex_unlock(&dp->port_mutex);
3986 dp_netdev_unref(dp);
3987 }
3988
3989 static void
3990 dpif_dummy_register__(const char *type)
3991 {
3992 struct dpif_class *class;
3993
3994 class = xmalloc(sizeof *class);
3995 *class = dpif_netdev_class;
3996 class->type = xstrdup(type);
3997 dp_register_provider(class);
3998 }
3999
4000 static void
4001 dpif_dummy_override(const char *type)
4002 {
4003 int error;
4004
4005 /*
4006 * Ignore EAFNOSUPPORT to allow --enable-dummy=system with
4007 * a userland-only build. It's useful for testsuite.
4008 */
4009 error = dp_unregister_provider(type);
4010 if (error == 0 || error == EAFNOSUPPORT) {
4011 dpif_dummy_register__(type);
4012 }
4013 }
4014
4015 void
4016 dpif_dummy_register(enum dummy_level level)
4017 {
4018 if (level == DUMMY_OVERRIDE_ALL) {
4019 struct sset types;
4020 const char *type;
4021
4022 sset_init(&types);
4023 dp_enumerate_types(&types);
4024 SSET_FOR_EACH (type, &types) {
4025 dpif_dummy_override(type);
4026 }
4027 sset_destroy(&types);
4028 } else if (level == DUMMY_OVERRIDE_SYSTEM) {
4029 dpif_dummy_override("system");
4030 }
4031
4032 dpif_dummy_register__("dummy");
4033
4034 unixctl_command_register("dpif-dummy/change-port-number",
4035 "dp port new-number",
4036 3, 3, dpif_dummy_change_port_number, NULL);
4037 }
4038 \f
4039 /* Datapath Classifier. */
4040
4041 /* A set of rules that all have the same fields wildcarded. */
4042 struct dpcls_subtable {
4043 /* The fields are only used by writers. */
4044 struct cmap_node cmap_node OVS_GUARDED; /* Within dpcls 'subtables_map'. */
4045
4046 /* These fields are accessed by readers. */
4047 struct cmap rules; /* Contains "struct dpcls_rule"s. */
4048 struct netdev_flow_key mask; /* Wildcards for fields (const). */
4049 /* 'mask' must be the last field, additional space is allocated here. */
4050 };
4051
4052 /* Initializes 'cls' as a classifier that initially contains no classification
4053 * rules. */
4054 static void
4055 dpcls_init(struct dpcls *cls)
4056 {
4057 cmap_init(&cls->subtables_map);
4058 pvector_init(&cls->subtables);
4059 }
4060
4061 static void
4062 dpcls_destroy_subtable(struct dpcls *cls, struct dpcls_subtable *subtable)
4063 {
4064 pvector_remove(&cls->subtables, subtable);
4065 cmap_remove(&cls->subtables_map, &subtable->cmap_node,
4066 subtable->mask.hash);
4067 cmap_destroy(&subtable->rules);
4068 ovsrcu_postpone(free, subtable);
4069 }
4070
4071 /* Destroys 'cls'. Rules within 'cls', if any, are not freed; this is the
4072 * caller's responsibility.
4073 * May only be called after all the readers have been terminated. */
4074 static void
4075 dpcls_destroy(struct dpcls *cls)
4076 {
4077 if (cls) {
4078 struct dpcls_subtable *subtable;
4079
4080 CMAP_FOR_EACH (subtable, cmap_node, &cls->subtables_map) {
4081 ovs_assert(cmap_count(&subtable->rules) == 0);
4082 dpcls_destroy_subtable(cls, subtable);
4083 }
4084 cmap_destroy(&cls->subtables_map);
4085 pvector_destroy(&cls->subtables);
4086 }
4087 }
4088
4089 static struct dpcls_subtable *
4090 dpcls_create_subtable(struct dpcls *cls, const struct netdev_flow_key *mask)
4091 {
4092 struct dpcls_subtable *subtable;
4093
4094 /* Need to add one. */
4095 subtable = xmalloc(sizeof *subtable
4096 - sizeof subtable->mask.mf + mask->len);
4097 cmap_init(&subtable->rules);
4098 netdev_flow_key_clone(&subtable->mask, mask);
4099 cmap_insert(&cls->subtables_map, &subtable->cmap_node, mask->hash);
4100 pvector_insert(&cls->subtables, subtable, 0);
4101 pvector_publish(&cls->subtables);
4102
4103 return subtable;
4104 }
4105
4106 static inline struct dpcls_subtable *
4107 dpcls_find_subtable(struct dpcls *cls, const struct netdev_flow_key *mask)
4108 {
4109 struct dpcls_subtable *subtable;
4110
4111 CMAP_FOR_EACH_WITH_HASH (subtable, cmap_node, mask->hash,
4112 &cls->subtables_map) {
4113 if (netdev_flow_key_equal(&subtable->mask, mask)) {
4114 return subtable;
4115 }
4116 }
4117 return dpcls_create_subtable(cls, mask);
4118 }
4119
4120 /* Insert 'rule' into 'cls'. */
4121 static void
4122 dpcls_insert(struct dpcls *cls, struct dpcls_rule *rule,
4123 const struct netdev_flow_key *mask)
4124 {
4125 struct dpcls_subtable *subtable = dpcls_find_subtable(cls, mask);
4126
4127 rule->mask = &subtable->mask;
4128 cmap_insert(&subtable->rules, &rule->cmap_node, rule->flow.hash);
4129 }
4130
4131 /* Removes 'rule' from 'cls', also destructing the 'rule'. */
4132 static void
4133 dpcls_remove(struct dpcls *cls, struct dpcls_rule *rule)
4134 {
4135 struct dpcls_subtable *subtable;
4136
4137 ovs_assert(rule->mask);
4138
4139 INIT_CONTAINER(subtable, rule->mask, mask);
4140
4141 if (cmap_remove(&subtable->rules, &rule->cmap_node, rule->flow.hash)
4142 == 0) {
4143 dpcls_destroy_subtable(cls, subtable);
4144 pvector_publish(&cls->subtables);
4145 }
4146 }
4147
4148 /* Returns true if 'target' satisfies 'key' in 'mask', that is, if each 1-bit
4149 * in 'mask' the values in 'key' and 'target' are the same. */
4150 static inline bool
4151 dpcls_rule_matches_key(const struct dpcls_rule *rule,
4152 const struct netdev_flow_key *target)
4153 {
4154 const uint64_t *keyp = miniflow_get_values(&rule->flow.mf);
4155 const uint64_t *maskp = miniflow_get_values(&rule->mask->mf);
4156 uint64_t value;
4157
4158 NETDEV_FLOW_KEY_FOR_EACH_IN_FLOWMAP(value, target, rule->flow.mf.map) {
4159 if (OVS_UNLIKELY((value & *maskp++) != *keyp++)) {
4160 return false;
4161 }
4162 }
4163 return true;
4164 }
4165
4166 /* For each miniflow in 'flows' performs a classifier lookup writing the result
4167 * into the corresponding slot in 'rules'. If a particular entry in 'flows' is
4168 * NULL it is skipped.
4169 *
4170 * This function is optimized for use in the userspace datapath and therefore
4171 * does not implement a lot of features available in the standard
4172 * classifier_lookup() function. Specifically, it does not implement
4173 * priorities, instead returning any rule which matches the flow.
4174 *
4175 * Returns true if all flows found a corresponding rule. */
4176 static bool
4177 dpcls_lookup(const struct dpcls *cls, const struct netdev_flow_key keys[],
4178 struct dpcls_rule **rules, const size_t cnt)
4179 {
4180 /* The batch size 16 was experimentally found faster than 8 or 32. */
4181 typedef uint16_t map_type;
4182 #define MAP_BITS (sizeof(map_type) * CHAR_BIT)
4183
4184 #if !defined(__CHECKER__) && !defined(_WIN32)
4185 const int N_MAPS = DIV_ROUND_UP(cnt, MAP_BITS);
4186 #else
4187 enum { N_MAPS = DIV_ROUND_UP(NETDEV_MAX_BURST, MAP_BITS) };
4188 #endif
4189 map_type maps[N_MAPS];
4190 struct dpcls_subtable *subtable;
4191
4192 memset(maps, 0xff, sizeof maps);
4193 if (cnt % MAP_BITS) {
4194 maps[N_MAPS - 1] >>= MAP_BITS - cnt % MAP_BITS; /* Clear extra bits. */
4195 }
4196 memset(rules, 0, cnt * sizeof *rules);
4197
4198 PVECTOR_FOR_EACH (subtable, &cls->subtables) {
4199 const struct netdev_flow_key *mkeys = keys;
4200 struct dpcls_rule **mrules = rules;
4201 map_type remains = 0;
4202 int m;
4203
4204 BUILD_ASSERT_DECL(sizeof remains == sizeof *maps);
4205
4206 for (m = 0; m < N_MAPS; m++, mkeys += MAP_BITS, mrules += MAP_BITS) {
4207 uint32_t hashes[MAP_BITS];
4208 const struct cmap_node *nodes[MAP_BITS];
4209 unsigned long map = maps[m];
4210 int i;
4211
4212 if (!map) {
4213 continue; /* Skip empty maps. */
4214 }
4215
4216 /* Compute hashes for the remaining keys. */
4217 ULLONG_FOR_EACH_1(i, map) {
4218 hashes[i] = netdev_flow_key_hash_in_mask(&mkeys[i],
4219 &subtable->mask);
4220 }
4221 /* Lookup. */
4222 map = cmap_find_batch(&subtable->rules, map, hashes, nodes);
4223 /* Check results. */
4224 ULLONG_FOR_EACH_1(i, map) {
4225 struct dpcls_rule *rule;
4226
4227 CMAP_NODE_FOR_EACH (rule, cmap_node, nodes[i]) {
4228 if (OVS_LIKELY(dpcls_rule_matches_key(rule, &mkeys[i]))) {
4229 mrules[i] = rule;
4230 goto next;
4231 }
4232 }
4233 ULLONG_SET0(map, i); /* Did not match. */
4234 next:
4235 ; /* Keep Sparse happy. */
4236 }
4237 maps[m] &= ~map; /* Clear the found rules. */
4238 remains |= maps[m];
4239 }
4240 if (!remains) {
4241 return true; /* All found. */
4242 }
4243 }
4244 return false; /* Some misses. */
4245 }