]> git.proxmox.com Git - mirror_ovs.git/blob - lib/dpif-netdev.c
dpif-netdev: Uses the OVS_CORE_UNSPEC instead of magic numbers.
[mirror_ovs.git] / lib / dpif-netdev.c
1 /*
2 * Copyright (c) 2009, 2010, 2011, 2012, 2013, 2014, 2016 Nicira, Inc.
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at:
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <config.h>
18 #include "dpif-netdev.h"
19
20 #include <ctype.h>
21 #include <errno.h>
22 #include <fcntl.h>
23 #include <inttypes.h>
24 #include <net/if.h>
25 #include <netinet/in.h>
26 #include <stdint.h>
27 #include <stdlib.h>
28 #include <string.h>
29 #include <sys/ioctl.h>
30 #include <sys/socket.h>
31 #include <sys/stat.h>
32 #include <unistd.h>
33
34 #ifdef DPDK_NETDEV
35 #include <rte_cycles.h>
36 #endif
37
38 #include "bitmap.h"
39 #include "cmap.h"
40 #include "conntrack.h"
41 #include "coverage.h"
42 #include "ct-dpif.h"
43 #include "csum.h"
44 #include "dp-packet.h"
45 #include "dpif.h"
46 #include "dpif-provider.h"
47 #include "dummy.h"
48 #include "fat-rwlock.h"
49 #include "flow.h"
50 #include "hmapx.h"
51 #include "latch.h"
52 #include "netdev.h"
53 #include "netdev-vport.h"
54 #include "netlink.h"
55 #include "odp-execute.h"
56 #include "odp-util.h"
57 #include "openvswitch/dynamic-string.h"
58 #include "openvswitch/list.h"
59 #include "openvswitch/match.h"
60 #include "openvswitch/ofp-print.h"
61 #include "openvswitch/ofp-util.h"
62 #include "openvswitch/ofpbuf.h"
63 #include "openvswitch/shash.h"
64 #include "openvswitch/vlog.h"
65 #include "ovs-numa.h"
66 #include "ovs-rcu.h"
67 #include "packets.h"
68 #include "poll-loop.h"
69 #include "pvector.h"
70 #include "random.h"
71 #include "seq.h"
72 #include "smap.h"
73 #include "sset.h"
74 #include "timeval.h"
75 #include "tnl-neigh-cache.h"
76 #include "tnl-ports.h"
77 #include "unixctl.h"
78 #include "util.h"
79
80 VLOG_DEFINE_THIS_MODULE(dpif_netdev);
81
82 #define FLOW_DUMP_MAX_BATCH 50
83 /* Use per thread recirc_depth to prevent recirculation loop. */
84 #define MAX_RECIRC_DEPTH 5
85 DEFINE_STATIC_PER_THREAD_DATA(uint32_t, recirc_depth, 0)
86
87 /* Configuration parameters. */
88 enum { MAX_FLOWS = 65536 }; /* Maximum number of flows in flow table. */
89
90 /* Protects against changes to 'dp_netdevs'. */
91 static struct ovs_mutex dp_netdev_mutex = OVS_MUTEX_INITIALIZER;
92
93 /* Contains all 'struct dp_netdev's. */
94 static struct shash dp_netdevs OVS_GUARDED_BY(dp_netdev_mutex)
95 = SHASH_INITIALIZER(&dp_netdevs);
96
97 static struct vlog_rate_limit upcall_rl = VLOG_RATE_LIMIT_INIT(600, 600);
98
99 #define DP_NETDEV_CS_SUPPORTED_MASK (CS_NEW | CS_ESTABLISHED | CS_RELATED \
100 | CS_INVALID | CS_REPLY_DIR | CS_TRACKED)
101 #define DP_NETDEV_CS_UNSUPPORTED_MASK (~(uint32_t)DP_NETDEV_CS_SUPPORTED_MASK)
102
103 static struct odp_support dp_netdev_support = {
104 .max_mpls_depth = SIZE_MAX,
105 .recirc = true,
106 .ct_state = true,
107 .ct_zone = true,
108 .ct_mark = true,
109 .ct_label = true,
110 };
111
112 /* Stores a miniflow with inline values */
113
114 struct netdev_flow_key {
115 uint32_t hash; /* Hash function differs for different users. */
116 uint32_t len; /* Length of the following miniflow (incl. map). */
117 struct miniflow mf;
118 uint64_t buf[FLOW_MAX_PACKET_U64S];
119 };
120
121 /* Exact match cache for frequently used flows
122 *
123 * The cache uses a 32-bit hash of the packet (which can be the RSS hash) to
124 * search its entries for a miniflow that matches exactly the miniflow of the
125 * packet. It stores the 'dpcls_rule' (rule) that matches the miniflow.
126 *
127 * A cache entry holds a reference to its 'dp_netdev_flow'.
128 *
129 * A miniflow with a given hash can be in one of EM_FLOW_HASH_SEGS different
130 * entries. The 32-bit hash is split into EM_FLOW_HASH_SEGS values (each of
131 * them is EM_FLOW_HASH_SHIFT bits wide and the remainder is thrown away). Each
132 * value is the index of a cache entry where the miniflow could be.
133 *
134 *
135 * Thread-safety
136 * =============
137 *
138 * Each pmd_thread has its own private exact match cache.
139 * If dp_netdev_input is not called from a pmd thread, a mutex is used.
140 */
141
142 #define EM_FLOW_HASH_SHIFT 13
143 #define EM_FLOW_HASH_ENTRIES (1u << EM_FLOW_HASH_SHIFT)
144 #define EM_FLOW_HASH_MASK (EM_FLOW_HASH_ENTRIES - 1)
145 #define EM_FLOW_HASH_SEGS 2
146
147 struct emc_entry {
148 struct dp_netdev_flow *flow;
149 struct netdev_flow_key key; /* key.hash used for emc hash value. */
150 };
151
152 struct emc_cache {
153 struct emc_entry entries[EM_FLOW_HASH_ENTRIES];
154 int sweep_idx; /* For emc_cache_slow_sweep(). */
155 };
156
157 /* Iterate in the exact match cache through every entry that might contain a
158 * miniflow with hash 'HASH'. */
159 #define EMC_FOR_EACH_POS_WITH_HASH(EMC, CURRENT_ENTRY, HASH) \
160 for (uint32_t i__ = 0, srch_hash__ = (HASH); \
161 (CURRENT_ENTRY) = &(EMC)->entries[srch_hash__ & EM_FLOW_HASH_MASK], \
162 i__ < EM_FLOW_HASH_SEGS; \
163 i__++, srch_hash__ >>= EM_FLOW_HASH_SHIFT)
164 \f
165 /* Simple non-wildcarding single-priority classifier. */
166
167 /* Time in ms between successive optimizations of the dpcls subtable vector */
168 #define DPCLS_OPTIMIZATION_INTERVAL 1000
169
170 struct dpcls {
171 struct cmap_node node; /* Within dp_netdev_pmd_thread.classifiers */
172 odp_port_t in_port;
173 struct cmap subtables_map;
174 struct pvector subtables;
175 };
176
177 /* A rule to be inserted to the classifier. */
178 struct dpcls_rule {
179 struct cmap_node cmap_node; /* Within struct dpcls_subtable 'rules'. */
180 struct netdev_flow_key *mask; /* Subtable's mask. */
181 struct netdev_flow_key flow; /* Matching key. */
182 /* 'flow' must be the last field, additional space is allocated here. */
183 };
184
185 static void dpcls_init(struct dpcls *);
186 static void dpcls_destroy(struct dpcls *);
187 static void dpcls_sort_subtable_vector(struct dpcls *);
188 static void dpcls_insert(struct dpcls *, struct dpcls_rule *,
189 const struct netdev_flow_key *mask);
190 static void dpcls_remove(struct dpcls *, struct dpcls_rule *);
191 static bool dpcls_lookup(struct dpcls *cls,
192 const struct netdev_flow_key keys[],
193 struct dpcls_rule **rules, size_t cnt,
194 int *num_lookups_p);
195 \f
196 /* Datapath based on the network device interface from netdev.h.
197 *
198 *
199 * Thread-safety
200 * =============
201 *
202 * Some members, marked 'const', are immutable. Accessing other members
203 * requires synchronization, as noted in more detail below.
204 *
205 * Acquisition order is, from outermost to innermost:
206 *
207 * dp_netdev_mutex (global)
208 * port_mutex
209 * non_pmd_mutex
210 */
211 struct dp_netdev {
212 const struct dpif_class *const class;
213 const char *const name;
214 struct dpif *dpif;
215 struct ovs_refcount ref_cnt;
216 atomic_flag destroyed;
217
218 /* Ports.
219 *
220 * Any lookup into 'ports' or any access to the dp_netdev_ports found
221 * through 'ports' requires taking 'port_mutex'. */
222 struct ovs_mutex port_mutex;
223 struct hmap ports;
224 struct seq *port_seq; /* Incremented whenever a port changes. */
225
226 /* Protects access to ofproto-dpif-upcall interface during revalidator
227 * thread synchronization. */
228 struct fat_rwlock upcall_rwlock;
229 upcall_callback *upcall_cb; /* Callback function for executing upcalls. */
230 void *upcall_aux;
231
232 /* Callback function for notifying the purging of dp flows (during
233 * reseting pmd deletion). */
234 dp_purge_callback *dp_purge_cb;
235 void *dp_purge_aux;
236
237 /* Stores all 'struct dp_netdev_pmd_thread's. */
238 struct cmap poll_threads;
239
240 /* Protects the access of the 'struct dp_netdev_pmd_thread'
241 * instance for non-pmd thread. */
242 struct ovs_mutex non_pmd_mutex;
243
244 /* Each pmd thread will store its pointer to
245 * 'struct dp_netdev_pmd_thread' in 'per_pmd_key'. */
246 ovsthread_key_t per_pmd_key;
247
248 struct seq *reconfigure_seq;
249 uint64_t last_reconfigure_seq;
250
251 /* Cpu mask for pin of pmd threads. */
252 char *pmd_cmask;
253
254 uint64_t last_tnl_conf_seq;
255
256 struct conntrack conntrack;
257 };
258
259 static struct dp_netdev_port *dp_netdev_lookup_port(const struct dp_netdev *dp,
260 odp_port_t)
261 OVS_REQUIRES(dp->port_mutex);
262
263 enum dp_stat_type {
264 DP_STAT_EXACT_HIT, /* Packets that had an exact match (emc). */
265 DP_STAT_MASKED_HIT, /* Packets that matched in the flow table. */
266 DP_STAT_MISS, /* Packets that did not match. */
267 DP_STAT_LOST, /* Packets not passed up to the client. */
268 DP_STAT_LOOKUP_HIT, /* Number of subtable lookups for flow table
269 hits */
270 DP_N_STATS
271 };
272
273 enum pmd_cycles_counter_type {
274 PMD_CYCLES_POLLING, /* Cycles spent polling NICs. */
275 PMD_CYCLES_PROCESSING, /* Cycles spent processing packets */
276 PMD_N_CYCLES
277 };
278
279 #define XPS_TIMEOUT_MS 500LL
280
281 /* Contained by struct dp_netdev_port's 'rxqs' member. */
282 struct dp_netdev_rxq {
283 struct netdev_rxq *rxq;
284 unsigned core_id; /* Сore to which this queue is pinned. */
285 };
286
287 /* A port in a netdev-based datapath. */
288 struct dp_netdev_port {
289 odp_port_t port_no;
290 struct netdev *netdev;
291 struct hmap_node node; /* Node in dp_netdev's 'ports'. */
292 struct netdev_saved_flags *sf;
293 struct dp_netdev_rxq *rxqs;
294 unsigned n_rxq; /* Number of elements in 'rxq' */
295 bool dynamic_txqs; /* If true XPS will be used. */
296 unsigned *txq_used; /* Number of threads that uses each tx queue. */
297 struct ovs_mutex txq_used_mutex;
298 char *type; /* Port type as requested by user. */
299 char *rxq_affinity_list; /* Requested affinity of rx queues. */
300 };
301
302 /* Contained by struct dp_netdev_flow's 'stats' member. */
303 struct dp_netdev_flow_stats {
304 atomic_llong used; /* Last used time, in monotonic msecs. */
305 atomic_ullong packet_count; /* Number of packets matched. */
306 atomic_ullong byte_count; /* Number of bytes matched. */
307 atomic_uint16_t tcp_flags; /* Bitwise-OR of seen tcp_flags values. */
308 };
309
310 /* A flow in 'dp_netdev_pmd_thread's 'flow_table'.
311 *
312 *
313 * Thread-safety
314 * =============
315 *
316 * Except near the beginning or ending of its lifespan, rule 'rule' belongs to
317 * its pmd thread's classifier. The text below calls this classifier 'cls'.
318 *
319 * Motivation
320 * ----------
321 *
322 * The thread safety rules described here for "struct dp_netdev_flow" are
323 * motivated by two goals:
324 *
325 * - Prevent threads that read members of "struct dp_netdev_flow" from
326 * reading bad data due to changes by some thread concurrently modifying
327 * those members.
328 *
329 * - Prevent two threads making changes to members of a given "struct
330 * dp_netdev_flow" from interfering with each other.
331 *
332 *
333 * Rules
334 * -----
335 *
336 * A flow 'flow' may be accessed without a risk of being freed during an RCU
337 * grace period. Code that needs to hold onto a flow for a while
338 * should try incrementing 'flow->ref_cnt' with dp_netdev_flow_ref().
339 *
340 * 'flow->ref_cnt' protects 'flow' from being freed. It doesn't protect the
341 * flow from being deleted from 'cls' and it doesn't protect members of 'flow'
342 * from modification.
343 *
344 * Some members, marked 'const', are immutable. Accessing other members
345 * requires synchronization, as noted in more detail below.
346 */
347 struct dp_netdev_flow {
348 const struct flow flow; /* Unmasked flow that created this entry. */
349 /* Hash table index by unmasked flow. */
350 const struct cmap_node node; /* In owning dp_netdev_pmd_thread's */
351 /* 'flow_table'. */
352 const ovs_u128 ufid; /* Unique flow identifier. */
353 const unsigned pmd_id; /* The 'core_id' of pmd thread owning this */
354 /* flow. */
355
356 /* Number of references.
357 * The classifier owns one reference.
358 * Any thread trying to keep a rule from being freed should hold its own
359 * reference. */
360 struct ovs_refcount ref_cnt;
361
362 bool dead;
363
364 /* Statistics. */
365 struct dp_netdev_flow_stats stats;
366
367 /* Actions. */
368 OVSRCU_TYPE(struct dp_netdev_actions *) actions;
369
370 /* While processing a group of input packets, the datapath uses the next
371 * member to store a pointer to the output batch for the flow. It is
372 * reset after the batch has been sent out (See dp_netdev_queue_batches(),
373 * packet_batch_per_flow_init() and packet_batch_per_flow_execute()). */
374 struct packet_batch_per_flow *batch;
375
376 /* Packet classification. */
377 struct dpcls_rule cr; /* In owning dp_netdev's 'cls'. */
378 /* 'cr' must be the last member. */
379 };
380
381 static void dp_netdev_flow_unref(struct dp_netdev_flow *);
382 static bool dp_netdev_flow_ref(struct dp_netdev_flow *);
383 static int dpif_netdev_flow_from_nlattrs(const struct nlattr *, uint32_t,
384 struct flow *);
385
386 /* A set of datapath actions within a "struct dp_netdev_flow".
387 *
388 *
389 * Thread-safety
390 * =============
391 *
392 * A struct dp_netdev_actions 'actions' is protected with RCU. */
393 struct dp_netdev_actions {
394 /* These members are immutable: they do not change during the struct's
395 * lifetime. */
396 unsigned int size; /* Size of 'actions', in bytes. */
397 struct nlattr actions[]; /* Sequence of OVS_ACTION_ATTR_* attributes. */
398 };
399
400 struct dp_netdev_actions *dp_netdev_actions_create(const struct nlattr *,
401 size_t);
402 struct dp_netdev_actions *dp_netdev_flow_get_actions(
403 const struct dp_netdev_flow *);
404 static void dp_netdev_actions_free(struct dp_netdev_actions *);
405
406 /* Contained by struct dp_netdev_pmd_thread's 'stats' member. */
407 struct dp_netdev_pmd_stats {
408 /* Indexed by DP_STAT_*. */
409 atomic_ullong n[DP_N_STATS];
410 };
411
412 /* Contained by struct dp_netdev_pmd_thread's 'cycle' member. */
413 struct dp_netdev_pmd_cycles {
414 /* Indexed by PMD_CYCLES_*. */
415 atomic_ullong n[PMD_N_CYCLES];
416 };
417
418 /* Contained by struct dp_netdev_pmd_thread's 'poll_list' member. */
419 struct rxq_poll {
420 struct dp_netdev_port *port;
421 struct netdev_rxq *rx;
422 struct ovs_list node;
423 };
424
425 /* Contained by struct dp_netdev_pmd_thread's 'port_cache' or 'tx_ports'. */
426 struct tx_port {
427 struct dp_netdev_port *port;
428 int qid;
429 long long last_used;
430 struct hmap_node node;
431 };
432
433 /* PMD: Poll modes drivers. PMD accesses devices via polling to eliminate
434 * the performance overhead of interrupt processing. Therefore netdev can
435 * not implement rx-wait for these devices. dpif-netdev needs to poll
436 * these device to check for recv buffer. pmd-thread does polling for
437 * devices assigned to itself.
438 *
439 * DPDK used PMD for accessing NIC.
440 *
441 * Note, instance with cpu core id NON_PMD_CORE_ID will be reserved for
442 * I/O of all non-pmd threads. There will be no actual thread created
443 * for the instance.
444 *
445 * Each struct has its own flow table and classifier. Packets received
446 * from managed ports are looked up in the corresponding pmd thread's
447 * flow table, and are executed with the found actions.
448 * */
449 struct dp_netdev_pmd_thread {
450 struct dp_netdev *dp;
451 struct ovs_refcount ref_cnt; /* Every reference must be refcount'ed. */
452 struct cmap_node node; /* In 'dp->poll_threads'. */
453
454 pthread_cond_t cond; /* For synchronizing pmd thread reload. */
455 struct ovs_mutex cond_mutex; /* Mutex for condition variable. */
456
457 /* Per thread exact-match cache. Note, the instance for cpu core
458 * NON_PMD_CORE_ID can be accessed by multiple threads, and thusly
459 * need to be protected by 'non_pmd_mutex'. Every other instance
460 * will only be accessed by its own pmd thread. */
461 struct emc_cache flow_cache;
462
463 /* Flow-Table and classifiers
464 *
465 * Writers of 'flow_table' must take the 'flow_mutex'. Corresponding
466 * changes to 'classifiers' must be made while still holding the
467 * 'flow_mutex'.
468 */
469 struct ovs_mutex flow_mutex;
470 struct cmap flow_table OVS_GUARDED; /* Flow table. */
471
472 /* One classifier per in_port polled by the pmd */
473 struct cmap classifiers;
474 /* Periodically sort subtable vectors according to hit frequencies */
475 long long int next_optimization;
476
477 /* Statistics. */
478 struct dp_netdev_pmd_stats stats;
479
480 /* Cycles counters */
481 struct dp_netdev_pmd_cycles cycles;
482
483 /* Used to count cicles. See 'cycles_counter_end()' */
484 unsigned long long last_cycles;
485
486 struct latch exit_latch; /* For terminating the pmd thread. */
487 atomic_uint change_seq; /* For reloading pmd ports. */
488 pthread_t thread;
489 unsigned core_id; /* CPU core id of this pmd thread. */
490 int numa_id; /* numa node id of this pmd thread. */
491 bool isolated;
492
493 /* Queue id used by this pmd thread to send packets on all netdevs if
494 * XPS disabled for this netdev. All static_tx_qid's are unique and less
495 * than 'ovs_numa_get_n_cores() + 1'. */
496 atomic_int static_tx_qid;
497
498 struct ovs_mutex port_mutex; /* Mutex for 'poll_list' and 'tx_ports'. */
499 /* List of rx queues to poll. */
500 struct ovs_list poll_list OVS_GUARDED;
501 /* Number of elements in 'poll_list' */
502 int poll_cnt;
503 /* Map of 'tx_port's used for transmission. Written by the main thread,
504 * read by the pmd thread. */
505 struct hmap tx_ports OVS_GUARDED;
506
507 /* Map of 'tx_port' used in the fast path. This is a thread-local copy of
508 * 'tx_ports'. The instance for cpu core NON_PMD_CORE_ID can be accessed
509 * by multiple threads, and thusly need to be protected by 'non_pmd_mutex'.
510 * Every other instance will only be accessed by its own pmd thread. */
511 struct hmap port_cache;
512
513 /* Only a pmd thread can write on its own 'cycles' and 'stats'.
514 * The main thread keeps 'stats_zero' and 'cycles_zero' as base
515 * values and subtracts them from 'stats' and 'cycles' before
516 * reporting to the user */
517 unsigned long long stats_zero[DP_N_STATS];
518 uint64_t cycles_zero[PMD_N_CYCLES];
519 };
520
521 #define PMD_INITIAL_SEQ 1
522
523 /* Interface to netdev-based datapath. */
524 struct dpif_netdev {
525 struct dpif dpif;
526 struct dp_netdev *dp;
527 uint64_t last_port_seq;
528 };
529
530 static int get_port_by_number(struct dp_netdev *dp, odp_port_t port_no,
531 struct dp_netdev_port **portp)
532 OVS_REQUIRES(dp->port_mutex);
533 static int get_port_by_name(struct dp_netdev *dp, const char *devname,
534 struct dp_netdev_port **portp)
535 OVS_REQUIRES(dp->port_mutex);
536 static void dp_netdev_free(struct dp_netdev *)
537 OVS_REQUIRES(dp_netdev_mutex);
538 static int do_add_port(struct dp_netdev *dp, const char *devname,
539 const char *type, odp_port_t port_no)
540 OVS_REQUIRES(dp->port_mutex);
541 static void do_del_port(struct dp_netdev *dp, struct dp_netdev_port *)
542 OVS_REQUIRES(dp->port_mutex);
543 static int dpif_netdev_open(const struct dpif_class *, const char *name,
544 bool create, struct dpif **);
545 static void dp_netdev_execute_actions(struct dp_netdev_pmd_thread *pmd,
546 struct dp_packet_batch *,
547 bool may_steal, const struct flow *flow,
548 const struct nlattr *actions,
549 size_t actions_len,
550 long long now);
551 static void dp_netdev_input(struct dp_netdev_pmd_thread *,
552 struct dp_packet_batch *, odp_port_t port_no);
553 static void dp_netdev_recirculate(struct dp_netdev_pmd_thread *,
554 struct dp_packet_batch *);
555
556 static void dp_netdev_disable_upcall(struct dp_netdev *);
557 static void dp_netdev_pmd_reload_done(struct dp_netdev_pmd_thread *pmd);
558 static void dp_netdev_configure_pmd(struct dp_netdev_pmd_thread *pmd,
559 struct dp_netdev *dp, unsigned core_id,
560 int numa_id);
561 static void dp_netdev_destroy_pmd(struct dp_netdev_pmd_thread *pmd);
562 static void dp_netdev_set_nonpmd(struct dp_netdev *dp)
563 OVS_REQUIRES(dp->port_mutex);
564
565 static struct dp_netdev_pmd_thread *dp_netdev_get_pmd(struct dp_netdev *dp,
566 unsigned core_id);
567 static struct dp_netdev_pmd_thread *
568 dp_netdev_pmd_get_next(struct dp_netdev *dp, struct cmap_position *pos);
569 static void dp_netdev_destroy_all_pmds(struct dp_netdev *dp);
570 static void dp_netdev_del_pmds_on_numa(struct dp_netdev *dp, int numa_id);
571 static void dp_netdev_set_pmds_on_numa(struct dp_netdev *dp, int numa_id)
572 OVS_REQUIRES(dp->port_mutex);
573 static void dp_netdev_pmd_clear_ports(struct dp_netdev_pmd_thread *pmd);
574 static void dp_netdev_del_port_from_all_pmds(struct dp_netdev *dp,
575 struct dp_netdev_port *port);
576 static void dp_netdev_add_port_to_pmds(struct dp_netdev *dp,
577 struct dp_netdev_port *port);
578 static void dp_netdev_add_port_tx_to_pmd(struct dp_netdev_pmd_thread *pmd,
579 struct dp_netdev_port *port);
580 static void dp_netdev_add_rxq_to_pmd(struct dp_netdev_pmd_thread *pmd,
581 struct dp_netdev_port *port,
582 struct netdev_rxq *rx);
583 static struct dp_netdev_pmd_thread *
584 dp_netdev_less_loaded_pmd_on_numa(struct dp_netdev *dp, int numa_id);
585 static void dp_netdev_reset_pmd_threads(struct dp_netdev *dp)
586 OVS_REQUIRES(dp->port_mutex);
587 static void reconfigure_pmd_threads(struct dp_netdev *dp)
588 OVS_REQUIRES(dp->port_mutex);
589 static bool dp_netdev_pmd_try_ref(struct dp_netdev_pmd_thread *pmd);
590 static void dp_netdev_pmd_unref(struct dp_netdev_pmd_thread *pmd);
591 static void dp_netdev_pmd_flow_flush(struct dp_netdev_pmd_thread *pmd);
592 static void pmd_load_cached_ports(struct dp_netdev_pmd_thread *pmd)
593 OVS_REQUIRES(pmd->port_mutex);
594 static inline void
595 dp_netdev_pmd_try_optimize(struct dp_netdev_pmd_thread *pmd);
596
597 static void
598 dpif_netdev_xps_revalidate_pmd(const struct dp_netdev_pmd_thread *pmd,
599 long long now, bool purge);
600 static int dpif_netdev_xps_get_tx_qid(const struct dp_netdev_pmd_thread *pmd,
601 struct tx_port *tx, long long now);
602
603 static inline bool emc_entry_alive(struct emc_entry *ce);
604 static void emc_clear_entry(struct emc_entry *ce);
605
606 static void
607 emc_cache_init(struct emc_cache *flow_cache)
608 {
609 int i;
610
611 flow_cache->sweep_idx = 0;
612 for (i = 0; i < ARRAY_SIZE(flow_cache->entries); i++) {
613 flow_cache->entries[i].flow = NULL;
614 flow_cache->entries[i].key.hash = 0;
615 flow_cache->entries[i].key.len = sizeof(struct miniflow);
616 flowmap_init(&flow_cache->entries[i].key.mf.map);
617 }
618 }
619
620 static void
621 emc_cache_uninit(struct emc_cache *flow_cache)
622 {
623 int i;
624
625 for (i = 0; i < ARRAY_SIZE(flow_cache->entries); i++) {
626 emc_clear_entry(&flow_cache->entries[i]);
627 }
628 }
629
630 /* Check and clear dead flow references slowly (one entry at each
631 * invocation). */
632 static void
633 emc_cache_slow_sweep(struct emc_cache *flow_cache)
634 {
635 struct emc_entry *entry = &flow_cache->entries[flow_cache->sweep_idx];
636
637 if (!emc_entry_alive(entry)) {
638 emc_clear_entry(entry);
639 }
640 flow_cache->sweep_idx = (flow_cache->sweep_idx + 1) & EM_FLOW_HASH_MASK;
641 }
642
643 /* Returns true if 'dpif' is a netdev or dummy dpif, false otherwise. */
644 bool
645 dpif_is_netdev(const struct dpif *dpif)
646 {
647 return dpif->dpif_class->open == dpif_netdev_open;
648 }
649
650 static struct dpif_netdev *
651 dpif_netdev_cast(const struct dpif *dpif)
652 {
653 ovs_assert(dpif_is_netdev(dpif));
654 return CONTAINER_OF(dpif, struct dpif_netdev, dpif);
655 }
656
657 static struct dp_netdev *
658 get_dp_netdev(const struct dpif *dpif)
659 {
660 return dpif_netdev_cast(dpif)->dp;
661 }
662 \f
663 enum pmd_info_type {
664 PMD_INFO_SHOW_STATS, /* Show how cpu cycles are spent. */
665 PMD_INFO_CLEAR_STATS, /* Set the cycles count to 0. */
666 PMD_INFO_SHOW_RXQ /* Show poll-lists of pmd threads. */
667 };
668
669 static void
670 pmd_info_show_stats(struct ds *reply,
671 struct dp_netdev_pmd_thread *pmd,
672 unsigned long long stats[DP_N_STATS],
673 uint64_t cycles[PMD_N_CYCLES])
674 {
675 unsigned long long total_packets = 0;
676 uint64_t total_cycles = 0;
677 int i;
678
679 /* These loops subtracts reference values ('*_zero') from the counters.
680 * Since loads and stores are relaxed, it might be possible for a '*_zero'
681 * value to be more recent than the current value we're reading from the
682 * counter. This is not a big problem, since these numbers are not
683 * supposed to be too accurate, but we should at least make sure that
684 * the result is not negative. */
685 for (i = 0; i < DP_N_STATS; i++) {
686 if (stats[i] > pmd->stats_zero[i]) {
687 stats[i] -= pmd->stats_zero[i];
688 } else {
689 stats[i] = 0;
690 }
691
692 if (i != DP_STAT_LOST) {
693 /* Lost packets are already included in DP_STAT_MISS */
694 total_packets += stats[i];
695 }
696 }
697
698 for (i = 0; i < PMD_N_CYCLES; i++) {
699 if (cycles[i] > pmd->cycles_zero[i]) {
700 cycles[i] -= pmd->cycles_zero[i];
701 } else {
702 cycles[i] = 0;
703 }
704
705 total_cycles += cycles[i];
706 }
707
708 ds_put_cstr(reply, (pmd->core_id == NON_PMD_CORE_ID)
709 ? "main thread" : "pmd thread");
710
711 if (pmd->numa_id != OVS_NUMA_UNSPEC) {
712 ds_put_format(reply, " numa_id %d", pmd->numa_id);
713 }
714 if (pmd->core_id != OVS_CORE_UNSPEC && pmd->core_id != NON_PMD_CORE_ID) {
715 ds_put_format(reply, " core_id %u", pmd->core_id);
716 }
717 ds_put_cstr(reply, ":\n");
718
719 ds_put_format(reply,
720 "\temc hits:%llu\n\tmegaflow hits:%llu\n"
721 "\tavg. subtable lookups per hit:%.2f\n"
722 "\tmiss:%llu\n\tlost:%llu\n",
723 stats[DP_STAT_EXACT_HIT], stats[DP_STAT_MASKED_HIT],
724 stats[DP_STAT_MASKED_HIT] > 0
725 ? (1.0*stats[DP_STAT_LOOKUP_HIT])/stats[DP_STAT_MASKED_HIT]
726 : 0,
727 stats[DP_STAT_MISS], stats[DP_STAT_LOST]);
728
729 if (total_cycles == 0) {
730 return;
731 }
732
733 ds_put_format(reply,
734 "\tpolling cycles:%"PRIu64" (%.02f%%)\n"
735 "\tprocessing cycles:%"PRIu64" (%.02f%%)\n",
736 cycles[PMD_CYCLES_POLLING],
737 cycles[PMD_CYCLES_POLLING] / (double)total_cycles * 100,
738 cycles[PMD_CYCLES_PROCESSING],
739 cycles[PMD_CYCLES_PROCESSING] / (double)total_cycles * 100);
740
741 if (total_packets == 0) {
742 return;
743 }
744
745 ds_put_format(reply,
746 "\tavg cycles per packet: %.02f (%"PRIu64"/%llu)\n",
747 total_cycles / (double)total_packets,
748 total_cycles, total_packets);
749
750 ds_put_format(reply,
751 "\tavg processing cycles per packet: "
752 "%.02f (%"PRIu64"/%llu)\n",
753 cycles[PMD_CYCLES_PROCESSING] / (double)total_packets,
754 cycles[PMD_CYCLES_PROCESSING], total_packets);
755 }
756
757 static void
758 pmd_info_clear_stats(struct ds *reply OVS_UNUSED,
759 struct dp_netdev_pmd_thread *pmd,
760 unsigned long long stats[DP_N_STATS],
761 uint64_t cycles[PMD_N_CYCLES])
762 {
763 int i;
764
765 /* We cannot write 'stats' and 'cycles' (because they're written by other
766 * threads) and we shouldn't change 'stats' (because they're used to count
767 * datapath stats, which must not be cleared here). Instead, we save the
768 * current values and subtract them from the values to be displayed in the
769 * future */
770 for (i = 0; i < DP_N_STATS; i++) {
771 pmd->stats_zero[i] = stats[i];
772 }
773 for (i = 0; i < PMD_N_CYCLES; i++) {
774 pmd->cycles_zero[i] = cycles[i];
775 }
776 }
777
778 static void
779 pmd_info_show_rxq(struct ds *reply, struct dp_netdev_pmd_thread *pmd)
780 {
781 if (pmd->core_id != NON_PMD_CORE_ID) {
782 struct rxq_poll *poll;
783 const char *prev_name = NULL;
784
785 ds_put_format(reply,
786 "pmd thread numa_id %d core_id %u:\n\tisolated : %s\n",
787 pmd->numa_id, pmd->core_id, (pmd->isolated)
788 ? "true" : "false");
789
790 ovs_mutex_lock(&pmd->port_mutex);
791 LIST_FOR_EACH (poll, node, &pmd->poll_list) {
792 const char *name = netdev_get_name(poll->port->netdev);
793
794 if (!prev_name || strcmp(name, prev_name)) {
795 if (prev_name) {
796 ds_put_cstr(reply, "\n");
797 }
798 ds_put_format(reply, "\tport: %s\tqueue-id:",
799 netdev_get_name(poll->port->netdev));
800 }
801 ds_put_format(reply, " %d", netdev_rxq_get_queue_id(poll->rx));
802 prev_name = name;
803 }
804 ovs_mutex_unlock(&pmd->port_mutex);
805 ds_put_cstr(reply, "\n");
806 }
807 }
808
809 static void
810 dpif_netdev_pmd_info(struct unixctl_conn *conn, int argc, const char *argv[],
811 void *aux)
812 {
813 struct ds reply = DS_EMPTY_INITIALIZER;
814 struct dp_netdev_pmd_thread *pmd;
815 struct dp_netdev *dp = NULL;
816 enum pmd_info_type type = *(enum pmd_info_type *) aux;
817
818 ovs_mutex_lock(&dp_netdev_mutex);
819
820 if (argc == 2) {
821 dp = shash_find_data(&dp_netdevs, argv[1]);
822 } else if (shash_count(&dp_netdevs) == 1) {
823 /* There's only one datapath */
824 dp = shash_first(&dp_netdevs)->data;
825 }
826
827 if (!dp) {
828 ovs_mutex_unlock(&dp_netdev_mutex);
829 unixctl_command_reply_error(conn,
830 "please specify an existing datapath");
831 return;
832 }
833
834 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
835 if (type == PMD_INFO_SHOW_RXQ) {
836 pmd_info_show_rxq(&reply, pmd);
837 } else {
838 unsigned long long stats[DP_N_STATS];
839 uint64_t cycles[PMD_N_CYCLES];
840 int i;
841
842 /* Read current stats and cycle counters */
843 for (i = 0; i < ARRAY_SIZE(stats); i++) {
844 atomic_read_relaxed(&pmd->stats.n[i], &stats[i]);
845 }
846 for (i = 0; i < ARRAY_SIZE(cycles); i++) {
847 atomic_read_relaxed(&pmd->cycles.n[i], &cycles[i]);
848 }
849
850 if (type == PMD_INFO_CLEAR_STATS) {
851 pmd_info_clear_stats(&reply, pmd, stats, cycles);
852 } else if (type == PMD_INFO_SHOW_STATS) {
853 pmd_info_show_stats(&reply, pmd, stats, cycles);
854 }
855 }
856 }
857
858 ovs_mutex_unlock(&dp_netdev_mutex);
859
860 unixctl_command_reply(conn, ds_cstr(&reply));
861 ds_destroy(&reply);
862 }
863 \f
864 static int
865 dpif_netdev_init(void)
866 {
867 static enum pmd_info_type show_aux = PMD_INFO_SHOW_STATS,
868 clear_aux = PMD_INFO_CLEAR_STATS,
869 poll_aux = PMD_INFO_SHOW_RXQ;
870
871 unixctl_command_register("dpif-netdev/pmd-stats-show", "[dp]",
872 0, 1, dpif_netdev_pmd_info,
873 (void *)&show_aux);
874 unixctl_command_register("dpif-netdev/pmd-stats-clear", "[dp]",
875 0, 1, dpif_netdev_pmd_info,
876 (void *)&clear_aux);
877 unixctl_command_register("dpif-netdev/pmd-rxq-show", "[dp]",
878 0, 1, dpif_netdev_pmd_info,
879 (void *)&poll_aux);
880 return 0;
881 }
882
883 static int
884 dpif_netdev_enumerate(struct sset *all_dps,
885 const struct dpif_class *dpif_class)
886 {
887 struct shash_node *node;
888
889 ovs_mutex_lock(&dp_netdev_mutex);
890 SHASH_FOR_EACH(node, &dp_netdevs) {
891 struct dp_netdev *dp = node->data;
892 if (dpif_class != dp->class) {
893 /* 'dp_netdevs' contains both "netdev" and "dummy" dpifs.
894 * If the class doesn't match, skip this dpif. */
895 continue;
896 }
897 sset_add(all_dps, node->name);
898 }
899 ovs_mutex_unlock(&dp_netdev_mutex);
900
901 return 0;
902 }
903
904 static bool
905 dpif_netdev_class_is_dummy(const struct dpif_class *class)
906 {
907 return class != &dpif_netdev_class;
908 }
909
910 static const char *
911 dpif_netdev_port_open_type(const struct dpif_class *class, const char *type)
912 {
913 return strcmp(type, "internal") ? type
914 : dpif_netdev_class_is_dummy(class) ? "dummy-internal"
915 : "tap";
916 }
917
918 static struct dpif *
919 create_dpif_netdev(struct dp_netdev *dp)
920 {
921 uint16_t netflow_id = hash_string(dp->name, 0);
922 struct dpif_netdev *dpif;
923
924 ovs_refcount_ref(&dp->ref_cnt);
925
926 dpif = xmalloc(sizeof *dpif);
927 dpif_init(&dpif->dpif, dp->class, dp->name, netflow_id >> 8, netflow_id);
928 dpif->dp = dp;
929 dpif->last_port_seq = seq_read(dp->port_seq);
930
931 return &dpif->dpif;
932 }
933
934 /* Choose an unused, non-zero port number and return it on success.
935 * Return ODPP_NONE on failure. */
936 static odp_port_t
937 choose_port(struct dp_netdev *dp, const char *name)
938 OVS_REQUIRES(dp->port_mutex)
939 {
940 uint32_t port_no;
941
942 if (dp->class != &dpif_netdev_class) {
943 const char *p;
944 int start_no = 0;
945
946 /* If the port name begins with "br", start the number search at
947 * 100 to make writing tests easier. */
948 if (!strncmp(name, "br", 2)) {
949 start_no = 100;
950 }
951
952 /* If the port name contains a number, try to assign that port number.
953 * This can make writing unit tests easier because port numbers are
954 * predictable. */
955 for (p = name; *p != '\0'; p++) {
956 if (isdigit((unsigned char) *p)) {
957 port_no = start_no + strtol(p, NULL, 10);
958 if (port_no > 0 && port_no != odp_to_u32(ODPP_NONE)
959 && !dp_netdev_lookup_port(dp, u32_to_odp(port_no))) {
960 return u32_to_odp(port_no);
961 }
962 break;
963 }
964 }
965 }
966
967 for (port_no = 1; port_no <= UINT16_MAX; port_no++) {
968 if (!dp_netdev_lookup_port(dp, u32_to_odp(port_no))) {
969 return u32_to_odp(port_no);
970 }
971 }
972
973 return ODPP_NONE;
974 }
975
976 static int
977 create_dp_netdev(const char *name, const struct dpif_class *class,
978 struct dp_netdev **dpp)
979 OVS_REQUIRES(dp_netdev_mutex)
980 {
981 struct dp_netdev *dp;
982 int error;
983
984 dp = xzalloc(sizeof *dp);
985 shash_add(&dp_netdevs, name, dp);
986
987 *CONST_CAST(const struct dpif_class **, &dp->class) = class;
988 *CONST_CAST(const char **, &dp->name) = xstrdup(name);
989 ovs_refcount_init(&dp->ref_cnt);
990 atomic_flag_clear(&dp->destroyed);
991
992 ovs_mutex_init(&dp->port_mutex);
993 hmap_init(&dp->ports);
994 dp->port_seq = seq_create();
995 fat_rwlock_init(&dp->upcall_rwlock);
996
997 dp->reconfigure_seq = seq_create();
998 dp->last_reconfigure_seq = seq_read(dp->reconfigure_seq);
999
1000 /* Disable upcalls by default. */
1001 dp_netdev_disable_upcall(dp);
1002 dp->upcall_aux = NULL;
1003 dp->upcall_cb = NULL;
1004
1005 conntrack_init(&dp->conntrack);
1006
1007 cmap_init(&dp->poll_threads);
1008 ovs_mutex_init_recursive(&dp->non_pmd_mutex);
1009 ovsthread_key_create(&dp->per_pmd_key, NULL);
1010
1011 ovs_mutex_lock(&dp->port_mutex);
1012 dp_netdev_set_nonpmd(dp);
1013
1014 error = do_add_port(dp, name, dpif_netdev_port_open_type(dp->class,
1015 "internal"),
1016 ODPP_LOCAL);
1017 ovs_mutex_unlock(&dp->port_mutex);
1018 if (error) {
1019 dp_netdev_free(dp);
1020 return error;
1021 }
1022
1023 dp->last_tnl_conf_seq = seq_read(tnl_conf_seq);
1024 *dpp = dp;
1025 return 0;
1026 }
1027
1028 static void
1029 dp_netdev_request_reconfigure(struct dp_netdev *dp)
1030 {
1031 seq_change(dp->reconfigure_seq);
1032 }
1033
1034 static bool
1035 dp_netdev_is_reconf_required(struct dp_netdev *dp)
1036 {
1037 return seq_read(dp->reconfigure_seq) != dp->last_reconfigure_seq;
1038 }
1039
1040 static int
1041 dpif_netdev_open(const struct dpif_class *class, const char *name,
1042 bool create, struct dpif **dpifp)
1043 {
1044 struct dp_netdev *dp;
1045 int error;
1046
1047 ovs_mutex_lock(&dp_netdev_mutex);
1048 dp = shash_find_data(&dp_netdevs, name);
1049 if (!dp) {
1050 error = create ? create_dp_netdev(name, class, &dp) : ENODEV;
1051 } else {
1052 error = (dp->class != class ? EINVAL
1053 : create ? EEXIST
1054 : 0);
1055 }
1056 if (!error) {
1057 *dpifp = create_dpif_netdev(dp);
1058 dp->dpif = *dpifp;
1059 }
1060 ovs_mutex_unlock(&dp_netdev_mutex);
1061
1062 return error;
1063 }
1064
1065 static void
1066 dp_netdev_destroy_upcall_lock(struct dp_netdev *dp)
1067 OVS_NO_THREAD_SAFETY_ANALYSIS
1068 {
1069 /* Check that upcalls are disabled, i.e. that the rwlock is taken */
1070 ovs_assert(fat_rwlock_tryrdlock(&dp->upcall_rwlock));
1071
1072 /* Before freeing a lock we should release it */
1073 fat_rwlock_unlock(&dp->upcall_rwlock);
1074 fat_rwlock_destroy(&dp->upcall_rwlock);
1075 }
1076
1077 /* Requires dp_netdev_mutex so that we can't get a new reference to 'dp'
1078 * through the 'dp_netdevs' shash while freeing 'dp'. */
1079 static void
1080 dp_netdev_free(struct dp_netdev *dp)
1081 OVS_REQUIRES(dp_netdev_mutex)
1082 {
1083 struct dp_netdev_port *port, *next;
1084
1085 shash_find_and_delete(&dp_netdevs, dp->name);
1086
1087 dp_netdev_destroy_all_pmds(dp);
1088 ovs_mutex_destroy(&dp->non_pmd_mutex);
1089 ovsthread_key_delete(dp->per_pmd_key);
1090
1091 conntrack_destroy(&dp->conntrack);
1092
1093 ovs_mutex_lock(&dp->port_mutex);
1094 HMAP_FOR_EACH_SAFE (port, next, node, &dp->ports) {
1095 do_del_port(dp, port);
1096 }
1097 ovs_mutex_unlock(&dp->port_mutex);
1098 cmap_destroy(&dp->poll_threads);
1099
1100 seq_destroy(dp->reconfigure_seq);
1101
1102 seq_destroy(dp->port_seq);
1103 hmap_destroy(&dp->ports);
1104 ovs_mutex_destroy(&dp->port_mutex);
1105
1106 /* Upcalls must be disabled at this point */
1107 dp_netdev_destroy_upcall_lock(dp);
1108
1109 free(dp->pmd_cmask);
1110 free(CONST_CAST(char *, dp->name));
1111 free(dp);
1112 }
1113
1114 static void
1115 dp_netdev_unref(struct dp_netdev *dp)
1116 {
1117 if (dp) {
1118 /* Take dp_netdev_mutex so that, if dp->ref_cnt falls to zero, we can't
1119 * get a new reference to 'dp' through the 'dp_netdevs' shash. */
1120 ovs_mutex_lock(&dp_netdev_mutex);
1121 if (ovs_refcount_unref_relaxed(&dp->ref_cnt) == 1) {
1122 dp_netdev_free(dp);
1123 }
1124 ovs_mutex_unlock(&dp_netdev_mutex);
1125 }
1126 }
1127
1128 static void
1129 dpif_netdev_close(struct dpif *dpif)
1130 {
1131 struct dp_netdev *dp = get_dp_netdev(dpif);
1132
1133 dp_netdev_unref(dp);
1134 free(dpif);
1135 }
1136
1137 static int
1138 dpif_netdev_destroy(struct dpif *dpif)
1139 {
1140 struct dp_netdev *dp = get_dp_netdev(dpif);
1141
1142 if (!atomic_flag_test_and_set(&dp->destroyed)) {
1143 if (ovs_refcount_unref_relaxed(&dp->ref_cnt) == 1) {
1144 /* Can't happen: 'dpif' still owns a reference to 'dp'. */
1145 OVS_NOT_REACHED();
1146 }
1147 }
1148
1149 return 0;
1150 }
1151
1152 /* Add 'n' to the atomic variable 'var' non-atomically and using relaxed
1153 * load/store semantics. While the increment is not atomic, the load and
1154 * store operations are, making it impossible to read inconsistent values.
1155 *
1156 * This is used to update thread local stats counters. */
1157 static void
1158 non_atomic_ullong_add(atomic_ullong *var, unsigned long long n)
1159 {
1160 unsigned long long tmp;
1161
1162 atomic_read_relaxed(var, &tmp);
1163 tmp += n;
1164 atomic_store_relaxed(var, tmp);
1165 }
1166
1167 static int
1168 dpif_netdev_get_stats(const struct dpif *dpif, struct dpif_dp_stats *stats)
1169 {
1170 struct dp_netdev *dp = get_dp_netdev(dpif);
1171 struct dp_netdev_pmd_thread *pmd;
1172
1173 stats->n_flows = stats->n_hit = stats->n_missed = stats->n_lost = 0;
1174 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
1175 unsigned long long n;
1176 stats->n_flows += cmap_count(&pmd->flow_table);
1177
1178 atomic_read_relaxed(&pmd->stats.n[DP_STAT_MASKED_HIT], &n);
1179 stats->n_hit += n;
1180 atomic_read_relaxed(&pmd->stats.n[DP_STAT_EXACT_HIT], &n);
1181 stats->n_hit += n;
1182 atomic_read_relaxed(&pmd->stats.n[DP_STAT_MISS], &n);
1183 stats->n_missed += n;
1184 atomic_read_relaxed(&pmd->stats.n[DP_STAT_LOST], &n);
1185 stats->n_lost += n;
1186 }
1187 stats->n_masks = UINT32_MAX;
1188 stats->n_mask_hit = UINT64_MAX;
1189
1190 return 0;
1191 }
1192
1193 static void
1194 dp_netdev_reload_pmd__(struct dp_netdev_pmd_thread *pmd)
1195 {
1196 int old_seq;
1197
1198 if (pmd->core_id == NON_PMD_CORE_ID) {
1199 ovs_mutex_lock(&pmd->dp->non_pmd_mutex);
1200 ovs_mutex_lock(&pmd->port_mutex);
1201 pmd_load_cached_ports(pmd);
1202 ovs_mutex_unlock(&pmd->port_mutex);
1203 ovs_mutex_unlock(&pmd->dp->non_pmd_mutex);
1204 return;
1205 }
1206
1207 ovs_mutex_lock(&pmd->cond_mutex);
1208 atomic_add_relaxed(&pmd->change_seq, 1, &old_seq);
1209 ovs_mutex_cond_wait(&pmd->cond, &pmd->cond_mutex);
1210 ovs_mutex_unlock(&pmd->cond_mutex);
1211 }
1212
1213 static uint32_t
1214 hash_port_no(odp_port_t port_no)
1215 {
1216 return hash_int(odp_to_u32(port_no), 0);
1217 }
1218
1219 static int
1220 port_create(const char *devname, const char *type,
1221 odp_port_t port_no, struct dp_netdev_port **portp)
1222 {
1223 struct netdev_saved_flags *sf;
1224 struct dp_netdev_port *port;
1225 enum netdev_flags flags;
1226 struct netdev *netdev;
1227 int n_open_rxqs = 0;
1228 int n_cores = 0;
1229 int i, error;
1230 bool dynamic_txqs = false;
1231
1232 *portp = NULL;
1233
1234 /* Open and validate network device. */
1235 error = netdev_open(devname, type, &netdev);
1236 if (error) {
1237 return error;
1238 }
1239 /* XXX reject non-Ethernet devices */
1240
1241 netdev_get_flags(netdev, &flags);
1242 if (flags & NETDEV_LOOPBACK) {
1243 VLOG_ERR("%s: cannot add a loopback device", devname);
1244 error = EINVAL;
1245 goto out;
1246 }
1247
1248 if (netdev_is_pmd(netdev)) {
1249 n_cores = ovs_numa_get_n_cores();
1250
1251 if (n_cores == OVS_CORE_UNSPEC) {
1252 VLOG_ERR("%s, cannot get cpu core info", devname);
1253 error = ENOENT;
1254 goto out;
1255 }
1256 /* There can only be ovs_numa_get_n_cores() pmd threads,
1257 * so creates a txq for each, and one extra for the non
1258 * pmd threads. */
1259 error = netdev_set_tx_multiq(netdev, n_cores + 1);
1260 if (error && (error != EOPNOTSUPP)) {
1261 VLOG_ERR("%s, cannot set multiq", devname);
1262 goto out;
1263 }
1264 }
1265
1266 if (netdev_is_reconf_required(netdev)) {
1267 error = netdev_reconfigure(netdev);
1268 if (error) {
1269 goto out;
1270 }
1271 }
1272
1273 if (netdev_is_pmd(netdev)) {
1274 if (netdev_n_txq(netdev) < n_cores + 1) {
1275 dynamic_txqs = true;
1276 }
1277 }
1278
1279 port = xzalloc(sizeof *port);
1280 port->port_no = port_no;
1281 port->netdev = netdev;
1282 port->n_rxq = netdev_n_rxq(netdev);
1283 port->rxqs = xcalloc(port->n_rxq, sizeof *port->rxqs);
1284 port->txq_used = xcalloc(netdev_n_txq(netdev), sizeof *port->txq_used);
1285 port->type = xstrdup(type);
1286 ovs_mutex_init(&port->txq_used_mutex);
1287 port->dynamic_txqs = dynamic_txqs;
1288
1289 for (i = 0; i < port->n_rxq; i++) {
1290 error = netdev_rxq_open(netdev, &port->rxqs[i].rxq, i);
1291 if (error) {
1292 VLOG_ERR("%s: cannot receive packets on this network device (%s)",
1293 devname, ovs_strerror(errno));
1294 goto out_rxq_close;
1295 }
1296 port->rxqs[i].core_id = OVS_CORE_UNSPEC;
1297 n_open_rxqs++;
1298 }
1299
1300 error = netdev_turn_flags_on(netdev, NETDEV_PROMISC, &sf);
1301 if (error) {
1302 goto out_rxq_close;
1303 }
1304 port->sf = sf;
1305
1306 *portp = port;
1307
1308 return 0;
1309
1310 out_rxq_close:
1311 for (i = 0; i < n_open_rxqs; i++) {
1312 netdev_rxq_close(port->rxqs[i].rxq);
1313 }
1314 ovs_mutex_destroy(&port->txq_used_mutex);
1315 free(port->type);
1316 free(port->txq_used);
1317 free(port->rxqs);
1318 free(port);
1319
1320 out:
1321 netdev_close(netdev);
1322 return error;
1323 }
1324
1325 static int
1326 do_add_port(struct dp_netdev *dp, const char *devname, const char *type,
1327 odp_port_t port_no)
1328 OVS_REQUIRES(dp->port_mutex)
1329 {
1330 struct dp_netdev_port *port;
1331 int error;
1332
1333 /* Reject devices already in 'dp'. */
1334 if (!get_port_by_name(dp, devname, &port)) {
1335 return EEXIST;
1336 }
1337
1338 error = port_create(devname, type, port_no, &port);
1339 if (error) {
1340 return error;
1341 }
1342
1343 if (netdev_is_pmd(port->netdev)) {
1344 int numa_id = netdev_get_numa_id(port->netdev);
1345
1346 ovs_assert(ovs_numa_numa_id_is_valid(numa_id));
1347 dp_netdev_set_pmds_on_numa(dp, numa_id);
1348 }
1349
1350 dp_netdev_add_port_to_pmds(dp, port);
1351
1352 hmap_insert(&dp->ports, &port->node, hash_port_no(port_no));
1353 seq_change(dp->port_seq);
1354
1355 return 0;
1356 }
1357
1358 static int
1359 dpif_netdev_port_add(struct dpif *dpif, struct netdev *netdev,
1360 odp_port_t *port_nop)
1361 {
1362 struct dp_netdev *dp = get_dp_netdev(dpif);
1363 char namebuf[NETDEV_VPORT_NAME_BUFSIZE];
1364 const char *dpif_port;
1365 odp_port_t port_no;
1366 int error;
1367
1368 ovs_mutex_lock(&dp->port_mutex);
1369 dpif_port = netdev_vport_get_dpif_port(netdev, namebuf, sizeof namebuf);
1370 if (*port_nop != ODPP_NONE) {
1371 port_no = *port_nop;
1372 error = dp_netdev_lookup_port(dp, *port_nop) ? EBUSY : 0;
1373 } else {
1374 port_no = choose_port(dp, dpif_port);
1375 error = port_no == ODPP_NONE ? EFBIG : 0;
1376 }
1377 if (!error) {
1378 *port_nop = port_no;
1379 error = do_add_port(dp, dpif_port, netdev_get_type(netdev), port_no);
1380 }
1381 ovs_mutex_unlock(&dp->port_mutex);
1382
1383 return error;
1384 }
1385
1386 static int
1387 dpif_netdev_port_del(struct dpif *dpif, odp_port_t port_no)
1388 {
1389 struct dp_netdev *dp = get_dp_netdev(dpif);
1390 int error;
1391
1392 ovs_mutex_lock(&dp->port_mutex);
1393 if (port_no == ODPP_LOCAL) {
1394 error = EINVAL;
1395 } else {
1396 struct dp_netdev_port *port;
1397
1398 error = get_port_by_number(dp, port_no, &port);
1399 if (!error) {
1400 do_del_port(dp, port);
1401 }
1402 }
1403 ovs_mutex_unlock(&dp->port_mutex);
1404
1405 return error;
1406 }
1407
1408 static bool
1409 is_valid_port_number(odp_port_t port_no)
1410 {
1411 return port_no != ODPP_NONE;
1412 }
1413
1414 static struct dp_netdev_port *
1415 dp_netdev_lookup_port(const struct dp_netdev *dp, odp_port_t port_no)
1416 OVS_REQUIRES(dp->port_mutex)
1417 {
1418 struct dp_netdev_port *port;
1419
1420 HMAP_FOR_EACH_WITH_HASH (port, node, hash_port_no(port_no), &dp->ports) {
1421 if (port->port_no == port_no) {
1422 return port;
1423 }
1424 }
1425 return NULL;
1426 }
1427
1428 static int
1429 get_port_by_number(struct dp_netdev *dp,
1430 odp_port_t port_no, struct dp_netdev_port **portp)
1431 OVS_REQUIRES(dp->port_mutex)
1432 {
1433 if (!is_valid_port_number(port_no)) {
1434 *portp = NULL;
1435 return EINVAL;
1436 } else {
1437 *portp = dp_netdev_lookup_port(dp, port_no);
1438 return *portp ? 0 : ENODEV;
1439 }
1440 }
1441
1442 static void
1443 port_destroy(struct dp_netdev_port *port)
1444 {
1445 if (!port) {
1446 return;
1447 }
1448
1449 netdev_close(port->netdev);
1450 netdev_restore_flags(port->sf);
1451
1452 for (unsigned i = 0; i < port->n_rxq; i++) {
1453 netdev_rxq_close(port->rxqs[i].rxq);
1454 }
1455 ovs_mutex_destroy(&port->txq_used_mutex);
1456 free(port->rxq_affinity_list);
1457 free(port->txq_used);
1458 free(port->rxqs);
1459 free(port->type);
1460 free(port);
1461 }
1462
1463 static int
1464 get_port_by_name(struct dp_netdev *dp,
1465 const char *devname, struct dp_netdev_port **portp)
1466 OVS_REQUIRES(dp->port_mutex)
1467 {
1468 struct dp_netdev_port *port;
1469
1470 HMAP_FOR_EACH (port, node, &dp->ports) {
1471 if (!strcmp(netdev_get_name(port->netdev), devname)) {
1472 *portp = port;
1473 return 0;
1474 }
1475 }
1476
1477 /* Callers of dpif_netdev_port_query_by_name() expect ENODEV for a non
1478 * existing port. */
1479 return ENODEV;
1480 }
1481
1482 static int
1483 get_n_pmd_threads(struct dp_netdev *dp)
1484 {
1485 /* There is one non pmd thread in dp->poll_threads */
1486 return cmap_count(&dp->poll_threads) - 1;
1487 }
1488
1489 static int
1490 get_n_pmd_threads_on_numa(struct dp_netdev *dp, int numa_id)
1491 {
1492 struct dp_netdev_pmd_thread *pmd;
1493 int n_pmds = 0;
1494
1495 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
1496 if (pmd->numa_id == numa_id) {
1497 n_pmds++;
1498 }
1499 }
1500
1501 return n_pmds;
1502 }
1503
1504 /* Returns 'true' if there is a port with pmd netdev and the netdev is on
1505 * numa node 'numa_id' or its rx queue assigned to core on that numa node . */
1506 static bool
1507 has_pmd_rxq_for_numa(struct dp_netdev *dp, int numa_id)
1508 OVS_REQUIRES(dp->port_mutex)
1509 {
1510 struct dp_netdev_port *port;
1511
1512 HMAP_FOR_EACH (port, node, &dp->ports) {
1513 if (netdev_is_pmd(port->netdev)) {
1514 int i;
1515
1516 if (netdev_get_numa_id(port->netdev) == numa_id) {
1517 return true;
1518 }
1519
1520 for (i = 0; i < port->n_rxq; i++) {
1521 unsigned core_id = port->rxqs[i].core_id;
1522
1523 if (core_id != OVS_CORE_UNSPEC
1524 && ovs_numa_get_numa_id(core_id) == numa_id) {
1525 return true;
1526 }
1527 }
1528 }
1529 }
1530
1531 return false;
1532 }
1533
1534
1535 static void
1536 do_del_port(struct dp_netdev *dp, struct dp_netdev_port *port)
1537 OVS_REQUIRES(dp->port_mutex)
1538 {
1539 hmap_remove(&dp->ports, &port->node);
1540 seq_change(dp->port_seq);
1541
1542 dp_netdev_del_port_from_all_pmds(dp, port);
1543
1544 if (netdev_is_pmd(port->netdev)) {
1545 int numa_id = netdev_get_numa_id(port->netdev);
1546
1547 /* PMD threads can not be on invalid numa node. */
1548 ovs_assert(ovs_numa_numa_id_is_valid(numa_id));
1549 /* If there is no netdev on the numa node, deletes the pmd threads
1550 * for that numa. */
1551 if (!has_pmd_rxq_for_numa(dp, numa_id)) {
1552 dp_netdev_del_pmds_on_numa(dp, numa_id);
1553 }
1554 }
1555
1556 port_destroy(port);
1557 }
1558
1559 static void
1560 answer_port_query(const struct dp_netdev_port *port,
1561 struct dpif_port *dpif_port)
1562 {
1563 dpif_port->name = xstrdup(netdev_get_name(port->netdev));
1564 dpif_port->type = xstrdup(port->type);
1565 dpif_port->port_no = port->port_no;
1566 }
1567
1568 static int
1569 dpif_netdev_port_query_by_number(const struct dpif *dpif, odp_port_t port_no,
1570 struct dpif_port *dpif_port)
1571 {
1572 struct dp_netdev *dp = get_dp_netdev(dpif);
1573 struct dp_netdev_port *port;
1574 int error;
1575
1576 ovs_mutex_lock(&dp->port_mutex);
1577 error = get_port_by_number(dp, port_no, &port);
1578 if (!error && dpif_port) {
1579 answer_port_query(port, dpif_port);
1580 }
1581 ovs_mutex_unlock(&dp->port_mutex);
1582
1583 return error;
1584 }
1585
1586 static int
1587 dpif_netdev_port_query_by_name(const struct dpif *dpif, const char *devname,
1588 struct dpif_port *dpif_port)
1589 {
1590 struct dp_netdev *dp = get_dp_netdev(dpif);
1591 struct dp_netdev_port *port;
1592 int error;
1593
1594 ovs_mutex_lock(&dp->port_mutex);
1595 error = get_port_by_name(dp, devname, &port);
1596 if (!error && dpif_port) {
1597 answer_port_query(port, dpif_port);
1598 }
1599 ovs_mutex_unlock(&dp->port_mutex);
1600
1601 return error;
1602 }
1603
1604 static void
1605 dp_netdev_flow_free(struct dp_netdev_flow *flow)
1606 {
1607 dp_netdev_actions_free(dp_netdev_flow_get_actions(flow));
1608 free(flow);
1609 }
1610
1611 static void dp_netdev_flow_unref(struct dp_netdev_flow *flow)
1612 {
1613 if (ovs_refcount_unref_relaxed(&flow->ref_cnt) == 1) {
1614 ovsrcu_postpone(dp_netdev_flow_free, flow);
1615 }
1616 }
1617
1618 static uint32_t
1619 dp_netdev_flow_hash(const ovs_u128 *ufid)
1620 {
1621 return ufid->u32[0];
1622 }
1623
1624 static inline struct dpcls *
1625 dp_netdev_pmd_lookup_dpcls(struct dp_netdev_pmd_thread *pmd,
1626 odp_port_t in_port)
1627 {
1628 struct dpcls *cls;
1629 uint32_t hash = hash_port_no(in_port);
1630 CMAP_FOR_EACH_WITH_HASH (cls, node, hash, &pmd->classifiers) {
1631 if (cls->in_port == in_port) {
1632 /* Port classifier exists already */
1633 return cls;
1634 }
1635 }
1636 return NULL;
1637 }
1638
1639 static inline struct dpcls *
1640 dp_netdev_pmd_find_dpcls(struct dp_netdev_pmd_thread *pmd,
1641 odp_port_t in_port)
1642 OVS_REQUIRES(pmd->flow_mutex)
1643 {
1644 struct dpcls *cls = dp_netdev_pmd_lookup_dpcls(pmd, in_port);
1645 uint32_t hash = hash_port_no(in_port);
1646
1647 if (!cls) {
1648 /* Create new classifier for in_port */
1649 cls = xmalloc(sizeof(*cls));
1650 dpcls_init(cls);
1651 cls->in_port = in_port;
1652 cmap_insert(&pmd->classifiers, &cls->node, hash);
1653 VLOG_DBG("Creating dpcls %p for in_port %d", cls, in_port);
1654 }
1655 return cls;
1656 }
1657
1658 static void
1659 dp_netdev_pmd_remove_flow(struct dp_netdev_pmd_thread *pmd,
1660 struct dp_netdev_flow *flow)
1661 OVS_REQUIRES(pmd->flow_mutex)
1662 {
1663 struct cmap_node *node = CONST_CAST(struct cmap_node *, &flow->node);
1664 struct dpcls *cls;
1665 odp_port_t in_port = flow->flow.in_port.odp_port;
1666
1667 cls = dp_netdev_pmd_lookup_dpcls(pmd, in_port);
1668 ovs_assert(cls != NULL);
1669 dpcls_remove(cls, &flow->cr);
1670 cmap_remove(&pmd->flow_table, node, dp_netdev_flow_hash(&flow->ufid));
1671 flow->dead = true;
1672
1673 dp_netdev_flow_unref(flow);
1674 }
1675
1676 static void
1677 dp_netdev_pmd_flow_flush(struct dp_netdev_pmd_thread *pmd)
1678 {
1679 struct dp_netdev_flow *netdev_flow;
1680
1681 ovs_mutex_lock(&pmd->flow_mutex);
1682 CMAP_FOR_EACH (netdev_flow, node, &pmd->flow_table) {
1683 dp_netdev_pmd_remove_flow(pmd, netdev_flow);
1684 }
1685 ovs_mutex_unlock(&pmd->flow_mutex);
1686 }
1687
1688 static int
1689 dpif_netdev_flow_flush(struct dpif *dpif)
1690 {
1691 struct dp_netdev *dp = get_dp_netdev(dpif);
1692 struct dp_netdev_pmd_thread *pmd;
1693
1694 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
1695 dp_netdev_pmd_flow_flush(pmd);
1696 }
1697
1698 return 0;
1699 }
1700
1701 struct dp_netdev_port_state {
1702 struct hmap_position position;
1703 char *name;
1704 };
1705
1706 static int
1707 dpif_netdev_port_dump_start(const struct dpif *dpif OVS_UNUSED, void **statep)
1708 {
1709 *statep = xzalloc(sizeof(struct dp_netdev_port_state));
1710 return 0;
1711 }
1712
1713 static int
1714 dpif_netdev_port_dump_next(const struct dpif *dpif, void *state_,
1715 struct dpif_port *dpif_port)
1716 {
1717 struct dp_netdev_port_state *state = state_;
1718 struct dp_netdev *dp = get_dp_netdev(dpif);
1719 struct hmap_node *node;
1720 int retval;
1721
1722 ovs_mutex_lock(&dp->port_mutex);
1723 node = hmap_at_position(&dp->ports, &state->position);
1724 if (node) {
1725 struct dp_netdev_port *port;
1726
1727 port = CONTAINER_OF(node, struct dp_netdev_port, node);
1728
1729 free(state->name);
1730 state->name = xstrdup(netdev_get_name(port->netdev));
1731 dpif_port->name = state->name;
1732 dpif_port->type = port->type;
1733 dpif_port->port_no = port->port_no;
1734
1735 retval = 0;
1736 } else {
1737 retval = EOF;
1738 }
1739 ovs_mutex_unlock(&dp->port_mutex);
1740
1741 return retval;
1742 }
1743
1744 static int
1745 dpif_netdev_port_dump_done(const struct dpif *dpif OVS_UNUSED, void *state_)
1746 {
1747 struct dp_netdev_port_state *state = state_;
1748 free(state->name);
1749 free(state);
1750 return 0;
1751 }
1752
1753 static int
1754 dpif_netdev_port_poll(const struct dpif *dpif_, char **devnamep OVS_UNUSED)
1755 {
1756 struct dpif_netdev *dpif = dpif_netdev_cast(dpif_);
1757 uint64_t new_port_seq;
1758 int error;
1759
1760 new_port_seq = seq_read(dpif->dp->port_seq);
1761 if (dpif->last_port_seq != new_port_seq) {
1762 dpif->last_port_seq = new_port_seq;
1763 error = ENOBUFS;
1764 } else {
1765 error = EAGAIN;
1766 }
1767
1768 return error;
1769 }
1770
1771 static void
1772 dpif_netdev_port_poll_wait(const struct dpif *dpif_)
1773 {
1774 struct dpif_netdev *dpif = dpif_netdev_cast(dpif_);
1775
1776 seq_wait(dpif->dp->port_seq, dpif->last_port_seq);
1777 }
1778
1779 static struct dp_netdev_flow *
1780 dp_netdev_flow_cast(const struct dpcls_rule *cr)
1781 {
1782 return cr ? CONTAINER_OF(cr, struct dp_netdev_flow, cr) : NULL;
1783 }
1784
1785 static bool dp_netdev_flow_ref(struct dp_netdev_flow *flow)
1786 {
1787 return ovs_refcount_try_ref_rcu(&flow->ref_cnt);
1788 }
1789
1790 /* netdev_flow_key utilities.
1791 *
1792 * netdev_flow_key is basically a miniflow. We use these functions
1793 * (netdev_flow_key_clone, netdev_flow_key_equal, ...) instead of the miniflow
1794 * functions (miniflow_clone_inline, miniflow_equal, ...), because:
1795 *
1796 * - Since we are dealing exclusively with miniflows created by
1797 * miniflow_extract(), if the map is different the miniflow is different.
1798 * Therefore we can be faster by comparing the map and the miniflow in a
1799 * single memcmp().
1800 * - These functions can be inlined by the compiler. */
1801
1802 /* Given the number of bits set in miniflow's maps, returns the size of the
1803 * 'netdev_flow_key.mf' */
1804 static inline size_t
1805 netdev_flow_key_size(size_t flow_u64s)
1806 {
1807 return sizeof(struct miniflow) + MINIFLOW_VALUES_SIZE(flow_u64s);
1808 }
1809
1810 static inline bool
1811 netdev_flow_key_equal(const struct netdev_flow_key *a,
1812 const struct netdev_flow_key *b)
1813 {
1814 /* 'b->len' may be not set yet. */
1815 return a->hash == b->hash && !memcmp(&a->mf, &b->mf, a->len);
1816 }
1817
1818 /* Used to compare 'netdev_flow_key' in the exact match cache to a miniflow.
1819 * The maps are compared bitwise, so both 'key->mf' and 'mf' must have been
1820 * generated by miniflow_extract. */
1821 static inline bool
1822 netdev_flow_key_equal_mf(const struct netdev_flow_key *key,
1823 const struct miniflow *mf)
1824 {
1825 return !memcmp(&key->mf, mf, key->len);
1826 }
1827
1828 static inline void
1829 netdev_flow_key_clone(struct netdev_flow_key *dst,
1830 const struct netdev_flow_key *src)
1831 {
1832 memcpy(dst, src,
1833 offsetof(struct netdev_flow_key, mf) + src->len);
1834 }
1835
1836 /* Slow. */
1837 static void
1838 netdev_flow_key_from_flow(struct netdev_flow_key *dst,
1839 const struct flow *src)
1840 {
1841 struct dp_packet packet;
1842 uint64_t buf_stub[512 / 8];
1843
1844 dp_packet_use_stub(&packet, buf_stub, sizeof buf_stub);
1845 pkt_metadata_from_flow(&packet.md, src);
1846 flow_compose(&packet, src);
1847 miniflow_extract(&packet, &dst->mf);
1848 dp_packet_uninit(&packet);
1849
1850 dst->len = netdev_flow_key_size(miniflow_n_values(&dst->mf));
1851 dst->hash = 0; /* Not computed yet. */
1852 }
1853
1854 /* Initialize a netdev_flow_key 'mask' from 'match'. */
1855 static inline void
1856 netdev_flow_mask_init(struct netdev_flow_key *mask,
1857 const struct match *match)
1858 {
1859 uint64_t *dst = miniflow_values(&mask->mf);
1860 struct flowmap fmap;
1861 uint32_t hash = 0;
1862 size_t idx;
1863
1864 /* Only check masks that make sense for the flow. */
1865 flow_wc_map(&match->flow, &fmap);
1866 flowmap_init(&mask->mf.map);
1867
1868 FLOWMAP_FOR_EACH_INDEX(idx, fmap) {
1869 uint64_t mask_u64 = flow_u64_value(&match->wc.masks, idx);
1870
1871 if (mask_u64) {
1872 flowmap_set(&mask->mf.map, idx, 1);
1873 *dst++ = mask_u64;
1874 hash = hash_add64(hash, mask_u64);
1875 }
1876 }
1877
1878 map_t map;
1879
1880 FLOWMAP_FOR_EACH_MAP (map, mask->mf.map) {
1881 hash = hash_add64(hash, map);
1882 }
1883
1884 size_t n = dst - miniflow_get_values(&mask->mf);
1885
1886 mask->hash = hash_finish(hash, n * 8);
1887 mask->len = netdev_flow_key_size(n);
1888 }
1889
1890 /* Initializes 'dst' as a copy of 'flow' masked with 'mask'. */
1891 static inline void
1892 netdev_flow_key_init_masked(struct netdev_flow_key *dst,
1893 const struct flow *flow,
1894 const struct netdev_flow_key *mask)
1895 {
1896 uint64_t *dst_u64 = miniflow_values(&dst->mf);
1897 const uint64_t *mask_u64 = miniflow_get_values(&mask->mf);
1898 uint32_t hash = 0;
1899 uint64_t value;
1900
1901 dst->len = mask->len;
1902 dst->mf = mask->mf; /* Copy maps. */
1903
1904 FLOW_FOR_EACH_IN_MAPS(value, flow, mask->mf.map) {
1905 *dst_u64 = value & *mask_u64++;
1906 hash = hash_add64(hash, *dst_u64++);
1907 }
1908 dst->hash = hash_finish(hash,
1909 (dst_u64 - miniflow_get_values(&dst->mf)) * 8);
1910 }
1911
1912 /* Iterate through netdev_flow_key TNL u64 values specified by 'FLOWMAP'. */
1913 #define NETDEV_FLOW_KEY_FOR_EACH_IN_FLOWMAP(VALUE, KEY, FLOWMAP) \
1914 MINIFLOW_FOR_EACH_IN_FLOWMAP(VALUE, &(KEY)->mf, FLOWMAP)
1915
1916 /* Returns a hash value for the bits of 'key' where there are 1-bits in
1917 * 'mask'. */
1918 static inline uint32_t
1919 netdev_flow_key_hash_in_mask(const struct netdev_flow_key *key,
1920 const struct netdev_flow_key *mask)
1921 {
1922 const uint64_t *p = miniflow_get_values(&mask->mf);
1923 uint32_t hash = 0;
1924 uint64_t value;
1925
1926 NETDEV_FLOW_KEY_FOR_EACH_IN_FLOWMAP(value, key, mask->mf.map) {
1927 hash = hash_add64(hash, value & *p++);
1928 }
1929
1930 return hash_finish(hash, (p - miniflow_get_values(&mask->mf)) * 8);
1931 }
1932
1933 static inline bool
1934 emc_entry_alive(struct emc_entry *ce)
1935 {
1936 return ce->flow && !ce->flow->dead;
1937 }
1938
1939 static void
1940 emc_clear_entry(struct emc_entry *ce)
1941 {
1942 if (ce->flow) {
1943 dp_netdev_flow_unref(ce->flow);
1944 ce->flow = NULL;
1945 }
1946 }
1947
1948 static inline void
1949 emc_change_entry(struct emc_entry *ce, struct dp_netdev_flow *flow,
1950 const struct netdev_flow_key *key)
1951 {
1952 if (ce->flow != flow) {
1953 if (ce->flow) {
1954 dp_netdev_flow_unref(ce->flow);
1955 }
1956
1957 if (dp_netdev_flow_ref(flow)) {
1958 ce->flow = flow;
1959 } else {
1960 ce->flow = NULL;
1961 }
1962 }
1963 if (key) {
1964 netdev_flow_key_clone(&ce->key, key);
1965 }
1966 }
1967
1968 static inline void
1969 emc_insert(struct emc_cache *cache, const struct netdev_flow_key *key,
1970 struct dp_netdev_flow *flow)
1971 {
1972 struct emc_entry *to_be_replaced = NULL;
1973 struct emc_entry *current_entry;
1974
1975 EMC_FOR_EACH_POS_WITH_HASH(cache, current_entry, key->hash) {
1976 if (netdev_flow_key_equal(&current_entry->key, key)) {
1977 /* We found the entry with the 'mf' miniflow */
1978 emc_change_entry(current_entry, flow, NULL);
1979 return;
1980 }
1981
1982 /* Replacement policy: put the flow in an empty (not alive) entry, or
1983 * in the first entry where it can be */
1984 if (!to_be_replaced
1985 || (emc_entry_alive(to_be_replaced)
1986 && !emc_entry_alive(current_entry))
1987 || current_entry->key.hash < to_be_replaced->key.hash) {
1988 to_be_replaced = current_entry;
1989 }
1990 }
1991 /* We didn't find the miniflow in the cache.
1992 * The 'to_be_replaced' entry is where the new flow will be stored */
1993
1994 emc_change_entry(to_be_replaced, flow, key);
1995 }
1996
1997 static inline struct dp_netdev_flow *
1998 emc_lookup(struct emc_cache *cache, const struct netdev_flow_key *key)
1999 {
2000 struct emc_entry *current_entry;
2001
2002 EMC_FOR_EACH_POS_WITH_HASH(cache, current_entry, key->hash) {
2003 if (current_entry->key.hash == key->hash
2004 && emc_entry_alive(current_entry)
2005 && netdev_flow_key_equal_mf(&current_entry->key, &key->mf)) {
2006
2007 /* We found the entry with the 'key->mf' miniflow */
2008 return current_entry->flow;
2009 }
2010 }
2011
2012 return NULL;
2013 }
2014
2015 static struct dp_netdev_flow *
2016 dp_netdev_pmd_lookup_flow(struct dp_netdev_pmd_thread *pmd,
2017 const struct netdev_flow_key *key,
2018 int *lookup_num_p)
2019 {
2020 struct dpcls *cls;
2021 struct dpcls_rule *rule;
2022 odp_port_t in_port = u32_to_odp(MINIFLOW_GET_U32(&key->mf, in_port));
2023 struct dp_netdev_flow *netdev_flow = NULL;
2024
2025 cls = dp_netdev_pmd_lookup_dpcls(pmd, in_port);
2026 if (OVS_LIKELY(cls)) {
2027 dpcls_lookup(cls, key, &rule, 1, lookup_num_p);
2028 netdev_flow = dp_netdev_flow_cast(rule);
2029 }
2030 return netdev_flow;
2031 }
2032
2033 static struct dp_netdev_flow *
2034 dp_netdev_pmd_find_flow(const struct dp_netdev_pmd_thread *pmd,
2035 const ovs_u128 *ufidp, const struct nlattr *key,
2036 size_t key_len)
2037 {
2038 struct dp_netdev_flow *netdev_flow;
2039 struct flow flow;
2040 ovs_u128 ufid;
2041
2042 /* If a UFID is not provided, determine one based on the key. */
2043 if (!ufidp && key && key_len
2044 && !dpif_netdev_flow_from_nlattrs(key, key_len, &flow)) {
2045 dpif_flow_hash(pmd->dp->dpif, &flow, sizeof flow, &ufid);
2046 ufidp = &ufid;
2047 }
2048
2049 if (ufidp) {
2050 CMAP_FOR_EACH_WITH_HASH (netdev_flow, node, dp_netdev_flow_hash(ufidp),
2051 &pmd->flow_table) {
2052 if (ovs_u128_equals(netdev_flow->ufid, *ufidp)) {
2053 return netdev_flow;
2054 }
2055 }
2056 }
2057
2058 return NULL;
2059 }
2060
2061 static void
2062 get_dpif_flow_stats(const struct dp_netdev_flow *netdev_flow_,
2063 struct dpif_flow_stats *stats)
2064 {
2065 struct dp_netdev_flow *netdev_flow;
2066 unsigned long long n;
2067 long long used;
2068 uint16_t flags;
2069
2070 netdev_flow = CONST_CAST(struct dp_netdev_flow *, netdev_flow_);
2071
2072 atomic_read_relaxed(&netdev_flow->stats.packet_count, &n);
2073 stats->n_packets = n;
2074 atomic_read_relaxed(&netdev_flow->stats.byte_count, &n);
2075 stats->n_bytes = n;
2076 atomic_read_relaxed(&netdev_flow->stats.used, &used);
2077 stats->used = used;
2078 atomic_read_relaxed(&netdev_flow->stats.tcp_flags, &flags);
2079 stats->tcp_flags = flags;
2080 }
2081
2082 /* Converts to the dpif_flow format, using 'key_buf' and 'mask_buf' for
2083 * storing the netlink-formatted key/mask. 'key_buf' may be the same as
2084 * 'mask_buf'. Actions will be returned without copying, by relying on RCU to
2085 * protect them. */
2086 static void
2087 dp_netdev_flow_to_dpif_flow(const struct dp_netdev_flow *netdev_flow,
2088 struct ofpbuf *key_buf, struct ofpbuf *mask_buf,
2089 struct dpif_flow *flow, bool terse)
2090 {
2091 if (terse) {
2092 memset(flow, 0, sizeof *flow);
2093 } else {
2094 struct flow_wildcards wc;
2095 struct dp_netdev_actions *actions;
2096 size_t offset;
2097 struct odp_flow_key_parms odp_parms = {
2098 .flow = &netdev_flow->flow,
2099 .mask = &wc.masks,
2100 .support = dp_netdev_support,
2101 };
2102
2103 miniflow_expand(&netdev_flow->cr.mask->mf, &wc.masks);
2104
2105 /* Key */
2106 offset = key_buf->size;
2107 flow->key = ofpbuf_tail(key_buf);
2108 odp_flow_key_from_flow(&odp_parms, key_buf);
2109 flow->key_len = key_buf->size - offset;
2110
2111 /* Mask */
2112 offset = mask_buf->size;
2113 flow->mask = ofpbuf_tail(mask_buf);
2114 odp_parms.key_buf = key_buf;
2115 odp_flow_key_from_mask(&odp_parms, mask_buf);
2116 flow->mask_len = mask_buf->size - offset;
2117
2118 /* Actions */
2119 actions = dp_netdev_flow_get_actions(netdev_flow);
2120 flow->actions = actions->actions;
2121 flow->actions_len = actions->size;
2122 }
2123
2124 flow->ufid = netdev_flow->ufid;
2125 flow->ufid_present = true;
2126 flow->pmd_id = netdev_flow->pmd_id;
2127 get_dpif_flow_stats(netdev_flow, &flow->stats);
2128 }
2129
2130 static int
2131 dpif_netdev_mask_from_nlattrs(const struct nlattr *key, uint32_t key_len,
2132 const struct nlattr *mask_key,
2133 uint32_t mask_key_len, const struct flow *flow,
2134 struct flow_wildcards *wc)
2135 {
2136 enum odp_key_fitness fitness;
2137
2138 fitness = odp_flow_key_to_mask(mask_key, mask_key_len, wc, flow);
2139 if (fitness) {
2140 /* This should not happen: it indicates that
2141 * odp_flow_key_from_mask() and odp_flow_key_to_mask()
2142 * disagree on the acceptable form of a mask. Log the problem
2143 * as an error, with enough details to enable debugging. */
2144 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
2145
2146 if (!VLOG_DROP_ERR(&rl)) {
2147 struct ds s;
2148
2149 ds_init(&s);
2150 odp_flow_format(key, key_len, mask_key, mask_key_len, NULL, &s,
2151 true);
2152 VLOG_ERR("internal error parsing flow mask %s (%s)",
2153 ds_cstr(&s), odp_key_fitness_to_string(fitness));
2154 ds_destroy(&s);
2155 }
2156
2157 return EINVAL;
2158 }
2159
2160 return 0;
2161 }
2162
2163 static int
2164 dpif_netdev_flow_from_nlattrs(const struct nlattr *key, uint32_t key_len,
2165 struct flow *flow)
2166 {
2167 odp_port_t in_port;
2168
2169 if (odp_flow_key_to_flow(key, key_len, flow)) {
2170 /* This should not happen: it indicates that odp_flow_key_from_flow()
2171 * and odp_flow_key_to_flow() disagree on the acceptable form of a
2172 * flow. Log the problem as an error, with enough details to enable
2173 * debugging. */
2174 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
2175
2176 if (!VLOG_DROP_ERR(&rl)) {
2177 struct ds s;
2178
2179 ds_init(&s);
2180 odp_flow_format(key, key_len, NULL, 0, NULL, &s, true);
2181 VLOG_ERR("internal error parsing flow key %s", ds_cstr(&s));
2182 ds_destroy(&s);
2183 }
2184
2185 return EINVAL;
2186 }
2187
2188 in_port = flow->in_port.odp_port;
2189 if (!is_valid_port_number(in_port) && in_port != ODPP_NONE) {
2190 return EINVAL;
2191 }
2192
2193 if (flow->ct_state & DP_NETDEV_CS_UNSUPPORTED_MASK) {
2194 return EINVAL;
2195 }
2196
2197 return 0;
2198 }
2199
2200 static int
2201 dpif_netdev_flow_get(const struct dpif *dpif, const struct dpif_flow_get *get)
2202 {
2203 struct dp_netdev *dp = get_dp_netdev(dpif);
2204 struct dp_netdev_flow *netdev_flow;
2205 struct dp_netdev_pmd_thread *pmd;
2206 struct hmapx to_find = HMAPX_INITIALIZER(&to_find);
2207 struct hmapx_node *node;
2208 int error = EINVAL;
2209
2210 if (get->pmd_id == PMD_ID_NULL) {
2211 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
2212 if (dp_netdev_pmd_try_ref(pmd) && !hmapx_add(&to_find, pmd)) {
2213 dp_netdev_pmd_unref(pmd);
2214 }
2215 }
2216 } else {
2217 pmd = dp_netdev_get_pmd(dp, get->pmd_id);
2218 if (!pmd) {
2219 goto out;
2220 }
2221 hmapx_add(&to_find, pmd);
2222 }
2223
2224 if (!hmapx_count(&to_find)) {
2225 goto out;
2226 }
2227
2228 HMAPX_FOR_EACH (node, &to_find) {
2229 pmd = (struct dp_netdev_pmd_thread *) node->data;
2230 netdev_flow = dp_netdev_pmd_find_flow(pmd, get->ufid, get->key,
2231 get->key_len);
2232 if (netdev_flow) {
2233 dp_netdev_flow_to_dpif_flow(netdev_flow, get->buffer, get->buffer,
2234 get->flow, false);
2235 error = 0;
2236 break;
2237 } else {
2238 error = ENOENT;
2239 }
2240 }
2241
2242 HMAPX_FOR_EACH (node, &to_find) {
2243 pmd = (struct dp_netdev_pmd_thread *) node->data;
2244 dp_netdev_pmd_unref(pmd);
2245 }
2246 out:
2247 hmapx_destroy(&to_find);
2248 return error;
2249 }
2250
2251 static struct dp_netdev_flow *
2252 dp_netdev_flow_add(struct dp_netdev_pmd_thread *pmd,
2253 struct match *match, const ovs_u128 *ufid,
2254 const struct nlattr *actions, size_t actions_len)
2255 OVS_REQUIRES(pmd->flow_mutex)
2256 {
2257 struct dp_netdev_flow *flow;
2258 struct netdev_flow_key mask;
2259 struct dpcls *cls;
2260 odp_port_t in_port = match->flow.in_port.odp_port;
2261
2262 netdev_flow_mask_init(&mask, match);
2263 /* Make sure wc does not have metadata. */
2264 ovs_assert(!FLOWMAP_HAS_FIELD(&mask.mf.map, metadata)
2265 && !FLOWMAP_HAS_FIELD(&mask.mf.map, regs));
2266
2267 /* Do not allocate extra space. */
2268 flow = xmalloc(sizeof *flow - sizeof flow->cr.flow.mf + mask.len);
2269 memset(&flow->stats, 0, sizeof flow->stats);
2270 flow->dead = false;
2271 flow->batch = NULL;
2272 *CONST_CAST(unsigned *, &flow->pmd_id) = pmd->core_id;
2273 *CONST_CAST(struct flow *, &flow->flow) = match->flow;
2274 *CONST_CAST(ovs_u128 *, &flow->ufid) = *ufid;
2275 ovs_refcount_init(&flow->ref_cnt);
2276 ovsrcu_set(&flow->actions, dp_netdev_actions_create(actions, actions_len));
2277
2278 netdev_flow_key_init_masked(&flow->cr.flow, &match->flow, &mask);
2279
2280 /* Select dpcls for in_port. Relies on in_port to be exact match */
2281 ovs_assert(match->wc.masks.in_port.odp_port == ODPP_NONE);
2282 cls = dp_netdev_pmd_find_dpcls(pmd, in_port);
2283 dpcls_insert(cls, &flow->cr, &mask);
2284
2285 cmap_insert(&pmd->flow_table, CONST_CAST(struct cmap_node *, &flow->node),
2286 dp_netdev_flow_hash(&flow->ufid));
2287
2288 if (OVS_UNLIKELY(VLOG_IS_DBG_ENABLED())) {
2289 struct ds ds = DS_EMPTY_INITIALIZER;
2290 struct ofpbuf key_buf, mask_buf;
2291 struct odp_flow_key_parms odp_parms = {
2292 .flow = &match->flow,
2293 .mask = &match->wc.masks,
2294 .support = dp_netdev_support,
2295 };
2296
2297 ofpbuf_init(&key_buf, 0);
2298 ofpbuf_init(&mask_buf, 0);
2299
2300 odp_flow_key_from_flow(&odp_parms, &key_buf);
2301 odp_parms.key_buf = &key_buf;
2302 odp_flow_key_from_mask(&odp_parms, &mask_buf);
2303
2304 ds_put_cstr(&ds, "flow_add: ");
2305 odp_format_ufid(ufid, &ds);
2306 ds_put_cstr(&ds, " ");
2307 odp_flow_format(key_buf.data, key_buf.size,
2308 mask_buf.data, mask_buf.size,
2309 NULL, &ds, false);
2310 ds_put_cstr(&ds, ", actions:");
2311 format_odp_actions(&ds, actions, actions_len);
2312
2313 VLOG_DBG_RL(&upcall_rl, "%s", ds_cstr(&ds));
2314
2315 ofpbuf_uninit(&key_buf);
2316 ofpbuf_uninit(&mask_buf);
2317 ds_destroy(&ds);
2318 }
2319
2320 return flow;
2321 }
2322
2323 static int
2324 dpif_netdev_flow_put(struct dpif *dpif, const struct dpif_flow_put *put)
2325 {
2326 struct dp_netdev *dp = get_dp_netdev(dpif);
2327 struct dp_netdev_flow *netdev_flow;
2328 struct netdev_flow_key key;
2329 struct dp_netdev_pmd_thread *pmd;
2330 struct match match;
2331 ovs_u128 ufid;
2332 unsigned pmd_id = put->pmd_id == PMD_ID_NULL
2333 ? NON_PMD_CORE_ID : put->pmd_id;
2334 int error;
2335
2336 error = dpif_netdev_flow_from_nlattrs(put->key, put->key_len, &match.flow);
2337 if (error) {
2338 return error;
2339 }
2340 error = dpif_netdev_mask_from_nlattrs(put->key, put->key_len,
2341 put->mask, put->mask_len,
2342 &match.flow, &match.wc);
2343 if (error) {
2344 return error;
2345 }
2346
2347 pmd = dp_netdev_get_pmd(dp, pmd_id);
2348 if (!pmd) {
2349 return EINVAL;
2350 }
2351
2352 /* Must produce a netdev_flow_key for lookup.
2353 * This interface is no longer performance critical, since it is not used
2354 * for upcall processing any more. */
2355 netdev_flow_key_from_flow(&key, &match.flow);
2356
2357 if (put->ufid) {
2358 ufid = *put->ufid;
2359 } else {
2360 dpif_flow_hash(dpif, &match.flow, sizeof match.flow, &ufid);
2361 }
2362
2363 ovs_mutex_lock(&pmd->flow_mutex);
2364 netdev_flow = dp_netdev_pmd_lookup_flow(pmd, &key, NULL);
2365 if (!netdev_flow) {
2366 if (put->flags & DPIF_FP_CREATE) {
2367 if (cmap_count(&pmd->flow_table) < MAX_FLOWS) {
2368 if (put->stats) {
2369 memset(put->stats, 0, sizeof *put->stats);
2370 }
2371 dp_netdev_flow_add(pmd, &match, &ufid, put->actions,
2372 put->actions_len);
2373 error = 0;
2374 } else {
2375 error = EFBIG;
2376 }
2377 } else {
2378 error = ENOENT;
2379 }
2380 } else {
2381 if (put->flags & DPIF_FP_MODIFY
2382 && flow_equal(&match.flow, &netdev_flow->flow)) {
2383 struct dp_netdev_actions *new_actions;
2384 struct dp_netdev_actions *old_actions;
2385
2386 new_actions = dp_netdev_actions_create(put->actions,
2387 put->actions_len);
2388
2389 old_actions = dp_netdev_flow_get_actions(netdev_flow);
2390 ovsrcu_set(&netdev_flow->actions, new_actions);
2391
2392 if (put->stats) {
2393 get_dpif_flow_stats(netdev_flow, put->stats);
2394 }
2395 if (put->flags & DPIF_FP_ZERO_STATS) {
2396 /* XXX: The userspace datapath uses thread local statistics
2397 * (for flows), which should be updated only by the owning
2398 * thread. Since we cannot write on stats memory here,
2399 * we choose not to support this flag. Please note:
2400 * - This feature is currently used only by dpctl commands with
2401 * option --clear.
2402 * - Should the need arise, this operation can be implemented
2403 * by keeping a base value (to be update here) for each
2404 * counter, and subtracting it before outputting the stats */
2405 error = EOPNOTSUPP;
2406 }
2407
2408 ovsrcu_postpone(dp_netdev_actions_free, old_actions);
2409 } else if (put->flags & DPIF_FP_CREATE) {
2410 error = EEXIST;
2411 } else {
2412 /* Overlapping flow. */
2413 error = EINVAL;
2414 }
2415 }
2416 ovs_mutex_unlock(&pmd->flow_mutex);
2417 dp_netdev_pmd_unref(pmd);
2418
2419 return error;
2420 }
2421
2422 static int
2423 dpif_netdev_flow_del(struct dpif *dpif, const struct dpif_flow_del *del)
2424 {
2425 struct dp_netdev *dp = get_dp_netdev(dpif);
2426 struct dp_netdev_flow *netdev_flow;
2427 struct dp_netdev_pmd_thread *pmd;
2428 unsigned pmd_id = del->pmd_id == PMD_ID_NULL
2429 ? NON_PMD_CORE_ID : del->pmd_id;
2430 int error = 0;
2431
2432 pmd = dp_netdev_get_pmd(dp, pmd_id);
2433 if (!pmd) {
2434 return EINVAL;
2435 }
2436
2437 ovs_mutex_lock(&pmd->flow_mutex);
2438 netdev_flow = dp_netdev_pmd_find_flow(pmd, del->ufid, del->key,
2439 del->key_len);
2440 if (netdev_flow) {
2441 if (del->stats) {
2442 get_dpif_flow_stats(netdev_flow, del->stats);
2443 }
2444 dp_netdev_pmd_remove_flow(pmd, netdev_flow);
2445 } else {
2446 error = ENOENT;
2447 }
2448 ovs_mutex_unlock(&pmd->flow_mutex);
2449 dp_netdev_pmd_unref(pmd);
2450
2451 return error;
2452 }
2453
2454 struct dpif_netdev_flow_dump {
2455 struct dpif_flow_dump up;
2456 struct cmap_position poll_thread_pos;
2457 struct cmap_position flow_pos;
2458 struct dp_netdev_pmd_thread *cur_pmd;
2459 int status;
2460 struct ovs_mutex mutex;
2461 };
2462
2463 static struct dpif_netdev_flow_dump *
2464 dpif_netdev_flow_dump_cast(struct dpif_flow_dump *dump)
2465 {
2466 return CONTAINER_OF(dump, struct dpif_netdev_flow_dump, up);
2467 }
2468
2469 static struct dpif_flow_dump *
2470 dpif_netdev_flow_dump_create(const struct dpif *dpif_, bool terse)
2471 {
2472 struct dpif_netdev_flow_dump *dump;
2473
2474 dump = xzalloc(sizeof *dump);
2475 dpif_flow_dump_init(&dump->up, dpif_);
2476 dump->up.terse = terse;
2477 ovs_mutex_init(&dump->mutex);
2478
2479 return &dump->up;
2480 }
2481
2482 static int
2483 dpif_netdev_flow_dump_destroy(struct dpif_flow_dump *dump_)
2484 {
2485 struct dpif_netdev_flow_dump *dump = dpif_netdev_flow_dump_cast(dump_);
2486
2487 ovs_mutex_destroy(&dump->mutex);
2488 free(dump);
2489 return 0;
2490 }
2491
2492 struct dpif_netdev_flow_dump_thread {
2493 struct dpif_flow_dump_thread up;
2494 struct dpif_netdev_flow_dump *dump;
2495 struct odputil_keybuf keybuf[FLOW_DUMP_MAX_BATCH];
2496 struct odputil_keybuf maskbuf[FLOW_DUMP_MAX_BATCH];
2497 };
2498
2499 static struct dpif_netdev_flow_dump_thread *
2500 dpif_netdev_flow_dump_thread_cast(struct dpif_flow_dump_thread *thread)
2501 {
2502 return CONTAINER_OF(thread, struct dpif_netdev_flow_dump_thread, up);
2503 }
2504
2505 static struct dpif_flow_dump_thread *
2506 dpif_netdev_flow_dump_thread_create(struct dpif_flow_dump *dump_)
2507 {
2508 struct dpif_netdev_flow_dump *dump = dpif_netdev_flow_dump_cast(dump_);
2509 struct dpif_netdev_flow_dump_thread *thread;
2510
2511 thread = xmalloc(sizeof *thread);
2512 dpif_flow_dump_thread_init(&thread->up, &dump->up);
2513 thread->dump = dump;
2514 return &thread->up;
2515 }
2516
2517 static void
2518 dpif_netdev_flow_dump_thread_destroy(struct dpif_flow_dump_thread *thread_)
2519 {
2520 struct dpif_netdev_flow_dump_thread *thread
2521 = dpif_netdev_flow_dump_thread_cast(thread_);
2522
2523 free(thread);
2524 }
2525
2526 static int
2527 dpif_netdev_flow_dump_next(struct dpif_flow_dump_thread *thread_,
2528 struct dpif_flow *flows, int max_flows)
2529 {
2530 struct dpif_netdev_flow_dump_thread *thread
2531 = dpif_netdev_flow_dump_thread_cast(thread_);
2532 struct dpif_netdev_flow_dump *dump = thread->dump;
2533 struct dp_netdev_flow *netdev_flows[FLOW_DUMP_MAX_BATCH];
2534 int n_flows = 0;
2535 int i;
2536
2537 ovs_mutex_lock(&dump->mutex);
2538 if (!dump->status) {
2539 struct dpif_netdev *dpif = dpif_netdev_cast(thread->up.dpif);
2540 struct dp_netdev *dp = get_dp_netdev(&dpif->dpif);
2541 struct dp_netdev_pmd_thread *pmd = dump->cur_pmd;
2542 int flow_limit = MIN(max_flows, FLOW_DUMP_MAX_BATCH);
2543
2544 /* First call to dump_next(), extracts the first pmd thread.
2545 * If there is no pmd thread, returns immediately. */
2546 if (!pmd) {
2547 pmd = dp_netdev_pmd_get_next(dp, &dump->poll_thread_pos);
2548 if (!pmd) {
2549 ovs_mutex_unlock(&dump->mutex);
2550 return n_flows;
2551
2552 }
2553 }
2554
2555 do {
2556 for (n_flows = 0; n_flows < flow_limit; n_flows++) {
2557 struct cmap_node *node;
2558
2559 node = cmap_next_position(&pmd->flow_table, &dump->flow_pos);
2560 if (!node) {
2561 break;
2562 }
2563 netdev_flows[n_flows] = CONTAINER_OF(node,
2564 struct dp_netdev_flow,
2565 node);
2566 }
2567 /* When finishing dumping the current pmd thread, moves to
2568 * the next. */
2569 if (n_flows < flow_limit) {
2570 memset(&dump->flow_pos, 0, sizeof dump->flow_pos);
2571 dp_netdev_pmd_unref(pmd);
2572 pmd = dp_netdev_pmd_get_next(dp, &dump->poll_thread_pos);
2573 if (!pmd) {
2574 dump->status = EOF;
2575 break;
2576 }
2577 }
2578 /* Keeps the reference to next caller. */
2579 dump->cur_pmd = pmd;
2580
2581 /* If the current dump is empty, do not exit the loop, since the
2582 * remaining pmds could have flows to be dumped. Just dumps again
2583 * on the new 'pmd'. */
2584 } while (!n_flows);
2585 }
2586 ovs_mutex_unlock(&dump->mutex);
2587
2588 for (i = 0; i < n_flows; i++) {
2589 struct odputil_keybuf *maskbuf = &thread->maskbuf[i];
2590 struct odputil_keybuf *keybuf = &thread->keybuf[i];
2591 struct dp_netdev_flow *netdev_flow = netdev_flows[i];
2592 struct dpif_flow *f = &flows[i];
2593 struct ofpbuf key, mask;
2594
2595 ofpbuf_use_stack(&key, keybuf, sizeof *keybuf);
2596 ofpbuf_use_stack(&mask, maskbuf, sizeof *maskbuf);
2597 dp_netdev_flow_to_dpif_flow(netdev_flow, &key, &mask, f,
2598 dump->up.terse);
2599 }
2600
2601 return n_flows;
2602 }
2603
2604 static int
2605 dpif_netdev_execute(struct dpif *dpif, struct dpif_execute *execute)
2606 OVS_NO_THREAD_SAFETY_ANALYSIS
2607 {
2608 struct dp_netdev *dp = get_dp_netdev(dpif);
2609 struct dp_netdev_pmd_thread *pmd;
2610 struct dp_packet_batch pp;
2611
2612 if (dp_packet_size(execute->packet) < ETH_HEADER_LEN ||
2613 dp_packet_size(execute->packet) > UINT16_MAX) {
2614 return EINVAL;
2615 }
2616
2617 /* Tries finding the 'pmd'. If NULL is returned, that means
2618 * the current thread is a non-pmd thread and should use
2619 * dp_netdev_get_pmd(dp, NON_PMD_CORE_ID). */
2620 pmd = ovsthread_getspecific(dp->per_pmd_key);
2621 if (!pmd) {
2622 pmd = dp_netdev_get_pmd(dp, NON_PMD_CORE_ID);
2623 if (!pmd) {
2624 return EBUSY;
2625 }
2626 }
2627
2628 /* If the current thread is non-pmd thread, acquires
2629 * the 'non_pmd_mutex'. */
2630 if (pmd->core_id == NON_PMD_CORE_ID) {
2631 ovs_mutex_lock(&dp->non_pmd_mutex);
2632 }
2633
2634 /* The action processing expects the RSS hash to be valid, because
2635 * it's always initialized at the beginning of datapath processing.
2636 * In this case, though, 'execute->packet' may not have gone through
2637 * the datapath at all, it may have been generated by the upper layer
2638 * (OpenFlow packet-out, BFD frame, ...). */
2639 if (!dp_packet_rss_valid(execute->packet)) {
2640 dp_packet_set_rss_hash(execute->packet,
2641 flow_hash_5tuple(execute->flow, 0));
2642 }
2643
2644 packet_batch_init_packet(&pp, execute->packet);
2645 dp_netdev_execute_actions(pmd, &pp, false, execute->flow,
2646 execute->actions, execute->actions_len,
2647 time_msec());
2648
2649 if (pmd->core_id == NON_PMD_CORE_ID) {
2650 ovs_mutex_unlock(&dp->non_pmd_mutex);
2651 dp_netdev_pmd_unref(pmd);
2652 }
2653
2654 return 0;
2655 }
2656
2657 static void
2658 dpif_netdev_operate(struct dpif *dpif, struct dpif_op **ops, size_t n_ops)
2659 {
2660 size_t i;
2661
2662 for (i = 0; i < n_ops; i++) {
2663 struct dpif_op *op = ops[i];
2664
2665 switch (op->type) {
2666 case DPIF_OP_FLOW_PUT:
2667 op->error = dpif_netdev_flow_put(dpif, &op->u.flow_put);
2668 break;
2669
2670 case DPIF_OP_FLOW_DEL:
2671 op->error = dpif_netdev_flow_del(dpif, &op->u.flow_del);
2672 break;
2673
2674 case DPIF_OP_EXECUTE:
2675 op->error = dpif_netdev_execute(dpif, &op->u.execute);
2676 break;
2677
2678 case DPIF_OP_FLOW_GET:
2679 op->error = dpif_netdev_flow_get(dpif, &op->u.flow_get);
2680 break;
2681 }
2682 }
2683 }
2684
2685 /* Changes the number or the affinity of pmd threads. The changes are actually
2686 * applied in dpif_netdev_run(). */
2687 static int
2688 dpif_netdev_pmd_set(struct dpif *dpif, const char *cmask)
2689 {
2690 struct dp_netdev *dp = get_dp_netdev(dpif);
2691
2692 if (!nullable_string_is_equal(dp->pmd_cmask, cmask)) {
2693 free(dp->pmd_cmask);
2694 dp->pmd_cmask = nullable_xstrdup(cmask);
2695 dp_netdev_request_reconfigure(dp);
2696 }
2697
2698 return 0;
2699 }
2700
2701 /* Parses affinity list and returns result in 'core_ids'. */
2702 static int
2703 parse_affinity_list(const char *affinity_list, unsigned *core_ids, int n_rxq)
2704 {
2705 unsigned i;
2706 char *list, *copy, *key, *value;
2707 int error = 0;
2708
2709 for (i = 0; i < n_rxq; i++) {
2710 core_ids[i] = OVS_CORE_UNSPEC;
2711 }
2712
2713 if (!affinity_list) {
2714 return 0;
2715 }
2716
2717 list = copy = xstrdup(affinity_list);
2718
2719 while (ofputil_parse_key_value(&list, &key, &value)) {
2720 int rxq_id, core_id;
2721
2722 if (!str_to_int(key, 0, &rxq_id) || rxq_id < 0
2723 || !str_to_int(value, 0, &core_id) || core_id < 0) {
2724 error = EINVAL;
2725 break;
2726 }
2727
2728 if (rxq_id < n_rxq) {
2729 core_ids[rxq_id] = core_id;
2730 }
2731 }
2732
2733 free(copy);
2734 return error;
2735 }
2736
2737 /* Parses 'affinity_list' and applies configuration if it is valid. */
2738 static int
2739 dpif_netdev_port_set_rxq_affinity(struct dp_netdev_port *port,
2740 const char *affinity_list)
2741 {
2742 unsigned *core_ids, i;
2743 int error = 0;
2744
2745 core_ids = xmalloc(port->n_rxq * sizeof *core_ids);
2746 if (parse_affinity_list(affinity_list, core_ids, port->n_rxq)) {
2747 error = EINVAL;
2748 goto exit;
2749 }
2750
2751 for (i = 0; i < port->n_rxq; i++) {
2752 port->rxqs[i].core_id = core_ids[i];
2753 }
2754
2755 exit:
2756 free(core_ids);
2757 return error;
2758 }
2759
2760 /* Changes the affinity of port's rx queues. The changes are actually applied
2761 * in dpif_netdev_run(). */
2762 static int
2763 dpif_netdev_port_set_config(struct dpif *dpif, odp_port_t port_no,
2764 const struct smap *cfg)
2765 {
2766 struct dp_netdev *dp = get_dp_netdev(dpif);
2767 struct dp_netdev_port *port;
2768 int error = 0;
2769 const char *affinity_list = smap_get(cfg, "pmd-rxq-affinity");
2770
2771 ovs_mutex_lock(&dp->port_mutex);
2772 error = get_port_by_number(dp, port_no, &port);
2773 if (error || !netdev_is_pmd(port->netdev)
2774 || nullable_string_is_equal(affinity_list, port->rxq_affinity_list)) {
2775 goto unlock;
2776 }
2777
2778 error = dpif_netdev_port_set_rxq_affinity(port, affinity_list);
2779 if (error) {
2780 goto unlock;
2781 }
2782 free(port->rxq_affinity_list);
2783 port->rxq_affinity_list = nullable_xstrdup(affinity_list);
2784
2785 dp_netdev_request_reconfigure(dp);
2786 unlock:
2787 ovs_mutex_unlock(&dp->port_mutex);
2788 return error;
2789 }
2790
2791 static int
2792 dpif_netdev_queue_to_priority(const struct dpif *dpif OVS_UNUSED,
2793 uint32_t queue_id, uint32_t *priority)
2794 {
2795 *priority = queue_id;
2796 return 0;
2797 }
2798
2799 \f
2800 /* Creates and returns a new 'struct dp_netdev_actions', whose actions are
2801 * a copy of the 'ofpacts_len' bytes of 'ofpacts'. */
2802 struct dp_netdev_actions *
2803 dp_netdev_actions_create(const struct nlattr *actions, size_t size)
2804 {
2805 struct dp_netdev_actions *netdev_actions;
2806
2807 netdev_actions = xmalloc(sizeof *netdev_actions + size);
2808 memcpy(netdev_actions->actions, actions, size);
2809 netdev_actions->size = size;
2810
2811 return netdev_actions;
2812 }
2813
2814 struct dp_netdev_actions *
2815 dp_netdev_flow_get_actions(const struct dp_netdev_flow *flow)
2816 {
2817 return ovsrcu_get(struct dp_netdev_actions *, &flow->actions);
2818 }
2819
2820 static void
2821 dp_netdev_actions_free(struct dp_netdev_actions *actions)
2822 {
2823 free(actions);
2824 }
2825 \f
2826 static inline unsigned long long
2827 cycles_counter(void)
2828 {
2829 #ifdef DPDK_NETDEV
2830 return rte_get_tsc_cycles();
2831 #else
2832 return 0;
2833 #endif
2834 }
2835
2836 /* Fake mutex to make sure that the calls to cycles_count_* are balanced */
2837 extern struct ovs_mutex cycles_counter_fake_mutex;
2838
2839 /* Start counting cycles. Must be followed by 'cycles_count_end()' */
2840 static inline void
2841 cycles_count_start(struct dp_netdev_pmd_thread *pmd)
2842 OVS_ACQUIRES(&cycles_counter_fake_mutex)
2843 OVS_NO_THREAD_SAFETY_ANALYSIS
2844 {
2845 pmd->last_cycles = cycles_counter();
2846 }
2847
2848 /* Stop counting cycles and add them to the counter 'type' */
2849 static inline void
2850 cycles_count_end(struct dp_netdev_pmd_thread *pmd,
2851 enum pmd_cycles_counter_type type)
2852 OVS_RELEASES(&cycles_counter_fake_mutex)
2853 OVS_NO_THREAD_SAFETY_ANALYSIS
2854 {
2855 unsigned long long interval = cycles_counter() - pmd->last_cycles;
2856
2857 non_atomic_ullong_add(&pmd->cycles.n[type], interval);
2858 }
2859
2860 static void
2861 dp_netdev_process_rxq_port(struct dp_netdev_pmd_thread *pmd,
2862 struct dp_netdev_port *port,
2863 struct netdev_rxq *rxq)
2864 {
2865 struct dp_packet_batch batch;
2866 int error;
2867
2868 dp_packet_batch_init(&batch);
2869 cycles_count_start(pmd);
2870 error = netdev_rxq_recv(rxq, &batch);
2871 cycles_count_end(pmd, PMD_CYCLES_POLLING);
2872 if (!error) {
2873 *recirc_depth_get() = 0;
2874
2875 cycles_count_start(pmd);
2876 dp_netdev_input(pmd, &batch, port->port_no);
2877 cycles_count_end(pmd, PMD_CYCLES_PROCESSING);
2878 } else if (error != EAGAIN && error != EOPNOTSUPP) {
2879 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
2880
2881 VLOG_ERR_RL(&rl, "error receiving data from %s: %s",
2882 netdev_get_name(port->netdev), ovs_strerror(error));
2883 }
2884 }
2885
2886 static int
2887 port_reconfigure(struct dp_netdev_port *port)
2888 {
2889 struct netdev *netdev = port->netdev;
2890 int i, err;
2891
2892 if (!netdev_is_reconf_required(netdev)) {
2893 return 0;
2894 }
2895
2896 /* Closes the existing 'rxq's. */
2897 for (i = 0; i < port->n_rxq; i++) {
2898 netdev_rxq_close(port->rxqs[i].rxq);
2899 port->rxqs[i].rxq = NULL;
2900 }
2901 port->n_rxq = 0;
2902
2903 /* Allows 'netdev' to apply the pending configuration changes. */
2904 err = netdev_reconfigure(netdev);
2905 if (err && (err != EOPNOTSUPP)) {
2906 VLOG_ERR("Failed to set interface %s new configuration",
2907 netdev_get_name(netdev));
2908 return err;
2909 }
2910 /* If the netdev_reconfigure() above succeeds, reopens the 'rxq's. */
2911 port->rxqs = xrealloc(port->rxqs,
2912 sizeof *port->rxqs * netdev_n_rxq(netdev));
2913 /* Realloc 'used' counters for tx queues. */
2914 free(port->txq_used);
2915 port->txq_used = xcalloc(netdev_n_txq(netdev), sizeof *port->txq_used);
2916
2917 for (i = 0; i < netdev_n_rxq(netdev); i++) {
2918 err = netdev_rxq_open(netdev, &port->rxqs[i].rxq, i);
2919 if (err) {
2920 return err;
2921 }
2922 port->n_rxq++;
2923 }
2924
2925 /* Parse affinity list to apply configuration for new queues. */
2926 dpif_netdev_port_set_rxq_affinity(port, port->rxq_affinity_list);
2927
2928 return 0;
2929 }
2930
2931 static void
2932 reconfigure_pmd_threads(struct dp_netdev *dp)
2933 OVS_REQUIRES(dp->port_mutex)
2934 {
2935 struct dp_netdev_port *port, *next;
2936 int n_cores;
2937
2938 dp->last_reconfigure_seq = seq_read(dp->reconfigure_seq);
2939
2940 dp_netdev_destroy_all_pmds(dp);
2941
2942 /* Reconfigures the cpu mask. */
2943 ovs_numa_set_cpu_mask(dp->pmd_cmask);
2944
2945 n_cores = ovs_numa_get_n_cores();
2946 if (n_cores == OVS_CORE_UNSPEC) {
2947 VLOG_ERR("Cannot get cpu core info");
2948 return;
2949 }
2950
2951 HMAP_FOR_EACH_SAFE (port, next, node, &dp->ports) {
2952 int err;
2953
2954 err = port_reconfigure(port);
2955 if (err) {
2956 hmap_remove(&dp->ports, &port->node);
2957 seq_change(dp->port_seq);
2958 port_destroy(port);
2959 } else {
2960 port->dynamic_txqs = netdev_n_txq(port->netdev) < n_cores + 1;
2961 }
2962 }
2963 /* Restores the non-pmd. */
2964 dp_netdev_set_nonpmd(dp);
2965 /* Restores all pmd threads. */
2966 dp_netdev_reset_pmd_threads(dp);
2967 }
2968
2969 /* Returns true if one of the netdevs in 'dp' requires a reconfiguration */
2970 static bool
2971 ports_require_restart(const struct dp_netdev *dp)
2972 OVS_REQUIRES(dp->port_mutex)
2973 {
2974 struct dp_netdev_port *port;
2975
2976 HMAP_FOR_EACH (port, node, &dp->ports) {
2977 if (netdev_is_reconf_required(port->netdev)) {
2978 return true;
2979 }
2980 }
2981
2982 return false;
2983 }
2984
2985 /* Return true if needs to revalidate datapath flows. */
2986 static bool
2987 dpif_netdev_run(struct dpif *dpif)
2988 {
2989 struct dp_netdev_port *port;
2990 struct dp_netdev *dp = get_dp_netdev(dpif);
2991 struct dp_netdev_pmd_thread *non_pmd;
2992 uint64_t new_tnl_seq;
2993
2994 ovs_mutex_lock(&dp->port_mutex);
2995 non_pmd = dp_netdev_get_pmd(dp, NON_PMD_CORE_ID);
2996 if (non_pmd) {
2997 ovs_mutex_lock(&dp->non_pmd_mutex);
2998 HMAP_FOR_EACH (port, node, &dp->ports) {
2999 if (!netdev_is_pmd(port->netdev)) {
3000 int i;
3001
3002 for (i = 0; i < port->n_rxq; i++) {
3003 dp_netdev_process_rxq_port(non_pmd, port,
3004 port->rxqs[i].rxq);
3005 }
3006 }
3007 }
3008 dpif_netdev_xps_revalidate_pmd(non_pmd, time_msec(), false);
3009 ovs_mutex_unlock(&dp->non_pmd_mutex);
3010
3011 dp_netdev_pmd_unref(non_pmd);
3012 }
3013
3014 if (dp_netdev_is_reconf_required(dp) || ports_require_restart(dp)) {
3015 reconfigure_pmd_threads(dp);
3016 }
3017 ovs_mutex_unlock(&dp->port_mutex);
3018
3019 tnl_neigh_cache_run();
3020 tnl_port_map_run();
3021 new_tnl_seq = seq_read(tnl_conf_seq);
3022
3023 if (dp->last_tnl_conf_seq != new_tnl_seq) {
3024 dp->last_tnl_conf_seq = new_tnl_seq;
3025 return true;
3026 }
3027 return false;
3028 }
3029
3030 static void
3031 dpif_netdev_wait(struct dpif *dpif)
3032 {
3033 struct dp_netdev_port *port;
3034 struct dp_netdev *dp = get_dp_netdev(dpif);
3035
3036 ovs_mutex_lock(&dp_netdev_mutex);
3037 ovs_mutex_lock(&dp->port_mutex);
3038 HMAP_FOR_EACH (port, node, &dp->ports) {
3039 netdev_wait_reconf_required(port->netdev);
3040 if (!netdev_is_pmd(port->netdev)) {
3041 int i;
3042
3043 for (i = 0; i < port->n_rxq; i++) {
3044 netdev_rxq_wait(port->rxqs[i].rxq);
3045 }
3046 }
3047 }
3048 ovs_mutex_unlock(&dp->port_mutex);
3049 ovs_mutex_unlock(&dp_netdev_mutex);
3050 seq_wait(tnl_conf_seq, dp->last_tnl_conf_seq);
3051 }
3052
3053 static void
3054 pmd_free_cached_ports(struct dp_netdev_pmd_thread *pmd)
3055 {
3056 struct tx_port *tx_port_cached;
3057
3058 /* Free all used tx queue ids. */
3059 dpif_netdev_xps_revalidate_pmd(pmd, 0, true);
3060
3061 HMAP_FOR_EACH_POP (tx_port_cached, node, &pmd->port_cache) {
3062 free(tx_port_cached);
3063 }
3064 }
3065
3066 /* Copies ports from 'pmd->tx_ports' (shared with the main thread) to
3067 * 'pmd->port_cache' (thread local) */
3068 static void
3069 pmd_load_cached_ports(struct dp_netdev_pmd_thread *pmd)
3070 OVS_REQUIRES(pmd->port_mutex)
3071 {
3072 struct tx_port *tx_port, *tx_port_cached;
3073
3074 pmd_free_cached_ports(pmd);
3075 hmap_shrink(&pmd->port_cache);
3076
3077 HMAP_FOR_EACH (tx_port, node, &pmd->tx_ports) {
3078 tx_port_cached = xmemdup(tx_port, sizeof *tx_port_cached);
3079 hmap_insert(&pmd->port_cache, &tx_port_cached->node,
3080 hash_port_no(tx_port_cached->port->port_no));
3081 }
3082 }
3083
3084 static int
3085 pmd_load_queues_and_ports(struct dp_netdev_pmd_thread *pmd,
3086 struct rxq_poll **ppoll_list)
3087 {
3088 struct rxq_poll *poll_list = *ppoll_list;
3089 struct rxq_poll *poll;
3090 int i;
3091
3092 ovs_mutex_lock(&pmd->port_mutex);
3093 poll_list = xrealloc(poll_list, pmd->poll_cnt * sizeof *poll_list);
3094
3095 i = 0;
3096 LIST_FOR_EACH (poll, node, &pmd->poll_list) {
3097 poll_list[i++] = *poll;
3098 }
3099
3100 pmd_load_cached_ports(pmd);
3101
3102 ovs_mutex_unlock(&pmd->port_mutex);
3103
3104 *ppoll_list = poll_list;
3105 return i;
3106 }
3107
3108 static void *
3109 pmd_thread_main(void *f_)
3110 {
3111 struct dp_netdev_pmd_thread *pmd = f_;
3112 unsigned int lc = 0;
3113 struct rxq_poll *poll_list;
3114 unsigned int port_seq = PMD_INITIAL_SEQ;
3115 bool exiting;
3116 int poll_cnt;
3117 int i;
3118
3119 poll_list = NULL;
3120
3121 /* Stores the pmd thread's 'pmd' to 'per_pmd_key'. */
3122 ovsthread_setspecific(pmd->dp->per_pmd_key, pmd);
3123 ovs_numa_thread_setaffinity_core(pmd->core_id);
3124 dpdk_set_lcore_id(pmd->core_id);
3125 poll_cnt = pmd_load_queues_and_ports(pmd, &poll_list);
3126 reload:
3127 emc_cache_init(&pmd->flow_cache);
3128
3129 /* List port/core affinity */
3130 for (i = 0; i < poll_cnt; i++) {
3131 VLOG_DBG("Core %d processing port \'%s\' with queue-id %d\n",
3132 pmd->core_id, netdev_get_name(poll_list[i].port->netdev),
3133 netdev_rxq_get_queue_id(poll_list[i].rx));
3134 }
3135
3136 for (;;) {
3137 for (i = 0; i < poll_cnt; i++) {
3138 dp_netdev_process_rxq_port(pmd, poll_list[i].port, poll_list[i].rx);
3139 }
3140
3141 if (lc++ > 1024) {
3142 unsigned int seq;
3143
3144 lc = 0;
3145
3146 coverage_try_clear();
3147 dp_netdev_pmd_try_optimize(pmd);
3148 if (!ovsrcu_try_quiesce()) {
3149 emc_cache_slow_sweep(&pmd->flow_cache);
3150 }
3151
3152 atomic_read_relaxed(&pmd->change_seq, &seq);
3153 if (seq != port_seq) {
3154 port_seq = seq;
3155 break;
3156 }
3157 }
3158 }
3159
3160 poll_cnt = pmd_load_queues_and_ports(pmd, &poll_list);
3161 exiting = latch_is_set(&pmd->exit_latch);
3162 /* Signal here to make sure the pmd finishes
3163 * reloading the updated configuration. */
3164 dp_netdev_pmd_reload_done(pmd);
3165
3166 emc_cache_uninit(&pmd->flow_cache);
3167
3168 if (!exiting) {
3169 goto reload;
3170 }
3171
3172 free(poll_list);
3173 pmd_free_cached_ports(pmd);
3174 return NULL;
3175 }
3176
3177 static void
3178 dp_netdev_disable_upcall(struct dp_netdev *dp)
3179 OVS_ACQUIRES(dp->upcall_rwlock)
3180 {
3181 fat_rwlock_wrlock(&dp->upcall_rwlock);
3182 }
3183
3184 static void
3185 dpif_netdev_disable_upcall(struct dpif *dpif)
3186 OVS_NO_THREAD_SAFETY_ANALYSIS
3187 {
3188 struct dp_netdev *dp = get_dp_netdev(dpif);
3189 dp_netdev_disable_upcall(dp);
3190 }
3191
3192 static void
3193 dp_netdev_enable_upcall(struct dp_netdev *dp)
3194 OVS_RELEASES(dp->upcall_rwlock)
3195 {
3196 fat_rwlock_unlock(&dp->upcall_rwlock);
3197 }
3198
3199 static void
3200 dpif_netdev_enable_upcall(struct dpif *dpif)
3201 OVS_NO_THREAD_SAFETY_ANALYSIS
3202 {
3203 struct dp_netdev *dp = get_dp_netdev(dpif);
3204 dp_netdev_enable_upcall(dp);
3205 }
3206
3207 static void
3208 dp_netdev_pmd_reload_done(struct dp_netdev_pmd_thread *pmd)
3209 {
3210 ovs_mutex_lock(&pmd->cond_mutex);
3211 xpthread_cond_signal(&pmd->cond);
3212 ovs_mutex_unlock(&pmd->cond_mutex);
3213 }
3214
3215 /* Finds and refs the dp_netdev_pmd_thread on core 'core_id'. Returns
3216 * the pointer if succeeds, otherwise, NULL (it can return NULL even if
3217 * 'core_id' is NON_PMD_CORE_ID).
3218 *
3219 * Caller must unrefs the returned reference. */
3220 static struct dp_netdev_pmd_thread *
3221 dp_netdev_get_pmd(struct dp_netdev *dp, unsigned core_id)
3222 {
3223 struct dp_netdev_pmd_thread *pmd;
3224 const struct cmap_node *pnode;
3225
3226 pnode = cmap_find(&dp->poll_threads, hash_int(core_id, 0));
3227 if (!pnode) {
3228 return NULL;
3229 }
3230 pmd = CONTAINER_OF(pnode, struct dp_netdev_pmd_thread, node);
3231
3232 return dp_netdev_pmd_try_ref(pmd) ? pmd : NULL;
3233 }
3234
3235 /* Sets the 'struct dp_netdev_pmd_thread' for non-pmd threads. */
3236 static void
3237 dp_netdev_set_nonpmd(struct dp_netdev *dp)
3238 OVS_REQUIRES(dp->port_mutex)
3239 {
3240 struct dp_netdev_pmd_thread *non_pmd;
3241 struct dp_netdev_port *port;
3242
3243 non_pmd = xzalloc(sizeof *non_pmd);
3244 dp_netdev_configure_pmd(non_pmd, dp, NON_PMD_CORE_ID, OVS_NUMA_UNSPEC);
3245
3246 HMAP_FOR_EACH (port, node, &dp->ports) {
3247 dp_netdev_add_port_tx_to_pmd(non_pmd, port);
3248 }
3249
3250 dp_netdev_reload_pmd__(non_pmd);
3251 }
3252
3253 /* Caller must have valid pointer to 'pmd'. */
3254 static bool
3255 dp_netdev_pmd_try_ref(struct dp_netdev_pmd_thread *pmd)
3256 {
3257 return ovs_refcount_try_ref_rcu(&pmd->ref_cnt);
3258 }
3259
3260 static void
3261 dp_netdev_pmd_unref(struct dp_netdev_pmd_thread *pmd)
3262 {
3263 if (pmd && ovs_refcount_unref(&pmd->ref_cnt) == 1) {
3264 ovsrcu_postpone(dp_netdev_destroy_pmd, pmd);
3265 }
3266 }
3267
3268 /* Given cmap position 'pos', tries to ref the next node. If try_ref()
3269 * fails, keeps checking for next node until reaching the end of cmap.
3270 *
3271 * Caller must unrefs the returned reference. */
3272 static struct dp_netdev_pmd_thread *
3273 dp_netdev_pmd_get_next(struct dp_netdev *dp, struct cmap_position *pos)
3274 {
3275 struct dp_netdev_pmd_thread *next;
3276
3277 do {
3278 struct cmap_node *node;
3279
3280 node = cmap_next_position(&dp->poll_threads, pos);
3281 next = node ? CONTAINER_OF(node, struct dp_netdev_pmd_thread, node)
3282 : NULL;
3283 } while (next && !dp_netdev_pmd_try_ref(next));
3284
3285 return next;
3286 }
3287
3288 /* Configures the 'pmd' based on the input argument. */
3289 static void
3290 dp_netdev_configure_pmd(struct dp_netdev_pmd_thread *pmd, struct dp_netdev *dp,
3291 unsigned core_id, int numa_id)
3292 {
3293 pmd->dp = dp;
3294 pmd->core_id = core_id;
3295 pmd->numa_id = numa_id;
3296 pmd->poll_cnt = 0;
3297
3298 atomic_init(&pmd->static_tx_qid,
3299 (core_id == NON_PMD_CORE_ID)
3300 ? ovs_numa_get_n_cores()
3301 : get_n_pmd_threads(dp));
3302
3303 ovs_refcount_init(&pmd->ref_cnt);
3304 latch_init(&pmd->exit_latch);
3305 atomic_init(&pmd->change_seq, PMD_INITIAL_SEQ);
3306 xpthread_cond_init(&pmd->cond, NULL);
3307 ovs_mutex_init(&pmd->cond_mutex);
3308 ovs_mutex_init(&pmd->flow_mutex);
3309 ovs_mutex_init(&pmd->port_mutex);
3310 cmap_init(&pmd->flow_table);
3311 cmap_init(&pmd->classifiers);
3312 pmd->next_optimization = time_msec() + DPCLS_OPTIMIZATION_INTERVAL;
3313 ovs_list_init(&pmd->poll_list);
3314 hmap_init(&pmd->tx_ports);
3315 hmap_init(&pmd->port_cache);
3316 /* init the 'flow_cache' since there is no
3317 * actual thread created for NON_PMD_CORE_ID. */
3318 if (core_id == NON_PMD_CORE_ID) {
3319 emc_cache_init(&pmd->flow_cache);
3320 }
3321 cmap_insert(&dp->poll_threads, CONST_CAST(struct cmap_node *, &pmd->node),
3322 hash_int(core_id, 0));
3323 }
3324
3325 static void
3326 dp_netdev_destroy_pmd(struct dp_netdev_pmd_thread *pmd)
3327 {
3328 struct dpcls *cls;
3329
3330 dp_netdev_pmd_flow_flush(pmd);
3331 hmap_destroy(&pmd->port_cache);
3332 hmap_destroy(&pmd->tx_ports);
3333 /* All flows (including their dpcls_rules) have been deleted already */
3334 CMAP_FOR_EACH (cls, node, &pmd->classifiers) {
3335 dpcls_destroy(cls);
3336 }
3337 cmap_destroy(&pmd->classifiers);
3338 cmap_destroy(&pmd->flow_table);
3339 ovs_mutex_destroy(&pmd->flow_mutex);
3340 latch_destroy(&pmd->exit_latch);
3341 xpthread_cond_destroy(&pmd->cond);
3342 ovs_mutex_destroy(&pmd->cond_mutex);
3343 ovs_mutex_destroy(&pmd->port_mutex);
3344 free(pmd);
3345 }
3346
3347 /* Stops the pmd thread, removes it from the 'dp->poll_threads',
3348 * and unrefs the struct. */
3349 static void
3350 dp_netdev_del_pmd(struct dp_netdev *dp, struct dp_netdev_pmd_thread *pmd)
3351 {
3352 /* NON_PMD_CORE_ID doesn't have a thread, so we don't have to synchronize,
3353 * but extra cleanup is necessary */
3354 if (pmd->core_id == NON_PMD_CORE_ID) {
3355 emc_cache_uninit(&pmd->flow_cache);
3356 pmd_free_cached_ports(pmd);
3357 } else {
3358 latch_set(&pmd->exit_latch);
3359 dp_netdev_reload_pmd__(pmd);
3360 ovs_numa_unpin_core(pmd->core_id);
3361 xpthread_join(pmd->thread, NULL);
3362 }
3363
3364 dp_netdev_pmd_clear_ports(pmd);
3365
3366 /* Purges the 'pmd''s flows after stopping the thread, but before
3367 * destroying the flows, so that the flow stats can be collected. */
3368 if (dp->dp_purge_cb) {
3369 dp->dp_purge_cb(dp->dp_purge_aux, pmd->core_id);
3370 }
3371 cmap_remove(&pmd->dp->poll_threads, &pmd->node, hash_int(pmd->core_id, 0));
3372 dp_netdev_pmd_unref(pmd);
3373 }
3374
3375 /* Destroys all pmd threads. */
3376 static void
3377 dp_netdev_destroy_all_pmds(struct dp_netdev *dp)
3378 {
3379 struct dp_netdev_pmd_thread *pmd;
3380 struct dp_netdev_pmd_thread **pmd_list;
3381 size_t k = 0, n_pmds;
3382
3383 n_pmds = cmap_count(&dp->poll_threads);
3384 pmd_list = xcalloc(n_pmds, sizeof *pmd_list);
3385
3386 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
3387 /* We cannot call dp_netdev_del_pmd(), since it alters
3388 * 'dp->poll_threads' (while we're iterating it) and it
3389 * might quiesce. */
3390 ovs_assert(k < n_pmds);
3391 pmd_list[k++] = pmd;
3392 }
3393
3394 for (size_t i = 0; i < k; i++) {
3395 dp_netdev_del_pmd(dp, pmd_list[i]);
3396 }
3397 free(pmd_list);
3398 }
3399
3400 /* Deletes all pmd threads on numa node 'numa_id' and
3401 * fixes static_tx_qids of other threads to keep them sequential. */
3402 static void
3403 dp_netdev_del_pmds_on_numa(struct dp_netdev *dp, int numa_id)
3404 {
3405 struct dp_netdev_pmd_thread *pmd;
3406 int n_pmds_on_numa, n_pmds;
3407 int *free_idx, k = 0;
3408 struct dp_netdev_pmd_thread **pmd_list;
3409
3410 n_pmds_on_numa = get_n_pmd_threads_on_numa(dp, numa_id);
3411 free_idx = xcalloc(n_pmds_on_numa, sizeof *free_idx);
3412 pmd_list = xcalloc(n_pmds_on_numa, sizeof *pmd_list);
3413
3414 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
3415 /* We cannot call dp_netdev_del_pmd(), since it alters
3416 * 'dp->poll_threads' (while we're iterating it) and it
3417 * might quiesce. */
3418 if (pmd->numa_id == numa_id && pmd->core_id != NON_PMD_CORE_ID) {
3419 atomic_read_relaxed(&pmd->static_tx_qid, &free_idx[k]);
3420 pmd_list[k] = pmd;
3421 ovs_assert(k < n_pmds_on_numa);
3422 k++;
3423 }
3424 }
3425
3426 for (int i = 0; i < k; i++) {
3427 dp_netdev_del_pmd(dp, pmd_list[i]);
3428 }
3429
3430 n_pmds = get_n_pmd_threads(dp);
3431 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
3432 int old_tx_qid;
3433
3434 atomic_read_relaxed(&pmd->static_tx_qid, &old_tx_qid);
3435
3436 if (old_tx_qid >= n_pmds && pmd->core_id != NON_PMD_CORE_ID) {
3437 int new_tx_qid = free_idx[--k];
3438
3439 atomic_store_relaxed(&pmd->static_tx_qid, new_tx_qid);
3440 }
3441 }
3442
3443 free(pmd_list);
3444 free(free_idx);
3445 }
3446
3447 /* Deletes all rx queues from pmd->poll_list and all the ports from
3448 * pmd->tx_ports. */
3449 static void
3450 dp_netdev_pmd_clear_ports(struct dp_netdev_pmd_thread *pmd)
3451 {
3452 struct rxq_poll *poll;
3453 struct tx_port *port;
3454
3455 ovs_mutex_lock(&pmd->port_mutex);
3456 LIST_FOR_EACH_POP (poll, node, &pmd->poll_list) {
3457 free(poll);
3458 }
3459 pmd->poll_cnt = 0;
3460 HMAP_FOR_EACH_POP (port, node, &pmd->tx_ports) {
3461 free(port);
3462 }
3463 ovs_mutex_unlock(&pmd->port_mutex);
3464 }
3465
3466 static struct tx_port *
3467 tx_port_lookup(const struct hmap *hmap, odp_port_t port_no)
3468 {
3469 struct tx_port *tx;
3470
3471 HMAP_FOR_EACH_IN_BUCKET (tx, node, hash_port_no(port_no), hmap) {
3472 if (tx->port->port_no == port_no) {
3473 return tx;
3474 }
3475 }
3476
3477 return NULL;
3478 }
3479
3480 /* Deletes all rx queues of 'port' from 'poll_list', and the 'port' from
3481 * 'tx_ports' of 'pmd' thread. Returns true if 'port' was found in 'pmd'
3482 * (therefore a restart is required). */
3483 static bool
3484 dp_netdev_del_port_from_pmd__(struct dp_netdev_port *port,
3485 struct dp_netdev_pmd_thread *pmd)
3486 {
3487 struct rxq_poll *poll, *next;
3488 struct tx_port *tx;
3489 bool found = false;
3490
3491 ovs_mutex_lock(&pmd->port_mutex);
3492 LIST_FOR_EACH_SAFE (poll, next, node, &pmd->poll_list) {
3493 if (poll->port == port) {
3494 found = true;
3495 ovs_list_remove(&poll->node);
3496 pmd->poll_cnt--;
3497 free(poll);
3498 }
3499 }
3500
3501 tx = tx_port_lookup(&pmd->tx_ports, port->port_no);
3502 if (tx) {
3503 hmap_remove(&pmd->tx_ports, &tx->node);
3504 free(tx);
3505 found = true;
3506 }
3507 ovs_mutex_unlock(&pmd->port_mutex);
3508
3509 return found;
3510 }
3511
3512 /* Deletes 'port' from the 'poll_list' and from the 'tx_ports' of all the pmd
3513 * threads. The pmd threads that need to be restarted are inserted in
3514 * 'to_reload'. */
3515 static void
3516 dp_netdev_del_port_from_all_pmds__(struct dp_netdev *dp,
3517 struct dp_netdev_port *port,
3518 struct hmapx *to_reload)
3519 {
3520 struct dp_netdev_pmd_thread *pmd;
3521
3522 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
3523 bool found;
3524
3525 found = dp_netdev_del_port_from_pmd__(port, pmd);
3526
3527 if (found) {
3528 hmapx_add(to_reload, pmd);
3529 }
3530 }
3531 }
3532
3533 /* Deletes 'port' from the 'poll_list' and from the 'tx_ports' of all the pmd
3534 * threads. Reloads the threads if needed. */
3535 static void
3536 dp_netdev_del_port_from_all_pmds(struct dp_netdev *dp,
3537 struct dp_netdev_port *port)
3538 {
3539 struct dp_netdev_pmd_thread *pmd;
3540 struct hmapx to_reload = HMAPX_INITIALIZER(&to_reload);
3541 struct hmapx_node *node;
3542
3543 dp_netdev_del_port_from_all_pmds__(dp, port, &to_reload);
3544
3545 HMAPX_FOR_EACH (node, &to_reload) {
3546 pmd = (struct dp_netdev_pmd_thread *) node->data;
3547 dp_netdev_reload_pmd__(pmd);
3548 }
3549
3550 hmapx_destroy(&to_reload);
3551 }
3552
3553
3554 /* Returns non-isolated PMD thread from this numa node with fewer
3555 * rx queues to poll. Returns NULL if there is no non-isolated PMD threads
3556 * on this numa node. Can be called safely only by main thread. */
3557 static struct dp_netdev_pmd_thread *
3558 dp_netdev_less_loaded_pmd_on_numa(struct dp_netdev *dp, int numa_id)
3559 {
3560 int min_cnt = -1;
3561 struct dp_netdev_pmd_thread *pmd, *res = NULL;
3562
3563 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
3564 if (!pmd->isolated && pmd->numa_id == numa_id
3565 && (min_cnt > pmd->poll_cnt || res == NULL)) {
3566 min_cnt = pmd->poll_cnt;
3567 res = pmd;
3568 }
3569 }
3570
3571 return res;
3572 }
3573
3574 /* Adds rx queue to poll_list of PMD thread. */
3575 static void
3576 dp_netdev_add_rxq_to_pmd(struct dp_netdev_pmd_thread *pmd,
3577 struct dp_netdev_port *port, struct netdev_rxq *rx)
3578 OVS_REQUIRES(pmd->port_mutex)
3579 {
3580 struct rxq_poll *poll = xmalloc(sizeof *poll);
3581
3582 poll->port = port;
3583 poll->rx = rx;
3584
3585 ovs_list_push_back(&pmd->poll_list, &poll->node);
3586 pmd->poll_cnt++;
3587 }
3588
3589 /* Add 'port' to the tx port cache of 'pmd', which must be reloaded for the
3590 * changes to take effect. */
3591 static void
3592 dp_netdev_add_port_tx_to_pmd(struct dp_netdev_pmd_thread *pmd,
3593 struct dp_netdev_port *port)
3594 {
3595 struct tx_port *tx = xzalloc(sizeof *tx);
3596
3597 tx->port = port;
3598 tx->qid = -1;
3599
3600 ovs_mutex_lock(&pmd->port_mutex);
3601 hmap_insert(&pmd->tx_ports, &tx->node, hash_port_no(tx->port->port_no));
3602 ovs_mutex_unlock(&pmd->port_mutex);
3603 }
3604
3605 /* Distribute all {pinned|non-pinned} rx queues of 'port' between PMD
3606 * threads in 'dp'. The pmd threads that need to be restarted are inserted
3607 * in 'to_reload'. PMD threads with pinned queues marked as isolated. */
3608 static void
3609 dp_netdev_add_port_rx_to_pmds(struct dp_netdev *dp,
3610 struct dp_netdev_port *port,
3611 struct hmapx *to_reload, bool pinned)
3612 {
3613 int numa_id = netdev_get_numa_id(port->netdev);
3614 struct dp_netdev_pmd_thread *pmd;
3615 int i;
3616
3617 if (!netdev_is_pmd(port->netdev)) {
3618 return;
3619 }
3620
3621 for (i = 0; i < port->n_rxq; i++) {
3622 if (pinned) {
3623 if (port->rxqs[i].core_id == OVS_CORE_UNSPEC) {
3624 continue;
3625 }
3626 pmd = dp_netdev_get_pmd(dp, port->rxqs[i].core_id);
3627 if (!pmd) {
3628 VLOG_WARN("There is no PMD thread on core %d. "
3629 "Queue %d on port \'%s\' will not be polled.",
3630 port->rxqs[i].core_id, i,
3631 netdev_get_name(port->netdev));
3632 continue;
3633 }
3634 pmd->isolated = true;
3635 dp_netdev_pmd_unref(pmd);
3636 } else {
3637 if (port->rxqs[i].core_id != OVS_CORE_UNSPEC) {
3638 continue;
3639 }
3640 pmd = dp_netdev_less_loaded_pmd_on_numa(dp, numa_id);
3641 if (!pmd) {
3642 VLOG_WARN("There's no available pmd thread on numa node %d",
3643 numa_id);
3644 break;
3645 }
3646 }
3647
3648 ovs_mutex_lock(&pmd->port_mutex);
3649 dp_netdev_add_rxq_to_pmd(pmd, port, port->rxqs[i].rxq);
3650 ovs_mutex_unlock(&pmd->port_mutex);
3651
3652 hmapx_add(to_reload, pmd);
3653 }
3654 }
3655
3656 /* Distributes all non-pinned rx queues of 'port' between all PMD threads
3657 * in 'dp' and inserts 'port' in the PMD threads 'tx_ports'. The pmd threads
3658 * that need to be restarted are inserted in 'to_reload'. */
3659 static void
3660 dp_netdev_add_port_to_pmds__(struct dp_netdev *dp, struct dp_netdev_port *port,
3661 struct hmapx *to_reload)
3662 {
3663 struct dp_netdev_pmd_thread *pmd;
3664
3665 dp_netdev_add_port_rx_to_pmds(dp, port, to_reload, false);
3666
3667 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
3668 dp_netdev_add_port_tx_to_pmd(pmd, port);
3669 hmapx_add(to_reload, pmd);
3670 }
3671 }
3672
3673 /* Distributes all non-pinned rx queues of 'port' between all PMD threads
3674 * in 'dp', inserts 'port' in the PMD threads 'tx_ports' and reloads them,
3675 * if needed. */
3676 static void
3677 dp_netdev_add_port_to_pmds(struct dp_netdev *dp, struct dp_netdev_port *port)
3678 {
3679 struct dp_netdev_pmd_thread *pmd;
3680 struct hmapx to_reload = HMAPX_INITIALIZER(&to_reload);
3681 struct hmapx_node *node;
3682
3683 dp_netdev_add_port_to_pmds__(dp, port, &to_reload);
3684
3685 HMAPX_FOR_EACH (node, &to_reload) {
3686 pmd = (struct dp_netdev_pmd_thread *) node->data;
3687 dp_netdev_reload_pmd__(pmd);
3688 }
3689
3690 hmapx_destroy(&to_reload);
3691 }
3692
3693 /* Starts pmd threads for the numa node 'numa_id', if not already started.
3694 * The function takes care of filling the threads tx port cache. */
3695 static void
3696 dp_netdev_set_pmds_on_numa(struct dp_netdev *dp, int numa_id)
3697 OVS_REQUIRES(dp->port_mutex)
3698 {
3699 int n_pmds;
3700
3701 if (!ovs_numa_numa_id_is_valid(numa_id)) {
3702 VLOG_WARN("Cannot create pmd threads due to numa id (%d) invalid",
3703 numa_id);
3704 return;
3705 }
3706
3707 n_pmds = get_n_pmd_threads_on_numa(dp, numa_id);
3708
3709 /* If there are already pmd threads created for the numa node
3710 * in which 'netdev' is on, do nothing. Else, creates the
3711 * pmd threads for the numa node. */
3712 if (!n_pmds) {
3713 int can_have, n_unpinned, i;
3714
3715 n_unpinned = ovs_numa_get_n_unpinned_cores_on_numa(numa_id);
3716 if (!n_unpinned) {
3717 VLOG_WARN("Cannot create pmd threads due to out of unpinned "
3718 "cores on numa node %d", numa_id);
3719 return;
3720 }
3721
3722 /* If cpu mask is specified, uses all unpinned cores, otherwise
3723 * tries creating NR_PMD_THREADS pmd threads. */
3724 can_have = dp->pmd_cmask ? n_unpinned : MIN(n_unpinned, NR_PMD_THREADS);
3725 for (i = 0; i < can_have; i++) {
3726 unsigned core_id = ovs_numa_get_unpinned_core_on_numa(numa_id);
3727 struct dp_netdev_pmd_thread *pmd = xzalloc(sizeof *pmd);
3728 struct dp_netdev_port *port;
3729
3730 dp_netdev_configure_pmd(pmd, dp, core_id, numa_id);
3731
3732 HMAP_FOR_EACH (port, node, &dp->ports) {
3733 dp_netdev_add_port_tx_to_pmd(pmd, port);
3734 }
3735
3736 pmd->thread = ovs_thread_create("pmd", pmd_thread_main, pmd);
3737 }
3738 VLOG_INFO("Created %d pmd threads on numa node %d", can_have, numa_id);
3739 }
3740 }
3741
3742 \f
3743 /* Called after pmd threads config change. Restarts pmd threads with
3744 * new configuration. */
3745 static void
3746 dp_netdev_reset_pmd_threads(struct dp_netdev *dp)
3747 OVS_REQUIRES(dp->port_mutex)
3748 {
3749 struct hmapx to_reload = HMAPX_INITIALIZER(&to_reload);
3750 struct dp_netdev_pmd_thread *pmd;
3751 struct dp_netdev_port *port;
3752 struct hmapx_node *node;
3753
3754 HMAP_FOR_EACH (port, node, &dp->ports) {
3755 if (netdev_is_pmd(port->netdev)) {
3756 struct hmapx numas = HMAPX_INITIALIZER(&numas);
3757 struct hmapx_node *numa_node;
3758 uintptr_t numa_id;
3759 int i;
3760
3761 numa_id = netdev_get_numa_id(port->netdev);
3762 hmapx_add(&numas, (void *) numa_id);
3763 for (i = 0; i < port->n_rxq; i++) {
3764 unsigned core_id = port->rxqs[i].core_id;
3765
3766 if (core_id != OVS_CORE_UNSPEC) {
3767 numa_id = ovs_numa_get_numa_id(core_id);
3768 hmapx_add(&numas, (void *) numa_id);
3769 }
3770 }
3771
3772 HMAPX_FOR_EACH (numa_node, &numas) {
3773 dp_netdev_set_pmds_on_numa(dp, (uintptr_t) numa_node->data);
3774 }
3775
3776 hmapx_destroy(&numas);
3777 }
3778 /* Distribute only pinned rx queues first to mark threads as isolated */
3779 dp_netdev_add_port_rx_to_pmds(dp, port, &to_reload, true);
3780 }
3781
3782 /* Distribute remaining non-pinned rx queues to non-isolated PMD threads. */
3783 HMAP_FOR_EACH (port, node, &dp->ports) {
3784 dp_netdev_add_port_rx_to_pmds(dp, port, &to_reload, false);
3785 }
3786
3787 HMAPX_FOR_EACH (node, &to_reload) {
3788 pmd = (struct dp_netdev_pmd_thread *) node->data;
3789 dp_netdev_reload_pmd__(pmd);
3790 }
3791
3792 hmapx_destroy(&to_reload);
3793 }
3794
3795 static char *
3796 dpif_netdev_get_datapath_version(void)
3797 {
3798 return xstrdup("<built-in>");
3799 }
3800
3801 static void
3802 dp_netdev_flow_used(struct dp_netdev_flow *netdev_flow, int cnt, int size,
3803 uint16_t tcp_flags, long long now)
3804 {
3805 uint16_t flags;
3806
3807 atomic_store_relaxed(&netdev_flow->stats.used, now);
3808 non_atomic_ullong_add(&netdev_flow->stats.packet_count, cnt);
3809 non_atomic_ullong_add(&netdev_flow->stats.byte_count, size);
3810 atomic_read_relaxed(&netdev_flow->stats.tcp_flags, &flags);
3811 flags |= tcp_flags;
3812 atomic_store_relaxed(&netdev_flow->stats.tcp_flags, flags);
3813 }
3814
3815 static void
3816 dp_netdev_count_packet(struct dp_netdev_pmd_thread *pmd,
3817 enum dp_stat_type type, int cnt)
3818 {
3819 non_atomic_ullong_add(&pmd->stats.n[type], cnt);
3820 }
3821
3822 static int
3823 dp_netdev_upcall(struct dp_netdev_pmd_thread *pmd, struct dp_packet *packet_,
3824 struct flow *flow, struct flow_wildcards *wc, ovs_u128 *ufid,
3825 enum dpif_upcall_type type, const struct nlattr *userdata,
3826 struct ofpbuf *actions, struct ofpbuf *put_actions)
3827 {
3828 struct dp_netdev *dp = pmd->dp;
3829
3830 if (OVS_UNLIKELY(!dp->upcall_cb)) {
3831 return ENODEV;
3832 }
3833
3834 if (OVS_UNLIKELY(!VLOG_DROP_DBG(&upcall_rl))) {
3835 struct ds ds = DS_EMPTY_INITIALIZER;
3836 char *packet_str;
3837 struct ofpbuf key;
3838 struct odp_flow_key_parms odp_parms = {
3839 .flow = flow,
3840 .mask = wc ? &wc->masks : NULL,
3841 .support = dp_netdev_support,
3842 };
3843
3844 ofpbuf_init(&key, 0);
3845 odp_flow_key_from_flow(&odp_parms, &key);
3846 packet_str = ofp_packet_to_string(dp_packet_data(packet_),
3847 dp_packet_size(packet_));
3848
3849 odp_flow_key_format(key.data, key.size, &ds);
3850
3851 VLOG_DBG("%s: %s upcall:\n%s\n%s", dp->name,
3852 dpif_upcall_type_to_string(type), ds_cstr(&ds), packet_str);
3853
3854 ofpbuf_uninit(&key);
3855 free(packet_str);
3856
3857 ds_destroy(&ds);
3858 }
3859
3860 return dp->upcall_cb(packet_, flow, ufid, pmd->core_id, type, userdata,
3861 actions, wc, put_actions, dp->upcall_aux);
3862 }
3863
3864 static inline uint32_t
3865 dpif_netdev_packet_get_rss_hash(struct dp_packet *packet,
3866 const struct miniflow *mf)
3867 {
3868 uint32_t hash, recirc_depth;
3869
3870 if (OVS_LIKELY(dp_packet_rss_valid(packet))) {
3871 hash = dp_packet_get_rss_hash(packet);
3872 } else {
3873 hash = miniflow_hash_5tuple(mf, 0);
3874 dp_packet_set_rss_hash(packet, hash);
3875 }
3876
3877 /* The RSS hash must account for the recirculation depth to avoid
3878 * collisions in the exact match cache */
3879 recirc_depth = *recirc_depth_get_unsafe();
3880 if (OVS_UNLIKELY(recirc_depth)) {
3881 hash = hash_finish(hash, recirc_depth);
3882 dp_packet_set_rss_hash(packet, hash);
3883 }
3884 return hash;
3885 }
3886
3887 struct packet_batch_per_flow {
3888 unsigned int byte_count;
3889 uint16_t tcp_flags;
3890 struct dp_netdev_flow *flow;
3891
3892 struct dp_packet_batch array;
3893 };
3894
3895 static inline void
3896 packet_batch_per_flow_update(struct packet_batch_per_flow *batch,
3897 struct dp_packet *packet,
3898 const struct miniflow *mf)
3899 {
3900 batch->byte_count += dp_packet_size(packet);
3901 batch->tcp_flags |= miniflow_get_tcp_flags(mf);
3902 batch->array.packets[batch->array.count++] = packet;
3903 }
3904
3905 static inline void
3906 packet_batch_per_flow_init(struct packet_batch_per_flow *batch,
3907 struct dp_netdev_flow *flow)
3908 {
3909 flow->batch = batch;
3910
3911 batch->flow = flow;
3912 dp_packet_batch_init(&batch->array);
3913 batch->byte_count = 0;
3914 batch->tcp_flags = 0;
3915 }
3916
3917 static inline void
3918 packet_batch_per_flow_execute(struct packet_batch_per_flow *batch,
3919 struct dp_netdev_pmd_thread *pmd,
3920 long long now)
3921 {
3922 struct dp_netdev_actions *actions;
3923 struct dp_netdev_flow *flow = batch->flow;
3924
3925 dp_netdev_flow_used(flow, batch->array.count, batch->byte_count,
3926 batch->tcp_flags, now);
3927
3928 actions = dp_netdev_flow_get_actions(flow);
3929
3930 dp_netdev_execute_actions(pmd, &batch->array, true, &flow->flow,
3931 actions->actions, actions->size, now);
3932 }
3933
3934 static inline void
3935 dp_netdev_queue_batches(struct dp_packet *pkt,
3936 struct dp_netdev_flow *flow, const struct miniflow *mf,
3937 struct packet_batch_per_flow *batches, size_t *n_batches)
3938 {
3939 struct packet_batch_per_flow *batch = flow->batch;
3940
3941 if (OVS_UNLIKELY(!batch)) {
3942 batch = &batches[(*n_batches)++];
3943 packet_batch_per_flow_init(batch, flow);
3944 }
3945
3946 packet_batch_per_flow_update(batch, pkt, mf);
3947 }
3948
3949 /* Try to process all ('cnt') the 'packets' using only the exact match cache
3950 * 'pmd->flow_cache'. If a flow is not found for a packet 'packets[i]', the
3951 * miniflow is copied into 'keys' and the packet pointer is moved at the
3952 * beginning of the 'packets' array.
3953 *
3954 * The function returns the number of packets that needs to be processed in the
3955 * 'packets' array (they have been moved to the beginning of the vector).
3956 *
3957 * If 'md_is_valid' is false, the metadata in 'packets' is not valid and must be
3958 * initialized by this function using 'port_no'.
3959 */
3960 static inline size_t
3961 emc_processing(struct dp_netdev_pmd_thread *pmd, struct dp_packet_batch *packets_,
3962 struct netdev_flow_key *keys,
3963 struct packet_batch_per_flow batches[], size_t *n_batches,
3964 bool md_is_valid, odp_port_t port_no)
3965 {
3966 struct emc_cache *flow_cache = &pmd->flow_cache;
3967 struct netdev_flow_key *key = &keys[0];
3968 size_t i, n_missed = 0, n_dropped = 0;
3969 struct dp_packet **packets = packets_->packets;
3970 int cnt = packets_->count;
3971
3972 for (i = 0; i < cnt; i++) {
3973 struct dp_netdev_flow *flow;
3974 struct dp_packet *packet = packets[i];
3975
3976 if (OVS_UNLIKELY(dp_packet_size(packet) < ETH_HEADER_LEN)) {
3977 dp_packet_delete(packet);
3978 n_dropped++;
3979 continue;
3980 }
3981
3982 if (i != cnt - 1) {
3983 /* Prefetch next packet data and metadata. */
3984 OVS_PREFETCH(dp_packet_data(packets[i+1]));
3985 pkt_metadata_prefetch_init(&packets[i+1]->md);
3986 }
3987
3988 if (!md_is_valid) {
3989 pkt_metadata_init(&packet->md, port_no);
3990 }
3991 miniflow_extract(packet, &key->mf);
3992 key->len = 0; /* Not computed yet. */
3993 key->hash = dpif_netdev_packet_get_rss_hash(packet, &key->mf);
3994
3995 flow = emc_lookup(flow_cache, key);
3996 if (OVS_LIKELY(flow)) {
3997 dp_netdev_queue_batches(packet, flow, &key->mf, batches,
3998 n_batches);
3999 } else {
4000 /* Exact match cache missed. Group missed packets together at
4001 * the beginning of the 'packets' array. */
4002 packets[n_missed] = packet;
4003 /* 'key[n_missed]' contains the key of the current packet and it
4004 * must be returned to the caller. The next key should be extracted
4005 * to 'keys[n_missed + 1]'. */
4006 key = &keys[++n_missed];
4007 }
4008 }
4009
4010 dp_netdev_count_packet(pmd, DP_STAT_EXACT_HIT, cnt - n_dropped - n_missed);
4011
4012 return n_missed;
4013 }
4014
4015 static inline void
4016 handle_packet_upcall(struct dp_netdev_pmd_thread *pmd, struct dp_packet *packet,
4017 const struct netdev_flow_key *key,
4018 struct ofpbuf *actions, struct ofpbuf *put_actions,
4019 int *lost_cnt, long long now)
4020 {
4021 struct ofpbuf *add_actions;
4022 struct dp_packet_batch b;
4023 struct match match;
4024 ovs_u128 ufid;
4025 int error;
4026
4027 match.tun_md.valid = false;
4028 miniflow_expand(&key->mf, &match.flow);
4029
4030 ofpbuf_clear(actions);
4031 ofpbuf_clear(put_actions);
4032
4033 dpif_flow_hash(pmd->dp->dpif, &match.flow, sizeof match.flow, &ufid);
4034 error = dp_netdev_upcall(pmd, packet, &match.flow, &match.wc,
4035 &ufid, DPIF_UC_MISS, NULL, actions,
4036 put_actions);
4037 if (OVS_UNLIKELY(error && error != ENOSPC)) {
4038 dp_packet_delete(packet);
4039 (*lost_cnt)++;
4040 return;
4041 }
4042
4043 /* The Netlink encoding of datapath flow keys cannot express
4044 * wildcarding the presence of a VLAN tag. Instead, a missing VLAN
4045 * tag is interpreted as exact match on the fact that there is no
4046 * VLAN. Unless we refactor a lot of code that translates between
4047 * Netlink and struct flow representations, we have to do the same
4048 * here. */
4049 if (!match.wc.masks.vlan_tci) {
4050 match.wc.masks.vlan_tci = htons(0xffff);
4051 }
4052
4053 /* We can't allow the packet batching in the next loop to execute
4054 * the actions. Otherwise, if there are any slow path actions,
4055 * we'll send the packet up twice. */
4056 packet_batch_init_packet(&b, packet);
4057 dp_netdev_execute_actions(pmd, &b, true, &match.flow,
4058 actions->data, actions->size, now);
4059
4060 add_actions = put_actions->size ? put_actions : actions;
4061 if (OVS_LIKELY(error != ENOSPC)) {
4062 struct dp_netdev_flow *netdev_flow;
4063
4064 /* XXX: There's a race window where a flow covering this packet
4065 * could have already been installed since we last did the flow
4066 * lookup before upcall. This could be solved by moving the
4067 * mutex lock outside the loop, but that's an awful long time
4068 * to be locking everyone out of making flow installs. If we
4069 * move to a per-core classifier, it would be reasonable. */
4070 ovs_mutex_lock(&pmd->flow_mutex);
4071 netdev_flow = dp_netdev_pmd_lookup_flow(pmd, key, NULL);
4072 if (OVS_LIKELY(!netdev_flow)) {
4073 netdev_flow = dp_netdev_flow_add(pmd, &match, &ufid,
4074 add_actions->data,
4075 add_actions->size);
4076 }
4077 ovs_mutex_unlock(&pmd->flow_mutex);
4078
4079 emc_insert(&pmd->flow_cache, key, netdev_flow);
4080 }
4081 }
4082
4083 static inline void
4084 fast_path_processing(struct dp_netdev_pmd_thread *pmd,
4085 struct dp_packet_batch *packets_,
4086 struct netdev_flow_key *keys,
4087 struct packet_batch_per_flow batches[], size_t *n_batches,
4088 odp_port_t in_port,
4089 long long now)
4090 {
4091 int cnt = packets_->count;
4092 #if !defined(__CHECKER__) && !defined(_WIN32)
4093 const size_t PKT_ARRAY_SIZE = cnt;
4094 #else
4095 /* Sparse or MSVC doesn't like variable length array. */
4096 enum { PKT_ARRAY_SIZE = NETDEV_MAX_BURST };
4097 #endif
4098 struct dp_packet **packets = packets_->packets;
4099 struct dpcls *cls;
4100 struct dpcls_rule *rules[PKT_ARRAY_SIZE];
4101 struct dp_netdev *dp = pmd->dp;
4102 struct emc_cache *flow_cache = &pmd->flow_cache;
4103 int miss_cnt = 0, lost_cnt = 0;
4104 int lookup_cnt = 0, add_lookup_cnt;
4105 bool any_miss;
4106 size_t i;
4107
4108 for (i = 0; i < cnt; i++) {
4109 /* Key length is needed in all the cases, hash computed on demand. */
4110 keys[i].len = netdev_flow_key_size(miniflow_n_values(&keys[i].mf));
4111 }
4112 /* Get the classifier for the in_port */
4113 cls = dp_netdev_pmd_lookup_dpcls(pmd, in_port);
4114 if (OVS_LIKELY(cls)) {
4115 any_miss = !dpcls_lookup(cls, keys, rules, cnt, &lookup_cnt);
4116 } else {
4117 any_miss = true;
4118 memset(rules, 0, sizeof(rules));
4119 }
4120 if (OVS_UNLIKELY(any_miss) && !fat_rwlock_tryrdlock(&dp->upcall_rwlock)) {
4121 uint64_t actions_stub[512 / 8], slow_stub[512 / 8];
4122 struct ofpbuf actions, put_actions;
4123
4124 ofpbuf_use_stub(&actions, actions_stub, sizeof actions_stub);
4125 ofpbuf_use_stub(&put_actions, slow_stub, sizeof slow_stub);
4126
4127 for (i = 0; i < cnt; i++) {
4128 struct dp_netdev_flow *netdev_flow;
4129
4130 if (OVS_LIKELY(rules[i])) {
4131 continue;
4132 }
4133
4134 /* It's possible that an earlier slow path execution installed
4135 * a rule covering this flow. In this case, it's a lot cheaper
4136 * to catch it here than execute a miss. */
4137 netdev_flow = dp_netdev_pmd_lookup_flow(pmd, &keys[i],
4138 &add_lookup_cnt);
4139 if (netdev_flow) {
4140 lookup_cnt += add_lookup_cnt;
4141 rules[i] = &netdev_flow->cr;
4142 continue;
4143 }
4144
4145 miss_cnt++;
4146 handle_packet_upcall(pmd, packets[i], &keys[i], &actions,
4147 &put_actions, &lost_cnt, now);
4148 }
4149
4150 ofpbuf_uninit(&actions);
4151 ofpbuf_uninit(&put_actions);
4152 fat_rwlock_unlock(&dp->upcall_rwlock);
4153 dp_netdev_count_packet(pmd, DP_STAT_LOST, lost_cnt);
4154 } else if (OVS_UNLIKELY(any_miss)) {
4155 for (i = 0; i < cnt; i++) {
4156 if (OVS_UNLIKELY(!rules[i])) {
4157 dp_packet_delete(packets[i]);
4158 lost_cnt++;
4159 miss_cnt++;
4160 }
4161 }
4162 }
4163
4164 for (i = 0; i < cnt; i++) {
4165 struct dp_packet *packet = packets[i];
4166 struct dp_netdev_flow *flow;
4167
4168 if (OVS_UNLIKELY(!rules[i])) {
4169 continue;
4170 }
4171
4172 flow = dp_netdev_flow_cast(rules[i]);
4173
4174 emc_insert(flow_cache, &keys[i], flow);
4175 dp_netdev_queue_batches(packet, flow, &keys[i].mf, batches, n_batches);
4176 }
4177
4178 dp_netdev_count_packet(pmd, DP_STAT_MASKED_HIT, cnt - miss_cnt);
4179 dp_netdev_count_packet(pmd, DP_STAT_LOOKUP_HIT, lookup_cnt);
4180 dp_netdev_count_packet(pmd, DP_STAT_MISS, miss_cnt);
4181 dp_netdev_count_packet(pmd, DP_STAT_LOST, lost_cnt);
4182 }
4183
4184 /* Packets enter the datapath from a port (or from recirculation) here.
4185 *
4186 * For performance reasons a caller may choose not to initialize the metadata
4187 * in 'packets': in this case 'mdinit' is false and this function needs to
4188 * initialize it using 'port_no'. If the metadata in 'packets' is already
4189 * valid, 'md_is_valid' must be true and 'port_no' will be ignored. */
4190 static void
4191 dp_netdev_input__(struct dp_netdev_pmd_thread *pmd,
4192 struct dp_packet_batch *packets,
4193 bool md_is_valid, odp_port_t port_no)
4194 {
4195 int cnt = packets->count;
4196 #if !defined(__CHECKER__) && !defined(_WIN32)
4197 const size_t PKT_ARRAY_SIZE = cnt;
4198 #else
4199 /* Sparse or MSVC doesn't like variable length array. */
4200 enum { PKT_ARRAY_SIZE = NETDEV_MAX_BURST };
4201 #endif
4202 OVS_ALIGNED_VAR(CACHE_LINE_SIZE) struct netdev_flow_key keys[PKT_ARRAY_SIZE];
4203 struct packet_batch_per_flow batches[PKT_ARRAY_SIZE];
4204 long long now = time_msec();
4205 size_t newcnt, n_batches, i;
4206 odp_port_t in_port;
4207
4208 n_batches = 0;
4209 newcnt = emc_processing(pmd, packets, keys, batches, &n_batches,
4210 md_is_valid, port_no);
4211 if (OVS_UNLIKELY(newcnt)) {
4212 packets->count = newcnt;
4213 /* Get ingress port from first packet's metadata. */
4214 in_port = packets->packets[0]->md.in_port.odp_port;
4215 fast_path_processing(pmd, packets, keys, batches, &n_batches, in_port, now);
4216 }
4217
4218 /* All the flow batches need to be reset before any call to
4219 * packet_batch_per_flow_execute() as it could potentially trigger
4220 * recirculation. When a packet matching flow ‘j’ happens to be
4221 * recirculated, the nested call to dp_netdev_input__() could potentially
4222 * classify the packet as matching another flow - say 'k'. It could happen
4223 * that in the previous call to dp_netdev_input__() that same flow 'k' had
4224 * already its own batches[k] still waiting to be served. So if its
4225 * ‘batch’ member is not reset, the recirculated packet would be wrongly
4226 * appended to batches[k] of the 1st call to dp_netdev_input__(). */
4227 for (i = 0; i < n_batches; i++) {
4228 batches[i].flow->batch = NULL;
4229 }
4230
4231 for (i = 0; i < n_batches; i++) {
4232 packet_batch_per_flow_execute(&batches[i], pmd, now);
4233 }
4234 }
4235
4236 static void
4237 dp_netdev_input(struct dp_netdev_pmd_thread *pmd,
4238 struct dp_packet_batch *packets,
4239 odp_port_t port_no)
4240 {
4241 dp_netdev_input__(pmd, packets, false, port_no);
4242 }
4243
4244 static void
4245 dp_netdev_recirculate(struct dp_netdev_pmd_thread *pmd,
4246 struct dp_packet_batch *packets)
4247 {
4248 dp_netdev_input__(pmd, packets, true, 0);
4249 }
4250
4251 struct dp_netdev_execute_aux {
4252 struct dp_netdev_pmd_thread *pmd;
4253 long long now;
4254 const struct flow *flow;
4255 };
4256
4257 static void
4258 dpif_netdev_register_dp_purge_cb(struct dpif *dpif, dp_purge_callback *cb,
4259 void *aux)
4260 {
4261 struct dp_netdev *dp = get_dp_netdev(dpif);
4262 dp->dp_purge_aux = aux;
4263 dp->dp_purge_cb = cb;
4264 }
4265
4266 static void
4267 dpif_netdev_register_upcall_cb(struct dpif *dpif, upcall_callback *cb,
4268 void *aux)
4269 {
4270 struct dp_netdev *dp = get_dp_netdev(dpif);
4271 dp->upcall_aux = aux;
4272 dp->upcall_cb = cb;
4273 }
4274
4275 static void
4276 dpif_netdev_xps_revalidate_pmd(const struct dp_netdev_pmd_thread *pmd,
4277 long long now, bool purge)
4278 {
4279 struct tx_port *tx;
4280 struct dp_netdev_port *port;
4281 long long interval;
4282
4283 HMAP_FOR_EACH (tx, node, &pmd->port_cache) {
4284 if (!tx->port->dynamic_txqs) {
4285 continue;
4286 }
4287 interval = now - tx->last_used;
4288 if (tx->qid >= 0 && (purge || interval >= XPS_TIMEOUT_MS)) {
4289 port = tx->port;
4290 ovs_mutex_lock(&port->txq_used_mutex);
4291 port->txq_used[tx->qid]--;
4292 ovs_mutex_unlock(&port->txq_used_mutex);
4293 tx->qid = -1;
4294 }
4295 }
4296 }
4297
4298 static int
4299 dpif_netdev_xps_get_tx_qid(const struct dp_netdev_pmd_thread *pmd,
4300 struct tx_port *tx, long long now)
4301 {
4302 struct dp_netdev_port *port;
4303 long long interval;
4304 int i, min_cnt, min_qid;
4305
4306 if (OVS_UNLIKELY(!now)) {
4307 now = time_msec();
4308 }
4309
4310 interval = now - tx->last_used;
4311 tx->last_used = now;
4312
4313 if (OVS_LIKELY(tx->qid >= 0 && interval < XPS_TIMEOUT_MS)) {
4314 return tx->qid;
4315 }
4316
4317 port = tx->port;
4318
4319 ovs_mutex_lock(&port->txq_used_mutex);
4320 if (tx->qid >= 0) {
4321 port->txq_used[tx->qid]--;
4322 tx->qid = -1;
4323 }
4324
4325 min_cnt = -1;
4326 min_qid = 0;
4327 for (i = 0; i < netdev_n_txq(port->netdev); i++) {
4328 if (port->txq_used[i] < min_cnt || min_cnt == -1) {
4329 min_cnt = port->txq_used[i];
4330 min_qid = i;
4331 }
4332 }
4333
4334 port->txq_used[min_qid]++;
4335 tx->qid = min_qid;
4336
4337 ovs_mutex_unlock(&port->txq_used_mutex);
4338
4339 dpif_netdev_xps_revalidate_pmd(pmd, now, false);
4340
4341 VLOG_DBG("Core %d: New TX queue ID %d for port \'%s\'.",
4342 pmd->core_id, tx->qid, netdev_get_name(tx->port->netdev));
4343 return min_qid;
4344 }
4345
4346 static struct tx_port *
4347 pmd_tx_port_cache_lookup(const struct dp_netdev_pmd_thread *pmd,
4348 odp_port_t port_no)
4349 {
4350 return tx_port_lookup(&pmd->port_cache, port_no);
4351 }
4352
4353 static int
4354 push_tnl_action(const struct dp_netdev_pmd_thread *pmd,
4355 const struct nlattr *attr,
4356 struct dp_packet_batch *batch)
4357 {
4358 struct tx_port *tun_port;
4359 const struct ovs_action_push_tnl *data;
4360 int err;
4361
4362 data = nl_attr_get(attr);
4363
4364 tun_port = pmd_tx_port_cache_lookup(pmd, u32_to_odp(data->tnl_port));
4365 if (!tun_port) {
4366 err = -EINVAL;
4367 goto error;
4368 }
4369 err = netdev_push_header(tun_port->port->netdev, batch, data);
4370 if (!err) {
4371 return 0;
4372 }
4373 error:
4374 dp_packet_delete_batch(batch, true);
4375 return err;
4376 }
4377
4378 static void
4379 dp_execute_userspace_action(struct dp_netdev_pmd_thread *pmd,
4380 struct dp_packet *packet, bool may_steal,
4381 struct flow *flow, ovs_u128 *ufid,
4382 struct ofpbuf *actions,
4383 const struct nlattr *userdata, long long now)
4384 {
4385 struct dp_packet_batch b;
4386 int error;
4387
4388 ofpbuf_clear(actions);
4389
4390 error = dp_netdev_upcall(pmd, packet, flow, NULL, ufid,
4391 DPIF_UC_ACTION, userdata, actions,
4392 NULL);
4393 if (!error || error == ENOSPC) {
4394 packet_batch_init_packet(&b, packet);
4395 dp_netdev_execute_actions(pmd, &b, may_steal, flow,
4396 actions->data, actions->size, now);
4397 } else if (may_steal) {
4398 dp_packet_delete(packet);
4399 }
4400 }
4401
4402 static void
4403 dp_execute_cb(void *aux_, struct dp_packet_batch *packets_,
4404 const struct nlattr *a, bool may_steal)
4405 {
4406 struct dp_netdev_execute_aux *aux = aux_;
4407 uint32_t *depth = recirc_depth_get();
4408 struct dp_netdev_pmd_thread *pmd = aux->pmd;
4409 struct dp_netdev *dp = pmd->dp;
4410 int type = nl_attr_type(a);
4411 long long now = aux->now;
4412 struct tx_port *p;
4413
4414 switch ((enum ovs_action_attr)type) {
4415 case OVS_ACTION_ATTR_OUTPUT:
4416 p = pmd_tx_port_cache_lookup(pmd, nl_attr_get_odp_port(a));
4417 if (OVS_LIKELY(p)) {
4418 int tx_qid;
4419 bool dynamic_txqs;
4420
4421 dynamic_txqs = p->port->dynamic_txqs;
4422 if (dynamic_txqs) {
4423 tx_qid = dpif_netdev_xps_get_tx_qid(pmd, p, now);
4424 } else {
4425 atomic_read_relaxed(&pmd->static_tx_qid, &tx_qid);
4426 }
4427
4428 netdev_send(p->port->netdev, tx_qid, packets_, may_steal,
4429 dynamic_txqs);
4430 return;
4431 }
4432 break;
4433
4434 case OVS_ACTION_ATTR_TUNNEL_PUSH:
4435 if (*depth < MAX_RECIRC_DEPTH) {
4436 struct dp_packet_batch tnl_pkt;
4437 struct dp_packet_batch *orig_packets_ = packets_;
4438 int err;
4439
4440 if (!may_steal) {
4441 dp_packet_batch_clone(&tnl_pkt, packets_);
4442 packets_ = &tnl_pkt;
4443 dp_packet_batch_reset_cutlen(orig_packets_);
4444 }
4445
4446 dp_packet_batch_apply_cutlen(packets_);
4447
4448 err = push_tnl_action(pmd, a, packets_);
4449 if (!err) {
4450 (*depth)++;
4451 dp_netdev_recirculate(pmd, packets_);
4452 (*depth)--;
4453 }
4454 return;
4455 }
4456 break;
4457
4458 case OVS_ACTION_ATTR_TUNNEL_POP:
4459 if (*depth < MAX_RECIRC_DEPTH) {
4460 struct dp_packet_batch *orig_packets_ = packets_;
4461 odp_port_t portno = nl_attr_get_odp_port(a);
4462
4463 p = pmd_tx_port_cache_lookup(pmd, portno);
4464 if (p) {
4465 struct dp_packet_batch tnl_pkt;
4466 int i;
4467
4468 if (!may_steal) {
4469 dp_packet_batch_clone(&tnl_pkt, packets_);
4470 packets_ = &tnl_pkt;
4471 dp_packet_batch_reset_cutlen(orig_packets_);
4472 }
4473
4474 dp_packet_batch_apply_cutlen(packets_);
4475
4476 netdev_pop_header(p->port->netdev, packets_);
4477 if (!packets_->count) {
4478 return;
4479 }
4480
4481 for (i = 0; i < packets_->count; i++) {
4482 packets_->packets[i]->md.in_port.odp_port = portno;
4483 }
4484
4485 (*depth)++;
4486 dp_netdev_recirculate(pmd, packets_);
4487 (*depth)--;
4488 return;
4489 }
4490 }
4491 break;
4492
4493 case OVS_ACTION_ATTR_USERSPACE:
4494 if (!fat_rwlock_tryrdlock(&dp->upcall_rwlock)) {
4495 struct dp_packet_batch *orig_packets_ = packets_;
4496 struct dp_packet **packets = packets_->packets;
4497 const struct nlattr *userdata;
4498 struct dp_packet_batch usr_pkt;
4499 struct ofpbuf actions;
4500 struct flow flow;
4501 ovs_u128 ufid;
4502 bool clone = false;
4503 int i;
4504
4505 userdata = nl_attr_find_nested(a, OVS_USERSPACE_ATTR_USERDATA);
4506 ofpbuf_init(&actions, 0);
4507
4508 if (packets_->trunc) {
4509 if (!may_steal) {
4510 dp_packet_batch_clone(&usr_pkt, packets_);
4511 packets_ = &usr_pkt;
4512 packets = packets_->packets;
4513 clone = true;
4514 dp_packet_batch_reset_cutlen(orig_packets_);
4515 }
4516
4517 dp_packet_batch_apply_cutlen(packets_);
4518 }
4519
4520 for (i = 0; i < packets_->count; i++) {
4521 flow_extract(packets[i], &flow);
4522 dpif_flow_hash(dp->dpif, &flow, sizeof flow, &ufid);
4523 dp_execute_userspace_action(pmd, packets[i], may_steal, &flow,
4524 &ufid, &actions, userdata, now);
4525 }
4526
4527 if (clone) {
4528 dp_packet_delete_batch(packets_, true);
4529 }
4530
4531 ofpbuf_uninit(&actions);
4532 fat_rwlock_unlock(&dp->upcall_rwlock);
4533
4534 return;
4535 }
4536 break;
4537
4538 case OVS_ACTION_ATTR_RECIRC:
4539 if (*depth < MAX_RECIRC_DEPTH) {
4540 struct dp_packet_batch recirc_pkts;
4541 int i;
4542
4543 if (!may_steal) {
4544 dp_packet_batch_clone(&recirc_pkts, packets_);
4545 packets_ = &recirc_pkts;
4546 }
4547
4548 for (i = 0; i < packets_->count; i++) {
4549 packets_->packets[i]->md.recirc_id = nl_attr_get_u32(a);
4550 }
4551
4552 (*depth)++;
4553 dp_netdev_recirculate(pmd, packets_);
4554 (*depth)--;
4555
4556 return;
4557 }
4558
4559 VLOG_WARN("Packet dropped. Max recirculation depth exceeded.");
4560 break;
4561
4562 case OVS_ACTION_ATTR_CT: {
4563 const struct nlattr *b;
4564 bool commit = false;
4565 unsigned int left;
4566 uint16_t zone = 0;
4567 const char *helper = NULL;
4568 const uint32_t *setmark = NULL;
4569 const struct ovs_key_ct_labels *setlabel = NULL;
4570
4571 NL_ATTR_FOR_EACH_UNSAFE (b, left, nl_attr_get(a),
4572 nl_attr_get_size(a)) {
4573 enum ovs_ct_attr sub_type = nl_attr_type(b);
4574
4575 switch(sub_type) {
4576 case OVS_CT_ATTR_COMMIT:
4577 commit = true;
4578 break;
4579 case OVS_CT_ATTR_ZONE:
4580 zone = nl_attr_get_u16(b);
4581 break;
4582 case OVS_CT_ATTR_HELPER:
4583 helper = nl_attr_get_string(b);
4584 break;
4585 case OVS_CT_ATTR_MARK:
4586 setmark = nl_attr_get(b);
4587 break;
4588 case OVS_CT_ATTR_LABELS:
4589 setlabel = nl_attr_get(b);
4590 break;
4591 case OVS_CT_ATTR_NAT:
4592 case OVS_CT_ATTR_UNSPEC:
4593 case __OVS_CT_ATTR_MAX:
4594 OVS_NOT_REACHED();
4595 }
4596 }
4597
4598 conntrack_execute(&dp->conntrack, packets_, aux->flow->dl_type, commit,
4599 zone, setmark, setlabel, helper);
4600 break;
4601 }
4602
4603 case OVS_ACTION_ATTR_PUSH_VLAN:
4604 case OVS_ACTION_ATTR_POP_VLAN:
4605 case OVS_ACTION_ATTR_PUSH_MPLS:
4606 case OVS_ACTION_ATTR_POP_MPLS:
4607 case OVS_ACTION_ATTR_SET:
4608 case OVS_ACTION_ATTR_SET_MASKED:
4609 case OVS_ACTION_ATTR_SAMPLE:
4610 case OVS_ACTION_ATTR_HASH:
4611 case OVS_ACTION_ATTR_UNSPEC:
4612 case OVS_ACTION_ATTR_TRUNC:
4613 case __OVS_ACTION_ATTR_MAX:
4614 OVS_NOT_REACHED();
4615 }
4616
4617 dp_packet_delete_batch(packets_, may_steal);
4618 }
4619
4620 static void
4621 dp_netdev_execute_actions(struct dp_netdev_pmd_thread *pmd,
4622 struct dp_packet_batch *packets,
4623 bool may_steal, const struct flow *flow,
4624 const struct nlattr *actions, size_t actions_len,
4625 long long now)
4626 {
4627 struct dp_netdev_execute_aux aux = { pmd, now, flow };
4628
4629 odp_execute_actions(&aux, packets, may_steal, actions,
4630 actions_len, dp_execute_cb);
4631 }
4632
4633 struct dp_netdev_ct_dump {
4634 struct ct_dpif_dump_state up;
4635 struct conntrack_dump dump;
4636 struct conntrack *ct;
4637 struct dp_netdev *dp;
4638 };
4639
4640 static int
4641 dpif_netdev_ct_dump_start(struct dpif *dpif, struct ct_dpif_dump_state **dump_,
4642 const uint16_t *pzone)
4643 {
4644 struct dp_netdev *dp = get_dp_netdev(dpif);
4645 struct dp_netdev_ct_dump *dump;
4646
4647 dump = xzalloc(sizeof *dump);
4648 dump->dp = dp;
4649 dump->ct = &dp->conntrack;
4650
4651 conntrack_dump_start(&dp->conntrack, &dump->dump, pzone);
4652
4653 *dump_ = &dump->up;
4654
4655 return 0;
4656 }
4657
4658 static int
4659 dpif_netdev_ct_dump_next(struct dpif *dpif OVS_UNUSED,
4660 struct ct_dpif_dump_state *dump_,
4661 struct ct_dpif_entry *entry)
4662 {
4663 struct dp_netdev_ct_dump *dump;
4664
4665 INIT_CONTAINER(dump, dump_, up);
4666
4667 return conntrack_dump_next(&dump->dump, entry);
4668 }
4669
4670 static int
4671 dpif_netdev_ct_dump_done(struct dpif *dpif OVS_UNUSED,
4672 struct ct_dpif_dump_state *dump_)
4673 {
4674 struct dp_netdev_ct_dump *dump;
4675 int err;
4676
4677 INIT_CONTAINER(dump, dump_, up);
4678
4679 err = conntrack_dump_done(&dump->dump);
4680
4681 free(dump);
4682
4683 return err;
4684 }
4685
4686 static int
4687 dpif_netdev_ct_flush(struct dpif *dpif, const uint16_t *zone)
4688 {
4689 struct dp_netdev *dp = get_dp_netdev(dpif);
4690
4691 return conntrack_flush(&dp->conntrack, zone);
4692 }
4693
4694 const struct dpif_class dpif_netdev_class = {
4695 "netdev",
4696 dpif_netdev_init,
4697 dpif_netdev_enumerate,
4698 dpif_netdev_port_open_type,
4699 dpif_netdev_open,
4700 dpif_netdev_close,
4701 dpif_netdev_destroy,
4702 dpif_netdev_run,
4703 dpif_netdev_wait,
4704 dpif_netdev_get_stats,
4705 dpif_netdev_port_add,
4706 dpif_netdev_port_del,
4707 dpif_netdev_port_set_config,
4708 dpif_netdev_port_query_by_number,
4709 dpif_netdev_port_query_by_name,
4710 NULL, /* port_get_pid */
4711 dpif_netdev_port_dump_start,
4712 dpif_netdev_port_dump_next,
4713 dpif_netdev_port_dump_done,
4714 dpif_netdev_port_poll,
4715 dpif_netdev_port_poll_wait,
4716 dpif_netdev_flow_flush,
4717 dpif_netdev_flow_dump_create,
4718 dpif_netdev_flow_dump_destroy,
4719 dpif_netdev_flow_dump_thread_create,
4720 dpif_netdev_flow_dump_thread_destroy,
4721 dpif_netdev_flow_dump_next,
4722 dpif_netdev_operate,
4723 NULL, /* recv_set */
4724 NULL, /* handlers_set */
4725 dpif_netdev_pmd_set,
4726 dpif_netdev_queue_to_priority,
4727 NULL, /* recv */
4728 NULL, /* recv_wait */
4729 NULL, /* recv_purge */
4730 dpif_netdev_register_dp_purge_cb,
4731 dpif_netdev_register_upcall_cb,
4732 dpif_netdev_enable_upcall,
4733 dpif_netdev_disable_upcall,
4734 dpif_netdev_get_datapath_version,
4735 dpif_netdev_ct_dump_start,
4736 dpif_netdev_ct_dump_next,
4737 dpif_netdev_ct_dump_done,
4738 dpif_netdev_ct_flush,
4739 };
4740
4741 static void
4742 dpif_dummy_change_port_number(struct unixctl_conn *conn, int argc OVS_UNUSED,
4743 const char *argv[], void *aux OVS_UNUSED)
4744 {
4745 struct dp_netdev_port *port;
4746 struct dp_netdev *dp;
4747 odp_port_t port_no;
4748
4749 ovs_mutex_lock(&dp_netdev_mutex);
4750 dp = shash_find_data(&dp_netdevs, argv[1]);
4751 if (!dp || !dpif_netdev_class_is_dummy(dp->class)) {
4752 ovs_mutex_unlock(&dp_netdev_mutex);
4753 unixctl_command_reply_error(conn, "unknown datapath or not a dummy");
4754 return;
4755 }
4756 ovs_refcount_ref(&dp->ref_cnt);
4757 ovs_mutex_unlock(&dp_netdev_mutex);
4758
4759 ovs_mutex_lock(&dp->port_mutex);
4760 if (get_port_by_name(dp, argv[2], &port)) {
4761 unixctl_command_reply_error(conn, "unknown port");
4762 goto exit;
4763 }
4764
4765 port_no = u32_to_odp(atoi(argv[3]));
4766 if (!port_no || port_no == ODPP_NONE) {
4767 unixctl_command_reply_error(conn, "bad port number");
4768 goto exit;
4769 }
4770 if (dp_netdev_lookup_port(dp, port_no)) {
4771 unixctl_command_reply_error(conn, "port number already in use");
4772 goto exit;
4773 }
4774
4775 /* Remove port. */
4776 hmap_remove(&dp->ports, &port->node);
4777 dp_netdev_del_port_from_all_pmds(dp, port);
4778
4779 /* Reinsert with new port number. */
4780 port->port_no = port_no;
4781 hmap_insert(&dp->ports, &port->node, hash_port_no(port_no));
4782 dp_netdev_add_port_to_pmds(dp, port);
4783
4784 seq_change(dp->port_seq);
4785 unixctl_command_reply(conn, NULL);
4786
4787 exit:
4788 ovs_mutex_unlock(&dp->port_mutex);
4789 dp_netdev_unref(dp);
4790 }
4791
4792 static void
4793 dpif_dummy_register__(const char *type)
4794 {
4795 struct dpif_class *class;
4796
4797 class = xmalloc(sizeof *class);
4798 *class = dpif_netdev_class;
4799 class->type = xstrdup(type);
4800 dp_register_provider(class);
4801 }
4802
4803 static void
4804 dpif_dummy_override(const char *type)
4805 {
4806 int error;
4807
4808 /*
4809 * Ignore EAFNOSUPPORT to allow --enable-dummy=system with
4810 * a userland-only build. It's useful for testsuite.
4811 */
4812 error = dp_unregister_provider(type);
4813 if (error == 0 || error == EAFNOSUPPORT) {
4814 dpif_dummy_register__(type);
4815 }
4816 }
4817
4818 void
4819 dpif_dummy_register(enum dummy_level level)
4820 {
4821 if (level == DUMMY_OVERRIDE_ALL) {
4822 struct sset types;
4823 const char *type;
4824
4825 sset_init(&types);
4826 dp_enumerate_types(&types);
4827 SSET_FOR_EACH (type, &types) {
4828 dpif_dummy_override(type);
4829 }
4830 sset_destroy(&types);
4831 } else if (level == DUMMY_OVERRIDE_SYSTEM) {
4832 dpif_dummy_override("system");
4833 }
4834
4835 dpif_dummy_register__("dummy");
4836
4837 unixctl_command_register("dpif-dummy/change-port-number",
4838 "dp port new-number",
4839 3, 3, dpif_dummy_change_port_number, NULL);
4840 }
4841 \f
4842 /* Datapath Classifier. */
4843
4844 /* A set of rules that all have the same fields wildcarded. */
4845 struct dpcls_subtable {
4846 /* The fields are only used by writers. */
4847 struct cmap_node cmap_node OVS_GUARDED; /* Within dpcls 'subtables_map'. */
4848
4849 /* These fields are accessed by readers. */
4850 struct cmap rules; /* Contains "struct dpcls_rule"s. */
4851 uint32_t hit_cnt; /* Number of match hits in subtable in current
4852 optimization interval. */
4853 struct netdev_flow_key mask; /* Wildcards for fields (const). */
4854 /* 'mask' must be the last field, additional space is allocated here. */
4855 };
4856
4857 /* Initializes 'cls' as a classifier that initially contains no classification
4858 * rules. */
4859 static void
4860 dpcls_init(struct dpcls *cls)
4861 {
4862 cmap_init(&cls->subtables_map);
4863 pvector_init(&cls->subtables);
4864 }
4865
4866 static void
4867 dpcls_destroy_subtable(struct dpcls *cls, struct dpcls_subtable *subtable)
4868 {
4869 VLOG_DBG("Destroying subtable %p for in_port %d", subtable, cls->in_port);
4870 pvector_remove(&cls->subtables, subtable);
4871 cmap_remove(&cls->subtables_map, &subtable->cmap_node,
4872 subtable->mask.hash);
4873 cmap_destroy(&subtable->rules);
4874 ovsrcu_postpone(free, subtable);
4875 }
4876
4877 /* Destroys 'cls'. Rules within 'cls', if any, are not freed; this is the
4878 * caller's responsibility.
4879 * May only be called after all the readers have been terminated. */
4880 static void
4881 dpcls_destroy(struct dpcls *cls)
4882 {
4883 if (cls) {
4884 struct dpcls_subtable *subtable;
4885
4886 CMAP_FOR_EACH (subtable, cmap_node, &cls->subtables_map) {
4887 ovs_assert(cmap_count(&subtable->rules) == 0);
4888 dpcls_destroy_subtable(cls, subtable);
4889 }
4890 cmap_destroy(&cls->subtables_map);
4891 pvector_destroy(&cls->subtables);
4892 }
4893 }
4894
4895 static struct dpcls_subtable *
4896 dpcls_create_subtable(struct dpcls *cls, const struct netdev_flow_key *mask)
4897 {
4898 struct dpcls_subtable *subtable;
4899
4900 /* Need to add one. */
4901 subtable = xmalloc(sizeof *subtable
4902 - sizeof subtable->mask.mf + mask->len);
4903 cmap_init(&subtable->rules);
4904 subtable->hit_cnt = 0;
4905 netdev_flow_key_clone(&subtable->mask, mask);
4906 cmap_insert(&cls->subtables_map, &subtable->cmap_node, mask->hash);
4907 /* Add the new subtable at the end of the pvector (with no hits yet) */
4908 pvector_insert(&cls->subtables, subtable, 0);
4909 VLOG_DBG("Creating %"PRIuSIZE". subtable %p for in_port %d",
4910 cmap_count(&cls->subtables_map), subtable, cls->in_port);
4911 pvector_publish(&cls->subtables);
4912
4913 return subtable;
4914 }
4915
4916 static inline struct dpcls_subtable *
4917 dpcls_find_subtable(struct dpcls *cls, const struct netdev_flow_key *mask)
4918 {
4919 struct dpcls_subtable *subtable;
4920
4921 CMAP_FOR_EACH_WITH_HASH (subtable, cmap_node, mask->hash,
4922 &cls->subtables_map) {
4923 if (netdev_flow_key_equal(&subtable->mask, mask)) {
4924 return subtable;
4925 }
4926 }
4927 return dpcls_create_subtable(cls, mask);
4928 }
4929
4930
4931 /* Periodically sort the dpcls subtable vectors according to hit counts */
4932 static void
4933 dpcls_sort_subtable_vector(struct dpcls *cls)
4934 {
4935 struct pvector *pvec = &cls->subtables;
4936 struct dpcls_subtable *subtable;
4937
4938 PVECTOR_FOR_EACH (subtable, pvec) {
4939 pvector_change_priority(pvec, subtable, subtable->hit_cnt);
4940 subtable->hit_cnt = 0;
4941 }
4942 pvector_publish(pvec);
4943 }
4944
4945 static inline void
4946 dp_netdev_pmd_try_optimize(struct dp_netdev_pmd_thread *pmd)
4947 {
4948 struct dpcls *cls;
4949 long long int now = time_msec();
4950
4951 if (now > pmd->next_optimization) {
4952 /* Try to obtain the flow lock to block out revalidator threads.
4953 * If not possible, just try next time. */
4954 if (!ovs_mutex_trylock(&pmd->flow_mutex)) {
4955 /* Optimize each classifier */
4956 CMAP_FOR_EACH (cls, node, &pmd->classifiers) {
4957 dpcls_sort_subtable_vector(cls);
4958 }
4959 ovs_mutex_unlock(&pmd->flow_mutex);
4960 /* Start new measuring interval */
4961 pmd->next_optimization = now + DPCLS_OPTIMIZATION_INTERVAL;
4962 }
4963 }
4964 }
4965
4966 /* Insert 'rule' into 'cls'. */
4967 static void
4968 dpcls_insert(struct dpcls *cls, struct dpcls_rule *rule,
4969 const struct netdev_flow_key *mask)
4970 {
4971 struct dpcls_subtable *subtable = dpcls_find_subtable(cls, mask);
4972
4973 /* Refer to subtable's mask, also for later removal. */
4974 rule->mask = &subtable->mask;
4975 cmap_insert(&subtable->rules, &rule->cmap_node, rule->flow.hash);
4976 }
4977
4978 /* Removes 'rule' from 'cls', also destructing the 'rule'. */
4979 static void
4980 dpcls_remove(struct dpcls *cls, struct dpcls_rule *rule)
4981 {
4982 struct dpcls_subtable *subtable;
4983
4984 ovs_assert(rule->mask);
4985
4986 /* Get subtable from reference in rule->mask. */
4987 INIT_CONTAINER(subtable, rule->mask, mask);
4988 if (cmap_remove(&subtable->rules, &rule->cmap_node, rule->flow.hash)
4989 == 0) {
4990 /* Delete empty subtable. */
4991 dpcls_destroy_subtable(cls, subtable);
4992 pvector_publish(&cls->subtables);
4993 }
4994 }
4995
4996 /* Returns true if 'target' satisfies 'key' in 'mask', that is, if each 1-bit
4997 * in 'mask' the values in 'key' and 'target' are the same. */
4998 static inline bool
4999 dpcls_rule_matches_key(const struct dpcls_rule *rule,
5000 const struct netdev_flow_key *target)
5001 {
5002 const uint64_t *keyp = miniflow_get_values(&rule->flow.mf);
5003 const uint64_t *maskp = miniflow_get_values(&rule->mask->mf);
5004 uint64_t value;
5005
5006 NETDEV_FLOW_KEY_FOR_EACH_IN_FLOWMAP(value, target, rule->flow.mf.map) {
5007 if (OVS_UNLIKELY((value & *maskp++) != *keyp++)) {
5008 return false;
5009 }
5010 }
5011 return true;
5012 }
5013
5014 /* For each miniflow in 'keys' performs a classifier lookup writing the result
5015 * into the corresponding slot in 'rules'. If a particular entry in 'keys' is
5016 * NULL it is skipped.
5017 *
5018 * This function is optimized for use in the userspace datapath and therefore
5019 * does not implement a lot of features available in the standard
5020 * classifier_lookup() function. Specifically, it does not implement
5021 * priorities, instead returning any rule which matches the flow.
5022 *
5023 * Returns true if all miniflows found a corresponding rule. */
5024 static bool
5025 dpcls_lookup(struct dpcls *cls, const struct netdev_flow_key keys[],
5026 struct dpcls_rule **rules, const size_t cnt,
5027 int *num_lookups_p)
5028 {
5029 /* The received 'cnt' miniflows are the search-keys that will be processed
5030 * to find a matching entry into the available subtables.
5031 * The number of bits in map_type is equal to NETDEV_MAX_BURST. */
5032 typedef uint32_t map_type;
5033 #define MAP_BITS (sizeof(map_type) * CHAR_BIT)
5034 BUILD_ASSERT_DECL(MAP_BITS >= NETDEV_MAX_BURST);
5035
5036 struct dpcls_subtable *subtable;
5037
5038 map_type keys_map = TYPE_MAXIMUM(map_type); /* Set all bits. */
5039 map_type found_map;
5040 uint32_t hashes[MAP_BITS];
5041 const struct cmap_node *nodes[MAP_BITS];
5042
5043 if (cnt != MAP_BITS) {
5044 keys_map >>= MAP_BITS - cnt; /* Clear extra bits. */
5045 }
5046 memset(rules, 0, cnt * sizeof *rules);
5047
5048 int lookups_match = 0, subtable_pos = 1;
5049
5050 /* The Datapath classifier - aka dpcls - is composed of subtables.
5051 * Subtables are dynamically created as needed when new rules are inserted.
5052 * Each subtable collects rules with matches on a specific subset of packet
5053 * fields as defined by the subtable's mask. We proceed to process every
5054 * search-key against each subtable, but when a match is found for a
5055 * search-key, the search for that key can stop because the rules are
5056 * non-overlapping. */
5057 PVECTOR_FOR_EACH (subtable, &cls->subtables) {
5058 int i;
5059
5060 /* Compute hashes for the remaining keys. Each search-key is
5061 * masked with the subtable's mask to avoid hashing the wildcarded
5062 * bits. */
5063 ULLONG_FOR_EACH_1(i, keys_map) {
5064 hashes[i] = netdev_flow_key_hash_in_mask(&keys[i],
5065 &subtable->mask);
5066 }
5067 /* Lookup. */
5068 found_map = cmap_find_batch(&subtable->rules, keys_map, hashes, nodes);
5069 /* Check results. When the i-th bit of found_map is set, it means
5070 * that a set of nodes with a matching hash value was found for the
5071 * i-th search-key. Due to possible hash collisions we need to check
5072 * which of the found rules, if any, really matches our masked
5073 * search-key. */
5074 ULLONG_FOR_EACH_1(i, found_map) {
5075 struct dpcls_rule *rule;
5076
5077 CMAP_NODE_FOR_EACH (rule, cmap_node, nodes[i]) {
5078 if (OVS_LIKELY(dpcls_rule_matches_key(rule, &keys[i]))) {
5079 rules[i] = rule;
5080 /* Even at 20 Mpps the 32-bit hit_cnt cannot wrap
5081 * within one second optimization interval. */
5082 subtable->hit_cnt++;
5083 lookups_match += subtable_pos;
5084 goto next;
5085 }
5086 }
5087 /* None of the found rules was a match. Reset the i-th bit to
5088 * keep searching this key in the next subtable. */
5089 ULLONG_SET0(found_map, i); /* Did not match. */
5090 next:
5091 ; /* Keep Sparse happy. */
5092 }
5093 keys_map &= ~found_map; /* Clear the found rules. */
5094 if (!keys_map) {
5095 if (num_lookups_p) {
5096 *num_lookups_p = lookups_match;
5097 }
5098 return true; /* All found. */
5099 }
5100 subtable_pos++;
5101 }
5102 if (num_lookups_p) {
5103 *num_lookups_p = lookups_match;
5104 }
5105 return false; /* Some misses. */
5106 }