]> git.proxmox.com Git - ovs.git/blob - lib/dpif-netdev.c
flow: Add struct flowmap.
[ovs.git] / lib / dpif-netdev.c
1 /*
2 * Copyright (c) 2009, 2010, 2011, 2012, 2013, 2014 Nicira, Inc.
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at:
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <config.h>
18 #include "dpif-netdev.h"
19
20 #include <ctype.h>
21 #include <errno.h>
22 #include <fcntl.h>
23 #include <inttypes.h>
24 #include <netinet/in.h>
25 #include <sys/socket.h>
26 #include <net/if.h>
27 #include <stdint.h>
28 #include <stdlib.h>
29 #include <string.h>
30 #include <sys/ioctl.h>
31 #include <sys/stat.h>
32 #include <unistd.h>
33
34 #include "bitmap.h"
35 #include "cmap.h"
36 #include "csum.h"
37 #include "dp-packet.h"
38 #include "dpif.h"
39 #include "dpif-provider.h"
40 #include "dummy.h"
41 #include "dynamic-string.h"
42 #include "fat-rwlock.h"
43 #include "flow.h"
44 #include "cmap.h"
45 #include "coverage.h"
46 #include "latch.h"
47 #include "list.h"
48 #include "match.h"
49 #include "netdev.h"
50 #include "netdev-dpdk.h"
51 #include "netdev-vport.h"
52 #include "netlink.h"
53 #include "odp-execute.h"
54 #include "odp-util.h"
55 #include "ofp-print.h"
56 #include "ofpbuf.h"
57 #include "ovs-numa.h"
58 #include "ovs-rcu.h"
59 #include "packets.h"
60 #include "poll-loop.h"
61 #include "pvector.h"
62 #include "random.h"
63 #include "seq.h"
64 #include "shash.h"
65 #include "sset.h"
66 #include "timeval.h"
67 #include "tnl-arp-cache.h"
68 #include "unixctl.h"
69 #include "util.h"
70 #include "openvswitch/vlog.h"
71
72 VLOG_DEFINE_THIS_MODULE(dpif_netdev);
73
74 #define FLOW_DUMP_MAX_BATCH 50
75 /* Use per thread recirc_depth to prevent recirculation loop. */
76 #define MAX_RECIRC_DEPTH 5
77 DEFINE_STATIC_PER_THREAD_DATA(uint32_t, recirc_depth, 0)
78
79 /* Configuration parameters. */
80 enum { MAX_FLOWS = 65536 }; /* Maximum number of flows in flow table. */
81
82 /* Protects against changes to 'dp_netdevs'. */
83 static struct ovs_mutex dp_netdev_mutex = OVS_MUTEX_INITIALIZER;
84
85 /* Contains all 'struct dp_netdev's. */
86 static struct shash dp_netdevs OVS_GUARDED_BY(dp_netdev_mutex)
87 = SHASH_INITIALIZER(&dp_netdevs);
88
89 static struct vlog_rate_limit upcall_rl = VLOG_RATE_LIMIT_INIT(600, 600);
90
91 static struct odp_support dp_netdev_support = {
92 .max_mpls_depth = SIZE_MAX,
93 .recirc = true,
94 };
95
96 /* Stores a miniflow with inline values */
97
98 struct netdev_flow_key {
99 uint32_t hash; /* Hash function differs for different users. */
100 uint32_t len; /* Length of the following miniflow (incl. map). */
101 struct miniflow mf;
102 uint64_t buf[FLOW_MAX_PACKET_U64S];
103 };
104
105 /* Exact match cache for frequently used flows
106 *
107 * The cache uses a 32-bit hash of the packet (which can be the RSS hash) to
108 * search its entries for a miniflow that matches exactly the miniflow of the
109 * packet. It stores the 'dpcls_rule' (rule) that matches the miniflow.
110 *
111 * A cache entry holds a reference to its 'dp_netdev_flow'.
112 *
113 * A miniflow with a given hash can be in one of EM_FLOW_HASH_SEGS different
114 * entries. The 32-bit hash is split into EM_FLOW_HASH_SEGS values (each of
115 * them is EM_FLOW_HASH_SHIFT bits wide and the remainder is thrown away). Each
116 * value is the index of a cache entry where the miniflow could be.
117 *
118 *
119 * Thread-safety
120 * =============
121 *
122 * Each pmd_thread has its own private exact match cache.
123 * If dp_netdev_input is not called from a pmd thread, a mutex is used.
124 */
125
126 #define EM_FLOW_HASH_SHIFT 13
127 #define EM_FLOW_HASH_ENTRIES (1u << EM_FLOW_HASH_SHIFT)
128 #define EM_FLOW_HASH_MASK (EM_FLOW_HASH_ENTRIES - 1)
129 #define EM_FLOW_HASH_SEGS 2
130
131 struct emc_entry {
132 struct dp_netdev_flow *flow;
133 struct netdev_flow_key key; /* key.hash used for emc hash value. */
134 };
135
136 struct emc_cache {
137 struct emc_entry entries[EM_FLOW_HASH_ENTRIES];
138 int sweep_idx; /* For emc_cache_slow_sweep(). */
139 };
140
141 /* Iterate in the exact match cache through every entry that might contain a
142 * miniflow with hash 'HASH'. */
143 #define EMC_FOR_EACH_POS_WITH_HASH(EMC, CURRENT_ENTRY, HASH) \
144 for (uint32_t i__ = 0, srch_hash__ = (HASH); \
145 (CURRENT_ENTRY) = &(EMC)->entries[srch_hash__ & EM_FLOW_HASH_MASK], \
146 i__ < EM_FLOW_HASH_SEGS; \
147 i__++, srch_hash__ >>= EM_FLOW_HASH_SHIFT)
148 \f
149 /* Simple non-wildcarding single-priority classifier. */
150
151 struct dpcls {
152 struct cmap subtables_map;
153 struct pvector subtables;
154 };
155
156 /* A rule to be inserted to the classifier. */
157 struct dpcls_rule {
158 struct cmap_node cmap_node; /* Within struct dpcls_subtable 'rules'. */
159 struct netdev_flow_key *mask; /* Subtable's mask. */
160 struct netdev_flow_key flow; /* Matching key. */
161 /* 'flow' must be the last field, additional space is allocated here. */
162 };
163
164 static void dpcls_init(struct dpcls *);
165 static void dpcls_destroy(struct dpcls *);
166 static void dpcls_insert(struct dpcls *, struct dpcls_rule *,
167 const struct netdev_flow_key *mask);
168 static void dpcls_remove(struct dpcls *, struct dpcls_rule *);
169 static bool dpcls_lookup(const struct dpcls *cls,
170 const struct netdev_flow_key keys[],
171 struct dpcls_rule **rules, size_t cnt);
172 \f
173 /* Datapath based on the network device interface from netdev.h.
174 *
175 *
176 * Thread-safety
177 * =============
178 *
179 * Some members, marked 'const', are immutable. Accessing other members
180 * requires synchronization, as noted in more detail below.
181 *
182 * Acquisition order is, from outermost to innermost:
183 *
184 * dp_netdev_mutex (global)
185 * port_mutex
186 */
187 struct dp_netdev {
188 const struct dpif_class *const class;
189 const char *const name;
190 struct dpif *dpif;
191 struct ovs_refcount ref_cnt;
192 atomic_flag destroyed;
193
194 /* Ports.
195 *
196 * Protected by RCU. Take the mutex to add or remove ports. */
197 struct ovs_mutex port_mutex;
198 struct cmap ports;
199 struct seq *port_seq; /* Incremented whenever a port changes. */
200
201 /* Protects access to ofproto-dpif-upcall interface during revalidator
202 * thread synchronization. */
203 struct fat_rwlock upcall_rwlock;
204 upcall_callback *upcall_cb; /* Callback function for executing upcalls. */
205 void *upcall_aux;
206
207 /* Stores all 'struct dp_netdev_pmd_thread's. */
208 struct cmap poll_threads;
209
210 /* Protects the access of the 'struct dp_netdev_pmd_thread'
211 * instance for non-pmd thread. */
212 struct ovs_mutex non_pmd_mutex;
213
214 /* Each pmd thread will store its pointer to
215 * 'struct dp_netdev_pmd_thread' in 'per_pmd_key'. */
216 ovsthread_key_t per_pmd_key;
217
218 /* Number of rx queues for each dpdk interface and the cpu mask
219 * for pin of pmd threads. */
220 size_t n_dpdk_rxqs;
221 char *pmd_cmask;
222 uint64_t last_tnl_conf_seq;
223 };
224
225 static struct dp_netdev_port *dp_netdev_lookup_port(const struct dp_netdev *dp,
226 odp_port_t);
227
228 enum dp_stat_type {
229 DP_STAT_EXACT_HIT, /* Packets that had an exact match (emc). */
230 DP_STAT_MASKED_HIT, /* Packets that matched in the flow table. */
231 DP_STAT_MISS, /* Packets that did not match. */
232 DP_STAT_LOST, /* Packets not passed up to the client. */
233 DP_N_STATS
234 };
235
236 enum pmd_cycles_counter_type {
237 PMD_CYCLES_POLLING, /* Cycles spent polling NICs. */
238 PMD_CYCLES_PROCESSING, /* Cycles spent processing packets */
239 PMD_N_CYCLES
240 };
241
242 /* A port in a netdev-based datapath. */
243 struct dp_netdev_port {
244 odp_port_t port_no;
245 struct netdev *netdev;
246 struct cmap_node node; /* Node in dp_netdev's 'ports'. */
247 struct netdev_saved_flags *sf;
248 struct netdev_rxq **rxq;
249 struct ovs_refcount ref_cnt;
250 char *type; /* Port type as requested by user. */
251 };
252
253 /* Contained by struct dp_netdev_flow's 'stats' member. */
254 struct dp_netdev_flow_stats {
255 atomic_llong used; /* Last used time, in monotonic msecs. */
256 atomic_ullong packet_count; /* Number of packets matched. */
257 atomic_ullong byte_count; /* Number of bytes matched. */
258 atomic_uint16_t tcp_flags; /* Bitwise-OR of seen tcp_flags values. */
259 };
260
261 /* A flow in 'dp_netdev_pmd_thread's 'flow_table'.
262 *
263 *
264 * Thread-safety
265 * =============
266 *
267 * Except near the beginning or ending of its lifespan, rule 'rule' belongs to
268 * its pmd thread's classifier. The text below calls this classifier 'cls'.
269 *
270 * Motivation
271 * ----------
272 *
273 * The thread safety rules described here for "struct dp_netdev_flow" are
274 * motivated by two goals:
275 *
276 * - Prevent threads that read members of "struct dp_netdev_flow" from
277 * reading bad data due to changes by some thread concurrently modifying
278 * those members.
279 *
280 * - Prevent two threads making changes to members of a given "struct
281 * dp_netdev_flow" from interfering with each other.
282 *
283 *
284 * Rules
285 * -----
286 *
287 * A flow 'flow' may be accessed without a risk of being freed during an RCU
288 * grace period. Code that needs to hold onto a flow for a while
289 * should try incrementing 'flow->ref_cnt' with dp_netdev_flow_ref().
290 *
291 * 'flow->ref_cnt' protects 'flow' from being freed. It doesn't protect the
292 * flow from being deleted from 'cls' and it doesn't protect members of 'flow'
293 * from modification.
294 *
295 * Some members, marked 'const', are immutable. Accessing other members
296 * requires synchronization, as noted in more detail below.
297 */
298 struct dp_netdev_flow {
299 const struct flow flow; /* Unmasked flow that created this entry. */
300 /* Hash table index by unmasked flow. */
301 const struct cmap_node node; /* In owning dp_netdev_pmd_thread's */
302 /* 'flow_table'. */
303 const ovs_u128 ufid; /* Unique flow identifier. */
304 const unsigned pmd_id; /* The 'core_id' of pmd thread owning this */
305 /* flow. */
306
307 /* Number of references.
308 * The classifier owns one reference.
309 * Any thread trying to keep a rule from being freed should hold its own
310 * reference. */
311 struct ovs_refcount ref_cnt;
312
313 bool dead;
314
315 /* Statistics. */
316 struct dp_netdev_flow_stats stats;
317
318 /* Actions. */
319 OVSRCU_TYPE(struct dp_netdev_actions *) actions;
320
321 /* While processing a group of input packets, the datapath uses the next
322 * member to store a pointer to the output batch for the flow. It is
323 * reset after the batch has been sent out (See dp_netdev_queue_batches(),
324 * packet_batch_init() and packet_batch_execute()). */
325 struct packet_batch *batch;
326
327 /* Packet classification. */
328 struct dpcls_rule cr; /* In owning dp_netdev's 'cls'. */
329 /* 'cr' must be the last member. */
330 };
331
332 static void dp_netdev_flow_unref(struct dp_netdev_flow *);
333 static bool dp_netdev_flow_ref(struct dp_netdev_flow *);
334 static int dpif_netdev_flow_from_nlattrs(const struct nlattr *, uint32_t,
335 struct flow *);
336
337 /* A set of datapath actions within a "struct dp_netdev_flow".
338 *
339 *
340 * Thread-safety
341 * =============
342 *
343 * A struct dp_netdev_actions 'actions' is protected with RCU. */
344 struct dp_netdev_actions {
345 /* These members are immutable: they do not change during the struct's
346 * lifetime. */
347 unsigned int size; /* Size of 'actions', in bytes. */
348 struct nlattr actions[]; /* Sequence of OVS_ACTION_ATTR_* attributes. */
349 };
350
351 struct dp_netdev_actions *dp_netdev_actions_create(const struct nlattr *,
352 size_t);
353 struct dp_netdev_actions *dp_netdev_flow_get_actions(
354 const struct dp_netdev_flow *);
355 static void dp_netdev_actions_free(struct dp_netdev_actions *);
356
357 /* Contained by struct dp_netdev_pmd_thread's 'stats' member. */
358 struct dp_netdev_pmd_stats {
359 /* Indexed by DP_STAT_*. */
360 atomic_ullong n[DP_N_STATS];
361 };
362
363 /* Contained by struct dp_netdev_pmd_thread's 'cycle' member. */
364 struct dp_netdev_pmd_cycles {
365 /* Indexed by PMD_CYCLES_*. */
366 atomic_ullong n[PMD_N_CYCLES];
367 };
368
369 /* PMD: Poll modes drivers. PMD accesses devices via polling to eliminate
370 * the performance overhead of interrupt processing. Therefore netdev can
371 * not implement rx-wait for these devices. dpif-netdev needs to poll
372 * these device to check for recv buffer. pmd-thread does polling for
373 * devices assigned to itself.
374 *
375 * DPDK used PMD for accessing NIC.
376 *
377 * Note, instance with cpu core id NON_PMD_CORE_ID will be reserved for
378 * I/O of all non-pmd threads. There will be no actual thread created
379 * for the instance.
380 *
381 * Each struct has its own flow table and classifier. Packets received
382 * from managed ports are looked up in the corresponding pmd thread's
383 * flow table, and are executed with the found actions.
384 * */
385 struct dp_netdev_pmd_thread {
386 struct dp_netdev *dp;
387 struct ovs_refcount ref_cnt; /* Every reference must be refcount'ed. */
388 struct cmap_node node; /* In 'dp->poll_threads'. */
389
390 pthread_cond_t cond; /* For synchronizing pmd thread reload. */
391 struct ovs_mutex cond_mutex; /* Mutex for condition variable. */
392
393 /* Per thread exact-match cache. Note, the instance for cpu core
394 * NON_PMD_CORE_ID can be accessed by multiple threads, and thusly
395 * need to be protected (e.g. by 'dp_netdev_mutex'). All other
396 * instances will only be accessed by its own pmd thread. */
397 struct emc_cache flow_cache;
398
399 /* Classifier and Flow-Table.
400 *
401 * Writers of 'flow_table' must take the 'flow_mutex'. Corresponding
402 * changes to 'cls' must be made while still holding the 'flow_mutex'.
403 */
404 struct ovs_mutex flow_mutex;
405 struct dpcls cls;
406 struct cmap flow_table OVS_GUARDED; /* Flow table. */
407
408 /* Statistics. */
409 struct dp_netdev_pmd_stats stats;
410
411 /* Cycles counters */
412 struct dp_netdev_pmd_cycles cycles;
413
414 /* Used to count cicles. See 'cycles_counter_end()' */
415 unsigned long long last_cycles;
416
417 struct latch exit_latch; /* For terminating the pmd thread. */
418 atomic_uint change_seq; /* For reloading pmd ports. */
419 pthread_t thread;
420 int index; /* Idx of this pmd thread among pmd*/
421 /* threads on same numa node. */
422 unsigned core_id; /* CPU core id of this pmd thread. */
423 int numa_id; /* numa node id of this pmd thread. */
424 int tx_qid; /* Queue id used by this pmd thread to
425 * send packets on all netdevs */
426
427 /* Only a pmd thread can write on its own 'cycles' and 'stats'.
428 * The main thread keeps 'stats_zero' and 'cycles_zero' as base
429 * values and subtracts them from 'stats' and 'cycles' before
430 * reporting to the user */
431 unsigned long long stats_zero[DP_N_STATS];
432 uint64_t cycles_zero[PMD_N_CYCLES];
433 };
434
435 #define PMD_INITIAL_SEQ 1
436
437 /* Interface to netdev-based datapath. */
438 struct dpif_netdev {
439 struct dpif dpif;
440 struct dp_netdev *dp;
441 uint64_t last_port_seq;
442 };
443
444 static int get_port_by_number(struct dp_netdev *dp, odp_port_t port_no,
445 struct dp_netdev_port **portp);
446 static int get_port_by_name(struct dp_netdev *dp, const char *devname,
447 struct dp_netdev_port **portp);
448 static void dp_netdev_free(struct dp_netdev *)
449 OVS_REQUIRES(dp_netdev_mutex);
450 static int do_add_port(struct dp_netdev *dp, const char *devname,
451 const char *type, odp_port_t port_no)
452 OVS_REQUIRES(dp->port_mutex);
453 static void do_del_port(struct dp_netdev *dp, struct dp_netdev_port *)
454 OVS_REQUIRES(dp->port_mutex);
455 static int dpif_netdev_open(const struct dpif_class *, const char *name,
456 bool create, struct dpif **);
457 static void dp_netdev_execute_actions(struct dp_netdev_pmd_thread *pmd,
458 struct dp_packet **, int c,
459 bool may_steal,
460 const struct nlattr *actions,
461 size_t actions_len);
462 static void dp_netdev_input(struct dp_netdev_pmd_thread *,
463 struct dp_packet **, int cnt);
464
465 static void dp_netdev_disable_upcall(struct dp_netdev *);
466 void dp_netdev_pmd_reload_done(struct dp_netdev_pmd_thread *pmd);
467 static void dp_netdev_configure_pmd(struct dp_netdev_pmd_thread *pmd,
468 struct dp_netdev *dp, int index,
469 unsigned core_id, int numa_id);
470 static void dp_netdev_destroy_pmd(struct dp_netdev_pmd_thread *pmd);
471 static void dp_netdev_set_nonpmd(struct dp_netdev *dp);
472 static struct dp_netdev_pmd_thread *dp_netdev_get_pmd(struct dp_netdev *dp,
473 unsigned core_id);
474 static struct dp_netdev_pmd_thread *
475 dp_netdev_pmd_get_next(struct dp_netdev *dp, struct cmap_position *pos);
476 static void dp_netdev_destroy_all_pmds(struct dp_netdev *dp);
477 static void dp_netdev_del_pmds_on_numa(struct dp_netdev *dp, int numa_id);
478 static void dp_netdev_set_pmds_on_numa(struct dp_netdev *dp, int numa_id);
479 static void dp_netdev_reset_pmd_threads(struct dp_netdev *dp);
480 static bool dp_netdev_pmd_try_ref(struct dp_netdev_pmd_thread *pmd);
481 static void dp_netdev_pmd_unref(struct dp_netdev_pmd_thread *pmd);
482 static void dp_netdev_pmd_flow_flush(struct dp_netdev_pmd_thread *pmd);
483
484 static inline bool emc_entry_alive(struct emc_entry *ce);
485 static void emc_clear_entry(struct emc_entry *ce);
486
487 static void
488 emc_cache_init(struct emc_cache *flow_cache)
489 {
490 int i;
491
492 flow_cache->sweep_idx = 0;
493 for (i = 0; i < ARRAY_SIZE(flow_cache->entries); i++) {
494 flow_cache->entries[i].flow = NULL;
495 flow_cache->entries[i].key.hash = 0;
496 flow_cache->entries[i].key.len = sizeof(struct miniflow);
497 flowmap_init(&flow_cache->entries[i].key.mf.map);
498 }
499 }
500
501 static void
502 emc_cache_uninit(struct emc_cache *flow_cache)
503 {
504 int i;
505
506 for (i = 0; i < ARRAY_SIZE(flow_cache->entries); i++) {
507 emc_clear_entry(&flow_cache->entries[i]);
508 }
509 }
510
511 /* Check and clear dead flow references slowly (one entry at each
512 * invocation). */
513 static void
514 emc_cache_slow_sweep(struct emc_cache *flow_cache)
515 {
516 struct emc_entry *entry = &flow_cache->entries[flow_cache->sweep_idx];
517
518 if (!emc_entry_alive(entry)) {
519 emc_clear_entry(entry);
520 }
521 flow_cache->sweep_idx = (flow_cache->sweep_idx + 1) & EM_FLOW_HASH_MASK;
522 }
523
524 /* Returns true if 'dpif' is a netdev or dummy dpif, false otherwise. */
525 bool
526 dpif_is_netdev(const struct dpif *dpif)
527 {
528 return dpif->dpif_class->open == dpif_netdev_open;
529 }
530
531 static struct dpif_netdev *
532 dpif_netdev_cast(const struct dpif *dpif)
533 {
534 ovs_assert(dpif_is_netdev(dpif));
535 return CONTAINER_OF(dpif, struct dpif_netdev, dpif);
536 }
537
538 static struct dp_netdev *
539 get_dp_netdev(const struct dpif *dpif)
540 {
541 return dpif_netdev_cast(dpif)->dp;
542 }
543 \f
544 enum pmd_info_type {
545 PMD_INFO_SHOW_STATS, /* show how cpu cycles are spent */
546 PMD_INFO_CLEAR_STATS /* set the cycles count to 0 */
547 };
548
549 static void
550 pmd_info_show_stats(struct ds *reply,
551 struct dp_netdev_pmd_thread *pmd,
552 unsigned long long stats[DP_N_STATS],
553 uint64_t cycles[PMD_N_CYCLES])
554 {
555 unsigned long long total_packets = 0;
556 uint64_t total_cycles = 0;
557 int i;
558
559 /* These loops subtracts reference values ('*_zero') from the counters.
560 * Since loads and stores are relaxed, it might be possible for a '*_zero'
561 * value to be more recent than the current value we're reading from the
562 * counter. This is not a big problem, since these numbers are not
563 * supposed to be too accurate, but we should at least make sure that
564 * the result is not negative. */
565 for (i = 0; i < DP_N_STATS; i++) {
566 if (stats[i] > pmd->stats_zero[i]) {
567 stats[i] -= pmd->stats_zero[i];
568 } else {
569 stats[i] = 0;
570 }
571
572 if (i != DP_STAT_LOST) {
573 /* Lost packets are already included in DP_STAT_MISS */
574 total_packets += stats[i];
575 }
576 }
577
578 for (i = 0; i < PMD_N_CYCLES; i++) {
579 if (cycles[i] > pmd->cycles_zero[i]) {
580 cycles[i] -= pmd->cycles_zero[i];
581 } else {
582 cycles[i] = 0;
583 }
584
585 total_cycles += cycles[i];
586 }
587
588 ds_put_cstr(reply, (pmd->core_id == NON_PMD_CORE_ID)
589 ? "main thread" : "pmd thread");
590
591 if (pmd->numa_id != OVS_NUMA_UNSPEC) {
592 ds_put_format(reply, " numa_id %d", pmd->numa_id);
593 }
594 if (pmd->core_id != OVS_CORE_UNSPEC && pmd->core_id != NON_PMD_CORE_ID) {
595 ds_put_format(reply, " core_id %u", pmd->core_id);
596 }
597 ds_put_cstr(reply, ":\n");
598
599 ds_put_format(reply,
600 "\temc hits:%llu\n\tmegaflow hits:%llu\n"
601 "\tmiss:%llu\n\tlost:%llu\n",
602 stats[DP_STAT_EXACT_HIT], stats[DP_STAT_MASKED_HIT],
603 stats[DP_STAT_MISS], stats[DP_STAT_LOST]);
604
605 if (total_cycles == 0) {
606 return;
607 }
608
609 ds_put_format(reply,
610 "\tpolling cycles:%"PRIu64" (%.02f%%)\n"
611 "\tprocessing cycles:%"PRIu64" (%.02f%%)\n",
612 cycles[PMD_CYCLES_POLLING],
613 cycles[PMD_CYCLES_POLLING] / (double)total_cycles * 100,
614 cycles[PMD_CYCLES_PROCESSING],
615 cycles[PMD_CYCLES_PROCESSING] / (double)total_cycles * 100);
616
617 if (total_packets == 0) {
618 return;
619 }
620
621 ds_put_format(reply,
622 "\tavg cycles per packet: %.02f (%"PRIu64"/%llu)\n",
623 total_cycles / (double)total_packets,
624 total_cycles, total_packets);
625
626 ds_put_format(reply,
627 "\tavg processing cycles per packet: "
628 "%.02f (%"PRIu64"/%llu)\n",
629 cycles[PMD_CYCLES_PROCESSING] / (double)total_packets,
630 cycles[PMD_CYCLES_PROCESSING], total_packets);
631 }
632
633 static void
634 pmd_info_clear_stats(struct ds *reply OVS_UNUSED,
635 struct dp_netdev_pmd_thread *pmd,
636 unsigned long long stats[DP_N_STATS],
637 uint64_t cycles[PMD_N_CYCLES])
638 {
639 int i;
640
641 /* We cannot write 'stats' and 'cycles' (because they're written by other
642 * threads) and we shouldn't change 'stats' (because they're used to count
643 * datapath stats, which must not be cleared here). Instead, we save the
644 * current values and subtract them from the values to be displayed in the
645 * future */
646 for (i = 0; i < DP_N_STATS; i++) {
647 pmd->stats_zero[i] = stats[i];
648 }
649 for (i = 0; i < PMD_N_CYCLES; i++) {
650 pmd->cycles_zero[i] = cycles[i];
651 }
652 }
653
654 static void
655 dpif_netdev_pmd_info(struct unixctl_conn *conn, int argc, const char *argv[],
656 void *aux)
657 {
658 struct ds reply = DS_EMPTY_INITIALIZER;
659 struct dp_netdev_pmd_thread *pmd;
660 struct dp_netdev *dp = NULL;
661 enum pmd_info_type type = *(enum pmd_info_type *) aux;
662
663 ovs_mutex_lock(&dp_netdev_mutex);
664
665 if (argc == 2) {
666 dp = shash_find_data(&dp_netdevs, argv[1]);
667 } else if (shash_count(&dp_netdevs) == 1) {
668 /* There's only one datapath */
669 dp = shash_first(&dp_netdevs)->data;
670 }
671
672 if (!dp) {
673 ovs_mutex_unlock(&dp_netdev_mutex);
674 unixctl_command_reply_error(conn,
675 "please specify an existing datapath");
676 return;
677 }
678
679 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
680 unsigned long long stats[DP_N_STATS];
681 uint64_t cycles[PMD_N_CYCLES];
682 int i;
683
684 /* Read current stats and cycle counters */
685 for (i = 0; i < ARRAY_SIZE(stats); i++) {
686 atomic_read_relaxed(&pmd->stats.n[i], &stats[i]);
687 }
688 for (i = 0; i < ARRAY_SIZE(cycles); i++) {
689 atomic_read_relaxed(&pmd->cycles.n[i], &cycles[i]);
690 }
691
692 if (type == PMD_INFO_CLEAR_STATS) {
693 pmd_info_clear_stats(&reply, pmd, stats, cycles);
694 } else if (type == PMD_INFO_SHOW_STATS) {
695 pmd_info_show_stats(&reply, pmd, stats, cycles);
696 }
697 }
698
699 ovs_mutex_unlock(&dp_netdev_mutex);
700
701 unixctl_command_reply(conn, ds_cstr(&reply));
702 ds_destroy(&reply);
703 }
704 \f
705 static int
706 dpif_netdev_init(void)
707 {
708 static enum pmd_info_type show_aux = PMD_INFO_SHOW_STATS,
709 clear_aux = PMD_INFO_CLEAR_STATS;
710
711 unixctl_command_register("dpif-netdev/pmd-stats-show", "[dp]",
712 0, 1, dpif_netdev_pmd_info,
713 (void *)&show_aux);
714 unixctl_command_register("dpif-netdev/pmd-stats-clear", "[dp]",
715 0, 1, dpif_netdev_pmd_info,
716 (void *)&clear_aux);
717 return 0;
718 }
719
720 static int
721 dpif_netdev_enumerate(struct sset *all_dps,
722 const struct dpif_class *dpif_class)
723 {
724 struct shash_node *node;
725
726 ovs_mutex_lock(&dp_netdev_mutex);
727 SHASH_FOR_EACH(node, &dp_netdevs) {
728 struct dp_netdev *dp = node->data;
729 if (dpif_class != dp->class) {
730 /* 'dp_netdevs' contains both "netdev" and "dummy" dpifs.
731 * If the class doesn't match, skip this dpif. */
732 continue;
733 }
734 sset_add(all_dps, node->name);
735 }
736 ovs_mutex_unlock(&dp_netdev_mutex);
737
738 return 0;
739 }
740
741 static bool
742 dpif_netdev_class_is_dummy(const struct dpif_class *class)
743 {
744 return class != &dpif_netdev_class;
745 }
746
747 static const char *
748 dpif_netdev_port_open_type(const struct dpif_class *class, const char *type)
749 {
750 return strcmp(type, "internal") ? type
751 : dpif_netdev_class_is_dummy(class) ? "dummy"
752 : "tap";
753 }
754
755 static struct dpif *
756 create_dpif_netdev(struct dp_netdev *dp)
757 {
758 uint16_t netflow_id = hash_string(dp->name, 0);
759 struct dpif_netdev *dpif;
760
761 ovs_refcount_ref(&dp->ref_cnt);
762
763 dpif = xmalloc(sizeof *dpif);
764 dpif_init(&dpif->dpif, dp->class, dp->name, netflow_id >> 8, netflow_id);
765 dpif->dp = dp;
766 dpif->last_port_seq = seq_read(dp->port_seq);
767
768 return &dpif->dpif;
769 }
770
771 /* Choose an unused, non-zero port number and return it on success.
772 * Return ODPP_NONE on failure. */
773 static odp_port_t
774 choose_port(struct dp_netdev *dp, const char *name)
775 OVS_REQUIRES(dp->port_mutex)
776 {
777 uint32_t port_no;
778
779 if (dp->class != &dpif_netdev_class) {
780 const char *p;
781 int start_no = 0;
782
783 /* If the port name begins with "br", start the number search at
784 * 100 to make writing tests easier. */
785 if (!strncmp(name, "br", 2)) {
786 start_no = 100;
787 }
788
789 /* If the port name contains a number, try to assign that port number.
790 * This can make writing unit tests easier because port numbers are
791 * predictable. */
792 for (p = name; *p != '\0'; p++) {
793 if (isdigit((unsigned char) *p)) {
794 port_no = start_no + strtol(p, NULL, 10);
795 if (port_no > 0 && port_no != odp_to_u32(ODPP_NONE)
796 && !dp_netdev_lookup_port(dp, u32_to_odp(port_no))) {
797 return u32_to_odp(port_no);
798 }
799 break;
800 }
801 }
802 }
803
804 for (port_no = 1; port_no <= UINT16_MAX; port_no++) {
805 if (!dp_netdev_lookup_port(dp, u32_to_odp(port_no))) {
806 return u32_to_odp(port_no);
807 }
808 }
809
810 return ODPP_NONE;
811 }
812
813 static int
814 create_dp_netdev(const char *name, const struct dpif_class *class,
815 struct dp_netdev **dpp)
816 OVS_REQUIRES(dp_netdev_mutex)
817 {
818 struct dp_netdev *dp;
819 int error;
820
821 dp = xzalloc(sizeof *dp);
822 shash_add(&dp_netdevs, name, dp);
823
824 *CONST_CAST(const struct dpif_class **, &dp->class) = class;
825 *CONST_CAST(const char **, &dp->name) = xstrdup(name);
826 ovs_refcount_init(&dp->ref_cnt);
827 atomic_flag_clear(&dp->destroyed);
828
829 ovs_mutex_init(&dp->port_mutex);
830 cmap_init(&dp->ports);
831 dp->port_seq = seq_create();
832 fat_rwlock_init(&dp->upcall_rwlock);
833
834 /* Disable upcalls by default. */
835 dp_netdev_disable_upcall(dp);
836 dp->upcall_aux = NULL;
837 dp->upcall_cb = NULL;
838
839 cmap_init(&dp->poll_threads);
840 ovs_mutex_init_recursive(&dp->non_pmd_mutex);
841 ovsthread_key_create(&dp->per_pmd_key, NULL);
842
843 dp_netdev_set_nonpmd(dp);
844 dp->n_dpdk_rxqs = NR_QUEUE;
845
846 ovs_mutex_lock(&dp->port_mutex);
847 error = do_add_port(dp, name, "internal", ODPP_LOCAL);
848 ovs_mutex_unlock(&dp->port_mutex);
849 if (error) {
850 dp_netdev_free(dp);
851 return error;
852 }
853
854 dp->last_tnl_conf_seq = seq_read(tnl_conf_seq);
855 *dpp = dp;
856 return 0;
857 }
858
859 static int
860 dpif_netdev_open(const struct dpif_class *class, const char *name,
861 bool create, struct dpif **dpifp)
862 {
863 struct dp_netdev *dp;
864 int error;
865
866 ovs_mutex_lock(&dp_netdev_mutex);
867 dp = shash_find_data(&dp_netdevs, name);
868 if (!dp) {
869 error = create ? create_dp_netdev(name, class, &dp) : ENODEV;
870 } else {
871 error = (dp->class != class ? EINVAL
872 : create ? EEXIST
873 : 0);
874 }
875 if (!error) {
876 *dpifp = create_dpif_netdev(dp);
877 dp->dpif = *dpifp;
878 }
879 ovs_mutex_unlock(&dp_netdev_mutex);
880
881 return error;
882 }
883
884 static void
885 dp_netdev_destroy_upcall_lock(struct dp_netdev *dp)
886 OVS_NO_THREAD_SAFETY_ANALYSIS
887 {
888 /* Check that upcalls are disabled, i.e. that the rwlock is taken */
889 ovs_assert(fat_rwlock_tryrdlock(&dp->upcall_rwlock));
890
891 /* Before freeing a lock we should release it */
892 fat_rwlock_unlock(&dp->upcall_rwlock);
893 fat_rwlock_destroy(&dp->upcall_rwlock);
894 }
895
896 /* Requires dp_netdev_mutex so that we can't get a new reference to 'dp'
897 * through the 'dp_netdevs' shash while freeing 'dp'. */
898 static void
899 dp_netdev_free(struct dp_netdev *dp)
900 OVS_REQUIRES(dp_netdev_mutex)
901 {
902 struct dp_netdev_port *port;
903
904 shash_find_and_delete(&dp_netdevs, dp->name);
905
906 dp_netdev_destroy_all_pmds(dp);
907 cmap_destroy(&dp->poll_threads);
908 ovs_mutex_destroy(&dp->non_pmd_mutex);
909 ovsthread_key_delete(dp->per_pmd_key);
910
911 ovs_mutex_lock(&dp->port_mutex);
912 CMAP_FOR_EACH (port, node, &dp->ports) {
913 do_del_port(dp, port);
914 }
915 ovs_mutex_unlock(&dp->port_mutex);
916
917 seq_destroy(dp->port_seq);
918 cmap_destroy(&dp->ports);
919
920 /* Upcalls must be disabled at this point */
921 dp_netdev_destroy_upcall_lock(dp);
922
923 free(dp->pmd_cmask);
924 free(CONST_CAST(char *, dp->name));
925 free(dp);
926 }
927
928 static void
929 dp_netdev_unref(struct dp_netdev *dp)
930 {
931 if (dp) {
932 /* Take dp_netdev_mutex so that, if dp->ref_cnt falls to zero, we can't
933 * get a new reference to 'dp' through the 'dp_netdevs' shash. */
934 ovs_mutex_lock(&dp_netdev_mutex);
935 if (ovs_refcount_unref_relaxed(&dp->ref_cnt) == 1) {
936 dp_netdev_free(dp);
937 }
938 ovs_mutex_unlock(&dp_netdev_mutex);
939 }
940 }
941
942 static void
943 dpif_netdev_close(struct dpif *dpif)
944 {
945 struct dp_netdev *dp = get_dp_netdev(dpif);
946
947 dp_netdev_unref(dp);
948 free(dpif);
949 }
950
951 static int
952 dpif_netdev_destroy(struct dpif *dpif)
953 {
954 struct dp_netdev *dp = get_dp_netdev(dpif);
955
956 if (!atomic_flag_test_and_set(&dp->destroyed)) {
957 if (ovs_refcount_unref_relaxed(&dp->ref_cnt) == 1) {
958 /* Can't happen: 'dpif' still owns a reference to 'dp'. */
959 OVS_NOT_REACHED();
960 }
961 }
962
963 return 0;
964 }
965
966 /* Add 'n' to the atomic variable 'var' non-atomically and using relaxed
967 * load/store semantics. While the increment is not atomic, the load and
968 * store operations are, making it impossible to read inconsistent values.
969 *
970 * This is used to update thread local stats counters. */
971 static void
972 non_atomic_ullong_add(atomic_ullong *var, unsigned long long n)
973 {
974 unsigned long long tmp;
975
976 atomic_read_relaxed(var, &tmp);
977 tmp += n;
978 atomic_store_relaxed(var, tmp);
979 }
980
981 static int
982 dpif_netdev_get_stats(const struct dpif *dpif, struct dpif_dp_stats *stats)
983 {
984 struct dp_netdev *dp = get_dp_netdev(dpif);
985 struct dp_netdev_pmd_thread *pmd;
986
987 stats->n_flows = stats->n_hit = stats->n_missed = stats->n_lost = 0;
988 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
989 unsigned long long n;
990 stats->n_flows += cmap_count(&pmd->flow_table);
991
992 atomic_read_relaxed(&pmd->stats.n[DP_STAT_MASKED_HIT], &n);
993 stats->n_hit += n;
994 atomic_read_relaxed(&pmd->stats.n[DP_STAT_EXACT_HIT], &n);
995 stats->n_hit += n;
996 atomic_read_relaxed(&pmd->stats.n[DP_STAT_MISS], &n);
997 stats->n_missed += n;
998 atomic_read_relaxed(&pmd->stats.n[DP_STAT_LOST], &n);
999 stats->n_lost += n;
1000 }
1001 stats->n_masks = UINT32_MAX;
1002 stats->n_mask_hit = UINT64_MAX;
1003
1004 return 0;
1005 }
1006
1007 static void
1008 dp_netdev_reload_pmd__(struct dp_netdev_pmd_thread *pmd)
1009 {
1010 int old_seq;
1011
1012 if (pmd->core_id == NON_PMD_CORE_ID) {
1013 return;
1014 }
1015
1016 ovs_mutex_lock(&pmd->cond_mutex);
1017 atomic_add_relaxed(&pmd->change_seq, 1, &old_seq);
1018 ovs_mutex_cond_wait(&pmd->cond, &pmd->cond_mutex);
1019 ovs_mutex_unlock(&pmd->cond_mutex);
1020 }
1021
1022 /* Causes all pmd threads to reload its tx/rx devices.
1023 * Must be called after adding/removing ports. */
1024 static void
1025 dp_netdev_reload_pmds(struct dp_netdev *dp)
1026 {
1027 struct dp_netdev_pmd_thread *pmd;
1028
1029 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
1030 dp_netdev_reload_pmd__(pmd);
1031 }
1032 }
1033
1034 static uint32_t
1035 hash_port_no(odp_port_t port_no)
1036 {
1037 return hash_int(odp_to_u32(port_no), 0);
1038 }
1039
1040 static int
1041 do_add_port(struct dp_netdev *dp, const char *devname, const char *type,
1042 odp_port_t port_no)
1043 OVS_REQUIRES(dp->port_mutex)
1044 {
1045 struct netdev_saved_flags *sf;
1046 struct dp_netdev_port *port;
1047 struct netdev *netdev;
1048 enum netdev_flags flags;
1049 const char *open_type;
1050 int error;
1051 int i;
1052
1053 /* Reject devices already in 'dp'. */
1054 if (!get_port_by_name(dp, devname, &port)) {
1055 return EEXIST;
1056 }
1057
1058 /* Open and validate network device. */
1059 open_type = dpif_netdev_port_open_type(dp->class, type);
1060 error = netdev_open(devname, open_type, &netdev);
1061 if (error) {
1062 return error;
1063 }
1064 /* XXX reject non-Ethernet devices */
1065
1066 netdev_get_flags(netdev, &flags);
1067 if (flags & NETDEV_LOOPBACK) {
1068 VLOG_ERR("%s: cannot add a loopback device", devname);
1069 netdev_close(netdev);
1070 return EINVAL;
1071 }
1072
1073 if (netdev_is_pmd(netdev)) {
1074 int n_cores = ovs_numa_get_n_cores();
1075
1076 if (n_cores == OVS_CORE_UNSPEC) {
1077 VLOG_ERR("%s, cannot get cpu core info", devname);
1078 return ENOENT;
1079 }
1080 /* There can only be ovs_numa_get_n_cores() pmd threads,
1081 * so creates a txq for each, and one extra for the non
1082 * pmd threads. */
1083 error = netdev_set_multiq(netdev, n_cores + 1, dp->n_dpdk_rxqs);
1084 if (error && (error != EOPNOTSUPP)) {
1085 VLOG_ERR("%s, cannot set multiq", devname);
1086 return errno;
1087 }
1088 }
1089 port = xzalloc(sizeof *port);
1090 port->port_no = port_no;
1091 port->netdev = netdev;
1092 port->rxq = xmalloc(sizeof *port->rxq * netdev_n_rxq(netdev));
1093 port->type = xstrdup(type);
1094 for (i = 0; i < netdev_n_rxq(netdev); i++) {
1095 error = netdev_rxq_open(netdev, &port->rxq[i], i);
1096 if (error
1097 && !(error == EOPNOTSUPP && dpif_netdev_class_is_dummy(dp->class))) {
1098 VLOG_ERR("%s: cannot receive packets on this network device (%s)",
1099 devname, ovs_strerror(errno));
1100 netdev_close(netdev);
1101 free(port->type);
1102 free(port->rxq);
1103 free(port);
1104 return error;
1105 }
1106 }
1107
1108 error = netdev_turn_flags_on(netdev, NETDEV_PROMISC, &sf);
1109 if (error) {
1110 for (i = 0; i < netdev_n_rxq(netdev); i++) {
1111 netdev_rxq_close(port->rxq[i]);
1112 }
1113 netdev_close(netdev);
1114 free(port->type);
1115 free(port->rxq);
1116 free(port);
1117 return error;
1118 }
1119 port->sf = sf;
1120
1121 ovs_refcount_init(&port->ref_cnt);
1122 cmap_insert(&dp->ports, &port->node, hash_port_no(port_no));
1123
1124 if (netdev_is_pmd(netdev)) {
1125 dp_netdev_set_pmds_on_numa(dp, netdev_get_numa_id(netdev));
1126 dp_netdev_reload_pmds(dp);
1127 }
1128 seq_change(dp->port_seq);
1129
1130 return 0;
1131 }
1132
1133 static int
1134 dpif_netdev_port_add(struct dpif *dpif, struct netdev *netdev,
1135 odp_port_t *port_nop)
1136 {
1137 struct dp_netdev *dp = get_dp_netdev(dpif);
1138 char namebuf[NETDEV_VPORT_NAME_BUFSIZE];
1139 const char *dpif_port;
1140 odp_port_t port_no;
1141 int error;
1142
1143 ovs_mutex_lock(&dp->port_mutex);
1144 dpif_port = netdev_vport_get_dpif_port(netdev, namebuf, sizeof namebuf);
1145 if (*port_nop != ODPP_NONE) {
1146 port_no = *port_nop;
1147 error = dp_netdev_lookup_port(dp, *port_nop) ? EBUSY : 0;
1148 } else {
1149 port_no = choose_port(dp, dpif_port);
1150 error = port_no == ODPP_NONE ? EFBIG : 0;
1151 }
1152 if (!error) {
1153 *port_nop = port_no;
1154 error = do_add_port(dp, dpif_port, netdev_get_type(netdev), port_no);
1155 }
1156 ovs_mutex_unlock(&dp->port_mutex);
1157
1158 return error;
1159 }
1160
1161 static int
1162 dpif_netdev_port_del(struct dpif *dpif, odp_port_t port_no)
1163 {
1164 struct dp_netdev *dp = get_dp_netdev(dpif);
1165 int error;
1166
1167 ovs_mutex_lock(&dp->port_mutex);
1168 if (port_no == ODPP_LOCAL) {
1169 error = EINVAL;
1170 } else {
1171 struct dp_netdev_port *port;
1172
1173 error = get_port_by_number(dp, port_no, &port);
1174 if (!error) {
1175 do_del_port(dp, port);
1176 }
1177 }
1178 ovs_mutex_unlock(&dp->port_mutex);
1179
1180 return error;
1181 }
1182
1183 static bool
1184 is_valid_port_number(odp_port_t port_no)
1185 {
1186 return port_no != ODPP_NONE;
1187 }
1188
1189 static struct dp_netdev_port *
1190 dp_netdev_lookup_port(const struct dp_netdev *dp, odp_port_t port_no)
1191 {
1192 struct dp_netdev_port *port;
1193
1194 CMAP_FOR_EACH_WITH_HASH (port, node, hash_port_no(port_no), &dp->ports) {
1195 if (port->port_no == port_no) {
1196 return port;
1197 }
1198 }
1199 return NULL;
1200 }
1201
1202 static int
1203 get_port_by_number(struct dp_netdev *dp,
1204 odp_port_t port_no, struct dp_netdev_port **portp)
1205 {
1206 if (!is_valid_port_number(port_no)) {
1207 *portp = NULL;
1208 return EINVAL;
1209 } else {
1210 *portp = dp_netdev_lookup_port(dp, port_no);
1211 return *portp ? 0 : ENOENT;
1212 }
1213 }
1214
1215 static void
1216 port_ref(struct dp_netdev_port *port)
1217 {
1218 if (port) {
1219 ovs_refcount_ref(&port->ref_cnt);
1220 }
1221 }
1222
1223 static bool
1224 port_try_ref(struct dp_netdev_port *port)
1225 {
1226 if (port) {
1227 return ovs_refcount_try_ref_rcu(&port->ref_cnt);
1228 }
1229
1230 return false;
1231 }
1232
1233 static void
1234 port_unref(struct dp_netdev_port *port)
1235 {
1236 if (port && ovs_refcount_unref_relaxed(&port->ref_cnt) == 1) {
1237 int n_rxq = netdev_n_rxq(port->netdev);
1238 int i;
1239
1240 netdev_close(port->netdev);
1241 netdev_restore_flags(port->sf);
1242
1243 for (i = 0; i < n_rxq; i++) {
1244 netdev_rxq_close(port->rxq[i]);
1245 }
1246 free(port->rxq);
1247 free(port->type);
1248 free(port);
1249 }
1250 }
1251
1252 static int
1253 get_port_by_name(struct dp_netdev *dp,
1254 const char *devname, struct dp_netdev_port **portp)
1255 OVS_REQUIRES(dp->port_mutex)
1256 {
1257 struct dp_netdev_port *port;
1258
1259 CMAP_FOR_EACH (port, node, &dp->ports) {
1260 if (!strcmp(netdev_get_name(port->netdev), devname)) {
1261 *portp = port;
1262 return 0;
1263 }
1264 }
1265 return ENOENT;
1266 }
1267
1268 static int
1269 get_n_pmd_threads_on_numa(struct dp_netdev *dp, int numa_id)
1270 {
1271 struct dp_netdev_pmd_thread *pmd;
1272 int n_pmds = 0;
1273
1274 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
1275 if (pmd->numa_id == numa_id) {
1276 n_pmds++;
1277 }
1278 }
1279
1280 return n_pmds;
1281 }
1282
1283 /* Returns 'true' if there is a port with pmd netdev and the netdev
1284 * is on numa node 'numa_id'. */
1285 static bool
1286 has_pmd_port_for_numa(struct dp_netdev *dp, int numa_id)
1287 {
1288 struct dp_netdev_port *port;
1289
1290 CMAP_FOR_EACH (port, node, &dp->ports) {
1291 if (netdev_is_pmd(port->netdev)
1292 && netdev_get_numa_id(port->netdev) == numa_id) {
1293 return true;
1294 }
1295 }
1296
1297 return false;
1298 }
1299
1300
1301 static void
1302 do_del_port(struct dp_netdev *dp, struct dp_netdev_port *port)
1303 OVS_REQUIRES(dp->port_mutex)
1304 {
1305 cmap_remove(&dp->ports, &port->node, hash_odp_port(port->port_no));
1306 seq_change(dp->port_seq);
1307 if (netdev_is_pmd(port->netdev)) {
1308 int numa_id = netdev_get_numa_id(port->netdev);
1309
1310 /* If there is no netdev on the numa node, deletes the pmd threads
1311 * for that numa. Else, just reloads the queues. */
1312 if (!has_pmd_port_for_numa(dp, numa_id)) {
1313 dp_netdev_del_pmds_on_numa(dp, numa_id);
1314 }
1315 dp_netdev_reload_pmds(dp);
1316 }
1317
1318 port_unref(port);
1319 }
1320
1321 static void
1322 answer_port_query(const struct dp_netdev_port *port,
1323 struct dpif_port *dpif_port)
1324 {
1325 dpif_port->name = xstrdup(netdev_get_name(port->netdev));
1326 dpif_port->type = xstrdup(port->type);
1327 dpif_port->port_no = port->port_no;
1328 }
1329
1330 static int
1331 dpif_netdev_port_query_by_number(const struct dpif *dpif, odp_port_t port_no,
1332 struct dpif_port *dpif_port)
1333 {
1334 struct dp_netdev *dp = get_dp_netdev(dpif);
1335 struct dp_netdev_port *port;
1336 int error;
1337
1338 error = get_port_by_number(dp, port_no, &port);
1339 if (!error && dpif_port) {
1340 answer_port_query(port, dpif_port);
1341 }
1342
1343 return error;
1344 }
1345
1346 static int
1347 dpif_netdev_port_query_by_name(const struct dpif *dpif, const char *devname,
1348 struct dpif_port *dpif_port)
1349 {
1350 struct dp_netdev *dp = get_dp_netdev(dpif);
1351 struct dp_netdev_port *port;
1352 int error;
1353
1354 ovs_mutex_lock(&dp->port_mutex);
1355 error = get_port_by_name(dp, devname, &port);
1356 if (!error && dpif_port) {
1357 answer_port_query(port, dpif_port);
1358 }
1359 ovs_mutex_unlock(&dp->port_mutex);
1360
1361 return error;
1362 }
1363
1364 static void
1365 dp_netdev_flow_free(struct dp_netdev_flow *flow)
1366 {
1367 dp_netdev_actions_free(dp_netdev_flow_get_actions(flow));
1368 free(flow);
1369 }
1370
1371 static void dp_netdev_flow_unref(struct dp_netdev_flow *flow)
1372 {
1373 if (ovs_refcount_unref_relaxed(&flow->ref_cnt) == 1) {
1374 ovsrcu_postpone(dp_netdev_flow_free, flow);
1375 }
1376 }
1377
1378 static uint32_t
1379 dp_netdev_flow_hash(const ovs_u128 *ufid)
1380 {
1381 return ufid->u32[0];
1382 }
1383
1384 static void
1385 dp_netdev_pmd_remove_flow(struct dp_netdev_pmd_thread *pmd,
1386 struct dp_netdev_flow *flow)
1387 OVS_REQUIRES(pmd->flow_mutex)
1388 {
1389 struct cmap_node *node = CONST_CAST(struct cmap_node *, &flow->node);
1390
1391 dpcls_remove(&pmd->cls, &flow->cr);
1392 flow->cr.mask = NULL; /* Accessing rule's mask after this is not safe. */
1393
1394 cmap_remove(&pmd->flow_table, node, dp_netdev_flow_hash(&flow->ufid));
1395 flow->dead = true;
1396
1397 dp_netdev_flow_unref(flow);
1398 }
1399
1400 static void
1401 dp_netdev_pmd_flow_flush(struct dp_netdev_pmd_thread *pmd)
1402 {
1403 struct dp_netdev_flow *netdev_flow;
1404
1405 ovs_mutex_lock(&pmd->flow_mutex);
1406 CMAP_FOR_EACH (netdev_flow, node, &pmd->flow_table) {
1407 dp_netdev_pmd_remove_flow(pmd, netdev_flow);
1408 }
1409 ovs_mutex_unlock(&pmd->flow_mutex);
1410 }
1411
1412 static int
1413 dpif_netdev_flow_flush(struct dpif *dpif)
1414 {
1415 struct dp_netdev *dp = get_dp_netdev(dpif);
1416 struct dp_netdev_pmd_thread *pmd;
1417
1418 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
1419 dp_netdev_pmd_flow_flush(pmd);
1420 }
1421
1422 return 0;
1423 }
1424
1425 struct dp_netdev_port_state {
1426 struct cmap_position position;
1427 char *name;
1428 };
1429
1430 static int
1431 dpif_netdev_port_dump_start(const struct dpif *dpif OVS_UNUSED, void **statep)
1432 {
1433 *statep = xzalloc(sizeof(struct dp_netdev_port_state));
1434 return 0;
1435 }
1436
1437 static int
1438 dpif_netdev_port_dump_next(const struct dpif *dpif, void *state_,
1439 struct dpif_port *dpif_port)
1440 {
1441 struct dp_netdev_port_state *state = state_;
1442 struct dp_netdev *dp = get_dp_netdev(dpif);
1443 struct cmap_node *node;
1444 int retval;
1445
1446 node = cmap_next_position(&dp->ports, &state->position);
1447 if (node) {
1448 struct dp_netdev_port *port;
1449
1450 port = CONTAINER_OF(node, struct dp_netdev_port, node);
1451
1452 free(state->name);
1453 state->name = xstrdup(netdev_get_name(port->netdev));
1454 dpif_port->name = state->name;
1455 dpif_port->type = port->type;
1456 dpif_port->port_no = port->port_no;
1457
1458 retval = 0;
1459 } else {
1460 retval = EOF;
1461 }
1462
1463 return retval;
1464 }
1465
1466 static int
1467 dpif_netdev_port_dump_done(const struct dpif *dpif OVS_UNUSED, void *state_)
1468 {
1469 struct dp_netdev_port_state *state = state_;
1470 free(state->name);
1471 free(state);
1472 return 0;
1473 }
1474
1475 static int
1476 dpif_netdev_port_poll(const struct dpif *dpif_, char **devnamep OVS_UNUSED)
1477 {
1478 struct dpif_netdev *dpif = dpif_netdev_cast(dpif_);
1479 uint64_t new_port_seq;
1480 int error;
1481
1482 new_port_seq = seq_read(dpif->dp->port_seq);
1483 if (dpif->last_port_seq != new_port_seq) {
1484 dpif->last_port_seq = new_port_seq;
1485 error = ENOBUFS;
1486 } else {
1487 error = EAGAIN;
1488 }
1489
1490 return error;
1491 }
1492
1493 static void
1494 dpif_netdev_port_poll_wait(const struct dpif *dpif_)
1495 {
1496 struct dpif_netdev *dpif = dpif_netdev_cast(dpif_);
1497
1498 seq_wait(dpif->dp->port_seq, dpif->last_port_seq);
1499 }
1500
1501 static struct dp_netdev_flow *
1502 dp_netdev_flow_cast(const struct dpcls_rule *cr)
1503 {
1504 return cr ? CONTAINER_OF(cr, struct dp_netdev_flow, cr) : NULL;
1505 }
1506
1507 static bool dp_netdev_flow_ref(struct dp_netdev_flow *flow)
1508 {
1509 return ovs_refcount_try_ref_rcu(&flow->ref_cnt);
1510 }
1511
1512 /* netdev_flow_key utilities.
1513 *
1514 * netdev_flow_key is basically a miniflow. We use these functions
1515 * (netdev_flow_key_clone, netdev_flow_key_equal, ...) instead of the miniflow
1516 * functions (miniflow_clone_inline, miniflow_equal, ...), because:
1517 *
1518 * - Since we are dealing exclusively with miniflows created by
1519 * miniflow_extract(), if the map is different the miniflow is different.
1520 * Therefore we can be faster by comparing the map and the miniflow in a
1521 * single memcmp().
1522 * - These functions can be inlined by the compiler. */
1523
1524 /* Given the number of bits set in miniflow's maps, returns the size of the
1525 * 'netdev_flow_key.mf' */
1526 static inline size_t
1527 netdev_flow_key_size(size_t flow_u64s)
1528 {
1529 return sizeof(struct miniflow) + MINIFLOW_VALUES_SIZE(flow_u64s);
1530 }
1531
1532 static inline bool
1533 netdev_flow_key_equal(const struct netdev_flow_key *a,
1534 const struct netdev_flow_key *b)
1535 {
1536 /* 'b->len' may be not set yet. */
1537 return a->hash == b->hash && !memcmp(&a->mf, &b->mf, a->len);
1538 }
1539
1540 /* Used to compare 'netdev_flow_key' in the exact match cache to a miniflow.
1541 * The maps are compared bitwise, so both 'key->mf' 'mf' must have been
1542 * generated by miniflow_extract. */
1543 static inline bool
1544 netdev_flow_key_equal_mf(const struct netdev_flow_key *key,
1545 const struct miniflow *mf)
1546 {
1547 return !memcmp(&key->mf, mf, key->len);
1548 }
1549
1550 static inline void
1551 netdev_flow_key_clone(struct netdev_flow_key *dst,
1552 const struct netdev_flow_key *src)
1553 {
1554 memcpy(dst, src,
1555 offsetof(struct netdev_flow_key, mf) + src->len);
1556 }
1557
1558 /* Slow. */
1559 static void
1560 netdev_flow_key_from_flow(struct netdev_flow_key *dst,
1561 const struct flow *src)
1562 {
1563 struct dp_packet packet;
1564 uint64_t buf_stub[512 / 8];
1565
1566 dp_packet_use_stub(&packet, buf_stub, sizeof buf_stub);
1567 pkt_metadata_from_flow(&packet.md, src);
1568 flow_compose(&packet, src);
1569 miniflow_extract(&packet, &dst->mf);
1570 dp_packet_uninit(&packet);
1571
1572 dst->len = netdev_flow_key_size(miniflow_n_values(&dst->mf));
1573 dst->hash = 0; /* Not computed yet. */
1574 }
1575
1576 /* Initialize a netdev_flow_key 'mask' from 'match'. */
1577 static inline void
1578 netdev_flow_mask_init(struct netdev_flow_key *mask,
1579 const struct match *match)
1580 {
1581 uint64_t *dst = miniflow_values(&mask->mf);
1582 struct flowmap fmap;
1583 uint32_t hash = 0;
1584 size_t idx;
1585
1586 /* Only check masks that make sense for the flow. */
1587 flow_wc_map(&match->flow, &fmap);
1588 flowmap_init(&mask->mf.map);
1589
1590 FLOWMAP_FOR_EACH_INDEX(idx, fmap) {
1591 uint64_t mask_u64 = flow_u64_value(&match->wc.masks, idx);
1592
1593 if (mask_u64) {
1594 flowmap_set(&mask->mf.map, idx, 1);
1595 *dst++ = mask_u64;
1596 hash = hash_add64(hash, mask_u64);
1597 }
1598 }
1599
1600 map_t map;
1601
1602 FLOWMAP_FOR_EACH_MAP (map, mask->mf.map) {
1603 hash = hash_add64(hash, map);
1604 }
1605
1606 size_t n = dst - miniflow_get_values(&mask->mf);
1607
1608 mask->hash = hash_finish(hash, n * 8);
1609 mask->len = netdev_flow_key_size(n);
1610 }
1611
1612 /* Initializes 'dst' as a copy of 'flow' masked with 'mask'. */
1613 static inline void
1614 netdev_flow_key_init_masked(struct netdev_flow_key *dst,
1615 const struct flow *flow,
1616 const struct netdev_flow_key *mask)
1617 {
1618 uint64_t *dst_u64 = miniflow_values(&dst->mf);
1619 const uint64_t *mask_u64 = miniflow_get_values(&mask->mf);
1620 uint32_t hash = 0;
1621 uint64_t value;
1622
1623 dst->len = mask->len;
1624 dst->mf = mask->mf; /* Copy maps. */
1625
1626 FLOW_FOR_EACH_IN_MAPS(value, flow, mask->mf.map) {
1627 *dst_u64 = value & *mask_u64++;
1628 hash = hash_add64(hash, *dst_u64++);
1629 }
1630 dst->hash = hash_finish(hash,
1631 (dst_u64 - miniflow_get_values(&dst->mf)) * 8);
1632 }
1633
1634 /* Iterate through netdev_flow_key TNL u64 values specified by 'FLOWMAP'. */
1635 #define NETDEV_FLOW_KEY_FOR_EACH_IN_FLOWMAP(VALUE, KEY, FLOWMAP) \
1636 MINIFLOW_FOR_EACH_IN_FLOWMAP(VALUE, &(KEY)->mf, FLOWMAP)
1637
1638 /* Returns a hash value for the bits of 'key' where there are 1-bits in
1639 * 'mask'. */
1640 static inline uint32_t
1641 netdev_flow_key_hash_in_mask(const struct netdev_flow_key *key,
1642 const struct netdev_flow_key *mask)
1643 {
1644 const uint64_t *p = miniflow_get_values(&mask->mf);
1645 uint32_t hash = 0;
1646 uint64_t value;
1647
1648 NETDEV_FLOW_KEY_FOR_EACH_IN_FLOWMAP(value, key, mask->mf.map) {
1649 hash = hash_add64(hash, value & *p++);
1650 }
1651
1652 return hash_finish(hash, (p - miniflow_get_values(&mask->mf)) * 8);
1653 }
1654
1655 static inline bool
1656 emc_entry_alive(struct emc_entry *ce)
1657 {
1658 return ce->flow && !ce->flow->dead;
1659 }
1660
1661 static void
1662 emc_clear_entry(struct emc_entry *ce)
1663 {
1664 if (ce->flow) {
1665 dp_netdev_flow_unref(ce->flow);
1666 ce->flow = NULL;
1667 }
1668 }
1669
1670 static inline void
1671 emc_change_entry(struct emc_entry *ce, struct dp_netdev_flow *flow,
1672 const struct netdev_flow_key *key)
1673 {
1674 if (ce->flow != flow) {
1675 if (ce->flow) {
1676 dp_netdev_flow_unref(ce->flow);
1677 }
1678
1679 if (dp_netdev_flow_ref(flow)) {
1680 ce->flow = flow;
1681 } else {
1682 ce->flow = NULL;
1683 }
1684 }
1685 if (key) {
1686 netdev_flow_key_clone(&ce->key, key);
1687 }
1688 }
1689
1690 static inline void
1691 emc_insert(struct emc_cache *cache, const struct netdev_flow_key *key,
1692 struct dp_netdev_flow *flow)
1693 {
1694 struct emc_entry *to_be_replaced = NULL;
1695 struct emc_entry *current_entry;
1696
1697 EMC_FOR_EACH_POS_WITH_HASH(cache, current_entry, key->hash) {
1698 if (netdev_flow_key_equal(&current_entry->key, key)) {
1699 /* We found the entry with the 'mf' miniflow */
1700 emc_change_entry(current_entry, flow, NULL);
1701 return;
1702 }
1703
1704 /* Replacement policy: put the flow in an empty (not alive) entry, or
1705 * in the first entry where it can be */
1706 if (!to_be_replaced
1707 || (emc_entry_alive(to_be_replaced)
1708 && !emc_entry_alive(current_entry))
1709 || current_entry->key.hash < to_be_replaced->key.hash) {
1710 to_be_replaced = current_entry;
1711 }
1712 }
1713 /* We didn't find the miniflow in the cache.
1714 * The 'to_be_replaced' entry is where the new flow will be stored */
1715
1716 emc_change_entry(to_be_replaced, flow, key);
1717 }
1718
1719 static inline struct dp_netdev_flow *
1720 emc_lookup(struct emc_cache *cache, const struct netdev_flow_key *key)
1721 {
1722 struct emc_entry *current_entry;
1723
1724 EMC_FOR_EACH_POS_WITH_HASH(cache, current_entry, key->hash) {
1725 if (current_entry->key.hash == key->hash
1726 && emc_entry_alive(current_entry)
1727 && netdev_flow_key_equal_mf(&current_entry->key, &key->mf)) {
1728
1729 /* We found the entry with the 'key->mf' miniflow */
1730 return current_entry->flow;
1731 }
1732 }
1733
1734 return NULL;
1735 }
1736
1737 static struct dp_netdev_flow *
1738 dp_netdev_pmd_lookup_flow(const struct dp_netdev_pmd_thread *pmd,
1739 const struct netdev_flow_key *key)
1740 {
1741 struct dp_netdev_flow *netdev_flow;
1742 struct dpcls_rule *rule;
1743
1744 dpcls_lookup(&pmd->cls, key, &rule, 1);
1745 netdev_flow = dp_netdev_flow_cast(rule);
1746
1747 return netdev_flow;
1748 }
1749
1750 static struct dp_netdev_flow *
1751 dp_netdev_pmd_find_flow(const struct dp_netdev_pmd_thread *pmd,
1752 const ovs_u128 *ufidp, const struct nlattr *key,
1753 size_t key_len)
1754 {
1755 struct dp_netdev_flow *netdev_flow;
1756 struct flow flow;
1757 ovs_u128 ufid;
1758
1759 /* If a UFID is not provided, determine one based on the key. */
1760 if (!ufidp && key && key_len
1761 && !dpif_netdev_flow_from_nlattrs(key, key_len, &flow)) {
1762 dpif_flow_hash(pmd->dp->dpif, &flow, sizeof flow, &ufid);
1763 ufidp = &ufid;
1764 }
1765
1766 if (ufidp) {
1767 CMAP_FOR_EACH_WITH_HASH (netdev_flow, node, dp_netdev_flow_hash(ufidp),
1768 &pmd->flow_table) {
1769 if (ovs_u128_equals(&netdev_flow->ufid, ufidp)) {
1770 return netdev_flow;
1771 }
1772 }
1773 }
1774
1775 return NULL;
1776 }
1777
1778 static void
1779 get_dpif_flow_stats(const struct dp_netdev_flow *netdev_flow_,
1780 struct dpif_flow_stats *stats)
1781 {
1782 struct dp_netdev_flow *netdev_flow;
1783 unsigned long long n;
1784 long long used;
1785 uint16_t flags;
1786
1787 netdev_flow = CONST_CAST(struct dp_netdev_flow *, netdev_flow_);
1788
1789 atomic_read_relaxed(&netdev_flow->stats.packet_count, &n);
1790 stats->n_packets = n;
1791 atomic_read_relaxed(&netdev_flow->stats.byte_count, &n);
1792 stats->n_bytes = n;
1793 atomic_read_relaxed(&netdev_flow->stats.used, &used);
1794 stats->used = used;
1795 atomic_read_relaxed(&netdev_flow->stats.tcp_flags, &flags);
1796 stats->tcp_flags = flags;
1797 }
1798
1799 /* Converts to the dpif_flow format, using 'key_buf' and 'mask_buf' for
1800 * storing the netlink-formatted key/mask. 'key_buf' may be the same as
1801 * 'mask_buf'. Actions will be returned without copying, by relying on RCU to
1802 * protect them. */
1803 static void
1804 dp_netdev_flow_to_dpif_flow(const struct dp_netdev_flow *netdev_flow,
1805 struct ofpbuf *key_buf, struct ofpbuf *mask_buf,
1806 struct dpif_flow *flow, bool terse)
1807 {
1808 if (terse) {
1809 memset(flow, 0, sizeof *flow);
1810 } else {
1811 struct flow_wildcards wc;
1812 struct dp_netdev_actions *actions;
1813 size_t offset;
1814 struct odp_flow_key_parms odp_parms = {
1815 .flow = &netdev_flow->flow,
1816 .mask = &wc.masks,
1817 .support = dp_netdev_support,
1818 };
1819
1820 miniflow_expand(&netdev_flow->cr.mask->mf, &wc.masks);
1821
1822 /* Key */
1823 offset = key_buf->size;
1824 flow->key = ofpbuf_tail(key_buf);
1825 odp_parms.odp_in_port = netdev_flow->flow.in_port.odp_port;
1826 odp_flow_key_from_flow(&odp_parms, key_buf);
1827 flow->key_len = key_buf->size - offset;
1828
1829 /* Mask */
1830 offset = mask_buf->size;
1831 flow->mask = ofpbuf_tail(mask_buf);
1832 odp_parms.odp_in_port = wc.masks.in_port.odp_port;
1833 odp_parms.key_buf = key_buf;
1834 odp_flow_key_from_mask(&odp_parms, mask_buf);
1835 flow->mask_len = mask_buf->size - offset;
1836
1837 /* Actions */
1838 actions = dp_netdev_flow_get_actions(netdev_flow);
1839 flow->actions = actions->actions;
1840 flow->actions_len = actions->size;
1841 }
1842
1843 flow->ufid = netdev_flow->ufid;
1844 flow->ufid_present = true;
1845 flow->pmd_id = netdev_flow->pmd_id;
1846 get_dpif_flow_stats(netdev_flow, &flow->stats);
1847 }
1848
1849 static int
1850 dpif_netdev_mask_from_nlattrs(const struct nlattr *key, uint32_t key_len,
1851 const struct nlattr *mask_key,
1852 uint32_t mask_key_len, const struct flow *flow,
1853 struct flow_wildcards *wc)
1854 {
1855 if (mask_key_len) {
1856 enum odp_key_fitness fitness;
1857
1858 fitness = odp_flow_key_to_mask_udpif(mask_key, mask_key_len, key,
1859 key_len, &wc->masks, flow);
1860 if (fitness) {
1861 /* This should not happen: it indicates that
1862 * odp_flow_key_from_mask() and odp_flow_key_to_mask()
1863 * disagree on the acceptable form of a mask. Log the problem
1864 * as an error, with enough details to enable debugging. */
1865 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
1866
1867 if (!VLOG_DROP_ERR(&rl)) {
1868 struct ds s;
1869
1870 ds_init(&s);
1871 odp_flow_format(key, key_len, mask_key, mask_key_len, NULL, &s,
1872 true);
1873 VLOG_ERR("internal error parsing flow mask %s (%s)",
1874 ds_cstr(&s), odp_key_fitness_to_string(fitness));
1875 ds_destroy(&s);
1876 }
1877
1878 return EINVAL;
1879 }
1880 } else {
1881 flow_wildcards_init_for_packet(wc, flow);
1882 }
1883
1884 return 0;
1885 }
1886
1887 static int
1888 dpif_netdev_flow_from_nlattrs(const struct nlattr *key, uint32_t key_len,
1889 struct flow *flow)
1890 {
1891 odp_port_t in_port;
1892
1893 if (odp_flow_key_to_flow_udpif(key, key_len, flow)) {
1894 /* This should not happen: it indicates that odp_flow_key_from_flow()
1895 * and odp_flow_key_to_flow() disagree on the acceptable form of a
1896 * flow. Log the problem as an error, with enough details to enable
1897 * debugging. */
1898 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
1899
1900 if (!VLOG_DROP_ERR(&rl)) {
1901 struct ds s;
1902
1903 ds_init(&s);
1904 odp_flow_format(key, key_len, NULL, 0, NULL, &s, true);
1905 VLOG_ERR("internal error parsing flow key %s", ds_cstr(&s));
1906 ds_destroy(&s);
1907 }
1908
1909 return EINVAL;
1910 }
1911
1912 in_port = flow->in_port.odp_port;
1913 if (!is_valid_port_number(in_port) && in_port != ODPP_NONE) {
1914 return EINVAL;
1915 }
1916
1917 return 0;
1918 }
1919
1920 static int
1921 dpif_netdev_flow_get(const struct dpif *dpif, const struct dpif_flow_get *get)
1922 {
1923 struct dp_netdev *dp = get_dp_netdev(dpif);
1924 struct dp_netdev_flow *netdev_flow;
1925 struct dp_netdev_pmd_thread *pmd;
1926 unsigned pmd_id = get->pmd_id == PMD_ID_NULL
1927 ? NON_PMD_CORE_ID : get->pmd_id;
1928 int error = 0;
1929
1930 pmd = dp_netdev_get_pmd(dp, pmd_id);
1931 if (!pmd) {
1932 return EINVAL;
1933 }
1934
1935 netdev_flow = dp_netdev_pmd_find_flow(pmd, get->ufid, get->key,
1936 get->key_len);
1937 if (netdev_flow) {
1938 dp_netdev_flow_to_dpif_flow(netdev_flow, get->buffer, get->buffer,
1939 get->flow, false);
1940 } else {
1941 error = ENOENT;
1942 }
1943 dp_netdev_pmd_unref(pmd);
1944
1945
1946 return error;
1947 }
1948
1949 static struct dp_netdev_flow *
1950 dp_netdev_flow_add(struct dp_netdev_pmd_thread *pmd,
1951 struct match *match, const ovs_u128 *ufid,
1952 const struct nlattr *actions, size_t actions_len)
1953 OVS_REQUIRES(pmd->flow_mutex)
1954 {
1955 struct dp_netdev_flow *flow;
1956 struct netdev_flow_key mask;
1957
1958 netdev_flow_mask_init(&mask, match);
1959 /* Make sure wc does not have metadata. */
1960 ovs_assert(!FLOWMAP_HAS_FIELD(&mask.mf.map, metadata)
1961 && !FLOWMAP_HAS_FIELD(&mask.mf.map, regs));
1962
1963 /* Do not allocate extra space. */
1964 flow = xmalloc(sizeof *flow - sizeof flow->cr.flow.mf + mask.len);
1965 memset(&flow->stats, 0, sizeof flow->stats);
1966 flow->dead = false;
1967 flow->batch = NULL;
1968 *CONST_CAST(unsigned *, &flow->pmd_id) = pmd->core_id;
1969 *CONST_CAST(struct flow *, &flow->flow) = match->flow;
1970 *CONST_CAST(ovs_u128 *, &flow->ufid) = *ufid;
1971 ovs_refcount_init(&flow->ref_cnt);
1972 ovsrcu_set(&flow->actions, dp_netdev_actions_create(actions, actions_len));
1973
1974 netdev_flow_key_init_masked(&flow->cr.flow, &match->flow, &mask);
1975 dpcls_insert(&pmd->cls, &flow->cr, &mask);
1976
1977 cmap_insert(&pmd->flow_table, CONST_CAST(struct cmap_node *, &flow->node),
1978 dp_netdev_flow_hash(&flow->ufid));
1979
1980 if (OVS_UNLIKELY(VLOG_IS_DBG_ENABLED())) {
1981 struct match match;
1982 struct ds ds = DS_EMPTY_INITIALIZER;
1983
1984 match.flow = flow->flow;
1985 miniflow_expand(&flow->cr.mask->mf, &match.wc.masks);
1986
1987 ds_put_cstr(&ds, "flow_add: ");
1988 odp_format_ufid(ufid, &ds);
1989 ds_put_cstr(&ds, " ");
1990 match_format(&match, &ds, OFP_DEFAULT_PRIORITY);
1991 ds_put_cstr(&ds, ", actions:");
1992 format_odp_actions(&ds, actions, actions_len);
1993
1994 VLOG_DBG_RL(&upcall_rl, "%s", ds_cstr(&ds));
1995
1996 ds_destroy(&ds);
1997 }
1998
1999 return flow;
2000 }
2001
2002 static int
2003 dpif_netdev_flow_put(struct dpif *dpif, const struct dpif_flow_put *put)
2004 {
2005 struct dp_netdev *dp = get_dp_netdev(dpif);
2006 struct dp_netdev_flow *netdev_flow;
2007 struct netdev_flow_key key;
2008 struct dp_netdev_pmd_thread *pmd;
2009 struct match match;
2010 ovs_u128 ufid;
2011 unsigned pmd_id = put->pmd_id == PMD_ID_NULL
2012 ? NON_PMD_CORE_ID : put->pmd_id;
2013 int error;
2014
2015 error = dpif_netdev_flow_from_nlattrs(put->key, put->key_len, &match.flow);
2016 if (error) {
2017 return error;
2018 }
2019 error = dpif_netdev_mask_from_nlattrs(put->key, put->key_len,
2020 put->mask, put->mask_len,
2021 &match.flow, &match.wc);
2022 if (error) {
2023 return error;
2024 }
2025
2026 pmd = dp_netdev_get_pmd(dp, pmd_id);
2027 if (!pmd) {
2028 return EINVAL;
2029 }
2030
2031 /* Must produce a netdev_flow_key for lookup.
2032 * This interface is no longer performance critical, since it is not used
2033 * for upcall processing any more. */
2034 netdev_flow_key_from_flow(&key, &match.flow);
2035
2036 if (put->ufid) {
2037 ufid = *put->ufid;
2038 } else {
2039 dpif_flow_hash(dpif, &match.flow, sizeof match.flow, &ufid);
2040 }
2041
2042 ovs_mutex_lock(&pmd->flow_mutex);
2043 netdev_flow = dp_netdev_pmd_lookup_flow(pmd, &key);
2044 if (!netdev_flow) {
2045 if (put->flags & DPIF_FP_CREATE) {
2046 if (cmap_count(&pmd->flow_table) < MAX_FLOWS) {
2047 if (put->stats) {
2048 memset(put->stats, 0, sizeof *put->stats);
2049 }
2050 dp_netdev_flow_add(pmd, &match, &ufid, put->actions,
2051 put->actions_len);
2052 error = 0;
2053 } else {
2054 error = EFBIG;
2055 }
2056 } else {
2057 error = ENOENT;
2058 }
2059 } else {
2060 if (put->flags & DPIF_FP_MODIFY
2061 && flow_equal(&match.flow, &netdev_flow->flow)) {
2062 struct dp_netdev_actions *new_actions;
2063 struct dp_netdev_actions *old_actions;
2064
2065 new_actions = dp_netdev_actions_create(put->actions,
2066 put->actions_len);
2067
2068 old_actions = dp_netdev_flow_get_actions(netdev_flow);
2069 ovsrcu_set(&netdev_flow->actions, new_actions);
2070
2071 if (put->stats) {
2072 get_dpif_flow_stats(netdev_flow, put->stats);
2073 }
2074 if (put->flags & DPIF_FP_ZERO_STATS) {
2075 /* XXX: The userspace datapath uses thread local statistics
2076 * (for flows), which should be updated only by the owning
2077 * thread. Since we cannot write on stats memory here,
2078 * we choose not to support this flag. Please note:
2079 * - This feature is currently used only by dpctl commands with
2080 * option --clear.
2081 * - Should the need arise, this operation can be implemented
2082 * by keeping a base value (to be update here) for each
2083 * counter, and subtracting it before outputting the stats */
2084 error = EOPNOTSUPP;
2085 }
2086
2087 ovsrcu_postpone(dp_netdev_actions_free, old_actions);
2088 } else if (put->flags & DPIF_FP_CREATE) {
2089 error = EEXIST;
2090 } else {
2091 /* Overlapping flow. */
2092 error = EINVAL;
2093 }
2094 }
2095 ovs_mutex_unlock(&pmd->flow_mutex);
2096 dp_netdev_pmd_unref(pmd);
2097
2098 return error;
2099 }
2100
2101 static int
2102 dpif_netdev_flow_del(struct dpif *dpif, const struct dpif_flow_del *del)
2103 {
2104 struct dp_netdev *dp = get_dp_netdev(dpif);
2105 struct dp_netdev_flow *netdev_flow;
2106 struct dp_netdev_pmd_thread *pmd;
2107 unsigned pmd_id = del->pmd_id == PMD_ID_NULL
2108 ? NON_PMD_CORE_ID : del->pmd_id;
2109 int error = 0;
2110
2111 pmd = dp_netdev_get_pmd(dp, pmd_id);
2112 if (!pmd) {
2113 return EINVAL;
2114 }
2115
2116 ovs_mutex_lock(&pmd->flow_mutex);
2117 netdev_flow = dp_netdev_pmd_find_flow(pmd, del->ufid, del->key,
2118 del->key_len);
2119 if (netdev_flow) {
2120 if (del->stats) {
2121 get_dpif_flow_stats(netdev_flow, del->stats);
2122 }
2123 dp_netdev_pmd_remove_flow(pmd, netdev_flow);
2124 } else {
2125 error = ENOENT;
2126 }
2127 ovs_mutex_unlock(&pmd->flow_mutex);
2128 dp_netdev_pmd_unref(pmd);
2129
2130 return error;
2131 }
2132
2133 struct dpif_netdev_flow_dump {
2134 struct dpif_flow_dump up;
2135 struct cmap_position poll_thread_pos;
2136 struct cmap_position flow_pos;
2137 struct dp_netdev_pmd_thread *cur_pmd;
2138 int status;
2139 struct ovs_mutex mutex;
2140 };
2141
2142 static struct dpif_netdev_flow_dump *
2143 dpif_netdev_flow_dump_cast(struct dpif_flow_dump *dump)
2144 {
2145 return CONTAINER_OF(dump, struct dpif_netdev_flow_dump, up);
2146 }
2147
2148 static struct dpif_flow_dump *
2149 dpif_netdev_flow_dump_create(const struct dpif *dpif_, bool terse)
2150 {
2151 struct dpif_netdev_flow_dump *dump;
2152
2153 dump = xzalloc(sizeof *dump);
2154 dpif_flow_dump_init(&dump->up, dpif_);
2155 dump->up.terse = terse;
2156 ovs_mutex_init(&dump->mutex);
2157
2158 return &dump->up;
2159 }
2160
2161 static int
2162 dpif_netdev_flow_dump_destroy(struct dpif_flow_dump *dump_)
2163 {
2164 struct dpif_netdev_flow_dump *dump = dpif_netdev_flow_dump_cast(dump_);
2165
2166 ovs_mutex_destroy(&dump->mutex);
2167 free(dump);
2168 return 0;
2169 }
2170
2171 struct dpif_netdev_flow_dump_thread {
2172 struct dpif_flow_dump_thread up;
2173 struct dpif_netdev_flow_dump *dump;
2174 struct odputil_keybuf keybuf[FLOW_DUMP_MAX_BATCH];
2175 struct odputil_keybuf maskbuf[FLOW_DUMP_MAX_BATCH];
2176 };
2177
2178 static struct dpif_netdev_flow_dump_thread *
2179 dpif_netdev_flow_dump_thread_cast(struct dpif_flow_dump_thread *thread)
2180 {
2181 return CONTAINER_OF(thread, struct dpif_netdev_flow_dump_thread, up);
2182 }
2183
2184 static struct dpif_flow_dump_thread *
2185 dpif_netdev_flow_dump_thread_create(struct dpif_flow_dump *dump_)
2186 {
2187 struct dpif_netdev_flow_dump *dump = dpif_netdev_flow_dump_cast(dump_);
2188 struct dpif_netdev_flow_dump_thread *thread;
2189
2190 thread = xmalloc(sizeof *thread);
2191 dpif_flow_dump_thread_init(&thread->up, &dump->up);
2192 thread->dump = dump;
2193 return &thread->up;
2194 }
2195
2196 static void
2197 dpif_netdev_flow_dump_thread_destroy(struct dpif_flow_dump_thread *thread_)
2198 {
2199 struct dpif_netdev_flow_dump_thread *thread
2200 = dpif_netdev_flow_dump_thread_cast(thread_);
2201
2202 free(thread);
2203 }
2204
2205 static int
2206 dpif_netdev_flow_dump_next(struct dpif_flow_dump_thread *thread_,
2207 struct dpif_flow *flows, int max_flows)
2208 {
2209 struct dpif_netdev_flow_dump_thread *thread
2210 = dpif_netdev_flow_dump_thread_cast(thread_);
2211 struct dpif_netdev_flow_dump *dump = thread->dump;
2212 struct dp_netdev_flow *netdev_flows[FLOW_DUMP_MAX_BATCH];
2213 int n_flows = 0;
2214 int i;
2215
2216 ovs_mutex_lock(&dump->mutex);
2217 if (!dump->status) {
2218 struct dpif_netdev *dpif = dpif_netdev_cast(thread->up.dpif);
2219 struct dp_netdev *dp = get_dp_netdev(&dpif->dpif);
2220 struct dp_netdev_pmd_thread *pmd = dump->cur_pmd;
2221 int flow_limit = MIN(max_flows, FLOW_DUMP_MAX_BATCH);
2222
2223 /* First call to dump_next(), extracts the first pmd thread.
2224 * If there is no pmd thread, returns immediately. */
2225 if (!pmd) {
2226 pmd = dp_netdev_pmd_get_next(dp, &dump->poll_thread_pos);
2227 if (!pmd) {
2228 ovs_mutex_unlock(&dump->mutex);
2229 return n_flows;
2230
2231 }
2232 }
2233
2234 do {
2235 for (n_flows = 0; n_flows < flow_limit; n_flows++) {
2236 struct cmap_node *node;
2237
2238 node = cmap_next_position(&pmd->flow_table, &dump->flow_pos);
2239 if (!node) {
2240 break;
2241 }
2242 netdev_flows[n_flows] = CONTAINER_OF(node,
2243 struct dp_netdev_flow,
2244 node);
2245 }
2246 /* When finishing dumping the current pmd thread, moves to
2247 * the next. */
2248 if (n_flows < flow_limit) {
2249 memset(&dump->flow_pos, 0, sizeof dump->flow_pos);
2250 dp_netdev_pmd_unref(pmd);
2251 pmd = dp_netdev_pmd_get_next(dp, &dump->poll_thread_pos);
2252 if (!pmd) {
2253 dump->status = EOF;
2254 break;
2255 }
2256 }
2257 /* Keeps the reference to next caller. */
2258 dump->cur_pmd = pmd;
2259
2260 /* If the current dump is empty, do not exit the loop, since the
2261 * remaining pmds could have flows to be dumped. Just dumps again
2262 * on the new 'pmd'. */
2263 } while (!n_flows);
2264 }
2265 ovs_mutex_unlock(&dump->mutex);
2266
2267 for (i = 0; i < n_flows; i++) {
2268 struct odputil_keybuf *maskbuf = &thread->maskbuf[i];
2269 struct odputil_keybuf *keybuf = &thread->keybuf[i];
2270 struct dp_netdev_flow *netdev_flow = netdev_flows[i];
2271 struct dpif_flow *f = &flows[i];
2272 struct ofpbuf key, mask;
2273
2274 ofpbuf_use_stack(&key, keybuf, sizeof *keybuf);
2275 ofpbuf_use_stack(&mask, maskbuf, sizeof *maskbuf);
2276 dp_netdev_flow_to_dpif_flow(netdev_flow, &key, &mask, f,
2277 dump->up.terse);
2278 }
2279
2280 return n_flows;
2281 }
2282
2283 static int
2284 dpif_netdev_execute(struct dpif *dpif, struct dpif_execute *execute)
2285 OVS_NO_THREAD_SAFETY_ANALYSIS
2286 {
2287 struct dp_netdev *dp = get_dp_netdev(dpif);
2288 struct dp_netdev_pmd_thread *pmd;
2289 struct dp_packet *pp;
2290
2291 if (dp_packet_size(execute->packet) < ETH_HEADER_LEN ||
2292 dp_packet_size(execute->packet) > UINT16_MAX) {
2293 return EINVAL;
2294 }
2295
2296 /* Tries finding the 'pmd'. If NULL is returned, that means
2297 * the current thread is a non-pmd thread and should use
2298 * dp_netdev_get_pmd(dp, NON_PMD_CORE_ID). */
2299 pmd = ovsthread_getspecific(dp->per_pmd_key);
2300 if (!pmd) {
2301 pmd = dp_netdev_get_pmd(dp, NON_PMD_CORE_ID);
2302 }
2303
2304 /* If the current thread is non-pmd thread, acquires
2305 * the 'non_pmd_mutex'. */
2306 if (pmd->core_id == NON_PMD_CORE_ID) {
2307 ovs_mutex_lock(&dp->non_pmd_mutex);
2308 ovs_mutex_lock(&dp->port_mutex);
2309 }
2310
2311 pp = execute->packet;
2312 dp_netdev_execute_actions(pmd, &pp, 1, false, execute->actions,
2313 execute->actions_len);
2314 if (pmd->core_id == NON_PMD_CORE_ID) {
2315 dp_netdev_pmd_unref(pmd);
2316 ovs_mutex_unlock(&dp->port_mutex);
2317 ovs_mutex_unlock(&dp->non_pmd_mutex);
2318 }
2319
2320 return 0;
2321 }
2322
2323 static void
2324 dpif_netdev_operate(struct dpif *dpif, struct dpif_op **ops, size_t n_ops)
2325 {
2326 size_t i;
2327
2328 for (i = 0; i < n_ops; i++) {
2329 struct dpif_op *op = ops[i];
2330
2331 switch (op->type) {
2332 case DPIF_OP_FLOW_PUT:
2333 op->error = dpif_netdev_flow_put(dpif, &op->u.flow_put);
2334 break;
2335
2336 case DPIF_OP_FLOW_DEL:
2337 op->error = dpif_netdev_flow_del(dpif, &op->u.flow_del);
2338 break;
2339
2340 case DPIF_OP_EXECUTE:
2341 op->error = dpif_netdev_execute(dpif, &op->u.execute);
2342 break;
2343
2344 case DPIF_OP_FLOW_GET:
2345 op->error = dpif_netdev_flow_get(dpif, &op->u.flow_get);
2346 break;
2347 }
2348 }
2349 }
2350
2351 /* Returns true if the configuration for rx queues or cpu mask
2352 * is changed. */
2353 static bool
2354 pmd_config_changed(const struct dp_netdev *dp, size_t rxqs, const char *cmask)
2355 {
2356 if (dp->n_dpdk_rxqs != rxqs) {
2357 return true;
2358 } else {
2359 if (dp->pmd_cmask != NULL && cmask != NULL) {
2360 return strcmp(dp->pmd_cmask, cmask);
2361 } else {
2362 return (dp->pmd_cmask != NULL || cmask != NULL);
2363 }
2364 }
2365 }
2366
2367 /* Resets pmd threads if the configuration for 'rxq's or cpu mask changes. */
2368 static int
2369 dpif_netdev_pmd_set(struct dpif *dpif, unsigned int n_rxqs, const char *cmask)
2370 {
2371 struct dp_netdev *dp = get_dp_netdev(dpif);
2372
2373 if (pmd_config_changed(dp, n_rxqs, cmask)) {
2374 struct dp_netdev_port *port;
2375
2376 dp_netdev_destroy_all_pmds(dp);
2377
2378 CMAP_FOR_EACH (port, node, &dp->ports) {
2379 if (netdev_is_pmd(port->netdev)) {
2380 int i, err;
2381
2382 /* Closes the existing 'rxq's. */
2383 for (i = 0; i < netdev_n_rxq(port->netdev); i++) {
2384 netdev_rxq_close(port->rxq[i]);
2385 port->rxq[i] = NULL;
2386 }
2387
2388 /* Sets the new rx queue config. */
2389 err = netdev_set_multiq(port->netdev,
2390 ovs_numa_get_n_cores() + 1,
2391 n_rxqs);
2392 if (err && (err != EOPNOTSUPP)) {
2393 VLOG_ERR("Failed to set dpdk interface %s rx_queue to:"
2394 " %u", netdev_get_name(port->netdev),
2395 n_rxqs);
2396 return err;
2397 }
2398
2399 /* If the set_multiq() above succeeds, reopens the 'rxq's. */
2400 port->rxq = xrealloc(port->rxq, sizeof *port->rxq
2401 * netdev_n_rxq(port->netdev));
2402 for (i = 0; i < netdev_n_rxq(port->netdev); i++) {
2403 netdev_rxq_open(port->netdev, &port->rxq[i], i);
2404 }
2405 }
2406 }
2407 dp->n_dpdk_rxqs = n_rxqs;
2408
2409 /* Reconfigures the cpu mask. */
2410 ovs_numa_set_cpu_mask(cmask);
2411 free(dp->pmd_cmask);
2412 dp->pmd_cmask = cmask ? xstrdup(cmask) : NULL;
2413
2414 /* Restores the non-pmd. */
2415 dp_netdev_set_nonpmd(dp);
2416 /* Restores all pmd threads. */
2417 dp_netdev_reset_pmd_threads(dp);
2418 }
2419
2420 return 0;
2421 }
2422
2423 static int
2424 dpif_netdev_queue_to_priority(const struct dpif *dpif OVS_UNUSED,
2425 uint32_t queue_id, uint32_t *priority)
2426 {
2427 *priority = queue_id;
2428 return 0;
2429 }
2430
2431 \f
2432 /* Creates and returns a new 'struct dp_netdev_actions', whose actions are
2433 * a copy of the 'ofpacts_len' bytes of 'ofpacts'. */
2434 struct dp_netdev_actions *
2435 dp_netdev_actions_create(const struct nlattr *actions, size_t size)
2436 {
2437 struct dp_netdev_actions *netdev_actions;
2438
2439 netdev_actions = xmalloc(sizeof *netdev_actions + size);
2440 memcpy(netdev_actions->actions, actions, size);
2441 netdev_actions->size = size;
2442
2443 return netdev_actions;
2444 }
2445
2446 struct dp_netdev_actions *
2447 dp_netdev_flow_get_actions(const struct dp_netdev_flow *flow)
2448 {
2449 return ovsrcu_get(struct dp_netdev_actions *, &flow->actions);
2450 }
2451
2452 static void
2453 dp_netdev_actions_free(struct dp_netdev_actions *actions)
2454 {
2455 free(actions);
2456 }
2457 \f
2458 static inline unsigned long long
2459 cycles_counter(void)
2460 {
2461 #ifdef DPDK_NETDEV
2462 return rte_get_tsc_cycles();
2463 #else
2464 return 0;
2465 #endif
2466 }
2467
2468 /* Fake mutex to make sure that the calls to cycles_count_* are balanced */
2469 extern struct ovs_mutex cycles_counter_fake_mutex;
2470
2471 /* Start counting cycles. Must be followed by 'cycles_count_end()' */
2472 static inline void
2473 cycles_count_start(struct dp_netdev_pmd_thread *pmd)
2474 OVS_ACQUIRES(&cycles_counter_fake_mutex)
2475 OVS_NO_THREAD_SAFETY_ANALYSIS
2476 {
2477 pmd->last_cycles = cycles_counter();
2478 }
2479
2480 /* Stop counting cycles and add them to the counter 'type' */
2481 static inline void
2482 cycles_count_end(struct dp_netdev_pmd_thread *pmd,
2483 enum pmd_cycles_counter_type type)
2484 OVS_RELEASES(&cycles_counter_fake_mutex)
2485 OVS_NO_THREAD_SAFETY_ANALYSIS
2486 {
2487 unsigned long long interval = cycles_counter() - pmd->last_cycles;
2488
2489 non_atomic_ullong_add(&pmd->cycles.n[type], interval);
2490 }
2491
2492 static void
2493 dp_netdev_process_rxq_port(struct dp_netdev_pmd_thread *pmd,
2494 struct dp_netdev_port *port,
2495 struct netdev_rxq *rxq)
2496 {
2497 struct dp_packet *packets[NETDEV_MAX_BURST];
2498 int error, cnt;
2499
2500 cycles_count_start(pmd);
2501 error = netdev_rxq_recv(rxq, packets, &cnt);
2502 cycles_count_end(pmd, PMD_CYCLES_POLLING);
2503 if (!error) {
2504 int i;
2505
2506 *recirc_depth_get() = 0;
2507
2508 /* XXX: initialize md in netdev implementation. */
2509 for (i = 0; i < cnt; i++) {
2510 pkt_metadata_init(&packets[i]->md, port->port_no);
2511 }
2512 cycles_count_start(pmd);
2513 dp_netdev_input(pmd, packets, cnt);
2514 cycles_count_end(pmd, PMD_CYCLES_PROCESSING);
2515 } else if (error != EAGAIN && error != EOPNOTSUPP) {
2516 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
2517
2518 VLOG_ERR_RL(&rl, "error receiving data from %s: %s",
2519 netdev_get_name(port->netdev), ovs_strerror(error));
2520 }
2521 }
2522
2523 /* Return true if needs to revalidate datapath flows. */
2524 static bool
2525 dpif_netdev_run(struct dpif *dpif)
2526 {
2527 struct dp_netdev_port *port;
2528 struct dp_netdev *dp = get_dp_netdev(dpif);
2529 struct dp_netdev_pmd_thread *non_pmd = dp_netdev_get_pmd(dp,
2530 NON_PMD_CORE_ID);
2531 uint64_t new_tnl_seq;
2532
2533 ovs_mutex_lock(&dp->non_pmd_mutex);
2534 CMAP_FOR_EACH (port, node, &dp->ports) {
2535 if (!netdev_is_pmd(port->netdev)) {
2536 int i;
2537
2538 for (i = 0; i < netdev_n_rxq(port->netdev); i++) {
2539 dp_netdev_process_rxq_port(non_pmd, port, port->rxq[i]);
2540 }
2541 }
2542 }
2543 ovs_mutex_unlock(&dp->non_pmd_mutex);
2544 dp_netdev_pmd_unref(non_pmd);
2545
2546 tnl_arp_cache_run();
2547 new_tnl_seq = seq_read(tnl_conf_seq);
2548
2549 if (dp->last_tnl_conf_seq != new_tnl_seq) {
2550 dp->last_tnl_conf_seq = new_tnl_seq;
2551 return true;
2552 }
2553 return false;
2554 }
2555
2556 static void
2557 dpif_netdev_wait(struct dpif *dpif)
2558 {
2559 struct dp_netdev_port *port;
2560 struct dp_netdev *dp = get_dp_netdev(dpif);
2561
2562 ovs_mutex_lock(&dp_netdev_mutex);
2563 CMAP_FOR_EACH (port, node, &dp->ports) {
2564 if (!netdev_is_pmd(port->netdev)) {
2565 int i;
2566
2567 for (i = 0; i < netdev_n_rxq(port->netdev); i++) {
2568 netdev_rxq_wait(port->rxq[i]);
2569 }
2570 }
2571 }
2572 ovs_mutex_unlock(&dp_netdev_mutex);
2573 seq_wait(tnl_conf_seq, dp->last_tnl_conf_seq);
2574 }
2575
2576 struct rxq_poll {
2577 struct dp_netdev_port *port;
2578 struct netdev_rxq *rx;
2579 };
2580
2581 static int
2582 pmd_load_queues(struct dp_netdev_pmd_thread *pmd,
2583 struct rxq_poll **ppoll_list, int poll_cnt)
2584 {
2585 struct rxq_poll *poll_list = *ppoll_list;
2586 struct dp_netdev_port *port;
2587 int n_pmds_on_numa, index, i;
2588
2589 /* Simple scheduler for netdev rx polling. */
2590 for (i = 0; i < poll_cnt; i++) {
2591 port_unref(poll_list[i].port);
2592 }
2593
2594 poll_cnt = 0;
2595 n_pmds_on_numa = get_n_pmd_threads_on_numa(pmd->dp, pmd->numa_id);
2596 index = 0;
2597
2598 CMAP_FOR_EACH (port, node, &pmd->dp->ports) {
2599 /* Calls port_try_ref() to prevent the main thread
2600 * from deleting the port. */
2601 if (port_try_ref(port)) {
2602 if (netdev_is_pmd(port->netdev)
2603 && netdev_get_numa_id(port->netdev) == pmd->numa_id) {
2604 int i;
2605
2606 for (i = 0; i < netdev_n_rxq(port->netdev); i++) {
2607 if ((index % n_pmds_on_numa) == pmd->index) {
2608 poll_list = xrealloc(poll_list,
2609 sizeof *poll_list * (poll_cnt + 1));
2610
2611 port_ref(port);
2612 poll_list[poll_cnt].port = port;
2613 poll_list[poll_cnt].rx = port->rxq[i];
2614 poll_cnt++;
2615 }
2616 index++;
2617 }
2618 }
2619 /* Unrefs the port_try_ref(). */
2620 port_unref(port);
2621 }
2622 }
2623
2624 *ppoll_list = poll_list;
2625 return poll_cnt;
2626 }
2627
2628 static void *
2629 pmd_thread_main(void *f_)
2630 {
2631 struct dp_netdev_pmd_thread *pmd = f_;
2632 unsigned int lc = 0;
2633 struct rxq_poll *poll_list;
2634 unsigned int port_seq = PMD_INITIAL_SEQ;
2635 int poll_cnt;
2636 int i;
2637
2638 poll_cnt = 0;
2639 poll_list = NULL;
2640
2641 /* Stores the pmd thread's 'pmd' to 'per_pmd_key'. */
2642 ovsthread_setspecific(pmd->dp->per_pmd_key, pmd);
2643 pmd_thread_setaffinity_cpu(pmd->core_id);
2644 reload:
2645 emc_cache_init(&pmd->flow_cache);
2646 poll_cnt = pmd_load_queues(pmd, &poll_list, poll_cnt);
2647
2648 /* List port/core affinity */
2649 for (i = 0; i < poll_cnt; i++) {
2650 VLOG_INFO("Core %d processing port \'%s\'\n", pmd->core_id, netdev_get_name(poll_list[i].port->netdev));
2651 }
2652
2653 /* Signal here to make sure the pmd finishes
2654 * reloading the updated configuration. */
2655 dp_netdev_pmd_reload_done(pmd);
2656
2657 for (;;) {
2658 int i;
2659
2660 for (i = 0; i < poll_cnt; i++) {
2661 dp_netdev_process_rxq_port(pmd, poll_list[i].port, poll_list[i].rx);
2662 }
2663
2664 if (lc++ > 1024) {
2665 unsigned int seq;
2666
2667 lc = 0;
2668
2669 emc_cache_slow_sweep(&pmd->flow_cache);
2670 coverage_try_clear();
2671 ovsrcu_quiesce();
2672
2673 atomic_read_relaxed(&pmd->change_seq, &seq);
2674 if (seq != port_seq) {
2675 port_seq = seq;
2676 break;
2677 }
2678 }
2679 }
2680
2681 emc_cache_uninit(&pmd->flow_cache);
2682
2683 if (!latch_is_set(&pmd->exit_latch)){
2684 goto reload;
2685 }
2686
2687 for (i = 0; i < poll_cnt; i++) {
2688 port_unref(poll_list[i].port);
2689 }
2690
2691 dp_netdev_pmd_reload_done(pmd);
2692
2693 free(poll_list);
2694 return NULL;
2695 }
2696
2697 static void
2698 dp_netdev_disable_upcall(struct dp_netdev *dp)
2699 OVS_ACQUIRES(dp->upcall_rwlock)
2700 {
2701 fat_rwlock_wrlock(&dp->upcall_rwlock);
2702 }
2703
2704 static void
2705 dpif_netdev_disable_upcall(struct dpif *dpif)
2706 OVS_NO_THREAD_SAFETY_ANALYSIS
2707 {
2708 struct dp_netdev *dp = get_dp_netdev(dpif);
2709 dp_netdev_disable_upcall(dp);
2710 }
2711
2712 static void
2713 dp_netdev_enable_upcall(struct dp_netdev *dp)
2714 OVS_RELEASES(dp->upcall_rwlock)
2715 {
2716 fat_rwlock_unlock(&dp->upcall_rwlock);
2717 }
2718
2719 static void
2720 dpif_netdev_enable_upcall(struct dpif *dpif)
2721 OVS_NO_THREAD_SAFETY_ANALYSIS
2722 {
2723 struct dp_netdev *dp = get_dp_netdev(dpif);
2724 dp_netdev_enable_upcall(dp);
2725 }
2726
2727 void
2728 dp_netdev_pmd_reload_done(struct dp_netdev_pmd_thread *pmd)
2729 {
2730 ovs_mutex_lock(&pmd->cond_mutex);
2731 xpthread_cond_signal(&pmd->cond);
2732 ovs_mutex_unlock(&pmd->cond_mutex);
2733 }
2734
2735 /* Finds and refs the dp_netdev_pmd_thread on core 'core_id'. Returns
2736 * the pointer if succeeds, otherwise, NULL.
2737 *
2738 * Caller must unrefs the returned reference. */
2739 static struct dp_netdev_pmd_thread *
2740 dp_netdev_get_pmd(struct dp_netdev *dp, unsigned core_id)
2741 {
2742 struct dp_netdev_pmd_thread *pmd;
2743 const struct cmap_node *pnode;
2744
2745 pnode = cmap_find(&dp->poll_threads, hash_int(core_id, 0));
2746 if (!pnode) {
2747 return NULL;
2748 }
2749 pmd = CONTAINER_OF(pnode, struct dp_netdev_pmd_thread, node);
2750
2751 return dp_netdev_pmd_try_ref(pmd) ? pmd : NULL;
2752 }
2753
2754 /* Sets the 'struct dp_netdev_pmd_thread' for non-pmd threads. */
2755 static void
2756 dp_netdev_set_nonpmd(struct dp_netdev *dp)
2757 {
2758 struct dp_netdev_pmd_thread *non_pmd;
2759
2760 non_pmd = xzalloc(sizeof *non_pmd);
2761 dp_netdev_configure_pmd(non_pmd, dp, 0, NON_PMD_CORE_ID,
2762 OVS_NUMA_UNSPEC);
2763 }
2764
2765 /* Caller must have valid pointer to 'pmd'. */
2766 static bool
2767 dp_netdev_pmd_try_ref(struct dp_netdev_pmd_thread *pmd)
2768 {
2769 return ovs_refcount_try_ref_rcu(&pmd->ref_cnt);
2770 }
2771
2772 static void
2773 dp_netdev_pmd_unref(struct dp_netdev_pmd_thread *pmd)
2774 {
2775 if (pmd && ovs_refcount_unref(&pmd->ref_cnt) == 1) {
2776 ovsrcu_postpone(dp_netdev_destroy_pmd, pmd);
2777 }
2778 }
2779
2780 /* Given cmap position 'pos', tries to ref the next node. If try_ref()
2781 * fails, keeps checking for next node until reaching the end of cmap.
2782 *
2783 * Caller must unrefs the returned reference. */
2784 static struct dp_netdev_pmd_thread *
2785 dp_netdev_pmd_get_next(struct dp_netdev *dp, struct cmap_position *pos)
2786 {
2787 struct dp_netdev_pmd_thread *next;
2788
2789 do {
2790 struct cmap_node *node;
2791
2792 node = cmap_next_position(&dp->poll_threads, pos);
2793 next = node ? CONTAINER_OF(node, struct dp_netdev_pmd_thread, node)
2794 : NULL;
2795 } while (next && !dp_netdev_pmd_try_ref(next));
2796
2797 return next;
2798 }
2799
2800 static int
2801 core_id_to_qid(unsigned core_id)
2802 {
2803 if (core_id != NON_PMD_CORE_ID) {
2804 return core_id;
2805 } else {
2806 return ovs_numa_get_n_cores();
2807 }
2808 }
2809
2810 /* Configures the 'pmd' based on the input argument. */
2811 static void
2812 dp_netdev_configure_pmd(struct dp_netdev_pmd_thread *pmd, struct dp_netdev *dp,
2813 int index, unsigned core_id, int numa_id)
2814 {
2815 pmd->dp = dp;
2816 pmd->index = index;
2817 pmd->core_id = core_id;
2818 pmd->tx_qid = core_id_to_qid(core_id);
2819 pmd->numa_id = numa_id;
2820
2821 ovs_refcount_init(&pmd->ref_cnt);
2822 latch_init(&pmd->exit_latch);
2823 atomic_init(&pmd->change_seq, PMD_INITIAL_SEQ);
2824 xpthread_cond_init(&pmd->cond, NULL);
2825 ovs_mutex_init(&pmd->cond_mutex);
2826 ovs_mutex_init(&pmd->flow_mutex);
2827 dpcls_init(&pmd->cls);
2828 cmap_init(&pmd->flow_table);
2829 /* init the 'flow_cache' since there is no
2830 * actual thread created for NON_PMD_CORE_ID. */
2831 if (core_id == NON_PMD_CORE_ID) {
2832 emc_cache_init(&pmd->flow_cache);
2833 }
2834 cmap_insert(&dp->poll_threads, CONST_CAST(struct cmap_node *, &pmd->node),
2835 hash_int(core_id, 0));
2836 }
2837
2838 static void
2839 dp_netdev_destroy_pmd(struct dp_netdev_pmd_thread *pmd)
2840 {
2841 dp_netdev_pmd_flow_flush(pmd);
2842 dpcls_destroy(&pmd->cls);
2843 cmap_destroy(&pmd->flow_table);
2844 ovs_mutex_destroy(&pmd->flow_mutex);
2845 latch_destroy(&pmd->exit_latch);
2846 xpthread_cond_destroy(&pmd->cond);
2847 ovs_mutex_destroy(&pmd->cond_mutex);
2848 free(pmd);
2849 }
2850
2851 /* Stops the pmd thread, removes it from the 'dp->poll_threads',
2852 * and unrefs the struct. */
2853 static void
2854 dp_netdev_del_pmd(struct dp_netdev_pmd_thread *pmd)
2855 {
2856 /* Uninit the 'flow_cache' since there is
2857 * no actual thread uninit it for NON_PMD_CORE_ID. */
2858 if (pmd->core_id == NON_PMD_CORE_ID) {
2859 emc_cache_uninit(&pmd->flow_cache);
2860 } else {
2861 latch_set(&pmd->exit_latch);
2862 dp_netdev_reload_pmd__(pmd);
2863 ovs_numa_unpin_core(pmd->core_id);
2864 xpthread_join(pmd->thread, NULL);
2865 }
2866 cmap_remove(&pmd->dp->poll_threads, &pmd->node, hash_int(pmd->core_id, 0));
2867 dp_netdev_pmd_unref(pmd);
2868 }
2869
2870 /* Destroys all pmd threads. */
2871 static void
2872 dp_netdev_destroy_all_pmds(struct dp_netdev *dp)
2873 {
2874 struct dp_netdev_pmd_thread *pmd;
2875
2876 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
2877 dp_netdev_del_pmd(pmd);
2878 }
2879 }
2880
2881 /* Deletes all pmd threads on numa node 'numa_id'. */
2882 static void
2883 dp_netdev_del_pmds_on_numa(struct dp_netdev *dp, int numa_id)
2884 {
2885 struct dp_netdev_pmd_thread *pmd;
2886
2887 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
2888 if (pmd->numa_id == numa_id) {
2889 dp_netdev_del_pmd(pmd);
2890 }
2891 }
2892 }
2893
2894 /* Checks the numa node id of 'netdev' and starts pmd threads for
2895 * the numa node. */
2896 static void
2897 dp_netdev_set_pmds_on_numa(struct dp_netdev *dp, int numa_id)
2898 {
2899 int n_pmds;
2900
2901 if (!ovs_numa_numa_id_is_valid(numa_id)) {
2902 VLOG_ERR("Cannot create pmd threads due to numa id (%d)"
2903 "invalid", numa_id);
2904 return ;
2905 }
2906
2907 n_pmds = get_n_pmd_threads_on_numa(dp, numa_id);
2908
2909 /* If there are already pmd threads created for the numa node
2910 * in which 'netdev' is on, do nothing. Else, creates the
2911 * pmd threads for the numa node. */
2912 if (!n_pmds) {
2913 int can_have, n_unpinned, i;
2914 struct dp_netdev_pmd_thread **pmds;
2915
2916 n_unpinned = ovs_numa_get_n_unpinned_cores_on_numa(numa_id);
2917 if (!n_unpinned) {
2918 VLOG_ERR("Cannot create pmd threads due to out of unpinned "
2919 "cores on numa node");
2920 return;
2921 }
2922
2923 /* If cpu mask is specified, uses all unpinned cores, otherwise
2924 * tries creating NR_PMD_THREADS pmd threads. */
2925 can_have = dp->pmd_cmask ? n_unpinned : MIN(n_unpinned, NR_PMD_THREADS);
2926 pmds = xzalloc(can_have * sizeof *pmds);
2927 for (i = 0; i < can_have; i++) {
2928 unsigned core_id = ovs_numa_get_unpinned_core_on_numa(numa_id);
2929 pmds[i] = xzalloc(sizeof **pmds);
2930 dp_netdev_configure_pmd(pmds[i], dp, i, core_id, numa_id);
2931 }
2932 /* The pmd thread code needs to see all the others configured pmd
2933 * threads on the same numa node. That's why we call
2934 * 'dp_netdev_configure_pmd()' on all the threads and then we actually
2935 * start them. */
2936 for (i = 0; i < can_have; i++) {
2937 /* Each thread will distribute all devices rx-queues among
2938 * themselves. */
2939 pmds[i]->thread = ovs_thread_create("pmd", pmd_thread_main, pmds[i]);
2940 }
2941 free(pmds);
2942 VLOG_INFO("Created %d pmd threads on numa node %d", can_have, numa_id);
2943 }
2944 }
2945
2946 \f
2947 /* Called after pmd threads config change. Restarts pmd threads with
2948 * new configuration. */
2949 static void
2950 dp_netdev_reset_pmd_threads(struct dp_netdev *dp)
2951 {
2952 struct dp_netdev_port *port;
2953
2954 CMAP_FOR_EACH (port, node, &dp->ports) {
2955 if (netdev_is_pmd(port->netdev)) {
2956 int numa_id = netdev_get_numa_id(port->netdev);
2957
2958 dp_netdev_set_pmds_on_numa(dp, numa_id);
2959 }
2960 }
2961 }
2962
2963 static char *
2964 dpif_netdev_get_datapath_version(void)
2965 {
2966 return xstrdup("<built-in>");
2967 }
2968
2969 static void
2970 dp_netdev_flow_used(struct dp_netdev_flow *netdev_flow, int cnt, int size,
2971 uint16_t tcp_flags, long long now)
2972 {
2973 uint16_t flags;
2974
2975 atomic_store_relaxed(&netdev_flow->stats.used, now);
2976 non_atomic_ullong_add(&netdev_flow->stats.packet_count, cnt);
2977 non_atomic_ullong_add(&netdev_flow->stats.byte_count, size);
2978 atomic_read_relaxed(&netdev_flow->stats.tcp_flags, &flags);
2979 flags |= tcp_flags;
2980 atomic_store_relaxed(&netdev_flow->stats.tcp_flags, flags);
2981 }
2982
2983 static void
2984 dp_netdev_count_packet(struct dp_netdev_pmd_thread *pmd,
2985 enum dp_stat_type type, int cnt)
2986 {
2987 non_atomic_ullong_add(&pmd->stats.n[type], cnt);
2988 }
2989
2990 static int
2991 dp_netdev_upcall(struct dp_netdev_pmd_thread *pmd, struct dp_packet *packet_,
2992 struct flow *flow, struct flow_wildcards *wc, ovs_u128 *ufid,
2993 enum dpif_upcall_type type, const struct nlattr *userdata,
2994 struct ofpbuf *actions, struct ofpbuf *put_actions)
2995 {
2996 struct dp_netdev *dp = pmd->dp;
2997 struct flow_tnl orig_tunnel;
2998 int err;
2999
3000 if (OVS_UNLIKELY(!dp->upcall_cb)) {
3001 return ENODEV;
3002 }
3003
3004 /* Upcall processing expects the Geneve options to be in the translated
3005 * format but we need to retain the raw format for datapath use. */
3006 orig_tunnel.flags = flow->tunnel.flags;
3007 if (flow->tunnel.flags & FLOW_TNL_F_UDPIF) {
3008 orig_tunnel.metadata.present.len = flow->tunnel.metadata.present.len;
3009 memcpy(orig_tunnel.metadata.opts.gnv, flow->tunnel.metadata.opts.gnv,
3010 flow->tunnel.metadata.present.len);
3011 err = tun_metadata_from_geneve_udpif(&orig_tunnel, &orig_tunnel,
3012 &flow->tunnel);
3013 if (err) {
3014 return err;
3015 }
3016 }
3017
3018 if (OVS_UNLIKELY(!VLOG_DROP_DBG(&upcall_rl))) {
3019 struct ds ds = DS_EMPTY_INITIALIZER;
3020 char *packet_str;
3021 struct ofpbuf key;
3022 struct odp_flow_key_parms odp_parms = {
3023 .flow = flow,
3024 .mask = &wc->masks,
3025 .odp_in_port = flow->in_port.odp_port,
3026 .support = dp_netdev_support,
3027 };
3028
3029 ofpbuf_init(&key, 0);
3030 odp_flow_key_from_flow(&odp_parms, &key);
3031 packet_str = ofp_packet_to_string(dp_packet_data(packet_),
3032 dp_packet_size(packet_));
3033
3034 odp_flow_key_format(key.data, key.size, &ds);
3035
3036 VLOG_DBG("%s: %s upcall:\n%s\n%s", dp->name,
3037 dpif_upcall_type_to_string(type), ds_cstr(&ds), packet_str);
3038
3039 ofpbuf_uninit(&key);
3040 free(packet_str);
3041
3042 ds_destroy(&ds);
3043 }
3044
3045 err = dp->upcall_cb(packet_, flow, ufid, pmd->core_id, type, userdata,
3046 actions, wc, put_actions, dp->upcall_aux);
3047 if (err && err != ENOSPC) {
3048 return err;
3049 }
3050
3051 /* Translate tunnel metadata masks to datapath format. */
3052 if (wc) {
3053 if (wc->masks.tunnel.metadata.present.map) {
3054 struct geneve_opt opts[GENEVE_TOT_OPT_SIZE /
3055 sizeof(struct geneve_opt)];
3056
3057 tun_metadata_to_geneve_udpif_mask(&flow->tunnel,
3058 &wc->masks.tunnel,
3059 orig_tunnel.metadata.opts.gnv,
3060 orig_tunnel.metadata.present.len,
3061 opts);
3062
3063 memset(&wc->masks.tunnel.metadata, 0,
3064 sizeof wc->masks.tunnel.metadata);
3065 memcpy(&wc->masks.tunnel.metadata.opts.gnv, opts,
3066 orig_tunnel.metadata.present.len);
3067 }
3068 wc->masks.tunnel.metadata.present.len = 0xff;
3069 }
3070
3071 /* Restore tunnel metadata. We need to use the saved options to ensure
3072 * that any unknown options are not lost. The generated mask will have
3073 * the same structure, matching on types and lengths but wildcarding
3074 * option data we don't care about. */
3075 if (orig_tunnel.flags & FLOW_TNL_F_UDPIF) {
3076 memcpy(&flow->tunnel.metadata.opts.gnv, orig_tunnel.metadata.opts.gnv,
3077 orig_tunnel.metadata.present.len);
3078 flow->tunnel.metadata.present.len = orig_tunnel.metadata.present.len;
3079 flow->tunnel.flags |= FLOW_TNL_F_UDPIF;
3080 }
3081
3082 return err;
3083 }
3084
3085 static inline uint32_t
3086 dpif_netdev_packet_get_rss_hash(struct dp_packet *packet,
3087 const struct miniflow *mf)
3088 {
3089 uint32_t hash, recirc_depth;
3090
3091 hash = dp_packet_get_rss_hash(packet);
3092 if (OVS_UNLIKELY(!hash)) {
3093 hash = miniflow_hash_5tuple(mf, 0);
3094 dp_packet_set_rss_hash(packet, hash);
3095 }
3096
3097 /* The RSS hash must account for the recirculation depth to avoid
3098 * collisions in the exact match cache */
3099 recirc_depth = *recirc_depth_get_unsafe();
3100 if (OVS_UNLIKELY(recirc_depth)) {
3101 hash = hash_finish(hash, recirc_depth);
3102 dp_packet_set_rss_hash(packet, hash);
3103 }
3104 return hash;
3105 }
3106
3107 struct packet_batch {
3108 unsigned int packet_count;
3109 unsigned int byte_count;
3110 uint16_t tcp_flags;
3111
3112 struct dp_netdev_flow *flow;
3113
3114 struct dp_packet *packets[NETDEV_MAX_BURST];
3115 };
3116
3117 static inline void
3118 packet_batch_update(struct packet_batch *batch, struct dp_packet *packet,
3119 const struct miniflow *mf)
3120 {
3121 batch->tcp_flags |= miniflow_get_tcp_flags(mf);
3122 batch->packets[batch->packet_count++] = packet;
3123 batch->byte_count += dp_packet_size(packet);
3124 }
3125
3126 static inline void
3127 packet_batch_init(struct packet_batch *batch, struct dp_netdev_flow *flow)
3128 {
3129 flow->batch = batch;
3130
3131 batch->flow = flow;
3132 batch->packet_count = 0;
3133 batch->byte_count = 0;
3134 batch->tcp_flags = 0;
3135 }
3136
3137 static inline void
3138 packet_batch_execute(struct packet_batch *batch,
3139 struct dp_netdev_pmd_thread *pmd,
3140 long long now)
3141 {
3142 struct dp_netdev_actions *actions;
3143 struct dp_netdev_flow *flow = batch->flow;
3144
3145 dp_netdev_flow_used(flow, batch->packet_count, batch->byte_count,
3146 batch->tcp_flags, now);
3147
3148 actions = dp_netdev_flow_get_actions(flow);
3149
3150 dp_netdev_execute_actions(pmd, batch->packets, batch->packet_count, true,
3151 actions->actions, actions->size);
3152 }
3153
3154 static inline void
3155 dp_netdev_queue_batches(struct dp_packet *pkt,
3156 struct dp_netdev_flow *flow, const struct miniflow *mf,
3157 struct packet_batch *batches, size_t *n_batches)
3158 {
3159 struct packet_batch *batch = flow->batch;
3160
3161 if (OVS_LIKELY(batch)) {
3162 packet_batch_update(batch, pkt, mf);
3163 return;
3164 }
3165
3166 batch = &batches[(*n_batches)++];
3167 packet_batch_init(batch, flow);
3168 packet_batch_update(batch, pkt, mf);
3169 }
3170
3171 static inline void
3172 dp_packet_swap(struct dp_packet **a, struct dp_packet **b)
3173 {
3174 struct dp_packet *tmp = *a;
3175 *a = *b;
3176 *b = tmp;
3177 }
3178
3179 /* Try to process all ('cnt') the 'packets' using only the exact match cache
3180 * 'flow_cache'. If a flow is not found for a packet 'packets[i]', the
3181 * miniflow is copied into 'keys' and the packet pointer is moved at the
3182 * beginning of the 'packets' array.
3183 *
3184 * The function returns the number of packets that needs to be processed in the
3185 * 'packets' array (they have been moved to the beginning of the vector).
3186 */
3187 static inline size_t
3188 emc_processing(struct dp_netdev_pmd_thread *pmd, struct dp_packet **packets,
3189 size_t cnt, struct netdev_flow_key *keys,
3190 struct packet_batch batches[], size_t *n_batches)
3191 {
3192 struct emc_cache *flow_cache = &pmd->flow_cache;
3193 struct netdev_flow_key key;
3194 size_t i, notfound_cnt = 0;
3195
3196 for (i = 0; i < cnt; i++) {
3197 struct dp_netdev_flow *flow;
3198
3199 if (OVS_UNLIKELY(dp_packet_size(packets[i]) < ETH_HEADER_LEN)) {
3200 dp_packet_delete(packets[i]);
3201 continue;
3202 }
3203
3204 if (i != cnt - 1) {
3205 /* Prefetch next packet data */
3206 OVS_PREFETCH(dp_packet_data(packets[i+1]));
3207 }
3208
3209 miniflow_extract(packets[i], &key.mf);
3210 key.len = 0; /* Not computed yet. */
3211 key.hash = dpif_netdev_packet_get_rss_hash(packets[i], &key.mf);
3212
3213 flow = emc_lookup(flow_cache, &key);
3214 if (OVS_LIKELY(flow)) {
3215 dp_netdev_queue_batches(packets[i], flow, &key.mf, batches,
3216 n_batches);
3217 } else {
3218 if (i != notfound_cnt) {
3219 dp_packet_swap(&packets[i], &packets[notfound_cnt]);
3220 }
3221
3222 keys[notfound_cnt++] = key;
3223 }
3224 }
3225
3226 dp_netdev_count_packet(pmd, DP_STAT_EXACT_HIT, cnt - notfound_cnt);
3227
3228 return notfound_cnt;
3229 }
3230
3231 static inline void
3232 fast_path_processing(struct dp_netdev_pmd_thread *pmd,
3233 struct dp_packet **packets, size_t cnt,
3234 struct netdev_flow_key *keys,
3235 struct packet_batch batches[], size_t *n_batches)
3236 {
3237 #if !defined(__CHECKER__) && !defined(_WIN32)
3238 const size_t PKT_ARRAY_SIZE = cnt;
3239 #else
3240 /* Sparse or MSVC doesn't like variable length array. */
3241 enum { PKT_ARRAY_SIZE = NETDEV_MAX_BURST };
3242 #endif
3243 struct dpcls_rule *rules[PKT_ARRAY_SIZE];
3244 struct dp_netdev *dp = pmd->dp;
3245 struct emc_cache *flow_cache = &pmd->flow_cache;
3246 int miss_cnt = 0, lost_cnt = 0;
3247 bool any_miss;
3248 size_t i;
3249
3250 for (i = 0; i < cnt; i++) {
3251 /* Key length is needed in all the cases, hash computed on demand. */
3252 keys[i].len = netdev_flow_key_size(miniflow_n_values(&keys[i].mf));
3253 }
3254 any_miss = !dpcls_lookup(&pmd->cls, keys, rules, cnt);
3255 if (OVS_UNLIKELY(any_miss) && !fat_rwlock_tryrdlock(&dp->upcall_rwlock)) {
3256 uint64_t actions_stub[512 / 8], slow_stub[512 / 8];
3257 struct ofpbuf actions, put_actions;
3258 ovs_u128 ufid;
3259
3260 ofpbuf_use_stub(&actions, actions_stub, sizeof actions_stub);
3261 ofpbuf_use_stub(&put_actions, slow_stub, sizeof slow_stub);
3262
3263 for (i = 0; i < cnt; i++) {
3264 struct dp_netdev_flow *netdev_flow;
3265 struct ofpbuf *add_actions;
3266 struct match match;
3267 int error;
3268
3269 if (OVS_LIKELY(rules[i])) {
3270 continue;
3271 }
3272
3273 /* It's possible that an earlier slow path execution installed
3274 * a rule covering this flow. In this case, it's a lot cheaper
3275 * to catch it here than execute a miss. */
3276 netdev_flow = dp_netdev_pmd_lookup_flow(pmd, &keys[i]);
3277 if (netdev_flow) {
3278 rules[i] = &netdev_flow->cr;
3279 continue;
3280 }
3281
3282 miss_cnt++;
3283
3284 miniflow_expand(&keys[i].mf, &match.flow);
3285
3286 ofpbuf_clear(&actions);
3287 ofpbuf_clear(&put_actions);
3288
3289 dpif_flow_hash(dp->dpif, &match.flow, sizeof match.flow, &ufid);
3290 error = dp_netdev_upcall(pmd, packets[i], &match.flow, &match.wc,
3291 &ufid, DPIF_UC_MISS, NULL, &actions,
3292 &put_actions);
3293 if (OVS_UNLIKELY(error && error != ENOSPC)) {
3294 dp_packet_delete(packets[i]);
3295 lost_cnt++;
3296 continue;
3297 }
3298
3299 /* We can't allow the packet batching in the next loop to execute
3300 * the actions. Otherwise, if there are any slow path actions,
3301 * we'll send the packet up twice. */
3302 dp_netdev_execute_actions(pmd, &packets[i], 1, true,
3303 actions.data, actions.size);
3304
3305 add_actions = put_actions.size ? &put_actions : &actions;
3306 if (OVS_LIKELY(error != ENOSPC)) {
3307 /* XXX: There's a race window where a flow covering this packet
3308 * could have already been installed since we last did the flow
3309 * lookup before upcall. This could be solved by moving the
3310 * mutex lock outside the loop, but that's an awful long time
3311 * to be locking everyone out of making flow installs. If we
3312 * move to a per-core classifier, it would be reasonable. */
3313 ovs_mutex_lock(&pmd->flow_mutex);
3314 netdev_flow = dp_netdev_pmd_lookup_flow(pmd, &keys[i]);
3315 if (OVS_LIKELY(!netdev_flow)) {
3316 netdev_flow = dp_netdev_flow_add(pmd, &match, &ufid,
3317 add_actions->data,
3318 add_actions->size);
3319 }
3320 ovs_mutex_unlock(&pmd->flow_mutex);
3321
3322 emc_insert(flow_cache, &keys[i], netdev_flow);
3323 }
3324 }
3325
3326 ofpbuf_uninit(&actions);
3327 ofpbuf_uninit(&put_actions);
3328 fat_rwlock_unlock(&dp->upcall_rwlock);
3329 dp_netdev_count_packet(pmd, DP_STAT_LOST, lost_cnt);
3330 } else if (OVS_UNLIKELY(any_miss)) {
3331 for (i = 0; i < cnt; i++) {
3332 if (OVS_UNLIKELY(!rules[i])) {
3333 dp_packet_delete(packets[i]);
3334 lost_cnt++;
3335 miss_cnt++;
3336 }
3337 }
3338 }
3339
3340 for (i = 0; i < cnt; i++) {
3341 struct dp_packet *packet = packets[i];
3342 struct dp_netdev_flow *flow;
3343
3344 if (OVS_UNLIKELY(!rules[i])) {
3345 continue;
3346 }
3347
3348 flow = dp_netdev_flow_cast(rules[i]);
3349
3350 emc_insert(flow_cache, &keys[i], flow);
3351 dp_netdev_queue_batches(packet, flow, &keys[i].mf, batches, n_batches);
3352 }
3353
3354 dp_netdev_count_packet(pmd, DP_STAT_MASKED_HIT, cnt - miss_cnt);
3355 dp_netdev_count_packet(pmd, DP_STAT_MISS, miss_cnt);
3356 dp_netdev_count_packet(pmd, DP_STAT_LOST, lost_cnt);
3357 }
3358
3359 static void
3360 dp_netdev_input(struct dp_netdev_pmd_thread *pmd,
3361 struct dp_packet **packets, int cnt)
3362 {
3363 #if !defined(__CHECKER__) && !defined(_WIN32)
3364 const size_t PKT_ARRAY_SIZE = cnt;
3365 #else
3366 /* Sparse or MSVC doesn't like variable length array. */
3367 enum { PKT_ARRAY_SIZE = NETDEV_MAX_BURST };
3368 #endif
3369 struct netdev_flow_key keys[PKT_ARRAY_SIZE];
3370 struct packet_batch batches[PKT_ARRAY_SIZE];
3371 long long now = time_msec();
3372 size_t newcnt, n_batches, i;
3373
3374 n_batches = 0;
3375 newcnt = emc_processing(pmd, packets, cnt, keys, batches, &n_batches);
3376 if (OVS_UNLIKELY(newcnt)) {
3377 fast_path_processing(pmd, packets, newcnt, keys, batches, &n_batches);
3378 }
3379
3380 for (i = 0; i < n_batches; i++) {
3381 batches[i].flow->batch = NULL;
3382 }
3383
3384 for (i = 0; i < n_batches; i++) {
3385 packet_batch_execute(&batches[i], pmd, now);
3386 }
3387 }
3388
3389 struct dp_netdev_execute_aux {
3390 struct dp_netdev_pmd_thread *pmd;
3391 };
3392
3393 static void
3394 dpif_netdev_register_upcall_cb(struct dpif *dpif, upcall_callback *cb,
3395 void *aux)
3396 {
3397 struct dp_netdev *dp = get_dp_netdev(dpif);
3398 dp->upcall_aux = aux;
3399 dp->upcall_cb = cb;
3400 }
3401
3402 static void
3403 dp_netdev_drop_packets(struct dp_packet **packets, int cnt, bool may_steal)
3404 {
3405 if (may_steal) {
3406 int i;
3407
3408 for (i = 0; i < cnt; i++) {
3409 dp_packet_delete(packets[i]);
3410 }
3411 }
3412 }
3413
3414 static int
3415 push_tnl_action(const struct dp_netdev *dp,
3416 const struct nlattr *attr,
3417 struct dp_packet **packets, int cnt)
3418 {
3419 struct dp_netdev_port *tun_port;
3420 const struct ovs_action_push_tnl *data;
3421
3422 data = nl_attr_get(attr);
3423
3424 tun_port = dp_netdev_lookup_port(dp, u32_to_odp(data->tnl_port));
3425 if (!tun_port) {
3426 return -EINVAL;
3427 }
3428 netdev_push_header(tun_port->netdev, packets, cnt, data);
3429
3430 return 0;
3431 }
3432
3433 static void
3434 dp_netdev_clone_pkt_batch(struct dp_packet **dst_pkts,
3435 struct dp_packet **src_pkts, int cnt)
3436 {
3437 int i;
3438
3439 for (i = 0; i < cnt; i++) {
3440 dst_pkts[i] = dp_packet_clone(src_pkts[i]);
3441 }
3442 }
3443
3444 static void
3445 dp_execute_cb(void *aux_, struct dp_packet **packets, int cnt,
3446 const struct nlattr *a, bool may_steal)
3447 OVS_NO_THREAD_SAFETY_ANALYSIS
3448 {
3449 struct dp_netdev_execute_aux *aux = aux_;
3450 uint32_t *depth = recirc_depth_get();
3451 struct dp_netdev_pmd_thread *pmd = aux->pmd;
3452 struct dp_netdev *dp = pmd->dp;
3453 int type = nl_attr_type(a);
3454 struct dp_netdev_port *p;
3455 int i;
3456
3457 switch ((enum ovs_action_attr)type) {
3458 case OVS_ACTION_ATTR_OUTPUT:
3459 p = dp_netdev_lookup_port(dp, u32_to_odp(nl_attr_get_u32(a)));
3460 if (OVS_LIKELY(p)) {
3461 netdev_send(p->netdev, pmd->tx_qid, packets, cnt, may_steal);
3462 return;
3463 }
3464 break;
3465
3466 case OVS_ACTION_ATTR_TUNNEL_PUSH:
3467 if (*depth < MAX_RECIRC_DEPTH) {
3468 struct dp_packet *tnl_pkt[NETDEV_MAX_BURST];
3469 int err;
3470
3471 if (!may_steal) {
3472 dp_netdev_clone_pkt_batch(tnl_pkt, packets, cnt);
3473 packets = tnl_pkt;
3474 }
3475
3476 err = push_tnl_action(dp, a, packets, cnt);
3477 if (!err) {
3478 (*depth)++;
3479 dp_netdev_input(pmd, packets, cnt);
3480 (*depth)--;
3481 } else {
3482 dp_netdev_drop_packets(tnl_pkt, cnt, !may_steal);
3483 }
3484 return;
3485 }
3486 break;
3487
3488 case OVS_ACTION_ATTR_TUNNEL_POP:
3489 if (*depth < MAX_RECIRC_DEPTH) {
3490 odp_port_t portno = u32_to_odp(nl_attr_get_u32(a));
3491
3492 p = dp_netdev_lookup_port(dp, portno);
3493 if (p) {
3494 struct dp_packet *tnl_pkt[NETDEV_MAX_BURST];
3495 int err;
3496
3497 if (!may_steal) {
3498 dp_netdev_clone_pkt_batch(tnl_pkt, packets, cnt);
3499 packets = tnl_pkt;
3500 }
3501
3502 err = netdev_pop_header(p->netdev, packets, cnt);
3503 if (!err) {
3504
3505 for (i = 0; i < cnt; i++) {
3506 packets[i]->md.in_port.odp_port = portno;
3507 }
3508
3509 (*depth)++;
3510 dp_netdev_input(pmd, packets, cnt);
3511 (*depth)--;
3512 } else {
3513 dp_netdev_drop_packets(tnl_pkt, cnt, !may_steal);
3514 }
3515 return;
3516 }
3517 }
3518 break;
3519
3520 case OVS_ACTION_ATTR_USERSPACE:
3521 if (!fat_rwlock_tryrdlock(&dp->upcall_rwlock)) {
3522 const struct nlattr *userdata;
3523 struct ofpbuf actions;
3524 struct flow flow;
3525 ovs_u128 ufid;
3526
3527 userdata = nl_attr_find_nested(a, OVS_USERSPACE_ATTR_USERDATA);
3528 ofpbuf_init(&actions, 0);
3529
3530 for (i = 0; i < cnt; i++) {
3531 int error;
3532
3533 ofpbuf_clear(&actions);
3534
3535 flow_extract(packets[i], &flow);
3536 dpif_flow_hash(dp->dpif, &flow, sizeof flow, &ufid);
3537 error = dp_netdev_upcall(pmd, packets[i], &flow, NULL, &ufid,
3538 DPIF_UC_ACTION, userdata,&actions,
3539 NULL);
3540 if (!error || error == ENOSPC) {
3541 dp_netdev_execute_actions(pmd, &packets[i], 1, may_steal,
3542 actions.data, actions.size);
3543 } else if (may_steal) {
3544 dp_packet_delete(packets[i]);
3545 }
3546 }
3547 ofpbuf_uninit(&actions);
3548 fat_rwlock_unlock(&dp->upcall_rwlock);
3549
3550 return;
3551 }
3552 break;
3553
3554 case OVS_ACTION_ATTR_RECIRC:
3555 if (*depth < MAX_RECIRC_DEPTH) {
3556 struct dp_packet *recirc_pkts[NETDEV_MAX_BURST];
3557
3558 if (!may_steal) {
3559 dp_netdev_clone_pkt_batch(recirc_pkts, packets, cnt);
3560 packets = recirc_pkts;
3561 }
3562
3563 for (i = 0; i < cnt; i++) {
3564 packets[i]->md.recirc_id = nl_attr_get_u32(a);
3565 }
3566
3567 (*depth)++;
3568 dp_netdev_input(pmd, packets, cnt);
3569 (*depth)--;
3570
3571 return;
3572 }
3573
3574 VLOG_WARN("Packet dropped. Max recirculation depth exceeded.");
3575 break;
3576
3577 case OVS_ACTION_ATTR_PUSH_VLAN:
3578 case OVS_ACTION_ATTR_POP_VLAN:
3579 case OVS_ACTION_ATTR_PUSH_MPLS:
3580 case OVS_ACTION_ATTR_POP_MPLS:
3581 case OVS_ACTION_ATTR_SET:
3582 case OVS_ACTION_ATTR_SET_MASKED:
3583 case OVS_ACTION_ATTR_SAMPLE:
3584 case OVS_ACTION_ATTR_HASH:
3585 case OVS_ACTION_ATTR_UNSPEC:
3586 case __OVS_ACTION_ATTR_MAX:
3587 OVS_NOT_REACHED();
3588 }
3589
3590 dp_netdev_drop_packets(packets, cnt, may_steal);
3591 }
3592
3593 static void
3594 dp_netdev_execute_actions(struct dp_netdev_pmd_thread *pmd,
3595 struct dp_packet **packets, int cnt,
3596 bool may_steal,
3597 const struct nlattr *actions, size_t actions_len)
3598 {
3599 struct dp_netdev_execute_aux aux = { pmd };
3600
3601 odp_execute_actions(&aux, packets, cnt, may_steal, actions,
3602 actions_len, dp_execute_cb);
3603 }
3604
3605 const struct dpif_class dpif_netdev_class = {
3606 "netdev",
3607 dpif_netdev_init,
3608 dpif_netdev_enumerate,
3609 dpif_netdev_port_open_type,
3610 dpif_netdev_open,
3611 dpif_netdev_close,
3612 dpif_netdev_destroy,
3613 dpif_netdev_run,
3614 dpif_netdev_wait,
3615 dpif_netdev_get_stats,
3616 dpif_netdev_port_add,
3617 dpif_netdev_port_del,
3618 dpif_netdev_port_query_by_number,
3619 dpif_netdev_port_query_by_name,
3620 NULL, /* port_get_pid */
3621 dpif_netdev_port_dump_start,
3622 dpif_netdev_port_dump_next,
3623 dpif_netdev_port_dump_done,
3624 dpif_netdev_port_poll,
3625 dpif_netdev_port_poll_wait,
3626 dpif_netdev_flow_flush,
3627 dpif_netdev_flow_dump_create,
3628 dpif_netdev_flow_dump_destroy,
3629 dpif_netdev_flow_dump_thread_create,
3630 dpif_netdev_flow_dump_thread_destroy,
3631 dpif_netdev_flow_dump_next,
3632 dpif_netdev_operate,
3633 NULL, /* recv_set */
3634 NULL, /* handlers_set */
3635 dpif_netdev_pmd_set,
3636 dpif_netdev_queue_to_priority,
3637 NULL, /* recv */
3638 NULL, /* recv_wait */
3639 NULL, /* recv_purge */
3640 dpif_netdev_register_upcall_cb,
3641 dpif_netdev_enable_upcall,
3642 dpif_netdev_disable_upcall,
3643 dpif_netdev_get_datapath_version,
3644 };
3645
3646 static void
3647 dpif_dummy_change_port_number(struct unixctl_conn *conn, int argc OVS_UNUSED,
3648 const char *argv[], void *aux OVS_UNUSED)
3649 {
3650 struct dp_netdev_port *old_port;
3651 struct dp_netdev_port *new_port;
3652 struct dp_netdev *dp;
3653 odp_port_t port_no;
3654
3655 ovs_mutex_lock(&dp_netdev_mutex);
3656 dp = shash_find_data(&dp_netdevs, argv[1]);
3657 if (!dp || !dpif_netdev_class_is_dummy(dp->class)) {
3658 ovs_mutex_unlock(&dp_netdev_mutex);
3659 unixctl_command_reply_error(conn, "unknown datapath or not a dummy");
3660 return;
3661 }
3662 ovs_refcount_ref(&dp->ref_cnt);
3663 ovs_mutex_unlock(&dp_netdev_mutex);
3664
3665 ovs_mutex_lock(&dp->port_mutex);
3666 if (get_port_by_name(dp, argv[2], &old_port)) {
3667 unixctl_command_reply_error(conn, "unknown port");
3668 goto exit;
3669 }
3670
3671 port_no = u32_to_odp(atoi(argv[3]));
3672 if (!port_no || port_no == ODPP_NONE) {
3673 unixctl_command_reply_error(conn, "bad port number");
3674 goto exit;
3675 }
3676 if (dp_netdev_lookup_port(dp, port_no)) {
3677 unixctl_command_reply_error(conn, "port number already in use");
3678 goto exit;
3679 }
3680
3681 /* Remove old port. */
3682 cmap_remove(&dp->ports, &old_port->node, hash_port_no(old_port->port_no));
3683 ovsrcu_postpone(free, old_port);
3684
3685 /* Insert new port (cmap semantics mean we cannot re-insert 'old_port'). */
3686 new_port = xmemdup(old_port, sizeof *old_port);
3687 new_port->port_no = port_no;
3688 cmap_insert(&dp->ports, &new_port->node, hash_port_no(port_no));
3689
3690 seq_change(dp->port_seq);
3691 unixctl_command_reply(conn, NULL);
3692
3693 exit:
3694 ovs_mutex_unlock(&dp->port_mutex);
3695 dp_netdev_unref(dp);
3696 }
3697
3698 static void
3699 dpif_dummy_delete_port(struct unixctl_conn *conn, int argc OVS_UNUSED,
3700 const char *argv[], void *aux OVS_UNUSED)
3701 {
3702 struct dp_netdev_port *port;
3703 struct dp_netdev *dp;
3704
3705 ovs_mutex_lock(&dp_netdev_mutex);
3706 dp = shash_find_data(&dp_netdevs, argv[1]);
3707 if (!dp || !dpif_netdev_class_is_dummy(dp->class)) {
3708 ovs_mutex_unlock(&dp_netdev_mutex);
3709 unixctl_command_reply_error(conn, "unknown datapath or not a dummy");
3710 return;
3711 }
3712 ovs_refcount_ref(&dp->ref_cnt);
3713 ovs_mutex_unlock(&dp_netdev_mutex);
3714
3715 ovs_mutex_lock(&dp->port_mutex);
3716 if (get_port_by_name(dp, argv[2], &port)) {
3717 unixctl_command_reply_error(conn, "unknown port");
3718 } else if (port->port_no == ODPP_LOCAL) {
3719 unixctl_command_reply_error(conn, "can't delete local port");
3720 } else {
3721 do_del_port(dp, port);
3722 unixctl_command_reply(conn, NULL);
3723 }
3724 ovs_mutex_unlock(&dp->port_mutex);
3725
3726 dp_netdev_unref(dp);
3727 }
3728
3729 static void
3730 dpif_dummy_register__(const char *type)
3731 {
3732 struct dpif_class *class;
3733
3734 class = xmalloc(sizeof *class);
3735 *class = dpif_netdev_class;
3736 class->type = xstrdup(type);
3737 dp_register_provider(class);
3738 }
3739
3740 static void
3741 dpif_dummy_override(const char *type)
3742 {
3743 if (!dp_unregister_provider(type)) {
3744 dpif_dummy_register__(type);
3745 }
3746 }
3747
3748 void
3749 dpif_dummy_register(enum dummy_level level)
3750 {
3751 if (level == DUMMY_OVERRIDE_ALL) {
3752 struct sset types;
3753 const char *type;
3754
3755 sset_init(&types);
3756 dp_enumerate_types(&types);
3757 SSET_FOR_EACH (type, &types) {
3758 dpif_dummy_override(type);
3759 }
3760 sset_destroy(&types);
3761 } else if (level == DUMMY_OVERRIDE_SYSTEM) {
3762 dpif_dummy_override("system");
3763 }
3764
3765 dpif_dummy_register__("dummy");
3766
3767 unixctl_command_register("dpif-dummy/change-port-number",
3768 "dp port new-number",
3769 3, 3, dpif_dummy_change_port_number, NULL);
3770 unixctl_command_register("dpif-dummy/delete-port", "dp port",
3771 2, 2, dpif_dummy_delete_port, NULL);
3772 }
3773 \f
3774 /* Datapath Classifier. */
3775
3776 /* A set of rules that all have the same fields wildcarded. */
3777 struct dpcls_subtable {
3778 /* The fields are only used by writers. */
3779 struct cmap_node cmap_node OVS_GUARDED; /* Within dpcls 'subtables_map'. */
3780
3781 /* These fields are accessed by readers. */
3782 struct cmap rules; /* Contains "struct dpcls_rule"s. */
3783 struct netdev_flow_key mask; /* Wildcards for fields (const). */
3784 /* 'mask' must be the last field, additional space is allocated here. */
3785 };
3786
3787 /* Initializes 'cls' as a classifier that initially contains no classification
3788 * rules. */
3789 static void
3790 dpcls_init(struct dpcls *cls)
3791 {
3792 cmap_init(&cls->subtables_map);
3793 pvector_init(&cls->subtables);
3794 }
3795
3796 static void
3797 dpcls_destroy_subtable(struct dpcls *cls, struct dpcls_subtable *subtable)
3798 {
3799 pvector_remove(&cls->subtables, subtable);
3800 cmap_remove(&cls->subtables_map, &subtable->cmap_node,
3801 subtable->mask.hash);
3802 cmap_destroy(&subtable->rules);
3803 ovsrcu_postpone(free, subtable);
3804 }
3805
3806 /* Destroys 'cls'. Rules within 'cls', if any, are not freed; this is the
3807 * caller's responsibility.
3808 * May only be called after all the readers have been terminated. */
3809 static void
3810 dpcls_destroy(struct dpcls *cls)
3811 {
3812 if (cls) {
3813 struct dpcls_subtable *subtable;
3814
3815 CMAP_FOR_EACH (subtable, cmap_node, &cls->subtables_map) {
3816 ovs_assert(cmap_count(&subtable->rules) == 0);
3817 dpcls_destroy_subtable(cls, subtable);
3818 }
3819 cmap_destroy(&cls->subtables_map);
3820 pvector_destroy(&cls->subtables);
3821 }
3822 }
3823
3824 static struct dpcls_subtable *
3825 dpcls_create_subtable(struct dpcls *cls, const struct netdev_flow_key *mask)
3826 {
3827 struct dpcls_subtable *subtable;
3828
3829 /* Need to add one. */
3830 subtable = xmalloc(sizeof *subtable
3831 - sizeof subtable->mask.mf + mask->len);
3832 cmap_init(&subtable->rules);
3833 netdev_flow_key_clone(&subtable->mask, mask);
3834 cmap_insert(&cls->subtables_map, &subtable->cmap_node, mask->hash);
3835 pvector_insert(&cls->subtables, subtable, 0);
3836 pvector_publish(&cls->subtables);
3837
3838 return subtable;
3839 }
3840
3841 static inline struct dpcls_subtable *
3842 dpcls_find_subtable(struct dpcls *cls, const struct netdev_flow_key *mask)
3843 {
3844 struct dpcls_subtable *subtable;
3845
3846 CMAP_FOR_EACH_WITH_HASH (subtable, cmap_node, mask->hash,
3847 &cls->subtables_map) {
3848 if (netdev_flow_key_equal(&subtable->mask, mask)) {
3849 return subtable;
3850 }
3851 }
3852 return dpcls_create_subtable(cls, mask);
3853 }
3854
3855 /* Insert 'rule' into 'cls'. */
3856 static void
3857 dpcls_insert(struct dpcls *cls, struct dpcls_rule *rule,
3858 const struct netdev_flow_key *mask)
3859 {
3860 struct dpcls_subtable *subtable = dpcls_find_subtable(cls, mask);
3861
3862 rule->mask = &subtable->mask;
3863 cmap_insert(&subtable->rules, &rule->cmap_node, rule->flow.hash);
3864 }
3865
3866 /* Removes 'rule' from 'cls', also destructing the 'rule'. */
3867 static void
3868 dpcls_remove(struct dpcls *cls, struct dpcls_rule *rule)
3869 {
3870 struct dpcls_subtable *subtable;
3871
3872 ovs_assert(rule->mask);
3873
3874 INIT_CONTAINER(subtable, rule->mask, mask);
3875
3876 if (cmap_remove(&subtable->rules, &rule->cmap_node, rule->flow.hash)
3877 == 0) {
3878 dpcls_destroy_subtable(cls, subtable);
3879 pvector_publish(&cls->subtables);
3880 }
3881 }
3882
3883 /* Returns true if 'target' satisfies 'key' in 'mask', that is, if each 1-bit
3884 * in 'mask' the values in 'key' and 'target' are the same. */
3885 static inline bool
3886 dpcls_rule_matches_key(const struct dpcls_rule *rule,
3887 const struct netdev_flow_key *target)
3888 {
3889 const uint64_t *keyp = miniflow_get_values(&rule->flow.mf);
3890 const uint64_t *maskp = miniflow_get_values(&rule->mask->mf);
3891 uint64_t value;
3892
3893 NETDEV_FLOW_KEY_FOR_EACH_IN_FLOWMAP(value, target, rule->flow.mf.map) {
3894 if (OVS_UNLIKELY((value & *maskp++) != *keyp++)) {
3895 return false;
3896 }
3897 }
3898 return true;
3899 }
3900
3901 /* For each miniflow in 'flows' performs a classifier lookup writing the result
3902 * into the corresponding slot in 'rules'. If a particular entry in 'flows' is
3903 * NULL it is skipped.
3904 *
3905 * This function is optimized for use in the userspace datapath and therefore
3906 * does not implement a lot of features available in the standard
3907 * classifier_lookup() function. Specifically, it does not implement
3908 * priorities, instead returning any rule which matches the flow.
3909 *
3910 * Returns true if all flows found a corresponding rule. */
3911 static bool
3912 dpcls_lookup(const struct dpcls *cls, const struct netdev_flow_key keys[],
3913 struct dpcls_rule **rules, const size_t cnt)
3914 {
3915 /* The batch size 16 was experimentally found faster than 8 or 32. */
3916 typedef uint16_t map_type;
3917 #define MAP_BITS (sizeof(map_type) * CHAR_BIT)
3918
3919 #if !defined(__CHECKER__) && !defined(_WIN32)
3920 const int N_MAPS = DIV_ROUND_UP(cnt, MAP_BITS);
3921 #else
3922 enum { N_MAPS = DIV_ROUND_UP(NETDEV_MAX_BURST, MAP_BITS) };
3923 #endif
3924 map_type maps[N_MAPS];
3925 struct dpcls_subtable *subtable;
3926
3927 memset(maps, 0xff, sizeof maps);
3928 if (cnt % MAP_BITS) {
3929 maps[N_MAPS - 1] >>= MAP_BITS - cnt % MAP_BITS; /* Clear extra bits. */
3930 }
3931 memset(rules, 0, cnt * sizeof *rules);
3932
3933 PVECTOR_FOR_EACH (subtable, &cls->subtables) {
3934 const struct netdev_flow_key *mkeys = keys;
3935 struct dpcls_rule **mrules = rules;
3936 map_type remains = 0;
3937 int m;
3938
3939 BUILD_ASSERT_DECL(sizeof remains == sizeof *maps);
3940
3941 for (m = 0; m < N_MAPS; m++, mkeys += MAP_BITS, mrules += MAP_BITS) {
3942 uint32_t hashes[MAP_BITS];
3943 const struct cmap_node *nodes[MAP_BITS];
3944 unsigned long map = maps[m];
3945 int i;
3946
3947 if (!map) {
3948 continue; /* Skip empty maps. */
3949 }
3950
3951 /* Compute hashes for the remaining keys. */
3952 ULLONG_FOR_EACH_1(i, map) {
3953 hashes[i] = netdev_flow_key_hash_in_mask(&mkeys[i],
3954 &subtable->mask);
3955 }
3956 /* Lookup. */
3957 map = cmap_find_batch(&subtable->rules, map, hashes, nodes);
3958 /* Check results. */
3959 ULLONG_FOR_EACH_1(i, map) {
3960 struct dpcls_rule *rule;
3961
3962 CMAP_NODE_FOR_EACH (rule, cmap_node, nodes[i]) {
3963 if (OVS_LIKELY(dpcls_rule_matches_key(rule, &mkeys[i]))) {
3964 mrules[i] = rule;
3965 goto next;
3966 }
3967 }
3968 ULLONG_SET0(map, i); /* Did not match. */
3969 next:
3970 ; /* Keep Sparse happy. */
3971 }
3972 maps[m] &= ~map; /* Clear the found rules. */
3973 remains |= maps[m];
3974 }
3975 if (!remains) {
3976 return true; /* All found. */
3977 }
3978 }
3979 return false; /* Some misses. */
3980 }