]> git.proxmox.com Git - ovs.git/blob - lib/dpif-netdev.c
dpif-netdev: Do not keep refcount for ports.
[ovs.git] / lib / dpif-netdev.c
1 /*
2 * Copyright (c) 2009, 2010, 2011, 2012, 2013, 2014, 2016 Nicira, Inc.
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at:
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <config.h>
18 #include "dpif-netdev.h"
19
20 #include <ctype.h>
21 #include <errno.h>
22 #include <fcntl.h>
23 #include <inttypes.h>
24 #include <net/if.h>
25 #include <netinet/in.h>
26 #include <stdint.h>
27 #include <stdlib.h>
28 #include <string.h>
29 #include <sys/ioctl.h>
30 #include <sys/socket.h>
31 #include <sys/stat.h>
32 #include <unistd.h>
33
34 #include "bitmap.h"
35 #include "cmap.h"
36 #include "coverage.h"
37 #include "csum.h"
38 #include "dp-packet.h"
39 #include "dpif.h"
40 #include "dpif-provider.h"
41 #include "dummy.h"
42 #include "openvswitch/dynamic-string.h"
43 #include "fat-rwlock.h"
44 #include "flow.h"
45 #include "hmapx.h"
46 #include "latch.h"
47 #include "openvswitch/list.h"
48 #include "match.h"
49 #include "netdev.h"
50 #include "netdev-dpdk.h"
51 #include "netdev-vport.h"
52 #include "netlink.h"
53 #include "odp-execute.h"
54 #include "odp-util.h"
55 #include "ofp-print.h"
56 #include "openvswitch/ofpbuf.h"
57 #include "ovs-numa.h"
58 #include "ovs-rcu.h"
59 #include "packets.h"
60 #include "poll-loop.h"
61 #include "pvector.h"
62 #include "random.h"
63 #include "seq.h"
64 #include "shash.h"
65 #include "sset.h"
66 #include "timeval.h"
67 #include "tnl-neigh-cache.h"
68 #include "tnl-ports.h"
69 #include "unixctl.h"
70 #include "util.h"
71
72 #include "openvswitch/vlog.h"
73
74 VLOG_DEFINE_THIS_MODULE(dpif_netdev);
75
76 #define FLOW_DUMP_MAX_BATCH 50
77 /* Use per thread recirc_depth to prevent recirculation loop. */
78 #define MAX_RECIRC_DEPTH 5
79 DEFINE_STATIC_PER_THREAD_DATA(uint32_t, recirc_depth, 0)
80
81 /* Configuration parameters. */
82 enum { MAX_FLOWS = 65536 }; /* Maximum number of flows in flow table. */
83
84 /* Protects against changes to 'dp_netdevs'. */
85 static struct ovs_mutex dp_netdev_mutex = OVS_MUTEX_INITIALIZER;
86
87 /* Contains all 'struct dp_netdev's. */
88 static struct shash dp_netdevs OVS_GUARDED_BY(dp_netdev_mutex)
89 = SHASH_INITIALIZER(&dp_netdevs);
90
91 static struct vlog_rate_limit upcall_rl = VLOG_RATE_LIMIT_INIT(600, 600);
92
93 static struct odp_support dp_netdev_support = {
94 .max_mpls_depth = SIZE_MAX,
95 .recirc = true,
96 };
97
98 /* Stores a miniflow with inline values */
99
100 struct netdev_flow_key {
101 uint32_t hash; /* Hash function differs for different users. */
102 uint32_t len; /* Length of the following miniflow (incl. map). */
103 struct miniflow mf;
104 uint64_t buf[FLOW_MAX_PACKET_U64S];
105 };
106
107 /* Exact match cache for frequently used flows
108 *
109 * The cache uses a 32-bit hash of the packet (which can be the RSS hash) to
110 * search its entries for a miniflow that matches exactly the miniflow of the
111 * packet. It stores the 'dpcls_rule' (rule) that matches the miniflow.
112 *
113 * A cache entry holds a reference to its 'dp_netdev_flow'.
114 *
115 * A miniflow with a given hash can be in one of EM_FLOW_HASH_SEGS different
116 * entries. The 32-bit hash is split into EM_FLOW_HASH_SEGS values (each of
117 * them is EM_FLOW_HASH_SHIFT bits wide and the remainder is thrown away). Each
118 * value is the index of a cache entry where the miniflow could be.
119 *
120 *
121 * Thread-safety
122 * =============
123 *
124 * Each pmd_thread has its own private exact match cache.
125 * If dp_netdev_input is not called from a pmd thread, a mutex is used.
126 */
127
128 #define EM_FLOW_HASH_SHIFT 13
129 #define EM_FLOW_HASH_ENTRIES (1u << EM_FLOW_HASH_SHIFT)
130 #define EM_FLOW_HASH_MASK (EM_FLOW_HASH_ENTRIES - 1)
131 #define EM_FLOW_HASH_SEGS 2
132
133 struct emc_entry {
134 struct dp_netdev_flow *flow;
135 struct netdev_flow_key key; /* key.hash used for emc hash value. */
136 };
137
138 struct emc_cache {
139 struct emc_entry entries[EM_FLOW_HASH_ENTRIES];
140 int sweep_idx; /* For emc_cache_slow_sweep(). */
141 };
142
143 /* Iterate in the exact match cache through every entry that might contain a
144 * miniflow with hash 'HASH'. */
145 #define EMC_FOR_EACH_POS_WITH_HASH(EMC, CURRENT_ENTRY, HASH) \
146 for (uint32_t i__ = 0, srch_hash__ = (HASH); \
147 (CURRENT_ENTRY) = &(EMC)->entries[srch_hash__ & EM_FLOW_HASH_MASK], \
148 i__ < EM_FLOW_HASH_SEGS; \
149 i__++, srch_hash__ >>= EM_FLOW_HASH_SHIFT)
150 \f
151 /* Simple non-wildcarding single-priority classifier. */
152
153 struct dpcls {
154 struct cmap subtables_map;
155 struct pvector subtables;
156 };
157
158 /* A rule to be inserted to the classifier. */
159 struct dpcls_rule {
160 struct cmap_node cmap_node; /* Within struct dpcls_subtable 'rules'. */
161 struct netdev_flow_key *mask; /* Subtable's mask. */
162 struct netdev_flow_key flow; /* Matching key. */
163 /* 'flow' must be the last field, additional space is allocated here. */
164 };
165
166 static void dpcls_init(struct dpcls *);
167 static void dpcls_destroy(struct dpcls *);
168 static void dpcls_insert(struct dpcls *, struct dpcls_rule *,
169 const struct netdev_flow_key *mask);
170 static void dpcls_remove(struct dpcls *, struct dpcls_rule *);
171 static bool dpcls_lookup(const struct dpcls *cls,
172 const struct netdev_flow_key keys[],
173 struct dpcls_rule **rules, size_t cnt);
174 \f
175 /* Datapath based on the network device interface from netdev.h.
176 *
177 *
178 * Thread-safety
179 * =============
180 *
181 * Some members, marked 'const', are immutable. Accessing other members
182 * requires synchronization, as noted in more detail below.
183 *
184 * Acquisition order is, from outermost to innermost:
185 *
186 * dp_netdev_mutex (global)
187 * port_mutex
188 */
189 struct dp_netdev {
190 const struct dpif_class *const class;
191 const char *const name;
192 struct dpif *dpif;
193 struct ovs_refcount ref_cnt;
194 atomic_flag destroyed;
195
196 /* Ports.
197 *
198 * Protected by RCU. Take the mutex to add or remove ports. */
199 struct ovs_mutex port_mutex;
200 struct cmap ports;
201 struct seq *port_seq; /* Incremented whenever a port changes. */
202
203 /* Protects access to ofproto-dpif-upcall interface during revalidator
204 * thread synchronization. */
205 struct fat_rwlock upcall_rwlock;
206 upcall_callback *upcall_cb; /* Callback function for executing upcalls. */
207 void *upcall_aux;
208
209 /* Callback function for notifying the purging of dp flows (during
210 * reseting pmd deletion). */
211 dp_purge_callback *dp_purge_cb;
212 void *dp_purge_aux;
213
214 /* Stores all 'struct dp_netdev_pmd_thread's. */
215 struct cmap poll_threads;
216
217 /* Protects the access of the 'struct dp_netdev_pmd_thread'
218 * instance for non-pmd thread. */
219 struct ovs_mutex non_pmd_mutex;
220
221 /* Each pmd thread will store its pointer to
222 * 'struct dp_netdev_pmd_thread' in 'per_pmd_key'. */
223 ovsthread_key_t per_pmd_key;
224
225 /* Cpu mask for pin of pmd threads. */
226 char *pmd_cmask;
227 uint64_t last_tnl_conf_seq;
228 };
229
230 static struct dp_netdev_port *dp_netdev_lookup_port(const struct dp_netdev *dp,
231 odp_port_t);
232
233 enum dp_stat_type {
234 DP_STAT_EXACT_HIT, /* Packets that had an exact match (emc). */
235 DP_STAT_MASKED_HIT, /* Packets that matched in the flow table. */
236 DP_STAT_MISS, /* Packets that did not match. */
237 DP_STAT_LOST, /* Packets not passed up to the client. */
238 DP_N_STATS
239 };
240
241 enum pmd_cycles_counter_type {
242 PMD_CYCLES_POLLING, /* Cycles spent polling NICs. */
243 PMD_CYCLES_PROCESSING, /* Cycles spent processing packets */
244 PMD_N_CYCLES
245 };
246
247 /* A port in a netdev-based datapath. */
248 struct dp_netdev_port {
249 odp_port_t port_no;
250 struct netdev *netdev;
251 struct cmap_node node; /* Node in dp_netdev's 'ports'. */
252 struct netdev_saved_flags *sf;
253 unsigned n_rxq; /* Number of elements in 'rxq' */
254 struct netdev_rxq **rxq;
255 char *type; /* Port type as requested by user. */
256 int latest_requested_n_rxq; /* Latest requested from netdev number
257 of rx queues. */
258 };
259
260 /* Contained by struct dp_netdev_flow's 'stats' member. */
261 struct dp_netdev_flow_stats {
262 atomic_llong used; /* Last used time, in monotonic msecs. */
263 atomic_ullong packet_count; /* Number of packets matched. */
264 atomic_ullong byte_count; /* Number of bytes matched. */
265 atomic_uint16_t tcp_flags; /* Bitwise-OR of seen tcp_flags values. */
266 };
267
268 /* A flow in 'dp_netdev_pmd_thread's 'flow_table'.
269 *
270 *
271 * Thread-safety
272 * =============
273 *
274 * Except near the beginning or ending of its lifespan, rule 'rule' belongs to
275 * its pmd thread's classifier. The text below calls this classifier 'cls'.
276 *
277 * Motivation
278 * ----------
279 *
280 * The thread safety rules described here for "struct dp_netdev_flow" are
281 * motivated by two goals:
282 *
283 * - Prevent threads that read members of "struct dp_netdev_flow" from
284 * reading bad data due to changes by some thread concurrently modifying
285 * those members.
286 *
287 * - Prevent two threads making changes to members of a given "struct
288 * dp_netdev_flow" from interfering with each other.
289 *
290 *
291 * Rules
292 * -----
293 *
294 * A flow 'flow' may be accessed without a risk of being freed during an RCU
295 * grace period. Code that needs to hold onto a flow for a while
296 * should try incrementing 'flow->ref_cnt' with dp_netdev_flow_ref().
297 *
298 * 'flow->ref_cnt' protects 'flow' from being freed. It doesn't protect the
299 * flow from being deleted from 'cls' and it doesn't protect members of 'flow'
300 * from modification.
301 *
302 * Some members, marked 'const', are immutable. Accessing other members
303 * requires synchronization, as noted in more detail below.
304 */
305 struct dp_netdev_flow {
306 const struct flow flow; /* Unmasked flow that created this entry. */
307 /* Hash table index by unmasked flow. */
308 const struct cmap_node node; /* In owning dp_netdev_pmd_thread's */
309 /* 'flow_table'. */
310 const ovs_u128 ufid; /* Unique flow identifier. */
311 const unsigned pmd_id; /* The 'core_id' of pmd thread owning this */
312 /* flow. */
313
314 /* Number of references.
315 * The classifier owns one reference.
316 * Any thread trying to keep a rule from being freed should hold its own
317 * reference. */
318 struct ovs_refcount ref_cnt;
319
320 bool dead;
321
322 /* Statistics. */
323 struct dp_netdev_flow_stats stats;
324
325 /* Actions. */
326 OVSRCU_TYPE(struct dp_netdev_actions *) actions;
327
328 /* While processing a group of input packets, the datapath uses the next
329 * member to store a pointer to the output batch for the flow. It is
330 * reset after the batch has been sent out (See dp_netdev_queue_batches(),
331 * packet_batch_init() and packet_batch_execute()). */
332 struct packet_batch *batch;
333
334 /* Packet classification. */
335 struct dpcls_rule cr; /* In owning dp_netdev's 'cls'. */
336 /* 'cr' must be the last member. */
337 };
338
339 static void dp_netdev_flow_unref(struct dp_netdev_flow *);
340 static bool dp_netdev_flow_ref(struct dp_netdev_flow *);
341 static int dpif_netdev_flow_from_nlattrs(const struct nlattr *, uint32_t,
342 struct flow *);
343
344 /* A set of datapath actions within a "struct dp_netdev_flow".
345 *
346 *
347 * Thread-safety
348 * =============
349 *
350 * A struct dp_netdev_actions 'actions' is protected with RCU. */
351 struct dp_netdev_actions {
352 /* These members are immutable: they do not change during the struct's
353 * lifetime. */
354 unsigned int size; /* Size of 'actions', in bytes. */
355 struct nlattr actions[]; /* Sequence of OVS_ACTION_ATTR_* attributes. */
356 };
357
358 struct dp_netdev_actions *dp_netdev_actions_create(const struct nlattr *,
359 size_t);
360 struct dp_netdev_actions *dp_netdev_flow_get_actions(
361 const struct dp_netdev_flow *);
362 static void dp_netdev_actions_free(struct dp_netdev_actions *);
363
364 /* Contained by struct dp_netdev_pmd_thread's 'stats' member. */
365 struct dp_netdev_pmd_stats {
366 /* Indexed by DP_STAT_*. */
367 atomic_ullong n[DP_N_STATS];
368 };
369
370 /* Contained by struct dp_netdev_pmd_thread's 'cycle' member. */
371 struct dp_netdev_pmd_cycles {
372 /* Indexed by PMD_CYCLES_*. */
373 atomic_ullong n[PMD_N_CYCLES];
374 };
375
376 /* Contained by struct dp_netdev_pmd_thread's 'poll_list' member. */
377 struct rxq_poll {
378 struct dp_netdev_port *port;
379 struct netdev_rxq *rx;
380 struct ovs_list node;
381 };
382
383 /* PMD: Poll modes drivers. PMD accesses devices via polling to eliminate
384 * the performance overhead of interrupt processing. Therefore netdev can
385 * not implement rx-wait for these devices. dpif-netdev needs to poll
386 * these device to check for recv buffer. pmd-thread does polling for
387 * devices assigned to itself.
388 *
389 * DPDK used PMD for accessing NIC.
390 *
391 * Note, instance with cpu core id NON_PMD_CORE_ID will be reserved for
392 * I/O of all non-pmd threads. There will be no actual thread created
393 * for the instance.
394 *
395 * Each struct has its own flow table and classifier. Packets received
396 * from managed ports are looked up in the corresponding pmd thread's
397 * flow table, and are executed with the found actions.
398 * */
399 struct dp_netdev_pmd_thread {
400 struct dp_netdev *dp;
401 struct ovs_refcount ref_cnt; /* Every reference must be refcount'ed. */
402 struct cmap_node node; /* In 'dp->poll_threads'. */
403
404 pthread_cond_t cond; /* For synchronizing pmd thread reload. */
405 struct ovs_mutex cond_mutex; /* Mutex for condition variable. */
406
407 /* Per thread exact-match cache. Note, the instance for cpu core
408 * NON_PMD_CORE_ID can be accessed by multiple threads, and thusly
409 * need to be protected (e.g. by 'dp_netdev_mutex'). All other
410 * instances will only be accessed by its own pmd thread. */
411 struct emc_cache flow_cache;
412
413 /* Classifier and Flow-Table.
414 *
415 * Writers of 'flow_table' must take the 'flow_mutex'. Corresponding
416 * changes to 'cls' must be made while still holding the 'flow_mutex'.
417 */
418 struct ovs_mutex flow_mutex;
419 struct dpcls cls;
420 struct cmap flow_table OVS_GUARDED; /* Flow table. */
421
422 /* Statistics. */
423 struct dp_netdev_pmd_stats stats;
424
425 /* Cycles counters */
426 struct dp_netdev_pmd_cycles cycles;
427
428 /* Used to count cicles. See 'cycles_counter_end()' */
429 unsigned long long last_cycles;
430
431 struct latch exit_latch; /* For terminating the pmd thread. */
432 atomic_uint change_seq; /* For reloading pmd ports. */
433 pthread_t thread;
434 int index; /* Idx of this pmd thread among pmd*/
435 /* threads on same numa node. */
436 unsigned core_id; /* CPU core id of this pmd thread. */
437 int numa_id; /* numa node id of this pmd thread. */
438 atomic_int tx_qid; /* Queue id used by this pmd thread to
439 * send packets on all netdevs */
440
441 struct ovs_mutex poll_mutex; /* Mutex for poll_list. */
442 /* List of rx queues to poll. */
443 struct ovs_list poll_list OVS_GUARDED;
444 int poll_cnt; /* Number of elemints in poll_list. */
445
446 /* Only a pmd thread can write on its own 'cycles' and 'stats'.
447 * The main thread keeps 'stats_zero' and 'cycles_zero' as base
448 * values and subtracts them from 'stats' and 'cycles' before
449 * reporting to the user */
450 unsigned long long stats_zero[DP_N_STATS];
451 uint64_t cycles_zero[PMD_N_CYCLES];
452 };
453
454 #define PMD_INITIAL_SEQ 1
455
456 /* Interface to netdev-based datapath. */
457 struct dpif_netdev {
458 struct dpif dpif;
459 struct dp_netdev *dp;
460 uint64_t last_port_seq;
461 };
462
463 static int get_port_by_number(struct dp_netdev *dp, odp_port_t port_no,
464 struct dp_netdev_port **portp);
465 static int get_port_by_name(struct dp_netdev *dp, const char *devname,
466 struct dp_netdev_port **portp);
467 static void dp_netdev_free(struct dp_netdev *)
468 OVS_REQUIRES(dp_netdev_mutex);
469 static int do_add_port(struct dp_netdev *dp, const char *devname,
470 const char *type, odp_port_t port_no)
471 OVS_REQUIRES(dp->port_mutex);
472 static void do_del_port(struct dp_netdev *dp, struct dp_netdev_port *)
473 OVS_REQUIRES(dp->port_mutex);
474 static int dpif_netdev_open(const struct dpif_class *, const char *name,
475 bool create, struct dpif **);
476 static void dp_netdev_execute_actions(struct dp_netdev_pmd_thread *pmd,
477 struct dp_packet **, int c,
478 bool may_steal,
479 const struct nlattr *actions,
480 size_t actions_len);
481 static void dp_netdev_input(struct dp_netdev_pmd_thread *,
482 struct dp_packet **, int cnt, odp_port_t port_no);
483 static void dp_netdev_recirculate(struct dp_netdev_pmd_thread *,
484 struct dp_packet **, int cnt);
485
486 static void dp_netdev_disable_upcall(struct dp_netdev *);
487 static void dp_netdev_pmd_reload_done(struct dp_netdev_pmd_thread *pmd);
488 static void dp_netdev_configure_pmd(struct dp_netdev_pmd_thread *pmd,
489 struct dp_netdev *dp, int index,
490 unsigned core_id, int numa_id);
491 static void dp_netdev_destroy_pmd(struct dp_netdev_pmd_thread *pmd);
492 static void dp_netdev_set_nonpmd(struct dp_netdev *dp);
493 static struct dp_netdev_pmd_thread *dp_netdev_get_pmd(struct dp_netdev *dp,
494 unsigned core_id);
495 static struct dp_netdev_pmd_thread *
496 dp_netdev_pmd_get_next(struct dp_netdev *dp, struct cmap_position *pos);
497 static void dp_netdev_destroy_all_pmds(struct dp_netdev *dp);
498 static void dp_netdev_del_pmds_on_numa(struct dp_netdev *dp, int numa_id);
499 static void dp_netdev_set_pmds_on_numa(struct dp_netdev *dp, int numa_id);
500 static void dp_netdev_pmd_clear_poll_list(struct dp_netdev_pmd_thread *pmd);
501 static void dp_netdev_del_port_from_pmd(struct dp_netdev_port *port,
502 struct dp_netdev_pmd_thread *pmd);
503 static void dp_netdev_del_port_from_all_pmds(struct dp_netdev *dp,
504 struct dp_netdev_port *port);
505 static void
506 dp_netdev_add_port_to_pmds(struct dp_netdev *dp, struct dp_netdev_port *port);
507 static void
508 dp_netdev_add_rxq_to_pmd(struct dp_netdev_pmd_thread *pmd,
509 struct dp_netdev_port *port, struct netdev_rxq *rx);
510 static struct dp_netdev_pmd_thread *
511 dp_netdev_less_loaded_pmd_on_numa(struct dp_netdev *dp, int numa_id);
512 static void dp_netdev_reset_pmd_threads(struct dp_netdev *dp);
513 static bool dp_netdev_pmd_try_ref(struct dp_netdev_pmd_thread *pmd);
514 static void dp_netdev_pmd_unref(struct dp_netdev_pmd_thread *pmd);
515 static void dp_netdev_pmd_flow_flush(struct dp_netdev_pmd_thread *pmd);
516
517 static inline bool emc_entry_alive(struct emc_entry *ce);
518 static void emc_clear_entry(struct emc_entry *ce);
519
520 static void
521 emc_cache_init(struct emc_cache *flow_cache)
522 {
523 int i;
524
525 flow_cache->sweep_idx = 0;
526 for (i = 0; i < ARRAY_SIZE(flow_cache->entries); i++) {
527 flow_cache->entries[i].flow = NULL;
528 flow_cache->entries[i].key.hash = 0;
529 flow_cache->entries[i].key.len = sizeof(struct miniflow);
530 flowmap_init(&flow_cache->entries[i].key.mf.map);
531 }
532 }
533
534 static void
535 emc_cache_uninit(struct emc_cache *flow_cache)
536 {
537 int i;
538
539 for (i = 0; i < ARRAY_SIZE(flow_cache->entries); i++) {
540 emc_clear_entry(&flow_cache->entries[i]);
541 }
542 }
543
544 /* Check and clear dead flow references slowly (one entry at each
545 * invocation). */
546 static void
547 emc_cache_slow_sweep(struct emc_cache *flow_cache)
548 {
549 struct emc_entry *entry = &flow_cache->entries[flow_cache->sweep_idx];
550
551 if (!emc_entry_alive(entry)) {
552 emc_clear_entry(entry);
553 }
554 flow_cache->sweep_idx = (flow_cache->sweep_idx + 1) & EM_FLOW_HASH_MASK;
555 }
556
557 /* Returns true if 'dpif' is a netdev or dummy dpif, false otherwise. */
558 bool
559 dpif_is_netdev(const struct dpif *dpif)
560 {
561 return dpif->dpif_class->open == dpif_netdev_open;
562 }
563
564 static struct dpif_netdev *
565 dpif_netdev_cast(const struct dpif *dpif)
566 {
567 ovs_assert(dpif_is_netdev(dpif));
568 return CONTAINER_OF(dpif, struct dpif_netdev, dpif);
569 }
570
571 static struct dp_netdev *
572 get_dp_netdev(const struct dpif *dpif)
573 {
574 return dpif_netdev_cast(dpif)->dp;
575 }
576 \f
577 enum pmd_info_type {
578 PMD_INFO_SHOW_STATS, /* Show how cpu cycles are spent. */
579 PMD_INFO_CLEAR_STATS, /* Set the cycles count to 0. */
580 PMD_INFO_SHOW_RXQ /* Show poll-lists of pmd threads. */
581 };
582
583 static void
584 pmd_info_show_stats(struct ds *reply,
585 struct dp_netdev_pmd_thread *pmd,
586 unsigned long long stats[DP_N_STATS],
587 uint64_t cycles[PMD_N_CYCLES])
588 {
589 unsigned long long total_packets = 0;
590 uint64_t total_cycles = 0;
591 int i;
592
593 /* These loops subtracts reference values ('*_zero') from the counters.
594 * Since loads and stores are relaxed, it might be possible for a '*_zero'
595 * value to be more recent than the current value we're reading from the
596 * counter. This is not a big problem, since these numbers are not
597 * supposed to be too accurate, but we should at least make sure that
598 * the result is not negative. */
599 for (i = 0; i < DP_N_STATS; i++) {
600 if (stats[i] > pmd->stats_zero[i]) {
601 stats[i] -= pmd->stats_zero[i];
602 } else {
603 stats[i] = 0;
604 }
605
606 if (i != DP_STAT_LOST) {
607 /* Lost packets are already included in DP_STAT_MISS */
608 total_packets += stats[i];
609 }
610 }
611
612 for (i = 0; i < PMD_N_CYCLES; i++) {
613 if (cycles[i] > pmd->cycles_zero[i]) {
614 cycles[i] -= pmd->cycles_zero[i];
615 } else {
616 cycles[i] = 0;
617 }
618
619 total_cycles += cycles[i];
620 }
621
622 ds_put_cstr(reply, (pmd->core_id == NON_PMD_CORE_ID)
623 ? "main thread" : "pmd thread");
624
625 if (pmd->numa_id != OVS_NUMA_UNSPEC) {
626 ds_put_format(reply, " numa_id %d", pmd->numa_id);
627 }
628 if (pmd->core_id != OVS_CORE_UNSPEC && pmd->core_id != NON_PMD_CORE_ID) {
629 ds_put_format(reply, " core_id %u", pmd->core_id);
630 }
631 ds_put_cstr(reply, ":\n");
632
633 ds_put_format(reply,
634 "\temc hits:%llu\n\tmegaflow hits:%llu\n"
635 "\tmiss:%llu\n\tlost:%llu\n",
636 stats[DP_STAT_EXACT_HIT], stats[DP_STAT_MASKED_HIT],
637 stats[DP_STAT_MISS], stats[DP_STAT_LOST]);
638
639 if (total_cycles == 0) {
640 return;
641 }
642
643 ds_put_format(reply,
644 "\tpolling cycles:%"PRIu64" (%.02f%%)\n"
645 "\tprocessing cycles:%"PRIu64" (%.02f%%)\n",
646 cycles[PMD_CYCLES_POLLING],
647 cycles[PMD_CYCLES_POLLING] / (double)total_cycles * 100,
648 cycles[PMD_CYCLES_PROCESSING],
649 cycles[PMD_CYCLES_PROCESSING] / (double)total_cycles * 100);
650
651 if (total_packets == 0) {
652 return;
653 }
654
655 ds_put_format(reply,
656 "\tavg cycles per packet: %.02f (%"PRIu64"/%llu)\n",
657 total_cycles / (double)total_packets,
658 total_cycles, total_packets);
659
660 ds_put_format(reply,
661 "\tavg processing cycles per packet: "
662 "%.02f (%"PRIu64"/%llu)\n",
663 cycles[PMD_CYCLES_PROCESSING] / (double)total_packets,
664 cycles[PMD_CYCLES_PROCESSING], total_packets);
665 }
666
667 static void
668 pmd_info_clear_stats(struct ds *reply OVS_UNUSED,
669 struct dp_netdev_pmd_thread *pmd,
670 unsigned long long stats[DP_N_STATS],
671 uint64_t cycles[PMD_N_CYCLES])
672 {
673 int i;
674
675 /* We cannot write 'stats' and 'cycles' (because they're written by other
676 * threads) and we shouldn't change 'stats' (because they're used to count
677 * datapath stats, which must not be cleared here). Instead, we save the
678 * current values and subtract them from the values to be displayed in the
679 * future */
680 for (i = 0; i < DP_N_STATS; i++) {
681 pmd->stats_zero[i] = stats[i];
682 }
683 for (i = 0; i < PMD_N_CYCLES; i++) {
684 pmd->cycles_zero[i] = cycles[i];
685 }
686 }
687
688 static void
689 pmd_info_show_rxq(struct ds *reply, struct dp_netdev_pmd_thread *pmd)
690 {
691 if (pmd->core_id != NON_PMD_CORE_ID) {
692 struct rxq_poll *poll;
693 const char *prev_name = NULL;
694
695 ds_put_format(reply, "pmd thread numa_id %d core_id %u:\n",
696 pmd->numa_id, pmd->core_id);
697
698 ovs_mutex_lock(&pmd->poll_mutex);
699 LIST_FOR_EACH (poll, node, &pmd->poll_list) {
700 const char *name = netdev_get_name(poll->port->netdev);
701
702 if (!prev_name || strcmp(name, prev_name)) {
703 if (prev_name) {
704 ds_put_cstr(reply, "\n");
705 }
706 ds_put_format(reply, "\tport: %s\tqueue-id:",
707 netdev_get_name(poll->port->netdev));
708 }
709 ds_put_format(reply, " %d", netdev_rxq_get_queue_id(poll->rx));
710 prev_name = name;
711 }
712 ovs_mutex_unlock(&pmd->poll_mutex);
713 ds_put_cstr(reply, "\n");
714 }
715 }
716
717 static void
718 dpif_netdev_pmd_info(struct unixctl_conn *conn, int argc, const char *argv[],
719 void *aux)
720 {
721 struct ds reply = DS_EMPTY_INITIALIZER;
722 struct dp_netdev_pmd_thread *pmd;
723 struct dp_netdev *dp = NULL;
724 enum pmd_info_type type = *(enum pmd_info_type *) aux;
725
726 ovs_mutex_lock(&dp_netdev_mutex);
727
728 if (argc == 2) {
729 dp = shash_find_data(&dp_netdevs, argv[1]);
730 } else if (shash_count(&dp_netdevs) == 1) {
731 /* There's only one datapath */
732 dp = shash_first(&dp_netdevs)->data;
733 }
734
735 if (!dp) {
736 ovs_mutex_unlock(&dp_netdev_mutex);
737 unixctl_command_reply_error(conn,
738 "please specify an existing datapath");
739 return;
740 }
741
742 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
743 if (type == PMD_INFO_SHOW_RXQ) {
744 pmd_info_show_rxq(&reply, pmd);
745 } else {
746 unsigned long long stats[DP_N_STATS];
747 uint64_t cycles[PMD_N_CYCLES];
748 int i;
749
750 /* Read current stats and cycle counters */
751 for (i = 0; i < ARRAY_SIZE(stats); i++) {
752 atomic_read_relaxed(&pmd->stats.n[i], &stats[i]);
753 }
754 for (i = 0; i < ARRAY_SIZE(cycles); i++) {
755 atomic_read_relaxed(&pmd->cycles.n[i], &cycles[i]);
756 }
757
758 if (type == PMD_INFO_CLEAR_STATS) {
759 pmd_info_clear_stats(&reply, pmd, stats, cycles);
760 } else if (type == PMD_INFO_SHOW_STATS) {
761 pmd_info_show_stats(&reply, pmd, stats, cycles);
762 }
763 }
764 }
765
766 ovs_mutex_unlock(&dp_netdev_mutex);
767
768 unixctl_command_reply(conn, ds_cstr(&reply));
769 ds_destroy(&reply);
770 }
771 \f
772 static int
773 dpif_netdev_init(void)
774 {
775 static enum pmd_info_type show_aux = PMD_INFO_SHOW_STATS,
776 clear_aux = PMD_INFO_CLEAR_STATS,
777 poll_aux = PMD_INFO_SHOW_RXQ;
778
779 unixctl_command_register("dpif-netdev/pmd-stats-show", "[dp]",
780 0, 1, dpif_netdev_pmd_info,
781 (void *)&show_aux);
782 unixctl_command_register("dpif-netdev/pmd-stats-clear", "[dp]",
783 0, 1, dpif_netdev_pmd_info,
784 (void *)&clear_aux);
785 unixctl_command_register("dpif-netdev/pmd-rxq-show", "[dp]",
786 0, 1, dpif_netdev_pmd_info,
787 (void *)&poll_aux);
788 return 0;
789 }
790
791 static int
792 dpif_netdev_enumerate(struct sset *all_dps,
793 const struct dpif_class *dpif_class)
794 {
795 struct shash_node *node;
796
797 ovs_mutex_lock(&dp_netdev_mutex);
798 SHASH_FOR_EACH(node, &dp_netdevs) {
799 struct dp_netdev *dp = node->data;
800 if (dpif_class != dp->class) {
801 /* 'dp_netdevs' contains both "netdev" and "dummy" dpifs.
802 * If the class doesn't match, skip this dpif. */
803 continue;
804 }
805 sset_add(all_dps, node->name);
806 }
807 ovs_mutex_unlock(&dp_netdev_mutex);
808
809 return 0;
810 }
811
812 static bool
813 dpif_netdev_class_is_dummy(const struct dpif_class *class)
814 {
815 return class != &dpif_netdev_class;
816 }
817
818 static const char *
819 dpif_netdev_port_open_type(const struct dpif_class *class, const char *type)
820 {
821 return strcmp(type, "internal") ? type
822 : dpif_netdev_class_is_dummy(class) ? "dummy"
823 : "tap";
824 }
825
826 static struct dpif *
827 create_dpif_netdev(struct dp_netdev *dp)
828 {
829 uint16_t netflow_id = hash_string(dp->name, 0);
830 struct dpif_netdev *dpif;
831
832 ovs_refcount_ref(&dp->ref_cnt);
833
834 dpif = xmalloc(sizeof *dpif);
835 dpif_init(&dpif->dpif, dp->class, dp->name, netflow_id >> 8, netflow_id);
836 dpif->dp = dp;
837 dpif->last_port_seq = seq_read(dp->port_seq);
838
839 return &dpif->dpif;
840 }
841
842 /* Choose an unused, non-zero port number and return it on success.
843 * Return ODPP_NONE on failure. */
844 static odp_port_t
845 choose_port(struct dp_netdev *dp, const char *name)
846 OVS_REQUIRES(dp->port_mutex)
847 {
848 uint32_t port_no;
849
850 if (dp->class != &dpif_netdev_class) {
851 const char *p;
852 int start_no = 0;
853
854 /* If the port name begins with "br", start the number search at
855 * 100 to make writing tests easier. */
856 if (!strncmp(name, "br", 2)) {
857 start_no = 100;
858 }
859
860 /* If the port name contains a number, try to assign that port number.
861 * This can make writing unit tests easier because port numbers are
862 * predictable. */
863 for (p = name; *p != '\0'; p++) {
864 if (isdigit((unsigned char) *p)) {
865 port_no = start_no + strtol(p, NULL, 10);
866 if (port_no > 0 && port_no != odp_to_u32(ODPP_NONE)
867 && !dp_netdev_lookup_port(dp, u32_to_odp(port_no))) {
868 return u32_to_odp(port_no);
869 }
870 break;
871 }
872 }
873 }
874
875 for (port_no = 1; port_no <= UINT16_MAX; port_no++) {
876 if (!dp_netdev_lookup_port(dp, u32_to_odp(port_no))) {
877 return u32_to_odp(port_no);
878 }
879 }
880
881 return ODPP_NONE;
882 }
883
884 static int
885 create_dp_netdev(const char *name, const struct dpif_class *class,
886 struct dp_netdev **dpp)
887 OVS_REQUIRES(dp_netdev_mutex)
888 {
889 struct dp_netdev *dp;
890 int error;
891
892 dp = xzalloc(sizeof *dp);
893 shash_add(&dp_netdevs, name, dp);
894
895 *CONST_CAST(const struct dpif_class **, &dp->class) = class;
896 *CONST_CAST(const char **, &dp->name) = xstrdup(name);
897 ovs_refcount_init(&dp->ref_cnt);
898 atomic_flag_clear(&dp->destroyed);
899
900 ovs_mutex_init(&dp->port_mutex);
901 cmap_init(&dp->ports);
902 dp->port_seq = seq_create();
903 fat_rwlock_init(&dp->upcall_rwlock);
904
905 /* Disable upcalls by default. */
906 dp_netdev_disable_upcall(dp);
907 dp->upcall_aux = NULL;
908 dp->upcall_cb = NULL;
909
910 cmap_init(&dp->poll_threads);
911 ovs_mutex_init_recursive(&dp->non_pmd_mutex);
912 ovsthread_key_create(&dp->per_pmd_key, NULL);
913
914 dp_netdev_set_nonpmd(dp);
915
916 ovs_mutex_lock(&dp->port_mutex);
917 error = do_add_port(dp, name, "internal", ODPP_LOCAL);
918 ovs_mutex_unlock(&dp->port_mutex);
919 if (error) {
920 dp_netdev_free(dp);
921 return error;
922 }
923
924 dp->last_tnl_conf_seq = seq_read(tnl_conf_seq);
925 *dpp = dp;
926 return 0;
927 }
928
929 static int
930 dpif_netdev_open(const struct dpif_class *class, const char *name,
931 bool create, struct dpif **dpifp)
932 {
933 struct dp_netdev *dp;
934 int error;
935
936 ovs_mutex_lock(&dp_netdev_mutex);
937 dp = shash_find_data(&dp_netdevs, name);
938 if (!dp) {
939 error = create ? create_dp_netdev(name, class, &dp) : ENODEV;
940 } else {
941 error = (dp->class != class ? EINVAL
942 : create ? EEXIST
943 : 0);
944 }
945 if (!error) {
946 *dpifp = create_dpif_netdev(dp);
947 dp->dpif = *dpifp;
948 }
949 ovs_mutex_unlock(&dp_netdev_mutex);
950
951 return error;
952 }
953
954 static void
955 dp_netdev_destroy_upcall_lock(struct dp_netdev *dp)
956 OVS_NO_THREAD_SAFETY_ANALYSIS
957 {
958 /* Check that upcalls are disabled, i.e. that the rwlock is taken */
959 ovs_assert(fat_rwlock_tryrdlock(&dp->upcall_rwlock));
960
961 /* Before freeing a lock we should release it */
962 fat_rwlock_unlock(&dp->upcall_rwlock);
963 fat_rwlock_destroy(&dp->upcall_rwlock);
964 }
965
966 /* Requires dp_netdev_mutex so that we can't get a new reference to 'dp'
967 * through the 'dp_netdevs' shash while freeing 'dp'. */
968 static void
969 dp_netdev_free(struct dp_netdev *dp)
970 OVS_REQUIRES(dp_netdev_mutex)
971 {
972 struct dp_netdev_port *port;
973
974 shash_find_and_delete(&dp_netdevs, dp->name);
975
976 dp_netdev_destroy_all_pmds(dp);
977 ovs_mutex_destroy(&dp->non_pmd_mutex);
978 ovsthread_key_delete(dp->per_pmd_key);
979
980 ovs_mutex_lock(&dp->port_mutex);
981 CMAP_FOR_EACH (port, node, &dp->ports) {
982 /* PMD threads are destroyed here. do_del_port() cannot quiesce */
983 do_del_port(dp, port);
984 }
985 ovs_mutex_unlock(&dp->port_mutex);
986 cmap_destroy(&dp->poll_threads);
987
988 seq_destroy(dp->port_seq);
989 cmap_destroy(&dp->ports);
990
991 /* Upcalls must be disabled at this point */
992 dp_netdev_destroy_upcall_lock(dp);
993
994 free(dp->pmd_cmask);
995 free(CONST_CAST(char *, dp->name));
996 free(dp);
997 }
998
999 static void
1000 dp_netdev_unref(struct dp_netdev *dp)
1001 {
1002 if (dp) {
1003 /* Take dp_netdev_mutex so that, if dp->ref_cnt falls to zero, we can't
1004 * get a new reference to 'dp' through the 'dp_netdevs' shash. */
1005 ovs_mutex_lock(&dp_netdev_mutex);
1006 if (ovs_refcount_unref_relaxed(&dp->ref_cnt) == 1) {
1007 dp_netdev_free(dp);
1008 }
1009 ovs_mutex_unlock(&dp_netdev_mutex);
1010 }
1011 }
1012
1013 static void
1014 dpif_netdev_close(struct dpif *dpif)
1015 {
1016 struct dp_netdev *dp = get_dp_netdev(dpif);
1017
1018 dp_netdev_unref(dp);
1019 free(dpif);
1020 }
1021
1022 static int
1023 dpif_netdev_destroy(struct dpif *dpif)
1024 {
1025 struct dp_netdev *dp = get_dp_netdev(dpif);
1026
1027 if (!atomic_flag_test_and_set(&dp->destroyed)) {
1028 if (ovs_refcount_unref_relaxed(&dp->ref_cnt) == 1) {
1029 /* Can't happen: 'dpif' still owns a reference to 'dp'. */
1030 OVS_NOT_REACHED();
1031 }
1032 }
1033
1034 return 0;
1035 }
1036
1037 /* Add 'n' to the atomic variable 'var' non-atomically and using relaxed
1038 * load/store semantics. While the increment is not atomic, the load and
1039 * store operations are, making it impossible to read inconsistent values.
1040 *
1041 * This is used to update thread local stats counters. */
1042 static void
1043 non_atomic_ullong_add(atomic_ullong *var, unsigned long long n)
1044 {
1045 unsigned long long tmp;
1046
1047 atomic_read_relaxed(var, &tmp);
1048 tmp += n;
1049 atomic_store_relaxed(var, tmp);
1050 }
1051
1052 static int
1053 dpif_netdev_get_stats(const struct dpif *dpif, struct dpif_dp_stats *stats)
1054 {
1055 struct dp_netdev *dp = get_dp_netdev(dpif);
1056 struct dp_netdev_pmd_thread *pmd;
1057
1058 stats->n_flows = stats->n_hit = stats->n_missed = stats->n_lost = 0;
1059 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
1060 unsigned long long n;
1061 stats->n_flows += cmap_count(&pmd->flow_table);
1062
1063 atomic_read_relaxed(&pmd->stats.n[DP_STAT_MASKED_HIT], &n);
1064 stats->n_hit += n;
1065 atomic_read_relaxed(&pmd->stats.n[DP_STAT_EXACT_HIT], &n);
1066 stats->n_hit += n;
1067 atomic_read_relaxed(&pmd->stats.n[DP_STAT_MISS], &n);
1068 stats->n_missed += n;
1069 atomic_read_relaxed(&pmd->stats.n[DP_STAT_LOST], &n);
1070 stats->n_lost += n;
1071 }
1072 stats->n_masks = UINT32_MAX;
1073 stats->n_mask_hit = UINT64_MAX;
1074
1075 return 0;
1076 }
1077
1078 static void
1079 dp_netdev_reload_pmd__(struct dp_netdev_pmd_thread *pmd)
1080 {
1081 int old_seq;
1082
1083 if (pmd->core_id == NON_PMD_CORE_ID) {
1084 return;
1085 }
1086
1087 ovs_mutex_lock(&pmd->cond_mutex);
1088 atomic_add_relaxed(&pmd->change_seq, 1, &old_seq);
1089 ovs_mutex_cond_wait(&pmd->cond, &pmd->cond_mutex);
1090 ovs_mutex_unlock(&pmd->cond_mutex);
1091 }
1092
1093 static uint32_t
1094 hash_port_no(odp_port_t port_no)
1095 {
1096 return hash_int(odp_to_u32(port_no), 0);
1097 }
1098
1099 static int
1100 do_add_port(struct dp_netdev *dp, const char *devname, const char *type,
1101 odp_port_t port_no)
1102 OVS_REQUIRES(dp->port_mutex)
1103 {
1104 struct netdev_saved_flags *sf;
1105 struct dp_netdev_port *port;
1106 struct netdev *netdev;
1107 enum netdev_flags flags;
1108 const char *open_type;
1109 int error = 0;
1110 int i, n_open_rxqs = 0;
1111
1112 /* Reject devices already in 'dp'. */
1113 if (!get_port_by_name(dp, devname, &port)) {
1114 error = EEXIST;
1115 goto out;
1116 }
1117
1118 /* Open and validate network device. */
1119 open_type = dpif_netdev_port_open_type(dp->class, type);
1120 error = netdev_open(devname, open_type, &netdev);
1121 if (error) {
1122 goto out;
1123 }
1124 /* XXX reject non-Ethernet devices */
1125
1126 netdev_get_flags(netdev, &flags);
1127 if (flags & NETDEV_LOOPBACK) {
1128 VLOG_ERR("%s: cannot add a loopback device", devname);
1129 error = EINVAL;
1130 goto out_close;
1131 }
1132
1133 if (netdev_is_pmd(netdev)) {
1134 int n_cores = ovs_numa_get_n_cores();
1135
1136 if (n_cores == OVS_CORE_UNSPEC) {
1137 VLOG_ERR("%s, cannot get cpu core info", devname);
1138 error = ENOENT;
1139 goto out_close;
1140 }
1141 /* There can only be ovs_numa_get_n_cores() pmd threads,
1142 * so creates a txq for each, and one extra for the non
1143 * pmd threads. */
1144 error = netdev_set_multiq(netdev, n_cores + 1,
1145 netdev_requested_n_rxq(netdev));
1146 if (error && (error != EOPNOTSUPP)) {
1147 VLOG_ERR("%s, cannot set multiq", devname);
1148 goto out_close;
1149 }
1150 }
1151 port = xzalloc(sizeof *port);
1152 port->port_no = port_no;
1153 port->netdev = netdev;
1154 port->n_rxq = netdev_n_rxq(netdev);
1155 port->rxq = xmalloc(sizeof *port->rxq * port->n_rxq);
1156 port->type = xstrdup(type);
1157 port->latest_requested_n_rxq = netdev_requested_n_rxq(netdev);
1158
1159 for (i = 0; i < port->n_rxq; i++) {
1160 error = netdev_rxq_open(netdev, &port->rxq[i], i);
1161 if (error) {
1162 VLOG_ERR("%s: cannot receive packets on this network device (%s)",
1163 devname, ovs_strerror(errno));
1164 goto out_rxq_close;
1165 }
1166 n_open_rxqs++;
1167 }
1168
1169 error = netdev_turn_flags_on(netdev, NETDEV_PROMISC, &sf);
1170 if (error) {
1171 goto out_rxq_close;
1172 }
1173 port->sf = sf;
1174
1175 cmap_insert(&dp->ports, &port->node, hash_port_no(port_no));
1176
1177 if (netdev_is_pmd(netdev)) {
1178 dp_netdev_add_port_to_pmds(dp, port);
1179 }
1180 seq_change(dp->port_seq);
1181
1182 return 0;
1183
1184 out_rxq_close:
1185 for (i = 0; i < n_open_rxqs; i++) {
1186 netdev_rxq_close(port->rxq[i]);
1187 }
1188 free(port->type);
1189 free(port->rxq);
1190 free(port);
1191 out_close:
1192 netdev_close(netdev);
1193 out:
1194 return error;
1195 }
1196
1197 static int
1198 dpif_netdev_port_add(struct dpif *dpif, struct netdev *netdev,
1199 odp_port_t *port_nop)
1200 {
1201 struct dp_netdev *dp = get_dp_netdev(dpif);
1202 char namebuf[NETDEV_VPORT_NAME_BUFSIZE];
1203 const char *dpif_port;
1204 odp_port_t port_no;
1205 int error;
1206
1207 ovs_mutex_lock(&dp->port_mutex);
1208 dpif_port = netdev_vport_get_dpif_port(netdev, namebuf, sizeof namebuf);
1209 if (*port_nop != ODPP_NONE) {
1210 port_no = *port_nop;
1211 error = dp_netdev_lookup_port(dp, *port_nop) ? EBUSY : 0;
1212 } else {
1213 port_no = choose_port(dp, dpif_port);
1214 error = port_no == ODPP_NONE ? EFBIG : 0;
1215 }
1216 if (!error) {
1217 *port_nop = port_no;
1218 error = do_add_port(dp, dpif_port, netdev_get_type(netdev), port_no);
1219 }
1220 ovs_mutex_unlock(&dp->port_mutex);
1221
1222 return error;
1223 }
1224
1225 static int
1226 dpif_netdev_port_del(struct dpif *dpif, odp_port_t port_no)
1227 {
1228 struct dp_netdev *dp = get_dp_netdev(dpif);
1229 int error;
1230
1231 ovs_mutex_lock(&dp->port_mutex);
1232 if (port_no == ODPP_LOCAL) {
1233 error = EINVAL;
1234 } else {
1235 struct dp_netdev_port *port;
1236
1237 error = get_port_by_number(dp, port_no, &port);
1238 if (!error) {
1239 do_del_port(dp, port);
1240 }
1241 }
1242 ovs_mutex_unlock(&dp->port_mutex);
1243
1244 return error;
1245 }
1246
1247 static bool
1248 is_valid_port_number(odp_port_t port_no)
1249 {
1250 return port_no != ODPP_NONE;
1251 }
1252
1253 static struct dp_netdev_port *
1254 dp_netdev_lookup_port(const struct dp_netdev *dp, odp_port_t port_no)
1255 {
1256 struct dp_netdev_port *port;
1257
1258 CMAP_FOR_EACH_WITH_HASH (port, node, hash_port_no(port_no), &dp->ports) {
1259 if (port->port_no == port_no) {
1260 return port;
1261 }
1262 }
1263 return NULL;
1264 }
1265
1266 static int
1267 get_port_by_number(struct dp_netdev *dp,
1268 odp_port_t port_no, struct dp_netdev_port **portp)
1269 {
1270 if (!is_valid_port_number(port_no)) {
1271 *portp = NULL;
1272 return EINVAL;
1273 } else {
1274 *portp = dp_netdev_lookup_port(dp, port_no);
1275 return *portp ? 0 : ENOENT;
1276 }
1277 }
1278
1279 static void
1280 port_destroy(struct dp_netdev_port *port)
1281 {
1282 if (!port) {
1283 return;
1284 }
1285
1286 netdev_close(port->netdev);
1287 netdev_restore_flags(port->sf);
1288
1289 for (unsigned i = 0; i < port->n_rxq; i++) {
1290 netdev_rxq_close(port->rxq[i]);
1291 }
1292
1293 free(port->rxq);
1294 free(port->type);
1295 free(port);
1296 }
1297
1298 static int
1299 get_port_by_name(struct dp_netdev *dp,
1300 const char *devname, struct dp_netdev_port **portp)
1301 OVS_REQUIRES(dp->port_mutex)
1302 {
1303 struct dp_netdev_port *port;
1304
1305 CMAP_FOR_EACH (port, node, &dp->ports) {
1306 if (!strcmp(netdev_get_name(port->netdev), devname)) {
1307 *portp = port;
1308 return 0;
1309 }
1310 }
1311 return ENOENT;
1312 }
1313
1314 static int
1315 get_n_pmd_threads(struct dp_netdev *dp)
1316 {
1317 /* There is one non pmd thread in dp->poll_threads */
1318 return cmap_count(&dp->poll_threads) - 1;
1319 }
1320
1321 static int
1322 get_n_pmd_threads_on_numa(struct dp_netdev *dp, int numa_id)
1323 {
1324 struct dp_netdev_pmd_thread *pmd;
1325 int n_pmds = 0;
1326
1327 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
1328 if (pmd->numa_id == numa_id) {
1329 n_pmds++;
1330 }
1331 }
1332
1333 return n_pmds;
1334 }
1335
1336 /* Returns 'true' if there is a port with pmd netdev and the netdev
1337 * is on numa node 'numa_id'. */
1338 static bool
1339 has_pmd_port_for_numa(struct dp_netdev *dp, int numa_id)
1340 {
1341 struct dp_netdev_port *port;
1342
1343 CMAP_FOR_EACH (port, node, &dp->ports) {
1344 if (netdev_is_pmd(port->netdev)
1345 && netdev_get_numa_id(port->netdev) == numa_id) {
1346 return true;
1347 }
1348 }
1349
1350 return false;
1351 }
1352
1353
1354 static void
1355 do_del_port(struct dp_netdev *dp, struct dp_netdev_port *port)
1356 OVS_REQUIRES(dp->port_mutex)
1357 {
1358 cmap_remove(&dp->ports, &port->node, hash_odp_port(port->port_no));
1359 seq_change(dp->port_seq);
1360 if (netdev_is_pmd(port->netdev)) {
1361 int numa_id = netdev_get_numa_id(port->netdev);
1362
1363 /* PMD threads can not be on invalid numa node. */
1364 ovs_assert(ovs_numa_numa_id_is_valid(numa_id));
1365 /* If there is no netdev on the numa node, deletes the pmd threads
1366 * for that numa. Else, deletes the queues from polling lists. */
1367 if (!has_pmd_port_for_numa(dp, numa_id)) {
1368 dp_netdev_del_pmds_on_numa(dp, numa_id);
1369 } else {
1370 dp_netdev_del_port_from_all_pmds(dp, port);
1371 }
1372 }
1373
1374 port_destroy(port);
1375 }
1376
1377 static void
1378 answer_port_query(const struct dp_netdev_port *port,
1379 struct dpif_port *dpif_port)
1380 {
1381 dpif_port->name = xstrdup(netdev_get_name(port->netdev));
1382 dpif_port->type = xstrdup(port->type);
1383 dpif_port->port_no = port->port_no;
1384 }
1385
1386 static int
1387 dpif_netdev_port_query_by_number(const struct dpif *dpif, odp_port_t port_no,
1388 struct dpif_port *dpif_port)
1389 {
1390 struct dp_netdev *dp = get_dp_netdev(dpif);
1391 struct dp_netdev_port *port;
1392 int error;
1393
1394 error = get_port_by_number(dp, port_no, &port);
1395 if (!error && dpif_port) {
1396 answer_port_query(port, dpif_port);
1397 }
1398
1399 return error;
1400 }
1401
1402 static int
1403 dpif_netdev_port_query_by_name(const struct dpif *dpif, const char *devname,
1404 struct dpif_port *dpif_port)
1405 {
1406 struct dp_netdev *dp = get_dp_netdev(dpif);
1407 struct dp_netdev_port *port;
1408 int error;
1409
1410 ovs_mutex_lock(&dp->port_mutex);
1411 error = get_port_by_name(dp, devname, &port);
1412 if (!error && dpif_port) {
1413 answer_port_query(port, dpif_port);
1414 }
1415 ovs_mutex_unlock(&dp->port_mutex);
1416
1417 return error;
1418 }
1419
1420 static void
1421 dp_netdev_flow_free(struct dp_netdev_flow *flow)
1422 {
1423 dp_netdev_actions_free(dp_netdev_flow_get_actions(flow));
1424 free(flow);
1425 }
1426
1427 static void dp_netdev_flow_unref(struct dp_netdev_flow *flow)
1428 {
1429 if (ovs_refcount_unref_relaxed(&flow->ref_cnt) == 1) {
1430 ovsrcu_postpone(dp_netdev_flow_free, flow);
1431 }
1432 }
1433
1434 static uint32_t
1435 dp_netdev_flow_hash(const ovs_u128 *ufid)
1436 {
1437 return ufid->u32[0];
1438 }
1439
1440 static void
1441 dp_netdev_pmd_remove_flow(struct dp_netdev_pmd_thread *pmd,
1442 struct dp_netdev_flow *flow)
1443 OVS_REQUIRES(pmd->flow_mutex)
1444 {
1445 struct cmap_node *node = CONST_CAST(struct cmap_node *, &flow->node);
1446
1447 dpcls_remove(&pmd->cls, &flow->cr);
1448 flow->cr.mask = NULL; /* Accessing rule's mask after this is not safe. */
1449
1450 cmap_remove(&pmd->flow_table, node, dp_netdev_flow_hash(&flow->ufid));
1451 flow->dead = true;
1452
1453 dp_netdev_flow_unref(flow);
1454 }
1455
1456 static void
1457 dp_netdev_pmd_flow_flush(struct dp_netdev_pmd_thread *pmd)
1458 {
1459 struct dp_netdev_flow *netdev_flow;
1460
1461 ovs_mutex_lock(&pmd->flow_mutex);
1462 CMAP_FOR_EACH (netdev_flow, node, &pmd->flow_table) {
1463 dp_netdev_pmd_remove_flow(pmd, netdev_flow);
1464 }
1465 ovs_mutex_unlock(&pmd->flow_mutex);
1466 }
1467
1468 static int
1469 dpif_netdev_flow_flush(struct dpif *dpif)
1470 {
1471 struct dp_netdev *dp = get_dp_netdev(dpif);
1472 struct dp_netdev_pmd_thread *pmd;
1473
1474 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
1475 dp_netdev_pmd_flow_flush(pmd);
1476 }
1477
1478 return 0;
1479 }
1480
1481 struct dp_netdev_port_state {
1482 struct cmap_position position;
1483 char *name;
1484 };
1485
1486 static int
1487 dpif_netdev_port_dump_start(const struct dpif *dpif OVS_UNUSED, void **statep)
1488 {
1489 *statep = xzalloc(sizeof(struct dp_netdev_port_state));
1490 return 0;
1491 }
1492
1493 static int
1494 dpif_netdev_port_dump_next(const struct dpif *dpif, void *state_,
1495 struct dpif_port *dpif_port)
1496 {
1497 struct dp_netdev_port_state *state = state_;
1498 struct dp_netdev *dp = get_dp_netdev(dpif);
1499 struct cmap_node *node;
1500 int retval;
1501
1502 node = cmap_next_position(&dp->ports, &state->position);
1503 if (node) {
1504 struct dp_netdev_port *port;
1505
1506 port = CONTAINER_OF(node, struct dp_netdev_port, node);
1507
1508 free(state->name);
1509 state->name = xstrdup(netdev_get_name(port->netdev));
1510 dpif_port->name = state->name;
1511 dpif_port->type = port->type;
1512 dpif_port->port_no = port->port_no;
1513
1514 retval = 0;
1515 } else {
1516 retval = EOF;
1517 }
1518
1519 return retval;
1520 }
1521
1522 static int
1523 dpif_netdev_port_dump_done(const struct dpif *dpif OVS_UNUSED, void *state_)
1524 {
1525 struct dp_netdev_port_state *state = state_;
1526 free(state->name);
1527 free(state);
1528 return 0;
1529 }
1530
1531 static int
1532 dpif_netdev_port_poll(const struct dpif *dpif_, char **devnamep OVS_UNUSED)
1533 {
1534 struct dpif_netdev *dpif = dpif_netdev_cast(dpif_);
1535 uint64_t new_port_seq;
1536 int error;
1537
1538 new_port_seq = seq_read(dpif->dp->port_seq);
1539 if (dpif->last_port_seq != new_port_seq) {
1540 dpif->last_port_seq = new_port_seq;
1541 error = ENOBUFS;
1542 } else {
1543 error = EAGAIN;
1544 }
1545
1546 return error;
1547 }
1548
1549 static void
1550 dpif_netdev_port_poll_wait(const struct dpif *dpif_)
1551 {
1552 struct dpif_netdev *dpif = dpif_netdev_cast(dpif_);
1553
1554 seq_wait(dpif->dp->port_seq, dpif->last_port_seq);
1555 }
1556
1557 static struct dp_netdev_flow *
1558 dp_netdev_flow_cast(const struct dpcls_rule *cr)
1559 {
1560 return cr ? CONTAINER_OF(cr, struct dp_netdev_flow, cr) : NULL;
1561 }
1562
1563 static bool dp_netdev_flow_ref(struct dp_netdev_flow *flow)
1564 {
1565 return ovs_refcount_try_ref_rcu(&flow->ref_cnt);
1566 }
1567
1568 /* netdev_flow_key utilities.
1569 *
1570 * netdev_flow_key is basically a miniflow. We use these functions
1571 * (netdev_flow_key_clone, netdev_flow_key_equal, ...) instead of the miniflow
1572 * functions (miniflow_clone_inline, miniflow_equal, ...), because:
1573 *
1574 * - Since we are dealing exclusively with miniflows created by
1575 * miniflow_extract(), if the map is different the miniflow is different.
1576 * Therefore we can be faster by comparing the map and the miniflow in a
1577 * single memcmp().
1578 * - These functions can be inlined by the compiler. */
1579
1580 /* Given the number of bits set in miniflow's maps, returns the size of the
1581 * 'netdev_flow_key.mf' */
1582 static inline size_t
1583 netdev_flow_key_size(size_t flow_u64s)
1584 {
1585 return sizeof(struct miniflow) + MINIFLOW_VALUES_SIZE(flow_u64s);
1586 }
1587
1588 static inline bool
1589 netdev_flow_key_equal(const struct netdev_flow_key *a,
1590 const struct netdev_flow_key *b)
1591 {
1592 /* 'b->len' may be not set yet. */
1593 return a->hash == b->hash && !memcmp(&a->mf, &b->mf, a->len);
1594 }
1595
1596 /* Used to compare 'netdev_flow_key' in the exact match cache to a miniflow.
1597 * The maps are compared bitwise, so both 'key->mf' and 'mf' must have been
1598 * generated by miniflow_extract. */
1599 static inline bool
1600 netdev_flow_key_equal_mf(const struct netdev_flow_key *key,
1601 const struct miniflow *mf)
1602 {
1603 return !memcmp(&key->mf, mf, key->len);
1604 }
1605
1606 static inline void
1607 netdev_flow_key_clone(struct netdev_flow_key *dst,
1608 const struct netdev_flow_key *src)
1609 {
1610 memcpy(dst, src,
1611 offsetof(struct netdev_flow_key, mf) + src->len);
1612 }
1613
1614 /* Slow. */
1615 static void
1616 netdev_flow_key_from_flow(struct netdev_flow_key *dst,
1617 const struct flow *src)
1618 {
1619 struct dp_packet packet;
1620 uint64_t buf_stub[512 / 8];
1621
1622 dp_packet_use_stub(&packet, buf_stub, sizeof buf_stub);
1623 pkt_metadata_from_flow(&packet.md, src);
1624 flow_compose(&packet, src);
1625 miniflow_extract(&packet, &dst->mf);
1626 dp_packet_uninit(&packet);
1627
1628 dst->len = netdev_flow_key_size(miniflow_n_values(&dst->mf));
1629 dst->hash = 0; /* Not computed yet. */
1630 }
1631
1632 /* Initialize a netdev_flow_key 'mask' from 'match'. */
1633 static inline void
1634 netdev_flow_mask_init(struct netdev_flow_key *mask,
1635 const struct match *match)
1636 {
1637 uint64_t *dst = miniflow_values(&mask->mf);
1638 struct flowmap fmap;
1639 uint32_t hash = 0;
1640 size_t idx;
1641
1642 /* Only check masks that make sense for the flow. */
1643 flow_wc_map(&match->flow, &fmap);
1644 flowmap_init(&mask->mf.map);
1645
1646 FLOWMAP_FOR_EACH_INDEX(idx, fmap) {
1647 uint64_t mask_u64 = flow_u64_value(&match->wc.masks, idx);
1648
1649 if (mask_u64) {
1650 flowmap_set(&mask->mf.map, idx, 1);
1651 *dst++ = mask_u64;
1652 hash = hash_add64(hash, mask_u64);
1653 }
1654 }
1655
1656 map_t map;
1657
1658 FLOWMAP_FOR_EACH_MAP (map, mask->mf.map) {
1659 hash = hash_add64(hash, map);
1660 }
1661
1662 size_t n = dst - miniflow_get_values(&mask->mf);
1663
1664 mask->hash = hash_finish(hash, n * 8);
1665 mask->len = netdev_flow_key_size(n);
1666 }
1667
1668 /* Initializes 'dst' as a copy of 'flow' masked with 'mask'. */
1669 static inline void
1670 netdev_flow_key_init_masked(struct netdev_flow_key *dst,
1671 const struct flow *flow,
1672 const struct netdev_flow_key *mask)
1673 {
1674 uint64_t *dst_u64 = miniflow_values(&dst->mf);
1675 const uint64_t *mask_u64 = miniflow_get_values(&mask->mf);
1676 uint32_t hash = 0;
1677 uint64_t value;
1678
1679 dst->len = mask->len;
1680 dst->mf = mask->mf; /* Copy maps. */
1681
1682 FLOW_FOR_EACH_IN_MAPS(value, flow, mask->mf.map) {
1683 *dst_u64 = value & *mask_u64++;
1684 hash = hash_add64(hash, *dst_u64++);
1685 }
1686 dst->hash = hash_finish(hash,
1687 (dst_u64 - miniflow_get_values(&dst->mf)) * 8);
1688 }
1689
1690 /* Iterate through netdev_flow_key TNL u64 values specified by 'FLOWMAP'. */
1691 #define NETDEV_FLOW_KEY_FOR_EACH_IN_FLOWMAP(VALUE, KEY, FLOWMAP) \
1692 MINIFLOW_FOR_EACH_IN_FLOWMAP(VALUE, &(KEY)->mf, FLOWMAP)
1693
1694 /* Returns a hash value for the bits of 'key' where there are 1-bits in
1695 * 'mask'. */
1696 static inline uint32_t
1697 netdev_flow_key_hash_in_mask(const struct netdev_flow_key *key,
1698 const struct netdev_flow_key *mask)
1699 {
1700 const uint64_t *p = miniflow_get_values(&mask->mf);
1701 uint32_t hash = 0;
1702 uint64_t value;
1703
1704 NETDEV_FLOW_KEY_FOR_EACH_IN_FLOWMAP(value, key, mask->mf.map) {
1705 hash = hash_add64(hash, value & *p++);
1706 }
1707
1708 return hash_finish(hash, (p - miniflow_get_values(&mask->mf)) * 8);
1709 }
1710
1711 static inline bool
1712 emc_entry_alive(struct emc_entry *ce)
1713 {
1714 return ce->flow && !ce->flow->dead;
1715 }
1716
1717 static void
1718 emc_clear_entry(struct emc_entry *ce)
1719 {
1720 if (ce->flow) {
1721 dp_netdev_flow_unref(ce->flow);
1722 ce->flow = NULL;
1723 }
1724 }
1725
1726 static inline void
1727 emc_change_entry(struct emc_entry *ce, struct dp_netdev_flow *flow,
1728 const struct netdev_flow_key *key)
1729 {
1730 if (ce->flow != flow) {
1731 if (ce->flow) {
1732 dp_netdev_flow_unref(ce->flow);
1733 }
1734
1735 if (dp_netdev_flow_ref(flow)) {
1736 ce->flow = flow;
1737 } else {
1738 ce->flow = NULL;
1739 }
1740 }
1741 if (key) {
1742 netdev_flow_key_clone(&ce->key, key);
1743 }
1744 }
1745
1746 static inline void
1747 emc_insert(struct emc_cache *cache, const struct netdev_flow_key *key,
1748 struct dp_netdev_flow *flow)
1749 {
1750 struct emc_entry *to_be_replaced = NULL;
1751 struct emc_entry *current_entry;
1752
1753 EMC_FOR_EACH_POS_WITH_HASH(cache, current_entry, key->hash) {
1754 if (netdev_flow_key_equal(&current_entry->key, key)) {
1755 /* We found the entry with the 'mf' miniflow */
1756 emc_change_entry(current_entry, flow, NULL);
1757 return;
1758 }
1759
1760 /* Replacement policy: put the flow in an empty (not alive) entry, or
1761 * in the first entry where it can be */
1762 if (!to_be_replaced
1763 || (emc_entry_alive(to_be_replaced)
1764 && !emc_entry_alive(current_entry))
1765 || current_entry->key.hash < to_be_replaced->key.hash) {
1766 to_be_replaced = current_entry;
1767 }
1768 }
1769 /* We didn't find the miniflow in the cache.
1770 * The 'to_be_replaced' entry is where the new flow will be stored */
1771
1772 emc_change_entry(to_be_replaced, flow, key);
1773 }
1774
1775 static inline struct dp_netdev_flow *
1776 emc_lookup(struct emc_cache *cache, const struct netdev_flow_key *key)
1777 {
1778 struct emc_entry *current_entry;
1779
1780 EMC_FOR_EACH_POS_WITH_HASH(cache, current_entry, key->hash) {
1781 if (current_entry->key.hash == key->hash
1782 && emc_entry_alive(current_entry)
1783 && netdev_flow_key_equal_mf(&current_entry->key, &key->mf)) {
1784
1785 /* We found the entry with the 'key->mf' miniflow */
1786 return current_entry->flow;
1787 }
1788 }
1789
1790 return NULL;
1791 }
1792
1793 static struct dp_netdev_flow *
1794 dp_netdev_pmd_lookup_flow(const struct dp_netdev_pmd_thread *pmd,
1795 const struct netdev_flow_key *key)
1796 {
1797 struct dp_netdev_flow *netdev_flow;
1798 struct dpcls_rule *rule;
1799
1800 dpcls_lookup(&pmd->cls, key, &rule, 1);
1801 netdev_flow = dp_netdev_flow_cast(rule);
1802
1803 return netdev_flow;
1804 }
1805
1806 static struct dp_netdev_flow *
1807 dp_netdev_pmd_find_flow(const struct dp_netdev_pmd_thread *pmd,
1808 const ovs_u128 *ufidp, const struct nlattr *key,
1809 size_t key_len)
1810 {
1811 struct dp_netdev_flow *netdev_flow;
1812 struct flow flow;
1813 ovs_u128 ufid;
1814
1815 /* If a UFID is not provided, determine one based on the key. */
1816 if (!ufidp && key && key_len
1817 && !dpif_netdev_flow_from_nlattrs(key, key_len, &flow)) {
1818 dpif_flow_hash(pmd->dp->dpif, &flow, sizeof flow, &ufid);
1819 ufidp = &ufid;
1820 }
1821
1822 if (ufidp) {
1823 CMAP_FOR_EACH_WITH_HASH (netdev_flow, node, dp_netdev_flow_hash(ufidp),
1824 &pmd->flow_table) {
1825 if (ovs_u128_equals(&netdev_flow->ufid, ufidp)) {
1826 return netdev_flow;
1827 }
1828 }
1829 }
1830
1831 return NULL;
1832 }
1833
1834 static void
1835 get_dpif_flow_stats(const struct dp_netdev_flow *netdev_flow_,
1836 struct dpif_flow_stats *stats)
1837 {
1838 struct dp_netdev_flow *netdev_flow;
1839 unsigned long long n;
1840 long long used;
1841 uint16_t flags;
1842
1843 netdev_flow = CONST_CAST(struct dp_netdev_flow *, netdev_flow_);
1844
1845 atomic_read_relaxed(&netdev_flow->stats.packet_count, &n);
1846 stats->n_packets = n;
1847 atomic_read_relaxed(&netdev_flow->stats.byte_count, &n);
1848 stats->n_bytes = n;
1849 atomic_read_relaxed(&netdev_flow->stats.used, &used);
1850 stats->used = used;
1851 atomic_read_relaxed(&netdev_flow->stats.tcp_flags, &flags);
1852 stats->tcp_flags = flags;
1853 }
1854
1855 /* Converts to the dpif_flow format, using 'key_buf' and 'mask_buf' for
1856 * storing the netlink-formatted key/mask. 'key_buf' may be the same as
1857 * 'mask_buf'. Actions will be returned without copying, by relying on RCU to
1858 * protect them. */
1859 static void
1860 dp_netdev_flow_to_dpif_flow(const struct dp_netdev_flow *netdev_flow,
1861 struct ofpbuf *key_buf, struct ofpbuf *mask_buf,
1862 struct dpif_flow *flow, bool terse)
1863 {
1864 if (terse) {
1865 memset(flow, 0, sizeof *flow);
1866 } else {
1867 struct flow_wildcards wc;
1868 struct dp_netdev_actions *actions;
1869 size_t offset;
1870 struct odp_flow_key_parms odp_parms = {
1871 .flow = &netdev_flow->flow,
1872 .mask = &wc.masks,
1873 .support = dp_netdev_support,
1874 };
1875
1876 miniflow_expand(&netdev_flow->cr.mask->mf, &wc.masks);
1877
1878 /* Key */
1879 offset = key_buf->size;
1880 flow->key = ofpbuf_tail(key_buf);
1881 odp_parms.odp_in_port = netdev_flow->flow.in_port.odp_port;
1882 odp_flow_key_from_flow(&odp_parms, key_buf);
1883 flow->key_len = key_buf->size - offset;
1884
1885 /* Mask */
1886 offset = mask_buf->size;
1887 flow->mask = ofpbuf_tail(mask_buf);
1888 odp_parms.odp_in_port = wc.masks.in_port.odp_port;
1889 odp_parms.key_buf = key_buf;
1890 odp_flow_key_from_mask(&odp_parms, mask_buf);
1891 flow->mask_len = mask_buf->size - offset;
1892
1893 /* Actions */
1894 actions = dp_netdev_flow_get_actions(netdev_flow);
1895 flow->actions = actions->actions;
1896 flow->actions_len = actions->size;
1897 }
1898
1899 flow->ufid = netdev_flow->ufid;
1900 flow->ufid_present = true;
1901 flow->pmd_id = netdev_flow->pmd_id;
1902 get_dpif_flow_stats(netdev_flow, &flow->stats);
1903 }
1904
1905 static int
1906 dpif_netdev_mask_from_nlattrs(const struct nlattr *key, uint32_t key_len,
1907 const struct nlattr *mask_key,
1908 uint32_t mask_key_len, const struct flow *flow,
1909 struct flow_wildcards *wc)
1910 {
1911 enum odp_key_fitness fitness;
1912
1913 fitness = odp_flow_key_to_mask_udpif(mask_key, mask_key_len, key,
1914 key_len, wc, flow);
1915 if (fitness) {
1916 /* This should not happen: it indicates that
1917 * odp_flow_key_from_mask() and odp_flow_key_to_mask()
1918 * disagree on the acceptable form of a mask. Log the problem
1919 * as an error, with enough details to enable debugging. */
1920 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
1921
1922 if (!VLOG_DROP_ERR(&rl)) {
1923 struct ds s;
1924
1925 ds_init(&s);
1926 odp_flow_format(key, key_len, mask_key, mask_key_len, NULL, &s,
1927 true);
1928 VLOG_ERR("internal error parsing flow mask %s (%s)",
1929 ds_cstr(&s), odp_key_fitness_to_string(fitness));
1930 ds_destroy(&s);
1931 }
1932
1933 return EINVAL;
1934 }
1935
1936 return 0;
1937 }
1938
1939 static int
1940 dpif_netdev_flow_from_nlattrs(const struct nlattr *key, uint32_t key_len,
1941 struct flow *flow)
1942 {
1943 odp_port_t in_port;
1944
1945 if (odp_flow_key_to_flow_udpif(key, key_len, flow)) {
1946 /* This should not happen: it indicates that odp_flow_key_from_flow()
1947 * and odp_flow_key_to_flow() disagree on the acceptable form of a
1948 * flow. Log the problem as an error, with enough details to enable
1949 * debugging. */
1950 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
1951
1952 if (!VLOG_DROP_ERR(&rl)) {
1953 struct ds s;
1954
1955 ds_init(&s);
1956 odp_flow_format(key, key_len, NULL, 0, NULL, &s, true);
1957 VLOG_ERR("internal error parsing flow key %s", ds_cstr(&s));
1958 ds_destroy(&s);
1959 }
1960
1961 return EINVAL;
1962 }
1963
1964 in_port = flow->in_port.odp_port;
1965 if (!is_valid_port_number(in_port) && in_port != ODPP_NONE) {
1966 return EINVAL;
1967 }
1968
1969 /* Userspace datapath doesn't support conntrack. */
1970 if (flow->ct_state || flow->ct_zone || flow->ct_mark
1971 || !ovs_u128_is_zero(&flow->ct_label)) {
1972 return EINVAL;
1973 }
1974
1975 return 0;
1976 }
1977
1978 static int
1979 dpif_netdev_flow_get(const struct dpif *dpif, const struct dpif_flow_get *get)
1980 {
1981 struct dp_netdev *dp = get_dp_netdev(dpif);
1982 struct dp_netdev_flow *netdev_flow;
1983 struct dp_netdev_pmd_thread *pmd;
1984 unsigned pmd_id = get->pmd_id == PMD_ID_NULL
1985 ? NON_PMD_CORE_ID : get->pmd_id;
1986 int error = 0;
1987
1988 pmd = dp_netdev_get_pmd(dp, pmd_id);
1989 if (!pmd) {
1990 return EINVAL;
1991 }
1992
1993 netdev_flow = dp_netdev_pmd_find_flow(pmd, get->ufid, get->key,
1994 get->key_len);
1995 if (netdev_flow) {
1996 dp_netdev_flow_to_dpif_flow(netdev_flow, get->buffer, get->buffer,
1997 get->flow, false);
1998 } else {
1999 error = ENOENT;
2000 }
2001 dp_netdev_pmd_unref(pmd);
2002
2003
2004 return error;
2005 }
2006
2007 static struct dp_netdev_flow *
2008 dp_netdev_flow_add(struct dp_netdev_pmd_thread *pmd,
2009 struct match *match, const ovs_u128 *ufid,
2010 const struct nlattr *actions, size_t actions_len)
2011 OVS_REQUIRES(pmd->flow_mutex)
2012 {
2013 struct dp_netdev_flow *flow;
2014 struct netdev_flow_key mask;
2015
2016 netdev_flow_mask_init(&mask, match);
2017 /* Make sure wc does not have metadata. */
2018 ovs_assert(!FLOWMAP_HAS_FIELD(&mask.mf.map, metadata)
2019 && !FLOWMAP_HAS_FIELD(&mask.mf.map, regs));
2020
2021 /* Do not allocate extra space. */
2022 flow = xmalloc(sizeof *flow - sizeof flow->cr.flow.mf + mask.len);
2023 memset(&flow->stats, 0, sizeof flow->stats);
2024 flow->dead = false;
2025 flow->batch = NULL;
2026 *CONST_CAST(unsigned *, &flow->pmd_id) = pmd->core_id;
2027 *CONST_CAST(struct flow *, &flow->flow) = match->flow;
2028 *CONST_CAST(ovs_u128 *, &flow->ufid) = *ufid;
2029 ovs_refcount_init(&flow->ref_cnt);
2030 ovsrcu_set(&flow->actions, dp_netdev_actions_create(actions, actions_len));
2031
2032 netdev_flow_key_init_masked(&flow->cr.flow, &match->flow, &mask);
2033 dpcls_insert(&pmd->cls, &flow->cr, &mask);
2034
2035 cmap_insert(&pmd->flow_table, CONST_CAST(struct cmap_node *, &flow->node),
2036 dp_netdev_flow_hash(&flow->ufid));
2037
2038 if (OVS_UNLIKELY(VLOG_IS_DBG_ENABLED())) {
2039 struct match match;
2040 struct ds ds = DS_EMPTY_INITIALIZER;
2041
2042 match.tun_md.valid = false;
2043 match.flow = flow->flow;
2044 miniflow_expand(&flow->cr.mask->mf, &match.wc.masks);
2045
2046 ds_put_cstr(&ds, "flow_add: ");
2047 odp_format_ufid(ufid, &ds);
2048 ds_put_cstr(&ds, " ");
2049 match_format(&match, &ds, OFP_DEFAULT_PRIORITY);
2050 ds_put_cstr(&ds, ", actions:");
2051 format_odp_actions(&ds, actions, actions_len);
2052
2053 VLOG_DBG_RL(&upcall_rl, "%s", ds_cstr(&ds));
2054
2055 ds_destroy(&ds);
2056 }
2057
2058 return flow;
2059 }
2060
2061 static int
2062 dpif_netdev_flow_put(struct dpif *dpif, const struct dpif_flow_put *put)
2063 {
2064 struct dp_netdev *dp = get_dp_netdev(dpif);
2065 struct dp_netdev_flow *netdev_flow;
2066 struct netdev_flow_key key;
2067 struct dp_netdev_pmd_thread *pmd;
2068 struct match match;
2069 ovs_u128 ufid;
2070 unsigned pmd_id = put->pmd_id == PMD_ID_NULL
2071 ? NON_PMD_CORE_ID : put->pmd_id;
2072 int error;
2073
2074 error = dpif_netdev_flow_from_nlattrs(put->key, put->key_len, &match.flow);
2075 if (error) {
2076 return error;
2077 }
2078 error = dpif_netdev_mask_from_nlattrs(put->key, put->key_len,
2079 put->mask, put->mask_len,
2080 &match.flow, &match.wc);
2081 if (error) {
2082 return error;
2083 }
2084
2085 pmd = dp_netdev_get_pmd(dp, pmd_id);
2086 if (!pmd) {
2087 return EINVAL;
2088 }
2089
2090 /* Must produce a netdev_flow_key for lookup.
2091 * This interface is no longer performance critical, since it is not used
2092 * for upcall processing any more. */
2093 netdev_flow_key_from_flow(&key, &match.flow);
2094
2095 if (put->ufid) {
2096 ufid = *put->ufid;
2097 } else {
2098 dpif_flow_hash(dpif, &match.flow, sizeof match.flow, &ufid);
2099 }
2100
2101 ovs_mutex_lock(&pmd->flow_mutex);
2102 netdev_flow = dp_netdev_pmd_lookup_flow(pmd, &key);
2103 if (!netdev_flow) {
2104 if (put->flags & DPIF_FP_CREATE) {
2105 if (cmap_count(&pmd->flow_table) < MAX_FLOWS) {
2106 if (put->stats) {
2107 memset(put->stats, 0, sizeof *put->stats);
2108 }
2109 dp_netdev_flow_add(pmd, &match, &ufid, put->actions,
2110 put->actions_len);
2111 error = 0;
2112 } else {
2113 error = EFBIG;
2114 }
2115 } else {
2116 error = ENOENT;
2117 }
2118 } else {
2119 if (put->flags & DPIF_FP_MODIFY
2120 && flow_equal(&match.flow, &netdev_flow->flow)) {
2121 struct dp_netdev_actions *new_actions;
2122 struct dp_netdev_actions *old_actions;
2123
2124 new_actions = dp_netdev_actions_create(put->actions,
2125 put->actions_len);
2126
2127 old_actions = dp_netdev_flow_get_actions(netdev_flow);
2128 ovsrcu_set(&netdev_flow->actions, new_actions);
2129
2130 if (put->stats) {
2131 get_dpif_flow_stats(netdev_flow, put->stats);
2132 }
2133 if (put->flags & DPIF_FP_ZERO_STATS) {
2134 /* XXX: The userspace datapath uses thread local statistics
2135 * (for flows), which should be updated only by the owning
2136 * thread. Since we cannot write on stats memory here,
2137 * we choose not to support this flag. Please note:
2138 * - This feature is currently used only by dpctl commands with
2139 * option --clear.
2140 * - Should the need arise, this operation can be implemented
2141 * by keeping a base value (to be update here) for each
2142 * counter, and subtracting it before outputting the stats */
2143 error = EOPNOTSUPP;
2144 }
2145
2146 ovsrcu_postpone(dp_netdev_actions_free, old_actions);
2147 } else if (put->flags & DPIF_FP_CREATE) {
2148 error = EEXIST;
2149 } else {
2150 /* Overlapping flow. */
2151 error = EINVAL;
2152 }
2153 }
2154 ovs_mutex_unlock(&pmd->flow_mutex);
2155 dp_netdev_pmd_unref(pmd);
2156
2157 return error;
2158 }
2159
2160 static int
2161 dpif_netdev_flow_del(struct dpif *dpif, const struct dpif_flow_del *del)
2162 {
2163 struct dp_netdev *dp = get_dp_netdev(dpif);
2164 struct dp_netdev_flow *netdev_flow;
2165 struct dp_netdev_pmd_thread *pmd;
2166 unsigned pmd_id = del->pmd_id == PMD_ID_NULL
2167 ? NON_PMD_CORE_ID : del->pmd_id;
2168 int error = 0;
2169
2170 pmd = dp_netdev_get_pmd(dp, pmd_id);
2171 if (!pmd) {
2172 return EINVAL;
2173 }
2174
2175 ovs_mutex_lock(&pmd->flow_mutex);
2176 netdev_flow = dp_netdev_pmd_find_flow(pmd, del->ufid, del->key,
2177 del->key_len);
2178 if (netdev_flow) {
2179 if (del->stats) {
2180 get_dpif_flow_stats(netdev_flow, del->stats);
2181 }
2182 dp_netdev_pmd_remove_flow(pmd, netdev_flow);
2183 } else {
2184 error = ENOENT;
2185 }
2186 ovs_mutex_unlock(&pmd->flow_mutex);
2187 dp_netdev_pmd_unref(pmd);
2188
2189 return error;
2190 }
2191
2192 struct dpif_netdev_flow_dump {
2193 struct dpif_flow_dump up;
2194 struct cmap_position poll_thread_pos;
2195 struct cmap_position flow_pos;
2196 struct dp_netdev_pmd_thread *cur_pmd;
2197 int status;
2198 struct ovs_mutex mutex;
2199 };
2200
2201 static struct dpif_netdev_flow_dump *
2202 dpif_netdev_flow_dump_cast(struct dpif_flow_dump *dump)
2203 {
2204 return CONTAINER_OF(dump, struct dpif_netdev_flow_dump, up);
2205 }
2206
2207 static struct dpif_flow_dump *
2208 dpif_netdev_flow_dump_create(const struct dpif *dpif_, bool terse)
2209 {
2210 struct dpif_netdev_flow_dump *dump;
2211
2212 dump = xzalloc(sizeof *dump);
2213 dpif_flow_dump_init(&dump->up, dpif_);
2214 dump->up.terse = terse;
2215 ovs_mutex_init(&dump->mutex);
2216
2217 return &dump->up;
2218 }
2219
2220 static int
2221 dpif_netdev_flow_dump_destroy(struct dpif_flow_dump *dump_)
2222 {
2223 struct dpif_netdev_flow_dump *dump = dpif_netdev_flow_dump_cast(dump_);
2224
2225 ovs_mutex_destroy(&dump->mutex);
2226 free(dump);
2227 return 0;
2228 }
2229
2230 struct dpif_netdev_flow_dump_thread {
2231 struct dpif_flow_dump_thread up;
2232 struct dpif_netdev_flow_dump *dump;
2233 struct odputil_keybuf keybuf[FLOW_DUMP_MAX_BATCH];
2234 struct odputil_keybuf maskbuf[FLOW_DUMP_MAX_BATCH];
2235 };
2236
2237 static struct dpif_netdev_flow_dump_thread *
2238 dpif_netdev_flow_dump_thread_cast(struct dpif_flow_dump_thread *thread)
2239 {
2240 return CONTAINER_OF(thread, struct dpif_netdev_flow_dump_thread, up);
2241 }
2242
2243 static struct dpif_flow_dump_thread *
2244 dpif_netdev_flow_dump_thread_create(struct dpif_flow_dump *dump_)
2245 {
2246 struct dpif_netdev_flow_dump *dump = dpif_netdev_flow_dump_cast(dump_);
2247 struct dpif_netdev_flow_dump_thread *thread;
2248
2249 thread = xmalloc(sizeof *thread);
2250 dpif_flow_dump_thread_init(&thread->up, &dump->up);
2251 thread->dump = dump;
2252 return &thread->up;
2253 }
2254
2255 static void
2256 dpif_netdev_flow_dump_thread_destroy(struct dpif_flow_dump_thread *thread_)
2257 {
2258 struct dpif_netdev_flow_dump_thread *thread
2259 = dpif_netdev_flow_dump_thread_cast(thread_);
2260
2261 free(thread);
2262 }
2263
2264 static int
2265 dpif_netdev_flow_dump_next(struct dpif_flow_dump_thread *thread_,
2266 struct dpif_flow *flows, int max_flows)
2267 {
2268 struct dpif_netdev_flow_dump_thread *thread
2269 = dpif_netdev_flow_dump_thread_cast(thread_);
2270 struct dpif_netdev_flow_dump *dump = thread->dump;
2271 struct dp_netdev_flow *netdev_flows[FLOW_DUMP_MAX_BATCH];
2272 int n_flows = 0;
2273 int i;
2274
2275 ovs_mutex_lock(&dump->mutex);
2276 if (!dump->status) {
2277 struct dpif_netdev *dpif = dpif_netdev_cast(thread->up.dpif);
2278 struct dp_netdev *dp = get_dp_netdev(&dpif->dpif);
2279 struct dp_netdev_pmd_thread *pmd = dump->cur_pmd;
2280 int flow_limit = MIN(max_flows, FLOW_DUMP_MAX_BATCH);
2281
2282 /* First call to dump_next(), extracts the first pmd thread.
2283 * If there is no pmd thread, returns immediately. */
2284 if (!pmd) {
2285 pmd = dp_netdev_pmd_get_next(dp, &dump->poll_thread_pos);
2286 if (!pmd) {
2287 ovs_mutex_unlock(&dump->mutex);
2288 return n_flows;
2289
2290 }
2291 }
2292
2293 do {
2294 for (n_flows = 0; n_flows < flow_limit; n_flows++) {
2295 struct cmap_node *node;
2296
2297 node = cmap_next_position(&pmd->flow_table, &dump->flow_pos);
2298 if (!node) {
2299 break;
2300 }
2301 netdev_flows[n_flows] = CONTAINER_OF(node,
2302 struct dp_netdev_flow,
2303 node);
2304 }
2305 /* When finishing dumping the current pmd thread, moves to
2306 * the next. */
2307 if (n_flows < flow_limit) {
2308 memset(&dump->flow_pos, 0, sizeof dump->flow_pos);
2309 dp_netdev_pmd_unref(pmd);
2310 pmd = dp_netdev_pmd_get_next(dp, &dump->poll_thread_pos);
2311 if (!pmd) {
2312 dump->status = EOF;
2313 break;
2314 }
2315 }
2316 /* Keeps the reference to next caller. */
2317 dump->cur_pmd = pmd;
2318
2319 /* If the current dump is empty, do not exit the loop, since the
2320 * remaining pmds could have flows to be dumped. Just dumps again
2321 * on the new 'pmd'. */
2322 } while (!n_flows);
2323 }
2324 ovs_mutex_unlock(&dump->mutex);
2325
2326 for (i = 0; i < n_flows; i++) {
2327 struct odputil_keybuf *maskbuf = &thread->maskbuf[i];
2328 struct odputil_keybuf *keybuf = &thread->keybuf[i];
2329 struct dp_netdev_flow *netdev_flow = netdev_flows[i];
2330 struct dpif_flow *f = &flows[i];
2331 struct ofpbuf key, mask;
2332
2333 ofpbuf_use_stack(&key, keybuf, sizeof *keybuf);
2334 ofpbuf_use_stack(&mask, maskbuf, sizeof *maskbuf);
2335 dp_netdev_flow_to_dpif_flow(netdev_flow, &key, &mask, f,
2336 dump->up.terse);
2337 }
2338
2339 return n_flows;
2340 }
2341
2342 static int
2343 dpif_netdev_execute(struct dpif *dpif, struct dpif_execute *execute)
2344 OVS_NO_THREAD_SAFETY_ANALYSIS
2345 {
2346 struct dp_netdev *dp = get_dp_netdev(dpif);
2347 struct dp_netdev_pmd_thread *pmd;
2348 struct dp_packet *pp;
2349
2350 if (dp_packet_size(execute->packet) < ETH_HEADER_LEN ||
2351 dp_packet_size(execute->packet) > UINT16_MAX) {
2352 return EINVAL;
2353 }
2354
2355 /* Tries finding the 'pmd'. If NULL is returned, that means
2356 * the current thread is a non-pmd thread and should use
2357 * dp_netdev_get_pmd(dp, NON_PMD_CORE_ID). */
2358 pmd = ovsthread_getspecific(dp->per_pmd_key);
2359 if (!pmd) {
2360 pmd = dp_netdev_get_pmd(dp, NON_PMD_CORE_ID);
2361 }
2362
2363 /* If the current thread is non-pmd thread, acquires
2364 * the 'non_pmd_mutex'. */
2365 if (pmd->core_id == NON_PMD_CORE_ID) {
2366 ovs_mutex_lock(&dp->non_pmd_mutex);
2367 ovs_mutex_lock(&dp->port_mutex);
2368 }
2369
2370 pp = execute->packet;
2371 dp_netdev_execute_actions(pmd, &pp, 1, false, execute->actions,
2372 execute->actions_len);
2373 if (pmd->core_id == NON_PMD_CORE_ID) {
2374 dp_netdev_pmd_unref(pmd);
2375 ovs_mutex_unlock(&dp->port_mutex);
2376 ovs_mutex_unlock(&dp->non_pmd_mutex);
2377 }
2378
2379 return 0;
2380 }
2381
2382 static void
2383 dpif_netdev_operate(struct dpif *dpif, struct dpif_op **ops, size_t n_ops)
2384 {
2385 size_t i;
2386
2387 for (i = 0; i < n_ops; i++) {
2388 struct dpif_op *op = ops[i];
2389
2390 switch (op->type) {
2391 case DPIF_OP_FLOW_PUT:
2392 op->error = dpif_netdev_flow_put(dpif, &op->u.flow_put);
2393 break;
2394
2395 case DPIF_OP_FLOW_DEL:
2396 op->error = dpif_netdev_flow_del(dpif, &op->u.flow_del);
2397 break;
2398
2399 case DPIF_OP_EXECUTE:
2400 op->error = dpif_netdev_execute(dpif, &op->u.execute);
2401 break;
2402
2403 case DPIF_OP_FLOW_GET:
2404 op->error = dpif_netdev_flow_get(dpif, &op->u.flow_get);
2405 break;
2406 }
2407 }
2408 }
2409
2410 /* Returns true if the configuration for rx queues or cpu mask
2411 * is changed. */
2412 static bool
2413 pmd_config_changed(const struct dp_netdev *dp, const char *cmask)
2414 {
2415 struct dp_netdev_port *port;
2416
2417 CMAP_FOR_EACH (port, node, &dp->ports) {
2418 struct netdev *netdev = port->netdev;
2419 int requested_n_rxq = netdev_requested_n_rxq(netdev);
2420 if (netdev_is_pmd(netdev)
2421 && port->latest_requested_n_rxq != requested_n_rxq) {
2422 return true;
2423 }
2424 }
2425
2426 if (dp->pmd_cmask != NULL && cmask != NULL) {
2427 return strcmp(dp->pmd_cmask, cmask);
2428 } else {
2429 return (dp->pmd_cmask != NULL || cmask != NULL);
2430 }
2431 }
2432
2433 /* Resets pmd threads if the configuration for 'rxq's or cpu mask changes. */
2434 static int
2435 dpif_netdev_pmd_set(struct dpif *dpif, const char *cmask)
2436 {
2437 struct dp_netdev *dp = get_dp_netdev(dpif);
2438
2439 if (pmd_config_changed(dp, cmask)) {
2440 struct dp_netdev_port *port;
2441
2442 dp_netdev_destroy_all_pmds(dp);
2443
2444 CMAP_FOR_EACH (port, node, &dp->ports) {
2445 struct netdev *netdev = port->netdev;
2446 int requested_n_rxq = netdev_requested_n_rxq(netdev);
2447 if (netdev_is_pmd(port->netdev)
2448 && port->latest_requested_n_rxq != requested_n_rxq) {
2449 int i, err;
2450
2451 /* Closes the existing 'rxq's. */
2452 for (i = 0; i < netdev_n_rxq(port->netdev); i++) {
2453 netdev_rxq_close(port->rxq[i]);
2454 port->rxq[i] = NULL;
2455 }
2456 port->n_rxq = 0;
2457
2458 /* Sets the new rx queue config. */
2459 err = netdev_set_multiq(port->netdev,
2460 ovs_numa_get_n_cores() + 1,
2461 requested_n_rxq);
2462 if (err && (err != EOPNOTSUPP)) {
2463 VLOG_ERR("Failed to set dpdk interface %s rx_queue to:"
2464 " %u", netdev_get_name(port->netdev),
2465 requested_n_rxq);
2466 return err;
2467 }
2468 port->latest_requested_n_rxq = requested_n_rxq;
2469 /* If the set_multiq() above succeeds, reopens the 'rxq's. */
2470 port->n_rxq = netdev_n_rxq(port->netdev);
2471 port->rxq = xrealloc(port->rxq, sizeof *port->rxq * port->n_rxq);
2472 for (i = 0; i < port->n_rxq; i++) {
2473 netdev_rxq_open(port->netdev, &port->rxq[i], i);
2474 }
2475 }
2476 }
2477 /* Reconfigures the cpu mask. */
2478 ovs_numa_set_cpu_mask(cmask);
2479 free(dp->pmd_cmask);
2480 dp->pmd_cmask = cmask ? xstrdup(cmask) : NULL;
2481
2482 /* Restores the non-pmd. */
2483 dp_netdev_set_nonpmd(dp);
2484 /* Restores all pmd threads. */
2485 dp_netdev_reset_pmd_threads(dp);
2486 }
2487
2488 return 0;
2489 }
2490
2491 static int
2492 dpif_netdev_queue_to_priority(const struct dpif *dpif OVS_UNUSED,
2493 uint32_t queue_id, uint32_t *priority)
2494 {
2495 *priority = queue_id;
2496 return 0;
2497 }
2498
2499 \f
2500 /* Creates and returns a new 'struct dp_netdev_actions', whose actions are
2501 * a copy of the 'ofpacts_len' bytes of 'ofpacts'. */
2502 struct dp_netdev_actions *
2503 dp_netdev_actions_create(const struct nlattr *actions, size_t size)
2504 {
2505 struct dp_netdev_actions *netdev_actions;
2506
2507 netdev_actions = xmalloc(sizeof *netdev_actions + size);
2508 memcpy(netdev_actions->actions, actions, size);
2509 netdev_actions->size = size;
2510
2511 return netdev_actions;
2512 }
2513
2514 struct dp_netdev_actions *
2515 dp_netdev_flow_get_actions(const struct dp_netdev_flow *flow)
2516 {
2517 return ovsrcu_get(struct dp_netdev_actions *, &flow->actions);
2518 }
2519
2520 static void
2521 dp_netdev_actions_free(struct dp_netdev_actions *actions)
2522 {
2523 free(actions);
2524 }
2525 \f
2526 static inline unsigned long long
2527 cycles_counter(void)
2528 {
2529 #ifdef DPDK_NETDEV
2530 return rte_get_tsc_cycles();
2531 #else
2532 return 0;
2533 #endif
2534 }
2535
2536 /* Fake mutex to make sure that the calls to cycles_count_* are balanced */
2537 extern struct ovs_mutex cycles_counter_fake_mutex;
2538
2539 /* Start counting cycles. Must be followed by 'cycles_count_end()' */
2540 static inline void
2541 cycles_count_start(struct dp_netdev_pmd_thread *pmd)
2542 OVS_ACQUIRES(&cycles_counter_fake_mutex)
2543 OVS_NO_THREAD_SAFETY_ANALYSIS
2544 {
2545 pmd->last_cycles = cycles_counter();
2546 }
2547
2548 /* Stop counting cycles and add them to the counter 'type' */
2549 static inline void
2550 cycles_count_end(struct dp_netdev_pmd_thread *pmd,
2551 enum pmd_cycles_counter_type type)
2552 OVS_RELEASES(&cycles_counter_fake_mutex)
2553 OVS_NO_THREAD_SAFETY_ANALYSIS
2554 {
2555 unsigned long long interval = cycles_counter() - pmd->last_cycles;
2556
2557 non_atomic_ullong_add(&pmd->cycles.n[type], interval);
2558 }
2559
2560 static void
2561 dp_netdev_process_rxq_port(struct dp_netdev_pmd_thread *pmd,
2562 struct dp_netdev_port *port,
2563 struct netdev_rxq *rxq)
2564 {
2565 struct dp_packet *packets[NETDEV_MAX_BURST];
2566 int error, cnt;
2567
2568 cycles_count_start(pmd);
2569 error = netdev_rxq_recv(rxq, packets, &cnt);
2570 cycles_count_end(pmd, PMD_CYCLES_POLLING);
2571 if (!error) {
2572 *recirc_depth_get() = 0;
2573
2574 cycles_count_start(pmd);
2575 dp_netdev_input(pmd, packets, cnt, port->port_no);
2576 cycles_count_end(pmd, PMD_CYCLES_PROCESSING);
2577 } else if (error != EAGAIN && error != EOPNOTSUPP) {
2578 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
2579
2580 VLOG_ERR_RL(&rl, "error receiving data from %s: %s",
2581 netdev_get_name(port->netdev), ovs_strerror(error));
2582 }
2583 }
2584
2585 /* Return true if needs to revalidate datapath flows. */
2586 static bool
2587 dpif_netdev_run(struct dpif *dpif)
2588 {
2589 struct dp_netdev_port *port;
2590 struct dp_netdev *dp = get_dp_netdev(dpif);
2591 struct dp_netdev_pmd_thread *non_pmd = dp_netdev_get_pmd(dp,
2592 NON_PMD_CORE_ID);
2593 uint64_t new_tnl_seq;
2594
2595 ovs_mutex_lock(&dp->non_pmd_mutex);
2596 CMAP_FOR_EACH (port, node, &dp->ports) {
2597 if (!netdev_is_pmd(port->netdev)) {
2598 int i;
2599
2600 for (i = 0; i < port->n_rxq; i++) {
2601 dp_netdev_process_rxq_port(non_pmd, port, port->rxq[i]);
2602 }
2603 }
2604 }
2605 ovs_mutex_unlock(&dp->non_pmd_mutex);
2606 dp_netdev_pmd_unref(non_pmd);
2607
2608 tnl_neigh_cache_run();
2609 tnl_port_map_run();
2610 new_tnl_seq = seq_read(tnl_conf_seq);
2611
2612 if (dp->last_tnl_conf_seq != new_tnl_seq) {
2613 dp->last_tnl_conf_seq = new_tnl_seq;
2614 return true;
2615 }
2616 return false;
2617 }
2618
2619 static void
2620 dpif_netdev_wait(struct dpif *dpif)
2621 {
2622 struct dp_netdev_port *port;
2623 struct dp_netdev *dp = get_dp_netdev(dpif);
2624
2625 ovs_mutex_lock(&dp_netdev_mutex);
2626 CMAP_FOR_EACH (port, node, &dp->ports) {
2627 if (!netdev_is_pmd(port->netdev)) {
2628 int i;
2629
2630 for (i = 0; i < port->n_rxq; i++) {
2631 netdev_rxq_wait(port->rxq[i]);
2632 }
2633 }
2634 }
2635 ovs_mutex_unlock(&dp_netdev_mutex);
2636 seq_wait(tnl_conf_seq, dp->last_tnl_conf_seq);
2637 }
2638
2639 static int
2640 pmd_load_queues(struct dp_netdev_pmd_thread *pmd, struct rxq_poll **ppoll_list)
2641 OVS_REQUIRES(pmd->poll_mutex)
2642 {
2643 struct rxq_poll *poll_list = *ppoll_list;
2644 struct rxq_poll *poll;
2645 int i;
2646
2647 poll_list = xrealloc(poll_list, pmd->poll_cnt * sizeof *poll_list);
2648
2649 i = 0;
2650 LIST_FOR_EACH (poll, node, &pmd->poll_list) {
2651 poll_list[i++] = *poll;
2652 }
2653
2654 *ppoll_list = poll_list;
2655 return pmd->poll_cnt;
2656 }
2657
2658 static void *
2659 pmd_thread_main(void *f_)
2660 {
2661 struct dp_netdev_pmd_thread *pmd = f_;
2662 unsigned int lc = 0;
2663 struct rxq_poll *poll_list;
2664 unsigned int port_seq = PMD_INITIAL_SEQ;
2665 int poll_cnt;
2666 int i;
2667
2668 poll_cnt = 0;
2669 poll_list = NULL;
2670
2671 /* Stores the pmd thread's 'pmd' to 'per_pmd_key'. */
2672 ovsthread_setspecific(pmd->dp->per_pmd_key, pmd);
2673 pmd_thread_setaffinity_cpu(pmd->core_id);
2674 reload:
2675 emc_cache_init(&pmd->flow_cache);
2676
2677 ovs_mutex_lock(&pmd->poll_mutex);
2678 poll_cnt = pmd_load_queues(pmd, &poll_list);
2679 ovs_mutex_unlock(&pmd->poll_mutex);
2680
2681 /* List port/core affinity */
2682 for (i = 0; i < poll_cnt; i++) {
2683 VLOG_DBG("Core %d processing port \'%s\' with queue-id %d\n",
2684 pmd->core_id, netdev_get_name(poll_list[i].port->netdev),
2685 netdev_rxq_get_queue_id(poll_list[i].rx));
2686 }
2687
2688 /* Signal here to make sure the pmd finishes
2689 * reloading the updated configuration. */
2690 dp_netdev_pmd_reload_done(pmd);
2691
2692 for (;;) {
2693 for (i = 0; i < poll_cnt; i++) {
2694 dp_netdev_process_rxq_port(pmd, poll_list[i].port, poll_list[i].rx);
2695 }
2696
2697 if (lc++ > 1024) {
2698 unsigned int seq;
2699
2700 lc = 0;
2701
2702 emc_cache_slow_sweep(&pmd->flow_cache);
2703 coverage_try_clear();
2704 ovsrcu_quiesce();
2705
2706 atomic_read_relaxed(&pmd->change_seq, &seq);
2707 if (seq != port_seq) {
2708 port_seq = seq;
2709 break;
2710 }
2711 }
2712 }
2713
2714 emc_cache_uninit(&pmd->flow_cache);
2715
2716 if (!latch_is_set(&pmd->exit_latch)){
2717 goto reload;
2718 }
2719
2720 dp_netdev_pmd_reload_done(pmd);
2721
2722 free(poll_list);
2723 return NULL;
2724 }
2725
2726 static void
2727 dp_netdev_disable_upcall(struct dp_netdev *dp)
2728 OVS_ACQUIRES(dp->upcall_rwlock)
2729 {
2730 fat_rwlock_wrlock(&dp->upcall_rwlock);
2731 }
2732
2733 static void
2734 dpif_netdev_disable_upcall(struct dpif *dpif)
2735 OVS_NO_THREAD_SAFETY_ANALYSIS
2736 {
2737 struct dp_netdev *dp = get_dp_netdev(dpif);
2738 dp_netdev_disable_upcall(dp);
2739 }
2740
2741 static void
2742 dp_netdev_enable_upcall(struct dp_netdev *dp)
2743 OVS_RELEASES(dp->upcall_rwlock)
2744 {
2745 fat_rwlock_unlock(&dp->upcall_rwlock);
2746 }
2747
2748 static void
2749 dpif_netdev_enable_upcall(struct dpif *dpif)
2750 OVS_NO_THREAD_SAFETY_ANALYSIS
2751 {
2752 struct dp_netdev *dp = get_dp_netdev(dpif);
2753 dp_netdev_enable_upcall(dp);
2754 }
2755
2756 static void
2757 dp_netdev_pmd_reload_done(struct dp_netdev_pmd_thread *pmd)
2758 {
2759 ovs_mutex_lock(&pmd->cond_mutex);
2760 xpthread_cond_signal(&pmd->cond);
2761 ovs_mutex_unlock(&pmd->cond_mutex);
2762 }
2763
2764 /* Finds and refs the dp_netdev_pmd_thread on core 'core_id'. Returns
2765 * the pointer if succeeds, otherwise, NULL.
2766 *
2767 * Caller must unrefs the returned reference. */
2768 static struct dp_netdev_pmd_thread *
2769 dp_netdev_get_pmd(struct dp_netdev *dp, unsigned core_id)
2770 {
2771 struct dp_netdev_pmd_thread *pmd;
2772 const struct cmap_node *pnode;
2773
2774 pnode = cmap_find(&dp->poll_threads, hash_int(core_id, 0));
2775 if (!pnode) {
2776 return NULL;
2777 }
2778 pmd = CONTAINER_OF(pnode, struct dp_netdev_pmd_thread, node);
2779
2780 return dp_netdev_pmd_try_ref(pmd) ? pmd : NULL;
2781 }
2782
2783 /* Sets the 'struct dp_netdev_pmd_thread' for non-pmd threads. */
2784 static void
2785 dp_netdev_set_nonpmd(struct dp_netdev *dp)
2786 {
2787 struct dp_netdev_pmd_thread *non_pmd;
2788
2789 non_pmd = xzalloc(sizeof *non_pmd);
2790 dp_netdev_configure_pmd(non_pmd, dp, 0, NON_PMD_CORE_ID,
2791 OVS_NUMA_UNSPEC);
2792 }
2793
2794 /* Caller must have valid pointer to 'pmd'. */
2795 static bool
2796 dp_netdev_pmd_try_ref(struct dp_netdev_pmd_thread *pmd)
2797 {
2798 return ovs_refcount_try_ref_rcu(&pmd->ref_cnt);
2799 }
2800
2801 static void
2802 dp_netdev_pmd_unref(struct dp_netdev_pmd_thread *pmd)
2803 {
2804 if (pmd && ovs_refcount_unref(&pmd->ref_cnt) == 1) {
2805 ovsrcu_postpone(dp_netdev_destroy_pmd, pmd);
2806 }
2807 }
2808
2809 /* Given cmap position 'pos', tries to ref the next node. If try_ref()
2810 * fails, keeps checking for next node until reaching the end of cmap.
2811 *
2812 * Caller must unrefs the returned reference. */
2813 static struct dp_netdev_pmd_thread *
2814 dp_netdev_pmd_get_next(struct dp_netdev *dp, struct cmap_position *pos)
2815 {
2816 struct dp_netdev_pmd_thread *next;
2817
2818 do {
2819 struct cmap_node *node;
2820
2821 node = cmap_next_position(&dp->poll_threads, pos);
2822 next = node ? CONTAINER_OF(node, struct dp_netdev_pmd_thread, node)
2823 : NULL;
2824 } while (next && !dp_netdev_pmd_try_ref(next));
2825
2826 return next;
2827 }
2828
2829 /* Configures the 'pmd' based on the input argument. */
2830 static void
2831 dp_netdev_configure_pmd(struct dp_netdev_pmd_thread *pmd, struct dp_netdev *dp,
2832 int index, unsigned core_id, int numa_id)
2833 {
2834 pmd->dp = dp;
2835 pmd->index = index;
2836 pmd->core_id = core_id;
2837 pmd->numa_id = numa_id;
2838 pmd->poll_cnt = 0;
2839
2840 atomic_init(&pmd->tx_qid,
2841 (core_id == NON_PMD_CORE_ID)
2842 ? ovs_numa_get_n_cores()
2843 : get_n_pmd_threads(dp));
2844
2845 ovs_refcount_init(&pmd->ref_cnt);
2846 latch_init(&pmd->exit_latch);
2847 atomic_init(&pmd->change_seq, PMD_INITIAL_SEQ);
2848 xpthread_cond_init(&pmd->cond, NULL);
2849 ovs_mutex_init(&pmd->cond_mutex);
2850 ovs_mutex_init(&pmd->flow_mutex);
2851 ovs_mutex_init(&pmd->poll_mutex);
2852 dpcls_init(&pmd->cls);
2853 cmap_init(&pmd->flow_table);
2854 ovs_list_init(&pmd->poll_list);
2855 /* init the 'flow_cache' since there is no
2856 * actual thread created for NON_PMD_CORE_ID. */
2857 if (core_id == NON_PMD_CORE_ID) {
2858 emc_cache_init(&pmd->flow_cache);
2859 }
2860 cmap_insert(&dp->poll_threads, CONST_CAST(struct cmap_node *, &pmd->node),
2861 hash_int(core_id, 0));
2862 }
2863
2864 static void
2865 dp_netdev_destroy_pmd(struct dp_netdev_pmd_thread *pmd)
2866 {
2867 dp_netdev_pmd_flow_flush(pmd);
2868 dpcls_destroy(&pmd->cls);
2869 cmap_destroy(&pmd->flow_table);
2870 ovs_mutex_destroy(&pmd->flow_mutex);
2871 latch_destroy(&pmd->exit_latch);
2872 xpthread_cond_destroy(&pmd->cond);
2873 ovs_mutex_destroy(&pmd->cond_mutex);
2874 ovs_mutex_destroy(&pmd->poll_mutex);
2875 free(pmd);
2876 }
2877
2878 /* Stops the pmd thread, removes it from the 'dp->poll_threads',
2879 * and unrefs the struct. */
2880 static void
2881 dp_netdev_del_pmd(struct dp_netdev *dp, struct dp_netdev_pmd_thread *pmd)
2882 {
2883 /* Uninit the 'flow_cache' since there is
2884 * no actual thread uninit it for NON_PMD_CORE_ID. */
2885 if (pmd->core_id == NON_PMD_CORE_ID) {
2886 emc_cache_uninit(&pmd->flow_cache);
2887 } else {
2888 latch_set(&pmd->exit_latch);
2889 dp_netdev_reload_pmd__(pmd);
2890 ovs_numa_unpin_core(pmd->core_id);
2891 xpthread_join(pmd->thread, NULL);
2892 }
2893
2894 /* Unref all ports and free poll_list. */
2895 dp_netdev_pmd_clear_poll_list(pmd);
2896
2897 /* Purges the 'pmd''s flows after stopping the thread, but before
2898 * destroying the flows, so that the flow stats can be collected. */
2899 if (dp->dp_purge_cb) {
2900 dp->dp_purge_cb(dp->dp_purge_aux, pmd->core_id);
2901 }
2902 cmap_remove(&pmd->dp->poll_threads, &pmd->node, hash_int(pmd->core_id, 0));
2903 dp_netdev_pmd_unref(pmd);
2904 }
2905
2906 /* Destroys all pmd threads. */
2907 static void
2908 dp_netdev_destroy_all_pmds(struct dp_netdev *dp)
2909 {
2910 struct dp_netdev_pmd_thread *pmd;
2911 struct dp_netdev_pmd_thread **pmd_list;
2912 size_t k = 0, n_pmds;
2913
2914 n_pmds = cmap_count(&dp->poll_threads);
2915 pmd_list = xcalloc(n_pmds, sizeof *pmd_list);
2916
2917 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
2918 /* We cannot call dp_netdev_del_pmd(), since it alters
2919 * 'dp->poll_threads' (while we're iterating it) and it
2920 * might quiesce. */
2921 ovs_assert(k < n_pmds);
2922 pmd_list[k++] = pmd;
2923 }
2924
2925 for (size_t i = 0; i < k; i++) {
2926 dp_netdev_del_pmd(dp, pmd_list[i]);
2927 }
2928 free(pmd_list);
2929 }
2930
2931 /* Deletes all pmd threads on numa node 'numa_id' and
2932 * fixes tx_qids of other threads to keep them sequential. */
2933 static void
2934 dp_netdev_del_pmds_on_numa(struct dp_netdev *dp, int numa_id)
2935 {
2936 struct dp_netdev_pmd_thread *pmd;
2937 int n_pmds_on_numa, n_pmds;
2938 int *free_idx, k = 0;
2939 struct dp_netdev_pmd_thread **pmd_list;
2940
2941 n_pmds_on_numa = get_n_pmd_threads_on_numa(dp, numa_id);
2942 free_idx = xcalloc(n_pmds_on_numa, sizeof *free_idx);
2943 pmd_list = xcalloc(n_pmds_on_numa, sizeof *pmd_list);
2944
2945 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
2946 /* We cannot call dp_netdev_del_pmd(), since it alters
2947 * 'dp->poll_threads' (while we're iterating it) and it
2948 * might quiesce. */
2949 if (pmd->numa_id == numa_id) {
2950 atomic_read_relaxed(&pmd->tx_qid, &free_idx[k]);
2951 pmd_list[k] = pmd;
2952 ovs_assert(k < n_pmds_on_numa);
2953 k++;
2954 }
2955 }
2956
2957 for (int i = 0; i < k; i++) {
2958 dp_netdev_del_pmd(dp, pmd_list[i]);
2959 }
2960
2961 n_pmds = get_n_pmd_threads(dp);
2962 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
2963 int old_tx_qid;
2964
2965 atomic_read_relaxed(&pmd->tx_qid, &old_tx_qid);
2966
2967 if (old_tx_qid >= n_pmds) {
2968 int new_tx_qid = free_idx[--k];
2969
2970 atomic_store_relaxed(&pmd->tx_qid, new_tx_qid);
2971 }
2972 }
2973
2974 free(pmd_list);
2975 free(free_idx);
2976 }
2977
2978 /* Deletes all rx queues from pmd->poll_list. */
2979 static void
2980 dp_netdev_pmd_clear_poll_list(struct dp_netdev_pmd_thread *pmd)
2981 {
2982 struct rxq_poll *poll;
2983
2984 ovs_mutex_lock(&pmd->poll_mutex);
2985 LIST_FOR_EACH_POP (poll, node, &pmd->poll_list) {
2986 free(poll);
2987 }
2988 pmd->poll_cnt = 0;
2989 ovs_mutex_unlock(&pmd->poll_mutex);
2990 }
2991
2992 /* Deletes all rx queues of 'port' from poll_list of pmd thread and
2993 * reloads it if poll_list was changed. */
2994 static void
2995 dp_netdev_del_port_from_pmd(struct dp_netdev_port *port,
2996 struct dp_netdev_pmd_thread *pmd)
2997 {
2998 struct rxq_poll *poll, *next;
2999 bool found = false;
3000
3001 ovs_mutex_lock(&pmd->poll_mutex);
3002 LIST_FOR_EACH_SAFE (poll, next, node, &pmd->poll_list) {
3003 if (poll->port == port) {
3004 found = true;
3005 ovs_list_remove(&poll->node);
3006 pmd->poll_cnt--;
3007 free(poll);
3008 }
3009 }
3010 ovs_mutex_unlock(&pmd->poll_mutex);
3011 if (found) {
3012 dp_netdev_reload_pmd__(pmd);
3013 }
3014 }
3015
3016 /* Deletes all rx queues of 'port' from all pmd threads of dp and
3017 * reloads them if needed. */
3018 static void
3019 dp_netdev_del_port_from_all_pmds(struct dp_netdev *dp,
3020 struct dp_netdev_port *port)
3021 {
3022 int numa_id = netdev_get_numa_id(port->netdev);
3023 struct dp_netdev_pmd_thread *pmd;
3024
3025 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
3026 if (pmd->numa_id == numa_id) {
3027 dp_netdev_del_port_from_pmd(port, pmd);
3028 }
3029 }
3030 }
3031
3032 /* Returns PMD thread from this numa node with fewer rx queues to poll.
3033 * Returns NULL if there is no PMD threads on this numa node.
3034 * Can be called safely only by main thread. */
3035 static struct dp_netdev_pmd_thread *
3036 dp_netdev_less_loaded_pmd_on_numa(struct dp_netdev *dp, int numa_id)
3037 {
3038 int min_cnt = -1;
3039 struct dp_netdev_pmd_thread *pmd, *res = NULL;
3040
3041 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
3042 if (pmd->numa_id == numa_id
3043 && (min_cnt > pmd->poll_cnt || res == NULL)) {
3044 min_cnt = pmd->poll_cnt;
3045 res = pmd;
3046 }
3047 }
3048
3049 return res;
3050 }
3051
3052 /* Adds rx queue to poll_list of PMD thread. */
3053 static void
3054 dp_netdev_add_rxq_to_pmd(struct dp_netdev_pmd_thread *pmd,
3055 struct dp_netdev_port *port, struct netdev_rxq *rx)
3056 OVS_REQUIRES(pmd->poll_mutex)
3057 {
3058 struct rxq_poll *poll = xmalloc(sizeof *poll);
3059
3060 poll->port = port;
3061 poll->rx = rx;
3062
3063 ovs_list_push_back(&pmd->poll_list, &poll->node);
3064 pmd->poll_cnt++;
3065 }
3066
3067 /* Distributes all rx queues of 'port' between all PMD threads and reloads
3068 * them if needed. */
3069 static void
3070 dp_netdev_add_port_to_pmds(struct dp_netdev *dp, struct dp_netdev_port *port)
3071 {
3072 int numa_id = netdev_get_numa_id(port->netdev);
3073 struct dp_netdev_pmd_thread *pmd;
3074 struct hmapx to_reload;
3075 struct hmapx_node *node;
3076 int i;
3077
3078 hmapx_init(&to_reload);
3079 /* Cannot create pmd threads for invalid numa node. */
3080 ovs_assert(ovs_numa_numa_id_is_valid(numa_id));
3081
3082 for (i = 0; i < port->n_rxq; i++) {
3083 pmd = dp_netdev_less_loaded_pmd_on_numa(dp, numa_id);
3084 if (!pmd) {
3085 /* There is no pmd threads on this numa node. */
3086 dp_netdev_set_pmds_on_numa(dp, numa_id);
3087 /* Assigning of rx queues done. */
3088 break;
3089 }
3090
3091 ovs_mutex_lock(&pmd->poll_mutex);
3092 dp_netdev_add_rxq_to_pmd(pmd, port, port->rxq[i]);
3093 ovs_mutex_unlock(&pmd->poll_mutex);
3094
3095 hmapx_add(&to_reload, pmd);
3096 }
3097
3098 HMAPX_FOR_EACH (node, &to_reload) {
3099 pmd = (struct dp_netdev_pmd_thread *) node->data;
3100 dp_netdev_reload_pmd__(pmd);
3101 }
3102
3103 hmapx_destroy(&to_reload);
3104 }
3105
3106 /* Checks the numa node id of 'netdev' and starts pmd threads for
3107 * the numa node. */
3108 static void
3109 dp_netdev_set_pmds_on_numa(struct dp_netdev *dp, int numa_id)
3110 {
3111 int n_pmds;
3112
3113 if (!ovs_numa_numa_id_is_valid(numa_id)) {
3114 VLOG_ERR("Cannot create pmd threads due to numa id (%d)"
3115 "invalid", numa_id);
3116 return ;
3117 }
3118
3119 n_pmds = get_n_pmd_threads_on_numa(dp, numa_id);
3120
3121 /* If there are already pmd threads created for the numa node
3122 * in which 'netdev' is on, do nothing. Else, creates the
3123 * pmd threads for the numa node. */
3124 if (!n_pmds) {
3125 int can_have, n_unpinned, i, index = 0;
3126 struct dp_netdev_pmd_thread **pmds;
3127 struct dp_netdev_port *port;
3128
3129 n_unpinned = ovs_numa_get_n_unpinned_cores_on_numa(numa_id);
3130 if (!n_unpinned) {
3131 VLOG_ERR("Cannot create pmd threads due to out of unpinned "
3132 "cores on numa node %d", numa_id);
3133 return;
3134 }
3135
3136 /* If cpu mask is specified, uses all unpinned cores, otherwise
3137 * tries creating NR_PMD_THREADS pmd threads. */
3138 can_have = dp->pmd_cmask ? n_unpinned : MIN(n_unpinned, NR_PMD_THREADS);
3139 pmds = xzalloc(can_have * sizeof *pmds);
3140 for (i = 0; i < can_have; i++) {
3141 unsigned core_id = ovs_numa_get_unpinned_core_on_numa(numa_id);
3142 pmds[i] = xzalloc(sizeof **pmds);
3143 dp_netdev_configure_pmd(pmds[i], dp, i, core_id, numa_id);
3144 }
3145
3146 /* Distributes rx queues of this numa node between new pmd threads. */
3147 CMAP_FOR_EACH (port, node, &dp->ports) {
3148 if (netdev_is_pmd(port->netdev)
3149 && netdev_get_numa_id(port->netdev) == numa_id) {
3150 for (i = 0; i < port->n_rxq; i++) {
3151 /* Make thread-safety analyser happy. */
3152 ovs_mutex_lock(&pmds[index]->poll_mutex);
3153 dp_netdev_add_rxq_to_pmd(pmds[index], port, port->rxq[i]);
3154 ovs_mutex_unlock(&pmds[index]->poll_mutex);
3155 index = (index + 1) % can_have;
3156 }
3157 }
3158 }
3159
3160 /* Actual start of pmd threads. */
3161 for (i = 0; i < can_have; i++) {
3162 pmds[i]->thread = ovs_thread_create("pmd", pmd_thread_main, pmds[i]);
3163 }
3164 free(pmds);
3165 VLOG_INFO("Created %d pmd threads on numa node %d", can_have, numa_id);
3166 }
3167 }
3168
3169 \f
3170 /* Called after pmd threads config change. Restarts pmd threads with
3171 * new configuration. */
3172 static void
3173 dp_netdev_reset_pmd_threads(struct dp_netdev *dp)
3174 {
3175 struct dp_netdev_port *port;
3176
3177 CMAP_FOR_EACH (port, node, &dp->ports) {
3178 if (netdev_is_pmd(port->netdev)) {
3179 int numa_id = netdev_get_numa_id(port->netdev);
3180
3181 dp_netdev_set_pmds_on_numa(dp, numa_id);
3182 }
3183 }
3184 }
3185
3186 static char *
3187 dpif_netdev_get_datapath_version(void)
3188 {
3189 return xstrdup("<built-in>");
3190 }
3191
3192 static void
3193 dp_netdev_flow_used(struct dp_netdev_flow *netdev_flow, int cnt, int size,
3194 uint16_t tcp_flags, long long now)
3195 {
3196 uint16_t flags;
3197
3198 atomic_store_relaxed(&netdev_flow->stats.used, now);
3199 non_atomic_ullong_add(&netdev_flow->stats.packet_count, cnt);
3200 non_atomic_ullong_add(&netdev_flow->stats.byte_count, size);
3201 atomic_read_relaxed(&netdev_flow->stats.tcp_flags, &flags);
3202 flags |= tcp_flags;
3203 atomic_store_relaxed(&netdev_flow->stats.tcp_flags, flags);
3204 }
3205
3206 static void
3207 dp_netdev_count_packet(struct dp_netdev_pmd_thread *pmd,
3208 enum dp_stat_type type, int cnt)
3209 {
3210 non_atomic_ullong_add(&pmd->stats.n[type], cnt);
3211 }
3212
3213 static int
3214 dp_netdev_upcall(struct dp_netdev_pmd_thread *pmd, struct dp_packet *packet_,
3215 struct flow *flow, struct flow_wildcards *wc, ovs_u128 *ufid,
3216 enum dpif_upcall_type type, const struct nlattr *userdata,
3217 struct ofpbuf *actions, struct ofpbuf *put_actions)
3218 {
3219 struct dp_netdev *dp = pmd->dp;
3220 struct flow_tnl orig_tunnel;
3221 int err;
3222
3223 if (OVS_UNLIKELY(!dp->upcall_cb)) {
3224 return ENODEV;
3225 }
3226
3227 /* Upcall processing expects the Geneve options to be in the translated
3228 * format but we need to retain the raw format for datapath use. */
3229 orig_tunnel.flags = flow->tunnel.flags;
3230 if (flow->tunnel.flags & FLOW_TNL_F_UDPIF) {
3231 orig_tunnel.metadata.present.len = flow->tunnel.metadata.present.len;
3232 memcpy(orig_tunnel.metadata.opts.gnv, flow->tunnel.metadata.opts.gnv,
3233 flow->tunnel.metadata.present.len);
3234 err = tun_metadata_from_geneve_udpif(&orig_tunnel, &orig_tunnel,
3235 &flow->tunnel);
3236 if (err) {
3237 return err;
3238 }
3239 }
3240
3241 if (OVS_UNLIKELY(!VLOG_DROP_DBG(&upcall_rl))) {
3242 struct ds ds = DS_EMPTY_INITIALIZER;
3243 char *packet_str;
3244 struct ofpbuf key;
3245 struct odp_flow_key_parms odp_parms = {
3246 .flow = flow,
3247 .mask = &wc->masks,
3248 .odp_in_port = flow->in_port.odp_port,
3249 .support = dp_netdev_support,
3250 };
3251
3252 ofpbuf_init(&key, 0);
3253 odp_flow_key_from_flow(&odp_parms, &key);
3254 packet_str = ofp_packet_to_string(dp_packet_data(packet_),
3255 dp_packet_size(packet_));
3256
3257 odp_flow_key_format(key.data, key.size, &ds);
3258
3259 VLOG_DBG("%s: %s upcall:\n%s\n%s", dp->name,
3260 dpif_upcall_type_to_string(type), ds_cstr(&ds), packet_str);
3261
3262 ofpbuf_uninit(&key);
3263 free(packet_str);
3264
3265 ds_destroy(&ds);
3266 }
3267
3268 err = dp->upcall_cb(packet_, flow, ufid, pmd->core_id, type, userdata,
3269 actions, wc, put_actions, dp->upcall_aux);
3270 if (err && err != ENOSPC) {
3271 return err;
3272 }
3273
3274 /* Translate tunnel metadata masks to datapath format. */
3275 if (wc) {
3276 if (wc->masks.tunnel.metadata.present.map) {
3277 struct geneve_opt opts[TLV_TOT_OPT_SIZE /
3278 sizeof(struct geneve_opt)];
3279
3280 if (orig_tunnel.flags & FLOW_TNL_F_UDPIF) {
3281 tun_metadata_to_geneve_udpif_mask(&flow->tunnel,
3282 &wc->masks.tunnel,
3283 orig_tunnel.metadata.opts.gnv,
3284 orig_tunnel.metadata.present.len,
3285 opts);
3286 } else {
3287 orig_tunnel.metadata.present.len = 0;
3288 }
3289
3290 memset(&wc->masks.tunnel.metadata, 0,
3291 sizeof wc->masks.tunnel.metadata);
3292 memcpy(&wc->masks.tunnel.metadata.opts.gnv, opts,
3293 orig_tunnel.metadata.present.len);
3294 }
3295 wc->masks.tunnel.metadata.present.len = 0xff;
3296 }
3297
3298 /* Restore tunnel metadata. We need to use the saved options to ensure
3299 * that any unknown options are not lost. The generated mask will have
3300 * the same structure, matching on types and lengths but wildcarding
3301 * option data we don't care about. */
3302 if (orig_tunnel.flags & FLOW_TNL_F_UDPIF) {
3303 memcpy(&flow->tunnel.metadata.opts.gnv, orig_tunnel.metadata.opts.gnv,
3304 orig_tunnel.metadata.present.len);
3305 flow->tunnel.metadata.present.len = orig_tunnel.metadata.present.len;
3306 flow->tunnel.flags |= FLOW_TNL_F_UDPIF;
3307 }
3308
3309 return err;
3310 }
3311
3312 static inline uint32_t
3313 dpif_netdev_packet_get_rss_hash(struct dp_packet *packet,
3314 const struct miniflow *mf)
3315 {
3316 uint32_t hash, recirc_depth;
3317
3318 if (OVS_LIKELY(dp_packet_rss_valid(packet))) {
3319 hash = dp_packet_get_rss_hash(packet);
3320 } else {
3321 hash = miniflow_hash_5tuple(mf, 0);
3322 dp_packet_set_rss_hash(packet, hash);
3323 }
3324
3325 /* The RSS hash must account for the recirculation depth to avoid
3326 * collisions in the exact match cache */
3327 recirc_depth = *recirc_depth_get_unsafe();
3328 if (OVS_UNLIKELY(recirc_depth)) {
3329 hash = hash_finish(hash, recirc_depth);
3330 dp_packet_set_rss_hash(packet, hash);
3331 }
3332 return hash;
3333 }
3334
3335 struct packet_batch {
3336 unsigned int packet_count;
3337 unsigned int byte_count;
3338 uint16_t tcp_flags;
3339
3340 struct dp_netdev_flow *flow;
3341
3342 struct dp_packet *packets[NETDEV_MAX_BURST];
3343 };
3344
3345 static inline void
3346 packet_batch_update(struct packet_batch *batch, struct dp_packet *packet,
3347 const struct miniflow *mf)
3348 {
3349 batch->tcp_flags |= miniflow_get_tcp_flags(mf);
3350 batch->packets[batch->packet_count++] = packet;
3351 batch->byte_count += dp_packet_size(packet);
3352 }
3353
3354 static inline void
3355 packet_batch_init(struct packet_batch *batch, struct dp_netdev_flow *flow)
3356 {
3357 flow->batch = batch;
3358
3359 batch->flow = flow;
3360 batch->packet_count = 0;
3361 batch->byte_count = 0;
3362 batch->tcp_flags = 0;
3363 }
3364
3365 static inline void
3366 packet_batch_execute(struct packet_batch *batch,
3367 struct dp_netdev_pmd_thread *pmd,
3368 long long now)
3369 {
3370 struct dp_netdev_actions *actions;
3371 struct dp_netdev_flow *flow = batch->flow;
3372
3373 dp_netdev_flow_used(flow, batch->packet_count, batch->byte_count,
3374 batch->tcp_flags, now);
3375
3376 actions = dp_netdev_flow_get_actions(flow);
3377
3378 dp_netdev_execute_actions(pmd, batch->packets, batch->packet_count, true,
3379 actions->actions, actions->size);
3380 }
3381
3382 static inline void
3383 dp_netdev_queue_batches(struct dp_packet *pkt,
3384 struct dp_netdev_flow *flow, const struct miniflow *mf,
3385 struct packet_batch *batches, size_t *n_batches)
3386 {
3387 struct packet_batch *batch = flow->batch;
3388
3389 if (OVS_UNLIKELY(!batch)) {
3390 batch = &batches[(*n_batches)++];
3391 packet_batch_init(batch, flow);
3392 }
3393
3394 packet_batch_update(batch, pkt, mf);
3395 }
3396
3397 /* Try to process all ('cnt') the 'packets' using only the exact match cache
3398 * 'pmd->flow_cache'. If a flow is not found for a packet 'packets[i]', the
3399 * miniflow is copied into 'keys' and the packet pointer is moved at the
3400 * beginning of the 'packets' array.
3401 *
3402 * The function returns the number of packets that needs to be processed in the
3403 * 'packets' array (they have been moved to the beginning of the vector).
3404 *
3405 * If 'md_is_valid' is false, the metadata in 'packets' is not valid and must be
3406 * initialized by this function using 'port_no'.
3407 */
3408 static inline size_t
3409 emc_processing(struct dp_netdev_pmd_thread *pmd, struct dp_packet **packets,
3410 size_t cnt, struct netdev_flow_key *keys,
3411 struct packet_batch batches[], size_t *n_batches,
3412 bool md_is_valid, odp_port_t port_no)
3413 {
3414 struct emc_cache *flow_cache = &pmd->flow_cache;
3415 struct netdev_flow_key *key = &keys[0];
3416 size_t i, n_missed = 0, n_dropped = 0;
3417
3418 for (i = 0; i < cnt; i++) {
3419 struct dp_netdev_flow *flow;
3420 struct dp_packet *packet = packets[i];
3421
3422 if (OVS_UNLIKELY(dp_packet_size(packet) < ETH_HEADER_LEN)) {
3423 dp_packet_delete(packet);
3424 n_dropped++;
3425 continue;
3426 }
3427
3428 if (i != cnt - 1) {
3429 /* Prefetch next packet data and metadata. */
3430 OVS_PREFETCH(dp_packet_data(packets[i+1]));
3431 pkt_metadata_prefetch_init(&packets[i+1]->md);
3432 }
3433
3434 if (!md_is_valid) {
3435 pkt_metadata_init(&packet->md, port_no);
3436 }
3437 miniflow_extract(packet, &key->mf);
3438 key->len = 0; /* Not computed yet. */
3439 key->hash = dpif_netdev_packet_get_rss_hash(packet, &key->mf);
3440
3441 flow = emc_lookup(flow_cache, key);
3442 if (OVS_LIKELY(flow)) {
3443 dp_netdev_queue_batches(packet, flow, &key->mf, batches,
3444 n_batches);
3445 } else {
3446 /* Exact match cache missed. Group missed packets together at
3447 * the beginning of the 'packets' array. */
3448 packets[n_missed] = packet;
3449 /* 'key[n_missed]' contains the key of the current packet and it
3450 * must be returned to the caller. The next key should be extracted
3451 * to 'keys[n_missed + 1]'. */
3452 key = &keys[++n_missed];
3453 }
3454 }
3455
3456 dp_netdev_count_packet(pmd, DP_STAT_EXACT_HIT, cnt - n_dropped - n_missed);
3457
3458 return n_missed;
3459 }
3460
3461 static inline void
3462 fast_path_processing(struct dp_netdev_pmd_thread *pmd,
3463 struct dp_packet **packets, size_t cnt,
3464 struct netdev_flow_key *keys,
3465 struct packet_batch batches[], size_t *n_batches)
3466 {
3467 #if !defined(__CHECKER__) && !defined(_WIN32)
3468 const size_t PKT_ARRAY_SIZE = cnt;
3469 #else
3470 /* Sparse or MSVC doesn't like variable length array. */
3471 enum { PKT_ARRAY_SIZE = NETDEV_MAX_BURST };
3472 #endif
3473 struct dpcls_rule *rules[PKT_ARRAY_SIZE];
3474 struct dp_netdev *dp = pmd->dp;
3475 struct emc_cache *flow_cache = &pmd->flow_cache;
3476 int miss_cnt = 0, lost_cnt = 0;
3477 bool any_miss;
3478 size_t i;
3479
3480 for (i = 0; i < cnt; i++) {
3481 /* Key length is needed in all the cases, hash computed on demand. */
3482 keys[i].len = netdev_flow_key_size(miniflow_n_values(&keys[i].mf));
3483 }
3484 any_miss = !dpcls_lookup(&pmd->cls, keys, rules, cnt);
3485 if (OVS_UNLIKELY(any_miss) && !fat_rwlock_tryrdlock(&dp->upcall_rwlock)) {
3486 uint64_t actions_stub[512 / 8], slow_stub[512 / 8];
3487 struct ofpbuf actions, put_actions;
3488 ovs_u128 ufid;
3489
3490 ofpbuf_use_stub(&actions, actions_stub, sizeof actions_stub);
3491 ofpbuf_use_stub(&put_actions, slow_stub, sizeof slow_stub);
3492
3493 for (i = 0; i < cnt; i++) {
3494 struct dp_netdev_flow *netdev_flow;
3495 struct ofpbuf *add_actions;
3496 struct match match;
3497 int error;
3498
3499 if (OVS_LIKELY(rules[i])) {
3500 continue;
3501 }
3502
3503 /* It's possible that an earlier slow path execution installed
3504 * a rule covering this flow. In this case, it's a lot cheaper
3505 * to catch it here than execute a miss. */
3506 netdev_flow = dp_netdev_pmd_lookup_flow(pmd, &keys[i]);
3507 if (netdev_flow) {
3508 rules[i] = &netdev_flow->cr;
3509 continue;
3510 }
3511
3512 miss_cnt++;
3513
3514 match.tun_md.valid = false;
3515 miniflow_expand(&keys[i].mf, &match.flow);
3516
3517 ofpbuf_clear(&actions);
3518 ofpbuf_clear(&put_actions);
3519
3520 dpif_flow_hash(dp->dpif, &match.flow, sizeof match.flow, &ufid);
3521 error = dp_netdev_upcall(pmd, packets[i], &match.flow, &match.wc,
3522 &ufid, DPIF_UC_MISS, NULL, &actions,
3523 &put_actions);
3524 if (OVS_UNLIKELY(error && error != ENOSPC)) {
3525 dp_packet_delete(packets[i]);
3526 lost_cnt++;
3527 continue;
3528 }
3529
3530 /* The Netlink encoding of datapath flow keys cannot express
3531 * wildcarding the presence of a VLAN tag. Instead, a missing VLAN
3532 * tag is interpreted as exact match on the fact that there is no
3533 * VLAN. Unless we refactor a lot of code that translates between
3534 * Netlink and struct flow representations, we have to do the same
3535 * here. */
3536 if (!match.wc.masks.vlan_tci) {
3537 match.wc.masks.vlan_tci = htons(0xffff);
3538 }
3539
3540 /* We can't allow the packet batching in the next loop to execute
3541 * the actions. Otherwise, if there are any slow path actions,
3542 * we'll send the packet up twice. */
3543 dp_netdev_execute_actions(pmd, &packets[i], 1, true,
3544 actions.data, actions.size);
3545
3546 add_actions = put_actions.size ? &put_actions : &actions;
3547 if (OVS_LIKELY(error != ENOSPC)) {
3548 /* XXX: There's a race window where a flow covering this packet
3549 * could have already been installed since we last did the flow
3550 * lookup before upcall. This could be solved by moving the
3551 * mutex lock outside the loop, but that's an awful long time
3552 * to be locking everyone out of making flow installs. If we
3553 * move to a per-core classifier, it would be reasonable. */
3554 ovs_mutex_lock(&pmd->flow_mutex);
3555 netdev_flow = dp_netdev_pmd_lookup_flow(pmd, &keys[i]);
3556 if (OVS_LIKELY(!netdev_flow)) {
3557 netdev_flow = dp_netdev_flow_add(pmd, &match, &ufid,
3558 add_actions->data,
3559 add_actions->size);
3560 }
3561 ovs_mutex_unlock(&pmd->flow_mutex);
3562
3563 emc_insert(flow_cache, &keys[i], netdev_flow);
3564 }
3565 }
3566
3567 ofpbuf_uninit(&actions);
3568 ofpbuf_uninit(&put_actions);
3569 fat_rwlock_unlock(&dp->upcall_rwlock);
3570 dp_netdev_count_packet(pmd, DP_STAT_LOST, lost_cnt);
3571 } else if (OVS_UNLIKELY(any_miss)) {
3572 for (i = 0; i < cnt; i++) {
3573 if (OVS_UNLIKELY(!rules[i])) {
3574 dp_packet_delete(packets[i]);
3575 lost_cnt++;
3576 miss_cnt++;
3577 }
3578 }
3579 }
3580
3581 for (i = 0; i < cnt; i++) {
3582 struct dp_packet *packet = packets[i];
3583 struct dp_netdev_flow *flow;
3584
3585 if (OVS_UNLIKELY(!rules[i])) {
3586 continue;
3587 }
3588
3589 flow = dp_netdev_flow_cast(rules[i]);
3590
3591 emc_insert(flow_cache, &keys[i], flow);
3592 dp_netdev_queue_batches(packet, flow, &keys[i].mf, batches, n_batches);
3593 }
3594
3595 dp_netdev_count_packet(pmd, DP_STAT_MASKED_HIT, cnt - miss_cnt);
3596 dp_netdev_count_packet(pmd, DP_STAT_MISS, miss_cnt);
3597 dp_netdev_count_packet(pmd, DP_STAT_LOST, lost_cnt);
3598 }
3599
3600 /* Packets enter the datapath from a port (or from recirculation) here.
3601 *
3602 * For performance reasons a caller may choose not to initialize the metadata
3603 * in 'packets': in this case 'mdinit' is false and this function needs to
3604 * initialize it using 'port_no'. If the metadata in 'packets' is already
3605 * valid, 'md_is_valid' must be true and 'port_no' will be ignored. */
3606 static void
3607 dp_netdev_input__(struct dp_netdev_pmd_thread *pmd,
3608 struct dp_packet **packets, int cnt,
3609 bool md_is_valid, odp_port_t port_no)
3610 {
3611 #if !defined(__CHECKER__) && !defined(_WIN32)
3612 const size_t PKT_ARRAY_SIZE = cnt;
3613 #else
3614 /* Sparse or MSVC doesn't like variable length array. */
3615 enum { PKT_ARRAY_SIZE = NETDEV_MAX_BURST };
3616 #endif
3617 struct netdev_flow_key keys[PKT_ARRAY_SIZE];
3618 struct packet_batch batches[PKT_ARRAY_SIZE];
3619 long long now = time_msec();
3620 size_t newcnt, n_batches, i;
3621
3622 n_batches = 0;
3623 newcnt = emc_processing(pmd, packets, cnt, keys, batches, &n_batches,
3624 md_is_valid, port_no);
3625 if (OVS_UNLIKELY(newcnt)) {
3626 fast_path_processing(pmd, packets, newcnt, keys, batches, &n_batches);
3627 }
3628
3629 for (i = 0; i < n_batches; i++) {
3630 batches[i].flow->batch = NULL;
3631 }
3632
3633 for (i = 0; i < n_batches; i++) {
3634 packet_batch_execute(&batches[i], pmd, now);
3635 }
3636 }
3637
3638 static void
3639 dp_netdev_input(struct dp_netdev_pmd_thread *pmd,
3640 struct dp_packet **packets, int cnt,
3641 odp_port_t port_no)
3642 {
3643 dp_netdev_input__(pmd, packets, cnt, false, port_no);
3644 }
3645
3646 static void
3647 dp_netdev_recirculate(struct dp_netdev_pmd_thread *pmd,
3648 struct dp_packet **packets, int cnt)
3649 {
3650 dp_netdev_input__(pmd, packets, cnt, true, 0);
3651 }
3652
3653 struct dp_netdev_execute_aux {
3654 struct dp_netdev_pmd_thread *pmd;
3655 };
3656
3657 static void
3658 dpif_netdev_register_dp_purge_cb(struct dpif *dpif, dp_purge_callback *cb,
3659 void *aux)
3660 {
3661 struct dp_netdev *dp = get_dp_netdev(dpif);
3662 dp->dp_purge_aux = aux;
3663 dp->dp_purge_cb = cb;
3664 }
3665
3666 static void
3667 dpif_netdev_register_upcall_cb(struct dpif *dpif, upcall_callback *cb,
3668 void *aux)
3669 {
3670 struct dp_netdev *dp = get_dp_netdev(dpif);
3671 dp->upcall_aux = aux;
3672 dp->upcall_cb = cb;
3673 }
3674
3675 static void
3676 dp_netdev_drop_packets(struct dp_packet **packets, int cnt, bool may_steal)
3677 {
3678 if (may_steal) {
3679 int i;
3680
3681 for (i = 0; i < cnt; i++) {
3682 dp_packet_delete(packets[i]);
3683 }
3684 }
3685 }
3686
3687 static int
3688 push_tnl_action(const struct dp_netdev *dp,
3689 const struct nlattr *attr,
3690 struct dp_packet **packets, int cnt)
3691 {
3692 struct dp_netdev_port *tun_port;
3693 const struct ovs_action_push_tnl *data;
3694
3695 data = nl_attr_get(attr);
3696
3697 tun_port = dp_netdev_lookup_port(dp, u32_to_odp(data->tnl_port));
3698 if (!tun_port) {
3699 return -EINVAL;
3700 }
3701 netdev_push_header(tun_port->netdev, packets, cnt, data);
3702
3703 return 0;
3704 }
3705
3706 static void
3707 dp_netdev_clone_pkt_batch(struct dp_packet **dst_pkts,
3708 struct dp_packet **src_pkts, int cnt)
3709 {
3710 int i;
3711
3712 for (i = 0; i < cnt; i++) {
3713 dst_pkts[i] = dp_packet_clone(src_pkts[i]);
3714 }
3715 }
3716
3717 static void
3718 dp_execute_cb(void *aux_, struct dp_packet **packets, int cnt,
3719 const struct nlattr *a, bool may_steal)
3720 OVS_NO_THREAD_SAFETY_ANALYSIS
3721 {
3722 struct dp_netdev_execute_aux *aux = aux_;
3723 uint32_t *depth = recirc_depth_get();
3724 struct dp_netdev_pmd_thread *pmd = aux->pmd;
3725 struct dp_netdev *dp = pmd->dp;
3726 int type = nl_attr_type(a);
3727 struct dp_netdev_port *p;
3728 int i;
3729
3730 switch ((enum ovs_action_attr)type) {
3731 case OVS_ACTION_ATTR_OUTPUT:
3732 p = dp_netdev_lookup_port(dp, u32_to_odp(nl_attr_get_u32(a)));
3733 if (OVS_LIKELY(p)) {
3734 int tx_qid;
3735
3736 atomic_read_relaxed(&pmd->tx_qid, &tx_qid);
3737
3738 netdev_send(p->netdev, tx_qid, packets, cnt, may_steal);
3739 return;
3740 }
3741 break;
3742
3743 case OVS_ACTION_ATTR_TUNNEL_PUSH:
3744 if (*depth < MAX_RECIRC_DEPTH) {
3745 struct dp_packet *tnl_pkt[NETDEV_MAX_BURST];
3746 int err;
3747
3748 if (!may_steal) {
3749 dp_netdev_clone_pkt_batch(tnl_pkt, packets, cnt);
3750 packets = tnl_pkt;
3751 }
3752
3753 err = push_tnl_action(dp, a, packets, cnt);
3754 if (!err) {
3755 (*depth)++;
3756 dp_netdev_recirculate(pmd, packets, cnt);
3757 (*depth)--;
3758 } else {
3759 dp_netdev_drop_packets(tnl_pkt, cnt, !may_steal);
3760 }
3761 return;
3762 }
3763 break;
3764
3765 case OVS_ACTION_ATTR_TUNNEL_POP:
3766 if (*depth < MAX_RECIRC_DEPTH) {
3767 odp_port_t portno = u32_to_odp(nl_attr_get_u32(a));
3768
3769 p = dp_netdev_lookup_port(dp, portno);
3770 if (p) {
3771 struct dp_packet *tnl_pkt[NETDEV_MAX_BURST];
3772 int err;
3773
3774 if (!may_steal) {
3775 dp_netdev_clone_pkt_batch(tnl_pkt, packets, cnt);
3776 packets = tnl_pkt;
3777 }
3778
3779 err = netdev_pop_header(p->netdev, packets, cnt);
3780 if (!err) {
3781
3782 for (i = 0; i < cnt; i++) {
3783 packets[i]->md.in_port.odp_port = portno;
3784 }
3785
3786 (*depth)++;
3787 dp_netdev_recirculate(pmd, packets, cnt);
3788 (*depth)--;
3789 } else {
3790 dp_netdev_drop_packets(tnl_pkt, cnt, !may_steal);
3791 }
3792 return;
3793 }
3794 }
3795 break;
3796
3797 case OVS_ACTION_ATTR_USERSPACE:
3798 if (!fat_rwlock_tryrdlock(&dp->upcall_rwlock)) {
3799 const struct nlattr *userdata;
3800 struct ofpbuf actions;
3801 struct flow flow;
3802 ovs_u128 ufid;
3803
3804 userdata = nl_attr_find_nested(a, OVS_USERSPACE_ATTR_USERDATA);
3805 ofpbuf_init(&actions, 0);
3806
3807 for (i = 0; i < cnt; i++) {
3808 int error;
3809
3810 ofpbuf_clear(&actions);
3811
3812 flow_extract(packets[i], &flow);
3813 dpif_flow_hash(dp->dpif, &flow, sizeof flow, &ufid);
3814 error = dp_netdev_upcall(pmd, packets[i], &flow, NULL, &ufid,
3815 DPIF_UC_ACTION, userdata,&actions,
3816 NULL);
3817 if (!error || error == ENOSPC) {
3818 dp_netdev_execute_actions(pmd, &packets[i], 1, may_steal,
3819 actions.data, actions.size);
3820 } else if (may_steal) {
3821 dp_packet_delete(packets[i]);
3822 }
3823 }
3824 ofpbuf_uninit(&actions);
3825 fat_rwlock_unlock(&dp->upcall_rwlock);
3826
3827 return;
3828 }
3829 break;
3830
3831 case OVS_ACTION_ATTR_RECIRC:
3832 if (*depth < MAX_RECIRC_DEPTH) {
3833 struct dp_packet *recirc_pkts[NETDEV_MAX_BURST];
3834
3835 if (!may_steal) {
3836 dp_netdev_clone_pkt_batch(recirc_pkts, packets, cnt);
3837 packets = recirc_pkts;
3838 }
3839
3840 for (i = 0; i < cnt; i++) {
3841 packets[i]->md.recirc_id = nl_attr_get_u32(a);
3842 }
3843
3844 (*depth)++;
3845 dp_netdev_recirculate(pmd, packets, cnt);
3846 (*depth)--;
3847
3848 return;
3849 }
3850
3851 VLOG_WARN("Packet dropped. Max recirculation depth exceeded.");
3852 break;
3853
3854 case OVS_ACTION_ATTR_CT:
3855 /* If a flow with this action is slow-pathed, datapath assistance is
3856 * required to implement it. However, we don't support this action
3857 * in the userspace datapath. */
3858 VLOG_WARN("Cannot execute conntrack action in userspace.");
3859 break;
3860
3861 case OVS_ACTION_ATTR_PUSH_VLAN:
3862 case OVS_ACTION_ATTR_POP_VLAN:
3863 case OVS_ACTION_ATTR_PUSH_MPLS:
3864 case OVS_ACTION_ATTR_POP_MPLS:
3865 case OVS_ACTION_ATTR_SET:
3866 case OVS_ACTION_ATTR_SET_MASKED:
3867 case OVS_ACTION_ATTR_SAMPLE:
3868 case OVS_ACTION_ATTR_HASH:
3869 case OVS_ACTION_ATTR_UNSPEC:
3870 case __OVS_ACTION_ATTR_MAX:
3871 OVS_NOT_REACHED();
3872 }
3873
3874 dp_netdev_drop_packets(packets, cnt, may_steal);
3875 }
3876
3877 static void
3878 dp_netdev_execute_actions(struct dp_netdev_pmd_thread *pmd,
3879 struct dp_packet **packets, int cnt,
3880 bool may_steal,
3881 const struct nlattr *actions, size_t actions_len)
3882 {
3883 struct dp_netdev_execute_aux aux = { pmd };
3884
3885 odp_execute_actions(&aux, packets, cnt, may_steal, actions,
3886 actions_len, dp_execute_cb);
3887 }
3888
3889 const struct dpif_class dpif_netdev_class = {
3890 "netdev",
3891 dpif_netdev_init,
3892 dpif_netdev_enumerate,
3893 dpif_netdev_port_open_type,
3894 dpif_netdev_open,
3895 dpif_netdev_close,
3896 dpif_netdev_destroy,
3897 dpif_netdev_run,
3898 dpif_netdev_wait,
3899 dpif_netdev_get_stats,
3900 dpif_netdev_port_add,
3901 dpif_netdev_port_del,
3902 dpif_netdev_port_query_by_number,
3903 dpif_netdev_port_query_by_name,
3904 NULL, /* port_get_pid */
3905 dpif_netdev_port_dump_start,
3906 dpif_netdev_port_dump_next,
3907 dpif_netdev_port_dump_done,
3908 dpif_netdev_port_poll,
3909 dpif_netdev_port_poll_wait,
3910 dpif_netdev_flow_flush,
3911 dpif_netdev_flow_dump_create,
3912 dpif_netdev_flow_dump_destroy,
3913 dpif_netdev_flow_dump_thread_create,
3914 dpif_netdev_flow_dump_thread_destroy,
3915 dpif_netdev_flow_dump_next,
3916 dpif_netdev_operate,
3917 NULL, /* recv_set */
3918 NULL, /* handlers_set */
3919 dpif_netdev_pmd_set,
3920 dpif_netdev_queue_to_priority,
3921 NULL, /* recv */
3922 NULL, /* recv_wait */
3923 NULL, /* recv_purge */
3924 dpif_netdev_register_dp_purge_cb,
3925 dpif_netdev_register_upcall_cb,
3926 dpif_netdev_enable_upcall,
3927 dpif_netdev_disable_upcall,
3928 dpif_netdev_get_datapath_version,
3929 NULL, /* ct_dump_start */
3930 NULL, /* ct_dump_next */
3931 NULL, /* ct_dump_done */
3932 NULL, /* ct_flush */
3933 };
3934
3935 static void
3936 dpif_dummy_change_port_number(struct unixctl_conn *conn, int argc OVS_UNUSED,
3937 const char *argv[], void *aux OVS_UNUSED)
3938 {
3939 struct dp_netdev_port *old_port;
3940 struct dp_netdev_port *new_port;
3941 struct dp_netdev *dp;
3942 odp_port_t port_no;
3943
3944 ovs_mutex_lock(&dp_netdev_mutex);
3945 dp = shash_find_data(&dp_netdevs, argv[1]);
3946 if (!dp || !dpif_netdev_class_is_dummy(dp->class)) {
3947 ovs_mutex_unlock(&dp_netdev_mutex);
3948 unixctl_command_reply_error(conn, "unknown datapath or not a dummy");
3949 return;
3950 }
3951 ovs_refcount_ref(&dp->ref_cnt);
3952 ovs_mutex_unlock(&dp_netdev_mutex);
3953
3954 ovs_mutex_lock(&dp->port_mutex);
3955 if (get_port_by_name(dp, argv[2], &old_port)) {
3956 unixctl_command_reply_error(conn, "unknown port");
3957 goto exit;
3958 }
3959
3960 port_no = u32_to_odp(atoi(argv[3]));
3961 if (!port_no || port_no == ODPP_NONE) {
3962 unixctl_command_reply_error(conn, "bad port number");
3963 goto exit;
3964 }
3965 if (dp_netdev_lookup_port(dp, port_no)) {
3966 unixctl_command_reply_error(conn, "port number already in use");
3967 goto exit;
3968 }
3969
3970 /* Remove old port. */
3971 cmap_remove(&dp->ports, &old_port->node, hash_port_no(old_port->port_no));
3972 ovsrcu_postpone(free, old_port);
3973
3974 /* Insert new port (cmap semantics mean we cannot re-insert 'old_port'). */
3975 new_port = xmemdup(old_port, sizeof *old_port);
3976 new_port->port_no = port_no;
3977 cmap_insert(&dp->ports, &new_port->node, hash_port_no(port_no));
3978
3979 seq_change(dp->port_seq);
3980 unixctl_command_reply(conn, NULL);
3981
3982 exit:
3983 ovs_mutex_unlock(&dp->port_mutex);
3984 dp_netdev_unref(dp);
3985 }
3986
3987 static void
3988 dpif_dummy_register__(const char *type)
3989 {
3990 struct dpif_class *class;
3991
3992 class = xmalloc(sizeof *class);
3993 *class = dpif_netdev_class;
3994 class->type = xstrdup(type);
3995 dp_register_provider(class);
3996 }
3997
3998 static void
3999 dpif_dummy_override(const char *type)
4000 {
4001 int error;
4002
4003 /*
4004 * Ignore EAFNOSUPPORT to allow --enable-dummy=system with
4005 * a userland-only build. It's useful for testsuite.
4006 */
4007 error = dp_unregister_provider(type);
4008 if (error == 0 || error == EAFNOSUPPORT) {
4009 dpif_dummy_register__(type);
4010 }
4011 }
4012
4013 void
4014 dpif_dummy_register(enum dummy_level level)
4015 {
4016 if (level == DUMMY_OVERRIDE_ALL) {
4017 struct sset types;
4018 const char *type;
4019
4020 sset_init(&types);
4021 dp_enumerate_types(&types);
4022 SSET_FOR_EACH (type, &types) {
4023 dpif_dummy_override(type);
4024 }
4025 sset_destroy(&types);
4026 } else if (level == DUMMY_OVERRIDE_SYSTEM) {
4027 dpif_dummy_override("system");
4028 }
4029
4030 dpif_dummy_register__("dummy");
4031
4032 unixctl_command_register("dpif-dummy/change-port-number",
4033 "dp port new-number",
4034 3, 3, dpif_dummy_change_port_number, NULL);
4035 }
4036 \f
4037 /* Datapath Classifier. */
4038
4039 /* A set of rules that all have the same fields wildcarded. */
4040 struct dpcls_subtable {
4041 /* The fields are only used by writers. */
4042 struct cmap_node cmap_node OVS_GUARDED; /* Within dpcls 'subtables_map'. */
4043
4044 /* These fields are accessed by readers. */
4045 struct cmap rules; /* Contains "struct dpcls_rule"s. */
4046 struct netdev_flow_key mask; /* Wildcards for fields (const). */
4047 /* 'mask' must be the last field, additional space is allocated here. */
4048 };
4049
4050 /* Initializes 'cls' as a classifier that initially contains no classification
4051 * rules. */
4052 static void
4053 dpcls_init(struct dpcls *cls)
4054 {
4055 cmap_init(&cls->subtables_map);
4056 pvector_init(&cls->subtables);
4057 }
4058
4059 static void
4060 dpcls_destroy_subtable(struct dpcls *cls, struct dpcls_subtable *subtable)
4061 {
4062 pvector_remove(&cls->subtables, subtable);
4063 cmap_remove(&cls->subtables_map, &subtable->cmap_node,
4064 subtable->mask.hash);
4065 cmap_destroy(&subtable->rules);
4066 ovsrcu_postpone(free, subtable);
4067 }
4068
4069 /* Destroys 'cls'. Rules within 'cls', if any, are not freed; this is the
4070 * caller's responsibility.
4071 * May only be called after all the readers have been terminated. */
4072 static void
4073 dpcls_destroy(struct dpcls *cls)
4074 {
4075 if (cls) {
4076 struct dpcls_subtable *subtable;
4077
4078 CMAP_FOR_EACH (subtable, cmap_node, &cls->subtables_map) {
4079 ovs_assert(cmap_count(&subtable->rules) == 0);
4080 dpcls_destroy_subtable(cls, subtable);
4081 }
4082 cmap_destroy(&cls->subtables_map);
4083 pvector_destroy(&cls->subtables);
4084 }
4085 }
4086
4087 static struct dpcls_subtable *
4088 dpcls_create_subtable(struct dpcls *cls, const struct netdev_flow_key *mask)
4089 {
4090 struct dpcls_subtable *subtable;
4091
4092 /* Need to add one. */
4093 subtable = xmalloc(sizeof *subtable
4094 - sizeof subtable->mask.mf + mask->len);
4095 cmap_init(&subtable->rules);
4096 netdev_flow_key_clone(&subtable->mask, mask);
4097 cmap_insert(&cls->subtables_map, &subtable->cmap_node, mask->hash);
4098 pvector_insert(&cls->subtables, subtable, 0);
4099 pvector_publish(&cls->subtables);
4100
4101 return subtable;
4102 }
4103
4104 static inline struct dpcls_subtable *
4105 dpcls_find_subtable(struct dpcls *cls, const struct netdev_flow_key *mask)
4106 {
4107 struct dpcls_subtable *subtable;
4108
4109 CMAP_FOR_EACH_WITH_HASH (subtable, cmap_node, mask->hash,
4110 &cls->subtables_map) {
4111 if (netdev_flow_key_equal(&subtable->mask, mask)) {
4112 return subtable;
4113 }
4114 }
4115 return dpcls_create_subtable(cls, mask);
4116 }
4117
4118 /* Insert 'rule' into 'cls'. */
4119 static void
4120 dpcls_insert(struct dpcls *cls, struct dpcls_rule *rule,
4121 const struct netdev_flow_key *mask)
4122 {
4123 struct dpcls_subtable *subtable = dpcls_find_subtable(cls, mask);
4124
4125 rule->mask = &subtable->mask;
4126 cmap_insert(&subtable->rules, &rule->cmap_node, rule->flow.hash);
4127 }
4128
4129 /* Removes 'rule' from 'cls', also destructing the 'rule'. */
4130 static void
4131 dpcls_remove(struct dpcls *cls, struct dpcls_rule *rule)
4132 {
4133 struct dpcls_subtable *subtable;
4134
4135 ovs_assert(rule->mask);
4136
4137 INIT_CONTAINER(subtable, rule->mask, mask);
4138
4139 if (cmap_remove(&subtable->rules, &rule->cmap_node, rule->flow.hash)
4140 == 0) {
4141 dpcls_destroy_subtable(cls, subtable);
4142 pvector_publish(&cls->subtables);
4143 }
4144 }
4145
4146 /* Returns true if 'target' satisfies 'key' in 'mask', that is, if each 1-bit
4147 * in 'mask' the values in 'key' and 'target' are the same. */
4148 static inline bool
4149 dpcls_rule_matches_key(const struct dpcls_rule *rule,
4150 const struct netdev_flow_key *target)
4151 {
4152 const uint64_t *keyp = miniflow_get_values(&rule->flow.mf);
4153 const uint64_t *maskp = miniflow_get_values(&rule->mask->mf);
4154 uint64_t value;
4155
4156 NETDEV_FLOW_KEY_FOR_EACH_IN_FLOWMAP(value, target, rule->flow.mf.map) {
4157 if (OVS_UNLIKELY((value & *maskp++) != *keyp++)) {
4158 return false;
4159 }
4160 }
4161 return true;
4162 }
4163
4164 /* For each miniflow in 'flows' performs a classifier lookup writing the result
4165 * into the corresponding slot in 'rules'. If a particular entry in 'flows' is
4166 * NULL it is skipped.
4167 *
4168 * This function is optimized for use in the userspace datapath and therefore
4169 * does not implement a lot of features available in the standard
4170 * classifier_lookup() function. Specifically, it does not implement
4171 * priorities, instead returning any rule which matches the flow.
4172 *
4173 * Returns true if all flows found a corresponding rule. */
4174 static bool
4175 dpcls_lookup(const struct dpcls *cls, const struct netdev_flow_key keys[],
4176 struct dpcls_rule **rules, const size_t cnt)
4177 {
4178 /* The batch size 16 was experimentally found faster than 8 or 32. */
4179 typedef uint16_t map_type;
4180 #define MAP_BITS (sizeof(map_type) * CHAR_BIT)
4181
4182 #if !defined(__CHECKER__) && !defined(_WIN32)
4183 const int N_MAPS = DIV_ROUND_UP(cnt, MAP_BITS);
4184 #else
4185 enum { N_MAPS = DIV_ROUND_UP(NETDEV_MAX_BURST, MAP_BITS) };
4186 #endif
4187 map_type maps[N_MAPS];
4188 struct dpcls_subtable *subtable;
4189
4190 memset(maps, 0xff, sizeof maps);
4191 if (cnt % MAP_BITS) {
4192 maps[N_MAPS - 1] >>= MAP_BITS - cnt % MAP_BITS; /* Clear extra bits. */
4193 }
4194 memset(rules, 0, cnt * sizeof *rules);
4195
4196 PVECTOR_FOR_EACH (subtable, &cls->subtables) {
4197 const struct netdev_flow_key *mkeys = keys;
4198 struct dpcls_rule **mrules = rules;
4199 map_type remains = 0;
4200 int m;
4201
4202 BUILD_ASSERT_DECL(sizeof remains == sizeof *maps);
4203
4204 for (m = 0; m < N_MAPS; m++, mkeys += MAP_BITS, mrules += MAP_BITS) {
4205 uint32_t hashes[MAP_BITS];
4206 const struct cmap_node *nodes[MAP_BITS];
4207 unsigned long map = maps[m];
4208 int i;
4209
4210 if (!map) {
4211 continue; /* Skip empty maps. */
4212 }
4213
4214 /* Compute hashes for the remaining keys. */
4215 ULLONG_FOR_EACH_1(i, map) {
4216 hashes[i] = netdev_flow_key_hash_in_mask(&mkeys[i],
4217 &subtable->mask);
4218 }
4219 /* Lookup. */
4220 map = cmap_find_batch(&subtable->rules, map, hashes, nodes);
4221 /* Check results. */
4222 ULLONG_FOR_EACH_1(i, map) {
4223 struct dpcls_rule *rule;
4224
4225 CMAP_NODE_FOR_EACH (rule, cmap_node, nodes[i]) {
4226 if (OVS_LIKELY(dpcls_rule_matches_key(rule, &mkeys[i]))) {
4227 mrules[i] = rule;
4228 goto next;
4229 }
4230 }
4231 ULLONG_SET0(map, i); /* Did not match. */
4232 next:
4233 ; /* Keep Sparse happy. */
4234 }
4235 maps[m] &= ~map; /* Clear the found rules. */
4236 remains |= maps[m];
4237 }
4238 if (!remains) {
4239 return true; /* All found. */
4240 }
4241 }
4242 return false; /* Some misses. */
4243 }