]> git.proxmox.com Git - mirror_ovs.git/blob - lib/dpif-netdev.c
conntrack: Add option to disable TCP sequence checking.
[mirror_ovs.git] / lib / dpif-netdev.c
1 /*
2 * Copyright (c) 2009-2014, 2016-2018 Nicira, Inc.
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at:
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <config.h>
18 #include "dpif-netdev.h"
19 #include "dpif-netdev-private.h"
20
21 #include <ctype.h>
22 #include <errno.h>
23 #include <fcntl.h>
24 #include <inttypes.h>
25 #include <net/if.h>
26 #include <sys/types.h>
27 #include <netinet/in.h>
28 #include <stdint.h>
29 #include <stdlib.h>
30 #include <string.h>
31 #include <sys/ioctl.h>
32 #include <sys/socket.h>
33 #include <sys/stat.h>
34 #include <unistd.h>
35
36 #include "bitmap.h"
37 #include "cmap.h"
38 #include "conntrack.h"
39 #include "coverage.h"
40 #include "ct-dpif.h"
41 #include "csum.h"
42 #include "dp-packet.h"
43 #include "dpif.h"
44 #include "dpif-netdev-perf.h"
45 #include "dpif-provider.h"
46 #include "dummy.h"
47 #include "fat-rwlock.h"
48 #include "flow.h"
49 #include "hmapx.h"
50 #include "id-pool.h"
51 #include "ipf.h"
52 #include "netdev.h"
53 #include "netdev-offload.h"
54 #include "netdev-provider.h"
55 #include "netdev-vport.h"
56 #include "netlink.h"
57 #include "odp-execute.h"
58 #include "odp-util.h"
59 #include "openvswitch/dynamic-string.h"
60 #include "openvswitch/list.h"
61 #include "openvswitch/match.h"
62 #include "openvswitch/ofp-parse.h"
63 #include "openvswitch/ofp-print.h"
64 #include "openvswitch/ofpbuf.h"
65 #include "openvswitch/shash.h"
66 #include "openvswitch/vlog.h"
67 #include "ovs-numa.h"
68 #include "ovs-rcu.h"
69 #include "packets.h"
70 #include "openvswitch/poll-loop.h"
71 #include "pvector.h"
72 #include "random.h"
73 #include "seq.h"
74 #include "smap.h"
75 #include "sset.h"
76 #include "timeval.h"
77 #include "tnl-neigh-cache.h"
78 #include "tnl-ports.h"
79 #include "unixctl.h"
80 #include "util.h"
81 #include "uuid.h"
82
83 VLOG_DEFINE_THIS_MODULE(dpif_netdev);
84
85 /* Auto Load Balancing Defaults */
86 #define ALB_ACCEPTABLE_IMPROVEMENT 25
87 #define ALB_PMD_LOAD_THRESHOLD 95
88 #define ALB_PMD_REBALANCE_POLL_INTERVAL 1 /* 1 Min */
89 #define MIN_TO_MSEC 60000
90
91 #define FLOW_DUMP_MAX_BATCH 50
92 /* Use per thread recirc_depth to prevent recirculation loop. */
93 #define MAX_RECIRC_DEPTH 6
94 DEFINE_STATIC_PER_THREAD_DATA(uint32_t, recirc_depth, 0)
95
96 /* Use instant packet send by default. */
97 #define DEFAULT_TX_FLUSH_INTERVAL 0
98
99 /* Configuration parameters. */
100 enum { MAX_FLOWS = 65536 }; /* Maximum number of flows in flow table. */
101 enum { MAX_METERS = 65536 }; /* Maximum number of meters. */
102 enum { MAX_BANDS = 8 }; /* Maximum number of bands / meter. */
103 enum { N_METER_LOCKS = 64 }; /* Maximum number of meters. */
104
105 /* Protects against changes to 'dp_netdevs'. */
106 static struct ovs_mutex dp_netdev_mutex = OVS_MUTEX_INITIALIZER;
107
108 /* Contains all 'struct dp_netdev's. */
109 static struct shash dp_netdevs OVS_GUARDED_BY(dp_netdev_mutex)
110 = SHASH_INITIALIZER(&dp_netdevs);
111
112 static struct vlog_rate_limit upcall_rl = VLOG_RATE_LIMIT_INIT(600, 600);
113
114 #define DP_NETDEV_CS_SUPPORTED_MASK (CS_NEW | CS_ESTABLISHED | CS_RELATED \
115 | CS_INVALID | CS_REPLY_DIR | CS_TRACKED \
116 | CS_SRC_NAT | CS_DST_NAT)
117 #define DP_NETDEV_CS_UNSUPPORTED_MASK (~(uint32_t)DP_NETDEV_CS_SUPPORTED_MASK)
118
119 static struct odp_support dp_netdev_support = {
120 .max_vlan_headers = SIZE_MAX,
121 .max_mpls_depth = SIZE_MAX,
122 .recirc = true,
123 .ct_state = true,
124 .ct_zone = true,
125 .ct_mark = true,
126 .ct_label = true,
127 .ct_state_nat = true,
128 .ct_orig_tuple = true,
129 .ct_orig_tuple6 = true,
130 };
131
132 /* EMC cache and SMC cache compose the datapath flow cache (DFC)
133 *
134 * Exact match cache for frequently used flows
135 *
136 * The cache uses a 32-bit hash of the packet (which can be the RSS hash) to
137 * search its entries for a miniflow that matches exactly the miniflow of the
138 * packet. It stores the 'dpcls_rule' (rule) that matches the miniflow.
139 *
140 * A cache entry holds a reference to its 'dp_netdev_flow'.
141 *
142 * A miniflow with a given hash can be in one of EM_FLOW_HASH_SEGS different
143 * entries. The 32-bit hash is split into EM_FLOW_HASH_SEGS values (each of
144 * them is EM_FLOW_HASH_SHIFT bits wide and the remainder is thrown away). Each
145 * value is the index of a cache entry where the miniflow could be.
146 *
147 *
148 * Signature match cache (SMC)
149 *
150 * This cache stores a 16-bit signature for each flow without storing keys, and
151 * stores the corresponding 16-bit flow_table index to the 'dp_netdev_flow'.
152 * Each flow thus occupies 32bit which is much more memory efficient than EMC.
153 * SMC uses a set-associative design that each bucket contains
154 * SMC_ENTRY_PER_BUCKET number of entries.
155 * Since 16-bit flow_table index is used, if there are more than 2^16
156 * dp_netdev_flow, SMC will miss them that cannot be indexed by a 16-bit value.
157 *
158 *
159 * Thread-safety
160 * =============
161 *
162 * Each pmd_thread has its own private exact match cache.
163 * If dp_netdev_input is not called from a pmd thread, a mutex is used.
164 */
165
166 #define EM_FLOW_HASH_SHIFT 13
167 #define EM_FLOW_HASH_ENTRIES (1u << EM_FLOW_HASH_SHIFT)
168 #define EM_FLOW_HASH_MASK (EM_FLOW_HASH_ENTRIES - 1)
169 #define EM_FLOW_HASH_SEGS 2
170
171 /* SMC uses a set-associative design. A bucket contains a set of entries that
172 * a flow item can occupy. For now, it uses one hash function rather than two
173 * as for the EMC design. */
174 #define SMC_ENTRY_PER_BUCKET 4
175 #define SMC_ENTRIES (1u << 20)
176 #define SMC_BUCKET_CNT (SMC_ENTRIES / SMC_ENTRY_PER_BUCKET)
177 #define SMC_MASK (SMC_BUCKET_CNT - 1)
178
179 /* Default EMC insert probability is 1 / DEFAULT_EM_FLOW_INSERT_INV_PROB */
180 #define DEFAULT_EM_FLOW_INSERT_INV_PROB 100
181 #define DEFAULT_EM_FLOW_INSERT_MIN (UINT32_MAX / \
182 DEFAULT_EM_FLOW_INSERT_INV_PROB)
183
184 struct emc_entry {
185 struct dp_netdev_flow *flow;
186 struct netdev_flow_key key; /* key.hash used for emc hash value. */
187 };
188
189 struct emc_cache {
190 struct emc_entry entries[EM_FLOW_HASH_ENTRIES];
191 int sweep_idx; /* For emc_cache_slow_sweep(). */
192 };
193
194 struct smc_bucket {
195 uint16_t sig[SMC_ENTRY_PER_BUCKET];
196 uint16_t flow_idx[SMC_ENTRY_PER_BUCKET];
197 };
198
199 /* Signature match cache, differentiate from EMC cache */
200 struct smc_cache {
201 struct smc_bucket buckets[SMC_BUCKET_CNT];
202 };
203
204 struct dfc_cache {
205 struct emc_cache emc_cache;
206 struct smc_cache smc_cache;
207 };
208
209 /* Iterate in the exact match cache through every entry that might contain a
210 * miniflow with hash 'HASH'. */
211 #define EMC_FOR_EACH_POS_WITH_HASH(EMC, CURRENT_ENTRY, HASH) \
212 for (uint32_t i__ = 0, srch_hash__ = (HASH); \
213 (CURRENT_ENTRY) = &(EMC)->entries[srch_hash__ & EM_FLOW_HASH_MASK], \
214 i__ < EM_FLOW_HASH_SEGS; \
215 i__++, srch_hash__ >>= EM_FLOW_HASH_SHIFT)
216 \f
217 /* Simple non-wildcarding single-priority classifier. */
218
219 /* Time in microseconds between successive optimizations of the dpcls
220 * subtable vector */
221 #define DPCLS_OPTIMIZATION_INTERVAL 1000000LL
222
223 /* Time in microseconds of the interval in which rxq processing cycles used
224 * in rxq to pmd assignments is measured and stored. */
225 #define PMD_RXQ_INTERVAL_LEN 10000000LL
226
227 /* Number of intervals for which cycles are stored
228 * and used during rxq to pmd assignment. */
229 #define PMD_RXQ_INTERVAL_MAX 6
230
231 struct dpcls {
232 struct cmap_node node; /* Within dp_netdev_pmd_thread.classifiers */
233 odp_port_t in_port;
234 struct cmap subtables_map;
235 struct pvector subtables;
236 };
237
238 /* Data structure to keep packet order till fastpath processing. */
239 struct dp_packet_flow_map {
240 struct dp_packet *packet;
241 struct dp_netdev_flow *flow;
242 uint16_t tcp_flags;
243 };
244
245 static void dpcls_init(struct dpcls *);
246 static void dpcls_destroy(struct dpcls *);
247 static void dpcls_sort_subtable_vector(struct dpcls *);
248 static void dpcls_insert(struct dpcls *, struct dpcls_rule *,
249 const struct netdev_flow_key *mask);
250 static void dpcls_remove(struct dpcls *, struct dpcls_rule *);
251 static bool dpcls_lookup(struct dpcls *cls,
252 const struct netdev_flow_key *keys[],
253 struct dpcls_rule **rules, size_t cnt,
254 int *num_lookups_p);
255
256 /* Set of supported meter flags */
257 #define DP_SUPPORTED_METER_FLAGS_MASK \
258 (OFPMF13_STATS | OFPMF13_PKTPS | OFPMF13_KBPS | OFPMF13_BURST)
259
260 /* Set of supported meter band types */
261 #define DP_SUPPORTED_METER_BAND_TYPES \
262 ( 1 << OFPMBT13_DROP )
263
264 struct dp_meter_band {
265 struct ofputil_meter_band up; /* type, prec_level, pad, rate, burst_size */
266 uint32_t bucket; /* In 1/1000 packets (for PKTPS), or in bits (for KBPS) */
267 uint64_t packet_count;
268 uint64_t byte_count;
269 };
270
271 struct dp_meter {
272 uint16_t flags;
273 uint16_t n_bands;
274 uint32_t max_delta_t;
275 uint64_t used;
276 uint64_t packet_count;
277 uint64_t byte_count;
278 struct dp_meter_band bands[];
279 };
280
281 struct pmd_auto_lb {
282 bool auto_lb_requested; /* Auto load balancing requested by user. */
283 bool is_enabled; /* Current status of Auto load balancing. */
284 uint64_t rebalance_intvl;
285 uint64_t rebalance_poll_timer;
286 };
287
288 /* Datapath based on the network device interface from netdev.h.
289 *
290 *
291 * Thread-safety
292 * =============
293 *
294 * Some members, marked 'const', are immutable. Accessing other members
295 * requires synchronization, as noted in more detail below.
296 *
297 * Acquisition order is, from outermost to innermost:
298 *
299 * dp_netdev_mutex (global)
300 * port_mutex
301 * non_pmd_mutex
302 */
303 struct dp_netdev {
304 const struct dpif_class *const class;
305 const char *const name;
306 struct dpif *dpif;
307 struct ovs_refcount ref_cnt;
308 atomic_flag destroyed;
309
310 /* Ports.
311 *
312 * Any lookup into 'ports' or any access to the dp_netdev_ports found
313 * through 'ports' requires taking 'port_mutex'. */
314 struct ovs_mutex port_mutex;
315 struct hmap ports;
316 struct seq *port_seq; /* Incremented whenever a port changes. */
317
318 /* The time that a packet can wait in output batch for sending. */
319 atomic_uint32_t tx_flush_interval;
320
321 /* Meters. */
322 struct ovs_mutex meter_locks[N_METER_LOCKS];
323 struct dp_meter *meters[MAX_METERS]; /* Meter bands. */
324
325 /* Probability of EMC insertions is a factor of 'emc_insert_min'.*/
326 OVS_ALIGNED_VAR(CACHE_LINE_SIZE) atomic_uint32_t emc_insert_min;
327 /* Enable collection of PMD performance metrics. */
328 atomic_bool pmd_perf_metrics;
329 /* Enable the SMC cache from ovsdb config */
330 atomic_bool smc_enable_db;
331
332 /* Protects access to ofproto-dpif-upcall interface during revalidator
333 * thread synchronization. */
334 struct fat_rwlock upcall_rwlock;
335 upcall_callback *upcall_cb; /* Callback function for executing upcalls. */
336 void *upcall_aux;
337
338 /* Callback function for notifying the purging of dp flows (during
339 * reseting pmd deletion). */
340 dp_purge_callback *dp_purge_cb;
341 void *dp_purge_aux;
342
343 /* Stores all 'struct dp_netdev_pmd_thread's. */
344 struct cmap poll_threads;
345 /* id pool for per thread static_tx_qid. */
346 struct id_pool *tx_qid_pool;
347 struct ovs_mutex tx_qid_pool_mutex;
348 /* Use measured cycles for rxq to pmd assignment. */
349 bool pmd_rxq_assign_cyc;
350
351 /* Protects the access of the 'struct dp_netdev_pmd_thread'
352 * instance for non-pmd thread. */
353 struct ovs_mutex non_pmd_mutex;
354
355 /* Each pmd thread will store its pointer to
356 * 'struct dp_netdev_pmd_thread' in 'per_pmd_key'. */
357 ovsthread_key_t per_pmd_key;
358
359 struct seq *reconfigure_seq;
360 uint64_t last_reconfigure_seq;
361
362 /* Cpu mask for pin of pmd threads. */
363 char *pmd_cmask;
364
365 uint64_t last_tnl_conf_seq;
366
367 struct conntrack *conntrack;
368 struct pmd_auto_lb pmd_alb;
369 };
370
371 static void meter_lock(const struct dp_netdev *dp, uint32_t meter_id)
372 OVS_ACQUIRES(dp->meter_locks[meter_id % N_METER_LOCKS])
373 {
374 ovs_mutex_lock(&dp->meter_locks[meter_id % N_METER_LOCKS]);
375 }
376
377 static void meter_unlock(const struct dp_netdev *dp, uint32_t meter_id)
378 OVS_RELEASES(dp->meter_locks[meter_id % N_METER_LOCKS])
379 {
380 ovs_mutex_unlock(&dp->meter_locks[meter_id % N_METER_LOCKS]);
381 }
382
383
384 static struct dp_netdev_port *dp_netdev_lookup_port(const struct dp_netdev *dp,
385 odp_port_t)
386 OVS_REQUIRES(dp->port_mutex);
387
388 enum rxq_cycles_counter_type {
389 RXQ_CYCLES_PROC_CURR, /* Cycles spent successfully polling and
390 processing packets during the current
391 interval. */
392 RXQ_CYCLES_PROC_HIST, /* Total cycles of all intervals that are used
393 during rxq to pmd assignment. */
394 RXQ_N_CYCLES
395 };
396
397 enum {
398 DP_NETDEV_FLOW_OFFLOAD_OP_ADD,
399 DP_NETDEV_FLOW_OFFLOAD_OP_MOD,
400 DP_NETDEV_FLOW_OFFLOAD_OP_DEL,
401 };
402
403 struct dp_flow_offload_item {
404 struct dp_netdev_pmd_thread *pmd;
405 struct dp_netdev_flow *flow;
406 int op;
407 struct match match;
408 struct nlattr *actions;
409 size_t actions_len;
410
411 struct ovs_list node;
412 };
413
414 struct dp_flow_offload {
415 struct ovs_mutex mutex;
416 struct ovs_list list;
417 pthread_cond_t cond;
418 };
419
420 static struct dp_flow_offload dp_flow_offload = {
421 .mutex = OVS_MUTEX_INITIALIZER,
422 .list = OVS_LIST_INITIALIZER(&dp_flow_offload.list),
423 };
424
425 static struct ovsthread_once offload_thread_once
426 = OVSTHREAD_ONCE_INITIALIZER;
427
428 #define XPS_TIMEOUT 500000LL /* In microseconds. */
429
430 /* Contained by struct dp_netdev_port's 'rxqs' member. */
431 struct dp_netdev_rxq {
432 struct dp_netdev_port *port;
433 struct netdev_rxq *rx;
434 unsigned core_id; /* Core to which this queue should be
435 pinned. OVS_CORE_UNSPEC if the
436 queue doesn't need to be pinned to a
437 particular core. */
438 unsigned intrvl_idx; /* Write index for 'cycles_intrvl'. */
439 struct dp_netdev_pmd_thread *pmd; /* pmd thread that polls this queue. */
440 bool is_vhost; /* Is rxq of a vhost port. */
441
442 /* Counters of cycles spent successfully polling and processing pkts. */
443 atomic_ullong cycles[RXQ_N_CYCLES];
444 /* We store PMD_RXQ_INTERVAL_MAX intervals of data for an rxq and then
445 sum them to yield the cycles used for an rxq. */
446 atomic_ullong cycles_intrvl[PMD_RXQ_INTERVAL_MAX];
447 };
448
449 /* A port in a netdev-based datapath. */
450 struct dp_netdev_port {
451 odp_port_t port_no;
452 bool dynamic_txqs; /* If true XPS will be used. */
453 bool need_reconfigure; /* True if we should reconfigure netdev. */
454 struct netdev *netdev;
455 struct hmap_node node; /* Node in dp_netdev's 'ports'. */
456 struct netdev_saved_flags *sf;
457 struct dp_netdev_rxq *rxqs;
458 unsigned n_rxq; /* Number of elements in 'rxqs' */
459 unsigned *txq_used; /* Number of threads that use each tx queue. */
460 struct ovs_mutex txq_used_mutex;
461 bool emc_enabled; /* If true EMC will be used. */
462 char *type; /* Port type as requested by user. */
463 char *rxq_affinity_list; /* Requested affinity of rx queues. */
464 };
465
466 /* Contained by struct dp_netdev_flow's 'stats' member. */
467 struct dp_netdev_flow_stats {
468 atomic_llong used; /* Last used time, in monotonic msecs. */
469 atomic_ullong packet_count; /* Number of packets matched. */
470 atomic_ullong byte_count; /* Number of bytes matched. */
471 atomic_uint16_t tcp_flags; /* Bitwise-OR of seen tcp_flags values. */
472 };
473
474 /* A flow in 'dp_netdev_pmd_thread's 'flow_table'.
475 *
476 *
477 * Thread-safety
478 * =============
479 *
480 * Except near the beginning or ending of its lifespan, rule 'rule' belongs to
481 * its pmd thread's classifier. The text below calls this classifier 'cls'.
482 *
483 * Motivation
484 * ----------
485 *
486 * The thread safety rules described here for "struct dp_netdev_flow" are
487 * motivated by two goals:
488 *
489 * - Prevent threads that read members of "struct dp_netdev_flow" from
490 * reading bad data due to changes by some thread concurrently modifying
491 * those members.
492 *
493 * - Prevent two threads making changes to members of a given "struct
494 * dp_netdev_flow" from interfering with each other.
495 *
496 *
497 * Rules
498 * -----
499 *
500 * A flow 'flow' may be accessed without a risk of being freed during an RCU
501 * grace period. Code that needs to hold onto a flow for a while
502 * should try incrementing 'flow->ref_cnt' with dp_netdev_flow_ref().
503 *
504 * 'flow->ref_cnt' protects 'flow' from being freed. It doesn't protect the
505 * flow from being deleted from 'cls' and it doesn't protect members of 'flow'
506 * from modification.
507 *
508 * Some members, marked 'const', are immutable. Accessing other members
509 * requires synchronization, as noted in more detail below.
510 */
511 struct dp_netdev_flow {
512 const struct flow flow; /* Unmasked flow that created this entry. */
513 /* Hash table index by unmasked flow. */
514 const struct cmap_node node; /* In owning dp_netdev_pmd_thread's */
515 /* 'flow_table'. */
516 const struct cmap_node mark_node; /* In owning flow_mark's mark_to_flow */
517 const ovs_u128 ufid; /* Unique flow identifier. */
518 const ovs_u128 mega_ufid; /* Unique mega flow identifier. */
519 const unsigned pmd_id; /* The 'core_id' of pmd thread owning this */
520 /* flow. */
521
522 /* Number of references.
523 * The classifier owns one reference.
524 * Any thread trying to keep a rule from being freed should hold its own
525 * reference. */
526 struct ovs_refcount ref_cnt;
527
528 bool dead;
529 uint32_t mark; /* Unique flow mark assigned to a flow */
530
531 /* Statistics. */
532 struct dp_netdev_flow_stats stats;
533
534 /* Actions. */
535 OVSRCU_TYPE(struct dp_netdev_actions *) actions;
536
537 /* While processing a group of input packets, the datapath uses the next
538 * member to store a pointer to the output batch for the flow. It is
539 * reset after the batch has been sent out (See dp_netdev_queue_batches(),
540 * packet_batch_per_flow_init() and packet_batch_per_flow_execute()). */
541 struct packet_batch_per_flow *batch;
542
543 /* Packet classification. */
544 struct dpcls_rule cr; /* In owning dp_netdev's 'cls'. */
545 /* 'cr' must be the last member. */
546 };
547
548 static void dp_netdev_flow_unref(struct dp_netdev_flow *);
549 static bool dp_netdev_flow_ref(struct dp_netdev_flow *);
550 static int dpif_netdev_flow_from_nlattrs(const struct nlattr *, uint32_t,
551 struct flow *, bool);
552
553 /* A set of datapath actions within a "struct dp_netdev_flow".
554 *
555 *
556 * Thread-safety
557 * =============
558 *
559 * A struct dp_netdev_actions 'actions' is protected with RCU. */
560 struct dp_netdev_actions {
561 /* These members are immutable: they do not change during the struct's
562 * lifetime. */
563 unsigned int size; /* Size of 'actions', in bytes. */
564 struct nlattr actions[]; /* Sequence of OVS_ACTION_ATTR_* attributes. */
565 };
566
567 struct dp_netdev_actions *dp_netdev_actions_create(const struct nlattr *,
568 size_t);
569 struct dp_netdev_actions *dp_netdev_flow_get_actions(
570 const struct dp_netdev_flow *);
571 static void dp_netdev_actions_free(struct dp_netdev_actions *);
572
573 struct polled_queue {
574 struct dp_netdev_rxq *rxq;
575 odp_port_t port_no;
576 bool emc_enabled;
577 bool rxq_enabled;
578 uint64_t change_seq;
579 };
580
581 /* Contained by struct dp_netdev_pmd_thread's 'poll_list' member. */
582 struct rxq_poll {
583 struct dp_netdev_rxq *rxq;
584 struct hmap_node node;
585 };
586
587 /* Contained by struct dp_netdev_pmd_thread's 'send_port_cache',
588 * 'tnl_port_cache' or 'tx_ports'. */
589 struct tx_port {
590 struct dp_netdev_port *port;
591 int qid;
592 long long last_used;
593 struct hmap_node node;
594 long long flush_time;
595 struct dp_packet_batch output_pkts;
596 struct dp_netdev_rxq *output_pkts_rxqs[NETDEV_MAX_BURST];
597 };
598
599 /* A set of properties for the current processing loop that is not directly
600 * associated with the pmd thread itself, but with the packets being
601 * processed or the short-term system configuration (for example, time).
602 * Contained by struct dp_netdev_pmd_thread's 'ctx' member. */
603 struct dp_netdev_pmd_thread_ctx {
604 /* Latest measured time. See 'pmd_thread_ctx_time_update()'. */
605 long long now;
606 /* RX queue from which last packet was received. */
607 struct dp_netdev_rxq *last_rxq;
608 /* EMC insertion probability context for the current processing cycle. */
609 uint32_t emc_insert_min;
610 };
611
612 /* PMD: Poll modes drivers. PMD accesses devices via polling to eliminate
613 * the performance overhead of interrupt processing. Therefore netdev can
614 * not implement rx-wait for these devices. dpif-netdev needs to poll
615 * these device to check for recv buffer. pmd-thread does polling for
616 * devices assigned to itself.
617 *
618 * DPDK used PMD for accessing NIC.
619 *
620 * Note, instance with cpu core id NON_PMD_CORE_ID will be reserved for
621 * I/O of all non-pmd threads. There will be no actual thread created
622 * for the instance.
623 *
624 * Each struct has its own flow cache and classifier per managed ingress port.
625 * For packets received on ingress port, a look up is done on corresponding PMD
626 * thread's flow cache and in case of a miss, lookup is performed in the
627 * corresponding classifier of port. Packets are executed with the found
628 * actions in either case.
629 * */
630 struct dp_netdev_pmd_thread {
631 struct dp_netdev *dp;
632 struct ovs_refcount ref_cnt; /* Every reference must be refcount'ed. */
633 struct cmap_node node; /* In 'dp->poll_threads'. */
634
635 /* Per thread exact-match cache. Note, the instance for cpu core
636 * NON_PMD_CORE_ID can be accessed by multiple threads, and thusly
637 * need to be protected by 'non_pmd_mutex'. Every other instance
638 * will only be accessed by its own pmd thread. */
639 OVS_ALIGNED_VAR(CACHE_LINE_SIZE) struct dfc_cache flow_cache;
640
641 /* Flow-Table and classifiers
642 *
643 * Writers of 'flow_table' must take the 'flow_mutex'. Corresponding
644 * changes to 'classifiers' must be made while still holding the
645 * 'flow_mutex'.
646 */
647 struct ovs_mutex flow_mutex;
648 struct cmap flow_table OVS_GUARDED; /* Flow table. */
649
650 /* One classifier per in_port polled by the pmd */
651 struct cmap classifiers;
652 /* Periodically sort subtable vectors according to hit frequencies */
653 long long int next_optimization;
654 /* End of the next time interval for which processing cycles
655 are stored for each polled rxq. */
656 long long int rxq_next_cycle_store;
657
658 /* Last interval timestamp. */
659 uint64_t intrvl_tsc_prev;
660 /* Last interval cycles. */
661 atomic_ullong intrvl_cycles;
662
663 /* Current context of the PMD thread. */
664 struct dp_netdev_pmd_thread_ctx ctx;
665
666 struct seq *reload_seq;
667 uint64_t last_reload_seq;
668
669 /* These are atomic variables used as a synchronization and configuration
670 * points for thread reload/exit.
671 *
672 * 'reload' atomic is the main one and it's used as a memory
673 * synchronization point for all other knobs and data.
674 *
675 * For a thread that requests PMD reload:
676 *
677 * * All changes that should be visible to the PMD thread must be made
678 * before setting the 'reload'. These changes could use any memory
679 * ordering model including 'relaxed'.
680 * * Setting the 'reload' atomic should occur in the same thread where
681 * all other PMD configuration options updated.
682 * * Setting the 'reload' atomic should be done with 'release' memory
683 * ordering model or stricter. This will guarantee that all previous
684 * changes (including non-atomic and 'relaxed') will be visible to
685 * the PMD thread.
686 * * To check that reload is done, thread should poll the 'reload' atomic
687 * to become 'false'. Polling should be done with 'acquire' memory
688 * ordering model or stricter. This ensures that PMD thread completed
689 * the reload process.
690 *
691 * For the PMD thread:
692 *
693 * * PMD thread should read 'reload' atomic with 'acquire' memory
694 * ordering model or stricter. This will guarantee that all changes
695 * made before setting the 'reload' in the requesting thread will be
696 * visible to the PMD thread.
697 * * All other configuration data could be read with any memory
698 * ordering model (including non-atomic and 'relaxed') but *only after*
699 * reading the 'reload' atomic set to 'true'.
700 * * When the PMD reload done, PMD should (optionally) set all the below
701 * knobs except the 'reload' to their default ('false') values and
702 * (mandatory), as the last step, set the 'reload' to 'false' using
703 * 'release' memory ordering model or stricter. This will inform the
704 * requesting thread that PMD has completed a reload cycle.
705 */
706 atomic_bool reload; /* Do we need to reload ports? */
707 atomic_bool wait_for_reload; /* Can we busy wait for the next reload? */
708 atomic_bool reload_tx_qid; /* Do we need to reload static_tx_qid? */
709 atomic_bool exit; /* For terminating the pmd thread. */
710
711 pthread_t thread;
712 unsigned core_id; /* CPU core id of this pmd thread. */
713 int numa_id; /* numa node id of this pmd thread. */
714 bool isolated;
715
716 /* Queue id used by this pmd thread to send packets on all netdevs if
717 * XPS disabled for this netdev. All static_tx_qid's are unique and less
718 * than 'cmap_count(dp->poll_threads)'. */
719 uint32_t static_tx_qid;
720
721 /* Number of filled output batches. */
722 int n_output_batches;
723
724 struct ovs_mutex port_mutex; /* Mutex for 'poll_list' and 'tx_ports'. */
725 /* List of rx queues to poll. */
726 struct hmap poll_list OVS_GUARDED;
727 /* Map of 'tx_port's used for transmission. Written by the main thread,
728 * read by the pmd thread. */
729 struct hmap tx_ports OVS_GUARDED;
730
731 /* These are thread-local copies of 'tx_ports'. One contains only tunnel
732 * ports (that support push_tunnel/pop_tunnel), the other contains ports
733 * with at least one txq (that support send). A port can be in both.
734 *
735 * There are two separate maps to make sure that we don't try to execute
736 * OUTPUT on a device which has 0 txqs or PUSH/POP on a non-tunnel device.
737 *
738 * The instances for cpu core NON_PMD_CORE_ID can be accessed by multiple
739 * threads, and thusly need to be protected by 'non_pmd_mutex'. Every
740 * other instance will only be accessed by its own pmd thread. */
741 struct hmap tnl_port_cache;
742 struct hmap send_port_cache;
743
744 /* Keep track of detailed PMD performance statistics. */
745 struct pmd_perf_stats perf_stats;
746
747 /* Stats from previous iteration used by automatic pmd
748 * load balance logic. */
749 uint64_t prev_stats[PMD_N_STATS];
750 atomic_count pmd_overloaded;
751
752 /* Set to true if the pmd thread needs to be reloaded. */
753 bool need_reload;
754 };
755
756 /* Interface to netdev-based datapath. */
757 struct dpif_netdev {
758 struct dpif dpif;
759 struct dp_netdev *dp;
760 uint64_t last_port_seq;
761 };
762
763 static int get_port_by_number(struct dp_netdev *dp, odp_port_t port_no,
764 struct dp_netdev_port **portp)
765 OVS_REQUIRES(dp->port_mutex);
766 static int get_port_by_name(struct dp_netdev *dp, const char *devname,
767 struct dp_netdev_port **portp)
768 OVS_REQUIRES(dp->port_mutex);
769 static void dp_netdev_free(struct dp_netdev *)
770 OVS_REQUIRES(dp_netdev_mutex);
771 static int do_add_port(struct dp_netdev *dp, const char *devname,
772 const char *type, odp_port_t port_no)
773 OVS_REQUIRES(dp->port_mutex);
774 static void do_del_port(struct dp_netdev *dp, struct dp_netdev_port *)
775 OVS_REQUIRES(dp->port_mutex);
776 static int dpif_netdev_open(const struct dpif_class *, const char *name,
777 bool create, struct dpif **);
778 static void dp_netdev_execute_actions(struct dp_netdev_pmd_thread *pmd,
779 struct dp_packet_batch *,
780 bool should_steal,
781 const struct flow *flow,
782 const struct nlattr *actions,
783 size_t actions_len);
784 static void dp_netdev_input(struct dp_netdev_pmd_thread *,
785 struct dp_packet_batch *, odp_port_t port_no);
786 static void dp_netdev_recirculate(struct dp_netdev_pmd_thread *,
787 struct dp_packet_batch *);
788
789 static void dp_netdev_disable_upcall(struct dp_netdev *);
790 static void dp_netdev_pmd_reload_done(struct dp_netdev_pmd_thread *pmd);
791 static void dp_netdev_configure_pmd(struct dp_netdev_pmd_thread *pmd,
792 struct dp_netdev *dp, unsigned core_id,
793 int numa_id);
794 static void dp_netdev_destroy_pmd(struct dp_netdev_pmd_thread *pmd);
795 static void dp_netdev_set_nonpmd(struct dp_netdev *dp)
796 OVS_REQUIRES(dp->port_mutex);
797
798 static void *pmd_thread_main(void *);
799 static struct dp_netdev_pmd_thread *dp_netdev_get_pmd(struct dp_netdev *dp,
800 unsigned core_id);
801 static struct dp_netdev_pmd_thread *
802 dp_netdev_pmd_get_next(struct dp_netdev *dp, struct cmap_position *pos);
803 static void dp_netdev_del_pmd(struct dp_netdev *dp,
804 struct dp_netdev_pmd_thread *pmd);
805 static void dp_netdev_destroy_all_pmds(struct dp_netdev *dp, bool non_pmd);
806 static void dp_netdev_pmd_clear_ports(struct dp_netdev_pmd_thread *pmd);
807 static void dp_netdev_add_port_tx_to_pmd(struct dp_netdev_pmd_thread *pmd,
808 struct dp_netdev_port *port)
809 OVS_REQUIRES(pmd->port_mutex);
810 static void dp_netdev_del_port_tx_from_pmd(struct dp_netdev_pmd_thread *pmd,
811 struct tx_port *tx)
812 OVS_REQUIRES(pmd->port_mutex);
813 static void dp_netdev_add_rxq_to_pmd(struct dp_netdev_pmd_thread *pmd,
814 struct dp_netdev_rxq *rxq)
815 OVS_REQUIRES(pmd->port_mutex);
816 static void dp_netdev_del_rxq_from_pmd(struct dp_netdev_pmd_thread *pmd,
817 struct rxq_poll *poll)
818 OVS_REQUIRES(pmd->port_mutex);
819 static int
820 dp_netdev_pmd_flush_output_packets(struct dp_netdev_pmd_thread *pmd,
821 bool force);
822
823 static void reconfigure_datapath(struct dp_netdev *dp)
824 OVS_REQUIRES(dp->port_mutex);
825 static bool dp_netdev_pmd_try_ref(struct dp_netdev_pmd_thread *pmd);
826 static void dp_netdev_pmd_unref(struct dp_netdev_pmd_thread *pmd);
827 static void dp_netdev_pmd_flow_flush(struct dp_netdev_pmd_thread *pmd);
828 static void pmd_load_cached_ports(struct dp_netdev_pmd_thread *pmd)
829 OVS_REQUIRES(pmd->port_mutex);
830 static inline void
831 dp_netdev_pmd_try_optimize(struct dp_netdev_pmd_thread *pmd,
832 struct polled_queue *poll_list, int poll_cnt);
833 static void
834 dp_netdev_rxq_set_cycles(struct dp_netdev_rxq *rx,
835 enum rxq_cycles_counter_type type,
836 unsigned long long cycles);
837 static uint64_t
838 dp_netdev_rxq_get_cycles(struct dp_netdev_rxq *rx,
839 enum rxq_cycles_counter_type type);
840 static void
841 dp_netdev_rxq_set_intrvl_cycles(struct dp_netdev_rxq *rx,
842 unsigned long long cycles);
843 static uint64_t
844 dp_netdev_rxq_get_intrvl_cycles(struct dp_netdev_rxq *rx, unsigned idx);
845 static void
846 dpif_netdev_xps_revalidate_pmd(const struct dp_netdev_pmd_thread *pmd,
847 bool purge);
848 static int dpif_netdev_xps_get_tx_qid(const struct dp_netdev_pmd_thread *pmd,
849 struct tx_port *tx);
850
851 static inline bool emc_entry_alive(struct emc_entry *ce);
852 static void emc_clear_entry(struct emc_entry *ce);
853 static void smc_clear_entry(struct smc_bucket *b, int idx);
854
855 static void dp_netdev_request_reconfigure(struct dp_netdev *dp);
856 static inline bool
857 pmd_perf_metrics_enabled(const struct dp_netdev_pmd_thread *pmd);
858 static void queue_netdev_flow_del(struct dp_netdev_pmd_thread *pmd,
859 struct dp_netdev_flow *flow);
860
861 static void
862 emc_cache_init(struct emc_cache *flow_cache)
863 {
864 int i;
865
866 flow_cache->sweep_idx = 0;
867 for (i = 0; i < ARRAY_SIZE(flow_cache->entries); i++) {
868 flow_cache->entries[i].flow = NULL;
869 flow_cache->entries[i].key.hash = 0;
870 flow_cache->entries[i].key.len = sizeof(struct miniflow);
871 flowmap_init(&flow_cache->entries[i].key.mf.map);
872 }
873 }
874
875 static void
876 smc_cache_init(struct smc_cache *smc_cache)
877 {
878 int i, j;
879 for (i = 0; i < SMC_BUCKET_CNT; i++) {
880 for (j = 0; j < SMC_ENTRY_PER_BUCKET; j++) {
881 smc_cache->buckets[i].flow_idx[j] = UINT16_MAX;
882 }
883 }
884 }
885
886 static void
887 dfc_cache_init(struct dfc_cache *flow_cache)
888 {
889 emc_cache_init(&flow_cache->emc_cache);
890 smc_cache_init(&flow_cache->smc_cache);
891 }
892
893 static void
894 emc_cache_uninit(struct emc_cache *flow_cache)
895 {
896 int i;
897
898 for (i = 0; i < ARRAY_SIZE(flow_cache->entries); i++) {
899 emc_clear_entry(&flow_cache->entries[i]);
900 }
901 }
902
903 static void
904 smc_cache_uninit(struct smc_cache *smc)
905 {
906 int i, j;
907
908 for (i = 0; i < SMC_BUCKET_CNT; i++) {
909 for (j = 0; j < SMC_ENTRY_PER_BUCKET; j++) {
910 smc_clear_entry(&(smc->buckets[i]), j);
911 }
912 }
913 }
914
915 static void
916 dfc_cache_uninit(struct dfc_cache *flow_cache)
917 {
918 smc_cache_uninit(&flow_cache->smc_cache);
919 emc_cache_uninit(&flow_cache->emc_cache);
920 }
921
922 /* Check and clear dead flow references slowly (one entry at each
923 * invocation). */
924 static void
925 emc_cache_slow_sweep(struct emc_cache *flow_cache)
926 {
927 struct emc_entry *entry = &flow_cache->entries[flow_cache->sweep_idx];
928
929 if (!emc_entry_alive(entry)) {
930 emc_clear_entry(entry);
931 }
932 flow_cache->sweep_idx = (flow_cache->sweep_idx + 1) & EM_FLOW_HASH_MASK;
933 }
934
935 /* Updates the time in PMD threads context and should be called in three cases:
936 *
937 * 1. PMD structure initialization:
938 * - dp_netdev_configure_pmd()
939 *
940 * 2. Before processing of the new packet batch:
941 * - dpif_netdev_execute()
942 * - dp_netdev_process_rxq_port()
943 *
944 * 3. At least once per polling iteration in main polling threads if no
945 * packets received on current iteration:
946 * - dpif_netdev_run()
947 * - pmd_thread_main()
948 *
949 * 'pmd->ctx.now' should be used without update in all other cases if possible.
950 */
951 static inline void
952 pmd_thread_ctx_time_update(struct dp_netdev_pmd_thread *pmd)
953 {
954 pmd->ctx.now = time_usec();
955 }
956
957 /* Returns true if 'dpif' is a netdev or dummy dpif, false otherwise. */
958 bool
959 dpif_is_netdev(const struct dpif *dpif)
960 {
961 return dpif->dpif_class->open == dpif_netdev_open;
962 }
963
964 static struct dpif_netdev *
965 dpif_netdev_cast(const struct dpif *dpif)
966 {
967 ovs_assert(dpif_is_netdev(dpif));
968 return CONTAINER_OF(dpif, struct dpif_netdev, dpif);
969 }
970
971 static struct dp_netdev *
972 get_dp_netdev(const struct dpif *dpif)
973 {
974 return dpif_netdev_cast(dpif)->dp;
975 }
976 \f
977 enum pmd_info_type {
978 PMD_INFO_SHOW_STATS, /* Show how cpu cycles are spent. */
979 PMD_INFO_CLEAR_STATS, /* Set the cycles count to 0. */
980 PMD_INFO_SHOW_RXQ, /* Show poll lists of pmd threads. */
981 PMD_INFO_PERF_SHOW, /* Show pmd performance details. */
982 };
983
984 static void
985 format_pmd_thread(struct ds *reply, struct dp_netdev_pmd_thread *pmd)
986 {
987 ds_put_cstr(reply, (pmd->core_id == NON_PMD_CORE_ID)
988 ? "main thread" : "pmd thread");
989 if (pmd->numa_id != OVS_NUMA_UNSPEC) {
990 ds_put_format(reply, " numa_id %d", pmd->numa_id);
991 }
992 if (pmd->core_id != OVS_CORE_UNSPEC && pmd->core_id != NON_PMD_CORE_ID) {
993 ds_put_format(reply, " core_id %u", pmd->core_id);
994 }
995 ds_put_cstr(reply, ":\n");
996 }
997
998 static void
999 pmd_info_show_stats(struct ds *reply,
1000 struct dp_netdev_pmd_thread *pmd)
1001 {
1002 uint64_t stats[PMD_N_STATS];
1003 uint64_t total_cycles, total_packets;
1004 double passes_per_pkt = 0;
1005 double lookups_per_hit = 0;
1006 double packets_per_batch = 0;
1007
1008 pmd_perf_read_counters(&pmd->perf_stats, stats);
1009 total_cycles = stats[PMD_CYCLES_ITER_IDLE]
1010 + stats[PMD_CYCLES_ITER_BUSY];
1011 total_packets = stats[PMD_STAT_RECV];
1012
1013 format_pmd_thread(reply, pmd);
1014
1015 if (total_packets > 0) {
1016 passes_per_pkt = (total_packets + stats[PMD_STAT_RECIRC])
1017 / (double) total_packets;
1018 }
1019 if (stats[PMD_STAT_MASKED_HIT] > 0) {
1020 lookups_per_hit = stats[PMD_STAT_MASKED_LOOKUP]
1021 / (double) stats[PMD_STAT_MASKED_HIT];
1022 }
1023 if (stats[PMD_STAT_SENT_BATCHES] > 0) {
1024 packets_per_batch = stats[PMD_STAT_SENT_PKTS]
1025 / (double) stats[PMD_STAT_SENT_BATCHES];
1026 }
1027
1028 ds_put_format(reply,
1029 " packets received: %"PRIu64"\n"
1030 " packet recirculations: %"PRIu64"\n"
1031 " avg. datapath passes per packet: %.02f\n"
1032 " emc hits: %"PRIu64"\n"
1033 " smc hits: %"PRIu64"\n"
1034 " megaflow hits: %"PRIu64"\n"
1035 " avg. subtable lookups per megaflow hit: %.02f\n"
1036 " miss with success upcall: %"PRIu64"\n"
1037 " miss with failed upcall: %"PRIu64"\n"
1038 " avg. packets per output batch: %.02f\n",
1039 total_packets, stats[PMD_STAT_RECIRC],
1040 passes_per_pkt, stats[PMD_STAT_EXACT_HIT],
1041 stats[PMD_STAT_SMC_HIT],
1042 stats[PMD_STAT_MASKED_HIT], lookups_per_hit,
1043 stats[PMD_STAT_MISS], stats[PMD_STAT_LOST],
1044 packets_per_batch);
1045
1046 if (total_cycles == 0) {
1047 return;
1048 }
1049
1050 ds_put_format(reply,
1051 " idle cycles: %"PRIu64" (%.02f%%)\n"
1052 " processing cycles: %"PRIu64" (%.02f%%)\n",
1053 stats[PMD_CYCLES_ITER_IDLE],
1054 stats[PMD_CYCLES_ITER_IDLE] / (double) total_cycles * 100,
1055 stats[PMD_CYCLES_ITER_BUSY],
1056 stats[PMD_CYCLES_ITER_BUSY] / (double) total_cycles * 100);
1057
1058 if (total_packets == 0) {
1059 return;
1060 }
1061
1062 ds_put_format(reply,
1063 " avg cycles per packet: %.02f (%"PRIu64"/%"PRIu64")\n",
1064 total_cycles / (double) total_packets,
1065 total_cycles, total_packets);
1066
1067 ds_put_format(reply,
1068 " avg processing cycles per packet: "
1069 "%.02f (%"PRIu64"/%"PRIu64")\n",
1070 stats[PMD_CYCLES_ITER_BUSY] / (double) total_packets,
1071 stats[PMD_CYCLES_ITER_BUSY], total_packets);
1072 }
1073
1074 static void
1075 pmd_info_show_perf(struct ds *reply,
1076 struct dp_netdev_pmd_thread *pmd,
1077 struct pmd_perf_params *par)
1078 {
1079 if (pmd->core_id != NON_PMD_CORE_ID) {
1080 char *time_str =
1081 xastrftime_msec("%H:%M:%S.###", time_wall_msec(), true);
1082 long long now = time_msec();
1083 double duration = (now - pmd->perf_stats.start_ms) / 1000.0;
1084
1085 ds_put_cstr(reply, "\n");
1086 ds_put_format(reply, "Time: %s\n", time_str);
1087 ds_put_format(reply, "Measurement duration: %.3f s\n", duration);
1088 ds_put_cstr(reply, "\n");
1089 format_pmd_thread(reply, pmd);
1090 ds_put_cstr(reply, "\n");
1091 pmd_perf_format_overall_stats(reply, &pmd->perf_stats, duration);
1092 if (pmd_perf_metrics_enabled(pmd)) {
1093 /* Prevent parallel clearing of perf metrics. */
1094 ovs_mutex_lock(&pmd->perf_stats.clear_mutex);
1095 if (par->histograms) {
1096 ds_put_cstr(reply, "\n");
1097 pmd_perf_format_histograms(reply, &pmd->perf_stats);
1098 }
1099 if (par->iter_hist_len > 0) {
1100 ds_put_cstr(reply, "\n");
1101 pmd_perf_format_iteration_history(reply, &pmd->perf_stats,
1102 par->iter_hist_len);
1103 }
1104 if (par->ms_hist_len > 0) {
1105 ds_put_cstr(reply, "\n");
1106 pmd_perf_format_ms_history(reply, &pmd->perf_stats,
1107 par->ms_hist_len);
1108 }
1109 ovs_mutex_unlock(&pmd->perf_stats.clear_mutex);
1110 }
1111 free(time_str);
1112 }
1113 }
1114
1115 static int
1116 compare_poll_list(const void *a_, const void *b_)
1117 {
1118 const struct rxq_poll *a = a_;
1119 const struct rxq_poll *b = b_;
1120
1121 const char *namea = netdev_rxq_get_name(a->rxq->rx);
1122 const char *nameb = netdev_rxq_get_name(b->rxq->rx);
1123
1124 int cmp = strcmp(namea, nameb);
1125 if (!cmp) {
1126 return netdev_rxq_get_queue_id(a->rxq->rx)
1127 - netdev_rxq_get_queue_id(b->rxq->rx);
1128 } else {
1129 return cmp;
1130 }
1131 }
1132
1133 static void
1134 sorted_poll_list(struct dp_netdev_pmd_thread *pmd, struct rxq_poll **list,
1135 size_t *n)
1136 OVS_REQUIRES(pmd->port_mutex)
1137 {
1138 struct rxq_poll *ret, *poll;
1139 size_t i;
1140
1141 *n = hmap_count(&pmd->poll_list);
1142 if (!*n) {
1143 ret = NULL;
1144 } else {
1145 ret = xcalloc(*n, sizeof *ret);
1146 i = 0;
1147 HMAP_FOR_EACH (poll, node, &pmd->poll_list) {
1148 ret[i] = *poll;
1149 i++;
1150 }
1151 ovs_assert(i == *n);
1152 qsort(ret, *n, sizeof *ret, compare_poll_list);
1153 }
1154
1155 *list = ret;
1156 }
1157
1158 static void
1159 pmd_info_show_rxq(struct ds *reply, struct dp_netdev_pmd_thread *pmd)
1160 {
1161 if (pmd->core_id != NON_PMD_CORE_ID) {
1162 struct rxq_poll *list;
1163 size_t n_rxq;
1164 uint64_t total_cycles = 0;
1165
1166 ds_put_format(reply,
1167 "pmd thread numa_id %d core_id %u:\n isolated : %s\n",
1168 pmd->numa_id, pmd->core_id, (pmd->isolated)
1169 ? "true" : "false");
1170
1171 ovs_mutex_lock(&pmd->port_mutex);
1172 sorted_poll_list(pmd, &list, &n_rxq);
1173
1174 /* Get the total pmd cycles for an interval. */
1175 atomic_read_relaxed(&pmd->intrvl_cycles, &total_cycles);
1176 /* Estimate the cycles to cover all intervals. */
1177 total_cycles *= PMD_RXQ_INTERVAL_MAX;
1178
1179 for (int i = 0; i < n_rxq; i++) {
1180 struct dp_netdev_rxq *rxq = list[i].rxq;
1181 const char *name = netdev_rxq_get_name(rxq->rx);
1182 uint64_t proc_cycles = 0;
1183
1184 for (int j = 0; j < PMD_RXQ_INTERVAL_MAX; j++) {
1185 proc_cycles += dp_netdev_rxq_get_intrvl_cycles(rxq, j);
1186 }
1187 ds_put_format(reply, " port: %-16s queue-id: %2d", name,
1188 netdev_rxq_get_queue_id(list[i].rxq->rx));
1189 ds_put_format(reply, " %s", netdev_rxq_enabled(list[i].rxq->rx)
1190 ? "(enabled) " : "(disabled)");
1191 ds_put_format(reply, " pmd usage: ");
1192 if (total_cycles) {
1193 ds_put_format(reply, "%2"PRIu64"",
1194 proc_cycles * 100 / total_cycles);
1195 ds_put_cstr(reply, " %");
1196 } else {
1197 ds_put_format(reply, "%s", "NOT AVAIL");
1198 }
1199 ds_put_cstr(reply, "\n");
1200 }
1201 ovs_mutex_unlock(&pmd->port_mutex);
1202 free(list);
1203 }
1204 }
1205
1206 static int
1207 compare_poll_thread_list(const void *a_, const void *b_)
1208 {
1209 const struct dp_netdev_pmd_thread *a, *b;
1210
1211 a = *(struct dp_netdev_pmd_thread **)a_;
1212 b = *(struct dp_netdev_pmd_thread **)b_;
1213
1214 if (a->core_id < b->core_id) {
1215 return -1;
1216 }
1217 if (a->core_id > b->core_id) {
1218 return 1;
1219 }
1220 return 0;
1221 }
1222
1223 /* Create a sorted list of pmd's from the dp->poll_threads cmap. We can use
1224 * this list, as long as we do not go to quiescent state. */
1225 static void
1226 sorted_poll_thread_list(struct dp_netdev *dp,
1227 struct dp_netdev_pmd_thread ***list,
1228 size_t *n)
1229 {
1230 struct dp_netdev_pmd_thread *pmd;
1231 struct dp_netdev_pmd_thread **pmd_list;
1232 size_t k = 0, n_pmds;
1233
1234 n_pmds = cmap_count(&dp->poll_threads);
1235 pmd_list = xcalloc(n_pmds, sizeof *pmd_list);
1236
1237 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
1238 if (k >= n_pmds) {
1239 break;
1240 }
1241 pmd_list[k++] = pmd;
1242 }
1243
1244 qsort(pmd_list, k, sizeof *pmd_list, compare_poll_thread_list);
1245
1246 *list = pmd_list;
1247 *n = k;
1248 }
1249
1250 static void
1251 dpif_netdev_pmd_rebalance(struct unixctl_conn *conn, int argc,
1252 const char *argv[], void *aux OVS_UNUSED)
1253 {
1254 struct ds reply = DS_EMPTY_INITIALIZER;
1255 struct dp_netdev *dp = NULL;
1256
1257 ovs_mutex_lock(&dp_netdev_mutex);
1258
1259 if (argc == 2) {
1260 dp = shash_find_data(&dp_netdevs, argv[1]);
1261 } else if (shash_count(&dp_netdevs) == 1) {
1262 /* There's only one datapath */
1263 dp = shash_first(&dp_netdevs)->data;
1264 }
1265
1266 if (!dp) {
1267 ovs_mutex_unlock(&dp_netdev_mutex);
1268 unixctl_command_reply_error(conn,
1269 "please specify an existing datapath");
1270 return;
1271 }
1272
1273 dp_netdev_request_reconfigure(dp);
1274 ovs_mutex_unlock(&dp_netdev_mutex);
1275 ds_put_cstr(&reply, "pmd rxq rebalance requested.\n");
1276 unixctl_command_reply(conn, ds_cstr(&reply));
1277 ds_destroy(&reply);
1278 }
1279
1280 static void
1281 dpif_netdev_pmd_info(struct unixctl_conn *conn, int argc, const char *argv[],
1282 void *aux)
1283 {
1284 struct ds reply = DS_EMPTY_INITIALIZER;
1285 struct dp_netdev_pmd_thread **pmd_list;
1286 struct dp_netdev *dp = NULL;
1287 enum pmd_info_type type = *(enum pmd_info_type *) aux;
1288 unsigned int core_id;
1289 bool filter_on_pmd = false;
1290 size_t n;
1291
1292 ovs_mutex_lock(&dp_netdev_mutex);
1293
1294 while (argc > 1) {
1295 if (!strcmp(argv[1], "-pmd") && argc > 2) {
1296 if (str_to_uint(argv[2], 10, &core_id)) {
1297 filter_on_pmd = true;
1298 }
1299 argc -= 2;
1300 argv += 2;
1301 } else {
1302 dp = shash_find_data(&dp_netdevs, argv[1]);
1303 argc -= 1;
1304 argv += 1;
1305 }
1306 }
1307
1308 if (!dp) {
1309 if (shash_count(&dp_netdevs) == 1) {
1310 /* There's only one datapath */
1311 dp = shash_first(&dp_netdevs)->data;
1312 } else {
1313 ovs_mutex_unlock(&dp_netdev_mutex);
1314 unixctl_command_reply_error(conn,
1315 "please specify an existing datapath");
1316 return;
1317 }
1318 }
1319
1320 sorted_poll_thread_list(dp, &pmd_list, &n);
1321 for (size_t i = 0; i < n; i++) {
1322 struct dp_netdev_pmd_thread *pmd = pmd_list[i];
1323 if (!pmd) {
1324 break;
1325 }
1326 if (filter_on_pmd && pmd->core_id != core_id) {
1327 continue;
1328 }
1329 if (type == PMD_INFO_SHOW_RXQ) {
1330 pmd_info_show_rxq(&reply, pmd);
1331 } else if (type == PMD_INFO_CLEAR_STATS) {
1332 pmd_perf_stats_clear(&pmd->perf_stats);
1333 } else if (type == PMD_INFO_SHOW_STATS) {
1334 pmd_info_show_stats(&reply, pmd);
1335 } else if (type == PMD_INFO_PERF_SHOW) {
1336 pmd_info_show_perf(&reply, pmd, (struct pmd_perf_params *)aux);
1337 }
1338 }
1339 free(pmd_list);
1340
1341 ovs_mutex_unlock(&dp_netdev_mutex);
1342
1343 unixctl_command_reply(conn, ds_cstr(&reply));
1344 ds_destroy(&reply);
1345 }
1346
1347 static void
1348 pmd_perf_show_cmd(struct unixctl_conn *conn, int argc,
1349 const char *argv[],
1350 void *aux OVS_UNUSED)
1351 {
1352 struct pmd_perf_params par;
1353 long int it_hist = 0, ms_hist = 0;
1354 par.histograms = true;
1355
1356 while (argc > 1) {
1357 if (!strcmp(argv[1], "-nh")) {
1358 par.histograms = false;
1359 argc -= 1;
1360 argv += 1;
1361 } else if (!strcmp(argv[1], "-it") && argc > 2) {
1362 it_hist = strtol(argv[2], NULL, 10);
1363 if (it_hist < 0) {
1364 it_hist = 0;
1365 } else if (it_hist > HISTORY_LEN) {
1366 it_hist = HISTORY_LEN;
1367 }
1368 argc -= 2;
1369 argv += 2;
1370 } else if (!strcmp(argv[1], "-ms") && argc > 2) {
1371 ms_hist = strtol(argv[2], NULL, 10);
1372 if (ms_hist < 0) {
1373 ms_hist = 0;
1374 } else if (ms_hist > HISTORY_LEN) {
1375 ms_hist = HISTORY_LEN;
1376 }
1377 argc -= 2;
1378 argv += 2;
1379 } else {
1380 break;
1381 }
1382 }
1383 par.iter_hist_len = it_hist;
1384 par.ms_hist_len = ms_hist;
1385 par.command_type = PMD_INFO_PERF_SHOW;
1386 dpif_netdev_pmd_info(conn, argc, argv, &par);
1387 }
1388 \f
1389 static int
1390 dpif_netdev_init(void)
1391 {
1392 static enum pmd_info_type show_aux = PMD_INFO_SHOW_STATS,
1393 clear_aux = PMD_INFO_CLEAR_STATS,
1394 poll_aux = PMD_INFO_SHOW_RXQ;
1395
1396 unixctl_command_register("dpif-netdev/pmd-stats-show", "[-pmd core] [dp]",
1397 0, 3, dpif_netdev_pmd_info,
1398 (void *)&show_aux);
1399 unixctl_command_register("dpif-netdev/pmd-stats-clear", "[-pmd core] [dp]",
1400 0, 3, dpif_netdev_pmd_info,
1401 (void *)&clear_aux);
1402 unixctl_command_register("dpif-netdev/pmd-rxq-show", "[-pmd core] [dp]",
1403 0, 3, dpif_netdev_pmd_info,
1404 (void *)&poll_aux);
1405 unixctl_command_register("dpif-netdev/pmd-perf-show",
1406 "[-nh] [-it iter-history-len]"
1407 " [-ms ms-history-len]"
1408 " [-pmd core] [dp]",
1409 0, 8, pmd_perf_show_cmd,
1410 NULL);
1411 unixctl_command_register("dpif-netdev/pmd-rxq-rebalance", "[dp]",
1412 0, 1, dpif_netdev_pmd_rebalance,
1413 NULL);
1414 unixctl_command_register("dpif-netdev/pmd-perf-log-set",
1415 "on|off [-b before] [-a after] [-e|-ne] "
1416 "[-us usec] [-q qlen]",
1417 0, 10, pmd_perf_log_set_cmd,
1418 NULL);
1419 return 0;
1420 }
1421
1422 static int
1423 dpif_netdev_enumerate(struct sset *all_dps,
1424 const struct dpif_class *dpif_class)
1425 {
1426 struct shash_node *node;
1427
1428 ovs_mutex_lock(&dp_netdev_mutex);
1429 SHASH_FOR_EACH(node, &dp_netdevs) {
1430 struct dp_netdev *dp = node->data;
1431 if (dpif_class != dp->class) {
1432 /* 'dp_netdevs' contains both "netdev" and "dummy" dpifs.
1433 * If the class doesn't match, skip this dpif. */
1434 continue;
1435 }
1436 sset_add(all_dps, node->name);
1437 }
1438 ovs_mutex_unlock(&dp_netdev_mutex);
1439
1440 return 0;
1441 }
1442
1443 static bool
1444 dpif_netdev_class_is_dummy(const struct dpif_class *class)
1445 {
1446 return class != &dpif_netdev_class;
1447 }
1448
1449 static const char *
1450 dpif_netdev_port_open_type(const struct dpif_class *class, const char *type)
1451 {
1452 return strcmp(type, "internal") ? type
1453 : dpif_netdev_class_is_dummy(class) ? "dummy-internal"
1454 : "tap";
1455 }
1456
1457 static struct dpif *
1458 create_dpif_netdev(struct dp_netdev *dp)
1459 {
1460 uint16_t netflow_id = hash_string(dp->name, 0);
1461 struct dpif_netdev *dpif;
1462
1463 ovs_refcount_ref(&dp->ref_cnt);
1464
1465 dpif = xmalloc(sizeof *dpif);
1466 dpif_init(&dpif->dpif, dp->class, dp->name, netflow_id >> 8, netflow_id);
1467 dpif->dp = dp;
1468 dpif->last_port_seq = seq_read(dp->port_seq);
1469
1470 return &dpif->dpif;
1471 }
1472
1473 /* Choose an unused, non-zero port number and return it on success.
1474 * Return ODPP_NONE on failure. */
1475 static odp_port_t
1476 choose_port(struct dp_netdev *dp, const char *name)
1477 OVS_REQUIRES(dp->port_mutex)
1478 {
1479 uint32_t port_no;
1480
1481 if (dp->class != &dpif_netdev_class) {
1482 const char *p;
1483 int start_no = 0;
1484
1485 /* If the port name begins with "br", start the number search at
1486 * 100 to make writing tests easier. */
1487 if (!strncmp(name, "br", 2)) {
1488 start_no = 100;
1489 }
1490
1491 /* If the port name contains a number, try to assign that port number.
1492 * This can make writing unit tests easier because port numbers are
1493 * predictable. */
1494 for (p = name; *p != '\0'; p++) {
1495 if (isdigit((unsigned char) *p)) {
1496 port_no = start_no + strtol(p, NULL, 10);
1497 if (port_no > 0 && port_no != odp_to_u32(ODPP_NONE)
1498 && !dp_netdev_lookup_port(dp, u32_to_odp(port_no))) {
1499 return u32_to_odp(port_no);
1500 }
1501 break;
1502 }
1503 }
1504 }
1505
1506 for (port_no = 1; port_no <= UINT16_MAX; port_no++) {
1507 if (!dp_netdev_lookup_port(dp, u32_to_odp(port_no))) {
1508 return u32_to_odp(port_no);
1509 }
1510 }
1511
1512 return ODPP_NONE;
1513 }
1514
1515 static int
1516 create_dp_netdev(const char *name, const struct dpif_class *class,
1517 struct dp_netdev **dpp)
1518 OVS_REQUIRES(dp_netdev_mutex)
1519 {
1520 static struct ovsthread_once tsc_freq_check = OVSTHREAD_ONCE_INITIALIZER;
1521 struct dp_netdev *dp;
1522 int error;
1523
1524 /* Avoid estimating TSC frequency for dummy datapath to not slow down
1525 * unit tests. */
1526 if (!dpif_netdev_class_is_dummy(class)
1527 && ovsthread_once_start(&tsc_freq_check)) {
1528 pmd_perf_estimate_tsc_frequency();
1529 ovsthread_once_done(&tsc_freq_check);
1530 }
1531
1532 dp = xzalloc(sizeof *dp);
1533 shash_add(&dp_netdevs, name, dp);
1534
1535 *CONST_CAST(const struct dpif_class **, &dp->class) = class;
1536 *CONST_CAST(const char **, &dp->name) = xstrdup(name);
1537 ovs_refcount_init(&dp->ref_cnt);
1538 atomic_flag_clear(&dp->destroyed);
1539
1540 ovs_mutex_init(&dp->port_mutex);
1541 hmap_init(&dp->ports);
1542 dp->port_seq = seq_create();
1543 fat_rwlock_init(&dp->upcall_rwlock);
1544
1545 dp->reconfigure_seq = seq_create();
1546 dp->last_reconfigure_seq = seq_read(dp->reconfigure_seq);
1547
1548 for (int i = 0; i < N_METER_LOCKS; ++i) {
1549 ovs_mutex_init_adaptive(&dp->meter_locks[i]);
1550 }
1551
1552 /* Disable upcalls by default. */
1553 dp_netdev_disable_upcall(dp);
1554 dp->upcall_aux = NULL;
1555 dp->upcall_cb = NULL;
1556
1557 dp->conntrack = conntrack_init();
1558
1559 atomic_init(&dp->emc_insert_min, DEFAULT_EM_FLOW_INSERT_MIN);
1560 atomic_init(&dp->tx_flush_interval, DEFAULT_TX_FLUSH_INTERVAL);
1561
1562 cmap_init(&dp->poll_threads);
1563 dp->pmd_rxq_assign_cyc = true;
1564
1565 ovs_mutex_init(&dp->tx_qid_pool_mutex);
1566 /* We need 1 Tx queue for each possible core + 1 for non-PMD threads. */
1567 dp->tx_qid_pool = id_pool_create(0, ovs_numa_get_n_cores() + 1);
1568
1569 ovs_mutex_init_recursive(&dp->non_pmd_mutex);
1570 ovsthread_key_create(&dp->per_pmd_key, NULL);
1571
1572 ovs_mutex_lock(&dp->port_mutex);
1573 /* non-PMD will be created before all other threads and will
1574 * allocate static_tx_qid = 0. */
1575 dp_netdev_set_nonpmd(dp);
1576
1577 error = do_add_port(dp, name, dpif_netdev_port_open_type(dp->class,
1578 "internal"),
1579 ODPP_LOCAL);
1580 ovs_mutex_unlock(&dp->port_mutex);
1581 if (error) {
1582 dp_netdev_free(dp);
1583 return error;
1584 }
1585
1586 dp->last_tnl_conf_seq = seq_read(tnl_conf_seq);
1587 *dpp = dp;
1588 return 0;
1589 }
1590
1591 static void
1592 dp_netdev_request_reconfigure(struct dp_netdev *dp)
1593 {
1594 seq_change(dp->reconfigure_seq);
1595 }
1596
1597 static bool
1598 dp_netdev_is_reconf_required(struct dp_netdev *dp)
1599 {
1600 return seq_read(dp->reconfigure_seq) != dp->last_reconfigure_seq;
1601 }
1602
1603 static int
1604 dpif_netdev_open(const struct dpif_class *class, const char *name,
1605 bool create, struct dpif **dpifp)
1606 {
1607 struct dp_netdev *dp;
1608 int error;
1609
1610 ovs_mutex_lock(&dp_netdev_mutex);
1611 dp = shash_find_data(&dp_netdevs, name);
1612 if (!dp) {
1613 error = create ? create_dp_netdev(name, class, &dp) : ENODEV;
1614 } else {
1615 error = (dp->class != class ? EINVAL
1616 : create ? EEXIST
1617 : 0);
1618 }
1619 if (!error) {
1620 *dpifp = create_dpif_netdev(dp);
1621 dp->dpif = *dpifp;
1622 }
1623 ovs_mutex_unlock(&dp_netdev_mutex);
1624
1625 return error;
1626 }
1627
1628 static void
1629 dp_netdev_destroy_upcall_lock(struct dp_netdev *dp)
1630 OVS_NO_THREAD_SAFETY_ANALYSIS
1631 {
1632 /* Check that upcalls are disabled, i.e. that the rwlock is taken */
1633 ovs_assert(fat_rwlock_tryrdlock(&dp->upcall_rwlock));
1634
1635 /* Before freeing a lock we should release it */
1636 fat_rwlock_unlock(&dp->upcall_rwlock);
1637 fat_rwlock_destroy(&dp->upcall_rwlock);
1638 }
1639
1640 static void
1641 dp_delete_meter(struct dp_netdev *dp, uint32_t meter_id)
1642 OVS_REQUIRES(dp->meter_locks[meter_id % N_METER_LOCKS])
1643 {
1644 if (dp->meters[meter_id]) {
1645 free(dp->meters[meter_id]);
1646 dp->meters[meter_id] = NULL;
1647 }
1648 }
1649
1650 /* Requires dp_netdev_mutex so that we can't get a new reference to 'dp'
1651 * through the 'dp_netdevs' shash while freeing 'dp'. */
1652 static void
1653 dp_netdev_free(struct dp_netdev *dp)
1654 OVS_REQUIRES(dp_netdev_mutex)
1655 {
1656 struct dp_netdev_port *port, *next;
1657
1658 shash_find_and_delete(&dp_netdevs, dp->name);
1659
1660 ovs_mutex_lock(&dp->port_mutex);
1661 HMAP_FOR_EACH_SAFE (port, next, node, &dp->ports) {
1662 do_del_port(dp, port);
1663 }
1664 ovs_mutex_unlock(&dp->port_mutex);
1665
1666 dp_netdev_destroy_all_pmds(dp, true);
1667 cmap_destroy(&dp->poll_threads);
1668
1669 ovs_mutex_destroy(&dp->tx_qid_pool_mutex);
1670 id_pool_destroy(dp->tx_qid_pool);
1671
1672 ovs_mutex_destroy(&dp->non_pmd_mutex);
1673 ovsthread_key_delete(dp->per_pmd_key);
1674
1675 conntrack_destroy(dp->conntrack);
1676
1677
1678 seq_destroy(dp->reconfigure_seq);
1679
1680 seq_destroy(dp->port_seq);
1681 hmap_destroy(&dp->ports);
1682 ovs_mutex_destroy(&dp->port_mutex);
1683
1684 /* Upcalls must be disabled at this point */
1685 dp_netdev_destroy_upcall_lock(dp);
1686
1687 int i;
1688
1689 for (i = 0; i < MAX_METERS; ++i) {
1690 meter_lock(dp, i);
1691 dp_delete_meter(dp, i);
1692 meter_unlock(dp, i);
1693 }
1694 for (i = 0; i < N_METER_LOCKS; ++i) {
1695 ovs_mutex_destroy(&dp->meter_locks[i]);
1696 }
1697
1698 free(dp->pmd_cmask);
1699 free(CONST_CAST(char *, dp->name));
1700 free(dp);
1701 }
1702
1703 static void
1704 dp_netdev_unref(struct dp_netdev *dp)
1705 {
1706 if (dp) {
1707 /* Take dp_netdev_mutex so that, if dp->ref_cnt falls to zero, we can't
1708 * get a new reference to 'dp' through the 'dp_netdevs' shash. */
1709 ovs_mutex_lock(&dp_netdev_mutex);
1710 if (ovs_refcount_unref_relaxed(&dp->ref_cnt) == 1) {
1711 dp_netdev_free(dp);
1712 }
1713 ovs_mutex_unlock(&dp_netdev_mutex);
1714 }
1715 }
1716
1717 static void
1718 dpif_netdev_close(struct dpif *dpif)
1719 {
1720 struct dp_netdev *dp = get_dp_netdev(dpif);
1721
1722 dp_netdev_unref(dp);
1723 free(dpif);
1724 }
1725
1726 static int
1727 dpif_netdev_destroy(struct dpif *dpif)
1728 {
1729 struct dp_netdev *dp = get_dp_netdev(dpif);
1730
1731 if (!atomic_flag_test_and_set(&dp->destroyed)) {
1732 if (ovs_refcount_unref_relaxed(&dp->ref_cnt) == 1) {
1733 /* Can't happen: 'dpif' still owns a reference to 'dp'. */
1734 OVS_NOT_REACHED();
1735 }
1736 }
1737
1738 return 0;
1739 }
1740
1741 /* Add 'n' to the atomic variable 'var' non-atomically and using relaxed
1742 * load/store semantics. While the increment is not atomic, the load and
1743 * store operations are, making it impossible to read inconsistent values.
1744 *
1745 * This is used to update thread local stats counters. */
1746 static void
1747 non_atomic_ullong_add(atomic_ullong *var, unsigned long long n)
1748 {
1749 unsigned long long tmp;
1750
1751 atomic_read_relaxed(var, &tmp);
1752 tmp += n;
1753 atomic_store_relaxed(var, tmp);
1754 }
1755
1756 static int
1757 dpif_netdev_get_stats(const struct dpif *dpif, struct dpif_dp_stats *stats)
1758 {
1759 struct dp_netdev *dp = get_dp_netdev(dpif);
1760 struct dp_netdev_pmd_thread *pmd;
1761 uint64_t pmd_stats[PMD_N_STATS];
1762
1763 stats->n_flows = stats->n_hit = stats->n_missed = stats->n_lost = 0;
1764 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
1765 stats->n_flows += cmap_count(&pmd->flow_table);
1766 pmd_perf_read_counters(&pmd->perf_stats, pmd_stats);
1767 stats->n_hit += pmd_stats[PMD_STAT_EXACT_HIT];
1768 stats->n_hit += pmd_stats[PMD_STAT_SMC_HIT];
1769 stats->n_hit += pmd_stats[PMD_STAT_MASKED_HIT];
1770 stats->n_missed += pmd_stats[PMD_STAT_MISS];
1771 stats->n_lost += pmd_stats[PMD_STAT_LOST];
1772 }
1773 stats->n_masks = UINT32_MAX;
1774 stats->n_mask_hit = UINT64_MAX;
1775
1776 return 0;
1777 }
1778
1779 static void
1780 dp_netdev_reload_pmd__(struct dp_netdev_pmd_thread *pmd)
1781 {
1782 if (pmd->core_id == NON_PMD_CORE_ID) {
1783 ovs_mutex_lock(&pmd->dp->non_pmd_mutex);
1784 ovs_mutex_lock(&pmd->port_mutex);
1785 pmd_load_cached_ports(pmd);
1786 ovs_mutex_unlock(&pmd->port_mutex);
1787 ovs_mutex_unlock(&pmd->dp->non_pmd_mutex);
1788 return;
1789 }
1790
1791 seq_change(pmd->reload_seq);
1792 atomic_store_explicit(&pmd->reload, true, memory_order_release);
1793 }
1794
1795 static uint32_t
1796 hash_port_no(odp_port_t port_no)
1797 {
1798 return hash_int(odp_to_u32(port_no), 0);
1799 }
1800
1801 static int
1802 port_create(const char *devname, const char *type,
1803 odp_port_t port_no, struct dp_netdev_port **portp)
1804 {
1805 struct netdev_saved_flags *sf;
1806 struct dp_netdev_port *port;
1807 enum netdev_flags flags;
1808 struct netdev *netdev;
1809 int error;
1810
1811 *portp = NULL;
1812
1813 /* Open and validate network device. */
1814 error = netdev_open(devname, type, &netdev);
1815 if (error) {
1816 return error;
1817 }
1818 /* XXX reject non-Ethernet devices */
1819
1820 netdev_get_flags(netdev, &flags);
1821 if (flags & NETDEV_LOOPBACK) {
1822 VLOG_ERR("%s: cannot add a loopback device", devname);
1823 error = EINVAL;
1824 goto out;
1825 }
1826
1827 error = netdev_turn_flags_on(netdev, NETDEV_PROMISC, &sf);
1828 if (error) {
1829 VLOG_ERR("%s: cannot set promisc flag", devname);
1830 goto out;
1831 }
1832
1833 port = xzalloc(sizeof *port);
1834 port->port_no = port_no;
1835 port->netdev = netdev;
1836 port->type = xstrdup(type);
1837 port->sf = sf;
1838 port->emc_enabled = true;
1839 port->need_reconfigure = true;
1840 ovs_mutex_init(&port->txq_used_mutex);
1841
1842 *portp = port;
1843
1844 return 0;
1845
1846 out:
1847 netdev_close(netdev);
1848 return error;
1849 }
1850
1851 static int
1852 do_add_port(struct dp_netdev *dp, const char *devname, const char *type,
1853 odp_port_t port_no)
1854 OVS_REQUIRES(dp->port_mutex)
1855 {
1856 struct dp_netdev_port *port;
1857 int error;
1858
1859 /* Reject devices already in 'dp'. */
1860 if (!get_port_by_name(dp, devname, &port)) {
1861 return EEXIST;
1862 }
1863
1864 error = port_create(devname, type, port_no, &port);
1865 if (error) {
1866 return error;
1867 }
1868
1869 hmap_insert(&dp->ports, &port->node, hash_port_no(port_no));
1870 seq_change(dp->port_seq);
1871
1872 reconfigure_datapath(dp);
1873
1874 /* Check that port was successfully configured. */
1875 return dp_netdev_lookup_port(dp, port_no) ? 0 : EINVAL;
1876 }
1877
1878 static int
1879 dpif_netdev_port_add(struct dpif *dpif, struct netdev *netdev,
1880 odp_port_t *port_nop)
1881 {
1882 struct dp_netdev *dp = get_dp_netdev(dpif);
1883 char namebuf[NETDEV_VPORT_NAME_BUFSIZE];
1884 const char *dpif_port;
1885 odp_port_t port_no;
1886 int error;
1887
1888 ovs_mutex_lock(&dp->port_mutex);
1889 dpif_port = netdev_vport_get_dpif_port(netdev, namebuf, sizeof namebuf);
1890 if (*port_nop != ODPP_NONE) {
1891 port_no = *port_nop;
1892 error = dp_netdev_lookup_port(dp, *port_nop) ? EBUSY : 0;
1893 } else {
1894 port_no = choose_port(dp, dpif_port);
1895 error = port_no == ODPP_NONE ? EFBIG : 0;
1896 }
1897 if (!error) {
1898 *port_nop = port_no;
1899 error = do_add_port(dp, dpif_port, netdev_get_type(netdev), port_no);
1900 }
1901 ovs_mutex_unlock(&dp->port_mutex);
1902
1903 return error;
1904 }
1905
1906 static int
1907 dpif_netdev_port_del(struct dpif *dpif, odp_port_t port_no)
1908 {
1909 struct dp_netdev *dp = get_dp_netdev(dpif);
1910 int error;
1911
1912 ovs_mutex_lock(&dp->port_mutex);
1913 if (port_no == ODPP_LOCAL) {
1914 error = EINVAL;
1915 } else {
1916 struct dp_netdev_port *port;
1917
1918 error = get_port_by_number(dp, port_no, &port);
1919 if (!error) {
1920 do_del_port(dp, port);
1921 }
1922 }
1923 ovs_mutex_unlock(&dp->port_mutex);
1924
1925 return error;
1926 }
1927
1928 static bool
1929 is_valid_port_number(odp_port_t port_no)
1930 {
1931 return port_no != ODPP_NONE;
1932 }
1933
1934 static struct dp_netdev_port *
1935 dp_netdev_lookup_port(const struct dp_netdev *dp, odp_port_t port_no)
1936 OVS_REQUIRES(dp->port_mutex)
1937 {
1938 struct dp_netdev_port *port;
1939
1940 HMAP_FOR_EACH_WITH_HASH (port, node, hash_port_no(port_no), &dp->ports) {
1941 if (port->port_no == port_no) {
1942 return port;
1943 }
1944 }
1945 return NULL;
1946 }
1947
1948 static int
1949 get_port_by_number(struct dp_netdev *dp,
1950 odp_port_t port_no, struct dp_netdev_port **portp)
1951 OVS_REQUIRES(dp->port_mutex)
1952 {
1953 if (!is_valid_port_number(port_no)) {
1954 *portp = NULL;
1955 return EINVAL;
1956 } else {
1957 *portp = dp_netdev_lookup_port(dp, port_no);
1958 return *portp ? 0 : ENODEV;
1959 }
1960 }
1961
1962 static void
1963 port_destroy(struct dp_netdev_port *port)
1964 {
1965 if (!port) {
1966 return;
1967 }
1968
1969 netdev_close(port->netdev);
1970 netdev_restore_flags(port->sf);
1971
1972 for (unsigned i = 0; i < port->n_rxq; i++) {
1973 netdev_rxq_close(port->rxqs[i].rx);
1974 }
1975 ovs_mutex_destroy(&port->txq_used_mutex);
1976 free(port->rxq_affinity_list);
1977 free(port->txq_used);
1978 free(port->rxqs);
1979 free(port->type);
1980 free(port);
1981 }
1982
1983 static int
1984 get_port_by_name(struct dp_netdev *dp,
1985 const char *devname, struct dp_netdev_port **portp)
1986 OVS_REQUIRES(dp->port_mutex)
1987 {
1988 struct dp_netdev_port *port;
1989
1990 HMAP_FOR_EACH (port, node, &dp->ports) {
1991 if (!strcmp(netdev_get_name(port->netdev), devname)) {
1992 *portp = port;
1993 return 0;
1994 }
1995 }
1996
1997 /* Callers of dpif_netdev_port_query_by_name() expect ENODEV for a non
1998 * existing port. */
1999 return ENODEV;
2000 }
2001
2002 /* Returns 'true' if there is a port with pmd netdev. */
2003 static bool
2004 has_pmd_port(struct dp_netdev *dp)
2005 OVS_REQUIRES(dp->port_mutex)
2006 {
2007 struct dp_netdev_port *port;
2008
2009 HMAP_FOR_EACH (port, node, &dp->ports) {
2010 if (netdev_is_pmd(port->netdev)) {
2011 return true;
2012 }
2013 }
2014
2015 return false;
2016 }
2017
2018 static void
2019 do_del_port(struct dp_netdev *dp, struct dp_netdev_port *port)
2020 OVS_REQUIRES(dp->port_mutex)
2021 {
2022 hmap_remove(&dp->ports, &port->node);
2023 seq_change(dp->port_seq);
2024
2025 reconfigure_datapath(dp);
2026
2027 port_destroy(port);
2028 }
2029
2030 static void
2031 answer_port_query(const struct dp_netdev_port *port,
2032 struct dpif_port *dpif_port)
2033 {
2034 dpif_port->name = xstrdup(netdev_get_name(port->netdev));
2035 dpif_port->type = xstrdup(port->type);
2036 dpif_port->port_no = port->port_no;
2037 }
2038
2039 static int
2040 dpif_netdev_port_query_by_number(const struct dpif *dpif, odp_port_t port_no,
2041 struct dpif_port *dpif_port)
2042 {
2043 struct dp_netdev *dp = get_dp_netdev(dpif);
2044 struct dp_netdev_port *port;
2045 int error;
2046
2047 ovs_mutex_lock(&dp->port_mutex);
2048 error = get_port_by_number(dp, port_no, &port);
2049 if (!error && dpif_port) {
2050 answer_port_query(port, dpif_port);
2051 }
2052 ovs_mutex_unlock(&dp->port_mutex);
2053
2054 return error;
2055 }
2056
2057 static int
2058 dpif_netdev_port_query_by_name(const struct dpif *dpif, const char *devname,
2059 struct dpif_port *dpif_port)
2060 {
2061 struct dp_netdev *dp = get_dp_netdev(dpif);
2062 struct dp_netdev_port *port;
2063 int error;
2064
2065 ovs_mutex_lock(&dp->port_mutex);
2066 error = get_port_by_name(dp, devname, &port);
2067 if (!error && dpif_port) {
2068 answer_port_query(port, dpif_port);
2069 }
2070 ovs_mutex_unlock(&dp->port_mutex);
2071
2072 return error;
2073 }
2074
2075 static void
2076 dp_netdev_flow_free(struct dp_netdev_flow *flow)
2077 {
2078 dp_netdev_actions_free(dp_netdev_flow_get_actions(flow));
2079 free(flow);
2080 }
2081
2082 static void dp_netdev_flow_unref(struct dp_netdev_flow *flow)
2083 {
2084 if (ovs_refcount_unref_relaxed(&flow->ref_cnt) == 1) {
2085 ovsrcu_postpone(dp_netdev_flow_free, flow);
2086 }
2087 }
2088
2089 static uint32_t
2090 dp_netdev_flow_hash(const ovs_u128 *ufid)
2091 {
2092 return ufid->u32[0];
2093 }
2094
2095 static inline struct dpcls *
2096 dp_netdev_pmd_lookup_dpcls(struct dp_netdev_pmd_thread *pmd,
2097 odp_port_t in_port)
2098 {
2099 struct dpcls *cls;
2100 uint32_t hash = hash_port_no(in_port);
2101 CMAP_FOR_EACH_WITH_HASH (cls, node, hash, &pmd->classifiers) {
2102 if (cls->in_port == in_port) {
2103 /* Port classifier exists already */
2104 return cls;
2105 }
2106 }
2107 return NULL;
2108 }
2109
2110 static inline struct dpcls *
2111 dp_netdev_pmd_find_dpcls(struct dp_netdev_pmd_thread *pmd,
2112 odp_port_t in_port)
2113 OVS_REQUIRES(pmd->flow_mutex)
2114 {
2115 struct dpcls *cls = dp_netdev_pmd_lookup_dpcls(pmd, in_port);
2116 uint32_t hash = hash_port_no(in_port);
2117
2118 if (!cls) {
2119 /* Create new classifier for in_port */
2120 cls = xmalloc(sizeof(*cls));
2121 dpcls_init(cls);
2122 cls->in_port = in_port;
2123 cmap_insert(&pmd->classifiers, &cls->node, hash);
2124 VLOG_DBG("Creating dpcls %p for in_port %d", cls, in_port);
2125 }
2126 return cls;
2127 }
2128
2129 #define MAX_FLOW_MARK (UINT32_MAX - 1)
2130 #define INVALID_FLOW_MARK (UINT32_MAX)
2131
2132 struct megaflow_to_mark_data {
2133 const struct cmap_node node;
2134 ovs_u128 mega_ufid;
2135 uint32_t mark;
2136 };
2137
2138 struct flow_mark {
2139 struct cmap megaflow_to_mark;
2140 struct cmap mark_to_flow;
2141 struct id_pool *pool;
2142 };
2143
2144 static struct flow_mark flow_mark = {
2145 .megaflow_to_mark = CMAP_INITIALIZER,
2146 .mark_to_flow = CMAP_INITIALIZER,
2147 };
2148
2149 static uint32_t
2150 flow_mark_alloc(void)
2151 {
2152 uint32_t mark;
2153
2154 if (!flow_mark.pool) {
2155 /* Haven't initiated yet, do it here */
2156 flow_mark.pool = id_pool_create(0, MAX_FLOW_MARK);
2157 }
2158
2159 if (id_pool_alloc_id(flow_mark.pool, &mark)) {
2160 return mark;
2161 }
2162
2163 return INVALID_FLOW_MARK;
2164 }
2165
2166 static void
2167 flow_mark_free(uint32_t mark)
2168 {
2169 id_pool_free_id(flow_mark.pool, mark);
2170 }
2171
2172 /* associate megaflow with a mark, which is a 1:1 mapping */
2173 static void
2174 megaflow_to_mark_associate(const ovs_u128 *mega_ufid, uint32_t mark)
2175 {
2176 size_t hash = dp_netdev_flow_hash(mega_ufid);
2177 struct megaflow_to_mark_data *data = xzalloc(sizeof(*data));
2178
2179 data->mega_ufid = *mega_ufid;
2180 data->mark = mark;
2181
2182 cmap_insert(&flow_mark.megaflow_to_mark,
2183 CONST_CAST(struct cmap_node *, &data->node), hash);
2184 }
2185
2186 /* disassociate meagaflow with a mark */
2187 static void
2188 megaflow_to_mark_disassociate(const ovs_u128 *mega_ufid)
2189 {
2190 size_t hash = dp_netdev_flow_hash(mega_ufid);
2191 struct megaflow_to_mark_data *data;
2192
2193 CMAP_FOR_EACH_WITH_HASH (data, node, hash, &flow_mark.megaflow_to_mark) {
2194 if (ovs_u128_equals(*mega_ufid, data->mega_ufid)) {
2195 cmap_remove(&flow_mark.megaflow_to_mark,
2196 CONST_CAST(struct cmap_node *, &data->node), hash);
2197 ovsrcu_postpone(free, data);
2198 return;
2199 }
2200 }
2201
2202 VLOG_WARN("Masked ufid "UUID_FMT" is not associated with a mark?\n",
2203 UUID_ARGS((struct uuid *)mega_ufid));
2204 }
2205
2206 static inline uint32_t
2207 megaflow_to_mark_find(const ovs_u128 *mega_ufid)
2208 {
2209 size_t hash = dp_netdev_flow_hash(mega_ufid);
2210 struct megaflow_to_mark_data *data;
2211
2212 CMAP_FOR_EACH_WITH_HASH (data, node, hash, &flow_mark.megaflow_to_mark) {
2213 if (ovs_u128_equals(*mega_ufid, data->mega_ufid)) {
2214 return data->mark;
2215 }
2216 }
2217
2218 VLOG_DBG("Mark id for ufid "UUID_FMT" was not found\n",
2219 UUID_ARGS((struct uuid *)mega_ufid));
2220 return INVALID_FLOW_MARK;
2221 }
2222
2223 /* associate mark with a flow, which is 1:N mapping */
2224 static void
2225 mark_to_flow_associate(const uint32_t mark, struct dp_netdev_flow *flow)
2226 {
2227 dp_netdev_flow_ref(flow);
2228
2229 cmap_insert(&flow_mark.mark_to_flow,
2230 CONST_CAST(struct cmap_node *, &flow->mark_node),
2231 hash_int(mark, 0));
2232 flow->mark = mark;
2233
2234 VLOG_DBG("Associated dp_netdev flow %p with mark %u\n", flow, mark);
2235 }
2236
2237 static bool
2238 flow_mark_has_no_ref(uint32_t mark)
2239 {
2240 struct dp_netdev_flow *flow;
2241
2242 CMAP_FOR_EACH_WITH_HASH (flow, mark_node, hash_int(mark, 0),
2243 &flow_mark.mark_to_flow) {
2244 if (flow->mark == mark) {
2245 return false;
2246 }
2247 }
2248
2249 return true;
2250 }
2251
2252 static int
2253 mark_to_flow_disassociate(struct dp_netdev_pmd_thread *pmd,
2254 struct dp_netdev_flow *flow)
2255 {
2256 int ret = 0;
2257 uint32_t mark = flow->mark;
2258 struct cmap_node *mark_node = CONST_CAST(struct cmap_node *,
2259 &flow->mark_node);
2260
2261 cmap_remove(&flow_mark.mark_to_flow, mark_node, hash_int(mark, 0));
2262 flow->mark = INVALID_FLOW_MARK;
2263
2264 /*
2265 * no flow is referencing the mark any more? If so, let's
2266 * remove the flow from hardware and free the mark.
2267 */
2268 if (flow_mark_has_no_ref(mark)) {
2269 struct dp_netdev_port *port;
2270 odp_port_t in_port = flow->flow.in_port.odp_port;
2271
2272 ovs_mutex_lock(&pmd->dp->port_mutex);
2273 port = dp_netdev_lookup_port(pmd->dp, in_port);
2274 if (port) {
2275 ret = netdev_flow_del(port->netdev, &flow->mega_ufid, NULL);
2276 }
2277 ovs_mutex_unlock(&pmd->dp->port_mutex);
2278
2279 flow_mark_free(mark);
2280 VLOG_DBG("Freed flow mark %u\n", mark);
2281
2282 megaflow_to_mark_disassociate(&flow->mega_ufid);
2283 }
2284 dp_netdev_flow_unref(flow);
2285
2286 return ret;
2287 }
2288
2289 static void
2290 flow_mark_flush(struct dp_netdev_pmd_thread *pmd)
2291 {
2292 struct dp_netdev_flow *flow;
2293
2294 CMAP_FOR_EACH (flow, mark_node, &flow_mark.mark_to_flow) {
2295 if (flow->pmd_id == pmd->core_id) {
2296 queue_netdev_flow_del(pmd, flow);
2297 }
2298 }
2299 }
2300
2301 static struct dp_netdev_flow *
2302 mark_to_flow_find(const struct dp_netdev_pmd_thread *pmd,
2303 const uint32_t mark)
2304 {
2305 struct dp_netdev_flow *flow;
2306
2307 CMAP_FOR_EACH_WITH_HASH (flow, mark_node, hash_int(mark, 0),
2308 &flow_mark.mark_to_flow) {
2309 if (flow->mark == mark && flow->pmd_id == pmd->core_id &&
2310 flow->dead == false) {
2311 return flow;
2312 }
2313 }
2314
2315 return NULL;
2316 }
2317
2318 static struct dp_flow_offload_item *
2319 dp_netdev_alloc_flow_offload(struct dp_netdev_pmd_thread *pmd,
2320 struct dp_netdev_flow *flow,
2321 int op)
2322 {
2323 struct dp_flow_offload_item *offload;
2324
2325 offload = xzalloc(sizeof(*offload));
2326 offload->pmd = pmd;
2327 offload->flow = flow;
2328 offload->op = op;
2329
2330 dp_netdev_flow_ref(flow);
2331 dp_netdev_pmd_try_ref(pmd);
2332
2333 return offload;
2334 }
2335
2336 static void
2337 dp_netdev_free_flow_offload(struct dp_flow_offload_item *offload)
2338 {
2339 dp_netdev_pmd_unref(offload->pmd);
2340 dp_netdev_flow_unref(offload->flow);
2341
2342 free(offload->actions);
2343 free(offload);
2344 }
2345
2346 static void
2347 dp_netdev_append_flow_offload(struct dp_flow_offload_item *offload)
2348 {
2349 ovs_mutex_lock(&dp_flow_offload.mutex);
2350 ovs_list_push_back(&dp_flow_offload.list, &offload->node);
2351 xpthread_cond_signal(&dp_flow_offload.cond);
2352 ovs_mutex_unlock(&dp_flow_offload.mutex);
2353 }
2354
2355 static int
2356 dp_netdev_flow_offload_del(struct dp_flow_offload_item *offload)
2357 {
2358 return mark_to_flow_disassociate(offload->pmd, offload->flow);
2359 }
2360
2361 /*
2362 * There are two flow offload operations here: addition and modification.
2363 *
2364 * For flow addition, this function does:
2365 * - allocate a new flow mark id
2366 * - perform hardware flow offload
2367 * - associate the flow mark with flow and mega flow
2368 *
2369 * For flow modification, both flow mark and the associations are still
2370 * valid, thus only item 2 needed.
2371 */
2372 static int
2373 dp_netdev_flow_offload_put(struct dp_flow_offload_item *offload)
2374 {
2375 struct dp_netdev_port *port;
2376 struct dp_netdev_pmd_thread *pmd = offload->pmd;
2377 struct dp_netdev_flow *flow = offload->flow;
2378 odp_port_t in_port = flow->flow.in_port.odp_port;
2379 bool modification = offload->op == DP_NETDEV_FLOW_OFFLOAD_OP_MOD;
2380 struct offload_info info;
2381 uint32_t mark;
2382 int ret;
2383
2384 if (flow->dead) {
2385 return -1;
2386 }
2387
2388 if (modification) {
2389 mark = flow->mark;
2390 ovs_assert(mark != INVALID_FLOW_MARK);
2391 } else {
2392 /*
2393 * If a mega flow has already been offloaded (from other PMD
2394 * instances), do not offload it again.
2395 */
2396 mark = megaflow_to_mark_find(&flow->mega_ufid);
2397 if (mark != INVALID_FLOW_MARK) {
2398 VLOG_DBG("Flow has already been offloaded with mark %u\n", mark);
2399 if (flow->mark != INVALID_FLOW_MARK) {
2400 ovs_assert(flow->mark == mark);
2401 } else {
2402 mark_to_flow_associate(mark, flow);
2403 }
2404 return 0;
2405 }
2406
2407 mark = flow_mark_alloc();
2408 if (mark == INVALID_FLOW_MARK) {
2409 VLOG_ERR("Failed to allocate flow mark!\n");
2410 }
2411 }
2412 info.flow_mark = mark;
2413
2414 ovs_mutex_lock(&pmd->dp->port_mutex);
2415 port = dp_netdev_lookup_port(pmd->dp, in_port);
2416 if (!port || netdev_vport_is_vport_class(port->netdev->netdev_class)) {
2417 ovs_mutex_unlock(&pmd->dp->port_mutex);
2418 goto err_free;
2419 }
2420 ret = netdev_flow_put(port->netdev, &offload->match,
2421 CONST_CAST(struct nlattr *, offload->actions),
2422 offload->actions_len, &flow->mega_ufid, &info,
2423 NULL);
2424 ovs_mutex_unlock(&pmd->dp->port_mutex);
2425
2426 if (ret) {
2427 goto err_free;
2428 }
2429
2430 if (!modification) {
2431 megaflow_to_mark_associate(&flow->mega_ufid, mark);
2432 mark_to_flow_associate(mark, flow);
2433 }
2434 return 0;
2435
2436 err_free:
2437 if (!modification) {
2438 flow_mark_free(mark);
2439 } else {
2440 mark_to_flow_disassociate(pmd, flow);
2441 }
2442 return -1;
2443 }
2444
2445 static void *
2446 dp_netdev_flow_offload_main(void *data OVS_UNUSED)
2447 {
2448 struct dp_flow_offload_item *offload;
2449 struct ovs_list *list;
2450 const char *op;
2451 int ret;
2452
2453 for (;;) {
2454 ovs_mutex_lock(&dp_flow_offload.mutex);
2455 if (ovs_list_is_empty(&dp_flow_offload.list)) {
2456 ovsrcu_quiesce_start();
2457 ovs_mutex_cond_wait(&dp_flow_offload.cond,
2458 &dp_flow_offload.mutex);
2459 ovsrcu_quiesce_end();
2460 }
2461 list = ovs_list_pop_front(&dp_flow_offload.list);
2462 offload = CONTAINER_OF(list, struct dp_flow_offload_item, node);
2463 ovs_mutex_unlock(&dp_flow_offload.mutex);
2464
2465 switch (offload->op) {
2466 case DP_NETDEV_FLOW_OFFLOAD_OP_ADD:
2467 op = "add";
2468 ret = dp_netdev_flow_offload_put(offload);
2469 break;
2470 case DP_NETDEV_FLOW_OFFLOAD_OP_MOD:
2471 op = "modify";
2472 ret = dp_netdev_flow_offload_put(offload);
2473 break;
2474 case DP_NETDEV_FLOW_OFFLOAD_OP_DEL:
2475 op = "delete";
2476 ret = dp_netdev_flow_offload_del(offload);
2477 break;
2478 default:
2479 OVS_NOT_REACHED();
2480 }
2481
2482 VLOG_DBG("%s to %s netdev flow\n",
2483 ret == 0 ? "succeed" : "failed", op);
2484 dp_netdev_free_flow_offload(offload);
2485 }
2486
2487 return NULL;
2488 }
2489
2490 static void
2491 queue_netdev_flow_del(struct dp_netdev_pmd_thread *pmd,
2492 struct dp_netdev_flow *flow)
2493 {
2494 struct dp_flow_offload_item *offload;
2495
2496 if (ovsthread_once_start(&offload_thread_once)) {
2497 xpthread_cond_init(&dp_flow_offload.cond, NULL);
2498 ovs_thread_create("dp_netdev_flow_offload",
2499 dp_netdev_flow_offload_main, NULL);
2500 ovsthread_once_done(&offload_thread_once);
2501 }
2502
2503 offload = dp_netdev_alloc_flow_offload(pmd, flow,
2504 DP_NETDEV_FLOW_OFFLOAD_OP_DEL);
2505 dp_netdev_append_flow_offload(offload);
2506 }
2507
2508 static void
2509 queue_netdev_flow_put(struct dp_netdev_pmd_thread *pmd,
2510 struct dp_netdev_flow *flow, struct match *match,
2511 const struct nlattr *actions, size_t actions_len)
2512 {
2513 struct dp_flow_offload_item *offload;
2514 int op;
2515
2516 if (!netdev_is_flow_api_enabled()) {
2517 return;
2518 }
2519
2520 if (ovsthread_once_start(&offload_thread_once)) {
2521 xpthread_cond_init(&dp_flow_offload.cond, NULL);
2522 ovs_thread_create("dp_netdev_flow_offload",
2523 dp_netdev_flow_offload_main, NULL);
2524 ovsthread_once_done(&offload_thread_once);
2525 }
2526
2527 if (flow->mark != INVALID_FLOW_MARK) {
2528 op = DP_NETDEV_FLOW_OFFLOAD_OP_MOD;
2529 } else {
2530 op = DP_NETDEV_FLOW_OFFLOAD_OP_ADD;
2531 }
2532 offload = dp_netdev_alloc_flow_offload(pmd, flow, op);
2533 offload->match = *match;
2534 offload->actions = xmalloc(actions_len);
2535 memcpy(offload->actions, actions, actions_len);
2536 offload->actions_len = actions_len;
2537
2538 dp_netdev_append_flow_offload(offload);
2539 }
2540
2541 static void
2542 dp_netdev_pmd_remove_flow(struct dp_netdev_pmd_thread *pmd,
2543 struct dp_netdev_flow *flow)
2544 OVS_REQUIRES(pmd->flow_mutex)
2545 {
2546 struct cmap_node *node = CONST_CAST(struct cmap_node *, &flow->node);
2547 struct dpcls *cls;
2548 odp_port_t in_port = flow->flow.in_port.odp_port;
2549
2550 cls = dp_netdev_pmd_lookup_dpcls(pmd, in_port);
2551 ovs_assert(cls != NULL);
2552 dpcls_remove(cls, &flow->cr);
2553 cmap_remove(&pmd->flow_table, node, dp_netdev_flow_hash(&flow->ufid));
2554 if (flow->mark != INVALID_FLOW_MARK) {
2555 queue_netdev_flow_del(pmd, flow);
2556 }
2557 flow->dead = true;
2558
2559 dp_netdev_flow_unref(flow);
2560 }
2561
2562 static void
2563 dp_netdev_pmd_flow_flush(struct dp_netdev_pmd_thread *pmd)
2564 {
2565 struct dp_netdev_flow *netdev_flow;
2566
2567 ovs_mutex_lock(&pmd->flow_mutex);
2568 CMAP_FOR_EACH (netdev_flow, node, &pmd->flow_table) {
2569 dp_netdev_pmd_remove_flow(pmd, netdev_flow);
2570 }
2571 ovs_mutex_unlock(&pmd->flow_mutex);
2572 }
2573
2574 static int
2575 dpif_netdev_flow_flush(struct dpif *dpif)
2576 {
2577 struct dp_netdev *dp = get_dp_netdev(dpif);
2578 struct dp_netdev_pmd_thread *pmd;
2579
2580 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
2581 dp_netdev_pmd_flow_flush(pmd);
2582 }
2583
2584 return 0;
2585 }
2586
2587 struct dp_netdev_port_state {
2588 struct hmap_position position;
2589 char *name;
2590 };
2591
2592 static int
2593 dpif_netdev_port_dump_start(const struct dpif *dpif OVS_UNUSED, void **statep)
2594 {
2595 *statep = xzalloc(sizeof(struct dp_netdev_port_state));
2596 return 0;
2597 }
2598
2599 static int
2600 dpif_netdev_port_dump_next(const struct dpif *dpif, void *state_,
2601 struct dpif_port *dpif_port)
2602 {
2603 struct dp_netdev_port_state *state = state_;
2604 struct dp_netdev *dp = get_dp_netdev(dpif);
2605 struct hmap_node *node;
2606 int retval;
2607
2608 ovs_mutex_lock(&dp->port_mutex);
2609 node = hmap_at_position(&dp->ports, &state->position);
2610 if (node) {
2611 struct dp_netdev_port *port;
2612
2613 port = CONTAINER_OF(node, struct dp_netdev_port, node);
2614
2615 free(state->name);
2616 state->name = xstrdup(netdev_get_name(port->netdev));
2617 dpif_port->name = state->name;
2618 dpif_port->type = port->type;
2619 dpif_port->port_no = port->port_no;
2620
2621 retval = 0;
2622 } else {
2623 retval = EOF;
2624 }
2625 ovs_mutex_unlock(&dp->port_mutex);
2626
2627 return retval;
2628 }
2629
2630 static int
2631 dpif_netdev_port_dump_done(const struct dpif *dpif OVS_UNUSED, void *state_)
2632 {
2633 struct dp_netdev_port_state *state = state_;
2634 free(state->name);
2635 free(state);
2636 return 0;
2637 }
2638
2639 static int
2640 dpif_netdev_port_poll(const struct dpif *dpif_, char **devnamep OVS_UNUSED)
2641 {
2642 struct dpif_netdev *dpif = dpif_netdev_cast(dpif_);
2643 uint64_t new_port_seq;
2644 int error;
2645
2646 new_port_seq = seq_read(dpif->dp->port_seq);
2647 if (dpif->last_port_seq != new_port_seq) {
2648 dpif->last_port_seq = new_port_seq;
2649 error = ENOBUFS;
2650 } else {
2651 error = EAGAIN;
2652 }
2653
2654 return error;
2655 }
2656
2657 static void
2658 dpif_netdev_port_poll_wait(const struct dpif *dpif_)
2659 {
2660 struct dpif_netdev *dpif = dpif_netdev_cast(dpif_);
2661
2662 seq_wait(dpif->dp->port_seq, dpif->last_port_seq);
2663 }
2664
2665 static struct dp_netdev_flow *
2666 dp_netdev_flow_cast(const struct dpcls_rule *cr)
2667 {
2668 return cr ? CONTAINER_OF(cr, struct dp_netdev_flow, cr) : NULL;
2669 }
2670
2671 static bool dp_netdev_flow_ref(struct dp_netdev_flow *flow)
2672 {
2673 return ovs_refcount_try_ref_rcu(&flow->ref_cnt);
2674 }
2675
2676 /* netdev_flow_key utilities.
2677 *
2678 * netdev_flow_key is basically a miniflow. We use these functions
2679 * (netdev_flow_key_clone, netdev_flow_key_equal, ...) instead of the miniflow
2680 * functions (miniflow_clone_inline, miniflow_equal, ...), because:
2681 *
2682 * - Since we are dealing exclusively with miniflows created by
2683 * miniflow_extract(), if the map is different the miniflow is different.
2684 * Therefore we can be faster by comparing the map and the miniflow in a
2685 * single memcmp().
2686 * - These functions can be inlined by the compiler. */
2687
2688 /* Given the number of bits set in miniflow's maps, returns the size of the
2689 * 'netdev_flow_key.mf' */
2690 static inline size_t
2691 netdev_flow_key_size(size_t flow_u64s)
2692 {
2693 return sizeof(struct miniflow) + MINIFLOW_VALUES_SIZE(flow_u64s);
2694 }
2695
2696 static inline bool
2697 netdev_flow_key_equal(const struct netdev_flow_key *a,
2698 const struct netdev_flow_key *b)
2699 {
2700 /* 'b->len' may be not set yet. */
2701 return a->hash == b->hash && !memcmp(&a->mf, &b->mf, a->len);
2702 }
2703
2704 /* Used to compare 'netdev_flow_key' in the exact match cache to a miniflow.
2705 * The maps are compared bitwise, so both 'key->mf' and 'mf' must have been
2706 * generated by miniflow_extract. */
2707 static inline bool
2708 netdev_flow_key_equal_mf(const struct netdev_flow_key *key,
2709 const struct miniflow *mf)
2710 {
2711 return !memcmp(&key->mf, mf, key->len);
2712 }
2713
2714 static inline void
2715 netdev_flow_key_clone(struct netdev_flow_key *dst,
2716 const struct netdev_flow_key *src)
2717 {
2718 memcpy(dst, src,
2719 offsetof(struct netdev_flow_key, mf) + src->len);
2720 }
2721
2722 /* Initialize a netdev_flow_key 'mask' from 'match'. */
2723 static inline void
2724 netdev_flow_mask_init(struct netdev_flow_key *mask,
2725 const struct match *match)
2726 {
2727 uint64_t *dst = miniflow_values(&mask->mf);
2728 struct flowmap fmap;
2729 uint32_t hash = 0;
2730 size_t idx;
2731
2732 /* Only check masks that make sense for the flow. */
2733 flow_wc_map(&match->flow, &fmap);
2734 flowmap_init(&mask->mf.map);
2735
2736 FLOWMAP_FOR_EACH_INDEX(idx, fmap) {
2737 uint64_t mask_u64 = flow_u64_value(&match->wc.masks, idx);
2738
2739 if (mask_u64) {
2740 flowmap_set(&mask->mf.map, idx, 1);
2741 *dst++ = mask_u64;
2742 hash = hash_add64(hash, mask_u64);
2743 }
2744 }
2745
2746 map_t map;
2747
2748 FLOWMAP_FOR_EACH_MAP (map, mask->mf.map) {
2749 hash = hash_add64(hash, map);
2750 }
2751
2752 size_t n = dst - miniflow_get_values(&mask->mf);
2753
2754 mask->hash = hash_finish(hash, n * 8);
2755 mask->len = netdev_flow_key_size(n);
2756 }
2757
2758 /* Initializes 'dst' as a copy of 'flow' masked with 'mask'. */
2759 static inline void
2760 netdev_flow_key_init_masked(struct netdev_flow_key *dst,
2761 const struct flow *flow,
2762 const struct netdev_flow_key *mask)
2763 {
2764 uint64_t *dst_u64 = miniflow_values(&dst->mf);
2765 const uint64_t *mask_u64 = miniflow_get_values(&mask->mf);
2766 uint32_t hash = 0;
2767 uint64_t value;
2768
2769 dst->len = mask->len;
2770 dst->mf = mask->mf; /* Copy maps. */
2771
2772 FLOW_FOR_EACH_IN_MAPS(value, flow, mask->mf.map) {
2773 *dst_u64 = value & *mask_u64++;
2774 hash = hash_add64(hash, *dst_u64++);
2775 }
2776 dst->hash = hash_finish(hash,
2777 (dst_u64 - miniflow_get_values(&dst->mf)) * 8);
2778 }
2779
2780 static inline bool
2781 emc_entry_alive(struct emc_entry *ce)
2782 {
2783 return ce->flow && !ce->flow->dead;
2784 }
2785
2786 static void
2787 emc_clear_entry(struct emc_entry *ce)
2788 {
2789 if (ce->flow) {
2790 dp_netdev_flow_unref(ce->flow);
2791 ce->flow = NULL;
2792 }
2793 }
2794
2795 static inline void
2796 emc_change_entry(struct emc_entry *ce, struct dp_netdev_flow *flow,
2797 const struct netdev_flow_key *key)
2798 {
2799 if (ce->flow != flow) {
2800 if (ce->flow) {
2801 dp_netdev_flow_unref(ce->flow);
2802 }
2803
2804 if (dp_netdev_flow_ref(flow)) {
2805 ce->flow = flow;
2806 } else {
2807 ce->flow = NULL;
2808 }
2809 }
2810 if (key) {
2811 netdev_flow_key_clone(&ce->key, key);
2812 }
2813 }
2814
2815 static inline void
2816 emc_insert(struct emc_cache *cache, const struct netdev_flow_key *key,
2817 struct dp_netdev_flow *flow)
2818 {
2819 struct emc_entry *to_be_replaced = NULL;
2820 struct emc_entry *current_entry;
2821
2822 EMC_FOR_EACH_POS_WITH_HASH(cache, current_entry, key->hash) {
2823 if (netdev_flow_key_equal(&current_entry->key, key)) {
2824 /* We found the entry with the 'mf' miniflow */
2825 emc_change_entry(current_entry, flow, NULL);
2826 return;
2827 }
2828
2829 /* Replacement policy: put the flow in an empty (not alive) entry, or
2830 * in the first entry where it can be */
2831 if (!to_be_replaced
2832 || (emc_entry_alive(to_be_replaced)
2833 && !emc_entry_alive(current_entry))
2834 || current_entry->key.hash < to_be_replaced->key.hash) {
2835 to_be_replaced = current_entry;
2836 }
2837 }
2838 /* We didn't find the miniflow in the cache.
2839 * The 'to_be_replaced' entry is where the new flow will be stored */
2840
2841 emc_change_entry(to_be_replaced, flow, key);
2842 }
2843
2844 static inline void
2845 emc_probabilistic_insert(struct dp_netdev_pmd_thread *pmd,
2846 const struct netdev_flow_key *key,
2847 struct dp_netdev_flow *flow)
2848 {
2849 /* Insert an entry into the EMC based on probability value 'min'. By
2850 * default the value is UINT32_MAX / 100 which yields an insertion
2851 * probability of 1/100 ie. 1% */
2852
2853 uint32_t min = pmd->ctx.emc_insert_min;
2854
2855 if (min && random_uint32() <= min) {
2856 emc_insert(&(pmd->flow_cache).emc_cache, key, flow);
2857 }
2858 }
2859
2860 static inline struct dp_netdev_flow *
2861 emc_lookup(struct emc_cache *cache, const struct netdev_flow_key *key)
2862 {
2863 struct emc_entry *current_entry;
2864
2865 EMC_FOR_EACH_POS_WITH_HASH(cache, current_entry, key->hash) {
2866 if (current_entry->key.hash == key->hash
2867 && emc_entry_alive(current_entry)
2868 && netdev_flow_key_equal_mf(&current_entry->key, &key->mf)) {
2869
2870 /* We found the entry with the 'key->mf' miniflow */
2871 return current_entry->flow;
2872 }
2873 }
2874
2875 return NULL;
2876 }
2877
2878 static inline const struct cmap_node *
2879 smc_entry_get(struct dp_netdev_pmd_thread *pmd, const uint32_t hash)
2880 {
2881 struct smc_cache *cache = &(pmd->flow_cache).smc_cache;
2882 struct smc_bucket *bucket = &cache->buckets[hash & SMC_MASK];
2883 uint16_t sig = hash >> 16;
2884 uint16_t index = UINT16_MAX;
2885
2886 for (int i = 0; i < SMC_ENTRY_PER_BUCKET; i++) {
2887 if (bucket->sig[i] == sig) {
2888 index = bucket->flow_idx[i];
2889 break;
2890 }
2891 }
2892 if (index != UINT16_MAX) {
2893 return cmap_find_by_index(&pmd->flow_table, index);
2894 }
2895 return NULL;
2896 }
2897
2898 static void
2899 smc_clear_entry(struct smc_bucket *b, int idx)
2900 {
2901 b->flow_idx[idx] = UINT16_MAX;
2902 }
2903
2904 /* Insert the flow_table index into SMC. Insertion may fail when 1) SMC is
2905 * turned off, 2) the flow_table index is larger than uint16_t can handle.
2906 * If there is already an SMC entry having same signature, the index will be
2907 * updated. If there is no existing entry, but an empty entry is available,
2908 * the empty entry will be taken. If no empty entry or existing same signature,
2909 * a random entry from the hashed bucket will be picked. */
2910 static inline void
2911 smc_insert(struct dp_netdev_pmd_thread *pmd,
2912 const struct netdev_flow_key *key,
2913 uint32_t hash)
2914 {
2915 struct smc_cache *smc_cache = &(pmd->flow_cache).smc_cache;
2916 struct smc_bucket *bucket = &smc_cache->buckets[key->hash & SMC_MASK];
2917 uint16_t index;
2918 uint32_t cmap_index;
2919 bool smc_enable_db;
2920 int i;
2921
2922 atomic_read_relaxed(&pmd->dp->smc_enable_db, &smc_enable_db);
2923 if (!smc_enable_db) {
2924 return;
2925 }
2926
2927 cmap_index = cmap_find_index(&pmd->flow_table, hash);
2928 index = (cmap_index >= UINT16_MAX) ? UINT16_MAX : (uint16_t)cmap_index;
2929
2930 /* If the index is larger than SMC can handle (uint16_t), we don't
2931 * insert */
2932 if (index == UINT16_MAX) {
2933 return;
2934 }
2935
2936 /* If an entry with same signature already exists, update the index */
2937 uint16_t sig = key->hash >> 16;
2938 for (i = 0; i < SMC_ENTRY_PER_BUCKET; i++) {
2939 if (bucket->sig[i] == sig) {
2940 bucket->flow_idx[i] = index;
2941 return;
2942 }
2943 }
2944 /* If there is an empty entry, occupy it. */
2945 for (i = 0; i < SMC_ENTRY_PER_BUCKET; i++) {
2946 if (bucket->flow_idx[i] == UINT16_MAX) {
2947 bucket->sig[i] = sig;
2948 bucket->flow_idx[i] = index;
2949 return;
2950 }
2951 }
2952 /* Otherwise, pick a random entry. */
2953 i = random_uint32() % SMC_ENTRY_PER_BUCKET;
2954 bucket->sig[i] = sig;
2955 bucket->flow_idx[i] = index;
2956 }
2957
2958 static struct dp_netdev_flow *
2959 dp_netdev_pmd_lookup_flow(struct dp_netdev_pmd_thread *pmd,
2960 const struct netdev_flow_key *key,
2961 int *lookup_num_p)
2962 {
2963 struct dpcls *cls;
2964 struct dpcls_rule *rule;
2965 odp_port_t in_port = u32_to_odp(MINIFLOW_GET_U32(&key->mf,
2966 in_port.odp_port));
2967 struct dp_netdev_flow *netdev_flow = NULL;
2968
2969 cls = dp_netdev_pmd_lookup_dpcls(pmd, in_port);
2970 if (OVS_LIKELY(cls)) {
2971 dpcls_lookup(cls, &key, &rule, 1, lookup_num_p);
2972 netdev_flow = dp_netdev_flow_cast(rule);
2973 }
2974 return netdev_flow;
2975 }
2976
2977 static struct dp_netdev_flow *
2978 dp_netdev_pmd_find_flow(const struct dp_netdev_pmd_thread *pmd,
2979 const ovs_u128 *ufidp, const struct nlattr *key,
2980 size_t key_len)
2981 {
2982 struct dp_netdev_flow *netdev_flow;
2983 struct flow flow;
2984 ovs_u128 ufid;
2985
2986 /* If a UFID is not provided, determine one based on the key. */
2987 if (!ufidp && key && key_len
2988 && !dpif_netdev_flow_from_nlattrs(key, key_len, &flow, false)) {
2989 dpif_flow_hash(pmd->dp->dpif, &flow, sizeof flow, &ufid);
2990 ufidp = &ufid;
2991 }
2992
2993 if (ufidp) {
2994 CMAP_FOR_EACH_WITH_HASH (netdev_flow, node, dp_netdev_flow_hash(ufidp),
2995 &pmd->flow_table) {
2996 if (ovs_u128_equals(netdev_flow->ufid, *ufidp)) {
2997 return netdev_flow;
2998 }
2999 }
3000 }
3001
3002 return NULL;
3003 }
3004
3005 static void
3006 get_dpif_flow_stats(const struct dp_netdev_flow *netdev_flow_,
3007 struct dpif_flow_stats *stats)
3008 {
3009 struct dp_netdev_flow *netdev_flow;
3010 unsigned long long n;
3011 long long used;
3012 uint16_t flags;
3013
3014 netdev_flow = CONST_CAST(struct dp_netdev_flow *, netdev_flow_);
3015
3016 atomic_read_relaxed(&netdev_flow->stats.packet_count, &n);
3017 stats->n_packets = n;
3018 atomic_read_relaxed(&netdev_flow->stats.byte_count, &n);
3019 stats->n_bytes = n;
3020 atomic_read_relaxed(&netdev_flow->stats.used, &used);
3021 stats->used = used;
3022 atomic_read_relaxed(&netdev_flow->stats.tcp_flags, &flags);
3023 stats->tcp_flags = flags;
3024 }
3025
3026 /* Converts to the dpif_flow format, using 'key_buf' and 'mask_buf' for
3027 * storing the netlink-formatted key/mask. 'key_buf' may be the same as
3028 * 'mask_buf'. Actions will be returned without copying, by relying on RCU to
3029 * protect them. */
3030 static void
3031 dp_netdev_flow_to_dpif_flow(const struct dp_netdev_flow *netdev_flow,
3032 struct ofpbuf *key_buf, struct ofpbuf *mask_buf,
3033 struct dpif_flow *flow, bool terse)
3034 {
3035 if (terse) {
3036 memset(flow, 0, sizeof *flow);
3037 } else {
3038 struct flow_wildcards wc;
3039 struct dp_netdev_actions *actions;
3040 size_t offset;
3041 struct odp_flow_key_parms odp_parms = {
3042 .flow = &netdev_flow->flow,
3043 .mask = &wc.masks,
3044 .support = dp_netdev_support,
3045 };
3046
3047 miniflow_expand(&netdev_flow->cr.mask->mf, &wc.masks);
3048 /* in_port is exact matched, but we have left it out from the mask for
3049 * optimnization reasons. Add in_port back to the mask. */
3050 wc.masks.in_port.odp_port = ODPP_NONE;
3051
3052 /* Key */
3053 offset = key_buf->size;
3054 flow->key = ofpbuf_tail(key_buf);
3055 odp_flow_key_from_flow(&odp_parms, key_buf);
3056 flow->key_len = key_buf->size - offset;
3057
3058 /* Mask */
3059 offset = mask_buf->size;
3060 flow->mask = ofpbuf_tail(mask_buf);
3061 odp_parms.key_buf = key_buf;
3062 odp_flow_key_from_mask(&odp_parms, mask_buf);
3063 flow->mask_len = mask_buf->size - offset;
3064
3065 /* Actions */
3066 actions = dp_netdev_flow_get_actions(netdev_flow);
3067 flow->actions = actions->actions;
3068 flow->actions_len = actions->size;
3069 }
3070
3071 flow->ufid = netdev_flow->ufid;
3072 flow->ufid_present = true;
3073 flow->pmd_id = netdev_flow->pmd_id;
3074 get_dpif_flow_stats(netdev_flow, &flow->stats);
3075
3076 flow->attrs.offloaded = false;
3077 flow->attrs.dp_layer = "ovs";
3078 }
3079
3080 static int
3081 dpif_netdev_mask_from_nlattrs(const struct nlattr *key, uint32_t key_len,
3082 const struct nlattr *mask_key,
3083 uint32_t mask_key_len, const struct flow *flow,
3084 struct flow_wildcards *wc, bool probe)
3085 {
3086 enum odp_key_fitness fitness;
3087
3088 fitness = odp_flow_key_to_mask(mask_key, mask_key_len, wc, flow, NULL);
3089 if (fitness) {
3090 if (!probe) {
3091 /* This should not happen: it indicates that
3092 * odp_flow_key_from_mask() and odp_flow_key_to_mask()
3093 * disagree on the acceptable form of a mask. Log the problem
3094 * as an error, with enough details to enable debugging. */
3095 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
3096
3097 if (!VLOG_DROP_ERR(&rl)) {
3098 struct ds s;
3099
3100 ds_init(&s);
3101 odp_flow_format(key, key_len, mask_key, mask_key_len, NULL, &s,
3102 true);
3103 VLOG_ERR("internal error parsing flow mask %s (%s)",
3104 ds_cstr(&s), odp_key_fitness_to_string(fitness));
3105 ds_destroy(&s);
3106 }
3107 }
3108
3109 return EINVAL;
3110 }
3111
3112 return 0;
3113 }
3114
3115 static int
3116 dpif_netdev_flow_from_nlattrs(const struct nlattr *key, uint32_t key_len,
3117 struct flow *flow, bool probe)
3118 {
3119 if (odp_flow_key_to_flow(key, key_len, flow, NULL)) {
3120 if (!probe) {
3121 /* This should not happen: it indicates that
3122 * odp_flow_key_from_flow() and odp_flow_key_to_flow() disagree on
3123 * the acceptable form of a flow. Log the problem as an error,
3124 * with enough details to enable debugging. */
3125 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
3126
3127 if (!VLOG_DROP_ERR(&rl)) {
3128 struct ds s;
3129
3130 ds_init(&s);
3131 odp_flow_format(key, key_len, NULL, 0, NULL, &s, true);
3132 VLOG_ERR("internal error parsing flow key %s", ds_cstr(&s));
3133 ds_destroy(&s);
3134 }
3135 }
3136
3137 return EINVAL;
3138 }
3139
3140 if (flow->ct_state & DP_NETDEV_CS_UNSUPPORTED_MASK) {
3141 return EINVAL;
3142 }
3143
3144 return 0;
3145 }
3146
3147 static int
3148 dpif_netdev_flow_get(const struct dpif *dpif, const struct dpif_flow_get *get)
3149 {
3150 struct dp_netdev *dp = get_dp_netdev(dpif);
3151 struct dp_netdev_flow *netdev_flow;
3152 struct dp_netdev_pmd_thread *pmd;
3153 struct hmapx to_find = HMAPX_INITIALIZER(&to_find);
3154 struct hmapx_node *node;
3155 int error = EINVAL;
3156
3157 if (get->pmd_id == PMD_ID_NULL) {
3158 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
3159 if (dp_netdev_pmd_try_ref(pmd) && !hmapx_add(&to_find, pmd)) {
3160 dp_netdev_pmd_unref(pmd);
3161 }
3162 }
3163 } else {
3164 pmd = dp_netdev_get_pmd(dp, get->pmd_id);
3165 if (!pmd) {
3166 goto out;
3167 }
3168 hmapx_add(&to_find, pmd);
3169 }
3170
3171 if (!hmapx_count(&to_find)) {
3172 goto out;
3173 }
3174
3175 HMAPX_FOR_EACH (node, &to_find) {
3176 pmd = (struct dp_netdev_pmd_thread *) node->data;
3177 netdev_flow = dp_netdev_pmd_find_flow(pmd, get->ufid, get->key,
3178 get->key_len);
3179 if (netdev_flow) {
3180 dp_netdev_flow_to_dpif_flow(netdev_flow, get->buffer, get->buffer,
3181 get->flow, false);
3182 error = 0;
3183 break;
3184 } else {
3185 error = ENOENT;
3186 }
3187 }
3188
3189 HMAPX_FOR_EACH (node, &to_find) {
3190 pmd = (struct dp_netdev_pmd_thread *) node->data;
3191 dp_netdev_pmd_unref(pmd);
3192 }
3193 out:
3194 hmapx_destroy(&to_find);
3195 return error;
3196 }
3197
3198 static void
3199 dp_netdev_get_mega_ufid(const struct match *match, ovs_u128 *mega_ufid)
3200 {
3201 struct flow masked_flow;
3202 size_t i;
3203
3204 for (i = 0; i < sizeof(struct flow); i++) {
3205 ((uint8_t *)&masked_flow)[i] = ((uint8_t *)&match->flow)[i] &
3206 ((uint8_t *)&match->wc)[i];
3207 }
3208 dpif_flow_hash(NULL, &masked_flow, sizeof(struct flow), mega_ufid);
3209 }
3210
3211 static struct dp_netdev_flow *
3212 dp_netdev_flow_add(struct dp_netdev_pmd_thread *pmd,
3213 struct match *match, const ovs_u128 *ufid,
3214 const struct nlattr *actions, size_t actions_len)
3215 OVS_REQUIRES(pmd->flow_mutex)
3216 {
3217 struct dp_netdev_flow *flow;
3218 struct netdev_flow_key mask;
3219 struct dpcls *cls;
3220
3221 /* Make sure in_port is exact matched before we read it. */
3222 ovs_assert(match->wc.masks.in_port.odp_port == ODPP_NONE);
3223 odp_port_t in_port = match->flow.in_port.odp_port;
3224
3225 /* As we select the dpcls based on the port number, each netdev flow
3226 * belonging to the same dpcls will have the same odp_port value.
3227 * For performance reasons we wildcard odp_port here in the mask. In the
3228 * typical case dp_hash is also wildcarded, and the resulting 8-byte
3229 * chunk {dp_hash, in_port} will be ignored by netdev_flow_mask_init() and
3230 * will not be part of the subtable mask.
3231 * This will speed up the hash computation during dpcls_lookup() because
3232 * there is one less call to hash_add64() in this case. */
3233 match->wc.masks.in_port.odp_port = 0;
3234 netdev_flow_mask_init(&mask, match);
3235 match->wc.masks.in_port.odp_port = ODPP_NONE;
3236
3237 /* Make sure wc does not have metadata. */
3238 ovs_assert(!FLOWMAP_HAS_FIELD(&mask.mf.map, metadata)
3239 && !FLOWMAP_HAS_FIELD(&mask.mf.map, regs));
3240
3241 /* Do not allocate extra space. */
3242 flow = xmalloc(sizeof *flow - sizeof flow->cr.flow.mf + mask.len);
3243 memset(&flow->stats, 0, sizeof flow->stats);
3244 flow->dead = false;
3245 flow->batch = NULL;
3246 flow->mark = INVALID_FLOW_MARK;
3247 *CONST_CAST(unsigned *, &flow->pmd_id) = pmd->core_id;
3248 *CONST_CAST(struct flow *, &flow->flow) = match->flow;
3249 *CONST_CAST(ovs_u128 *, &flow->ufid) = *ufid;
3250 ovs_refcount_init(&flow->ref_cnt);
3251 ovsrcu_set(&flow->actions, dp_netdev_actions_create(actions, actions_len));
3252
3253 dp_netdev_get_mega_ufid(match, CONST_CAST(ovs_u128 *, &flow->mega_ufid));
3254 netdev_flow_key_init_masked(&flow->cr.flow, &match->flow, &mask);
3255
3256 /* Select dpcls for in_port. Relies on in_port to be exact match. */
3257 cls = dp_netdev_pmd_find_dpcls(pmd, in_port);
3258 dpcls_insert(cls, &flow->cr, &mask);
3259
3260 cmap_insert(&pmd->flow_table, CONST_CAST(struct cmap_node *, &flow->node),
3261 dp_netdev_flow_hash(&flow->ufid));
3262
3263 queue_netdev_flow_put(pmd, flow, match, actions, actions_len);
3264
3265 if (OVS_UNLIKELY(!VLOG_DROP_DBG((&upcall_rl)))) {
3266 struct ds ds = DS_EMPTY_INITIALIZER;
3267 struct ofpbuf key_buf, mask_buf;
3268 struct odp_flow_key_parms odp_parms = {
3269 .flow = &match->flow,
3270 .mask = &match->wc.masks,
3271 .support = dp_netdev_support,
3272 };
3273
3274 ofpbuf_init(&key_buf, 0);
3275 ofpbuf_init(&mask_buf, 0);
3276
3277 odp_flow_key_from_flow(&odp_parms, &key_buf);
3278 odp_parms.key_buf = &key_buf;
3279 odp_flow_key_from_mask(&odp_parms, &mask_buf);
3280
3281 ds_put_cstr(&ds, "flow_add: ");
3282 odp_format_ufid(ufid, &ds);
3283 ds_put_cstr(&ds, " ");
3284 odp_flow_format(key_buf.data, key_buf.size,
3285 mask_buf.data, mask_buf.size,
3286 NULL, &ds, false);
3287 ds_put_cstr(&ds, ", actions:");
3288 format_odp_actions(&ds, actions, actions_len, NULL);
3289
3290 VLOG_DBG("%s", ds_cstr(&ds));
3291
3292 ofpbuf_uninit(&key_buf);
3293 ofpbuf_uninit(&mask_buf);
3294
3295 /* Add a printout of the actual match installed. */
3296 struct match m;
3297 ds_clear(&ds);
3298 ds_put_cstr(&ds, "flow match: ");
3299 miniflow_expand(&flow->cr.flow.mf, &m.flow);
3300 miniflow_expand(&flow->cr.mask->mf, &m.wc.masks);
3301 memset(&m.tun_md, 0, sizeof m.tun_md);
3302 match_format(&m, NULL, &ds, OFP_DEFAULT_PRIORITY);
3303
3304 VLOG_DBG("%s", ds_cstr(&ds));
3305
3306 ds_destroy(&ds);
3307 }
3308
3309 return flow;
3310 }
3311
3312 static int
3313 flow_put_on_pmd(struct dp_netdev_pmd_thread *pmd,
3314 struct netdev_flow_key *key,
3315 struct match *match,
3316 ovs_u128 *ufid,
3317 const struct dpif_flow_put *put,
3318 struct dpif_flow_stats *stats)
3319 {
3320 struct dp_netdev_flow *netdev_flow;
3321 int error = 0;
3322
3323 if (stats) {
3324 memset(stats, 0, sizeof *stats);
3325 }
3326
3327 ovs_mutex_lock(&pmd->flow_mutex);
3328 netdev_flow = dp_netdev_pmd_lookup_flow(pmd, key, NULL);
3329 if (!netdev_flow) {
3330 if (put->flags & DPIF_FP_CREATE) {
3331 if (cmap_count(&pmd->flow_table) < MAX_FLOWS) {
3332 dp_netdev_flow_add(pmd, match, ufid, put->actions,
3333 put->actions_len);
3334 error = 0;
3335 } else {
3336 error = EFBIG;
3337 }
3338 } else {
3339 error = ENOENT;
3340 }
3341 } else {
3342 if (put->flags & DPIF_FP_MODIFY) {
3343 struct dp_netdev_actions *new_actions;
3344 struct dp_netdev_actions *old_actions;
3345
3346 new_actions = dp_netdev_actions_create(put->actions,
3347 put->actions_len);
3348
3349 old_actions = dp_netdev_flow_get_actions(netdev_flow);
3350 ovsrcu_set(&netdev_flow->actions, new_actions);
3351
3352 queue_netdev_flow_put(pmd, netdev_flow, match,
3353 put->actions, put->actions_len);
3354
3355 if (stats) {
3356 get_dpif_flow_stats(netdev_flow, stats);
3357 }
3358 if (put->flags & DPIF_FP_ZERO_STATS) {
3359 /* XXX: The userspace datapath uses thread local statistics
3360 * (for flows), which should be updated only by the owning
3361 * thread. Since we cannot write on stats memory here,
3362 * we choose not to support this flag. Please note:
3363 * - This feature is currently used only by dpctl commands with
3364 * option --clear.
3365 * - Should the need arise, this operation can be implemented
3366 * by keeping a base value (to be update here) for each
3367 * counter, and subtracting it before outputting the stats */
3368 error = EOPNOTSUPP;
3369 }
3370
3371 ovsrcu_postpone(dp_netdev_actions_free, old_actions);
3372 } else if (put->flags & DPIF_FP_CREATE) {
3373 error = EEXIST;
3374 } else {
3375 /* Overlapping flow. */
3376 error = EINVAL;
3377 }
3378 }
3379 ovs_mutex_unlock(&pmd->flow_mutex);
3380 return error;
3381 }
3382
3383 static int
3384 dpif_netdev_flow_put(struct dpif *dpif, const struct dpif_flow_put *put)
3385 {
3386 struct dp_netdev *dp = get_dp_netdev(dpif);
3387 struct netdev_flow_key key, mask;
3388 struct dp_netdev_pmd_thread *pmd;
3389 struct match match;
3390 ovs_u128 ufid;
3391 int error;
3392 bool probe = put->flags & DPIF_FP_PROBE;
3393
3394 if (put->stats) {
3395 memset(put->stats, 0, sizeof *put->stats);
3396 }
3397 error = dpif_netdev_flow_from_nlattrs(put->key, put->key_len, &match.flow,
3398 probe);
3399 if (error) {
3400 return error;
3401 }
3402 error = dpif_netdev_mask_from_nlattrs(put->key, put->key_len,
3403 put->mask, put->mask_len,
3404 &match.flow, &match.wc, probe);
3405 if (error) {
3406 return error;
3407 }
3408
3409 if (put->ufid) {
3410 ufid = *put->ufid;
3411 } else {
3412 dpif_flow_hash(dpif, &match.flow, sizeof match.flow, &ufid);
3413 }
3414
3415 /* The Netlink encoding of datapath flow keys cannot express
3416 * wildcarding the presence of a VLAN tag. Instead, a missing VLAN
3417 * tag is interpreted as exact match on the fact that there is no
3418 * VLAN. Unless we refactor a lot of code that translates between
3419 * Netlink and struct flow representations, we have to do the same
3420 * here. This must be in sync with 'match' in handle_packet_upcall(). */
3421 if (!match.wc.masks.vlans[0].tci) {
3422 match.wc.masks.vlans[0].tci = htons(0xffff);
3423 }
3424
3425 /* Must produce a netdev_flow_key for lookup.
3426 * Use the same method as employed to create the key when adding
3427 * the flow to the dplcs to make sure they match. */
3428 netdev_flow_mask_init(&mask, &match);
3429 netdev_flow_key_init_masked(&key, &match.flow, &mask);
3430
3431 if (put->pmd_id == PMD_ID_NULL) {
3432 if (cmap_count(&dp->poll_threads) == 0) {
3433 return EINVAL;
3434 }
3435 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
3436 struct dpif_flow_stats pmd_stats;
3437 int pmd_error;
3438
3439 pmd_error = flow_put_on_pmd(pmd, &key, &match, &ufid, put,
3440 &pmd_stats);
3441 if (pmd_error) {
3442 error = pmd_error;
3443 } else if (put->stats) {
3444 put->stats->n_packets += pmd_stats.n_packets;
3445 put->stats->n_bytes += pmd_stats.n_bytes;
3446 put->stats->used = MAX(put->stats->used, pmd_stats.used);
3447 put->stats->tcp_flags |= pmd_stats.tcp_flags;
3448 }
3449 }
3450 } else {
3451 pmd = dp_netdev_get_pmd(dp, put->pmd_id);
3452 if (!pmd) {
3453 return EINVAL;
3454 }
3455 error = flow_put_on_pmd(pmd, &key, &match, &ufid, put, put->stats);
3456 dp_netdev_pmd_unref(pmd);
3457 }
3458
3459 return error;
3460 }
3461
3462 static int
3463 flow_del_on_pmd(struct dp_netdev_pmd_thread *pmd,
3464 struct dpif_flow_stats *stats,
3465 const struct dpif_flow_del *del)
3466 {
3467 struct dp_netdev_flow *netdev_flow;
3468 int error = 0;
3469
3470 ovs_mutex_lock(&pmd->flow_mutex);
3471 netdev_flow = dp_netdev_pmd_find_flow(pmd, del->ufid, del->key,
3472 del->key_len);
3473 if (netdev_flow) {
3474 if (stats) {
3475 get_dpif_flow_stats(netdev_flow, stats);
3476 }
3477 dp_netdev_pmd_remove_flow(pmd, netdev_flow);
3478 } else {
3479 error = ENOENT;
3480 }
3481 ovs_mutex_unlock(&pmd->flow_mutex);
3482
3483 return error;
3484 }
3485
3486 static int
3487 dpif_netdev_flow_del(struct dpif *dpif, const struct dpif_flow_del *del)
3488 {
3489 struct dp_netdev *dp = get_dp_netdev(dpif);
3490 struct dp_netdev_pmd_thread *pmd;
3491 int error = 0;
3492
3493 if (del->stats) {
3494 memset(del->stats, 0, sizeof *del->stats);
3495 }
3496
3497 if (del->pmd_id == PMD_ID_NULL) {
3498 if (cmap_count(&dp->poll_threads) == 0) {
3499 return EINVAL;
3500 }
3501 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
3502 struct dpif_flow_stats pmd_stats;
3503 int pmd_error;
3504
3505 pmd_error = flow_del_on_pmd(pmd, &pmd_stats, del);
3506 if (pmd_error) {
3507 error = pmd_error;
3508 } else if (del->stats) {
3509 del->stats->n_packets += pmd_stats.n_packets;
3510 del->stats->n_bytes += pmd_stats.n_bytes;
3511 del->stats->used = MAX(del->stats->used, pmd_stats.used);
3512 del->stats->tcp_flags |= pmd_stats.tcp_flags;
3513 }
3514 }
3515 } else {
3516 pmd = dp_netdev_get_pmd(dp, del->pmd_id);
3517 if (!pmd) {
3518 return EINVAL;
3519 }
3520 error = flow_del_on_pmd(pmd, del->stats, del);
3521 dp_netdev_pmd_unref(pmd);
3522 }
3523
3524
3525 return error;
3526 }
3527
3528 struct dpif_netdev_flow_dump {
3529 struct dpif_flow_dump up;
3530 struct cmap_position poll_thread_pos;
3531 struct cmap_position flow_pos;
3532 struct dp_netdev_pmd_thread *cur_pmd;
3533 int status;
3534 struct ovs_mutex mutex;
3535 };
3536
3537 static struct dpif_netdev_flow_dump *
3538 dpif_netdev_flow_dump_cast(struct dpif_flow_dump *dump)
3539 {
3540 return CONTAINER_OF(dump, struct dpif_netdev_flow_dump, up);
3541 }
3542
3543 static struct dpif_flow_dump *
3544 dpif_netdev_flow_dump_create(const struct dpif *dpif_, bool terse,
3545 struct dpif_flow_dump_types *types OVS_UNUSED)
3546 {
3547 struct dpif_netdev_flow_dump *dump;
3548
3549 dump = xzalloc(sizeof *dump);
3550 dpif_flow_dump_init(&dump->up, dpif_);
3551 dump->up.terse = terse;
3552 ovs_mutex_init(&dump->mutex);
3553
3554 return &dump->up;
3555 }
3556
3557 static int
3558 dpif_netdev_flow_dump_destroy(struct dpif_flow_dump *dump_)
3559 {
3560 struct dpif_netdev_flow_dump *dump = dpif_netdev_flow_dump_cast(dump_);
3561
3562 ovs_mutex_destroy(&dump->mutex);
3563 free(dump);
3564 return 0;
3565 }
3566
3567 struct dpif_netdev_flow_dump_thread {
3568 struct dpif_flow_dump_thread up;
3569 struct dpif_netdev_flow_dump *dump;
3570 struct odputil_keybuf keybuf[FLOW_DUMP_MAX_BATCH];
3571 struct odputil_keybuf maskbuf[FLOW_DUMP_MAX_BATCH];
3572 };
3573
3574 static struct dpif_netdev_flow_dump_thread *
3575 dpif_netdev_flow_dump_thread_cast(struct dpif_flow_dump_thread *thread)
3576 {
3577 return CONTAINER_OF(thread, struct dpif_netdev_flow_dump_thread, up);
3578 }
3579
3580 static struct dpif_flow_dump_thread *
3581 dpif_netdev_flow_dump_thread_create(struct dpif_flow_dump *dump_)
3582 {
3583 struct dpif_netdev_flow_dump *dump = dpif_netdev_flow_dump_cast(dump_);
3584 struct dpif_netdev_flow_dump_thread *thread;
3585
3586 thread = xmalloc(sizeof *thread);
3587 dpif_flow_dump_thread_init(&thread->up, &dump->up);
3588 thread->dump = dump;
3589 return &thread->up;
3590 }
3591
3592 static void
3593 dpif_netdev_flow_dump_thread_destroy(struct dpif_flow_dump_thread *thread_)
3594 {
3595 struct dpif_netdev_flow_dump_thread *thread
3596 = dpif_netdev_flow_dump_thread_cast(thread_);
3597
3598 free(thread);
3599 }
3600
3601 static int
3602 dpif_netdev_flow_dump_next(struct dpif_flow_dump_thread *thread_,
3603 struct dpif_flow *flows, int max_flows)
3604 {
3605 struct dpif_netdev_flow_dump_thread *thread
3606 = dpif_netdev_flow_dump_thread_cast(thread_);
3607 struct dpif_netdev_flow_dump *dump = thread->dump;
3608 struct dp_netdev_flow *netdev_flows[FLOW_DUMP_MAX_BATCH];
3609 int n_flows = 0;
3610 int i;
3611
3612 ovs_mutex_lock(&dump->mutex);
3613 if (!dump->status) {
3614 struct dpif_netdev *dpif = dpif_netdev_cast(thread->up.dpif);
3615 struct dp_netdev *dp = get_dp_netdev(&dpif->dpif);
3616 struct dp_netdev_pmd_thread *pmd = dump->cur_pmd;
3617 int flow_limit = MIN(max_flows, FLOW_DUMP_MAX_BATCH);
3618
3619 /* First call to dump_next(), extracts the first pmd thread.
3620 * If there is no pmd thread, returns immediately. */
3621 if (!pmd) {
3622 pmd = dp_netdev_pmd_get_next(dp, &dump->poll_thread_pos);
3623 if (!pmd) {
3624 ovs_mutex_unlock(&dump->mutex);
3625 return n_flows;
3626
3627 }
3628 }
3629
3630 do {
3631 for (n_flows = 0; n_flows < flow_limit; n_flows++) {
3632 struct cmap_node *node;
3633
3634 node = cmap_next_position(&pmd->flow_table, &dump->flow_pos);
3635 if (!node) {
3636 break;
3637 }
3638 netdev_flows[n_flows] = CONTAINER_OF(node,
3639 struct dp_netdev_flow,
3640 node);
3641 }
3642 /* When finishing dumping the current pmd thread, moves to
3643 * the next. */
3644 if (n_flows < flow_limit) {
3645 memset(&dump->flow_pos, 0, sizeof dump->flow_pos);
3646 dp_netdev_pmd_unref(pmd);
3647 pmd = dp_netdev_pmd_get_next(dp, &dump->poll_thread_pos);
3648 if (!pmd) {
3649 dump->status = EOF;
3650 break;
3651 }
3652 }
3653 /* Keeps the reference to next caller. */
3654 dump->cur_pmd = pmd;
3655
3656 /* If the current dump is empty, do not exit the loop, since the
3657 * remaining pmds could have flows to be dumped. Just dumps again
3658 * on the new 'pmd'. */
3659 } while (!n_flows);
3660 }
3661 ovs_mutex_unlock(&dump->mutex);
3662
3663 for (i = 0; i < n_flows; i++) {
3664 struct odputil_keybuf *maskbuf = &thread->maskbuf[i];
3665 struct odputil_keybuf *keybuf = &thread->keybuf[i];
3666 struct dp_netdev_flow *netdev_flow = netdev_flows[i];
3667 struct dpif_flow *f = &flows[i];
3668 struct ofpbuf key, mask;
3669
3670 ofpbuf_use_stack(&key, keybuf, sizeof *keybuf);
3671 ofpbuf_use_stack(&mask, maskbuf, sizeof *maskbuf);
3672 dp_netdev_flow_to_dpif_flow(netdev_flow, &key, &mask, f,
3673 dump->up.terse);
3674 }
3675
3676 return n_flows;
3677 }
3678
3679 static int
3680 dpif_netdev_execute(struct dpif *dpif, struct dpif_execute *execute)
3681 OVS_NO_THREAD_SAFETY_ANALYSIS
3682 {
3683 struct dp_netdev *dp = get_dp_netdev(dpif);
3684 struct dp_netdev_pmd_thread *pmd;
3685 struct dp_packet_batch pp;
3686
3687 if (dp_packet_size(execute->packet) < ETH_HEADER_LEN ||
3688 dp_packet_size(execute->packet) > UINT16_MAX) {
3689 return EINVAL;
3690 }
3691
3692 /* Tries finding the 'pmd'. If NULL is returned, that means
3693 * the current thread is a non-pmd thread and should use
3694 * dp_netdev_get_pmd(dp, NON_PMD_CORE_ID). */
3695 pmd = ovsthread_getspecific(dp->per_pmd_key);
3696 if (!pmd) {
3697 pmd = dp_netdev_get_pmd(dp, NON_PMD_CORE_ID);
3698 if (!pmd) {
3699 return EBUSY;
3700 }
3701 }
3702
3703 if (execute->probe) {
3704 /* If this is part of a probe, Drop the packet, since executing
3705 * the action may actually cause spurious packets be sent into
3706 * the network. */
3707 if (pmd->core_id == NON_PMD_CORE_ID) {
3708 dp_netdev_pmd_unref(pmd);
3709 }
3710 return 0;
3711 }
3712
3713 /* If the current thread is non-pmd thread, acquires
3714 * the 'non_pmd_mutex'. */
3715 if (pmd->core_id == NON_PMD_CORE_ID) {
3716 ovs_mutex_lock(&dp->non_pmd_mutex);
3717 }
3718
3719 /* Update current time in PMD context. We don't care about EMC insertion
3720 * probability, because we are on a slow path. */
3721 pmd_thread_ctx_time_update(pmd);
3722
3723 /* The action processing expects the RSS hash to be valid, because
3724 * it's always initialized at the beginning of datapath processing.
3725 * In this case, though, 'execute->packet' may not have gone through
3726 * the datapath at all, it may have been generated by the upper layer
3727 * (OpenFlow packet-out, BFD frame, ...). */
3728 if (!dp_packet_rss_valid(execute->packet)) {
3729 dp_packet_set_rss_hash(execute->packet,
3730 flow_hash_5tuple(execute->flow, 0));
3731 }
3732
3733 dp_packet_batch_init_packet(&pp, execute->packet);
3734 pp.do_not_steal = true;
3735 dp_netdev_execute_actions(pmd, &pp, false, execute->flow,
3736 execute->actions, execute->actions_len);
3737 dp_netdev_pmd_flush_output_packets(pmd, true);
3738
3739 if (pmd->core_id == NON_PMD_CORE_ID) {
3740 ovs_mutex_unlock(&dp->non_pmd_mutex);
3741 dp_netdev_pmd_unref(pmd);
3742 }
3743
3744 return 0;
3745 }
3746
3747 static void
3748 dpif_netdev_operate(struct dpif *dpif, struct dpif_op **ops, size_t n_ops,
3749 enum dpif_offload_type offload_type OVS_UNUSED)
3750 {
3751 size_t i;
3752
3753 for (i = 0; i < n_ops; i++) {
3754 struct dpif_op *op = ops[i];
3755
3756 switch (op->type) {
3757 case DPIF_OP_FLOW_PUT:
3758 op->error = dpif_netdev_flow_put(dpif, &op->flow_put);
3759 break;
3760
3761 case DPIF_OP_FLOW_DEL:
3762 op->error = dpif_netdev_flow_del(dpif, &op->flow_del);
3763 break;
3764
3765 case DPIF_OP_EXECUTE:
3766 op->error = dpif_netdev_execute(dpif, &op->execute);
3767 break;
3768
3769 case DPIF_OP_FLOW_GET:
3770 op->error = dpif_netdev_flow_get(dpif, &op->flow_get);
3771 break;
3772 }
3773 }
3774 }
3775
3776 /* Enable or Disable PMD auto load balancing. */
3777 static void
3778 set_pmd_auto_lb(struct dp_netdev *dp)
3779 {
3780 unsigned int cnt = 0;
3781 struct dp_netdev_pmd_thread *pmd;
3782 struct pmd_auto_lb *pmd_alb = &dp->pmd_alb;
3783
3784 bool enable_alb = false;
3785 bool multi_rxq = false;
3786 bool pmd_rxq_assign_cyc = dp->pmd_rxq_assign_cyc;
3787
3788 /* Ensure that there is at least 2 non-isolated PMDs and
3789 * one of them is polling more than one rxq. */
3790 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
3791 if (pmd->core_id == NON_PMD_CORE_ID || pmd->isolated) {
3792 continue;
3793 }
3794
3795 if (hmap_count(&pmd->poll_list) > 1) {
3796 multi_rxq = true;
3797 }
3798 if (cnt && multi_rxq) {
3799 enable_alb = true;
3800 break;
3801 }
3802 cnt++;
3803 }
3804
3805 /* Enable auto LB if it is requested and cycle based assignment is true. */
3806 enable_alb = enable_alb && pmd_rxq_assign_cyc &&
3807 pmd_alb->auto_lb_requested;
3808
3809 if (pmd_alb->is_enabled != enable_alb) {
3810 pmd_alb->is_enabled = enable_alb;
3811 if (pmd_alb->is_enabled) {
3812 VLOG_INFO("PMD auto load balance is enabled "
3813 "(with rebalance interval:%"PRIu64" msec)",
3814 pmd_alb->rebalance_intvl);
3815 } else {
3816 pmd_alb->rebalance_poll_timer = 0;
3817 VLOG_INFO("PMD auto load balance is disabled");
3818 }
3819 }
3820
3821 }
3822
3823 /* Applies datapath configuration from the database. Some of the changes are
3824 * actually applied in dpif_netdev_run(). */
3825 static int
3826 dpif_netdev_set_config(struct dpif *dpif, const struct smap *other_config)
3827 {
3828 struct dp_netdev *dp = get_dp_netdev(dpif);
3829 const char *cmask = smap_get(other_config, "pmd-cpu-mask");
3830 const char *pmd_rxq_assign = smap_get_def(other_config, "pmd-rxq-assign",
3831 "cycles");
3832 unsigned long long insert_prob =
3833 smap_get_ullong(other_config, "emc-insert-inv-prob",
3834 DEFAULT_EM_FLOW_INSERT_INV_PROB);
3835 uint32_t insert_min, cur_min;
3836 uint32_t tx_flush_interval, cur_tx_flush_interval;
3837 uint64_t rebalance_intvl;
3838
3839 tx_flush_interval = smap_get_int(other_config, "tx-flush-interval",
3840 DEFAULT_TX_FLUSH_INTERVAL);
3841 atomic_read_relaxed(&dp->tx_flush_interval, &cur_tx_flush_interval);
3842 if (tx_flush_interval != cur_tx_flush_interval) {
3843 atomic_store_relaxed(&dp->tx_flush_interval, tx_flush_interval);
3844 VLOG_INFO("Flushing interval for tx queues set to %"PRIu32" us",
3845 tx_flush_interval);
3846 }
3847
3848 if (!nullable_string_is_equal(dp->pmd_cmask, cmask)) {
3849 free(dp->pmd_cmask);
3850 dp->pmd_cmask = nullable_xstrdup(cmask);
3851 dp_netdev_request_reconfigure(dp);
3852 }
3853
3854 atomic_read_relaxed(&dp->emc_insert_min, &cur_min);
3855 if (insert_prob <= UINT32_MAX) {
3856 insert_min = insert_prob == 0 ? 0 : UINT32_MAX / insert_prob;
3857 } else {
3858 insert_min = DEFAULT_EM_FLOW_INSERT_MIN;
3859 insert_prob = DEFAULT_EM_FLOW_INSERT_INV_PROB;
3860 }
3861
3862 if (insert_min != cur_min) {
3863 atomic_store_relaxed(&dp->emc_insert_min, insert_min);
3864 if (insert_min == 0) {
3865 VLOG_INFO("EMC insertion probability changed to zero");
3866 } else {
3867 VLOG_INFO("EMC insertion probability changed to 1/%llu (~%.2f%%)",
3868 insert_prob, (100 / (float)insert_prob));
3869 }
3870 }
3871
3872 bool perf_enabled = smap_get_bool(other_config, "pmd-perf-metrics", false);
3873 bool cur_perf_enabled;
3874 atomic_read_relaxed(&dp->pmd_perf_metrics, &cur_perf_enabled);
3875 if (perf_enabled != cur_perf_enabled) {
3876 atomic_store_relaxed(&dp->pmd_perf_metrics, perf_enabled);
3877 if (perf_enabled) {
3878 VLOG_INFO("PMD performance metrics collection enabled");
3879 } else {
3880 VLOG_INFO("PMD performance metrics collection disabled");
3881 }
3882 }
3883
3884 bool smc_enable = smap_get_bool(other_config, "smc-enable", false);
3885 bool cur_smc;
3886 atomic_read_relaxed(&dp->smc_enable_db, &cur_smc);
3887 if (smc_enable != cur_smc) {
3888 atomic_store_relaxed(&dp->smc_enable_db, smc_enable);
3889 if (smc_enable) {
3890 VLOG_INFO("SMC cache is enabled");
3891 } else {
3892 VLOG_INFO("SMC cache is disabled");
3893 }
3894 }
3895
3896 bool pmd_rxq_assign_cyc = !strcmp(pmd_rxq_assign, "cycles");
3897 if (!pmd_rxq_assign_cyc && strcmp(pmd_rxq_assign, "roundrobin")) {
3898 VLOG_WARN("Unsupported Rxq to PMD assignment mode in pmd-rxq-assign. "
3899 "Defaulting to 'cycles'.");
3900 pmd_rxq_assign_cyc = true;
3901 pmd_rxq_assign = "cycles";
3902 }
3903 if (dp->pmd_rxq_assign_cyc != pmd_rxq_assign_cyc) {
3904 dp->pmd_rxq_assign_cyc = pmd_rxq_assign_cyc;
3905 VLOG_INFO("Rxq to PMD assignment mode changed to: \'%s\'.",
3906 pmd_rxq_assign);
3907 dp_netdev_request_reconfigure(dp);
3908 }
3909
3910 struct pmd_auto_lb *pmd_alb = &dp->pmd_alb;
3911 pmd_alb->auto_lb_requested = smap_get_bool(other_config, "pmd-auto-lb",
3912 false);
3913
3914 rebalance_intvl = smap_get_int(other_config, "pmd-auto-lb-rebal-interval",
3915 ALB_PMD_REBALANCE_POLL_INTERVAL);
3916
3917 /* Input is in min, convert it to msec. */
3918 rebalance_intvl =
3919 rebalance_intvl ? rebalance_intvl * MIN_TO_MSEC : MIN_TO_MSEC;
3920
3921 if (pmd_alb->rebalance_intvl != rebalance_intvl) {
3922 pmd_alb->rebalance_intvl = rebalance_intvl;
3923 }
3924
3925 set_pmd_auto_lb(dp);
3926 return 0;
3927 }
3928
3929 /* Parses affinity list and returns result in 'core_ids'. */
3930 static int
3931 parse_affinity_list(const char *affinity_list, unsigned *core_ids, int n_rxq)
3932 {
3933 unsigned i;
3934 char *list, *copy, *key, *value;
3935 int error = 0;
3936
3937 for (i = 0; i < n_rxq; i++) {
3938 core_ids[i] = OVS_CORE_UNSPEC;
3939 }
3940
3941 if (!affinity_list) {
3942 return 0;
3943 }
3944
3945 list = copy = xstrdup(affinity_list);
3946
3947 while (ofputil_parse_key_value(&list, &key, &value)) {
3948 int rxq_id, core_id;
3949
3950 if (!str_to_int(key, 0, &rxq_id) || rxq_id < 0
3951 || !str_to_int(value, 0, &core_id) || core_id < 0) {
3952 error = EINVAL;
3953 break;
3954 }
3955
3956 if (rxq_id < n_rxq) {
3957 core_ids[rxq_id] = core_id;
3958 }
3959 }
3960
3961 free(copy);
3962 return error;
3963 }
3964
3965 /* Parses 'affinity_list' and applies configuration if it is valid. */
3966 static int
3967 dpif_netdev_port_set_rxq_affinity(struct dp_netdev_port *port,
3968 const char *affinity_list)
3969 {
3970 unsigned *core_ids, i;
3971 int error = 0;
3972
3973 core_ids = xmalloc(port->n_rxq * sizeof *core_ids);
3974 if (parse_affinity_list(affinity_list, core_ids, port->n_rxq)) {
3975 error = EINVAL;
3976 goto exit;
3977 }
3978
3979 for (i = 0; i < port->n_rxq; i++) {
3980 port->rxqs[i].core_id = core_ids[i];
3981 }
3982
3983 exit:
3984 free(core_ids);
3985 return error;
3986 }
3987
3988 /* Returns 'true' if one of the 'port's RX queues exists in 'poll_list'
3989 * of given PMD thread. */
3990 static bool
3991 dpif_netdev_pmd_polls_port(struct dp_netdev_pmd_thread *pmd,
3992 struct dp_netdev_port *port)
3993 OVS_EXCLUDED(pmd->port_mutex)
3994 {
3995 struct rxq_poll *poll;
3996 bool found = false;
3997
3998 ovs_mutex_lock(&pmd->port_mutex);
3999 HMAP_FOR_EACH (poll, node, &pmd->poll_list) {
4000 if (port == poll->rxq->port) {
4001 found = true;
4002 break;
4003 }
4004 }
4005 ovs_mutex_unlock(&pmd->port_mutex);
4006 return found;
4007 }
4008
4009 /* Updates port configuration from the database. The changes are actually
4010 * applied in dpif_netdev_run(). */
4011 static int
4012 dpif_netdev_port_set_config(struct dpif *dpif, odp_port_t port_no,
4013 const struct smap *cfg)
4014 {
4015 struct dp_netdev *dp = get_dp_netdev(dpif);
4016 struct dp_netdev_port *port;
4017 int error = 0;
4018 const char *affinity_list = smap_get(cfg, "pmd-rxq-affinity");
4019 bool emc_enabled = smap_get_bool(cfg, "emc-enable", true);
4020
4021 ovs_mutex_lock(&dp->port_mutex);
4022 error = get_port_by_number(dp, port_no, &port);
4023 if (error) {
4024 goto unlock;
4025 }
4026
4027 if (emc_enabled != port->emc_enabled) {
4028 struct dp_netdev_pmd_thread *pmd;
4029 struct ds ds = DS_EMPTY_INITIALIZER;
4030 uint32_t cur_min, insert_prob;
4031
4032 port->emc_enabled = emc_enabled;
4033 /* Mark for reload all the threads that polls this port and request
4034 * for reconfiguration for the actual reloading of threads. */
4035 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
4036 if (dpif_netdev_pmd_polls_port(pmd, port)) {
4037 pmd->need_reload = true;
4038 }
4039 }
4040 dp_netdev_request_reconfigure(dp);
4041
4042 ds_put_format(&ds, "%s: EMC has been %s.",
4043 netdev_get_name(port->netdev),
4044 (emc_enabled) ? "enabled" : "disabled");
4045 if (emc_enabled) {
4046 ds_put_cstr(&ds, " Current insertion probability is ");
4047 atomic_read_relaxed(&dp->emc_insert_min, &cur_min);
4048 if (!cur_min) {
4049 ds_put_cstr(&ds, "zero.");
4050 } else {
4051 insert_prob = UINT32_MAX / cur_min;
4052 ds_put_format(&ds, "1/%"PRIu32" (~%.2f%%).",
4053 insert_prob, 100 / (float) insert_prob);
4054 }
4055 }
4056 VLOG_INFO("%s", ds_cstr(&ds));
4057 ds_destroy(&ds);
4058 }
4059
4060 /* Checking for RXq affinity changes. */
4061 if (!netdev_is_pmd(port->netdev)
4062 || nullable_string_is_equal(affinity_list, port->rxq_affinity_list)) {
4063 goto unlock;
4064 }
4065
4066 error = dpif_netdev_port_set_rxq_affinity(port, affinity_list);
4067 if (error) {
4068 goto unlock;
4069 }
4070 free(port->rxq_affinity_list);
4071 port->rxq_affinity_list = nullable_xstrdup(affinity_list);
4072
4073 dp_netdev_request_reconfigure(dp);
4074 unlock:
4075 ovs_mutex_unlock(&dp->port_mutex);
4076 return error;
4077 }
4078
4079 static int
4080 dpif_netdev_queue_to_priority(const struct dpif *dpif OVS_UNUSED,
4081 uint32_t queue_id, uint32_t *priority)
4082 {
4083 *priority = queue_id;
4084 return 0;
4085 }
4086
4087 \f
4088 /* Creates and returns a new 'struct dp_netdev_actions', whose actions are
4089 * a copy of the 'size' bytes of 'actions' input parameters. */
4090 struct dp_netdev_actions *
4091 dp_netdev_actions_create(const struct nlattr *actions, size_t size)
4092 {
4093 struct dp_netdev_actions *netdev_actions;
4094
4095 netdev_actions = xmalloc(sizeof *netdev_actions + size);
4096 memcpy(netdev_actions->actions, actions, size);
4097 netdev_actions->size = size;
4098
4099 return netdev_actions;
4100 }
4101
4102 struct dp_netdev_actions *
4103 dp_netdev_flow_get_actions(const struct dp_netdev_flow *flow)
4104 {
4105 return ovsrcu_get(struct dp_netdev_actions *, &flow->actions);
4106 }
4107
4108 static void
4109 dp_netdev_actions_free(struct dp_netdev_actions *actions)
4110 {
4111 free(actions);
4112 }
4113 \f
4114 static void
4115 dp_netdev_rxq_set_cycles(struct dp_netdev_rxq *rx,
4116 enum rxq_cycles_counter_type type,
4117 unsigned long long cycles)
4118 {
4119 atomic_store_relaxed(&rx->cycles[type], cycles);
4120 }
4121
4122 static void
4123 dp_netdev_rxq_add_cycles(struct dp_netdev_rxq *rx,
4124 enum rxq_cycles_counter_type type,
4125 unsigned long long cycles)
4126 {
4127 non_atomic_ullong_add(&rx->cycles[type], cycles);
4128 }
4129
4130 static uint64_t
4131 dp_netdev_rxq_get_cycles(struct dp_netdev_rxq *rx,
4132 enum rxq_cycles_counter_type type)
4133 {
4134 unsigned long long processing_cycles;
4135 atomic_read_relaxed(&rx->cycles[type], &processing_cycles);
4136 return processing_cycles;
4137 }
4138
4139 static void
4140 dp_netdev_rxq_set_intrvl_cycles(struct dp_netdev_rxq *rx,
4141 unsigned long long cycles)
4142 {
4143 unsigned int idx = rx->intrvl_idx++ % PMD_RXQ_INTERVAL_MAX;
4144 atomic_store_relaxed(&rx->cycles_intrvl[idx], cycles);
4145 }
4146
4147 static uint64_t
4148 dp_netdev_rxq_get_intrvl_cycles(struct dp_netdev_rxq *rx, unsigned idx)
4149 {
4150 unsigned long long processing_cycles;
4151 atomic_read_relaxed(&rx->cycles_intrvl[idx], &processing_cycles);
4152 return processing_cycles;
4153 }
4154
4155 #if ATOMIC_ALWAYS_LOCK_FREE_8B
4156 static inline bool
4157 pmd_perf_metrics_enabled(const struct dp_netdev_pmd_thread *pmd)
4158 {
4159 bool pmd_perf_enabled;
4160 atomic_read_relaxed(&pmd->dp->pmd_perf_metrics, &pmd_perf_enabled);
4161 return pmd_perf_enabled;
4162 }
4163 #else
4164 /* If stores and reads of 64-bit integers are not atomic, the full PMD
4165 * performance metrics are not available as locked access to 64 bit
4166 * integers would be prohibitively expensive. */
4167 static inline bool
4168 pmd_perf_metrics_enabled(const struct dp_netdev_pmd_thread *pmd OVS_UNUSED)
4169 {
4170 return false;
4171 }
4172 #endif
4173
4174 static int
4175 dp_netdev_pmd_flush_output_on_port(struct dp_netdev_pmd_thread *pmd,
4176 struct tx_port *p)
4177 {
4178 int i;
4179 int tx_qid;
4180 int output_cnt;
4181 bool dynamic_txqs;
4182 struct cycle_timer timer;
4183 uint64_t cycles;
4184 uint32_t tx_flush_interval;
4185
4186 cycle_timer_start(&pmd->perf_stats, &timer);
4187
4188 dynamic_txqs = p->port->dynamic_txqs;
4189 if (dynamic_txqs) {
4190 tx_qid = dpif_netdev_xps_get_tx_qid(pmd, p);
4191 } else {
4192 tx_qid = pmd->static_tx_qid;
4193 }
4194
4195 output_cnt = dp_packet_batch_size(&p->output_pkts);
4196 ovs_assert(output_cnt > 0);
4197
4198 netdev_send(p->port->netdev, tx_qid, &p->output_pkts, dynamic_txqs);
4199 dp_packet_batch_init(&p->output_pkts);
4200
4201 /* Update time of the next flush. */
4202 atomic_read_relaxed(&pmd->dp->tx_flush_interval, &tx_flush_interval);
4203 p->flush_time = pmd->ctx.now + tx_flush_interval;
4204
4205 ovs_assert(pmd->n_output_batches > 0);
4206 pmd->n_output_batches--;
4207
4208 pmd_perf_update_counter(&pmd->perf_stats, PMD_STAT_SENT_PKTS, output_cnt);
4209 pmd_perf_update_counter(&pmd->perf_stats, PMD_STAT_SENT_BATCHES, 1);
4210
4211 /* Distribute send cycles evenly among transmitted packets and assign to
4212 * their respective rx queues. */
4213 cycles = cycle_timer_stop(&pmd->perf_stats, &timer) / output_cnt;
4214 for (i = 0; i < output_cnt; i++) {
4215 if (p->output_pkts_rxqs[i]) {
4216 dp_netdev_rxq_add_cycles(p->output_pkts_rxqs[i],
4217 RXQ_CYCLES_PROC_CURR, cycles);
4218 }
4219 }
4220
4221 return output_cnt;
4222 }
4223
4224 static int
4225 dp_netdev_pmd_flush_output_packets(struct dp_netdev_pmd_thread *pmd,
4226 bool force)
4227 {
4228 struct tx_port *p;
4229 int output_cnt = 0;
4230
4231 if (!pmd->n_output_batches) {
4232 return 0;
4233 }
4234
4235 HMAP_FOR_EACH (p, node, &pmd->send_port_cache) {
4236 if (!dp_packet_batch_is_empty(&p->output_pkts)
4237 && (force || pmd->ctx.now >= p->flush_time)) {
4238 output_cnt += dp_netdev_pmd_flush_output_on_port(pmd, p);
4239 }
4240 }
4241 return output_cnt;
4242 }
4243
4244 static int
4245 dp_netdev_process_rxq_port(struct dp_netdev_pmd_thread *pmd,
4246 struct dp_netdev_rxq *rxq,
4247 odp_port_t port_no)
4248 {
4249 struct pmd_perf_stats *s = &pmd->perf_stats;
4250 struct dp_packet_batch batch;
4251 struct cycle_timer timer;
4252 int error;
4253 int batch_cnt = 0;
4254 int rem_qlen = 0, *qlen_p = NULL;
4255 uint64_t cycles;
4256
4257 /* Measure duration for polling and processing rx burst. */
4258 cycle_timer_start(&pmd->perf_stats, &timer);
4259
4260 pmd->ctx.last_rxq = rxq;
4261 dp_packet_batch_init(&batch);
4262
4263 /* Fetch the rx queue length only for vhostuser ports. */
4264 if (pmd_perf_metrics_enabled(pmd) && rxq->is_vhost) {
4265 qlen_p = &rem_qlen;
4266 }
4267
4268 error = netdev_rxq_recv(rxq->rx, &batch, qlen_p);
4269 if (!error) {
4270 /* At least one packet received. */
4271 *recirc_depth_get() = 0;
4272 pmd_thread_ctx_time_update(pmd);
4273 batch_cnt = batch.count;
4274 if (pmd_perf_metrics_enabled(pmd)) {
4275 /* Update batch histogram. */
4276 s->current.batches++;
4277 histogram_add_sample(&s->pkts_per_batch, batch_cnt);
4278 /* Update the maximum vhost rx queue fill level. */
4279 if (rxq->is_vhost && rem_qlen >= 0) {
4280 uint32_t qfill = batch_cnt + rem_qlen;
4281 if (qfill > s->current.max_vhost_qfill) {
4282 s->current.max_vhost_qfill = qfill;
4283 }
4284 }
4285 }
4286 /* Process packet batch. */
4287 dp_netdev_input(pmd, &batch, port_no);
4288
4289 /* Assign processing cycles to rx queue. */
4290 cycles = cycle_timer_stop(&pmd->perf_stats, &timer);
4291 dp_netdev_rxq_add_cycles(rxq, RXQ_CYCLES_PROC_CURR, cycles);
4292
4293 dp_netdev_pmd_flush_output_packets(pmd, false);
4294 } else {
4295 /* Discard cycles. */
4296 cycle_timer_stop(&pmd->perf_stats, &timer);
4297 if (error != EAGAIN && error != EOPNOTSUPP) {
4298 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
4299
4300 VLOG_ERR_RL(&rl, "error receiving data from %s: %s",
4301 netdev_rxq_get_name(rxq->rx), ovs_strerror(error));
4302 }
4303 }
4304
4305 pmd->ctx.last_rxq = NULL;
4306
4307 return batch_cnt;
4308 }
4309
4310 static struct tx_port *
4311 tx_port_lookup(const struct hmap *hmap, odp_port_t port_no)
4312 {
4313 struct tx_port *tx;
4314
4315 HMAP_FOR_EACH_IN_BUCKET (tx, node, hash_port_no(port_no), hmap) {
4316 if (tx->port->port_no == port_no) {
4317 return tx;
4318 }
4319 }
4320
4321 return NULL;
4322 }
4323
4324 static int
4325 port_reconfigure(struct dp_netdev_port *port)
4326 {
4327 struct netdev *netdev = port->netdev;
4328 int i, err;
4329
4330 /* Closes the existing 'rxq's. */
4331 for (i = 0; i < port->n_rxq; i++) {
4332 netdev_rxq_close(port->rxqs[i].rx);
4333 port->rxqs[i].rx = NULL;
4334 }
4335 unsigned last_nrxq = port->n_rxq;
4336 port->n_rxq = 0;
4337
4338 /* Allows 'netdev' to apply the pending configuration changes. */
4339 if (netdev_is_reconf_required(netdev) || port->need_reconfigure) {
4340 err = netdev_reconfigure(netdev);
4341 if (err && (err != EOPNOTSUPP)) {
4342 VLOG_ERR("Failed to set interface %s new configuration",
4343 netdev_get_name(netdev));
4344 return err;
4345 }
4346 }
4347 /* If the netdev_reconfigure() above succeeds, reopens the 'rxq's. */
4348 port->rxqs = xrealloc(port->rxqs,
4349 sizeof *port->rxqs * netdev_n_rxq(netdev));
4350 /* Realloc 'used' counters for tx queues. */
4351 free(port->txq_used);
4352 port->txq_used = xcalloc(netdev_n_txq(netdev), sizeof *port->txq_used);
4353
4354 for (i = 0; i < netdev_n_rxq(netdev); i++) {
4355 bool new_queue = i >= last_nrxq;
4356 if (new_queue) {
4357 memset(&port->rxqs[i], 0, sizeof port->rxqs[i]);
4358 }
4359
4360 port->rxqs[i].port = port;
4361 port->rxqs[i].is_vhost = !strncmp(port->type, "dpdkvhost", 9);
4362
4363 err = netdev_rxq_open(netdev, &port->rxqs[i].rx, i);
4364 if (err) {
4365 return err;
4366 }
4367 port->n_rxq++;
4368 }
4369
4370 /* Parse affinity list to apply configuration for new queues. */
4371 dpif_netdev_port_set_rxq_affinity(port, port->rxq_affinity_list);
4372
4373 /* If reconfiguration was successful mark it as such, so we can use it */
4374 port->need_reconfigure = false;
4375
4376 return 0;
4377 }
4378
4379 struct rr_numa_list {
4380 struct hmap numas; /* Contains 'struct rr_numa' */
4381 };
4382
4383 struct rr_numa {
4384 struct hmap_node node;
4385
4386 int numa_id;
4387
4388 /* Non isolated pmds on numa node 'numa_id' */
4389 struct dp_netdev_pmd_thread **pmds;
4390 int n_pmds;
4391
4392 int cur_index;
4393 bool idx_inc;
4394 };
4395
4396 static struct rr_numa *
4397 rr_numa_list_lookup(struct rr_numa_list *rr, int numa_id)
4398 {
4399 struct rr_numa *numa;
4400
4401 HMAP_FOR_EACH_WITH_HASH (numa, node, hash_int(numa_id, 0), &rr->numas) {
4402 if (numa->numa_id == numa_id) {
4403 return numa;
4404 }
4405 }
4406
4407 return NULL;
4408 }
4409
4410 /* Returns the next node in numa list following 'numa' in round-robin fashion.
4411 * Returns first node if 'numa' is a null pointer or the last node in 'rr'.
4412 * Returns NULL if 'rr' numa list is empty. */
4413 static struct rr_numa *
4414 rr_numa_list_next(struct rr_numa_list *rr, const struct rr_numa *numa)
4415 {
4416 struct hmap_node *node = NULL;
4417
4418 if (numa) {
4419 node = hmap_next(&rr->numas, &numa->node);
4420 }
4421 if (!node) {
4422 node = hmap_first(&rr->numas);
4423 }
4424
4425 return (node) ? CONTAINER_OF(node, struct rr_numa, node) : NULL;
4426 }
4427
4428 static void
4429 rr_numa_list_populate(struct dp_netdev *dp, struct rr_numa_list *rr)
4430 {
4431 struct dp_netdev_pmd_thread *pmd;
4432 struct rr_numa *numa;
4433
4434 hmap_init(&rr->numas);
4435
4436 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
4437 if (pmd->core_id == NON_PMD_CORE_ID || pmd->isolated) {
4438 continue;
4439 }
4440
4441 numa = rr_numa_list_lookup(rr, pmd->numa_id);
4442 if (!numa) {
4443 numa = xzalloc(sizeof *numa);
4444 numa->numa_id = pmd->numa_id;
4445 hmap_insert(&rr->numas, &numa->node, hash_int(pmd->numa_id, 0));
4446 }
4447 numa->n_pmds++;
4448 numa->pmds = xrealloc(numa->pmds, numa->n_pmds * sizeof *numa->pmds);
4449 numa->pmds[numa->n_pmds - 1] = pmd;
4450 /* At least one pmd so initialise curr_idx and idx_inc. */
4451 numa->cur_index = 0;
4452 numa->idx_inc = true;
4453 }
4454 }
4455
4456 /*
4457 * Returns the next pmd from the numa node.
4458 *
4459 * If 'updown' is 'true' it will alternate between selecting the next pmd in
4460 * either an up or down walk, switching between up/down when the first or last
4461 * core is reached. e.g. 1,2,3,3,2,1,1,2...
4462 *
4463 * If 'updown' is 'false' it will select the next pmd wrapping around when last
4464 * core reached. e.g. 1,2,3,1,2,3,1,2...
4465 */
4466 static struct dp_netdev_pmd_thread *
4467 rr_numa_get_pmd(struct rr_numa *numa, bool updown)
4468 {
4469 int numa_idx = numa->cur_index;
4470
4471 if (numa->idx_inc == true) {
4472 /* Incrementing through list of pmds. */
4473 if (numa->cur_index == numa->n_pmds-1) {
4474 /* Reached the last pmd. */
4475 if (updown) {
4476 numa->idx_inc = false;
4477 } else {
4478 numa->cur_index = 0;
4479 }
4480 } else {
4481 numa->cur_index++;
4482 }
4483 } else {
4484 /* Decrementing through list of pmds. */
4485 if (numa->cur_index == 0) {
4486 /* Reached the first pmd. */
4487 numa->idx_inc = true;
4488 } else {
4489 numa->cur_index--;
4490 }
4491 }
4492 return numa->pmds[numa_idx];
4493 }
4494
4495 static void
4496 rr_numa_list_destroy(struct rr_numa_list *rr)
4497 {
4498 struct rr_numa *numa;
4499
4500 HMAP_FOR_EACH_POP (numa, node, &rr->numas) {
4501 free(numa->pmds);
4502 free(numa);
4503 }
4504 hmap_destroy(&rr->numas);
4505 }
4506
4507 /* Sort Rx Queues by the processing cycles they are consuming. */
4508 static int
4509 compare_rxq_cycles(const void *a, const void *b)
4510 {
4511 struct dp_netdev_rxq *qa;
4512 struct dp_netdev_rxq *qb;
4513 uint64_t cycles_qa, cycles_qb;
4514
4515 qa = *(struct dp_netdev_rxq **) a;
4516 qb = *(struct dp_netdev_rxq **) b;
4517
4518 cycles_qa = dp_netdev_rxq_get_cycles(qa, RXQ_CYCLES_PROC_HIST);
4519 cycles_qb = dp_netdev_rxq_get_cycles(qb, RXQ_CYCLES_PROC_HIST);
4520
4521 if (cycles_qa != cycles_qb) {
4522 return (cycles_qa < cycles_qb) ? 1 : -1;
4523 } else {
4524 /* Cycles are the same so tiebreak on port/queue id.
4525 * Tiebreaking (as opposed to return 0) ensures consistent
4526 * sort results across multiple OS's. */
4527 uint32_t port_qa = odp_to_u32(qa->port->port_no);
4528 uint32_t port_qb = odp_to_u32(qb->port->port_no);
4529 if (port_qa != port_qb) {
4530 return port_qa > port_qb ? 1 : -1;
4531 } else {
4532 return netdev_rxq_get_queue_id(qa->rx)
4533 - netdev_rxq_get_queue_id(qb->rx);
4534 }
4535 }
4536 }
4537
4538 /* Assign pmds to queues. If 'pinned' is true, assign pmds to pinned
4539 * queues and marks the pmds as isolated. Otherwise, assign non isolated
4540 * pmds to unpinned queues.
4541 *
4542 * The function doesn't touch the pmd threads, it just stores the assignment
4543 * in the 'pmd' member of each rxq. */
4544 static void
4545 rxq_scheduling(struct dp_netdev *dp, bool pinned) OVS_REQUIRES(dp->port_mutex)
4546 {
4547 struct dp_netdev_port *port;
4548 struct rr_numa_list rr;
4549 struct rr_numa *non_local_numa = NULL;
4550 struct dp_netdev_rxq ** rxqs = NULL;
4551 int n_rxqs = 0;
4552 struct rr_numa *numa = NULL;
4553 int numa_id;
4554 bool assign_cyc = dp->pmd_rxq_assign_cyc;
4555
4556 HMAP_FOR_EACH (port, node, &dp->ports) {
4557 if (!netdev_is_pmd(port->netdev)) {
4558 continue;
4559 }
4560
4561 for (int qid = 0; qid < port->n_rxq; qid++) {
4562 struct dp_netdev_rxq *q = &port->rxqs[qid];
4563
4564 if (pinned && q->core_id != OVS_CORE_UNSPEC) {
4565 struct dp_netdev_pmd_thread *pmd;
4566
4567 pmd = dp_netdev_get_pmd(dp, q->core_id);
4568 if (!pmd) {
4569 VLOG_WARN("There is no PMD thread on core %d. Queue "
4570 "%d on port \'%s\' will not be polled.",
4571 q->core_id, qid, netdev_get_name(port->netdev));
4572 } else {
4573 q->pmd = pmd;
4574 pmd->isolated = true;
4575 dp_netdev_pmd_unref(pmd);
4576 }
4577 } else if (!pinned && q->core_id == OVS_CORE_UNSPEC) {
4578 uint64_t cycle_hist = 0;
4579
4580 if (n_rxqs == 0) {
4581 rxqs = xmalloc(sizeof *rxqs);
4582 } else {
4583 rxqs = xrealloc(rxqs, sizeof *rxqs * (n_rxqs + 1));
4584 }
4585
4586 if (assign_cyc) {
4587 /* Sum the queue intervals and store the cycle history. */
4588 for (unsigned i = 0; i < PMD_RXQ_INTERVAL_MAX; i++) {
4589 cycle_hist += dp_netdev_rxq_get_intrvl_cycles(q, i);
4590 }
4591 dp_netdev_rxq_set_cycles(q, RXQ_CYCLES_PROC_HIST,
4592 cycle_hist);
4593 }
4594 /* Store the queue. */
4595 rxqs[n_rxqs++] = q;
4596 }
4597 }
4598 }
4599
4600 if (n_rxqs > 1 && assign_cyc) {
4601 /* Sort the queues in order of the processing cycles
4602 * they consumed during their last pmd interval. */
4603 qsort(rxqs, n_rxqs, sizeof *rxqs, compare_rxq_cycles);
4604 }
4605
4606 rr_numa_list_populate(dp, &rr);
4607 /* Assign the sorted queues to pmds in round robin. */
4608 for (int i = 0; i < n_rxqs; i++) {
4609 numa_id = netdev_get_numa_id(rxqs[i]->port->netdev);
4610 numa = rr_numa_list_lookup(&rr, numa_id);
4611 if (!numa) {
4612 /* There are no pmds on the queue's local NUMA node.
4613 Round robin on the NUMA nodes that do have pmds. */
4614 non_local_numa = rr_numa_list_next(&rr, non_local_numa);
4615 if (!non_local_numa) {
4616 VLOG_ERR("There is no available (non-isolated) pmd "
4617 "thread for port \'%s\' queue %d. This queue "
4618 "will not be polled. Is pmd-cpu-mask set to "
4619 "zero? Or are all PMDs isolated to other "
4620 "queues?", netdev_rxq_get_name(rxqs[i]->rx),
4621 netdev_rxq_get_queue_id(rxqs[i]->rx));
4622 continue;
4623 }
4624 rxqs[i]->pmd = rr_numa_get_pmd(non_local_numa, assign_cyc);
4625 VLOG_WARN("There's no available (non-isolated) pmd thread "
4626 "on numa node %d. Queue %d on port \'%s\' will "
4627 "be assigned to the pmd on core %d "
4628 "(numa node %d). Expect reduced performance.",
4629 numa_id, netdev_rxq_get_queue_id(rxqs[i]->rx),
4630 netdev_rxq_get_name(rxqs[i]->rx),
4631 rxqs[i]->pmd->core_id, rxqs[i]->pmd->numa_id);
4632 } else {
4633 rxqs[i]->pmd = rr_numa_get_pmd(numa, assign_cyc);
4634 if (assign_cyc) {
4635 VLOG_INFO("Core %d on numa node %d assigned port \'%s\' "
4636 "rx queue %d "
4637 "(measured processing cycles %"PRIu64").",
4638 rxqs[i]->pmd->core_id, numa_id,
4639 netdev_rxq_get_name(rxqs[i]->rx),
4640 netdev_rxq_get_queue_id(rxqs[i]->rx),
4641 dp_netdev_rxq_get_cycles(rxqs[i],
4642 RXQ_CYCLES_PROC_HIST));
4643 } else {
4644 VLOG_INFO("Core %d on numa node %d assigned port \'%s\' "
4645 "rx queue %d.", rxqs[i]->pmd->core_id, numa_id,
4646 netdev_rxq_get_name(rxqs[i]->rx),
4647 netdev_rxq_get_queue_id(rxqs[i]->rx));
4648 }
4649 }
4650 }
4651
4652 rr_numa_list_destroy(&rr);
4653 free(rxqs);
4654 }
4655
4656 static void
4657 reload_affected_pmds(struct dp_netdev *dp)
4658 {
4659 struct dp_netdev_pmd_thread *pmd;
4660
4661 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
4662 if (pmd->need_reload) {
4663 flow_mark_flush(pmd);
4664 dp_netdev_reload_pmd__(pmd);
4665 }
4666 }
4667
4668 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
4669 if (pmd->need_reload) {
4670 if (pmd->core_id != NON_PMD_CORE_ID) {
4671 bool reload;
4672
4673 do {
4674 atomic_read_explicit(&pmd->reload, &reload,
4675 memory_order_acquire);
4676 } while (reload);
4677 }
4678 pmd->need_reload = false;
4679 }
4680 }
4681 }
4682
4683 static void
4684 reconfigure_pmd_threads(struct dp_netdev *dp)
4685 OVS_REQUIRES(dp->port_mutex)
4686 {
4687 struct dp_netdev_pmd_thread *pmd;
4688 struct ovs_numa_dump *pmd_cores;
4689 struct ovs_numa_info_core *core;
4690 struct hmapx to_delete = HMAPX_INITIALIZER(&to_delete);
4691 struct hmapx_node *node;
4692 bool changed = false;
4693 bool need_to_adjust_static_tx_qids = false;
4694
4695 /* The pmd threads should be started only if there's a pmd port in the
4696 * datapath. If the user didn't provide any "pmd-cpu-mask", we start
4697 * NR_PMD_THREADS per numa node. */
4698 if (!has_pmd_port(dp)) {
4699 pmd_cores = ovs_numa_dump_n_cores_per_numa(0);
4700 } else if (dp->pmd_cmask && dp->pmd_cmask[0]) {
4701 pmd_cores = ovs_numa_dump_cores_with_cmask(dp->pmd_cmask);
4702 } else {
4703 pmd_cores = ovs_numa_dump_n_cores_per_numa(NR_PMD_THREADS);
4704 }
4705
4706 /* We need to adjust 'static_tx_qid's only if we're reducing number of
4707 * PMD threads. Otherwise, new threads will allocate all the freed ids. */
4708 if (ovs_numa_dump_count(pmd_cores) < cmap_count(&dp->poll_threads) - 1) {
4709 /* Adjustment is required to keep 'static_tx_qid's sequential and
4710 * avoid possible issues, for example, imbalanced tx queue usage
4711 * and unnecessary locking caused by remapping on netdev level. */
4712 need_to_adjust_static_tx_qids = true;
4713 }
4714
4715 /* Check for unwanted pmd threads */
4716 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
4717 if (pmd->core_id == NON_PMD_CORE_ID) {
4718 continue;
4719 }
4720 if (!ovs_numa_dump_contains_core(pmd_cores, pmd->numa_id,
4721 pmd->core_id)) {
4722 hmapx_add(&to_delete, pmd);
4723 } else if (need_to_adjust_static_tx_qids) {
4724 atomic_store_relaxed(&pmd->reload_tx_qid, true);
4725 pmd->need_reload = true;
4726 }
4727 }
4728
4729 HMAPX_FOR_EACH (node, &to_delete) {
4730 pmd = (struct dp_netdev_pmd_thread *) node->data;
4731 VLOG_INFO("PMD thread on numa_id: %d, core id: %2d destroyed.",
4732 pmd->numa_id, pmd->core_id);
4733 dp_netdev_del_pmd(dp, pmd);
4734 }
4735 changed = !hmapx_is_empty(&to_delete);
4736 hmapx_destroy(&to_delete);
4737
4738 if (need_to_adjust_static_tx_qids) {
4739 /* 'static_tx_qid's are not sequential now.
4740 * Reload remaining threads to fix this. */
4741 reload_affected_pmds(dp);
4742 }
4743
4744 /* Check for required new pmd threads */
4745 FOR_EACH_CORE_ON_DUMP(core, pmd_cores) {
4746 pmd = dp_netdev_get_pmd(dp, core->core_id);
4747 if (!pmd) {
4748 struct ds name = DS_EMPTY_INITIALIZER;
4749
4750 pmd = xzalloc(sizeof *pmd);
4751 dp_netdev_configure_pmd(pmd, dp, core->core_id, core->numa_id);
4752
4753 ds_put_format(&name, "pmd-c%02d/id:", core->core_id);
4754 pmd->thread = ovs_thread_create(ds_cstr(&name),
4755 pmd_thread_main, pmd);
4756 ds_destroy(&name);
4757
4758 VLOG_INFO("PMD thread on numa_id: %d, core id: %2d created.",
4759 pmd->numa_id, pmd->core_id);
4760 changed = true;
4761 } else {
4762 dp_netdev_pmd_unref(pmd);
4763 }
4764 }
4765
4766 if (changed) {
4767 struct ovs_numa_info_numa *numa;
4768
4769 /* Log the number of pmd threads per numa node. */
4770 FOR_EACH_NUMA_ON_DUMP (numa, pmd_cores) {
4771 VLOG_INFO("There are %"PRIuSIZE" pmd threads on numa node %d",
4772 numa->n_cores, numa->numa_id);
4773 }
4774 }
4775
4776 ovs_numa_dump_destroy(pmd_cores);
4777 }
4778
4779 static void
4780 pmd_remove_stale_ports(struct dp_netdev *dp,
4781 struct dp_netdev_pmd_thread *pmd)
4782 OVS_EXCLUDED(pmd->port_mutex)
4783 OVS_REQUIRES(dp->port_mutex)
4784 {
4785 struct rxq_poll *poll, *poll_next;
4786 struct tx_port *tx, *tx_next;
4787
4788 ovs_mutex_lock(&pmd->port_mutex);
4789 HMAP_FOR_EACH_SAFE (poll, poll_next, node, &pmd->poll_list) {
4790 struct dp_netdev_port *port = poll->rxq->port;
4791
4792 if (port->need_reconfigure
4793 || !hmap_contains(&dp->ports, &port->node)) {
4794 dp_netdev_del_rxq_from_pmd(pmd, poll);
4795 }
4796 }
4797 HMAP_FOR_EACH_SAFE (tx, tx_next, node, &pmd->tx_ports) {
4798 struct dp_netdev_port *port = tx->port;
4799
4800 if (port->need_reconfigure
4801 || !hmap_contains(&dp->ports, &port->node)) {
4802 dp_netdev_del_port_tx_from_pmd(pmd, tx);
4803 }
4804 }
4805 ovs_mutex_unlock(&pmd->port_mutex);
4806 }
4807
4808 /* Must be called each time a port is added/removed or the cmask changes.
4809 * This creates and destroys pmd threads, reconfigures ports, opens their
4810 * rxqs and assigns all rxqs/txqs to pmd threads. */
4811 static void
4812 reconfigure_datapath(struct dp_netdev *dp)
4813 OVS_REQUIRES(dp->port_mutex)
4814 {
4815 struct hmapx busy_threads = HMAPX_INITIALIZER(&busy_threads);
4816 struct dp_netdev_pmd_thread *pmd;
4817 struct dp_netdev_port *port;
4818 int wanted_txqs;
4819
4820 dp->last_reconfigure_seq = seq_read(dp->reconfigure_seq);
4821
4822 /* Step 1: Adjust the pmd threads based on the datapath ports, the cores
4823 * on the system and the user configuration. */
4824 reconfigure_pmd_threads(dp);
4825
4826 wanted_txqs = cmap_count(&dp->poll_threads);
4827
4828 /* The number of pmd threads might have changed, or a port can be new:
4829 * adjust the txqs. */
4830 HMAP_FOR_EACH (port, node, &dp->ports) {
4831 netdev_set_tx_multiq(port->netdev, wanted_txqs);
4832 }
4833
4834 /* Step 2: Remove from the pmd threads ports that have been removed or
4835 * need reconfiguration. */
4836
4837 /* Check for all the ports that need reconfiguration. We cache this in
4838 * 'port->need_reconfigure', because netdev_is_reconf_required() can
4839 * change at any time. */
4840 HMAP_FOR_EACH (port, node, &dp->ports) {
4841 if (netdev_is_reconf_required(port->netdev)) {
4842 port->need_reconfigure = true;
4843 }
4844 }
4845
4846 /* Remove from the pmd threads all the ports that have been deleted or
4847 * need reconfiguration. */
4848 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
4849 pmd_remove_stale_ports(dp, pmd);
4850 }
4851
4852 /* Reload affected pmd threads. We must wait for the pmd threads before
4853 * reconfiguring the ports, because a port cannot be reconfigured while
4854 * it's being used. */
4855 reload_affected_pmds(dp);
4856
4857 /* Step 3: Reconfigure ports. */
4858
4859 /* We only reconfigure the ports that we determined above, because they're
4860 * not being used by any pmd thread at the moment. If a port fails to
4861 * reconfigure we remove it from the datapath. */
4862 struct dp_netdev_port *next_port;
4863 HMAP_FOR_EACH_SAFE (port, next_port, node, &dp->ports) {
4864 int err;
4865
4866 if (!port->need_reconfigure) {
4867 continue;
4868 }
4869
4870 err = port_reconfigure(port);
4871 if (err) {
4872 hmap_remove(&dp->ports, &port->node);
4873 seq_change(dp->port_seq);
4874 port_destroy(port);
4875 } else {
4876 port->dynamic_txqs = netdev_n_txq(port->netdev) < wanted_txqs;
4877 }
4878 }
4879
4880 /* Step 4: Compute new rxq scheduling. We don't touch the pmd threads
4881 * for now, we just update the 'pmd' pointer in each rxq to point to the
4882 * wanted thread according to the scheduling policy. */
4883
4884 /* Reset all the pmd threads to non isolated. */
4885 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
4886 pmd->isolated = false;
4887 }
4888
4889 /* Reset all the queues to unassigned */
4890 HMAP_FOR_EACH (port, node, &dp->ports) {
4891 for (int i = 0; i < port->n_rxq; i++) {
4892 port->rxqs[i].pmd = NULL;
4893 }
4894 }
4895
4896 /* Add pinned queues and mark pmd threads isolated. */
4897 rxq_scheduling(dp, true);
4898
4899 /* Add non-pinned queues. */
4900 rxq_scheduling(dp, false);
4901
4902 /* Step 5: Remove queues not compliant with new scheduling. */
4903
4904 /* Count all the threads that will have at least one queue to poll. */
4905 HMAP_FOR_EACH (port, node, &dp->ports) {
4906 for (int qid = 0; qid < port->n_rxq; qid++) {
4907 struct dp_netdev_rxq *q = &port->rxqs[qid];
4908
4909 if (q->pmd) {
4910 hmapx_add(&busy_threads, q->pmd);
4911 }
4912 }
4913 }
4914
4915 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
4916 struct rxq_poll *poll, *poll_next;
4917
4918 ovs_mutex_lock(&pmd->port_mutex);
4919 HMAP_FOR_EACH_SAFE (poll, poll_next, node, &pmd->poll_list) {
4920 if (poll->rxq->pmd != pmd) {
4921 dp_netdev_del_rxq_from_pmd(pmd, poll);
4922
4923 /* This pmd might sleep after this step if it has no rxq
4924 * remaining. Tell it to busy wait for new assignment if it
4925 * has at least one scheduled queue. */
4926 if (hmap_count(&pmd->poll_list) == 0 &&
4927 hmapx_contains(&busy_threads, pmd)) {
4928 atomic_store_relaxed(&pmd->wait_for_reload, true);
4929 }
4930 }
4931 }
4932 ovs_mutex_unlock(&pmd->port_mutex);
4933 }
4934
4935 hmapx_destroy(&busy_threads);
4936
4937 /* Reload affected pmd threads. We must wait for the pmd threads to remove
4938 * the old queues before readding them, otherwise a queue can be polled by
4939 * two threads at the same time. */
4940 reload_affected_pmds(dp);
4941
4942 /* Step 6: Add queues from scheduling, if they're not there already. */
4943 HMAP_FOR_EACH (port, node, &dp->ports) {
4944 if (!netdev_is_pmd(port->netdev)) {
4945 continue;
4946 }
4947
4948 for (int qid = 0; qid < port->n_rxq; qid++) {
4949 struct dp_netdev_rxq *q = &port->rxqs[qid];
4950
4951 if (q->pmd) {
4952 ovs_mutex_lock(&q->pmd->port_mutex);
4953 dp_netdev_add_rxq_to_pmd(q->pmd, q);
4954 ovs_mutex_unlock(&q->pmd->port_mutex);
4955 }
4956 }
4957 }
4958
4959 /* Add every port to the tx cache of every pmd thread, if it's not
4960 * there already and if this pmd has at least one rxq to poll. */
4961 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
4962 ovs_mutex_lock(&pmd->port_mutex);
4963 if (hmap_count(&pmd->poll_list) || pmd->core_id == NON_PMD_CORE_ID) {
4964 HMAP_FOR_EACH (port, node, &dp->ports) {
4965 dp_netdev_add_port_tx_to_pmd(pmd, port);
4966 }
4967 }
4968 ovs_mutex_unlock(&pmd->port_mutex);
4969 }
4970
4971 /* Reload affected pmd threads. */
4972 reload_affected_pmds(dp);
4973
4974 /* Check if PMD Auto LB is to be enabled */
4975 set_pmd_auto_lb(dp);
4976 }
4977
4978 /* Returns true if one of the netdevs in 'dp' requires a reconfiguration */
4979 static bool
4980 ports_require_restart(const struct dp_netdev *dp)
4981 OVS_REQUIRES(dp->port_mutex)
4982 {
4983 struct dp_netdev_port *port;
4984
4985 HMAP_FOR_EACH (port, node, &dp->ports) {
4986 if (netdev_is_reconf_required(port->netdev)) {
4987 return true;
4988 }
4989 }
4990
4991 return false;
4992 }
4993
4994 /* Calculates variance in the values stored in array 'a'. 'n' is the number
4995 * of elements in array to be considered for calculating vairance.
4996 * Usage example: data array 'a' contains the processing load of each pmd and
4997 * 'n' is the number of PMDs. It returns the variance in processing load of
4998 * PMDs*/
4999 static uint64_t
5000 variance(uint64_t a[], int n)
5001 {
5002 /* Compute mean (average of elements). */
5003 uint64_t sum = 0;
5004 uint64_t mean = 0;
5005 uint64_t sqDiff = 0;
5006
5007 if (!n) {
5008 return 0;
5009 }
5010
5011 for (int i = 0; i < n; i++) {
5012 sum += a[i];
5013 }
5014
5015 if (sum) {
5016 mean = sum / n;
5017
5018 /* Compute sum squared differences with mean. */
5019 for (int i = 0; i < n; i++) {
5020 sqDiff += (a[i] - mean)*(a[i] - mean);
5021 }
5022 }
5023 return (sqDiff ? (sqDiff / n) : 0);
5024 }
5025
5026
5027 /* Returns the variance in the PMDs usage as part of dry run of rxqs
5028 * assignment to PMDs. */
5029 static bool
5030 get_dry_run_variance(struct dp_netdev *dp, uint32_t *core_list,
5031 uint32_t num_pmds, uint64_t *predicted_variance)
5032 OVS_REQUIRES(dp->port_mutex)
5033 {
5034 struct dp_netdev_port *port;
5035 struct dp_netdev_pmd_thread *pmd;
5036 struct dp_netdev_rxq **rxqs = NULL;
5037 struct rr_numa *numa = NULL;
5038 struct rr_numa_list rr;
5039 int n_rxqs = 0;
5040 bool ret = false;
5041 uint64_t *pmd_usage;
5042
5043 if (!predicted_variance) {
5044 return ret;
5045 }
5046
5047 pmd_usage = xcalloc(num_pmds, sizeof(uint64_t));
5048
5049 HMAP_FOR_EACH (port, node, &dp->ports) {
5050 if (!netdev_is_pmd(port->netdev)) {
5051 continue;
5052 }
5053
5054 for (int qid = 0; qid < port->n_rxq; qid++) {
5055 struct dp_netdev_rxq *q = &port->rxqs[qid];
5056 uint64_t cycle_hist = 0;
5057
5058 if (q->pmd->isolated) {
5059 continue;
5060 }
5061
5062 if (n_rxqs == 0) {
5063 rxqs = xmalloc(sizeof *rxqs);
5064 } else {
5065 rxqs = xrealloc(rxqs, sizeof *rxqs * (n_rxqs + 1));
5066 }
5067
5068 /* Sum the queue intervals and store the cycle history. */
5069 for (unsigned i = 0; i < PMD_RXQ_INTERVAL_MAX; i++) {
5070 cycle_hist += dp_netdev_rxq_get_intrvl_cycles(q, i);
5071 }
5072 dp_netdev_rxq_set_cycles(q, RXQ_CYCLES_PROC_HIST,
5073 cycle_hist);
5074 /* Store the queue. */
5075 rxqs[n_rxqs++] = q;
5076 }
5077 }
5078 if (n_rxqs > 1) {
5079 /* Sort the queues in order of the processing cycles
5080 * they consumed during their last pmd interval. */
5081 qsort(rxqs, n_rxqs, sizeof *rxqs, compare_rxq_cycles);
5082 }
5083 rr_numa_list_populate(dp, &rr);
5084
5085 for (int i = 0; i < n_rxqs; i++) {
5086 int numa_id = netdev_get_numa_id(rxqs[i]->port->netdev);
5087 numa = rr_numa_list_lookup(&rr, numa_id);
5088 if (!numa) {
5089 /* Abort if cross NUMA polling. */
5090 VLOG_DBG("PMD auto lb dry run."
5091 " Aborting due to cross-numa polling.");
5092 goto cleanup;
5093 }
5094
5095 pmd = rr_numa_get_pmd(numa, true);
5096 VLOG_DBG("PMD auto lb dry run. Predicted: Core %d on numa node %d "
5097 "to be assigned port \'%s\' rx queue %d "
5098 "(measured processing cycles %"PRIu64").",
5099 pmd->core_id, numa_id,
5100 netdev_rxq_get_name(rxqs[i]->rx),
5101 netdev_rxq_get_queue_id(rxqs[i]->rx),
5102 dp_netdev_rxq_get_cycles(rxqs[i], RXQ_CYCLES_PROC_HIST));
5103
5104 for (int id = 0; id < num_pmds; id++) {
5105 if (pmd->core_id == core_list[id]) {
5106 /* Add the processing cycles of rxq to pmd polling it. */
5107 pmd_usage[id] += dp_netdev_rxq_get_cycles(rxqs[i],
5108 RXQ_CYCLES_PROC_HIST);
5109 }
5110 }
5111 }
5112
5113 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
5114 uint64_t total_cycles = 0;
5115
5116 if ((pmd->core_id == NON_PMD_CORE_ID) || pmd->isolated) {
5117 continue;
5118 }
5119
5120 /* Get the total pmd cycles for an interval. */
5121 atomic_read_relaxed(&pmd->intrvl_cycles, &total_cycles);
5122 /* Estimate the cycles to cover all intervals. */
5123 total_cycles *= PMD_RXQ_INTERVAL_MAX;
5124 for (int id = 0; id < num_pmds; id++) {
5125 if (pmd->core_id == core_list[id]) {
5126 if (pmd_usage[id]) {
5127 pmd_usage[id] = (pmd_usage[id] * 100) / total_cycles;
5128 }
5129 VLOG_DBG("PMD auto lb dry run. Predicted: Core %d, "
5130 "usage %"PRIu64"", pmd->core_id, pmd_usage[id]);
5131 }
5132 }
5133 }
5134 *predicted_variance = variance(pmd_usage, num_pmds);
5135 ret = true;
5136
5137 cleanup:
5138 rr_numa_list_destroy(&rr);
5139 free(rxqs);
5140 free(pmd_usage);
5141 return ret;
5142 }
5143
5144 /* Does the dry run of Rxq assignment to PMDs and returns true if it gives
5145 * better distribution of load on PMDs. */
5146 static bool
5147 pmd_rebalance_dry_run(struct dp_netdev *dp)
5148 OVS_REQUIRES(dp->port_mutex)
5149 {
5150 struct dp_netdev_pmd_thread *pmd;
5151 uint64_t *curr_pmd_usage;
5152
5153 uint64_t curr_variance;
5154 uint64_t new_variance;
5155 uint64_t improvement = 0;
5156 uint32_t num_pmds;
5157 uint32_t *pmd_corelist;
5158 struct rxq_poll *poll;
5159 bool ret;
5160
5161 num_pmds = cmap_count(&dp->poll_threads);
5162
5163 if (num_pmds > 1) {
5164 curr_pmd_usage = xcalloc(num_pmds, sizeof(uint64_t));
5165 pmd_corelist = xcalloc(num_pmds, sizeof(uint32_t));
5166 } else {
5167 return false;
5168 }
5169
5170 num_pmds = 0;
5171 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
5172 uint64_t total_cycles = 0;
5173 uint64_t total_proc = 0;
5174
5175 if ((pmd->core_id == NON_PMD_CORE_ID) || pmd->isolated) {
5176 continue;
5177 }
5178
5179 /* Get the total pmd cycles for an interval. */
5180 atomic_read_relaxed(&pmd->intrvl_cycles, &total_cycles);
5181 /* Estimate the cycles to cover all intervals. */
5182 total_cycles *= PMD_RXQ_INTERVAL_MAX;
5183
5184 ovs_mutex_lock(&pmd->port_mutex);
5185 HMAP_FOR_EACH (poll, node, &pmd->poll_list) {
5186 for (unsigned i = 0; i < PMD_RXQ_INTERVAL_MAX; i++) {
5187 total_proc += dp_netdev_rxq_get_intrvl_cycles(poll->rxq, i);
5188 }
5189 }
5190 ovs_mutex_unlock(&pmd->port_mutex);
5191
5192 if (total_proc) {
5193 curr_pmd_usage[num_pmds] = (total_proc * 100) / total_cycles;
5194 }
5195
5196 VLOG_DBG("PMD auto lb dry run. Current: Core %d, usage %"PRIu64"",
5197 pmd->core_id, curr_pmd_usage[num_pmds]);
5198
5199 if (atomic_count_get(&pmd->pmd_overloaded)) {
5200 atomic_count_set(&pmd->pmd_overloaded, 0);
5201 }
5202
5203 pmd_corelist[num_pmds] = pmd->core_id;
5204 num_pmds++;
5205 }
5206
5207 curr_variance = variance(curr_pmd_usage, num_pmds);
5208 ret = get_dry_run_variance(dp, pmd_corelist, num_pmds, &new_variance);
5209
5210 if (ret) {
5211 VLOG_DBG("PMD auto lb dry run. Current PMD variance: %"PRIu64","
5212 " Predicted PMD variance: %"PRIu64"",
5213 curr_variance, new_variance);
5214
5215 if (new_variance < curr_variance) {
5216 improvement =
5217 ((curr_variance - new_variance) * 100) / curr_variance;
5218 }
5219 if (improvement < ALB_ACCEPTABLE_IMPROVEMENT) {
5220 ret = false;
5221 }
5222 }
5223
5224 free(curr_pmd_usage);
5225 free(pmd_corelist);
5226 return ret;
5227 }
5228
5229
5230 /* Return true if needs to revalidate datapath flows. */
5231 static bool
5232 dpif_netdev_run(struct dpif *dpif)
5233 {
5234 struct dp_netdev_port *port;
5235 struct dp_netdev *dp = get_dp_netdev(dpif);
5236 struct dp_netdev_pmd_thread *non_pmd;
5237 uint64_t new_tnl_seq;
5238 bool need_to_flush = true;
5239 bool pmd_rebalance = false;
5240 long long int now = time_msec();
5241 struct dp_netdev_pmd_thread *pmd;
5242
5243 ovs_mutex_lock(&dp->port_mutex);
5244 non_pmd = dp_netdev_get_pmd(dp, NON_PMD_CORE_ID);
5245 if (non_pmd) {
5246 ovs_mutex_lock(&dp->non_pmd_mutex);
5247 HMAP_FOR_EACH (port, node, &dp->ports) {
5248 if (!netdev_is_pmd(port->netdev)) {
5249 int i;
5250
5251 if (port->emc_enabled) {
5252 atomic_read_relaxed(&dp->emc_insert_min,
5253 &non_pmd->ctx.emc_insert_min);
5254 } else {
5255 non_pmd->ctx.emc_insert_min = 0;
5256 }
5257
5258 for (i = 0; i < port->n_rxq; i++) {
5259
5260 if (!netdev_rxq_enabled(port->rxqs[i].rx)) {
5261 continue;
5262 }
5263
5264 if (dp_netdev_process_rxq_port(non_pmd,
5265 &port->rxqs[i],
5266 port->port_no)) {
5267 need_to_flush = false;
5268 }
5269 }
5270 }
5271 }
5272 if (need_to_flush) {
5273 /* We didn't receive anything in the process loop.
5274 * Check if we need to send something.
5275 * There was no time updates on current iteration. */
5276 pmd_thread_ctx_time_update(non_pmd);
5277 dp_netdev_pmd_flush_output_packets(non_pmd, false);
5278 }
5279
5280 dpif_netdev_xps_revalidate_pmd(non_pmd, false);
5281 ovs_mutex_unlock(&dp->non_pmd_mutex);
5282
5283 dp_netdev_pmd_unref(non_pmd);
5284 }
5285
5286 struct pmd_auto_lb *pmd_alb = &dp->pmd_alb;
5287 if (pmd_alb->is_enabled) {
5288 if (!pmd_alb->rebalance_poll_timer) {
5289 pmd_alb->rebalance_poll_timer = now;
5290 } else if ((pmd_alb->rebalance_poll_timer +
5291 pmd_alb->rebalance_intvl) < now) {
5292 pmd_alb->rebalance_poll_timer = now;
5293 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
5294 if (atomic_count_get(&pmd->pmd_overloaded) >=
5295 PMD_RXQ_INTERVAL_MAX) {
5296 pmd_rebalance = true;
5297 break;
5298 }
5299 }
5300
5301 if (pmd_rebalance &&
5302 !dp_netdev_is_reconf_required(dp) &&
5303 !ports_require_restart(dp) &&
5304 pmd_rebalance_dry_run(dp)) {
5305 VLOG_INFO("PMD auto lb dry run."
5306 " requesting datapath reconfigure.");
5307 dp_netdev_request_reconfigure(dp);
5308 }
5309 }
5310 }
5311
5312 if (dp_netdev_is_reconf_required(dp) || ports_require_restart(dp)) {
5313 reconfigure_datapath(dp);
5314 }
5315 ovs_mutex_unlock(&dp->port_mutex);
5316
5317 tnl_neigh_cache_run();
5318 tnl_port_map_run();
5319 new_tnl_seq = seq_read(tnl_conf_seq);
5320
5321 if (dp->last_tnl_conf_seq != new_tnl_seq) {
5322 dp->last_tnl_conf_seq = new_tnl_seq;
5323 return true;
5324 }
5325 return false;
5326 }
5327
5328 static void
5329 dpif_netdev_wait(struct dpif *dpif)
5330 {
5331 struct dp_netdev_port *port;
5332 struct dp_netdev *dp = get_dp_netdev(dpif);
5333
5334 ovs_mutex_lock(&dp_netdev_mutex);
5335 ovs_mutex_lock(&dp->port_mutex);
5336 HMAP_FOR_EACH (port, node, &dp->ports) {
5337 netdev_wait_reconf_required(port->netdev);
5338 if (!netdev_is_pmd(port->netdev)) {
5339 int i;
5340
5341 for (i = 0; i < port->n_rxq; i++) {
5342 netdev_rxq_wait(port->rxqs[i].rx);
5343 }
5344 }
5345 }
5346 ovs_mutex_unlock(&dp->port_mutex);
5347 ovs_mutex_unlock(&dp_netdev_mutex);
5348 seq_wait(tnl_conf_seq, dp->last_tnl_conf_seq);
5349 }
5350
5351 static void
5352 pmd_free_cached_ports(struct dp_netdev_pmd_thread *pmd)
5353 {
5354 struct tx_port *tx_port_cached;
5355
5356 /* Flush all the queued packets. */
5357 dp_netdev_pmd_flush_output_packets(pmd, true);
5358 /* Free all used tx queue ids. */
5359 dpif_netdev_xps_revalidate_pmd(pmd, true);
5360
5361 HMAP_FOR_EACH_POP (tx_port_cached, node, &pmd->tnl_port_cache) {
5362 free(tx_port_cached);
5363 }
5364 HMAP_FOR_EACH_POP (tx_port_cached, node, &pmd->send_port_cache) {
5365 free(tx_port_cached);
5366 }
5367 }
5368
5369 /* Copies ports from 'pmd->tx_ports' (shared with the main thread) to
5370 * thread-local copies. Copy to 'pmd->tnl_port_cache' if it is a tunnel
5371 * device, otherwise to 'pmd->send_port_cache' if the port has at least
5372 * one txq. */
5373 static void
5374 pmd_load_cached_ports(struct dp_netdev_pmd_thread *pmd)
5375 OVS_REQUIRES(pmd->port_mutex)
5376 {
5377 struct tx_port *tx_port, *tx_port_cached;
5378
5379 pmd_free_cached_ports(pmd);
5380 hmap_shrink(&pmd->send_port_cache);
5381 hmap_shrink(&pmd->tnl_port_cache);
5382
5383 HMAP_FOR_EACH (tx_port, node, &pmd->tx_ports) {
5384 if (netdev_has_tunnel_push_pop(tx_port->port->netdev)) {
5385 tx_port_cached = xmemdup(tx_port, sizeof *tx_port_cached);
5386 hmap_insert(&pmd->tnl_port_cache, &tx_port_cached->node,
5387 hash_port_no(tx_port_cached->port->port_no));
5388 }
5389
5390 if (netdev_n_txq(tx_port->port->netdev)) {
5391 tx_port_cached = xmemdup(tx_port, sizeof *tx_port_cached);
5392 hmap_insert(&pmd->send_port_cache, &tx_port_cached->node,
5393 hash_port_no(tx_port_cached->port->port_no));
5394 }
5395 }
5396 }
5397
5398 static void
5399 pmd_alloc_static_tx_qid(struct dp_netdev_pmd_thread *pmd)
5400 {
5401 ovs_mutex_lock(&pmd->dp->tx_qid_pool_mutex);
5402 if (!id_pool_alloc_id(pmd->dp->tx_qid_pool, &pmd->static_tx_qid)) {
5403 VLOG_ABORT("static_tx_qid allocation failed for PMD on core %2d"
5404 ", numa_id %d.", pmd->core_id, pmd->numa_id);
5405 }
5406 ovs_mutex_unlock(&pmd->dp->tx_qid_pool_mutex);
5407
5408 VLOG_DBG("static_tx_qid = %d allocated for PMD thread on core %2d"
5409 ", numa_id %d.", pmd->static_tx_qid, pmd->core_id, pmd->numa_id);
5410 }
5411
5412 static void
5413 pmd_free_static_tx_qid(struct dp_netdev_pmd_thread *pmd)
5414 {
5415 ovs_mutex_lock(&pmd->dp->tx_qid_pool_mutex);
5416 id_pool_free_id(pmd->dp->tx_qid_pool, pmd->static_tx_qid);
5417 ovs_mutex_unlock(&pmd->dp->tx_qid_pool_mutex);
5418 }
5419
5420 static int
5421 pmd_load_queues_and_ports(struct dp_netdev_pmd_thread *pmd,
5422 struct polled_queue **ppoll_list)
5423 {
5424 struct polled_queue *poll_list = *ppoll_list;
5425 struct rxq_poll *poll;
5426 int i;
5427
5428 ovs_mutex_lock(&pmd->port_mutex);
5429 poll_list = xrealloc(poll_list, hmap_count(&pmd->poll_list)
5430 * sizeof *poll_list);
5431
5432 i = 0;
5433 HMAP_FOR_EACH (poll, node, &pmd->poll_list) {
5434 poll_list[i].rxq = poll->rxq;
5435 poll_list[i].port_no = poll->rxq->port->port_no;
5436 poll_list[i].emc_enabled = poll->rxq->port->emc_enabled;
5437 poll_list[i].rxq_enabled = netdev_rxq_enabled(poll->rxq->rx);
5438 poll_list[i].change_seq =
5439 netdev_get_change_seq(poll->rxq->port->netdev);
5440 i++;
5441 }
5442
5443 pmd_load_cached_ports(pmd);
5444
5445 ovs_mutex_unlock(&pmd->port_mutex);
5446
5447 *ppoll_list = poll_list;
5448 return i;
5449 }
5450
5451 static void *
5452 pmd_thread_main(void *f_)
5453 {
5454 struct dp_netdev_pmd_thread *pmd = f_;
5455 struct pmd_perf_stats *s = &pmd->perf_stats;
5456 unsigned int lc = 0;
5457 struct polled_queue *poll_list;
5458 bool wait_for_reload = false;
5459 bool reload_tx_qid;
5460 bool exiting;
5461 bool reload;
5462 int poll_cnt;
5463 int i;
5464 int process_packets = 0;
5465
5466 poll_list = NULL;
5467
5468 /* Stores the pmd thread's 'pmd' to 'per_pmd_key'. */
5469 ovsthread_setspecific(pmd->dp->per_pmd_key, pmd);
5470 ovs_numa_thread_setaffinity_core(pmd->core_id);
5471 dpdk_set_lcore_id(pmd->core_id);
5472 poll_cnt = pmd_load_queues_and_ports(pmd, &poll_list);
5473 dfc_cache_init(&pmd->flow_cache);
5474 pmd_alloc_static_tx_qid(pmd);
5475
5476 reload:
5477 atomic_count_init(&pmd->pmd_overloaded, 0);
5478
5479 /* List port/core affinity */
5480 for (i = 0; i < poll_cnt; i++) {
5481 VLOG_DBG("Core %d processing port \'%s\' with queue-id %d\n",
5482 pmd->core_id, netdev_rxq_get_name(poll_list[i].rxq->rx),
5483 netdev_rxq_get_queue_id(poll_list[i].rxq->rx));
5484 /* Reset the rxq current cycles counter. */
5485 dp_netdev_rxq_set_cycles(poll_list[i].rxq, RXQ_CYCLES_PROC_CURR, 0);
5486 }
5487
5488 if (!poll_cnt) {
5489 if (wait_for_reload) {
5490 /* Don't sleep, control thread will ask for a reload shortly. */
5491 do {
5492 atomic_read_explicit(&pmd->reload, &reload,
5493 memory_order_acquire);
5494 } while (!reload);
5495 } else {
5496 while (seq_read(pmd->reload_seq) == pmd->last_reload_seq) {
5497 seq_wait(pmd->reload_seq, pmd->last_reload_seq);
5498 poll_block();
5499 }
5500 }
5501 }
5502
5503 pmd->intrvl_tsc_prev = 0;
5504 atomic_store_relaxed(&pmd->intrvl_cycles, 0);
5505 cycles_counter_update(s);
5506 /* Protect pmd stats from external clearing while polling. */
5507 ovs_mutex_lock(&pmd->perf_stats.stats_mutex);
5508 for (;;) {
5509 uint64_t rx_packets = 0, tx_packets = 0;
5510
5511 pmd_perf_start_iteration(s);
5512
5513 for (i = 0; i < poll_cnt; i++) {
5514
5515 if (!poll_list[i].rxq_enabled) {
5516 continue;
5517 }
5518
5519 if (poll_list[i].emc_enabled) {
5520 atomic_read_relaxed(&pmd->dp->emc_insert_min,
5521 &pmd->ctx.emc_insert_min);
5522 } else {
5523 pmd->ctx.emc_insert_min = 0;
5524 }
5525
5526 process_packets =
5527 dp_netdev_process_rxq_port(pmd, poll_list[i].rxq,
5528 poll_list[i].port_no);
5529 rx_packets += process_packets;
5530 }
5531
5532 if (!rx_packets) {
5533 /* We didn't receive anything in the process loop.
5534 * Check if we need to send something.
5535 * There was no time updates on current iteration. */
5536 pmd_thread_ctx_time_update(pmd);
5537 tx_packets = dp_netdev_pmd_flush_output_packets(pmd, false);
5538 }
5539
5540 if (lc++ > 1024) {
5541 lc = 0;
5542
5543 coverage_try_clear();
5544 dp_netdev_pmd_try_optimize(pmd, poll_list, poll_cnt);
5545 if (!ovsrcu_try_quiesce()) {
5546 emc_cache_slow_sweep(&((pmd->flow_cache).emc_cache));
5547 }
5548
5549 for (i = 0; i < poll_cnt; i++) {
5550 uint64_t current_seq =
5551 netdev_get_change_seq(poll_list[i].rxq->port->netdev);
5552 if (poll_list[i].change_seq != current_seq) {
5553 poll_list[i].change_seq = current_seq;
5554 poll_list[i].rxq_enabled =
5555 netdev_rxq_enabled(poll_list[i].rxq->rx);
5556 }
5557 }
5558 }
5559
5560 atomic_read_explicit(&pmd->reload, &reload, memory_order_acquire);
5561 if (OVS_UNLIKELY(reload)) {
5562 break;
5563 }
5564
5565 pmd_perf_end_iteration(s, rx_packets, tx_packets,
5566 pmd_perf_metrics_enabled(pmd));
5567 }
5568 ovs_mutex_unlock(&pmd->perf_stats.stats_mutex);
5569
5570 poll_cnt = pmd_load_queues_and_ports(pmd, &poll_list);
5571 atomic_read_relaxed(&pmd->wait_for_reload, &wait_for_reload);
5572 atomic_read_relaxed(&pmd->reload_tx_qid, &reload_tx_qid);
5573 atomic_read_relaxed(&pmd->exit, &exiting);
5574 /* Signal here to make sure the pmd finishes
5575 * reloading the updated configuration. */
5576 dp_netdev_pmd_reload_done(pmd);
5577
5578 if (reload_tx_qid) {
5579 pmd_free_static_tx_qid(pmd);
5580 pmd_alloc_static_tx_qid(pmd);
5581 }
5582
5583 if (!exiting) {
5584 goto reload;
5585 }
5586
5587 pmd_free_static_tx_qid(pmd);
5588 dfc_cache_uninit(&pmd->flow_cache);
5589 free(poll_list);
5590 pmd_free_cached_ports(pmd);
5591 return NULL;
5592 }
5593
5594 static void
5595 dp_netdev_disable_upcall(struct dp_netdev *dp)
5596 OVS_ACQUIRES(dp->upcall_rwlock)
5597 {
5598 fat_rwlock_wrlock(&dp->upcall_rwlock);
5599 }
5600
5601 \f
5602 /* Meters */
5603 static void
5604 dpif_netdev_meter_get_features(const struct dpif * dpif OVS_UNUSED,
5605 struct ofputil_meter_features *features)
5606 {
5607 features->max_meters = MAX_METERS;
5608 features->band_types = DP_SUPPORTED_METER_BAND_TYPES;
5609 features->capabilities = DP_SUPPORTED_METER_FLAGS_MASK;
5610 features->max_bands = MAX_BANDS;
5611 features->max_color = 0;
5612 }
5613
5614 /* Applies the meter identified by 'meter_id' to 'packets_'. Packets
5615 * that exceed a band are dropped in-place. */
5616 static void
5617 dp_netdev_run_meter(struct dp_netdev *dp, struct dp_packet_batch *packets_,
5618 uint32_t meter_id, long long int now)
5619 {
5620 struct dp_meter *meter;
5621 struct dp_meter_band *band;
5622 struct dp_packet *packet;
5623 long long int long_delta_t; /* msec */
5624 uint32_t delta_t; /* msec */
5625 const size_t cnt = dp_packet_batch_size(packets_);
5626 uint32_t bytes, volume;
5627 int exceeded_band[NETDEV_MAX_BURST];
5628 uint32_t exceeded_rate[NETDEV_MAX_BURST];
5629 int exceeded_pkt = cnt; /* First packet that exceeded a band rate. */
5630
5631 if (meter_id >= MAX_METERS) {
5632 return;
5633 }
5634
5635 meter_lock(dp, meter_id);
5636 meter = dp->meters[meter_id];
5637 if (!meter) {
5638 goto out;
5639 }
5640
5641 /* Initialize as negative values. */
5642 memset(exceeded_band, 0xff, cnt * sizeof *exceeded_band);
5643 /* Initialize as zeroes. */
5644 memset(exceeded_rate, 0, cnt * sizeof *exceeded_rate);
5645
5646 /* All packets will hit the meter at the same time. */
5647 long_delta_t = now / 1000 - meter->used / 1000; /* msec */
5648
5649 /* Make sure delta_t will not be too large, so that bucket will not
5650 * wrap around below. */
5651 delta_t = (long_delta_t > (long long int)meter->max_delta_t)
5652 ? meter->max_delta_t : (uint32_t)long_delta_t;
5653
5654 /* Update meter stats. */
5655 meter->used = now;
5656 meter->packet_count += cnt;
5657 bytes = 0;
5658 DP_PACKET_BATCH_FOR_EACH (i, packet, packets_) {
5659 bytes += dp_packet_size(packet);
5660 }
5661 meter->byte_count += bytes;
5662
5663 /* Meters can operate in terms of packets per second or kilobits per
5664 * second. */
5665 if (meter->flags & OFPMF13_PKTPS) {
5666 /* Rate in packets/second, bucket 1/1000 packets. */
5667 /* msec * packets/sec = 1/1000 packets. */
5668 volume = cnt * 1000; /* Take 'cnt' packets from the bucket. */
5669 } else {
5670 /* Rate in kbps, bucket in bits. */
5671 /* msec * kbps = bits */
5672 volume = bytes * 8;
5673 }
5674
5675 /* Update all bands and find the one hit with the highest rate for each
5676 * packet (if any). */
5677 for (int m = 0; m < meter->n_bands; ++m) {
5678 band = &meter->bands[m];
5679
5680 /* Update band's bucket. */
5681 band->bucket += delta_t * band->up.rate;
5682 if (band->bucket > band->up.burst_size) {
5683 band->bucket = band->up.burst_size;
5684 }
5685
5686 /* Drain the bucket for all the packets, if possible. */
5687 if (band->bucket >= volume) {
5688 band->bucket -= volume;
5689 } else {
5690 int band_exceeded_pkt;
5691
5692 /* Band limit hit, must process packet-by-packet. */
5693 if (meter->flags & OFPMF13_PKTPS) {
5694 band_exceeded_pkt = band->bucket / 1000;
5695 band->bucket %= 1000; /* Remainder stays in bucket. */
5696
5697 /* Update the exceeding band for each exceeding packet.
5698 * (Only one band will be fired by a packet, and that
5699 * can be different for each packet.) */
5700 for (int i = band_exceeded_pkt; i < cnt; i++) {
5701 if (band->up.rate > exceeded_rate[i]) {
5702 exceeded_rate[i] = band->up.rate;
5703 exceeded_band[i] = m;
5704 }
5705 }
5706 } else {
5707 /* Packet sizes differ, must process one-by-one. */
5708 band_exceeded_pkt = cnt;
5709 DP_PACKET_BATCH_FOR_EACH (i, packet, packets_) {
5710 uint32_t bits = dp_packet_size(packet) * 8;
5711
5712 if (band->bucket >= bits) {
5713 band->bucket -= bits;
5714 } else {
5715 if (i < band_exceeded_pkt) {
5716 band_exceeded_pkt = i;
5717 }
5718 /* Update the exceeding band for the exceeding packet.
5719 * (Only one band will be fired by a packet, and that
5720 * can be different for each packet.) */
5721 if (band->up.rate > exceeded_rate[i]) {
5722 exceeded_rate[i] = band->up.rate;
5723 exceeded_band[i] = m;
5724 }
5725 }
5726 }
5727 }
5728 /* Remember the first exceeding packet. */
5729 if (exceeded_pkt > band_exceeded_pkt) {
5730 exceeded_pkt = band_exceeded_pkt;
5731 }
5732 }
5733 }
5734
5735 /* Fire the highest rate band exceeded by each packet, and drop
5736 * packets if needed. */
5737 size_t j;
5738 DP_PACKET_BATCH_REFILL_FOR_EACH (j, cnt, packet, packets_) {
5739 if (exceeded_band[j] >= 0) {
5740 /* Meter drop packet. */
5741 band = &meter->bands[exceeded_band[j]];
5742 band->packet_count += 1;
5743 band->byte_count += dp_packet_size(packet);
5744
5745 dp_packet_delete(packet);
5746 } else {
5747 /* Meter accepts packet. */
5748 dp_packet_batch_refill(packets_, packet, j);
5749 }
5750 }
5751 out:
5752 meter_unlock(dp, meter_id);
5753 }
5754
5755 /* Meter set/get/del processing is still single-threaded. */
5756 static int
5757 dpif_netdev_meter_set(struct dpif *dpif, ofproto_meter_id meter_id,
5758 struct ofputil_meter_config *config)
5759 {
5760 struct dp_netdev *dp = get_dp_netdev(dpif);
5761 uint32_t mid = meter_id.uint32;
5762 struct dp_meter *meter;
5763 int i;
5764
5765 if (mid >= MAX_METERS) {
5766 return EFBIG; /* Meter_id out of range. */
5767 }
5768
5769 if (config->flags & ~DP_SUPPORTED_METER_FLAGS_MASK) {
5770 return EBADF; /* Unsupported flags set */
5771 }
5772
5773 if (config->n_bands > MAX_BANDS) {
5774 return EINVAL;
5775 }
5776
5777 for (i = 0; i < config->n_bands; ++i) {
5778 switch (config->bands[i].type) {
5779 case OFPMBT13_DROP:
5780 break;
5781 default:
5782 return ENODEV; /* Unsupported band type */
5783 }
5784 }
5785
5786 /* Allocate meter */
5787 meter = xzalloc(sizeof *meter
5788 + config->n_bands * sizeof(struct dp_meter_band));
5789
5790 meter->flags = config->flags;
5791 meter->n_bands = config->n_bands;
5792 meter->max_delta_t = 0;
5793 meter->used = time_usec();
5794
5795 /* set up bands */
5796 for (i = 0; i < config->n_bands; ++i) {
5797 uint32_t band_max_delta_t;
5798
5799 /* Set burst size to a workable value if none specified. */
5800 if (config->bands[i].burst_size == 0) {
5801 config->bands[i].burst_size = config->bands[i].rate;
5802 }
5803
5804 meter->bands[i].up = config->bands[i];
5805 /* Convert burst size to the bucket units: */
5806 /* pkts => 1/1000 packets, kilobits => bits. */
5807 meter->bands[i].up.burst_size *= 1000;
5808 /* Initialize bucket to empty. */
5809 meter->bands[i].bucket = 0;
5810
5811 /* Figure out max delta_t that is enough to fill any bucket. */
5812 band_max_delta_t
5813 = meter->bands[i].up.burst_size / meter->bands[i].up.rate;
5814 if (band_max_delta_t > meter->max_delta_t) {
5815 meter->max_delta_t = band_max_delta_t;
5816 }
5817 }
5818
5819 meter_lock(dp, mid);
5820 dp_delete_meter(dp, mid); /* Free existing meter, if any */
5821 dp->meters[mid] = meter;
5822 meter_unlock(dp, mid);
5823
5824 return 0;
5825 }
5826
5827 static int
5828 dpif_netdev_meter_get(const struct dpif *dpif,
5829 ofproto_meter_id meter_id_,
5830 struct ofputil_meter_stats *stats, uint16_t n_bands)
5831 {
5832 const struct dp_netdev *dp = get_dp_netdev(dpif);
5833 uint32_t meter_id = meter_id_.uint32;
5834 int retval = 0;
5835
5836 if (meter_id >= MAX_METERS) {
5837 return EFBIG;
5838 }
5839
5840 meter_lock(dp, meter_id);
5841 const struct dp_meter *meter = dp->meters[meter_id];
5842 if (!meter) {
5843 retval = ENOENT;
5844 goto done;
5845 }
5846 if (stats) {
5847 int i = 0;
5848
5849 stats->packet_in_count = meter->packet_count;
5850 stats->byte_in_count = meter->byte_count;
5851
5852 for (i = 0; i < n_bands && i < meter->n_bands; ++i) {
5853 stats->bands[i].packet_count = meter->bands[i].packet_count;
5854 stats->bands[i].byte_count = meter->bands[i].byte_count;
5855 }
5856
5857 stats->n_bands = i;
5858 }
5859
5860 done:
5861 meter_unlock(dp, meter_id);
5862 return retval;
5863 }
5864
5865 static int
5866 dpif_netdev_meter_del(struct dpif *dpif,
5867 ofproto_meter_id meter_id_,
5868 struct ofputil_meter_stats *stats, uint16_t n_bands)
5869 {
5870 struct dp_netdev *dp = get_dp_netdev(dpif);
5871 int error;
5872
5873 error = dpif_netdev_meter_get(dpif, meter_id_, stats, n_bands);
5874 if (!error) {
5875 uint32_t meter_id = meter_id_.uint32;
5876
5877 meter_lock(dp, meter_id);
5878 dp_delete_meter(dp, meter_id);
5879 meter_unlock(dp, meter_id);
5880 }
5881 return error;
5882 }
5883
5884 \f
5885 static void
5886 dpif_netdev_disable_upcall(struct dpif *dpif)
5887 OVS_NO_THREAD_SAFETY_ANALYSIS
5888 {
5889 struct dp_netdev *dp = get_dp_netdev(dpif);
5890 dp_netdev_disable_upcall(dp);
5891 }
5892
5893 static void
5894 dp_netdev_enable_upcall(struct dp_netdev *dp)
5895 OVS_RELEASES(dp->upcall_rwlock)
5896 {
5897 fat_rwlock_unlock(&dp->upcall_rwlock);
5898 }
5899
5900 static void
5901 dpif_netdev_enable_upcall(struct dpif *dpif)
5902 OVS_NO_THREAD_SAFETY_ANALYSIS
5903 {
5904 struct dp_netdev *dp = get_dp_netdev(dpif);
5905 dp_netdev_enable_upcall(dp);
5906 }
5907
5908 static void
5909 dp_netdev_pmd_reload_done(struct dp_netdev_pmd_thread *pmd)
5910 {
5911 atomic_store_relaxed(&pmd->wait_for_reload, false);
5912 atomic_store_relaxed(&pmd->reload_tx_qid, false);
5913 pmd->last_reload_seq = seq_read(pmd->reload_seq);
5914 atomic_store_explicit(&pmd->reload, false, memory_order_release);
5915 }
5916
5917 /* Finds and refs the dp_netdev_pmd_thread on core 'core_id'. Returns
5918 * the pointer if succeeds, otherwise, NULL (it can return NULL even if
5919 * 'core_id' is NON_PMD_CORE_ID).
5920 *
5921 * Caller must unrefs the returned reference. */
5922 static struct dp_netdev_pmd_thread *
5923 dp_netdev_get_pmd(struct dp_netdev *dp, unsigned core_id)
5924 {
5925 struct dp_netdev_pmd_thread *pmd;
5926 const struct cmap_node *pnode;
5927
5928 pnode = cmap_find(&dp->poll_threads, hash_int(core_id, 0));
5929 if (!pnode) {
5930 return NULL;
5931 }
5932 pmd = CONTAINER_OF(pnode, struct dp_netdev_pmd_thread, node);
5933
5934 return dp_netdev_pmd_try_ref(pmd) ? pmd : NULL;
5935 }
5936
5937 /* Sets the 'struct dp_netdev_pmd_thread' for non-pmd threads. */
5938 static void
5939 dp_netdev_set_nonpmd(struct dp_netdev *dp)
5940 OVS_REQUIRES(dp->port_mutex)
5941 {
5942 struct dp_netdev_pmd_thread *non_pmd;
5943
5944 non_pmd = xzalloc(sizeof *non_pmd);
5945 dp_netdev_configure_pmd(non_pmd, dp, NON_PMD_CORE_ID, OVS_NUMA_UNSPEC);
5946 }
5947
5948 /* Caller must have valid pointer to 'pmd'. */
5949 static bool
5950 dp_netdev_pmd_try_ref(struct dp_netdev_pmd_thread *pmd)
5951 {
5952 return ovs_refcount_try_ref_rcu(&pmd->ref_cnt);
5953 }
5954
5955 static void
5956 dp_netdev_pmd_unref(struct dp_netdev_pmd_thread *pmd)
5957 {
5958 if (pmd && ovs_refcount_unref(&pmd->ref_cnt) == 1) {
5959 ovsrcu_postpone(dp_netdev_destroy_pmd, pmd);
5960 }
5961 }
5962
5963 /* Given cmap position 'pos', tries to ref the next node. If try_ref()
5964 * fails, keeps checking for next node until reaching the end of cmap.
5965 *
5966 * Caller must unrefs the returned reference. */
5967 static struct dp_netdev_pmd_thread *
5968 dp_netdev_pmd_get_next(struct dp_netdev *dp, struct cmap_position *pos)
5969 {
5970 struct dp_netdev_pmd_thread *next;
5971
5972 do {
5973 struct cmap_node *node;
5974
5975 node = cmap_next_position(&dp->poll_threads, pos);
5976 next = node ? CONTAINER_OF(node, struct dp_netdev_pmd_thread, node)
5977 : NULL;
5978 } while (next && !dp_netdev_pmd_try_ref(next));
5979
5980 return next;
5981 }
5982
5983 /* Configures the 'pmd' based on the input argument. */
5984 static void
5985 dp_netdev_configure_pmd(struct dp_netdev_pmd_thread *pmd, struct dp_netdev *dp,
5986 unsigned core_id, int numa_id)
5987 {
5988 pmd->dp = dp;
5989 pmd->core_id = core_id;
5990 pmd->numa_id = numa_id;
5991 pmd->need_reload = false;
5992 pmd->n_output_batches = 0;
5993
5994 ovs_refcount_init(&pmd->ref_cnt);
5995 atomic_init(&pmd->exit, false);
5996 pmd->reload_seq = seq_create();
5997 pmd->last_reload_seq = seq_read(pmd->reload_seq);
5998 atomic_init(&pmd->reload, false);
5999 ovs_mutex_init(&pmd->flow_mutex);
6000 ovs_mutex_init(&pmd->port_mutex);
6001 cmap_init(&pmd->flow_table);
6002 cmap_init(&pmd->classifiers);
6003 pmd->ctx.last_rxq = NULL;
6004 pmd_thread_ctx_time_update(pmd);
6005 pmd->next_optimization = pmd->ctx.now + DPCLS_OPTIMIZATION_INTERVAL;
6006 pmd->rxq_next_cycle_store = pmd->ctx.now + PMD_RXQ_INTERVAL_LEN;
6007 hmap_init(&pmd->poll_list);
6008 hmap_init(&pmd->tx_ports);
6009 hmap_init(&pmd->tnl_port_cache);
6010 hmap_init(&pmd->send_port_cache);
6011 /* init the 'flow_cache' since there is no
6012 * actual thread created for NON_PMD_CORE_ID. */
6013 if (core_id == NON_PMD_CORE_ID) {
6014 dfc_cache_init(&pmd->flow_cache);
6015 pmd_alloc_static_tx_qid(pmd);
6016 }
6017 pmd_perf_stats_init(&pmd->perf_stats);
6018 cmap_insert(&dp->poll_threads, CONST_CAST(struct cmap_node *, &pmd->node),
6019 hash_int(core_id, 0));
6020 }
6021
6022 static void
6023 dp_netdev_destroy_pmd(struct dp_netdev_pmd_thread *pmd)
6024 {
6025 struct dpcls *cls;
6026
6027 dp_netdev_pmd_flow_flush(pmd);
6028 hmap_destroy(&pmd->send_port_cache);
6029 hmap_destroy(&pmd->tnl_port_cache);
6030 hmap_destroy(&pmd->tx_ports);
6031 hmap_destroy(&pmd->poll_list);
6032 /* All flows (including their dpcls_rules) have been deleted already */
6033 CMAP_FOR_EACH (cls, node, &pmd->classifiers) {
6034 dpcls_destroy(cls);
6035 ovsrcu_postpone(free, cls);
6036 }
6037 cmap_destroy(&pmd->classifiers);
6038 cmap_destroy(&pmd->flow_table);
6039 ovs_mutex_destroy(&pmd->flow_mutex);
6040 seq_destroy(pmd->reload_seq);
6041 ovs_mutex_destroy(&pmd->port_mutex);
6042 free(pmd);
6043 }
6044
6045 /* Stops the pmd thread, removes it from the 'dp->poll_threads',
6046 * and unrefs the struct. */
6047 static void
6048 dp_netdev_del_pmd(struct dp_netdev *dp, struct dp_netdev_pmd_thread *pmd)
6049 {
6050 /* NON_PMD_CORE_ID doesn't have a thread, so we don't have to synchronize,
6051 * but extra cleanup is necessary */
6052 if (pmd->core_id == NON_PMD_CORE_ID) {
6053 ovs_mutex_lock(&dp->non_pmd_mutex);
6054 dfc_cache_uninit(&pmd->flow_cache);
6055 pmd_free_cached_ports(pmd);
6056 pmd_free_static_tx_qid(pmd);
6057 ovs_mutex_unlock(&dp->non_pmd_mutex);
6058 } else {
6059 atomic_store_relaxed(&pmd->exit, true);
6060 dp_netdev_reload_pmd__(pmd);
6061 xpthread_join(pmd->thread, NULL);
6062 }
6063
6064 dp_netdev_pmd_clear_ports(pmd);
6065
6066 /* Purges the 'pmd''s flows after stopping the thread, but before
6067 * destroying the flows, so that the flow stats can be collected. */
6068 if (dp->dp_purge_cb) {
6069 dp->dp_purge_cb(dp->dp_purge_aux, pmd->core_id);
6070 }
6071 cmap_remove(&pmd->dp->poll_threads, &pmd->node, hash_int(pmd->core_id, 0));
6072 dp_netdev_pmd_unref(pmd);
6073 }
6074
6075 /* Destroys all pmd threads. If 'non_pmd' is true it also destroys the non pmd
6076 * thread. */
6077 static void
6078 dp_netdev_destroy_all_pmds(struct dp_netdev *dp, bool non_pmd)
6079 {
6080 struct dp_netdev_pmd_thread *pmd;
6081 struct dp_netdev_pmd_thread **pmd_list;
6082 size_t k = 0, n_pmds;
6083
6084 n_pmds = cmap_count(&dp->poll_threads);
6085 pmd_list = xcalloc(n_pmds, sizeof *pmd_list);
6086
6087 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
6088 if (!non_pmd && pmd->core_id == NON_PMD_CORE_ID) {
6089 continue;
6090 }
6091 /* We cannot call dp_netdev_del_pmd(), since it alters
6092 * 'dp->poll_threads' (while we're iterating it) and it
6093 * might quiesce. */
6094 ovs_assert(k < n_pmds);
6095 pmd_list[k++] = pmd;
6096 }
6097
6098 for (size_t i = 0; i < k; i++) {
6099 dp_netdev_del_pmd(dp, pmd_list[i]);
6100 }
6101 free(pmd_list);
6102 }
6103
6104 /* Deletes all rx queues from pmd->poll_list and all the ports from
6105 * pmd->tx_ports. */
6106 static void
6107 dp_netdev_pmd_clear_ports(struct dp_netdev_pmd_thread *pmd)
6108 {
6109 struct rxq_poll *poll;
6110 struct tx_port *port;
6111
6112 ovs_mutex_lock(&pmd->port_mutex);
6113 HMAP_FOR_EACH_POP (poll, node, &pmd->poll_list) {
6114 free(poll);
6115 }
6116 HMAP_FOR_EACH_POP (port, node, &pmd->tx_ports) {
6117 free(port);
6118 }
6119 ovs_mutex_unlock(&pmd->port_mutex);
6120 }
6121
6122 /* Adds rx queue to poll_list of PMD thread, if it's not there already. */
6123 static void
6124 dp_netdev_add_rxq_to_pmd(struct dp_netdev_pmd_thread *pmd,
6125 struct dp_netdev_rxq *rxq)
6126 OVS_REQUIRES(pmd->port_mutex)
6127 {
6128 int qid = netdev_rxq_get_queue_id(rxq->rx);
6129 uint32_t hash = hash_2words(odp_to_u32(rxq->port->port_no), qid);
6130 struct rxq_poll *poll;
6131
6132 HMAP_FOR_EACH_WITH_HASH (poll, node, hash, &pmd->poll_list) {
6133 if (poll->rxq == rxq) {
6134 /* 'rxq' is already polled by this thread. Do nothing. */
6135 return;
6136 }
6137 }
6138
6139 poll = xmalloc(sizeof *poll);
6140 poll->rxq = rxq;
6141 hmap_insert(&pmd->poll_list, &poll->node, hash);
6142
6143 pmd->need_reload = true;
6144 }
6145
6146 /* Delete 'poll' from poll_list of PMD thread. */
6147 static void
6148 dp_netdev_del_rxq_from_pmd(struct dp_netdev_pmd_thread *pmd,
6149 struct rxq_poll *poll)
6150 OVS_REQUIRES(pmd->port_mutex)
6151 {
6152 hmap_remove(&pmd->poll_list, &poll->node);
6153 free(poll);
6154
6155 pmd->need_reload = true;
6156 }
6157
6158 /* Add 'port' to the tx port cache of 'pmd', which must be reloaded for the
6159 * changes to take effect. */
6160 static void
6161 dp_netdev_add_port_tx_to_pmd(struct dp_netdev_pmd_thread *pmd,
6162 struct dp_netdev_port *port)
6163 OVS_REQUIRES(pmd->port_mutex)
6164 {
6165 struct tx_port *tx;
6166
6167 tx = tx_port_lookup(&pmd->tx_ports, port->port_no);
6168 if (tx) {
6169 /* 'port' is already on this thread tx cache. Do nothing. */
6170 return;
6171 }
6172
6173 tx = xzalloc(sizeof *tx);
6174
6175 tx->port = port;
6176 tx->qid = -1;
6177 tx->flush_time = 0LL;
6178 dp_packet_batch_init(&tx->output_pkts);
6179
6180 hmap_insert(&pmd->tx_ports, &tx->node, hash_port_no(tx->port->port_no));
6181 pmd->need_reload = true;
6182 }
6183
6184 /* Del 'tx' from the tx port cache of 'pmd', which must be reloaded for the
6185 * changes to take effect. */
6186 static void
6187 dp_netdev_del_port_tx_from_pmd(struct dp_netdev_pmd_thread *pmd,
6188 struct tx_port *tx)
6189 OVS_REQUIRES(pmd->port_mutex)
6190 {
6191 hmap_remove(&pmd->tx_ports, &tx->node);
6192 free(tx);
6193 pmd->need_reload = true;
6194 }
6195 \f
6196 static char *
6197 dpif_netdev_get_datapath_version(void)
6198 {
6199 return xstrdup("<built-in>");
6200 }
6201
6202 static void
6203 dp_netdev_flow_used(struct dp_netdev_flow *netdev_flow, int cnt, int size,
6204 uint16_t tcp_flags, long long now)
6205 {
6206 uint16_t flags;
6207
6208 atomic_store_relaxed(&netdev_flow->stats.used, now);
6209 non_atomic_ullong_add(&netdev_flow->stats.packet_count, cnt);
6210 non_atomic_ullong_add(&netdev_flow->stats.byte_count, size);
6211 atomic_read_relaxed(&netdev_flow->stats.tcp_flags, &flags);
6212 flags |= tcp_flags;
6213 atomic_store_relaxed(&netdev_flow->stats.tcp_flags, flags);
6214 }
6215
6216 static int
6217 dp_netdev_upcall(struct dp_netdev_pmd_thread *pmd, struct dp_packet *packet_,
6218 struct flow *flow, struct flow_wildcards *wc, ovs_u128 *ufid,
6219 enum dpif_upcall_type type, const struct nlattr *userdata,
6220 struct ofpbuf *actions, struct ofpbuf *put_actions)
6221 {
6222 struct dp_netdev *dp = pmd->dp;
6223
6224 if (OVS_UNLIKELY(!dp->upcall_cb)) {
6225 return ENODEV;
6226 }
6227
6228 if (OVS_UNLIKELY(!VLOG_DROP_DBG(&upcall_rl))) {
6229 struct ds ds = DS_EMPTY_INITIALIZER;
6230 char *packet_str;
6231 struct ofpbuf key;
6232 struct odp_flow_key_parms odp_parms = {
6233 .flow = flow,
6234 .mask = wc ? &wc->masks : NULL,
6235 .support = dp_netdev_support,
6236 };
6237
6238 ofpbuf_init(&key, 0);
6239 odp_flow_key_from_flow(&odp_parms, &key);
6240 packet_str = ofp_dp_packet_to_string(packet_);
6241
6242 odp_flow_key_format(key.data, key.size, &ds);
6243
6244 VLOG_DBG("%s: %s upcall:\n%s\n%s", dp->name,
6245 dpif_upcall_type_to_string(type), ds_cstr(&ds), packet_str);
6246
6247 ofpbuf_uninit(&key);
6248 free(packet_str);
6249
6250 ds_destroy(&ds);
6251 }
6252
6253 return dp->upcall_cb(packet_, flow, ufid, pmd->core_id, type, userdata,
6254 actions, wc, put_actions, dp->upcall_aux);
6255 }
6256
6257 static inline uint32_t
6258 dpif_netdev_packet_get_rss_hash_orig_pkt(struct dp_packet *packet,
6259 const struct miniflow *mf)
6260 {
6261 uint32_t hash;
6262
6263 if (OVS_LIKELY(dp_packet_rss_valid(packet))) {
6264 hash = dp_packet_get_rss_hash(packet);
6265 } else {
6266 hash = miniflow_hash_5tuple(mf, 0);
6267 dp_packet_set_rss_hash(packet, hash);
6268 }
6269
6270 return hash;
6271 }
6272
6273 static inline uint32_t
6274 dpif_netdev_packet_get_rss_hash(struct dp_packet *packet,
6275 const struct miniflow *mf)
6276 {
6277 uint32_t hash, recirc_depth;
6278
6279 if (OVS_LIKELY(dp_packet_rss_valid(packet))) {
6280 hash = dp_packet_get_rss_hash(packet);
6281 } else {
6282 hash = miniflow_hash_5tuple(mf, 0);
6283 dp_packet_set_rss_hash(packet, hash);
6284 }
6285
6286 /* The RSS hash must account for the recirculation depth to avoid
6287 * collisions in the exact match cache */
6288 recirc_depth = *recirc_depth_get_unsafe();
6289 if (OVS_UNLIKELY(recirc_depth)) {
6290 hash = hash_finish(hash, recirc_depth);
6291 dp_packet_set_rss_hash(packet, hash);
6292 }
6293 return hash;
6294 }
6295
6296 struct packet_batch_per_flow {
6297 unsigned int byte_count;
6298 uint16_t tcp_flags;
6299 struct dp_netdev_flow *flow;
6300
6301 struct dp_packet_batch array;
6302 };
6303
6304 static inline void
6305 packet_batch_per_flow_update(struct packet_batch_per_flow *batch,
6306 struct dp_packet *packet,
6307 uint16_t tcp_flags)
6308 {
6309 batch->byte_count += dp_packet_size(packet);
6310 batch->tcp_flags |= tcp_flags;
6311 batch->array.packets[batch->array.count++] = packet;
6312 }
6313
6314 static inline void
6315 packet_batch_per_flow_init(struct packet_batch_per_flow *batch,
6316 struct dp_netdev_flow *flow)
6317 {
6318 flow->batch = batch;
6319
6320 batch->flow = flow;
6321 dp_packet_batch_init(&batch->array);
6322 batch->byte_count = 0;
6323 batch->tcp_flags = 0;
6324 }
6325
6326 static inline void
6327 packet_batch_per_flow_execute(struct packet_batch_per_flow *batch,
6328 struct dp_netdev_pmd_thread *pmd)
6329 {
6330 struct dp_netdev_actions *actions;
6331 struct dp_netdev_flow *flow = batch->flow;
6332
6333 dp_netdev_flow_used(flow, batch->array.count, batch->byte_count,
6334 batch->tcp_flags, pmd->ctx.now / 1000);
6335
6336 actions = dp_netdev_flow_get_actions(flow);
6337
6338 dp_netdev_execute_actions(pmd, &batch->array, true, &flow->flow,
6339 actions->actions, actions->size);
6340 }
6341
6342 static inline void
6343 dp_netdev_queue_batches(struct dp_packet *pkt,
6344 struct dp_netdev_flow *flow, uint16_t tcp_flags,
6345 struct packet_batch_per_flow *batches,
6346 size_t *n_batches)
6347 {
6348 struct packet_batch_per_flow *batch = flow->batch;
6349
6350 if (OVS_UNLIKELY(!batch)) {
6351 batch = &batches[(*n_batches)++];
6352 packet_batch_per_flow_init(batch, flow);
6353 }
6354
6355 packet_batch_per_flow_update(batch, pkt, tcp_flags);
6356 }
6357
6358 static inline void
6359 packet_enqueue_to_flow_map(struct dp_packet *packet,
6360 struct dp_netdev_flow *flow,
6361 uint16_t tcp_flags,
6362 struct dp_packet_flow_map *flow_map,
6363 size_t index)
6364 {
6365 struct dp_packet_flow_map *map = &flow_map[index];
6366 map->flow = flow;
6367 map->packet = packet;
6368 map->tcp_flags = tcp_flags;
6369 }
6370
6371 /* SMC lookup function for a batch of packets.
6372 * By doing batching SMC lookup, we can use prefetch
6373 * to hide memory access latency.
6374 */
6375 static inline void
6376 smc_lookup_batch(struct dp_netdev_pmd_thread *pmd,
6377 struct netdev_flow_key *keys,
6378 struct netdev_flow_key **missed_keys,
6379 struct dp_packet_batch *packets_,
6380 const int cnt,
6381 struct dp_packet_flow_map *flow_map,
6382 uint8_t *index_map)
6383 {
6384 int i;
6385 struct dp_packet *packet;
6386 size_t n_smc_hit = 0, n_missed = 0;
6387 struct dfc_cache *cache = &pmd->flow_cache;
6388 struct smc_cache *smc_cache = &cache->smc_cache;
6389 const struct cmap_node *flow_node;
6390 int recv_idx;
6391 uint16_t tcp_flags;
6392
6393 /* Prefetch buckets for all packets */
6394 for (i = 0; i < cnt; i++) {
6395 OVS_PREFETCH(&smc_cache->buckets[keys[i].hash & SMC_MASK]);
6396 }
6397
6398 DP_PACKET_BATCH_REFILL_FOR_EACH (i, cnt, packet, packets_) {
6399 struct dp_netdev_flow *flow = NULL;
6400 flow_node = smc_entry_get(pmd, keys[i].hash);
6401 bool hit = false;
6402 /* Get the original order of this packet in received batch. */
6403 recv_idx = index_map[i];
6404
6405 if (OVS_LIKELY(flow_node != NULL)) {
6406 CMAP_NODE_FOR_EACH (flow, node, flow_node) {
6407 /* Since we dont have per-port megaflow to check the port
6408 * number, we need to verify that the input ports match. */
6409 if (OVS_LIKELY(dpcls_rule_matches_key(&flow->cr, &keys[i]) &&
6410 flow->flow.in_port.odp_port == packet->md.in_port.odp_port)) {
6411 tcp_flags = miniflow_get_tcp_flags(&keys[i].mf);
6412
6413 /* SMC hit and emc miss, we insert into EMC */
6414 keys[i].len =
6415 netdev_flow_key_size(miniflow_n_values(&keys[i].mf));
6416 emc_probabilistic_insert(pmd, &keys[i], flow);
6417 /* Add these packets into the flow map in the same order
6418 * as received.
6419 */
6420 packet_enqueue_to_flow_map(packet, flow, tcp_flags,
6421 flow_map, recv_idx);
6422 n_smc_hit++;
6423 hit = true;
6424 break;
6425 }
6426 }
6427 if (hit) {
6428 continue;
6429 }
6430 }
6431
6432 /* SMC missed. Group missed packets together at
6433 * the beginning of the 'packets' array. */
6434 dp_packet_batch_refill(packets_, packet, i);
6435
6436 /* Preserve the order of packet for flow batching. */
6437 index_map[n_missed] = recv_idx;
6438
6439 /* Put missed keys to the pointer arrays return to the caller */
6440 missed_keys[n_missed++] = &keys[i];
6441 }
6442
6443 pmd_perf_update_counter(&pmd->perf_stats, PMD_STAT_SMC_HIT, n_smc_hit);
6444 }
6445
6446 /* Try to process all ('cnt') the 'packets' using only the datapath flow cache
6447 * 'pmd->flow_cache'. If a flow is not found for a packet 'packets[i]', the
6448 * miniflow is copied into 'keys' and the packet pointer is moved at the
6449 * beginning of the 'packets' array. The pointers of missed keys are put in the
6450 * missed_keys pointer array for future processing.
6451 *
6452 * The function returns the number of packets that needs to be processed in the
6453 * 'packets' array (they have been moved to the beginning of the vector).
6454 *
6455 * For performance reasons a caller may choose not to initialize the metadata
6456 * in 'packets_'. If 'md_is_valid' is false, the metadata in 'packets'
6457 * is not valid and must be initialized by this function using 'port_no'.
6458 * If 'md_is_valid' is true, the metadata is already valid and 'port_no'
6459 * will be ignored.
6460 */
6461 static inline size_t
6462 dfc_processing(struct dp_netdev_pmd_thread *pmd,
6463 struct dp_packet_batch *packets_,
6464 struct netdev_flow_key *keys,
6465 struct netdev_flow_key **missed_keys,
6466 struct packet_batch_per_flow batches[], size_t *n_batches,
6467 struct dp_packet_flow_map *flow_map,
6468 size_t *n_flows, uint8_t *index_map,
6469 bool md_is_valid, odp_port_t port_no)
6470 {
6471 struct netdev_flow_key *key = &keys[0];
6472 size_t n_missed = 0, n_emc_hit = 0;
6473 struct dfc_cache *cache = &pmd->flow_cache;
6474 struct dp_packet *packet;
6475 const size_t cnt = dp_packet_batch_size(packets_);
6476 uint32_t cur_min = pmd->ctx.emc_insert_min;
6477 int i;
6478 uint16_t tcp_flags;
6479 bool smc_enable_db;
6480 size_t map_cnt = 0;
6481 bool batch_enable = true;
6482
6483 atomic_read_relaxed(&pmd->dp->smc_enable_db, &smc_enable_db);
6484 pmd_perf_update_counter(&pmd->perf_stats,
6485 md_is_valid ? PMD_STAT_RECIRC : PMD_STAT_RECV,
6486 cnt);
6487
6488 DP_PACKET_BATCH_REFILL_FOR_EACH (i, cnt, packet, packets_) {
6489 struct dp_netdev_flow *flow;
6490 uint32_t mark;
6491
6492 if (OVS_UNLIKELY(dp_packet_size(packet) < ETH_HEADER_LEN)) {
6493 dp_packet_delete(packet);
6494 continue;
6495 }
6496
6497 if (i != cnt - 1) {
6498 struct dp_packet **packets = packets_->packets;
6499 /* Prefetch next packet data and metadata. */
6500 OVS_PREFETCH(dp_packet_data(packets[i+1]));
6501 pkt_metadata_prefetch_init(&packets[i+1]->md);
6502 }
6503
6504 if (!md_is_valid) {
6505 pkt_metadata_init(&packet->md, port_no);
6506 }
6507
6508 if ((*recirc_depth_get() == 0) &&
6509 dp_packet_has_flow_mark(packet, &mark)) {
6510 flow = mark_to_flow_find(pmd, mark);
6511 if (OVS_LIKELY(flow)) {
6512 tcp_flags = parse_tcp_flags(packet);
6513 if (OVS_LIKELY(batch_enable)) {
6514 dp_netdev_queue_batches(packet, flow, tcp_flags, batches,
6515 n_batches);
6516 } else {
6517 /* Flow batching should be performed only after fast-path
6518 * processing is also completed for packets with emc miss
6519 * or else it will result in reordering of packets with
6520 * same datapath flows. */
6521 packet_enqueue_to_flow_map(packet, flow, tcp_flags,
6522 flow_map, map_cnt++);
6523 }
6524 continue;
6525 }
6526 }
6527
6528 miniflow_extract(packet, &key->mf);
6529 key->len = 0; /* Not computed yet. */
6530 key->hash =
6531 (md_is_valid == false)
6532 ? dpif_netdev_packet_get_rss_hash_orig_pkt(packet, &key->mf)
6533 : dpif_netdev_packet_get_rss_hash(packet, &key->mf);
6534
6535 /* If EMC is disabled skip emc_lookup */
6536 flow = (cur_min != 0) ? emc_lookup(&cache->emc_cache, key) : NULL;
6537 if (OVS_LIKELY(flow)) {
6538 tcp_flags = miniflow_get_tcp_flags(&key->mf);
6539 n_emc_hit++;
6540 if (OVS_LIKELY(batch_enable)) {
6541 dp_netdev_queue_batches(packet, flow, tcp_flags, batches,
6542 n_batches);
6543 } else {
6544 /* Flow batching should be performed only after fast-path
6545 * processing is also completed for packets with emc miss
6546 * or else it will result in reordering of packets with
6547 * same datapath flows. */
6548 packet_enqueue_to_flow_map(packet, flow, tcp_flags,
6549 flow_map, map_cnt++);
6550 }
6551 } else {
6552 /* Exact match cache missed. Group missed packets together at
6553 * the beginning of the 'packets' array. */
6554 dp_packet_batch_refill(packets_, packet, i);
6555
6556 /* Preserve the order of packet for flow batching. */
6557 index_map[n_missed] = map_cnt;
6558 flow_map[map_cnt++].flow = NULL;
6559
6560 /* 'key[n_missed]' contains the key of the current packet and it
6561 * will be passed to SMC lookup. The next key should be extracted
6562 * to 'keys[n_missed + 1]'.
6563 * We also maintain a pointer array to keys missed both SMC and EMC
6564 * which will be returned to the caller for future processing. */
6565 missed_keys[n_missed] = key;
6566 key = &keys[++n_missed];
6567
6568 /* Skip batching for subsequent packets to avoid reordering. */
6569 batch_enable = false;
6570 }
6571 }
6572 /* Count of packets which are not flow batched. */
6573 *n_flows = map_cnt;
6574
6575 pmd_perf_update_counter(&pmd->perf_stats, PMD_STAT_EXACT_HIT, n_emc_hit);
6576
6577 if (!smc_enable_db) {
6578 return dp_packet_batch_size(packets_);
6579 }
6580
6581 /* Packets miss EMC will do a batch lookup in SMC if enabled */
6582 smc_lookup_batch(pmd, keys, missed_keys, packets_,
6583 n_missed, flow_map, index_map);
6584
6585 return dp_packet_batch_size(packets_);
6586 }
6587
6588 static inline int
6589 handle_packet_upcall(struct dp_netdev_pmd_thread *pmd,
6590 struct dp_packet *packet,
6591 const struct netdev_flow_key *key,
6592 struct ofpbuf *actions, struct ofpbuf *put_actions)
6593 {
6594 struct ofpbuf *add_actions;
6595 struct dp_packet_batch b;
6596 struct match match;
6597 ovs_u128 ufid;
6598 int error;
6599 uint64_t cycles = cycles_counter_update(&pmd->perf_stats);
6600
6601 match.tun_md.valid = false;
6602 miniflow_expand(&key->mf, &match.flow);
6603 memset(&match.wc, 0, sizeof match.wc);
6604
6605 ofpbuf_clear(actions);
6606 ofpbuf_clear(put_actions);
6607
6608 dpif_flow_hash(pmd->dp->dpif, &match.flow, sizeof match.flow, &ufid);
6609 error = dp_netdev_upcall(pmd, packet, &match.flow, &match.wc,
6610 &ufid, DPIF_UC_MISS, NULL, actions,
6611 put_actions);
6612 if (OVS_UNLIKELY(error && error != ENOSPC)) {
6613 dp_packet_delete(packet);
6614 return error;
6615 }
6616
6617 /* The Netlink encoding of datapath flow keys cannot express
6618 * wildcarding the presence of a VLAN tag. Instead, a missing VLAN
6619 * tag is interpreted as exact match on the fact that there is no
6620 * VLAN. Unless we refactor a lot of code that translates between
6621 * Netlink and struct flow representations, we have to do the same
6622 * here. This must be in sync with 'match' in dpif_netdev_flow_put(). */
6623 if (!match.wc.masks.vlans[0].tci) {
6624 match.wc.masks.vlans[0].tci = htons(0xffff);
6625 }
6626
6627 /* We can't allow the packet batching in the next loop to execute
6628 * the actions. Otherwise, if there are any slow path actions,
6629 * we'll send the packet up twice. */
6630 dp_packet_batch_init_packet(&b, packet);
6631 dp_netdev_execute_actions(pmd, &b, true, &match.flow,
6632 actions->data, actions->size);
6633
6634 add_actions = put_actions->size ? put_actions : actions;
6635 if (OVS_LIKELY(error != ENOSPC)) {
6636 struct dp_netdev_flow *netdev_flow;
6637
6638 /* XXX: There's a race window where a flow covering this packet
6639 * could have already been installed since we last did the flow
6640 * lookup before upcall. This could be solved by moving the
6641 * mutex lock outside the loop, but that's an awful long time
6642 * to be locking revalidators out of making flow modifications. */
6643 ovs_mutex_lock(&pmd->flow_mutex);
6644 netdev_flow = dp_netdev_pmd_lookup_flow(pmd, key, NULL);
6645 if (OVS_LIKELY(!netdev_flow)) {
6646 netdev_flow = dp_netdev_flow_add(pmd, &match, &ufid,
6647 add_actions->data,
6648 add_actions->size);
6649 }
6650 ovs_mutex_unlock(&pmd->flow_mutex);
6651 uint32_t hash = dp_netdev_flow_hash(&netdev_flow->ufid);
6652 smc_insert(pmd, key, hash);
6653 emc_probabilistic_insert(pmd, key, netdev_flow);
6654 }
6655 if (pmd_perf_metrics_enabled(pmd)) {
6656 /* Update upcall stats. */
6657 cycles = cycles_counter_update(&pmd->perf_stats) - cycles;
6658 struct pmd_perf_stats *s = &pmd->perf_stats;
6659 s->current.upcalls++;
6660 s->current.upcall_cycles += cycles;
6661 histogram_add_sample(&s->cycles_per_upcall, cycles);
6662 }
6663 return error;
6664 }
6665
6666 static inline void
6667 fast_path_processing(struct dp_netdev_pmd_thread *pmd,
6668 struct dp_packet_batch *packets_,
6669 struct netdev_flow_key **keys,
6670 struct dp_packet_flow_map *flow_map,
6671 uint8_t *index_map,
6672 odp_port_t in_port)
6673 {
6674 const size_t cnt = dp_packet_batch_size(packets_);
6675 #if !defined(__CHECKER__) && !defined(_WIN32)
6676 const size_t PKT_ARRAY_SIZE = cnt;
6677 #else
6678 /* Sparse or MSVC doesn't like variable length array. */
6679 enum { PKT_ARRAY_SIZE = NETDEV_MAX_BURST };
6680 #endif
6681 struct dp_packet *packet;
6682 struct dpcls *cls;
6683 struct dpcls_rule *rules[PKT_ARRAY_SIZE];
6684 struct dp_netdev *dp = pmd->dp;
6685 int upcall_ok_cnt = 0, upcall_fail_cnt = 0;
6686 int lookup_cnt = 0, add_lookup_cnt;
6687 bool any_miss;
6688
6689 for (size_t i = 0; i < cnt; i++) {
6690 /* Key length is needed in all the cases, hash computed on demand. */
6691 keys[i]->len = netdev_flow_key_size(miniflow_n_values(&keys[i]->mf));
6692 }
6693 /* Get the classifier for the in_port */
6694 cls = dp_netdev_pmd_lookup_dpcls(pmd, in_port);
6695 if (OVS_LIKELY(cls)) {
6696 any_miss = !dpcls_lookup(cls, (const struct netdev_flow_key **)keys,
6697 rules, cnt, &lookup_cnt);
6698 } else {
6699 any_miss = true;
6700 memset(rules, 0, sizeof(rules));
6701 }
6702 if (OVS_UNLIKELY(any_miss) && !fat_rwlock_tryrdlock(&dp->upcall_rwlock)) {
6703 uint64_t actions_stub[512 / 8], slow_stub[512 / 8];
6704 struct ofpbuf actions, put_actions;
6705
6706 ofpbuf_use_stub(&actions, actions_stub, sizeof actions_stub);
6707 ofpbuf_use_stub(&put_actions, slow_stub, sizeof slow_stub);
6708
6709 DP_PACKET_BATCH_FOR_EACH (i, packet, packets_) {
6710 struct dp_netdev_flow *netdev_flow;
6711
6712 if (OVS_LIKELY(rules[i])) {
6713 continue;
6714 }
6715
6716 /* It's possible that an earlier slow path execution installed
6717 * a rule covering this flow. In this case, it's a lot cheaper
6718 * to catch it here than execute a miss. */
6719 netdev_flow = dp_netdev_pmd_lookup_flow(pmd, keys[i],
6720 &add_lookup_cnt);
6721 if (netdev_flow) {
6722 lookup_cnt += add_lookup_cnt;
6723 rules[i] = &netdev_flow->cr;
6724 continue;
6725 }
6726
6727 int error = handle_packet_upcall(pmd, packet, keys[i],
6728 &actions, &put_actions);
6729
6730 if (OVS_UNLIKELY(error)) {
6731 upcall_fail_cnt++;
6732 } else {
6733 upcall_ok_cnt++;
6734 }
6735 }
6736
6737 ofpbuf_uninit(&actions);
6738 ofpbuf_uninit(&put_actions);
6739 fat_rwlock_unlock(&dp->upcall_rwlock);
6740 } else if (OVS_UNLIKELY(any_miss)) {
6741 DP_PACKET_BATCH_FOR_EACH (i, packet, packets_) {
6742 if (OVS_UNLIKELY(!rules[i])) {
6743 dp_packet_delete(packet);
6744 upcall_fail_cnt++;
6745 }
6746 }
6747 }
6748
6749 DP_PACKET_BATCH_FOR_EACH (i, packet, packets_) {
6750 struct dp_netdev_flow *flow;
6751 /* Get the original order of this packet in received batch. */
6752 int recv_idx = index_map[i];
6753 uint16_t tcp_flags;
6754
6755 if (OVS_UNLIKELY(!rules[i])) {
6756 continue;
6757 }
6758
6759 flow = dp_netdev_flow_cast(rules[i]);
6760 uint32_t hash = dp_netdev_flow_hash(&flow->ufid);
6761 smc_insert(pmd, keys[i], hash);
6762
6763 emc_probabilistic_insert(pmd, keys[i], flow);
6764 /* Add these packets into the flow map in the same order
6765 * as received.
6766 */
6767 tcp_flags = miniflow_get_tcp_flags(&keys[i]->mf);
6768 packet_enqueue_to_flow_map(packet, flow, tcp_flags,
6769 flow_map, recv_idx);
6770 }
6771
6772 pmd_perf_update_counter(&pmd->perf_stats, PMD_STAT_MASKED_HIT,
6773 cnt - upcall_ok_cnt - upcall_fail_cnt);
6774 pmd_perf_update_counter(&pmd->perf_stats, PMD_STAT_MASKED_LOOKUP,
6775 lookup_cnt);
6776 pmd_perf_update_counter(&pmd->perf_stats, PMD_STAT_MISS,
6777 upcall_ok_cnt);
6778 pmd_perf_update_counter(&pmd->perf_stats, PMD_STAT_LOST,
6779 upcall_fail_cnt);
6780 }
6781
6782 /* Packets enter the datapath from a port (or from recirculation) here.
6783 *
6784 * When 'md_is_valid' is true the metadata in 'packets' are already valid.
6785 * When false the metadata in 'packets' need to be initialized. */
6786 static void
6787 dp_netdev_input__(struct dp_netdev_pmd_thread *pmd,
6788 struct dp_packet_batch *packets,
6789 bool md_is_valid, odp_port_t port_no)
6790 {
6791 #if !defined(__CHECKER__) && !defined(_WIN32)
6792 const size_t PKT_ARRAY_SIZE = dp_packet_batch_size(packets);
6793 #else
6794 /* Sparse or MSVC doesn't like variable length array. */
6795 enum { PKT_ARRAY_SIZE = NETDEV_MAX_BURST };
6796 #endif
6797 OVS_ALIGNED_VAR(CACHE_LINE_SIZE)
6798 struct netdev_flow_key keys[PKT_ARRAY_SIZE];
6799 struct netdev_flow_key *missed_keys[PKT_ARRAY_SIZE];
6800 struct packet_batch_per_flow batches[PKT_ARRAY_SIZE];
6801 size_t n_batches;
6802 struct dp_packet_flow_map flow_map[PKT_ARRAY_SIZE];
6803 uint8_t index_map[PKT_ARRAY_SIZE];
6804 size_t n_flows, i;
6805
6806 odp_port_t in_port;
6807
6808 n_batches = 0;
6809 dfc_processing(pmd, packets, keys, missed_keys, batches, &n_batches,
6810 flow_map, &n_flows, index_map, md_is_valid, port_no);
6811
6812 if (!dp_packet_batch_is_empty(packets)) {
6813 /* Get ingress port from first packet's metadata. */
6814 in_port = packets->packets[0]->md.in_port.odp_port;
6815 fast_path_processing(pmd, packets, missed_keys,
6816 flow_map, index_map, in_port);
6817 }
6818
6819 /* Batch rest of packets which are in flow map. */
6820 for (i = 0; i < n_flows; i++) {
6821 struct dp_packet_flow_map *map = &flow_map[i];
6822
6823 if (OVS_UNLIKELY(!map->flow)) {
6824 continue;
6825 }
6826 dp_netdev_queue_batches(map->packet, map->flow, map->tcp_flags,
6827 batches, &n_batches);
6828 }
6829
6830 /* All the flow batches need to be reset before any call to
6831 * packet_batch_per_flow_execute() as it could potentially trigger
6832 * recirculation. When a packet matching flow ‘j’ happens to be
6833 * recirculated, the nested call to dp_netdev_input__() could potentially
6834 * classify the packet as matching another flow - say 'k'. It could happen
6835 * that in the previous call to dp_netdev_input__() that same flow 'k' had
6836 * already its own batches[k] still waiting to be served. So if its
6837 * ‘batch’ member is not reset, the recirculated packet would be wrongly
6838 * appended to batches[k] of the 1st call to dp_netdev_input__(). */
6839 for (i = 0; i < n_batches; i++) {
6840 batches[i].flow->batch = NULL;
6841 }
6842
6843 for (i = 0; i < n_batches; i++) {
6844 packet_batch_per_flow_execute(&batches[i], pmd);
6845 }
6846 }
6847
6848 static void
6849 dp_netdev_input(struct dp_netdev_pmd_thread *pmd,
6850 struct dp_packet_batch *packets,
6851 odp_port_t port_no)
6852 {
6853 dp_netdev_input__(pmd, packets, false, port_no);
6854 }
6855
6856 static void
6857 dp_netdev_recirculate(struct dp_netdev_pmd_thread *pmd,
6858 struct dp_packet_batch *packets)
6859 {
6860 dp_netdev_input__(pmd, packets, true, 0);
6861 }
6862
6863 struct dp_netdev_execute_aux {
6864 struct dp_netdev_pmd_thread *pmd;
6865 const struct flow *flow;
6866 };
6867
6868 static void
6869 dpif_netdev_register_dp_purge_cb(struct dpif *dpif, dp_purge_callback *cb,
6870 void *aux)
6871 {
6872 struct dp_netdev *dp = get_dp_netdev(dpif);
6873 dp->dp_purge_aux = aux;
6874 dp->dp_purge_cb = cb;
6875 }
6876
6877 static void
6878 dpif_netdev_register_upcall_cb(struct dpif *dpif, upcall_callback *cb,
6879 void *aux)
6880 {
6881 struct dp_netdev *dp = get_dp_netdev(dpif);
6882 dp->upcall_aux = aux;
6883 dp->upcall_cb = cb;
6884 }
6885
6886 static void
6887 dpif_netdev_xps_revalidate_pmd(const struct dp_netdev_pmd_thread *pmd,
6888 bool purge)
6889 {
6890 struct tx_port *tx;
6891 struct dp_netdev_port *port;
6892 long long interval;
6893
6894 HMAP_FOR_EACH (tx, node, &pmd->send_port_cache) {
6895 if (!tx->port->dynamic_txqs) {
6896 continue;
6897 }
6898 interval = pmd->ctx.now - tx->last_used;
6899 if (tx->qid >= 0 && (purge || interval >= XPS_TIMEOUT)) {
6900 port = tx->port;
6901 ovs_mutex_lock(&port->txq_used_mutex);
6902 port->txq_used[tx->qid]--;
6903 ovs_mutex_unlock(&port->txq_used_mutex);
6904 tx->qid = -1;
6905 }
6906 }
6907 }
6908
6909 static int
6910 dpif_netdev_xps_get_tx_qid(const struct dp_netdev_pmd_thread *pmd,
6911 struct tx_port *tx)
6912 {
6913 struct dp_netdev_port *port;
6914 long long interval;
6915 int i, min_cnt, min_qid;
6916
6917 interval = pmd->ctx.now - tx->last_used;
6918 tx->last_used = pmd->ctx.now;
6919
6920 if (OVS_LIKELY(tx->qid >= 0 && interval < XPS_TIMEOUT)) {
6921 return tx->qid;
6922 }
6923
6924 port = tx->port;
6925
6926 ovs_mutex_lock(&port->txq_used_mutex);
6927 if (tx->qid >= 0) {
6928 port->txq_used[tx->qid]--;
6929 tx->qid = -1;
6930 }
6931
6932 min_cnt = -1;
6933 min_qid = 0;
6934 for (i = 0; i < netdev_n_txq(port->netdev); i++) {
6935 if (port->txq_used[i] < min_cnt || min_cnt == -1) {
6936 min_cnt = port->txq_used[i];
6937 min_qid = i;
6938 }
6939 }
6940
6941 port->txq_used[min_qid]++;
6942 tx->qid = min_qid;
6943
6944 ovs_mutex_unlock(&port->txq_used_mutex);
6945
6946 dpif_netdev_xps_revalidate_pmd(pmd, false);
6947
6948 VLOG_DBG("Core %d: New TX queue ID %d for port \'%s\'.",
6949 pmd->core_id, tx->qid, netdev_get_name(tx->port->netdev));
6950 return min_qid;
6951 }
6952
6953 static struct tx_port *
6954 pmd_tnl_port_cache_lookup(const struct dp_netdev_pmd_thread *pmd,
6955 odp_port_t port_no)
6956 {
6957 return tx_port_lookup(&pmd->tnl_port_cache, port_no);
6958 }
6959
6960 static struct tx_port *
6961 pmd_send_port_cache_lookup(const struct dp_netdev_pmd_thread *pmd,
6962 odp_port_t port_no)
6963 {
6964 return tx_port_lookup(&pmd->send_port_cache, port_no);
6965 }
6966
6967 static int
6968 push_tnl_action(const struct dp_netdev_pmd_thread *pmd,
6969 const struct nlattr *attr,
6970 struct dp_packet_batch *batch)
6971 {
6972 struct tx_port *tun_port;
6973 const struct ovs_action_push_tnl *data;
6974 int err;
6975
6976 data = nl_attr_get(attr);
6977
6978 tun_port = pmd_tnl_port_cache_lookup(pmd, data->tnl_port);
6979 if (!tun_port) {
6980 err = -EINVAL;
6981 goto error;
6982 }
6983 err = netdev_push_header(tun_port->port->netdev, batch, data);
6984 if (!err) {
6985 return 0;
6986 }
6987 error:
6988 dp_packet_delete_batch(batch, true);
6989 return err;
6990 }
6991
6992 static void
6993 dp_execute_userspace_action(struct dp_netdev_pmd_thread *pmd,
6994 struct dp_packet *packet, bool should_steal,
6995 struct flow *flow, ovs_u128 *ufid,
6996 struct ofpbuf *actions,
6997 const struct nlattr *userdata)
6998 {
6999 struct dp_packet_batch b;
7000 int error;
7001
7002 ofpbuf_clear(actions);
7003
7004 error = dp_netdev_upcall(pmd, packet, flow, NULL, ufid,
7005 DPIF_UC_ACTION, userdata, actions,
7006 NULL);
7007 if (!error || error == ENOSPC) {
7008 dp_packet_batch_init_packet(&b, packet);
7009 dp_netdev_execute_actions(pmd, &b, should_steal, flow,
7010 actions->data, actions->size);
7011 } else if (should_steal) {
7012 dp_packet_delete(packet);
7013 }
7014 }
7015
7016 static void
7017 dp_execute_cb(void *aux_, struct dp_packet_batch *packets_,
7018 const struct nlattr *a, bool should_steal)
7019 OVS_NO_THREAD_SAFETY_ANALYSIS
7020 {
7021 struct dp_netdev_execute_aux *aux = aux_;
7022 uint32_t *depth = recirc_depth_get();
7023 struct dp_netdev_pmd_thread *pmd = aux->pmd;
7024 struct dp_netdev *dp = pmd->dp;
7025 int type = nl_attr_type(a);
7026 struct tx_port *p;
7027
7028 switch ((enum ovs_action_attr)type) {
7029 case OVS_ACTION_ATTR_OUTPUT:
7030 p = pmd_send_port_cache_lookup(pmd, nl_attr_get_odp_port(a));
7031 if (OVS_LIKELY(p)) {
7032 struct dp_packet *packet;
7033 struct dp_packet_batch out;
7034
7035 if (!should_steal) {
7036 dp_packet_batch_clone(&out, packets_);
7037 dp_packet_batch_reset_cutlen(packets_);
7038 packets_ = &out;
7039 }
7040 dp_packet_batch_apply_cutlen(packets_);
7041
7042 #ifdef DPDK_NETDEV
7043 if (OVS_UNLIKELY(!dp_packet_batch_is_empty(&p->output_pkts)
7044 && packets_->packets[0]->source
7045 != p->output_pkts.packets[0]->source)) {
7046 /* XXX: netdev-dpdk assumes that all packets in a single
7047 * output batch has the same source. Flush here to
7048 * avoid memory access issues. */
7049 dp_netdev_pmd_flush_output_on_port(pmd, p);
7050 }
7051 #endif
7052 if (dp_packet_batch_size(&p->output_pkts)
7053 + dp_packet_batch_size(packets_) > NETDEV_MAX_BURST) {
7054 /* Flush here to avoid overflow. */
7055 dp_netdev_pmd_flush_output_on_port(pmd, p);
7056 }
7057
7058 if (dp_packet_batch_is_empty(&p->output_pkts)) {
7059 pmd->n_output_batches++;
7060 }
7061
7062 DP_PACKET_BATCH_FOR_EACH (i, packet, packets_) {
7063 p->output_pkts_rxqs[dp_packet_batch_size(&p->output_pkts)] =
7064 pmd->ctx.last_rxq;
7065 dp_packet_batch_add(&p->output_pkts, packet);
7066 }
7067 return;
7068 }
7069 break;
7070
7071 case OVS_ACTION_ATTR_TUNNEL_PUSH:
7072 if (should_steal) {
7073 /* We're requested to push tunnel header, but also we need to take
7074 * the ownership of these packets. Thus, we can avoid performing
7075 * the action, because the caller will not use the result anyway.
7076 * Just break to free the batch. */
7077 break;
7078 }
7079 dp_packet_batch_apply_cutlen(packets_);
7080 push_tnl_action(pmd, a, packets_);
7081 return;
7082
7083 case OVS_ACTION_ATTR_TUNNEL_POP:
7084 if (*depth < MAX_RECIRC_DEPTH) {
7085 struct dp_packet_batch *orig_packets_ = packets_;
7086 odp_port_t portno = nl_attr_get_odp_port(a);
7087
7088 p = pmd_tnl_port_cache_lookup(pmd, portno);
7089 if (p) {
7090 struct dp_packet_batch tnl_pkt;
7091
7092 if (!should_steal) {
7093 dp_packet_batch_clone(&tnl_pkt, packets_);
7094 packets_ = &tnl_pkt;
7095 dp_packet_batch_reset_cutlen(orig_packets_);
7096 }
7097
7098 dp_packet_batch_apply_cutlen(packets_);
7099
7100 netdev_pop_header(p->port->netdev, packets_);
7101 if (dp_packet_batch_is_empty(packets_)) {
7102 return;
7103 }
7104
7105 struct dp_packet *packet;
7106 DP_PACKET_BATCH_FOR_EACH (i, packet, packets_) {
7107 packet->md.in_port.odp_port = portno;
7108 }
7109
7110 (*depth)++;
7111 dp_netdev_recirculate(pmd, packets_);
7112 (*depth)--;
7113 return;
7114 }
7115 }
7116 break;
7117
7118 case OVS_ACTION_ATTR_USERSPACE:
7119 if (!fat_rwlock_tryrdlock(&dp->upcall_rwlock)) {
7120 struct dp_packet_batch *orig_packets_ = packets_;
7121 const struct nlattr *userdata;
7122 struct dp_packet_batch usr_pkt;
7123 struct ofpbuf actions;
7124 struct flow flow;
7125 ovs_u128 ufid;
7126 bool clone = false;
7127
7128 userdata = nl_attr_find_nested(a, OVS_USERSPACE_ATTR_USERDATA);
7129 ofpbuf_init(&actions, 0);
7130
7131 if (packets_->trunc) {
7132 if (!should_steal) {
7133 dp_packet_batch_clone(&usr_pkt, packets_);
7134 packets_ = &usr_pkt;
7135 clone = true;
7136 dp_packet_batch_reset_cutlen(orig_packets_);
7137 }
7138
7139 dp_packet_batch_apply_cutlen(packets_);
7140 }
7141
7142 struct dp_packet *packet;
7143 DP_PACKET_BATCH_FOR_EACH (i, packet, packets_) {
7144 flow_extract(packet, &flow);
7145 dpif_flow_hash(dp->dpif, &flow, sizeof flow, &ufid);
7146 dp_execute_userspace_action(pmd, packet, should_steal, &flow,
7147 &ufid, &actions, userdata);
7148 }
7149
7150 if (clone) {
7151 dp_packet_delete_batch(packets_, true);
7152 }
7153
7154 ofpbuf_uninit(&actions);
7155 fat_rwlock_unlock(&dp->upcall_rwlock);
7156
7157 return;
7158 }
7159 break;
7160
7161 case OVS_ACTION_ATTR_RECIRC:
7162 if (*depth < MAX_RECIRC_DEPTH) {
7163 struct dp_packet_batch recirc_pkts;
7164
7165 if (!should_steal) {
7166 dp_packet_batch_clone(&recirc_pkts, packets_);
7167 packets_ = &recirc_pkts;
7168 }
7169
7170 struct dp_packet *packet;
7171 DP_PACKET_BATCH_FOR_EACH (i, packet, packets_) {
7172 packet->md.recirc_id = nl_attr_get_u32(a);
7173 }
7174
7175 (*depth)++;
7176 dp_netdev_recirculate(pmd, packets_);
7177 (*depth)--;
7178
7179 return;
7180 }
7181
7182 VLOG_WARN("Packet dropped. Max recirculation depth exceeded.");
7183 break;
7184
7185 case OVS_ACTION_ATTR_CT: {
7186 const struct nlattr *b;
7187 bool force = false;
7188 bool commit = false;
7189 unsigned int left;
7190 uint16_t zone = 0;
7191 const char *helper = NULL;
7192 const uint32_t *setmark = NULL;
7193 const struct ovs_key_ct_labels *setlabel = NULL;
7194 struct nat_action_info_t nat_action_info;
7195 struct nat_action_info_t *nat_action_info_ref = NULL;
7196 bool nat_config = false;
7197
7198 NL_ATTR_FOR_EACH_UNSAFE (b, left, nl_attr_get(a),
7199 nl_attr_get_size(a)) {
7200 enum ovs_ct_attr sub_type = nl_attr_type(b);
7201
7202 switch(sub_type) {
7203 case OVS_CT_ATTR_FORCE_COMMIT:
7204 force = true;
7205 /* fall through. */
7206 case OVS_CT_ATTR_COMMIT:
7207 commit = true;
7208 break;
7209 case OVS_CT_ATTR_ZONE:
7210 zone = nl_attr_get_u16(b);
7211 break;
7212 case OVS_CT_ATTR_HELPER:
7213 helper = nl_attr_get_string(b);
7214 break;
7215 case OVS_CT_ATTR_MARK:
7216 setmark = nl_attr_get(b);
7217 break;
7218 case OVS_CT_ATTR_LABELS:
7219 setlabel = nl_attr_get(b);
7220 break;
7221 case OVS_CT_ATTR_EVENTMASK:
7222 /* Silently ignored, as userspace datapath does not generate
7223 * netlink events. */
7224 break;
7225 case OVS_CT_ATTR_NAT: {
7226 const struct nlattr *b_nest;
7227 unsigned int left_nest;
7228 bool ip_min_specified = false;
7229 bool proto_num_min_specified = false;
7230 bool ip_max_specified = false;
7231 bool proto_num_max_specified = false;
7232 memset(&nat_action_info, 0, sizeof nat_action_info);
7233 nat_action_info_ref = &nat_action_info;
7234
7235 NL_NESTED_FOR_EACH_UNSAFE (b_nest, left_nest, b) {
7236 enum ovs_nat_attr sub_type_nest = nl_attr_type(b_nest);
7237
7238 switch (sub_type_nest) {
7239 case OVS_NAT_ATTR_SRC:
7240 case OVS_NAT_ATTR_DST:
7241 nat_config = true;
7242 nat_action_info.nat_action |=
7243 ((sub_type_nest == OVS_NAT_ATTR_SRC)
7244 ? NAT_ACTION_SRC : NAT_ACTION_DST);
7245 break;
7246 case OVS_NAT_ATTR_IP_MIN:
7247 memcpy(&nat_action_info.min_addr,
7248 nl_attr_get(b_nest),
7249 nl_attr_get_size(b_nest));
7250 ip_min_specified = true;
7251 break;
7252 case OVS_NAT_ATTR_IP_MAX:
7253 memcpy(&nat_action_info.max_addr,
7254 nl_attr_get(b_nest),
7255 nl_attr_get_size(b_nest));
7256 ip_max_specified = true;
7257 break;
7258 case OVS_NAT_ATTR_PROTO_MIN:
7259 nat_action_info.min_port =
7260 nl_attr_get_u16(b_nest);
7261 proto_num_min_specified = true;
7262 break;
7263 case OVS_NAT_ATTR_PROTO_MAX:
7264 nat_action_info.max_port =
7265 nl_attr_get_u16(b_nest);
7266 proto_num_max_specified = true;
7267 break;
7268 case OVS_NAT_ATTR_PERSISTENT:
7269 case OVS_NAT_ATTR_PROTO_HASH:
7270 case OVS_NAT_ATTR_PROTO_RANDOM:
7271 break;
7272 case OVS_NAT_ATTR_UNSPEC:
7273 case __OVS_NAT_ATTR_MAX:
7274 OVS_NOT_REACHED();
7275 }
7276 }
7277
7278 if (ip_min_specified && !ip_max_specified) {
7279 nat_action_info.max_addr = nat_action_info.min_addr;
7280 }
7281 if (proto_num_min_specified && !proto_num_max_specified) {
7282 nat_action_info.max_port = nat_action_info.min_port;
7283 }
7284 if (proto_num_min_specified || proto_num_max_specified) {
7285 if (nat_action_info.nat_action & NAT_ACTION_SRC) {
7286 nat_action_info.nat_action |= NAT_ACTION_SRC_PORT;
7287 } else if (nat_action_info.nat_action & NAT_ACTION_DST) {
7288 nat_action_info.nat_action |= NAT_ACTION_DST_PORT;
7289 }
7290 }
7291 break;
7292 }
7293 case OVS_CT_ATTR_UNSPEC:
7294 case __OVS_CT_ATTR_MAX:
7295 OVS_NOT_REACHED();
7296 }
7297 }
7298
7299 /* We won't be able to function properly in this case, hence
7300 * complain loudly. */
7301 if (nat_config && !commit) {
7302 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(5, 5);
7303 VLOG_WARN_RL(&rl, "NAT specified without commit.");
7304 }
7305
7306 conntrack_execute(dp->conntrack, packets_, aux->flow->dl_type, force,
7307 commit, zone, setmark, setlabel, aux->flow->tp_src,
7308 aux->flow->tp_dst, helper, nat_action_info_ref,
7309 pmd->ctx.now / 1000);
7310 break;
7311 }
7312
7313 case OVS_ACTION_ATTR_METER:
7314 dp_netdev_run_meter(pmd->dp, packets_, nl_attr_get_u32(a),
7315 pmd->ctx.now);
7316 break;
7317
7318 case OVS_ACTION_ATTR_PUSH_VLAN:
7319 case OVS_ACTION_ATTR_POP_VLAN:
7320 case OVS_ACTION_ATTR_PUSH_MPLS:
7321 case OVS_ACTION_ATTR_POP_MPLS:
7322 case OVS_ACTION_ATTR_SET:
7323 case OVS_ACTION_ATTR_SET_MASKED:
7324 case OVS_ACTION_ATTR_SAMPLE:
7325 case OVS_ACTION_ATTR_HASH:
7326 case OVS_ACTION_ATTR_UNSPEC:
7327 case OVS_ACTION_ATTR_TRUNC:
7328 case OVS_ACTION_ATTR_PUSH_ETH:
7329 case OVS_ACTION_ATTR_POP_ETH:
7330 case OVS_ACTION_ATTR_CLONE:
7331 case OVS_ACTION_ATTR_PUSH_NSH:
7332 case OVS_ACTION_ATTR_POP_NSH:
7333 case OVS_ACTION_ATTR_CT_CLEAR:
7334 case OVS_ACTION_ATTR_CHECK_PKT_LEN:
7335 case __OVS_ACTION_ATTR_MAX:
7336 OVS_NOT_REACHED();
7337 }
7338
7339 dp_packet_delete_batch(packets_, should_steal);
7340 }
7341
7342 static void
7343 dp_netdev_execute_actions(struct dp_netdev_pmd_thread *pmd,
7344 struct dp_packet_batch *packets,
7345 bool should_steal, const struct flow *flow,
7346 const struct nlattr *actions, size_t actions_len)
7347 {
7348 struct dp_netdev_execute_aux aux = { pmd, flow };
7349
7350 odp_execute_actions(&aux, packets, should_steal, actions,
7351 actions_len, dp_execute_cb);
7352 }
7353
7354 struct dp_netdev_ct_dump {
7355 struct ct_dpif_dump_state up;
7356 struct conntrack_dump dump;
7357 struct conntrack *ct;
7358 struct dp_netdev *dp;
7359 };
7360
7361 static int
7362 dpif_netdev_ct_dump_start(struct dpif *dpif, struct ct_dpif_dump_state **dump_,
7363 const uint16_t *pzone, int *ptot_bkts)
7364 {
7365 struct dp_netdev *dp = get_dp_netdev(dpif);
7366 struct dp_netdev_ct_dump *dump;
7367
7368 dump = xzalloc(sizeof *dump);
7369 dump->dp = dp;
7370 dump->ct = dp->conntrack;
7371
7372 conntrack_dump_start(dp->conntrack, &dump->dump, pzone, ptot_bkts);
7373
7374 *dump_ = &dump->up;
7375
7376 return 0;
7377 }
7378
7379 static int
7380 dpif_netdev_ct_dump_next(struct dpif *dpif OVS_UNUSED,
7381 struct ct_dpif_dump_state *dump_,
7382 struct ct_dpif_entry *entry)
7383 {
7384 struct dp_netdev_ct_dump *dump;
7385
7386 INIT_CONTAINER(dump, dump_, up);
7387
7388 return conntrack_dump_next(&dump->dump, entry);
7389 }
7390
7391 static int
7392 dpif_netdev_ct_dump_done(struct dpif *dpif OVS_UNUSED,
7393 struct ct_dpif_dump_state *dump_)
7394 {
7395 struct dp_netdev_ct_dump *dump;
7396 int err;
7397
7398 INIT_CONTAINER(dump, dump_, up);
7399
7400 err = conntrack_dump_done(&dump->dump);
7401
7402 free(dump);
7403
7404 return err;
7405 }
7406
7407 static int
7408 dpif_netdev_ct_flush(struct dpif *dpif, const uint16_t *zone,
7409 const struct ct_dpif_tuple *tuple)
7410 {
7411 struct dp_netdev *dp = get_dp_netdev(dpif);
7412
7413 if (tuple) {
7414 return conntrack_flush_tuple(dp->conntrack, tuple, zone ? *zone : 0);
7415 }
7416 return conntrack_flush(dp->conntrack, zone);
7417 }
7418
7419 static int
7420 dpif_netdev_ct_set_maxconns(struct dpif *dpif, uint32_t maxconns)
7421 {
7422 struct dp_netdev *dp = get_dp_netdev(dpif);
7423
7424 return conntrack_set_maxconns(dp->conntrack, maxconns);
7425 }
7426
7427 static int
7428 dpif_netdev_ct_get_maxconns(struct dpif *dpif, uint32_t *maxconns)
7429 {
7430 struct dp_netdev *dp = get_dp_netdev(dpif);
7431
7432 return conntrack_get_maxconns(dp->conntrack, maxconns);
7433 }
7434
7435 static int
7436 dpif_netdev_ct_get_nconns(struct dpif *dpif, uint32_t *nconns)
7437 {
7438 struct dp_netdev *dp = get_dp_netdev(dpif);
7439
7440 return conntrack_get_nconns(dp->conntrack, nconns);
7441 }
7442
7443 static int
7444 dpif_netdev_ct_set_tcp_seq_chk(struct dpif *dpif, bool enabled)
7445 {
7446 struct dp_netdev *dp = get_dp_netdev(dpif);
7447
7448 return conntrack_set_tcp_seq_chk(dp->conntrack, enabled);
7449 }
7450
7451 static int
7452 dpif_netdev_ct_get_tcp_seq_chk(struct dpif *dpif, bool *enabled)
7453 {
7454 struct dp_netdev *dp = get_dp_netdev(dpif);
7455 *enabled = conntrack_get_tcp_seq_chk(dp->conntrack);
7456 return 0;
7457 }
7458
7459 static int
7460 dpif_netdev_ipf_set_enabled(struct dpif *dpif, bool v6, bool enable)
7461 {
7462 struct dp_netdev *dp = get_dp_netdev(dpif);
7463 return ipf_set_enabled(conntrack_ipf_ctx(dp->conntrack), v6, enable);
7464 }
7465
7466 static int
7467 dpif_netdev_ipf_set_min_frag(struct dpif *dpif, bool v6, uint32_t min_frag)
7468 {
7469 struct dp_netdev *dp = get_dp_netdev(dpif);
7470 return ipf_set_min_frag(conntrack_ipf_ctx(dp->conntrack), v6, min_frag);
7471 }
7472
7473 static int
7474 dpif_netdev_ipf_set_max_nfrags(struct dpif *dpif, uint32_t max_frags)
7475 {
7476 struct dp_netdev *dp = get_dp_netdev(dpif);
7477 return ipf_set_max_nfrags(conntrack_ipf_ctx(dp->conntrack), max_frags);
7478 }
7479
7480 /* Adjust this function if 'dpif_ipf_status' and 'ipf_status' were to
7481 * diverge. */
7482 static int
7483 dpif_netdev_ipf_get_status(struct dpif *dpif,
7484 struct dpif_ipf_status *dpif_ipf_status)
7485 {
7486 struct dp_netdev *dp = get_dp_netdev(dpif);
7487 ipf_get_status(conntrack_ipf_ctx(dp->conntrack),
7488 (struct ipf_status *) dpif_ipf_status);
7489 return 0;
7490 }
7491
7492 static int
7493 dpif_netdev_ipf_dump_start(struct dpif *dpif OVS_UNUSED,
7494 struct ipf_dump_ctx **ipf_dump_ctx)
7495 {
7496 return ipf_dump_start(ipf_dump_ctx);
7497 }
7498
7499 static int
7500 dpif_netdev_ipf_dump_next(struct dpif *dpif, void *ipf_dump_ctx, char **dump)
7501 {
7502 struct dp_netdev *dp = get_dp_netdev(dpif);
7503 return ipf_dump_next(conntrack_ipf_ctx(dp->conntrack), ipf_dump_ctx,
7504 dump);
7505 }
7506
7507 static int
7508 dpif_netdev_ipf_dump_done(struct dpif *dpif OVS_UNUSED, void *ipf_dump_ctx)
7509 {
7510 return ipf_dump_done(ipf_dump_ctx);
7511
7512 }
7513
7514 const struct dpif_class dpif_netdev_class = {
7515 "netdev",
7516 true, /* cleanup_required */
7517 dpif_netdev_init,
7518 dpif_netdev_enumerate,
7519 dpif_netdev_port_open_type,
7520 dpif_netdev_open,
7521 dpif_netdev_close,
7522 dpif_netdev_destroy,
7523 dpif_netdev_run,
7524 dpif_netdev_wait,
7525 dpif_netdev_get_stats,
7526 dpif_netdev_port_add,
7527 dpif_netdev_port_del,
7528 dpif_netdev_port_set_config,
7529 dpif_netdev_port_query_by_number,
7530 dpif_netdev_port_query_by_name,
7531 NULL, /* port_get_pid */
7532 dpif_netdev_port_dump_start,
7533 dpif_netdev_port_dump_next,
7534 dpif_netdev_port_dump_done,
7535 dpif_netdev_port_poll,
7536 dpif_netdev_port_poll_wait,
7537 dpif_netdev_flow_flush,
7538 dpif_netdev_flow_dump_create,
7539 dpif_netdev_flow_dump_destroy,
7540 dpif_netdev_flow_dump_thread_create,
7541 dpif_netdev_flow_dump_thread_destroy,
7542 dpif_netdev_flow_dump_next,
7543 dpif_netdev_operate,
7544 NULL, /* recv_set */
7545 NULL, /* handlers_set */
7546 dpif_netdev_set_config,
7547 dpif_netdev_queue_to_priority,
7548 NULL, /* recv */
7549 NULL, /* recv_wait */
7550 NULL, /* recv_purge */
7551 dpif_netdev_register_dp_purge_cb,
7552 dpif_netdev_register_upcall_cb,
7553 dpif_netdev_enable_upcall,
7554 dpif_netdev_disable_upcall,
7555 dpif_netdev_get_datapath_version,
7556 dpif_netdev_ct_dump_start,
7557 dpif_netdev_ct_dump_next,
7558 dpif_netdev_ct_dump_done,
7559 dpif_netdev_ct_flush,
7560 dpif_netdev_ct_set_maxconns,
7561 dpif_netdev_ct_get_maxconns,
7562 dpif_netdev_ct_get_nconns,
7563 dpif_netdev_ct_set_tcp_seq_chk,
7564 dpif_netdev_ct_get_tcp_seq_chk,
7565 NULL, /* ct_set_limits */
7566 NULL, /* ct_get_limits */
7567 NULL, /* ct_del_limits */
7568 dpif_netdev_ipf_set_enabled,
7569 dpif_netdev_ipf_set_min_frag,
7570 dpif_netdev_ipf_set_max_nfrags,
7571 dpif_netdev_ipf_get_status,
7572 dpif_netdev_ipf_dump_start,
7573 dpif_netdev_ipf_dump_next,
7574 dpif_netdev_ipf_dump_done,
7575 dpif_netdev_meter_get_features,
7576 dpif_netdev_meter_set,
7577 dpif_netdev_meter_get,
7578 dpif_netdev_meter_del,
7579 };
7580
7581 static void
7582 dpif_dummy_change_port_number(struct unixctl_conn *conn, int argc OVS_UNUSED,
7583 const char *argv[], void *aux OVS_UNUSED)
7584 {
7585 struct dp_netdev_port *port;
7586 struct dp_netdev *dp;
7587 odp_port_t port_no;
7588
7589 ovs_mutex_lock(&dp_netdev_mutex);
7590 dp = shash_find_data(&dp_netdevs, argv[1]);
7591 if (!dp || !dpif_netdev_class_is_dummy(dp->class)) {
7592 ovs_mutex_unlock(&dp_netdev_mutex);
7593 unixctl_command_reply_error(conn, "unknown datapath or not a dummy");
7594 return;
7595 }
7596 ovs_refcount_ref(&dp->ref_cnt);
7597 ovs_mutex_unlock(&dp_netdev_mutex);
7598
7599 ovs_mutex_lock(&dp->port_mutex);
7600 if (get_port_by_name(dp, argv[2], &port)) {
7601 unixctl_command_reply_error(conn, "unknown port");
7602 goto exit;
7603 }
7604
7605 port_no = u32_to_odp(atoi(argv[3]));
7606 if (!port_no || port_no == ODPP_NONE) {
7607 unixctl_command_reply_error(conn, "bad port number");
7608 goto exit;
7609 }
7610 if (dp_netdev_lookup_port(dp, port_no)) {
7611 unixctl_command_reply_error(conn, "port number already in use");
7612 goto exit;
7613 }
7614
7615 /* Remove port. */
7616 hmap_remove(&dp->ports, &port->node);
7617 reconfigure_datapath(dp);
7618
7619 /* Reinsert with new port number. */
7620 port->port_no = port_no;
7621 hmap_insert(&dp->ports, &port->node, hash_port_no(port_no));
7622 reconfigure_datapath(dp);
7623
7624 seq_change(dp->port_seq);
7625 unixctl_command_reply(conn, NULL);
7626
7627 exit:
7628 ovs_mutex_unlock(&dp->port_mutex);
7629 dp_netdev_unref(dp);
7630 }
7631
7632 static void
7633 dpif_dummy_register__(const char *type)
7634 {
7635 struct dpif_class *class;
7636
7637 class = xmalloc(sizeof *class);
7638 *class = dpif_netdev_class;
7639 class->type = xstrdup(type);
7640 dp_register_provider(class);
7641 }
7642
7643 static void
7644 dpif_dummy_override(const char *type)
7645 {
7646 int error;
7647
7648 /*
7649 * Ignore EAFNOSUPPORT to allow --enable-dummy=system with
7650 * a userland-only build. It's useful for testsuite.
7651 */
7652 error = dp_unregister_provider(type);
7653 if (error == 0 || error == EAFNOSUPPORT) {
7654 dpif_dummy_register__(type);
7655 }
7656 }
7657
7658 void
7659 dpif_dummy_register(enum dummy_level level)
7660 {
7661 if (level == DUMMY_OVERRIDE_ALL) {
7662 struct sset types;
7663 const char *type;
7664
7665 sset_init(&types);
7666 dp_enumerate_types(&types);
7667 SSET_FOR_EACH (type, &types) {
7668 dpif_dummy_override(type);
7669 }
7670 sset_destroy(&types);
7671 } else if (level == DUMMY_OVERRIDE_SYSTEM) {
7672 dpif_dummy_override("system");
7673 }
7674
7675 dpif_dummy_register__("dummy");
7676
7677 unixctl_command_register("dpif-dummy/change-port-number",
7678 "dp port new-number",
7679 3, 3, dpif_dummy_change_port_number, NULL);
7680 }
7681 \f
7682 /* Datapath Classifier. */
7683
7684 static void
7685 dpcls_subtable_destroy_cb(struct dpcls_subtable *subtable)
7686 {
7687 cmap_destroy(&subtable->rules);
7688 ovsrcu_postpone(free, subtable->mf_masks);
7689 ovsrcu_postpone(free, subtable);
7690 }
7691
7692 /* Initializes 'cls' as a classifier that initially contains no classification
7693 * rules. */
7694 static void
7695 dpcls_init(struct dpcls *cls)
7696 {
7697 cmap_init(&cls->subtables_map);
7698 pvector_init(&cls->subtables);
7699 }
7700
7701 static void
7702 dpcls_destroy_subtable(struct dpcls *cls, struct dpcls_subtable *subtable)
7703 {
7704 VLOG_DBG("Destroying subtable %p for in_port %d", subtable, cls->in_port);
7705 pvector_remove(&cls->subtables, subtable);
7706 cmap_remove(&cls->subtables_map, &subtable->cmap_node,
7707 subtable->mask.hash);
7708 ovsrcu_postpone(dpcls_subtable_destroy_cb, subtable);
7709 }
7710
7711 /* Destroys 'cls'. Rules within 'cls', if any, are not freed; this is the
7712 * caller's responsibility.
7713 * May only be called after all the readers have been terminated. */
7714 static void
7715 dpcls_destroy(struct dpcls *cls)
7716 {
7717 if (cls) {
7718 struct dpcls_subtable *subtable;
7719
7720 CMAP_FOR_EACH (subtable, cmap_node, &cls->subtables_map) {
7721 ovs_assert(cmap_count(&subtable->rules) == 0);
7722 dpcls_destroy_subtable(cls, subtable);
7723 }
7724 cmap_destroy(&cls->subtables_map);
7725 pvector_destroy(&cls->subtables);
7726 }
7727 }
7728
7729 static struct dpcls_subtable *
7730 dpcls_create_subtable(struct dpcls *cls, const struct netdev_flow_key *mask)
7731 {
7732 struct dpcls_subtable *subtable;
7733
7734 /* Need to add one. */
7735 subtable = xmalloc(sizeof *subtable
7736 - sizeof subtable->mask.mf + mask->len);
7737 cmap_init(&subtable->rules);
7738 subtable->hit_cnt = 0;
7739 netdev_flow_key_clone(&subtable->mask, mask);
7740
7741 /* The count of bits in the mask defines the space required for masks.
7742 * Then call gen_masks() to create the appropriate masks, avoiding the cost
7743 * of doing runtime calculations. */
7744 uint32_t unit0 = count_1bits(mask->mf.map.bits[0]);
7745 uint32_t unit1 = count_1bits(mask->mf.map.bits[1]);
7746 subtable->mf_bits_set_unit0 = unit0;
7747 subtable->mf_bits_set_unit1 = unit1;
7748 subtable->mf_masks = xmalloc(sizeof(uint64_t) * (unit0 + unit1));
7749 netdev_flow_key_gen_masks(mask, subtable->mf_masks, unit0, unit1);
7750
7751 /* Probe for a specialized generic lookup function. */
7752 subtable->lookup_func = dpcls_subtable_generic_probe(unit0, unit1);
7753
7754 /* If not set, assign generic lookup. Generic works for any miniflow. */
7755 if (!subtable->lookup_func) {
7756 subtable->lookup_func = dpcls_subtable_lookup_generic;
7757 }
7758
7759 cmap_insert(&cls->subtables_map, &subtable->cmap_node, mask->hash);
7760 /* Add the new subtable at the end of the pvector (with no hits yet) */
7761 pvector_insert(&cls->subtables, subtable, 0);
7762 VLOG_DBG("Creating %"PRIuSIZE". subtable %p for in_port %d",
7763 cmap_count(&cls->subtables_map), subtable, cls->in_port);
7764 pvector_publish(&cls->subtables);
7765
7766 return subtable;
7767 }
7768
7769 static inline struct dpcls_subtable *
7770 dpcls_find_subtable(struct dpcls *cls, const struct netdev_flow_key *mask)
7771 {
7772 struct dpcls_subtable *subtable;
7773
7774 CMAP_FOR_EACH_WITH_HASH (subtable, cmap_node, mask->hash,
7775 &cls->subtables_map) {
7776 if (netdev_flow_key_equal(&subtable->mask, mask)) {
7777 return subtable;
7778 }
7779 }
7780 return dpcls_create_subtable(cls, mask);
7781 }
7782
7783
7784 /* Periodically sort the dpcls subtable vectors according to hit counts */
7785 static void
7786 dpcls_sort_subtable_vector(struct dpcls *cls)
7787 {
7788 struct pvector *pvec = &cls->subtables;
7789 struct dpcls_subtable *subtable;
7790
7791 PVECTOR_FOR_EACH (subtable, pvec) {
7792 pvector_change_priority(pvec, subtable, subtable->hit_cnt);
7793 subtable->hit_cnt = 0;
7794 }
7795 pvector_publish(pvec);
7796 }
7797
7798 static inline void
7799 dp_netdev_pmd_try_optimize(struct dp_netdev_pmd_thread *pmd,
7800 struct polled_queue *poll_list, int poll_cnt)
7801 {
7802 struct dpcls *cls;
7803 uint64_t tot_idle = 0, tot_proc = 0;
7804 unsigned int pmd_load = 0;
7805
7806 if (pmd->ctx.now > pmd->rxq_next_cycle_store) {
7807 uint64_t curr_tsc;
7808 struct pmd_auto_lb *pmd_alb = &pmd->dp->pmd_alb;
7809 if (pmd_alb->is_enabled && !pmd->isolated
7810 && (pmd->perf_stats.counters.n[PMD_CYCLES_ITER_IDLE] >=
7811 pmd->prev_stats[PMD_CYCLES_ITER_IDLE])
7812 && (pmd->perf_stats.counters.n[PMD_CYCLES_ITER_BUSY] >=
7813 pmd->prev_stats[PMD_CYCLES_ITER_BUSY]))
7814 {
7815 tot_idle = pmd->perf_stats.counters.n[PMD_CYCLES_ITER_IDLE] -
7816 pmd->prev_stats[PMD_CYCLES_ITER_IDLE];
7817 tot_proc = pmd->perf_stats.counters.n[PMD_CYCLES_ITER_BUSY] -
7818 pmd->prev_stats[PMD_CYCLES_ITER_BUSY];
7819
7820 if (tot_proc) {
7821 pmd_load = ((tot_proc * 100) / (tot_idle + tot_proc));
7822 }
7823
7824 if (pmd_load >= ALB_PMD_LOAD_THRESHOLD) {
7825 atomic_count_inc(&pmd->pmd_overloaded);
7826 } else {
7827 atomic_count_set(&pmd->pmd_overloaded, 0);
7828 }
7829 }
7830
7831 pmd->prev_stats[PMD_CYCLES_ITER_IDLE] =
7832 pmd->perf_stats.counters.n[PMD_CYCLES_ITER_IDLE];
7833 pmd->prev_stats[PMD_CYCLES_ITER_BUSY] =
7834 pmd->perf_stats.counters.n[PMD_CYCLES_ITER_BUSY];
7835
7836 /* Get the cycles that were used to process each queue and store. */
7837 for (unsigned i = 0; i < poll_cnt; i++) {
7838 uint64_t rxq_cyc_curr = dp_netdev_rxq_get_cycles(poll_list[i].rxq,
7839 RXQ_CYCLES_PROC_CURR);
7840 dp_netdev_rxq_set_intrvl_cycles(poll_list[i].rxq, rxq_cyc_curr);
7841 dp_netdev_rxq_set_cycles(poll_list[i].rxq, RXQ_CYCLES_PROC_CURR,
7842 0);
7843 }
7844 curr_tsc = cycles_counter_update(&pmd->perf_stats);
7845 if (pmd->intrvl_tsc_prev) {
7846 /* There is a prev timestamp, store a new intrvl cycle count. */
7847 atomic_store_relaxed(&pmd->intrvl_cycles,
7848 curr_tsc - pmd->intrvl_tsc_prev);
7849 }
7850 pmd->intrvl_tsc_prev = curr_tsc;
7851 /* Start new measuring interval */
7852 pmd->rxq_next_cycle_store = pmd->ctx.now + PMD_RXQ_INTERVAL_LEN;
7853 }
7854
7855 if (pmd->ctx.now > pmd->next_optimization) {
7856 /* Try to obtain the flow lock to block out revalidator threads.
7857 * If not possible, just try next time. */
7858 if (!ovs_mutex_trylock(&pmd->flow_mutex)) {
7859 /* Optimize each classifier */
7860 CMAP_FOR_EACH (cls, node, &pmd->classifiers) {
7861 dpcls_sort_subtable_vector(cls);
7862 }
7863 ovs_mutex_unlock(&pmd->flow_mutex);
7864 /* Start new measuring interval */
7865 pmd->next_optimization = pmd->ctx.now
7866 + DPCLS_OPTIMIZATION_INTERVAL;
7867 }
7868 }
7869 }
7870
7871 /* Insert 'rule' into 'cls'. */
7872 static void
7873 dpcls_insert(struct dpcls *cls, struct dpcls_rule *rule,
7874 const struct netdev_flow_key *mask)
7875 {
7876 struct dpcls_subtable *subtable = dpcls_find_subtable(cls, mask);
7877
7878 /* Refer to subtable's mask, also for later removal. */
7879 rule->mask = &subtable->mask;
7880 cmap_insert(&subtable->rules, &rule->cmap_node, rule->flow.hash);
7881 }
7882
7883 /* Removes 'rule' from 'cls', also destructing the 'rule'. */
7884 static void
7885 dpcls_remove(struct dpcls *cls, struct dpcls_rule *rule)
7886 {
7887 struct dpcls_subtable *subtable;
7888
7889 ovs_assert(rule->mask);
7890
7891 /* Get subtable from reference in rule->mask. */
7892 INIT_CONTAINER(subtable, rule->mask, mask);
7893 if (cmap_remove(&subtable->rules, &rule->cmap_node, rule->flow.hash)
7894 == 0) {
7895 /* Delete empty subtable. */
7896 dpcls_destroy_subtable(cls, subtable);
7897 pvector_publish(&cls->subtables);
7898 }
7899 }
7900
7901 /* Inner loop for mask generation of a unit, see netdev_flow_key_gen_masks. */
7902 static inline void
7903 netdev_flow_key_gen_mask_unit(uint64_t iter,
7904 const uint64_t count,
7905 uint64_t *mf_masks)
7906 {
7907 int i;
7908 for (i = 0; i < count; i++) {
7909 uint64_t lowest_bit = (iter & -iter);
7910 iter &= ~lowest_bit;
7911 mf_masks[i] = (lowest_bit - 1);
7912 }
7913 /* Checks that count has covered all bits in the iter bitmap. */
7914 ovs_assert(iter == 0);
7915 }
7916
7917 /* Generate a mask for each block in the miniflow, based on the bits set. This
7918 * allows easily masking packets with the generated array here, without
7919 * calculations. This replaces runtime-calculating the masks.
7920 * @param key The table to generate the mf_masks for
7921 * @param mf_masks Pointer to a u64 array of at least *mf_bits* in size
7922 * @param mf_bits_total Number of bits set in the whole miniflow (both units)
7923 * @param mf_bits_unit0 Number of bits set in unit0 of the miniflow
7924 */
7925 void
7926 netdev_flow_key_gen_masks(const struct netdev_flow_key *tbl,
7927 uint64_t *mf_masks,
7928 const uint32_t mf_bits_u0,
7929 const uint32_t mf_bits_u1)
7930 {
7931 uint64_t iter_u0 = tbl->mf.map.bits[0];
7932 uint64_t iter_u1 = tbl->mf.map.bits[1];
7933
7934 netdev_flow_key_gen_mask_unit(iter_u0, mf_bits_u0, &mf_masks[0]);
7935 netdev_flow_key_gen_mask_unit(iter_u1, mf_bits_u1, &mf_masks[mf_bits_u0]);
7936 }
7937
7938 /* Returns true if 'target' satisfies 'key' in 'mask', that is, if each 1-bit
7939 * in 'mask' the values in 'key' and 'target' are the same. */
7940 bool
7941 dpcls_rule_matches_key(const struct dpcls_rule *rule,
7942 const struct netdev_flow_key *target)
7943 {
7944 const uint64_t *keyp = miniflow_get_values(&rule->flow.mf);
7945 const uint64_t *maskp = miniflow_get_values(&rule->mask->mf);
7946 uint64_t value;
7947
7948 NETDEV_FLOW_KEY_FOR_EACH_IN_FLOWMAP(value, target, rule->flow.mf.map) {
7949 if (OVS_UNLIKELY((value & *maskp++) != *keyp++)) {
7950 return false;
7951 }
7952 }
7953 return true;
7954 }
7955
7956 /* For each miniflow in 'keys' performs a classifier lookup writing the result
7957 * into the corresponding slot in 'rules'. If a particular entry in 'keys' is
7958 * NULL it is skipped.
7959 *
7960 * This function is optimized for use in the userspace datapath and therefore
7961 * does not implement a lot of features available in the standard
7962 * classifier_lookup() function. Specifically, it does not implement
7963 * priorities, instead returning any rule which matches the flow.
7964 *
7965 * Returns true if all miniflows found a corresponding rule. */
7966 static bool
7967 dpcls_lookup(struct dpcls *cls, const struct netdev_flow_key *keys[],
7968 struct dpcls_rule **rules, const size_t cnt,
7969 int *num_lookups_p)
7970 {
7971 /* The received 'cnt' miniflows are the search-keys that will be processed
7972 * to find a matching entry into the available subtables.
7973 * The number of bits in map_type is equal to NETDEV_MAX_BURST. */
7974 #define MAP_BITS (sizeof(uint32_t) * CHAR_BIT)
7975 BUILD_ASSERT_DECL(MAP_BITS >= NETDEV_MAX_BURST);
7976
7977 struct dpcls_subtable *subtable;
7978 uint32_t keys_map = TYPE_MAXIMUM(uint32_t); /* Set all bits. */
7979
7980 if (cnt != MAP_BITS) {
7981 keys_map >>= MAP_BITS - cnt; /* Clear extra bits. */
7982 }
7983 memset(rules, 0, cnt * sizeof *rules);
7984
7985 int lookups_match = 0, subtable_pos = 1;
7986 uint32_t found_map;
7987
7988 /* The Datapath classifier - aka dpcls - is composed of subtables.
7989 * Subtables are dynamically created as needed when new rules are inserted.
7990 * Each subtable collects rules with matches on a specific subset of packet
7991 * fields as defined by the subtable's mask. We proceed to process every
7992 * search-key against each subtable, but when a match is found for a
7993 * search-key, the search for that key can stop because the rules are
7994 * non-overlapping. */
7995 PVECTOR_FOR_EACH (subtable, &cls->subtables) {
7996 /* Call the subtable specific lookup function. */
7997 found_map = subtable->lookup_func(subtable, keys_map, keys, rules);
7998
7999 /* Count the number of subtables searched for this packet match. This
8000 * estimates the "spread" of subtables looked at per matched packet. */
8001 uint32_t pkts_matched = count_1bits(found_map);
8002 lookups_match += pkts_matched * subtable_pos;
8003
8004 /* Clear the found rules, and return early if all packets are found. */
8005 keys_map &= ~found_map;
8006 if (!keys_map) {
8007 if (num_lookups_p) {
8008 *num_lookups_p = lookups_match;
8009 }
8010 return true;
8011 }
8012 subtable_pos++;
8013 }
8014
8015 if (num_lookups_p) {
8016 *num_lookups_p = lookups_match;
8017 }
8018 return false;
8019 }