]> git.proxmox.com Git - ovs.git/blob - lib/dpif-netdev.c
dpif_dummy_override: Allow overriding a non-existing provider
[ovs.git] / lib / dpif-netdev.c
1 /*
2 * Copyright (c) 2009, 2010, 2011, 2012, 2013, 2014 Nicira, Inc.
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at:
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <config.h>
18 #include "dpif-netdev.h"
19
20 #include <ctype.h>
21 #include <errno.h>
22 #include <fcntl.h>
23 #include <inttypes.h>
24 #include <netinet/in.h>
25 #include <sys/socket.h>
26 #include <net/if.h>
27 #include <stdint.h>
28 #include <stdlib.h>
29 #include <string.h>
30 #include <sys/ioctl.h>
31 #include <sys/stat.h>
32 #include <unistd.h>
33
34 #include "bitmap.h"
35 #include "cmap.h"
36 #include "csum.h"
37 #include "dp-packet.h"
38 #include "dpif.h"
39 #include "dpif-provider.h"
40 #include "dummy.h"
41 #include "dynamic-string.h"
42 #include "fat-rwlock.h"
43 #include "flow.h"
44 #include "cmap.h"
45 #include "coverage.h"
46 #include "latch.h"
47 #include "list.h"
48 #include "match.h"
49 #include "netdev.h"
50 #include "netdev-dpdk.h"
51 #include "netdev-vport.h"
52 #include "netlink.h"
53 #include "odp-execute.h"
54 #include "odp-util.h"
55 #include "ofp-print.h"
56 #include "ofpbuf.h"
57 #include "ovs-numa.h"
58 #include "ovs-rcu.h"
59 #include "packets.h"
60 #include "poll-loop.h"
61 #include "pvector.h"
62 #include "random.h"
63 #include "seq.h"
64 #include "shash.h"
65 #include "sset.h"
66 #include "timeval.h"
67 #include "tnl-arp-cache.h"
68 #include "tnl-ports.h"
69 #include "unixctl.h"
70 #include "util.h"
71 #include "openvswitch/vlog.h"
72
73 VLOG_DEFINE_THIS_MODULE(dpif_netdev);
74
75 #define FLOW_DUMP_MAX_BATCH 50
76 /* Use per thread recirc_depth to prevent recirculation loop. */
77 #define MAX_RECIRC_DEPTH 5
78 DEFINE_STATIC_PER_THREAD_DATA(uint32_t, recirc_depth, 0)
79
80 /* Configuration parameters. */
81 enum { MAX_FLOWS = 65536 }; /* Maximum number of flows in flow table. */
82
83 /* Protects against changes to 'dp_netdevs'. */
84 static struct ovs_mutex dp_netdev_mutex = OVS_MUTEX_INITIALIZER;
85
86 /* Contains all 'struct dp_netdev's. */
87 static struct shash dp_netdevs OVS_GUARDED_BY(dp_netdev_mutex)
88 = SHASH_INITIALIZER(&dp_netdevs);
89
90 static struct vlog_rate_limit upcall_rl = VLOG_RATE_LIMIT_INIT(600, 600);
91
92 static struct odp_support dp_netdev_support = {
93 .max_mpls_depth = SIZE_MAX,
94 .recirc = true,
95 };
96
97 /* Stores a miniflow with inline values */
98
99 struct netdev_flow_key {
100 uint32_t hash; /* Hash function differs for different users. */
101 uint32_t len; /* Length of the following miniflow (incl. map). */
102 struct miniflow mf;
103 uint64_t buf[FLOW_MAX_PACKET_U64S];
104 };
105
106 /* Exact match cache for frequently used flows
107 *
108 * The cache uses a 32-bit hash of the packet (which can be the RSS hash) to
109 * search its entries for a miniflow that matches exactly the miniflow of the
110 * packet. It stores the 'dpcls_rule' (rule) that matches the miniflow.
111 *
112 * A cache entry holds a reference to its 'dp_netdev_flow'.
113 *
114 * A miniflow with a given hash can be in one of EM_FLOW_HASH_SEGS different
115 * entries. The 32-bit hash is split into EM_FLOW_HASH_SEGS values (each of
116 * them is EM_FLOW_HASH_SHIFT bits wide and the remainder is thrown away). Each
117 * value is the index of a cache entry where the miniflow could be.
118 *
119 *
120 * Thread-safety
121 * =============
122 *
123 * Each pmd_thread has its own private exact match cache.
124 * If dp_netdev_input is not called from a pmd thread, a mutex is used.
125 */
126
127 #define EM_FLOW_HASH_SHIFT 13
128 #define EM_FLOW_HASH_ENTRIES (1u << EM_FLOW_HASH_SHIFT)
129 #define EM_FLOW_HASH_MASK (EM_FLOW_HASH_ENTRIES - 1)
130 #define EM_FLOW_HASH_SEGS 2
131
132 struct emc_entry {
133 struct dp_netdev_flow *flow;
134 struct netdev_flow_key key; /* key.hash used for emc hash value. */
135 };
136
137 struct emc_cache {
138 struct emc_entry entries[EM_FLOW_HASH_ENTRIES];
139 int sweep_idx; /* For emc_cache_slow_sweep(). */
140 };
141
142 /* Iterate in the exact match cache through every entry that might contain a
143 * miniflow with hash 'HASH'. */
144 #define EMC_FOR_EACH_POS_WITH_HASH(EMC, CURRENT_ENTRY, HASH) \
145 for (uint32_t i__ = 0, srch_hash__ = (HASH); \
146 (CURRENT_ENTRY) = &(EMC)->entries[srch_hash__ & EM_FLOW_HASH_MASK], \
147 i__ < EM_FLOW_HASH_SEGS; \
148 i__++, srch_hash__ >>= EM_FLOW_HASH_SHIFT)
149 \f
150 /* Simple non-wildcarding single-priority classifier. */
151
152 struct dpcls {
153 struct cmap subtables_map;
154 struct pvector subtables;
155 };
156
157 /* A rule to be inserted to the classifier. */
158 struct dpcls_rule {
159 struct cmap_node cmap_node; /* Within struct dpcls_subtable 'rules'. */
160 struct netdev_flow_key *mask; /* Subtable's mask. */
161 struct netdev_flow_key flow; /* Matching key. */
162 /* 'flow' must be the last field, additional space is allocated here. */
163 };
164
165 static void dpcls_init(struct dpcls *);
166 static void dpcls_destroy(struct dpcls *);
167 static void dpcls_insert(struct dpcls *, struct dpcls_rule *,
168 const struct netdev_flow_key *mask);
169 static void dpcls_remove(struct dpcls *, struct dpcls_rule *);
170 static bool dpcls_lookup(const struct dpcls *cls,
171 const struct netdev_flow_key keys[],
172 struct dpcls_rule **rules, size_t cnt);
173 \f
174 /* Datapath based on the network device interface from netdev.h.
175 *
176 *
177 * Thread-safety
178 * =============
179 *
180 * Some members, marked 'const', are immutable. Accessing other members
181 * requires synchronization, as noted in more detail below.
182 *
183 * Acquisition order is, from outermost to innermost:
184 *
185 * dp_netdev_mutex (global)
186 * port_mutex
187 */
188 struct dp_netdev {
189 const struct dpif_class *const class;
190 const char *const name;
191 struct dpif *dpif;
192 struct ovs_refcount ref_cnt;
193 atomic_flag destroyed;
194
195 /* Ports.
196 *
197 * Protected by RCU. Take the mutex to add or remove ports. */
198 struct ovs_mutex port_mutex;
199 struct cmap ports;
200 struct seq *port_seq; /* Incremented whenever a port changes. */
201
202 /* Protects access to ofproto-dpif-upcall interface during revalidator
203 * thread synchronization. */
204 struct fat_rwlock upcall_rwlock;
205 upcall_callback *upcall_cb; /* Callback function for executing upcalls. */
206 void *upcall_aux;
207
208 /* Callback function for notifying the purging of dp flows (during
209 * reseting pmd deletion). */
210 dp_purge_callback *dp_purge_cb;
211 void *dp_purge_aux;
212
213 /* Stores all 'struct dp_netdev_pmd_thread's. */
214 struct cmap poll_threads;
215
216 /* Protects the access of the 'struct dp_netdev_pmd_thread'
217 * instance for non-pmd thread. */
218 struct ovs_mutex non_pmd_mutex;
219
220 /* Each pmd thread will store its pointer to
221 * 'struct dp_netdev_pmd_thread' in 'per_pmd_key'. */
222 ovsthread_key_t per_pmd_key;
223
224 /* Number of rx queues for each dpdk interface and the cpu mask
225 * for pin of pmd threads. */
226 size_t n_dpdk_rxqs;
227 char *pmd_cmask;
228 uint64_t last_tnl_conf_seq;
229 };
230
231 static struct dp_netdev_port *dp_netdev_lookup_port(const struct dp_netdev *dp,
232 odp_port_t);
233
234 enum dp_stat_type {
235 DP_STAT_EXACT_HIT, /* Packets that had an exact match (emc). */
236 DP_STAT_MASKED_HIT, /* Packets that matched in the flow table. */
237 DP_STAT_MISS, /* Packets that did not match. */
238 DP_STAT_LOST, /* Packets not passed up to the client. */
239 DP_N_STATS
240 };
241
242 enum pmd_cycles_counter_type {
243 PMD_CYCLES_POLLING, /* Cycles spent polling NICs. */
244 PMD_CYCLES_PROCESSING, /* Cycles spent processing packets */
245 PMD_N_CYCLES
246 };
247
248 /* A port in a netdev-based datapath. */
249 struct dp_netdev_port {
250 odp_port_t port_no;
251 struct netdev *netdev;
252 struct cmap_node node; /* Node in dp_netdev's 'ports'. */
253 struct netdev_saved_flags *sf;
254 struct netdev_rxq **rxq;
255 struct ovs_refcount ref_cnt;
256 char *type; /* Port type as requested by user. */
257 };
258
259 /* Contained by struct dp_netdev_flow's 'stats' member. */
260 struct dp_netdev_flow_stats {
261 atomic_llong used; /* Last used time, in monotonic msecs. */
262 atomic_ullong packet_count; /* Number of packets matched. */
263 atomic_ullong byte_count; /* Number of bytes matched. */
264 atomic_uint16_t tcp_flags; /* Bitwise-OR of seen tcp_flags values. */
265 };
266
267 /* A flow in 'dp_netdev_pmd_thread's 'flow_table'.
268 *
269 *
270 * Thread-safety
271 * =============
272 *
273 * Except near the beginning or ending of its lifespan, rule 'rule' belongs to
274 * its pmd thread's classifier. The text below calls this classifier 'cls'.
275 *
276 * Motivation
277 * ----------
278 *
279 * The thread safety rules described here for "struct dp_netdev_flow" are
280 * motivated by two goals:
281 *
282 * - Prevent threads that read members of "struct dp_netdev_flow" from
283 * reading bad data due to changes by some thread concurrently modifying
284 * those members.
285 *
286 * - Prevent two threads making changes to members of a given "struct
287 * dp_netdev_flow" from interfering with each other.
288 *
289 *
290 * Rules
291 * -----
292 *
293 * A flow 'flow' may be accessed without a risk of being freed during an RCU
294 * grace period. Code that needs to hold onto a flow for a while
295 * should try incrementing 'flow->ref_cnt' with dp_netdev_flow_ref().
296 *
297 * 'flow->ref_cnt' protects 'flow' from being freed. It doesn't protect the
298 * flow from being deleted from 'cls' and it doesn't protect members of 'flow'
299 * from modification.
300 *
301 * Some members, marked 'const', are immutable. Accessing other members
302 * requires synchronization, as noted in more detail below.
303 */
304 struct dp_netdev_flow {
305 const struct flow flow; /* Unmasked flow that created this entry. */
306 /* Hash table index by unmasked flow. */
307 const struct cmap_node node; /* In owning dp_netdev_pmd_thread's */
308 /* 'flow_table'. */
309 const ovs_u128 ufid; /* Unique flow identifier. */
310 const unsigned pmd_id; /* The 'core_id' of pmd thread owning this */
311 /* flow. */
312
313 /* Number of references.
314 * The classifier owns one reference.
315 * Any thread trying to keep a rule from being freed should hold its own
316 * reference. */
317 struct ovs_refcount ref_cnt;
318
319 bool dead;
320
321 /* Statistics. */
322 struct dp_netdev_flow_stats stats;
323
324 /* Actions. */
325 OVSRCU_TYPE(struct dp_netdev_actions *) actions;
326
327 /* While processing a group of input packets, the datapath uses the next
328 * member to store a pointer to the output batch for the flow. It is
329 * reset after the batch has been sent out (See dp_netdev_queue_batches(),
330 * packet_batch_init() and packet_batch_execute()). */
331 struct packet_batch *batch;
332
333 /* Packet classification. */
334 struct dpcls_rule cr; /* In owning dp_netdev's 'cls'. */
335 /* 'cr' must be the last member. */
336 };
337
338 static void dp_netdev_flow_unref(struct dp_netdev_flow *);
339 static bool dp_netdev_flow_ref(struct dp_netdev_flow *);
340 static int dpif_netdev_flow_from_nlattrs(const struct nlattr *, uint32_t,
341 struct flow *);
342
343 /* A set of datapath actions within a "struct dp_netdev_flow".
344 *
345 *
346 * Thread-safety
347 * =============
348 *
349 * A struct dp_netdev_actions 'actions' is protected with RCU. */
350 struct dp_netdev_actions {
351 /* These members are immutable: they do not change during the struct's
352 * lifetime. */
353 unsigned int size; /* Size of 'actions', in bytes. */
354 struct nlattr actions[]; /* Sequence of OVS_ACTION_ATTR_* attributes. */
355 };
356
357 struct dp_netdev_actions *dp_netdev_actions_create(const struct nlattr *,
358 size_t);
359 struct dp_netdev_actions *dp_netdev_flow_get_actions(
360 const struct dp_netdev_flow *);
361 static void dp_netdev_actions_free(struct dp_netdev_actions *);
362
363 /* Contained by struct dp_netdev_pmd_thread's 'stats' member. */
364 struct dp_netdev_pmd_stats {
365 /* Indexed by DP_STAT_*. */
366 atomic_ullong n[DP_N_STATS];
367 };
368
369 /* Contained by struct dp_netdev_pmd_thread's 'cycle' member. */
370 struct dp_netdev_pmd_cycles {
371 /* Indexed by PMD_CYCLES_*. */
372 atomic_ullong n[PMD_N_CYCLES];
373 };
374
375 /* PMD: Poll modes drivers. PMD accesses devices via polling to eliminate
376 * the performance overhead of interrupt processing. Therefore netdev can
377 * not implement rx-wait for these devices. dpif-netdev needs to poll
378 * these device to check for recv buffer. pmd-thread does polling for
379 * devices assigned to itself.
380 *
381 * DPDK used PMD for accessing NIC.
382 *
383 * Note, instance with cpu core id NON_PMD_CORE_ID will be reserved for
384 * I/O of all non-pmd threads. There will be no actual thread created
385 * for the instance.
386 *
387 * Each struct has its own flow table and classifier. Packets received
388 * from managed ports are looked up in the corresponding pmd thread's
389 * flow table, and are executed with the found actions.
390 * */
391 struct dp_netdev_pmd_thread {
392 struct dp_netdev *dp;
393 struct ovs_refcount ref_cnt; /* Every reference must be refcount'ed. */
394 struct cmap_node node; /* In 'dp->poll_threads'. */
395
396 pthread_cond_t cond; /* For synchronizing pmd thread reload. */
397 struct ovs_mutex cond_mutex; /* Mutex for condition variable. */
398
399 /* Per thread exact-match cache. Note, the instance for cpu core
400 * NON_PMD_CORE_ID can be accessed by multiple threads, and thusly
401 * need to be protected (e.g. by 'dp_netdev_mutex'). All other
402 * instances will only be accessed by its own pmd thread. */
403 struct emc_cache flow_cache;
404
405 /* Classifier and Flow-Table.
406 *
407 * Writers of 'flow_table' must take the 'flow_mutex'. Corresponding
408 * changes to 'cls' must be made while still holding the 'flow_mutex'.
409 */
410 struct ovs_mutex flow_mutex;
411 struct dpcls cls;
412 struct cmap flow_table OVS_GUARDED; /* Flow table. */
413
414 /* Statistics. */
415 struct dp_netdev_pmd_stats stats;
416
417 /* Cycles counters */
418 struct dp_netdev_pmd_cycles cycles;
419
420 /* Used to count cicles. See 'cycles_counter_end()' */
421 unsigned long long last_cycles;
422
423 struct latch exit_latch; /* For terminating the pmd thread. */
424 atomic_uint change_seq; /* For reloading pmd ports. */
425 pthread_t thread;
426 int index; /* Idx of this pmd thread among pmd*/
427 /* threads on same numa node. */
428 unsigned core_id; /* CPU core id of this pmd thread. */
429 int numa_id; /* numa node id of this pmd thread. */
430 int tx_qid; /* Queue id used by this pmd thread to
431 * send packets on all netdevs */
432
433 /* Only a pmd thread can write on its own 'cycles' and 'stats'.
434 * The main thread keeps 'stats_zero' and 'cycles_zero' as base
435 * values and subtracts them from 'stats' and 'cycles' before
436 * reporting to the user */
437 unsigned long long stats_zero[DP_N_STATS];
438 uint64_t cycles_zero[PMD_N_CYCLES];
439 };
440
441 #define PMD_INITIAL_SEQ 1
442
443 /* Interface to netdev-based datapath. */
444 struct dpif_netdev {
445 struct dpif dpif;
446 struct dp_netdev *dp;
447 uint64_t last_port_seq;
448 };
449
450 static int get_port_by_number(struct dp_netdev *dp, odp_port_t port_no,
451 struct dp_netdev_port **portp);
452 static int get_port_by_name(struct dp_netdev *dp, const char *devname,
453 struct dp_netdev_port **portp);
454 static void dp_netdev_free(struct dp_netdev *)
455 OVS_REQUIRES(dp_netdev_mutex);
456 static int do_add_port(struct dp_netdev *dp, const char *devname,
457 const char *type, odp_port_t port_no)
458 OVS_REQUIRES(dp->port_mutex);
459 static void do_del_port(struct dp_netdev *dp, struct dp_netdev_port *)
460 OVS_REQUIRES(dp->port_mutex);
461 static int dpif_netdev_open(const struct dpif_class *, const char *name,
462 bool create, struct dpif **);
463 static void dp_netdev_execute_actions(struct dp_netdev_pmd_thread *pmd,
464 struct dp_packet **, int c,
465 bool may_steal,
466 const struct nlattr *actions,
467 size_t actions_len);
468 static void dp_netdev_input(struct dp_netdev_pmd_thread *,
469 struct dp_packet **, int cnt);
470
471 static void dp_netdev_disable_upcall(struct dp_netdev *);
472 void dp_netdev_pmd_reload_done(struct dp_netdev_pmd_thread *pmd);
473 static void dp_netdev_configure_pmd(struct dp_netdev_pmd_thread *pmd,
474 struct dp_netdev *dp, int index,
475 unsigned core_id, int numa_id);
476 static void dp_netdev_destroy_pmd(struct dp_netdev_pmd_thread *pmd);
477 static void dp_netdev_set_nonpmd(struct dp_netdev *dp);
478 static struct dp_netdev_pmd_thread *dp_netdev_get_pmd(struct dp_netdev *dp,
479 unsigned core_id);
480 static struct dp_netdev_pmd_thread *
481 dp_netdev_pmd_get_next(struct dp_netdev *dp, struct cmap_position *pos);
482 static void dp_netdev_destroy_all_pmds(struct dp_netdev *dp);
483 static void dp_netdev_del_pmds_on_numa(struct dp_netdev *dp, int numa_id);
484 static void dp_netdev_set_pmds_on_numa(struct dp_netdev *dp, int numa_id);
485 static void dp_netdev_reset_pmd_threads(struct dp_netdev *dp);
486 static bool dp_netdev_pmd_try_ref(struct dp_netdev_pmd_thread *pmd);
487 static void dp_netdev_pmd_unref(struct dp_netdev_pmd_thread *pmd);
488 static void dp_netdev_pmd_flow_flush(struct dp_netdev_pmd_thread *pmd);
489
490 static inline bool emc_entry_alive(struct emc_entry *ce);
491 static void emc_clear_entry(struct emc_entry *ce);
492
493 static void
494 emc_cache_init(struct emc_cache *flow_cache)
495 {
496 int i;
497
498 flow_cache->sweep_idx = 0;
499 for (i = 0; i < ARRAY_SIZE(flow_cache->entries); i++) {
500 flow_cache->entries[i].flow = NULL;
501 flow_cache->entries[i].key.hash = 0;
502 flow_cache->entries[i].key.len = sizeof(struct miniflow);
503 flowmap_init(&flow_cache->entries[i].key.mf.map);
504 }
505 }
506
507 static void
508 emc_cache_uninit(struct emc_cache *flow_cache)
509 {
510 int i;
511
512 for (i = 0; i < ARRAY_SIZE(flow_cache->entries); i++) {
513 emc_clear_entry(&flow_cache->entries[i]);
514 }
515 }
516
517 /* Check and clear dead flow references slowly (one entry at each
518 * invocation). */
519 static void
520 emc_cache_slow_sweep(struct emc_cache *flow_cache)
521 {
522 struct emc_entry *entry = &flow_cache->entries[flow_cache->sweep_idx];
523
524 if (!emc_entry_alive(entry)) {
525 emc_clear_entry(entry);
526 }
527 flow_cache->sweep_idx = (flow_cache->sweep_idx + 1) & EM_FLOW_HASH_MASK;
528 }
529
530 /* Returns true if 'dpif' is a netdev or dummy dpif, false otherwise. */
531 bool
532 dpif_is_netdev(const struct dpif *dpif)
533 {
534 return dpif->dpif_class->open == dpif_netdev_open;
535 }
536
537 static struct dpif_netdev *
538 dpif_netdev_cast(const struct dpif *dpif)
539 {
540 ovs_assert(dpif_is_netdev(dpif));
541 return CONTAINER_OF(dpif, struct dpif_netdev, dpif);
542 }
543
544 static struct dp_netdev *
545 get_dp_netdev(const struct dpif *dpif)
546 {
547 return dpif_netdev_cast(dpif)->dp;
548 }
549 \f
550 enum pmd_info_type {
551 PMD_INFO_SHOW_STATS, /* show how cpu cycles are spent */
552 PMD_INFO_CLEAR_STATS /* set the cycles count to 0 */
553 };
554
555 static void
556 pmd_info_show_stats(struct ds *reply,
557 struct dp_netdev_pmd_thread *pmd,
558 unsigned long long stats[DP_N_STATS],
559 uint64_t cycles[PMD_N_CYCLES])
560 {
561 unsigned long long total_packets = 0;
562 uint64_t total_cycles = 0;
563 int i;
564
565 /* These loops subtracts reference values ('*_zero') from the counters.
566 * Since loads and stores are relaxed, it might be possible for a '*_zero'
567 * value to be more recent than the current value we're reading from the
568 * counter. This is not a big problem, since these numbers are not
569 * supposed to be too accurate, but we should at least make sure that
570 * the result is not negative. */
571 for (i = 0; i < DP_N_STATS; i++) {
572 if (stats[i] > pmd->stats_zero[i]) {
573 stats[i] -= pmd->stats_zero[i];
574 } else {
575 stats[i] = 0;
576 }
577
578 if (i != DP_STAT_LOST) {
579 /* Lost packets are already included in DP_STAT_MISS */
580 total_packets += stats[i];
581 }
582 }
583
584 for (i = 0; i < PMD_N_CYCLES; i++) {
585 if (cycles[i] > pmd->cycles_zero[i]) {
586 cycles[i] -= pmd->cycles_zero[i];
587 } else {
588 cycles[i] = 0;
589 }
590
591 total_cycles += cycles[i];
592 }
593
594 ds_put_cstr(reply, (pmd->core_id == NON_PMD_CORE_ID)
595 ? "main thread" : "pmd thread");
596
597 if (pmd->numa_id != OVS_NUMA_UNSPEC) {
598 ds_put_format(reply, " numa_id %d", pmd->numa_id);
599 }
600 if (pmd->core_id != OVS_CORE_UNSPEC && pmd->core_id != NON_PMD_CORE_ID) {
601 ds_put_format(reply, " core_id %u", pmd->core_id);
602 }
603 ds_put_cstr(reply, ":\n");
604
605 ds_put_format(reply,
606 "\temc hits:%llu\n\tmegaflow hits:%llu\n"
607 "\tmiss:%llu\n\tlost:%llu\n",
608 stats[DP_STAT_EXACT_HIT], stats[DP_STAT_MASKED_HIT],
609 stats[DP_STAT_MISS], stats[DP_STAT_LOST]);
610
611 if (total_cycles == 0) {
612 return;
613 }
614
615 ds_put_format(reply,
616 "\tpolling cycles:%"PRIu64" (%.02f%%)\n"
617 "\tprocessing cycles:%"PRIu64" (%.02f%%)\n",
618 cycles[PMD_CYCLES_POLLING],
619 cycles[PMD_CYCLES_POLLING] / (double)total_cycles * 100,
620 cycles[PMD_CYCLES_PROCESSING],
621 cycles[PMD_CYCLES_PROCESSING] / (double)total_cycles * 100);
622
623 if (total_packets == 0) {
624 return;
625 }
626
627 ds_put_format(reply,
628 "\tavg cycles per packet: %.02f (%"PRIu64"/%llu)\n",
629 total_cycles / (double)total_packets,
630 total_cycles, total_packets);
631
632 ds_put_format(reply,
633 "\tavg processing cycles per packet: "
634 "%.02f (%"PRIu64"/%llu)\n",
635 cycles[PMD_CYCLES_PROCESSING] / (double)total_packets,
636 cycles[PMD_CYCLES_PROCESSING], total_packets);
637 }
638
639 static void
640 pmd_info_clear_stats(struct ds *reply OVS_UNUSED,
641 struct dp_netdev_pmd_thread *pmd,
642 unsigned long long stats[DP_N_STATS],
643 uint64_t cycles[PMD_N_CYCLES])
644 {
645 int i;
646
647 /* We cannot write 'stats' and 'cycles' (because they're written by other
648 * threads) and we shouldn't change 'stats' (because they're used to count
649 * datapath stats, which must not be cleared here). Instead, we save the
650 * current values and subtract them from the values to be displayed in the
651 * future */
652 for (i = 0; i < DP_N_STATS; i++) {
653 pmd->stats_zero[i] = stats[i];
654 }
655 for (i = 0; i < PMD_N_CYCLES; i++) {
656 pmd->cycles_zero[i] = cycles[i];
657 }
658 }
659
660 static void
661 dpif_netdev_pmd_info(struct unixctl_conn *conn, int argc, const char *argv[],
662 void *aux)
663 {
664 struct ds reply = DS_EMPTY_INITIALIZER;
665 struct dp_netdev_pmd_thread *pmd;
666 struct dp_netdev *dp = NULL;
667 enum pmd_info_type type = *(enum pmd_info_type *) aux;
668
669 ovs_mutex_lock(&dp_netdev_mutex);
670
671 if (argc == 2) {
672 dp = shash_find_data(&dp_netdevs, argv[1]);
673 } else if (shash_count(&dp_netdevs) == 1) {
674 /* There's only one datapath */
675 dp = shash_first(&dp_netdevs)->data;
676 }
677
678 if (!dp) {
679 ovs_mutex_unlock(&dp_netdev_mutex);
680 unixctl_command_reply_error(conn,
681 "please specify an existing datapath");
682 return;
683 }
684
685 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
686 unsigned long long stats[DP_N_STATS];
687 uint64_t cycles[PMD_N_CYCLES];
688 int i;
689
690 /* Read current stats and cycle counters */
691 for (i = 0; i < ARRAY_SIZE(stats); i++) {
692 atomic_read_relaxed(&pmd->stats.n[i], &stats[i]);
693 }
694 for (i = 0; i < ARRAY_SIZE(cycles); i++) {
695 atomic_read_relaxed(&pmd->cycles.n[i], &cycles[i]);
696 }
697
698 if (type == PMD_INFO_CLEAR_STATS) {
699 pmd_info_clear_stats(&reply, pmd, stats, cycles);
700 } else if (type == PMD_INFO_SHOW_STATS) {
701 pmd_info_show_stats(&reply, pmd, stats, cycles);
702 }
703 }
704
705 ovs_mutex_unlock(&dp_netdev_mutex);
706
707 unixctl_command_reply(conn, ds_cstr(&reply));
708 ds_destroy(&reply);
709 }
710 \f
711 static int
712 dpif_netdev_init(void)
713 {
714 static enum pmd_info_type show_aux = PMD_INFO_SHOW_STATS,
715 clear_aux = PMD_INFO_CLEAR_STATS;
716
717 unixctl_command_register("dpif-netdev/pmd-stats-show", "[dp]",
718 0, 1, dpif_netdev_pmd_info,
719 (void *)&show_aux);
720 unixctl_command_register("dpif-netdev/pmd-stats-clear", "[dp]",
721 0, 1, dpif_netdev_pmd_info,
722 (void *)&clear_aux);
723 return 0;
724 }
725
726 static int
727 dpif_netdev_enumerate(struct sset *all_dps,
728 const struct dpif_class *dpif_class)
729 {
730 struct shash_node *node;
731
732 ovs_mutex_lock(&dp_netdev_mutex);
733 SHASH_FOR_EACH(node, &dp_netdevs) {
734 struct dp_netdev *dp = node->data;
735 if (dpif_class != dp->class) {
736 /* 'dp_netdevs' contains both "netdev" and "dummy" dpifs.
737 * If the class doesn't match, skip this dpif. */
738 continue;
739 }
740 sset_add(all_dps, node->name);
741 }
742 ovs_mutex_unlock(&dp_netdev_mutex);
743
744 return 0;
745 }
746
747 static bool
748 dpif_netdev_class_is_dummy(const struct dpif_class *class)
749 {
750 return class != &dpif_netdev_class;
751 }
752
753 static const char *
754 dpif_netdev_port_open_type(const struct dpif_class *class, const char *type)
755 {
756 return strcmp(type, "internal") ? type
757 : dpif_netdev_class_is_dummy(class) ? "dummy"
758 : "tap";
759 }
760
761 static struct dpif *
762 create_dpif_netdev(struct dp_netdev *dp)
763 {
764 uint16_t netflow_id = hash_string(dp->name, 0);
765 struct dpif_netdev *dpif;
766
767 ovs_refcount_ref(&dp->ref_cnt);
768
769 dpif = xmalloc(sizeof *dpif);
770 dpif_init(&dpif->dpif, dp->class, dp->name, netflow_id >> 8, netflow_id);
771 dpif->dp = dp;
772 dpif->last_port_seq = seq_read(dp->port_seq);
773
774 return &dpif->dpif;
775 }
776
777 /* Choose an unused, non-zero port number and return it on success.
778 * Return ODPP_NONE on failure. */
779 static odp_port_t
780 choose_port(struct dp_netdev *dp, const char *name)
781 OVS_REQUIRES(dp->port_mutex)
782 {
783 uint32_t port_no;
784
785 if (dp->class != &dpif_netdev_class) {
786 const char *p;
787 int start_no = 0;
788
789 /* If the port name begins with "br", start the number search at
790 * 100 to make writing tests easier. */
791 if (!strncmp(name, "br", 2)) {
792 start_no = 100;
793 }
794
795 /* If the port name contains a number, try to assign that port number.
796 * This can make writing unit tests easier because port numbers are
797 * predictable. */
798 for (p = name; *p != '\0'; p++) {
799 if (isdigit((unsigned char) *p)) {
800 port_no = start_no + strtol(p, NULL, 10);
801 if (port_no > 0 && port_no != odp_to_u32(ODPP_NONE)
802 && !dp_netdev_lookup_port(dp, u32_to_odp(port_no))) {
803 return u32_to_odp(port_no);
804 }
805 break;
806 }
807 }
808 }
809
810 for (port_no = 1; port_no <= UINT16_MAX; port_no++) {
811 if (!dp_netdev_lookup_port(dp, u32_to_odp(port_no))) {
812 return u32_to_odp(port_no);
813 }
814 }
815
816 return ODPP_NONE;
817 }
818
819 static int
820 create_dp_netdev(const char *name, const struct dpif_class *class,
821 struct dp_netdev **dpp)
822 OVS_REQUIRES(dp_netdev_mutex)
823 {
824 struct dp_netdev *dp;
825 int error;
826
827 dp = xzalloc(sizeof *dp);
828 shash_add(&dp_netdevs, name, dp);
829
830 *CONST_CAST(const struct dpif_class **, &dp->class) = class;
831 *CONST_CAST(const char **, &dp->name) = xstrdup(name);
832 ovs_refcount_init(&dp->ref_cnt);
833 atomic_flag_clear(&dp->destroyed);
834
835 ovs_mutex_init(&dp->port_mutex);
836 cmap_init(&dp->ports);
837 dp->port_seq = seq_create();
838 fat_rwlock_init(&dp->upcall_rwlock);
839
840 /* Disable upcalls by default. */
841 dp_netdev_disable_upcall(dp);
842 dp->upcall_aux = NULL;
843 dp->upcall_cb = NULL;
844
845 cmap_init(&dp->poll_threads);
846 ovs_mutex_init_recursive(&dp->non_pmd_mutex);
847 ovsthread_key_create(&dp->per_pmd_key, NULL);
848
849 dp_netdev_set_nonpmd(dp);
850 dp->n_dpdk_rxqs = NR_QUEUE;
851
852 ovs_mutex_lock(&dp->port_mutex);
853 error = do_add_port(dp, name, "internal", ODPP_LOCAL);
854 ovs_mutex_unlock(&dp->port_mutex);
855 if (error) {
856 dp_netdev_free(dp);
857 return error;
858 }
859
860 dp->last_tnl_conf_seq = seq_read(tnl_conf_seq);
861 *dpp = dp;
862 return 0;
863 }
864
865 static int
866 dpif_netdev_open(const struct dpif_class *class, const char *name,
867 bool create, struct dpif **dpifp)
868 {
869 struct dp_netdev *dp;
870 int error;
871
872 ovs_mutex_lock(&dp_netdev_mutex);
873 dp = shash_find_data(&dp_netdevs, name);
874 if (!dp) {
875 error = create ? create_dp_netdev(name, class, &dp) : ENODEV;
876 } else {
877 error = (dp->class != class ? EINVAL
878 : create ? EEXIST
879 : 0);
880 }
881 if (!error) {
882 *dpifp = create_dpif_netdev(dp);
883 dp->dpif = *dpifp;
884 }
885 ovs_mutex_unlock(&dp_netdev_mutex);
886
887 return error;
888 }
889
890 static void
891 dp_netdev_destroy_upcall_lock(struct dp_netdev *dp)
892 OVS_NO_THREAD_SAFETY_ANALYSIS
893 {
894 /* Check that upcalls are disabled, i.e. that the rwlock is taken */
895 ovs_assert(fat_rwlock_tryrdlock(&dp->upcall_rwlock));
896
897 /* Before freeing a lock we should release it */
898 fat_rwlock_unlock(&dp->upcall_rwlock);
899 fat_rwlock_destroy(&dp->upcall_rwlock);
900 }
901
902 /* Requires dp_netdev_mutex so that we can't get a new reference to 'dp'
903 * through the 'dp_netdevs' shash while freeing 'dp'. */
904 static void
905 dp_netdev_free(struct dp_netdev *dp)
906 OVS_REQUIRES(dp_netdev_mutex)
907 {
908 struct dp_netdev_port *port;
909
910 shash_find_and_delete(&dp_netdevs, dp->name);
911
912 dp_netdev_destroy_all_pmds(dp);
913 cmap_destroy(&dp->poll_threads);
914 ovs_mutex_destroy(&dp->non_pmd_mutex);
915 ovsthread_key_delete(dp->per_pmd_key);
916
917 ovs_mutex_lock(&dp->port_mutex);
918 CMAP_FOR_EACH (port, node, &dp->ports) {
919 do_del_port(dp, port);
920 }
921 ovs_mutex_unlock(&dp->port_mutex);
922
923 seq_destroy(dp->port_seq);
924 cmap_destroy(&dp->ports);
925
926 /* Upcalls must be disabled at this point */
927 dp_netdev_destroy_upcall_lock(dp);
928
929 free(dp->pmd_cmask);
930 free(CONST_CAST(char *, dp->name));
931 free(dp);
932 }
933
934 static void
935 dp_netdev_unref(struct dp_netdev *dp)
936 {
937 if (dp) {
938 /* Take dp_netdev_mutex so that, if dp->ref_cnt falls to zero, we can't
939 * get a new reference to 'dp' through the 'dp_netdevs' shash. */
940 ovs_mutex_lock(&dp_netdev_mutex);
941 if (ovs_refcount_unref_relaxed(&dp->ref_cnt) == 1) {
942 dp_netdev_free(dp);
943 }
944 ovs_mutex_unlock(&dp_netdev_mutex);
945 }
946 }
947
948 static void
949 dpif_netdev_close(struct dpif *dpif)
950 {
951 struct dp_netdev *dp = get_dp_netdev(dpif);
952
953 dp_netdev_unref(dp);
954 free(dpif);
955 }
956
957 static int
958 dpif_netdev_destroy(struct dpif *dpif)
959 {
960 struct dp_netdev *dp = get_dp_netdev(dpif);
961
962 if (!atomic_flag_test_and_set(&dp->destroyed)) {
963 if (ovs_refcount_unref_relaxed(&dp->ref_cnt) == 1) {
964 /* Can't happen: 'dpif' still owns a reference to 'dp'. */
965 OVS_NOT_REACHED();
966 }
967 }
968
969 return 0;
970 }
971
972 /* Add 'n' to the atomic variable 'var' non-atomically and using relaxed
973 * load/store semantics. While the increment is not atomic, the load and
974 * store operations are, making it impossible to read inconsistent values.
975 *
976 * This is used to update thread local stats counters. */
977 static void
978 non_atomic_ullong_add(atomic_ullong *var, unsigned long long n)
979 {
980 unsigned long long tmp;
981
982 atomic_read_relaxed(var, &tmp);
983 tmp += n;
984 atomic_store_relaxed(var, tmp);
985 }
986
987 static int
988 dpif_netdev_get_stats(const struct dpif *dpif, struct dpif_dp_stats *stats)
989 {
990 struct dp_netdev *dp = get_dp_netdev(dpif);
991 struct dp_netdev_pmd_thread *pmd;
992
993 stats->n_flows = stats->n_hit = stats->n_missed = stats->n_lost = 0;
994 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
995 unsigned long long n;
996 stats->n_flows += cmap_count(&pmd->flow_table);
997
998 atomic_read_relaxed(&pmd->stats.n[DP_STAT_MASKED_HIT], &n);
999 stats->n_hit += n;
1000 atomic_read_relaxed(&pmd->stats.n[DP_STAT_EXACT_HIT], &n);
1001 stats->n_hit += n;
1002 atomic_read_relaxed(&pmd->stats.n[DP_STAT_MISS], &n);
1003 stats->n_missed += n;
1004 atomic_read_relaxed(&pmd->stats.n[DP_STAT_LOST], &n);
1005 stats->n_lost += n;
1006 }
1007 stats->n_masks = UINT32_MAX;
1008 stats->n_mask_hit = UINT64_MAX;
1009
1010 return 0;
1011 }
1012
1013 static void
1014 dp_netdev_reload_pmd__(struct dp_netdev_pmd_thread *pmd)
1015 {
1016 int old_seq;
1017
1018 if (pmd->core_id == NON_PMD_CORE_ID) {
1019 return;
1020 }
1021
1022 ovs_mutex_lock(&pmd->cond_mutex);
1023 atomic_add_relaxed(&pmd->change_seq, 1, &old_seq);
1024 ovs_mutex_cond_wait(&pmd->cond, &pmd->cond_mutex);
1025 ovs_mutex_unlock(&pmd->cond_mutex);
1026 }
1027
1028 /* Causes all pmd threads to reload its tx/rx devices.
1029 * Must be called after adding/removing ports. */
1030 static void
1031 dp_netdev_reload_pmds(struct dp_netdev *dp)
1032 {
1033 struct dp_netdev_pmd_thread *pmd;
1034
1035 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
1036 dp_netdev_reload_pmd__(pmd);
1037 }
1038 }
1039
1040 static uint32_t
1041 hash_port_no(odp_port_t port_no)
1042 {
1043 return hash_int(odp_to_u32(port_no), 0);
1044 }
1045
1046 static int
1047 do_add_port(struct dp_netdev *dp, const char *devname, const char *type,
1048 odp_port_t port_no)
1049 OVS_REQUIRES(dp->port_mutex)
1050 {
1051 struct netdev_saved_flags *sf;
1052 struct dp_netdev_port *port;
1053 struct netdev *netdev;
1054 enum netdev_flags flags;
1055 const char *open_type;
1056 int error;
1057 int i;
1058
1059 /* Reject devices already in 'dp'. */
1060 if (!get_port_by_name(dp, devname, &port)) {
1061 return EEXIST;
1062 }
1063
1064 /* Open and validate network device. */
1065 open_type = dpif_netdev_port_open_type(dp->class, type);
1066 error = netdev_open(devname, open_type, &netdev);
1067 if (error) {
1068 return error;
1069 }
1070 /* XXX reject non-Ethernet devices */
1071
1072 netdev_get_flags(netdev, &flags);
1073 if (flags & NETDEV_LOOPBACK) {
1074 VLOG_ERR("%s: cannot add a loopback device", devname);
1075 netdev_close(netdev);
1076 return EINVAL;
1077 }
1078
1079 if (netdev_is_pmd(netdev)) {
1080 int n_cores = ovs_numa_get_n_cores();
1081
1082 if (n_cores == OVS_CORE_UNSPEC) {
1083 VLOG_ERR("%s, cannot get cpu core info", devname);
1084 return ENOENT;
1085 }
1086 /* There can only be ovs_numa_get_n_cores() pmd threads,
1087 * so creates a txq for each, and one extra for the non
1088 * pmd threads. */
1089 error = netdev_set_multiq(netdev, n_cores + 1, dp->n_dpdk_rxqs);
1090 if (error && (error != EOPNOTSUPP)) {
1091 VLOG_ERR("%s, cannot set multiq", devname);
1092 return errno;
1093 }
1094 }
1095 port = xzalloc(sizeof *port);
1096 port->port_no = port_no;
1097 port->netdev = netdev;
1098 port->rxq = xmalloc(sizeof *port->rxq * netdev_n_rxq(netdev));
1099 port->type = xstrdup(type);
1100 for (i = 0; i < netdev_n_rxq(netdev); i++) {
1101 error = netdev_rxq_open(netdev, &port->rxq[i], i);
1102 if (error
1103 && !(error == EOPNOTSUPP && dpif_netdev_class_is_dummy(dp->class))) {
1104 VLOG_ERR("%s: cannot receive packets on this network device (%s)",
1105 devname, ovs_strerror(errno));
1106 netdev_close(netdev);
1107 free(port->type);
1108 free(port->rxq);
1109 free(port);
1110 return error;
1111 }
1112 }
1113
1114 error = netdev_turn_flags_on(netdev, NETDEV_PROMISC, &sf);
1115 if (error) {
1116 for (i = 0; i < netdev_n_rxq(netdev); i++) {
1117 netdev_rxq_close(port->rxq[i]);
1118 }
1119 netdev_close(netdev);
1120 free(port->type);
1121 free(port->rxq);
1122 free(port);
1123 return error;
1124 }
1125 port->sf = sf;
1126
1127 ovs_refcount_init(&port->ref_cnt);
1128 cmap_insert(&dp->ports, &port->node, hash_port_no(port_no));
1129
1130 if (netdev_is_pmd(netdev)) {
1131 dp_netdev_set_pmds_on_numa(dp, netdev_get_numa_id(netdev));
1132 dp_netdev_reload_pmds(dp);
1133 }
1134 seq_change(dp->port_seq);
1135
1136 return 0;
1137 }
1138
1139 static int
1140 dpif_netdev_port_add(struct dpif *dpif, struct netdev *netdev,
1141 odp_port_t *port_nop)
1142 {
1143 struct dp_netdev *dp = get_dp_netdev(dpif);
1144 char namebuf[NETDEV_VPORT_NAME_BUFSIZE];
1145 const char *dpif_port;
1146 odp_port_t port_no;
1147 int error;
1148
1149 ovs_mutex_lock(&dp->port_mutex);
1150 dpif_port = netdev_vport_get_dpif_port(netdev, namebuf, sizeof namebuf);
1151 if (*port_nop != ODPP_NONE) {
1152 port_no = *port_nop;
1153 error = dp_netdev_lookup_port(dp, *port_nop) ? EBUSY : 0;
1154 } else {
1155 port_no = choose_port(dp, dpif_port);
1156 error = port_no == ODPP_NONE ? EFBIG : 0;
1157 }
1158 if (!error) {
1159 *port_nop = port_no;
1160 error = do_add_port(dp, dpif_port, netdev_get_type(netdev), port_no);
1161 }
1162 ovs_mutex_unlock(&dp->port_mutex);
1163
1164 return error;
1165 }
1166
1167 static int
1168 dpif_netdev_port_del(struct dpif *dpif, odp_port_t port_no)
1169 {
1170 struct dp_netdev *dp = get_dp_netdev(dpif);
1171 int error;
1172
1173 ovs_mutex_lock(&dp->port_mutex);
1174 if (port_no == ODPP_LOCAL) {
1175 error = EINVAL;
1176 } else {
1177 struct dp_netdev_port *port;
1178
1179 error = get_port_by_number(dp, port_no, &port);
1180 if (!error) {
1181 do_del_port(dp, port);
1182 }
1183 }
1184 ovs_mutex_unlock(&dp->port_mutex);
1185
1186 return error;
1187 }
1188
1189 static bool
1190 is_valid_port_number(odp_port_t port_no)
1191 {
1192 return port_no != ODPP_NONE;
1193 }
1194
1195 static struct dp_netdev_port *
1196 dp_netdev_lookup_port(const struct dp_netdev *dp, odp_port_t port_no)
1197 {
1198 struct dp_netdev_port *port;
1199
1200 CMAP_FOR_EACH_WITH_HASH (port, node, hash_port_no(port_no), &dp->ports) {
1201 if (port->port_no == port_no) {
1202 return port;
1203 }
1204 }
1205 return NULL;
1206 }
1207
1208 static int
1209 get_port_by_number(struct dp_netdev *dp,
1210 odp_port_t port_no, struct dp_netdev_port **portp)
1211 {
1212 if (!is_valid_port_number(port_no)) {
1213 *portp = NULL;
1214 return EINVAL;
1215 } else {
1216 *portp = dp_netdev_lookup_port(dp, port_no);
1217 return *portp ? 0 : ENOENT;
1218 }
1219 }
1220
1221 static void
1222 port_ref(struct dp_netdev_port *port)
1223 {
1224 if (port) {
1225 ovs_refcount_ref(&port->ref_cnt);
1226 }
1227 }
1228
1229 static bool
1230 port_try_ref(struct dp_netdev_port *port)
1231 {
1232 if (port) {
1233 return ovs_refcount_try_ref_rcu(&port->ref_cnt);
1234 }
1235
1236 return false;
1237 }
1238
1239 static void
1240 port_unref(struct dp_netdev_port *port)
1241 {
1242 if (port && ovs_refcount_unref_relaxed(&port->ref_cnt) == 1) {
1243 int n_rxq = netdev_n_rxq(port->netdev);
1244 int i;
1245
1246 netdev_close(port->netdev);
1247 netdev_restore_flags(port->sf);
1248
1249 for (i = 0; i < n_rxq; i++) {
1250 netdev_rxq_close(port->rxq[i]);
1251 }
1252 free(port->rxq);
1253 free(port->type);
1254 free(port);
1255 }
1256 }
1257
1258 static int
1259 get_port_by_name(struct dp_netdev *dp,
1260 const char *devname, struct dp_netdev_port **portp)
1261 OVS_REQUIRES(dp->port_mutex)
1262 {
1263 struct dp_netdev_port *port;
1264
1265 CMAP_FOR_EACH (port, node, &dp->ports) {
1266 if (!strcmp(netdev_get_name(port->netdev), devname)) {
1267 *portp = port;
1268 return 0;
1269 }
1270 }
1271 return ENOENT;
1272 }
1273
1274 static int
1275 get_n_pmd_threads_on_numa(struct dp_netdev *dp, int numa_id)
1276 {
1277 struct dp_netdev_pmd_thread *pmd;
1278 int n_pmds = 0;
1279
1280 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
1281 if (pmd->numa_id == numa_id) {
1282 n_pmds++;
1283 }
1284 }
1285
1286 return n_pmds;
1287 }
1288
1289 /* Returns 'true' if there is a port with pmd netdev and the netdev
1290 * is on numa node 'numa_id'. */
1291 static bool
1292 has_pmd_port_for_numa(struct dp_netdev *dp, int numa_id)
1293 {
1294 struct dp_netdev_port *port;
1295
1296 CMAP_FOR_EACH (port, node, &dp->ports) {
1297 if (netdev_is_pmd(port->netdev)
1298 && netdev_get_numa_id(port->netdev) == numa_id) {
1299 return true;
1300 }
1301 }
1302
1303 return false;
1304 }
1305
1306
1307 static void
1308 do_del_port(struct dp_netdev *dp, struct dp_netdev_port *port)
1309 OVS_REQUIRES(dp->port_mutex)
1310 {
1311 cmap_remove(&dp->ports, &port->node, hash_odp_port(port->port_no));
1312 seq_change(dp->port_seq);
1313 if (netdev_is_pmd(port->netdev)) {
1314 int numa_id = netdev_get_numa_id(port->netdev);
1315
1316 /* If there is no netdev on the numa node, deletes the pmd threads
1317 * for that numa. Else, just reloads the queues. */
1318 if (!has_pmd_port_for_numa(dp, numa_id)) {
1319 dp_netdev_del_pmds_on_numa(dp, numa_id);
1320 }
1321 dp_netdev_reload_pmds(dp);
1322 }
1323
1324 port_unref(port);
1325 }
1326
1327 static void
1328 answer_port_query(const struct dp_netdev_port *port,
1329 struct dpif_port *dpif_port)
1330 {
1331 dpif_port->name = xstrdup(netdev_get_name(port->netdev));
1332 dpif_port->type = xstrdup(port->type);
1333 dpif_port->port_no = port->port_no;
1334 }
1335
1336 static int
1337 dpif_netdev_port_query_by_number(const struct dpif *dpif, odp_port_t port_no,
1338 struct dpif_port *dpif_port)
1339 {
1340 struct dp_netdev *dp = get_dp_netdev(dpif);
1341 struct dp_netdev_port *port;
1342 int error;
1343
1344 error = get_port_by_number(dp, port_no, &port);
1345 if (!error && dpif_port) {
1346 answer_port_query(port, dpif_port);
1347 }
1348
1349 return error;
1350 }
1351
1352 static int
1353 dpif_netdev_port_query_by_name(const struct dpif *dpif, const char *devname,
1354 struct dpif_port *dpif_port)
1355 {
1356 struct dp_netdev *dp = get_dp_netdev(dpif);
1357 struct dp_netdev_port *port;
1358 int error;
1359
1360 ovs_mutex_lock(&dp->port_mutex);
1361 error = get_port_by_name(dp, devname, &port);
1362 if (!error && dpif_port) {
1363 answer_port_query(port, dpif_port);
1364 }
1365 ovs_mutex_unlock(&dp->port_mutex);
1366
1367 return error;
1368 }
1369
1370 static void
1371 dp_netdev_flow_free(struct dp_netdev_flow *flow)
1372 {
1373 dp_netdev_actions_free(dp_netdev_flow_get_actions(flow));
1374 free(flow);
1375 }
1376
1377 static void dp_netdev_flow_unref(struct dp_netdev_flow *flow)
1378 {
1379 if (ovs_refcount_unref_relaxed(&flow->ref_cnt) == 1) {
1380 ovsrcu_postpone(dp_netdev_flow_free, flow);
1381 }
1382 }
1383
1384 static uint32_t
1385 dp_netdev_flow_hash(const ovs_u128 *ufid)
1386 {
1387 return ufid->u32[0];
1388 }
1389
1390 static void
1391 dp_netdev_pmd_remove_flow(struct dp_netdev_pmd_thread *pmd,
1392 struct dp_netdev_flow *flow)
1393 OVS_REQUIRES(pmd->flow_mutex)
1394 {
1395 struct cmap_node *node = CONST_CAST(struct cmap_node *, &flow->node);
1396
1397 dpcls_remove(&pmd->cls, &flow->cr);
1398 flow->cr.mask = NULL; /* Accessing rule's mask after this is not safe. */
1399
1400 cmap_remove(&pmd->flow_table, node, dp_netdev_flow_hash(&flow->ufid));
1401 flow->dead = true;
1402
1403 dp_netdev_flow_unref(flow);
1404 }
1405
1406 static void
1407 dp_netdev_pmd_flow_flush(struct dp_netdev_pmd_thread *pmd)
1408 {
1409 struct dp_netdev_flow *netdev_flow;
1410
1411 ovs_mutex_lock(&pmd->flow_mutex);
1412 CMAP_FOR_EACH (netdev_flow, node, &pmd->flow_table) {
1413 dp_netdev_pmd_remove_flow(pmd, netdev_flow);
1414 }
1415 ovs_mutex_unlock(&pmd->flow_mutex);
1416 }
1417
1418 static int
1419 dpif_netdev_flow_flush(struct dpif *dpif)
1420 {
1421 struct dp_netdev *dp = get_dp_netdev(dpif);
1422 struct dp_netdev_pmd_thread *pmd;
1423
1424 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
1425 dp_netdev_pmd_flow_flush(pmd);
1426 }
1427
1428 return 0;
1429 }
1430
1431 struct dp_netdev_port_state {
1432 struct cmap_position position;
1433 char *name;
1434 };
1435
1436 static int
1437 dpif_netdev_port_dump_start(const struct dpif *dpif OVS_UNUSED, void **statep)
1438 {
1439 *statep = xzalloc(sizeof(struct dp_netdev_port_state));
1440 return 0;
1441 }
1442
1443 static int
1444 dpif_netdev_port_dump_next(const struct dpif *dpif, void *state_,
1445 struct dpif_port *dpif_port)
1446 {
1447 struct dp_netdev_port_state *state = state_;
1448 struct dp_netdev *dp = get_dp_netdev(dpif);
1449 struct cmap_node *node;
1450 int retval;
1451
1452 node = cmap_next_position(&dp->ports, &state->position);
1453 if (node) {
1454 struct dp_netdev_port *port;
1455
1456 port = CONTAINER_OF(node, struct dp_netdev_port, node);
1457
1458 free(state->name);
1459 state->name = xstrdup(netdev_get_name(port->netdev));
1460 dpif_port->name = state->name;
1461 dpif_port->type = port->type;
1462 dpif_port->port_no = port->port_no;
1463
1464 retval = 0;
1465 } else {
1466 retval = EOF;
1467 }
1468
1469 return retval;
1470 }
1471
1472 static int
1473 dpif_netdev_port_dump_done(const struct dpif *dpif OVS_UNUSED, void *state_)
1474 {
1475 struct dp_netdev_port_state *state = state_;
1476 free(state->name);
1477 free(state);
1478 return 0;
1479 }
1480
1481 static int
1482 dpif_netdev_port_poll(const struct dpif *dpif_, char **devnamep OVS_UNUSED)
1483 {
1484 struct dpif_netdev *dpif = dpif_netdev_cast(dpif_);
1485 uint64_t new_port_seq;
1486 int error;
1487
1488 new_port_seq = seq_read(dpif->dp->port_seq);
1489 if (dpif->last_port_seq != new_port_seq) {
1490 dpif->last_port_seq = new_port_seq;
1491 error = ENOBUFS;
1492 } else {
1493 error = EAGAIN;
1494 }
1495
1496 return error;
1497 }
1498
1499 static void
1500 dpif_netdev_port_poll_wait(const struct dpif *dpif_)
1501 {
1502 struct dpif_netdev *dpif = dpif_netdev_cast(dpif_);
1503
1504 seq_wait(dpif->dp->port_seq, dpif->last_port_seq);
1505 }
1506
1507 static struct dp_netdev_flow *
1508 dp_netdev_flow_cast(const struct dpcls_rule *cr)
1509 {
1510 return cr ? CONTAINER_OF(cr, struct dp_netdev_flow, cr) : NULL;
1511 }
1512
1513 static bool dp_netdev_flow_ref(struct dp_netdev_flow *flow)
1514 {
1515 return ovs_refcount_try_ref_rcu(&flow->ref_cnt);
1516 }
1517
1518 /* netdev_flow_key utilities.
1519 *
1520 * netdev_flow_key is basically a miniflow. We use these functions
1521 * (netdev_flow_key_clone, netdev_flow_key_equal, ...) instead of the miniflow
1522 * functions (miniflow_clone_inline, miniflow_equal, ...), because:
1523 *
1524 * - Since we are dealing exclusively with miniflows created by
1525 * miniflow_extract(), if the map is different the miniflow is different.
1526 * Therefore we can be faster by comparing the map and the miniflow in a
1527 * single memcmp().
1528 * - These functions can be inlined by the compiler. */
1529
1530 /* Given the number of bits set in miniflow's maps, returns the size of the
1531 * 'netdev_flow_key.mf' */
1532 static inline size_t
1533 netdev_flow_key_size(size_t flow_u64s)
1534 {
1535 return sizeof(struct miniflow) + MINIFLOW_VALUES_SIZE(flow_u64s);
1536 }
1537
1538 static inline bool
1539 netdev_flow_key_equal(const struct netdev_flow_key *a,
1540 const struct netdev_flow_key *b)
1541 {
1542 /* 'b->len' may be not set yet. */
1543 return a->hash == b->hash && !memcmp(&a->mf, &b->mf, a->len);
1544 }
1545
1546 /* Used to compare 'netdev_flow_key' in the exact match cache to a miniflow.
1547 * The maps are compared bitwise, so both 'key->mf' 'mf' must have been
1548 * generated by miniflow_extract. */
1549 static inline bool
1550 netdev_flow_key_equal_mf(const struct netdev_flow_key *key,
1551 const struct miniflow *mf)
1552 {
1553 return !memcmp(&key->mf, mf, key->len);
1554 }
1555
1556 static inline void
1557 netdev_flow_key_clone(struct netdev_flow_key *dst,
1558 const struct netdev_flow_key *src)
1559 {
1560 memcpy(dst, src,
1561 offsetof(struct netdev_flow_key, mf) + src->len);
1562 }
1563
1564 /* Slow. */
1565 static void
1566 netdev_flow_key_from_flow(struct netdev_flow_key *dst,
1567 const struct flow *src)
1568 {
1569 struct dp_packet packet;
1570 uint64_t buf_stub[512 / 8];
1571
1572 dp_packet_use_stub(&packet, buf_stub, sizeof buf_stub);
1573 pkt_metadata_from_flow(&packet.md, src);
1574 flow_compose(&packet, src);
1575 miniflow_extract(&packet, &dst->mf);
1576 dp_packet_uninit(&packet);
1577
1578 dst->len = netdev_flow_key_size(miniflow_n_values(&dst->mf));
1579 dst->hash = 0; /* Not computed yet. */
1580 }
1581
1582 /* Initialize a netdev_flow_key 'mask' from 'match'. */
1583 static inline void
1584 netdev_flow_mask_init(struct netdev_flow_key *mask,
1585 const struct match *match)
1586 {
1587 uint64_t *dst = miniflow_values(&mask->mf);
1588 struct flowmap fmap;
1589 uint32_t hash = 0;
1590 size_t idx;
1591
1592 /* Only check masks that make sense for the flow. */
1593 flow_wc_map(&match->flow, &fmap);
1594 flowmap_init(&mask->mf.map);
1595
1596 FLOWMAP_FOR_EACH_INDEX(idx, fmap) {
1597 uint64_t mask_u64 = flow_u64_value(&match->wc.masks, idx);
1598
1599 if (mask_u64) {
1600 flowmap_set(&mask->mf.map, idx, 1);
1601 *dst++ = mask_u64;
1602 hash = hash_add64(hash, mask_u64);
1603 }
1604 }
1605
1606 map_t map;
1607
1608 FLOWMAP_FOR_EACH_MAP (map, mask->mf.map) {
1609 hash = hash_add64(hash, map);
1610 }
1611
1612 size_t n = dst - miniflow_get_values(&mask->mf);
1613
1614 mask->hash = hash_finish(hash, n * 8);
1615 mask->len = netdev_flow_key_size(n);
1616 }
1617
1618 /* Initializes 'dst' as a copy of 'flow' masked with 'mask'. */
1619 static inline void
1620 netdev_flow_key_init_masked(struct netdev_flow_key *dst,
1621 const struct flow *flow,
1622 const struct netdev_flow_key *mask)
1623 {
1624 uint64_t *dst_u64 = miniflow_values(&dst->mf);
1625 const uint64_t *mask_u64 = miniflow_get_values(&mask->mf);
1626 uint32_t hash = 0;
1627 uint64_t value;
1628
1629 dst->len = mask->len;
1630 dst->mf = mask->mf; /* Copy maps. */
1631
1632 FLOW_FOR_EACH_IN_MAPS(value, flow, mask->mf.map) {
1633 *dst_u64 = value & *mask_u64++;
1634 hash = hash_add64(hash, *dst_u64++);
1635 }
1636 dst->hash = hash_finish(hash,
1637 (dst_u64 - miniflow_get_values(&dst->mf)) * 8);
1638 }
1639
1640 /* Iterate through netdev_flow_key TNL u64 values specified by 'FLOWMAP'. */
1641 #define NETDEV_FLOW_KEY_FOR_EACH_IN_FLOWMAP(VALUE, KEY, FLOWMAP) \
1642 MINIFLOW_FOR_EACH_IN_FLOWMAP(VALUE, &(KEY)->mf, FLOWMAP)
1643
1644 /* Returns a hash value for the bits of 'key' where there are 1-bits in
1645 * 'mask'. */
1646 static inline uint32_t
1647 netdev_flow_key_hash_in_mask(const struct netdev_flow_key *key,
1648 const struct netdev_flow_key *mask)
1649 {
1650 const uint64_t *p = miniflow_get_values(&mask->mf);
1651 uint32_t hash = 0;
1652 uint64_t value;
1653
1654 NETDEV_FLOW_KEY_FOR_EACH_IN_FLOWMAP(value, key, mask->mf.map) {
1655 hash = hash_add64(hash, value & *p++);
1656 }
1657
1658 return hash_finish(hash, (p - miniflow_get_values(&mask->mf)) * 8);
1659 }
1660
1661 static inline bool
1662 emc_entry_alive(struct emc_entry *ce)
1663 {
1664 return ce->flow && !ce->flow->dead;
1665 }
1666
1667 static void
1668 emc_clear_entry(struct emc_entry *ce)
1669 {
1670 if (ce->flow) {
1671 dp_netdev_flow_unref(ce->flow);
1672 ce->flow = NULL;
1673 }
1674 }
1675
1676 static inline void
1677 emc_change_entry(struct emc_entry *ce, struct dp_netdev_flow *flow,
1678 const struct netdev_flow_key *key)
1679 {
1680 if (ce->flow != flow) {
1681 if (ce->flow) {
1682 dp_netdev_flow_unref(ce->flow);
1683 }
1684
1685 if (dp_netdev_flow_ref(flow)) {
1686 ce->flow = flow;
1687 } else {
1688 ce->flow = NULL;
1689 }
1690 }
1691 if (key) {
1692 netdev_flow_key_clone(&ce->key, key);
1693 }
1694 }
1695
1696 static inline void
1697 emc_insert(struct emc_cache *cache, const struct netdev_flow_key *key,
1698 struct dp_netdev_flow *flow)
1699 {
1700 struct emc_entry *to_be_replaced = NULL;
1701 struct emc_entry *current_entry;
1702
1703 EMC_FOR_EACH_POS_WITH_HASH(cache, current_entry, key->hash) {
1704 if (netdev_flow_key_equal(&current_entry->key, key)) {
1705 /* We found the entry with the 'mf' miniflow */
1706 emc_change_entry(current_entry, flow, NULL);
1707 return;
1708 }
1709
1710 /* Replacement policy: put the flow in an empty (not alive) entry, or
1711 * in the first entry where it can be */
1712 if (!to_be_replaced
1713 || (emc_entry_alive(to_be_replaced)
1714 && !emc_entry_alive(current_entry))
1715 || current_entry->key.hash < to_be_replaced->key.hash) {
1716 to_be_replaced = current_entry;
1717 }
1718 }
1719 /* We didn't find the miniflow in the cache.
1720 * The 'to_be_replaced' entry is where the new flow will be stored */
1721
1722 emc_change_entry(to_be_replaced, flow, key);
1723 }
1724
1725 static inline struct dp_netdev_flow *
1726 emc_lookup(struct emc_cache *cache, const struct netdev_flow_key *key)
1727 {
1728 struct emc_entry *current_entry;
1729
1730 EMC_FOR_EACH_POS_WITH_HASH(cache, current_entry, key->hash) {
1731 if (current_entry->key.hash == key->hash
1732 && emc_entry_alive(current_entry)
1733 && netdev_flow_key_equal_mf(&current_entry->key, &key->mf)) {
1734
1735 /* We found the entry with the 'key->mf' miniflow */
1736 return current_entry->flow;
1737 }
1738 }
1739
1740 return NULL;
1741 }
1742
1743 static struct dp_netdev_flow *
1744 dp_netdev_pmd_lookup_flow(const struct dp_netdev_pmd_thread *pmd,
1745 const struct netdev_flow_key *key)
1746 {
1747 struct dp_netdev_flow *netdev_flow;
1748 struct dpcls_rule *rule;
1749
1750 dpcls_lookup(&pmd->cls, key, &rule, 1);
1751 netdev_flow = dp_netdev_flow_cast(rule);
1752
1753 return netdev_flow;
1754 }
1755
1756 static struct dp_netdev_flow *
1757 dp_netdev_pmd_find_flow(const struct dp_netdev_pmd_thread *pmd,
1758 const ovs_u128 *ufidp, const struct nlattr *key,
1759 size_t key_len)
1760 {
1761 struct dp_netdev_flow *netdev_flow;
1762 struct flow flow;
1763 ovs_u128 ufid;
1764
1765 /* If a UFID is not provided, determine one based on the key. */
1766 if (!ufidp && key && key_len
1767 && !dpif_netdev_flow_from_nlattrs(key, key_len, &flow)) {
1768 dpif_flow_hash(pmd->dp->dpif, &flow, sizeof flow, &ufid);
1769 ufidp = &ufid;
1770 }
1771
1772 if (ufidp) {
1773 CMAP_FOR_EACH_WITH_HASH (netdev_flow, node, dp_netdev_flow_hash(ufidp),
1774 &pmd->flow_table) {
1775 if (ovs_u128_equals(&netdev_flow->ufid, ufidp)) {
1776 return netdev_flow;
1777 }
1778 }
1779 }
1780
1781 return NULL;
1782 }
1783
1784 static void
1785 get_dpif_flow_stats(const struct dp_netdev_flow *netdev_flow_,
1786 struct dpif_flow_stats *stats)
1787 {
1788 struct dp_netdev_flow *netdev_flow;
1789 unsigned long long n;
1790 long long used;
1791 uint16_t flags;
1792
1793 netdev_flow = CONST_CAST(struct dp_netdev_flow *, netdev_flow_);
1794
1795 atomic_read_relaxed(&netdev_flow->stats.packet_count, &n);
1796 stats->n_packets = n;
1797 atomic_read_relaxed(&netdev_flow->stats.byte_count, &n);
1798 stats->n_bytes = n;
1799 atomic_read_relaxed(&netdev_flow->stats.used, &used);
1800 stats->used = used;
1801 atomic_read_relaxed(&netdev_flow->stats.tcp_flags, &flags);
1802 stats->tcp_flags = flags;
1803 }
1804
1805 /* Converts to the dpif_flow format, using 'key_buf' and 'mask_buf' for
1806 * storing the netlink-formatted key/mask. 'key_buf' may be the same as
1807 * 'mask_buf'. Actions will be returned without copying, by relying on RCU to
1808 * protect them. */
1809 static void
1810 dp_netdev_flow_to_dpif_flow(const struct dp_netdev_flow *netdev_flow,
1811 struct ofpbuf *key_buf, struct ofpbuf *mask_buf,
1812 struct dpif_flow *flow, bool terse)
1813 {
1814 if (terse) {
1815 memset(flow, 0, sizeof *flow);
1816 } else {
1817 struct flow_wildcards wc;
1818 struct dp_netdev_actions *actions;
1819 size_t offset;
1820 struct odp_flow_key_parms odp_parms = {
1821 .flow = &netdev_flow->flow,
1822 .mask = &wc.masks,
1823 .support = dp_netdev_support,
1824 };
1825
1826 miniflow_expand(&netdev_flow->cr.mask->mf, &wc.masks);
1827
1828 /* Key */
1829 offset = key_buf->size;
1830 flow->key = ofpbuf_tail(key_buf);
1831 odp_parms.odp_in_port = netdev_flow->flow.in_port.odp_port;
1832 odp_flow_key_from_flow(&odp_parms, key_buf);
1833 flow->key_len = key_buf->size - offset;
1834
1835 /* Mask */
1836 offset = mask_buf->size;
1837 flow->mask = ofpbuf_tail(mask_buf);
1838 odp_parms.odp_in_port = wc.masks.in_port.odp_port;
1839 odp_parms.key_buf = key_buf;
1840 odp_flow_key_from_mask(&odp_parms, mask_buf);
1841 flow->mask_len = mask_buf->size - offset;
1842
1843 /* Actions */
1844 actions = dp_netdev_flow_get_actions(netdev_flow);
1845 flow->actions = actions->actions;
1846 flow->actions_len = actions->size;
1847 }
1848
1849 flow->ufid = netdev_flow->ufid;
1850 flow->ufid_present = true;
1851 flow->pmd_id = netdev_flow->pmd_id;
1852 get_dpif_flow_stats(netdev_flow, &flow->stats);
1853 }
1854
1855 static int
1856 dpif_netdev_mask_from_nlattrs(const struct nlattr *key, uint32_t key_len,
1857 const struct nlattr *mask_key,
1858 uint32_t mask_key_len, const struct flow *flow,
1859 struct flow_wildcards *wc)
1860 {
1861 if (mask_key_len) {
1862 enum odp_key_fitness fitness;
1863
1864 fitness = odp_flow_key_to_mask_udpif(mask_key, mask_key_len, key,
1865 key_len, &wc->masks, flow);
1866 if (fitness) {
1867 /* This should not happen: it indicates that
1868 * odp_flow_key_from_mask() and odp_flow_key_to_mask()
1869 * disagree on the acceptable form of a mask. Log the problem
1870 * as an error, with enough details to enable debugging. */
1871 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
1872
1873 if (!VLOG_DROP_ERR(&rl)) {
1874 struct ds s;
1875
1876 ds_init(&s);
1877 odp_flow_format(key, key_len, mask_key, mask_key_len, NULL, &s,
1878 true);
1879 VLOG_ERR("internal error parsing flow mask %s (%s)",
1880 ds_cstr(&s), odp_key_fitness_to_string(fitness));
1881 ds_destroy(&s);
1882 }
1883
1884 return EINVAL;
1885 }
1886 } else {
1887 flow_wildcards_init_for_packet(wc, flow);
1888 }
1889
1890 return 0;
1891 }
1892
1893 static int
1894 dpif_netdev_flow_from_nlattrs(const struct nlattr *key, uint32_t key_len,
1895 struct flow *flow)
1896 {
1897 odp_port_t in_port;
1898
1899 if (odp_flow_key_to_flow_udpif(key, key_len, flow)) {
1900 /* This should not happen: it indicates that odp_flow_key_from_flow()
1901 * and odp_flow_key_to_flow() disagree on the acceptable form of a
1902 * flow. Log the problem as an error, with enough details to enable
1903 * debugging. */
1904 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
1905
1906 if (!VLOG_DROP_ERR(&rl)) {
1907 struct ds s;
1908
1909 ds_init(&s);
1910 odp_flow_format(key, key_len, NULL, 0, NULL, &s, true);
1911 VLOG_ERR("internal error parsing flow key %s", ds_cstr(&s));
1912 ds_destroy(&s);
1913 }
1914
1915 return EINVAL;
1916 }
1917
1918 in_port = flow->in_port.odp_port;
1919 if (!is_valid_port_number(in_port) && in_port != ODPP_NONE) {
1920 return EINVAL;
1921 }
1922
1923 /* Userspace datapath doesn't support conntrack. */
1924 if (flow->ct_state || flow->ct_zone || flow->ct_mark
1925 || !ovs_u128_is_zero(&flow->ct_label)) {
1926 return EINVAL;
1927 }
1928
1929 return 0;
1930 }
1931
1932 static int
1933 dpif_netdev_flow_get(const struct dpif *dpif, const struct dpif_flow_get *get)
1934 {
1935 struct dp_netdev *dp = get_dp_netdev(dpif);
1936 struct dp_netdev_flow *netdev_flow;
1937 struct dp_netdev_pmd_thread *pmd;
1938 unsigned pmd_id = get->pmd_id == PMD_ID_NULL
1939 ? NON_PMD_CORE_ID : get->pmd_id;
1940 int error = 0;
1941
1942 pmd = dp_netdev_get_pmd(dp, pmd_id);
1943 if (!pmd) {
1944 return EINVAL;
1945 }
1946
1947 netdev_flow = dp_netdev_pmd_find_flow(pmd, get->ufid, get->key,
1948 get->key_len);
1949 if (netdev_flow) {
1950 dp_netdev_flow_to_dpif_flow(netdev_flow, get->buffer, get->buffer,
1951 get->flow, false);
1952 } else {
1953 error = ENOENT;
1954 }
1955 dp_netdev_pmd_unref(pmd);
1956
1957
1958 return error;
1959 }
1960
1961 static struct dp_netdev_flow *
1962 dp_netdev_flow_add(struct dp_netdev_pmd_thread *pmd,
1963 struct match *match, const ovs_u128 *ufid,
1964 const struct nlattr *actions, size_t actions_len)
1965 OVS_REQUIRES(pmd->flow_mutex)
1966 {
1967 struct dp_netdev_flow *flow;
1968 struct netdev_flow_key mask;
1969
1970 netdev_flow_mask_init(&mask, match);
1971 /* Make sure wc does not have metadata. */
1972 ovs_assert(!FLOWMAP_HAS_FIELD(&mask.mf.map, metadata)
1973 && !FLOWMAP_HAS_FIELD(&mask.mf.map, regs));
1974
1975 /* Do not allocate extra space. */
1976 flow = xmalloc(sizeof *flow - sizeof flow->cr.flow.mf + mask.len);
1977 memset(&flow->stats, 0, sizeof flow->stats);
1978 flow->dead = false;
1979 flow->batch = NULL;
1980 *CONST_CAST(unsigned *, &flow->pmd_id) = pmd->core_id;
1981 *CONST_CAST(struct flow *, &flow->flow) = match->flow;
1982 *CONST_CAST(ovs_u128 *, &flow->ufid) = *ufid;
1983 ovs_refcount_init(&flow->ref_cnt);
1984 ovsrcu_set(&flow->actions, dp_netdev_actions_create(actions, actions_len));
1985
1986 netdev_flow_key_init_masked(&flow->cr.flow, &match->flow, &mask);
1987 dpcls_insert(&pmd->cls, &flow->cr, &mask);
1988
1989 cmap_insert(&pmd->flow_table, CONST_CAST(struct cmap_node *, &flow->node),
1990 dp_netdev_flow_hash(&flow->ufid));
1991
1992 if (OVS_UNLIKELY(VLOG_IS_DBG_ENABLED())) {
1993 struct match match;
1994 struct ds ds = DS_EMPTY_INITIALIZER;
1995
1996 match.flow = flow->flow;
1997 miniflow_expand(&flow->cr.mask->mf, &match.wc.masks);
1998
1999 ds_put_cstr(&ds, "flow_add: ");
2000 odp_format_ufid(ufid, &ds);
2001 ds_put_cstr(&ds, " ");
2002 match_format(&match, &ds, OFP_DEFAULT_PRIORITY);
2003 ds_put_cstr(&ds, ", actions:");
2004 format_odp_actions(&ds, actions, actions_len);
2005
2006 VLOG_DBG_RL(&upcall_rl, "%s", ds_cstr(&ds));
2007
2008 ds_destroy(&ds);
2009 }
2010
2011 return flow;
2012 }
2013
2014 static int
2015 dpif_netdev_flow_put(struct dpif *dpif, const struct dpif_flow_put *put)
2016 {
2017 struct dp_netdev *dp = get_dp_netdev(dpif);
2018 struct dp_netdev_flow *netdev_flow;
2019 struct netdev_flow_key key;
2020 struct dp_netdev_pmd_thread *pmd;
2021 struct match match;
2022 ovs_u128 ufid;
2023 unsigned pmd_id = put->pmd_id == PMD_ID_NULL
2024 ? NON_PMD_CORE_ID : put->pmd_id;
2025 int error;
2026
2027 error = dpif_netdev_flow_from_nlattrs(put->key, put->key_len, &match.flow);
2028 if (error) {
2029 return error;
2030 }
2031 error = dpif_netdev_mask_from_nlattrs(put->key, put->key_len,
2032 put->mask, put->mask_len,
2033 &match.flow, &match.wc);
2034 if (error) {
2035 return error;
2036 }
2037
2038 pmd = dp_netdev_get_pmd(dp, pmd_id);
2039 if (!pmd) {
2040 return EINVAL;
2041 }
2042
2043 /* Must produce a netdev_flow_key for lookup.
2044 * This interface is no longer performance critical, since it is not used
2045 * for upcall processing any more. */
2046 netdev_flow_key_from_flow(&key, &match.flow);
2047
2048 if (put->ufid) {
2049 ufid = *put->ufid;
2050 } else {
2051 dpif_flow_hash(dpif, &match.flow, sizeof match.flow, &ufid);
2052 }
2053
2054 ovs_mutex_lock(&pmd->flow_mutex);
2055 netdev_flow = dp_netdev_pmd_lookup_flow(pmd, &key);
2056 if (!netdev_flow) {
2057 if (put->flags & DPIF_FP_CREATE) {
2058 if (cmap_count(&pmd->flow_table) < MAX_FLOWS) {
2059 if (put->stats) {
2060 memset(put->stats, 0, sizeof *put->stats);
2061 }
2062 dp_netdev_flow_add(pmd, &match, &ufid, put->actions,
2063 put->actions_len);
2064 error = 0;
2065 } else {
2066 error = EFBIG;
2067 }
2068 } else {
2069 error = ENOENT;
2070 }
2071 } else {
2072 if (put->flags & DPIF_FP_MODIFY
2073 && flow_equal(&match.flow, &netdev_flow->flow)) {
2074 struct dp_netdev_actions *new_actions;
2075 struct dp_netdev_actions *old_actions;
2076
2077 new_actions = dp_netdev_actions_create(put->actions,
2078 put->actions_len);
2079
2080 old_actions = dp_netdev_flow_get_actions(netdev_flow);
2081 ovsrcu_set(&netdev_flow->actions, new_actions);
2082
2083 if (put->stats) {
2084 get_dpif_flow_stats(netdev_flow, put->stats);
2085 }
2086 if (put->flags & DPIF_FP_ZERO_STATS) {
2087 /* XXX: The userspace datapath uses thread local statistics
2088 * (for flows), which should be updated only by the owning
2089 * thread. Since we cannot write on stats memory here,
2090 * we choose not to support this flag. Please note:
2091 * - This feature is currently used only by dpctl commands with
2092 * option --clear.
2093 * - Should the need arise, this operation can be implemented
2094 * by keeping a base value (to be update here) for each
2095 * counter, and subtracting it before outputting the stats */
2096 error = EOPNOTSUPP;
2097 }
2098
2099 ovsrcu_postpone(dp_netdev_actions_free, old_actions);
2100 } else if (put->flags & DPIF_FP_CREATE) {
2101 error = EEXIST;
2102 } else {
2103 /* Overlapping flow. */
2104 error = EINVAL;
2105 }
2106 }
2107 ovs_mutex_unlock(&pmd->flow_mutex);
2108 dp_netdev_pmd_unref(pmd);
2109
2110 return error;
2111 }
2112
2113 static int
2114 dpif_netdev_flow_del(struct dpif *dpif, const struct dpif_flow_del *del)
2115 {
2116 struct dp_netdev *dp = get_dp_netdev(dpif);
2117 struct dp_netdev_flow *netdev_flow;
2118 struct dp_netdev_pmd_thread *pmd;
2119 unsigned pmd_id = del->pmd_id == PMD_ID_NULL
2120 ? NON_PMD_CORE_ID : del->pmd_id;
2121 int error = 0;
2122
2123 pmd = dp_netdev_get_pmd(dp, pmd_id);
2124 if (!pmd) {
2125 return EINVAL;
2126 }
2127
2128 ovs_mutex_lock(&pmd->flow_mutex);
2129 netdev_flow = dp_netdev_pmd_find_flow(pmd, del->ufid, del->key,
2130 del->key_len);
2131 if (netdev_flow) {
2132 if (del->stats) {
2133 get_dpif_flow_stats(netdev_flow, del->stats);
2134 }
2135 dp_netdev_pmd_remove_flow(pmd, netdev_flow);
2136 } else {
2137 error = ENOENT;
2138 }
2139 ovs_mutex_unlock(&pmd->flow_mutex);
2140 dp_netdev_pmd_unref(pmd);
2141
2142 return error;
2143 }
2144
2145 struct dpif_netdev_flow_dump {
2146 struct dpif_flow_dump up;
2147 struct cmap_position poll_thread_pos;
2148 struct cmap_position flow_pos;
2149 struct dp_netdev_pmd_thread *cur_pmd;
2150 int status;
2151 struct ovs_mutex mutex;
2152 };
2153
2154 static struct dpif_netdev_flow_dump *
2155 dpif_netdev_flow_dump_cast(struct dpif_flow_dump *dump)
2156 {
2157 return CONTAINER_OF(dump, struct dpif_netdev_flow_dump, up);
2158 }
2159
2160 static struct dpif_flow_dump *
2161 dpif_netdev_flow_dump_create(const struct dpif *dpif_, bool terse)
2162 {
2163 struct dpif_netdev_flow_dump *dump;
2164
2165 dump = xzalloc(sizeof *dump);
2166 dpif_flow_dump_init(&dump->up, dpif_);
2167 dump->up.terse = terse;
2168 ovs_mutex_init(&dump->mutex);
2169
2170 return &dump->up;
2171 }
2172
2173 static int
2174 dpif_netdev_flow_dump_destroy(struct dpif_flow_dump *dump_)
2175 {
2176 struct dpif_netdev_flow_dump *dump = dpif_netdev_flow_dump_cast(dump_);
2177
2178 ovs_mutex_destroy(&dump->mutex);
2179 free(dump);
2180 return 0;
2181 }
2182
2183 struct dpif_netdev_flow_dump_thread {
2184 struct dpif_flow_dump_thread up;
2185 struct dpif_netdev_flow_dump *dump;
2186 struct odputil_keybuf keybuf[FLOW_DUMP_MAX_BATCH];
2187 struct odputil_keybuf maskbuf[FLOW_DUMP_MAX_BATCH];
2188 };
2189
2190 static struct dpif_netdev_flow_dump_thread *
2191 dpif_netdev_flow_dump_thread_cast(struct dpif_flow_dump_thread *thread)
2192 {
2193 return CONTAINER_OF(thread, struct dpif_netdev_flow_dump_thread, up);
2194 }
2195
2196 static struct dpif_flow_dump_thread *
2197 dpif_netdev_flow_dump_thread_create(struct dpif_flow_dump *dump_)
2198 {
2199 struct dpif_netdev_flow_dump *dump = dpif_netdev_flow_dump_cast(dump_);
2200 struct dpif_netdev_flow_dump_thread *thread;
2201
2202 thread = xmalloc(sizeof *thread);
2203 dpif_flow_dump_thread_init(&thread->up, &dump->up);
2204 thread->dump = dump;
2205 return &thread->up;
2206 }
2207
2208 static void
2209 dpif_netdev_flow_dump_thread_destroy(struct dpif_flow_dump_thread *thread_)
2210 {
2211 struct dpif_netdev_flow_dump_thread *thread
2212 = dpif_netdev_flow_dump_thread_cast(thread_);
2213
2214 free(thread);
2215 }
2216
2217 static int
2218 dpif_netdev_flow_dump_next(struct dpif_flow_dump_thread *thread_,
2219 struct dpif_flow *flows, int max_flows)
2220 {
2221 struct dpif_netdev_flow_dump_thread *thread
2222 = dpif_netdev_flow_dump_thread_cast(thread_);
2223 struct dpif_netdev_flow_dump *dump = thread->dump;
2224 struct dp_netdev_flow *netdev_flows[FLOW_DUMP_MAX_BATCH];
2225 int n_flows = 0;
2226 int i;
2227
2228 ovs_mutex_lock(&dump->mutex);
2229 if (!dump->status) {
2230 struct dpif_netdev *dpif = dpif_netdev_cast(thread->up.dpif);
2231 struct dp_netdev *dp = get_dp_netdev(&dpif->dpif);
2232 struct dp_netdev_pmd_thread *pmd = dump->cur_pmd;
2233 int flow_limit = MIN(max_flows, FLOW_DUMP_MAX_BATCH);
2234
2235 /* First call to dump_next(), extracts the first pmd thread.
2236 * If there is no pmd thread, returns immediately. */
2237 if (!pmd) {
2238 pmd = dp_netdev_pmd_get_next(dp, &dump->poll_thread_pos);
2239 if (!pmd) {
2240 ovs_mutex_unlock(&dump->mutex);
2241 return n_flows;
2242
2243 }
2244 }
2245
2246 do {
2247 for (n_flows = 0; n_flows < flow_limit; n_flows++) {
2248 struct cmap_node *node;
2249
2250 node = cmap_next_position(&pmd->flow_table, &dump->flow_pos);
2251 if (!node) {
2252 break;
2253 }
2254 netdev_flows[n_flows] = CONTAINER_OF(node,
2255 struct dp_netdev_flow,
2256 node);
2257 }
2258 /* When finishing dumping the current pmd thread, moves to
2259 * the next. */
2260 if (n_flows < flow_limit) {
2261 memset(&dump->flow_pos, 0, sizeof dump->flow_pos);
2262 dp_netdev_pmd_unref(pmd);
2263 pmd = dp_netdev_pmd_get_next(dp, &dump->poll_thread_pos);
2264 if (!pmd) {
2265 dump->status = EOF;
2266 break;
2267 }
2268 }
2269 /* Keeps the reference to next caller. */
2270 dump->cur_pmd = pmd;
2271
2272 /* If the current dump is empty, do not exit the loop, since the
2273 * remaining pmds could have flows to be dumped. Just dumps again
2274 * on the new 'pmd'. */
2275 } while (!n_flows);
2276 }
2277 ovs_mutex_unlock(&dump->mutex);
2278
2279 for (i = 0; i < n_flows; i++) {
2280 struct odputil_keybuf *maskbuf = &thread->maskbuf[i];
2281 struct odputil_keybuf *keybuf = &thread->keybuf[i];
2282 struct dp_netdev_flow *netdev_flow = netdev_flows[i];
2283 struct dpif_flow *f = &flows[i];
2284 struct ofpbuf key, mask;
2285
2286 ofpbuf_use_stack(&key, keybuf, sizeof *keybuf);
2287 ofpbuf_use_stack(&mask, maskbuf, sizeof *maskbuf);
2288 dp_netdev_flow_to_dpif_flow(netdev_flow, &key, &mask, f,
2289 dump->up.terse);
2290 }
2291
2292 return n_flows;
2293 }
2294
2295 static int
2296 dpif_netdev_execute(struct dpif *dpif, struct dpif_execute *execute)
2297 OVS_NO_THREAD_SAFETY_ANALYSIS
2298 {
2299 struct dp_netdev *dp = get_dp_netdev(dpif);
2300 struct dp_netdev_pmd_thread *pmd;
2301 struct dp_packet *pp;
2302
2303 if (dp_packet_size(execute->packet) < ETH_HEADER_LEN ||
2304 dp_packet_size(execute->packet) > UINT16_MAX) {
2305 return EINVAL;
2306 }
2307
2308 /* Tries finding the 'pmd'. If NULL is returned, that means
2309 * the current thread is a non-pmd thread and should use
2310 * dp_netdev_get_pmd(dp, NON_PMD_CORE_ID). */
2311 pmd = ovsthread_getspecific(dp->per_pmd_key);
2312 if (!pmd) {
2313 pmd = dp_netdev_get_pmd(dp, NON_PMD_CORE_ID);
2314 }
2315
2316 /* If the current thread is non-pmd thread, acquires
2317 * the 'non_pmd_mutex'. */
2318 if (pmd->core_id == NON_PMD_CORE_ID) {
2319 ovs_mutex_lock(&dp->non_pmd_mutex);
2320 ovs_mutex_lock(&dp->port_mutex);
2321 }
2322
2323 pp = execute->packet;
2324 dp_netdev_execute_actions(pmd, &pp, 1, false, execute->actions,
2325 execute->actions_len);
2326 if (pmd->core_id == NON_PMD_CORE_ID) {
2327 dp_netdev_pmd_unref(pmd);
2328 ovs_mutex_unlock(&dp->port_mutex);
2329 ovs_mutex_unlock(&dp->non_pmd_mutex);
2330 }
2331
2332 return 0;
2333 }
2334
2335 static void
2336 dpif_netdev_operate(struct dpif *dpif, struct dpif_op **ops, size_t n_ops)
2337 {
2338 size_t i;
2339
2340 for (i = 0; i < n_ops; i++) {
2341 struct dpif_op *op = ops[i];
2342
2343 switch (op->type) {
2344 case DPIF_OP_FLOW_PUT:
2345 op->error = dpif_netdev_flow_put(dpif, &op->u.flow_put);
2346 break;
2347
2348 case DPIF_OP_FLOW_DEL:
2349 op->error = dpif_netdev_flow_del(dpif, &op->u.flow_del);
2350 break;
2351
2352 case DPIF_OP_EXECUTE:
2353 op->error = dpif_netdev_execute(dpif, &op->u.execute);
2354 break;
2355
2356 case DPIF_OP_FLOW_GET:
2357 op->error = dpif_netdev_flow_get(dpif, &op->u.flow_get);
2358 break;
2359 }
2360 }
2361 }
2362
2363 /* Returns true if the configuration for rx queues or cpu mask
2364 * is changed. */
2365 static bool
2366 pmd_config_changed(const struct dp_netdev *dp, size_t rxqs, const char *cmask)
2367 {
2368 if (dp->n_dpdk_rxqs != rxqs) {
2369 return true;
2370 } else {
2371 if (dp->pmd_cmask != NULL && cmask != NULL) {
2372 return strcmp(dp->pmd_cmask, cmask);
2373 } else {
2374 return (dp->pmd_cmask != NULL || cmask != NULL);
2375 }
2376 }
2377 }
2378
2379 /* Resets pmd threads if the configuration for 'rxq's or cpu mask changes. */
2380 static int
2381 dpif_netdev_pmd_set(struct dpif *dpif, unsigned int n_rxqs, const char *cmask)
2382 {
2383 struct dp_netdev *dp = get_dp_netdev(dpif);
2384
2385 if (pmd_config_changed(dp, n_rxqs, cmask)) {
2386 struct dp_netdev_port *port;
2387
2388 dp_netdev_destroy_all_pmds(dp);
2389
2390 CMAP_FOR_EACH (port, node, &dp->ports) {
2391 if (netdev_is_pmd(port->netdev)) {
2392 int i, err;
2393
2394 /* Closes the existing 'rxq's. */
2395 for (i = 0; i < netdev_n_rxq(port->netdev); i++) {
2396 netdev_rxq_close(port->rxq[i]);
2397 port->rxq[i] = NULL;
2398 }
2399
2400 /* Sets the new rx queue config. */
2401 err = netdev_set_multiq(port->netdev,
2402 ovs_numa_get_n_cores() + 1,
2403 n_rxqs);
2404 if (err && (err != EOPNOTSUPP)) {
2405 VLOG_ERR("Failed to set dpdk interface %s rx_queue to:"
2406 " %u", netdev_get_name(port->netdev),
2407 n_rxqs);
2408 return err;
2409 }
2410
2411 /* If the set_multiq() above succeeds, reopens the 'rxq's. */
2412 port->rxq = xrealloc(port->rxq, sizeof *port->rxq
2413 * netdev_n_rxq(port->netdev));
2414 for (i = 0; i < netdev_n_rxq(port->netdev); i++) {
2415 netdev_rxq_open(port->netdev, &port->rxq[i], i);
2416 }
2417 }
2418 }
2419 dp->n_dpdk_rxqs = n_rxqs;
2420
2421 /* Reconfigures the cpu mask. */
2422 ovs_numa_set_cpu_mask(cmask);
2423 free(dp->pmd_cmask);
2424 dp->pmd_cmask = cmask ? xstrdup(cmask) : NULL;
2425
2426 /* Restores the non-pmd. */
2427 dp_netdev_set_nonpmd(dp);
2428 /* Restores all pmd threads. */
2429 dp_netdev_reset_pmd_threads(dp);
2430 }
2431
2432 return 0;
2433 }
2434
2435 static int
2436 dpif_netdev_queue_to_priority(const struct dpif *dpif OVS_UNUSED,
2437 uint32_t queue_id, uint32_t *priority)
2438 {
2439 *priority = queue_id;
2440 return 0;
2441 }
2442
2443 \f
2444 /* Creates and returns a new 'struct dp_netdev_actions', whose actions are
2445 * a copy of the 'ofpacts_len' bytes of 'ofpacts'. */
2446 struct dp_netdev_actions *
2447 dp_netdev_actions_create(const struct nlattr *actions, size_t size)
2448 {
2449 struct dp_netdev_actions *netdev_actions;
2450
2451 netdev_actions = xmalloc(sizeof *netdev_actions + size);
2452 memcpy(netdev_actions->actions, actions, size);
2453 netdev_actions->size = size;
2454
2455 return netdev_actions;
2456 }
2457
2458 struct dp_netdev_actions *
2459 dp_netdev_flow_get_actions(const struct dp_netdev_flow *flow)
2460 {
2461 return ovsrcu_get(struct dp_netdev_actions *, &flow->actions);
2462 }
2463
2464 static void
2465 dp_netdev_actions_free(struct dp_netdev_actions *actions)
2466 {
2467 free(actions);
2468 }
2469 \f
2470 static inline unsigned long long
2471 cycles_counter(void)
2472 {
2473 #ifdef DPDK_NETDEV
2474 return rte_get_tsc_cycles();
2475 #else
2476 return 0;
2477 #endif
2478 }
2479
2480 /* Fake mutex to make sure that the calls to cycles_count_* are balanced */
2481 extern struct ovs_mutex cycles_counter_fake_mutex;
2482
2483 /* Start counting cycles. Must be followed by 'cycles_count_end()' */
2484 static inline void
2485 cycles_count_start(struct dp_netdev_pmd_thread *pmd)
2486 OVS_ACQUIRES(&cycles_counter_fake_mutex)
2487 OVS_NO_THREAD_SAFETY_ANALYSIS
2488 {
2489 pmd->last_cycles = cycles_counter();
2490 }
2491
2492 /* Stop counting cycles and add them to the counter 'type' */
2493 static inline void
2494 cycles_count_end(struct dp_netdev_pmd_thread *pmd,
2495 enum pmd_cycles_counter_type type)
2496 OVS_RELEASES(&cycles_counter_fake_mutex)
2497 OVS_NO_THREAD_SAFETY_ANALYSIS
2498 {
2499 unsigned long long interval = cycles_counter() - pmd->last_cycles;
2500
2501 non_atomic_ullong_add(&pmd->cycles.n[type], interval);
2502 }
2503
2504 static void
2505 dp_netdev_process_rxq_port(struct dp_netdev_pmd_thread *pmd,
2506 struct dp_netdev_port *port,
2507 struct netdev_rxq *rxq)
2508 {
2509 struct dp_packet *packets[NETDEV_MAX_BURST];
2510 int error, cnt;
2511
2512 cycles_count_start(pmd);
2513 error = netdev_rxq_recv(rxq, packets, &cnt);
2514 cycles_count_end(pmd, PMD_CYCLES_POLLING);
2515 if (!error) {
2516 int i;
2517
2518 *recirc_depth_get() = 0;
2519
2520 /* XXX: initialize md in netdev implementation. */
2521 for (i = 0; i < cnt; i++) {
2522 pkt_metadata_init(&packets[i]->md, port->port_no);
2523 }
2524 cycles_count_start(pmd);
2525 dp_netdev_input(pmd, packets, cnt);
2526 cycles_count_end(pmd, PMD_CYCLES_PROCESSING);
2527 } else if (error != EAGAIN && error != EOPNOTSUPP) {
2528 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
2529
2530 VLOG_ERR_RL(&rl, "error receiving data from %s: %s",
2531 netdev_get_name(port->netdev), ovs_strerror(error));
2532 }
2533 }
2534
2535 /* Return true if needs to revalidate datapath flows. */
2536 static bool
2537 dpif_netdev_run(struct dpif *dpif)
2538 {
2539 struct dp_netdev_port *port;
2540 struct dp_netdev *dp = get_dp_netdev(dpif);
2541 struct dp_netdev_pmd_thread *non_pmd = dp_netdev_get_pmd(dp,
2542 NON_PMD_CORE_ID);
2543 uint64_t new_tnl_seq;
2544
2545 ovs_mutex_lock(&dp->non_pmd_mutex);
2546 CMAP_FOR_EACH (port, node, &dp->ports) {
2547 if (!netdev_is_pmd(port->netdev)) {
2548 int i;
2549
2550 for (i = 0; i < netdev_n_rxq(port->netdev); i++) {
2551 dp_netdev_process_rxq_port(non_pmd, port, port->rxq[i]);
2552 }
2553 }
2554 }
2555 ovs_mutex_unlock(&dp->non_pmd_mutex);
2556 dp_netdev_pmd_unref(non_pmd);
2557
2558 tnl_arp_cache_run();
2559 tnl_port_map_run();
2560 new_tnl_seq = seq_read(tnl_conf_seq);
2561
2562 if (dp->last_tnl_conf_seq != new_tnl_seq) {
2563 dp->last_tnl_conf_seq = new_tnl_seq;
2564 return true;
2565 }
2566 return false;
2567 }
2568
2569 static void
2570 dpif_netdev_wait(struct dpif *dpif)
2571 {
2572 struct dp_netdev_port *port;
2573 struct dp_netdev *dp = get_dp_netdev(dpif);
2574
2575 ovs_mutex_lock(&dp_netdev_mutex);
2576 CMAP_FOR_EACH (port, node, &dp->ports) {
2577 if (!netdev_is_pmd(port->netdev)) {
2578 int i;
2579
2580 for (i = 0; i < netdev_n_rxq(port->netdev); i++) {
2581 netdev_rxq_wait(port->rxq[i]);
2582 }
2583 }
2584 }
2585 ovs_mutex_unlock(&dp_netdev_mutex);
2586 seq_wait(tnl_conf_seq, dp->last_tnl_conf_seq);
2587 }
2588
2589 struct rxq_poll {
2590 struct dp_netdev_port *port;
2591 struct netdev_rxq *rx;
2592 };
2593
2594 static int
2595 pmd_load_queues(struct dp_netdev_pmd_thread *pmd,
2596 struct rxq_poll **ppoll_list, int poll_cnt)
2597 {
2598 struct rxq_poll *poll_list = *ppoll_list;
2599 struct dp_netdev_port *port;
2600 int n_pmds_on_numa, index, i;
2601
2602 /* Simple scheduler for netdev rx polling. */
2603 for (i = 0; i < poll_cnt; i++) {
2604 port_unref(poll_list[i].port);
2605 }
2606
2607 poll_cnt = 0;
2608 n_pmds_on_numa = get_n_pmd_threads_on_numa(pmd->dp, pmd->numa_id);
2609 index = 0;
2610
2611 CMAP_FOR_EACH (port, node, &pmd->dp->ports) {
2612 /* Calls port_try_ref() to prevent the main thread
2613 * from deleting the port. */
2614 if (port_try_ref(port)) {
2615 if (netdev_is_pmd(port->netdev)
2616 && netdev_get_numa_id(port->netdev) == pmd->numa_id) {
2617 int i;
2618
2619 for (i = 0; i < netdev_n_rxq(port->netdev); i++) {
2620 if ((index % n_pmds_on_numa) == pmd->index) {
2621 poll_list = xrealloc(poll_list,
2622 sizeof *poll_list * (poll_cnt + 1));
2623
2624 port_ref(port);
2625 poll_list[poll_cnt].port = port;
2626 poll_list[poll_cnt].rx = port->rxq[i];
2627 poll_cnt++;
2628 }
2629 index++;
2630 }
2631 }
2632 /* Unrefs the port_try_ref(). */
2633 port_unref(port);
2634 }
2635 }
2636
2637 *ppoll_list = poll_list;
2638 return poll_cnt;
2639 }
2640
2641 static void *
2642 pmd_thread_main(void *f_)
2643 {
2644 struct dp_netdev_pmd_thread *pmd = f_;
2645 unsigned int lc = 0;
2646 struct rxq_poll *poll_list;
2647 unsigned int port_seq = PMD_INITIAL_SEQ;
2648 int poll_cnt;
2649 int i;
2650
2651 poll_cnt = 0;
2652 poll_list = NULL;
2653
2654 /* Stores the pmd thread's 'pmd' to 'per_pmd_key'. */
2655 ovsthread_setspecific(pmd->dp->per_pmd_key, pmd);
2656 pmd_thread_setaffinity_cpu(pmd->core_id);
2657 reload:
2658 emc_cache_init(&pmd->flow_cache);
2659 poll_cnt = pmd_load_queues(pmd, &poll_list, poll_cnt);
2660
2661 /* List port/core affinity */
2662 for (i = 0; i < poll_cnt; i++) {
2663 VLOG_INFO("Core %d processing port \'%s\'\n", pmd->core_id, netdev_get_name(poll_list[i].port->netdev));
2664 }
2665
2666 /* Signal here to make sure the pmd finishes
2667 * reloading the updated configuration. */
2668 dp_netdev_pmd_reload_done(pmd);
2669
2670 for (;;) {
2671 int i;
2672
2673 for (i = 0; i < poll_cnt; i++) {
2674 dp_netdev_process_rxq_port(pmd, poll_list[i].port, poll_list[i].rx);
2675 }
2676
2677 if (lc++ > 1024) {
2678 unsigned int seq;
2679
2680 lc = 0;
2681
2682 emc_cache_slow_sweep(&pmd->flow_cache);
2683 coverage_try_clear();
2684 ovsrcu_quiesce();
2685
2686 atomic_read_relaxed(&pmd->change_seq, &seq);
2687 if (seq != port_seq) {
2688 port_seq = seq;
2689 break;
2690 }
2691 }
2692 }
2693
2694 emc_cache_uninit(&pmd->flow_cache);
2695
2696 if (!latch_is_set(&pmd->exit_latch)){
2697 goto reload;
2698 }
2699
2700 for (i = 0; i < poll_cnt; i++) {
2701 port_unref(poll_list[i].port);
2702 }
2703
2704 dp_netdev_pmd_reload_done(pmd);
2705
2706 free(poll_list);
2707 return NULL;
2708 }
2709
2710 static void
2711 dp_netdev_disable_upcall(struct dp_netdev *dp)
2712 OVS_ACQUIRES(dp->upcall_rwlock)
2713 {
2714 fat_rwlock_wrlock(&dp->upcall_rwlock);
2715 }
2716
2717 static void
2718 dpif_netdev_disable_upcall(struct dpif *dpif)
2719 OVS_NO_THREAD_SAFETY_ANALYSIS
2720 {
2721 struct dp_netdev *dp = get_dp_netdev(dpif);
2722 dp_netdev_disable_upcall(dp);
2723 }
2724
2725 static void
2726 dp_netdev_enable_upcall(struct dp_netdev *dp)
2727 OVS_RELEASES(dp->upcall_rwlock)
2728 {
2729 fat_rwlock_unlock(&dp->upcall_rwlock);
2730 }
2731
2732 static void
2733 dpif_netdev_enable_upcall(struct dpif *dpif)
2734 OVS_NO_THREAD_SAFETY_ANALYSIS
2735 {
2736 struct dp_netdev *dp = get_dp_netdev(dpif);
2737 dp_netdev_enable_upcall(dp);
2738 }
2739
2740 void
2741 dp_netdev_pmd_reload_done(struct dp_netdev_pmd_thread *pmd)
2742 {
2743 ovs_mutex_lock(&pmd->cond_mutex);
2744 xpthread_cond_signal(&pmd->cond);
2745 ovs_mutex_unlock(&pmd->cond_mutex);
2746 }
2747
2748 /* Finds and refs the dp_netdev_pmd_thread on core 'core_id'. Returns
2749 * the pointer if succeeds, otherwise, NULL.
2750 *
2751 * Caller must unrefs the returned reference. */
2752 static struct dp_netdev_pmd_thread *
2753 dp_netdev_get_pmd(struct dp_netdev *dp, unsigned core_id)
2754 {
2755 struct dp_netdev_pmd_thread *pmd;
2756 const struct cmap_node *pnode;
2757
2758 pnode = cmap_find(&dp->poll_threads, hash_int(core_id, 0));
2759 if (!pnode) {
2760 return NULL;
2761 }
2762 pmd = CONTAINER_OF(pnode, struct dp_netdev_pmd_thread, node);
2763
2764 return dp_netdev_pmd_try_ref(pmd) ? pmd : NULL;
2765 }
2766
2767 /* Sets the 'struct dp_netdev_pmd_thread' for non-pmd threads. */
2768 static void
2769 dp_netdev_set_nonpmd(struct dp_netdev *dp)
2770 {
2771 struct dp_netdev_pmd_thread *non_pmd;
2772
2773 non_pmd = xzalloc(sizeof *non_pmd);
2774 dp_netdev_configure_pmd(non_pmd, dp, 0, NON_PMD_CORE_ID,
2775 OVS_NUMA_UNSPEC);
2776 }
2777
2778 /* Caller must have valid pointer to 'pmd'. */
2779 static bool
2780 dp_netdev_pmd_try_ref(struct dp_netdev_pmd_thread *pmd)
2781 {
2782 return ovs_refcount_try_ref_rcu(&pmd->ref_cnt);
2783 }
2784
2785 static void
2786 dp_netdev_pmd_unref(struct dp_netdev_pmd_thread *pmd)
2787 {
2788 if (pmd && ovs_refcount_unref(&pmd->ref_cnt) == 1) {
2789 ovsrcu_postpone(dp_netdev_destroy_pmd, pmd);
2790 }
2791 }
2792
2793 /* Given cmap position 'pos', tries to ref the next node. If try_ref()
2794 * fails, keeps checking for next node until reaching the end of cmap.
2795 *
2796 * Caller must unrefs the returned reference. */
2797 static struct dp_netdev_pmd_thread *
2798 dp_netdev_pmd_get_next(struct dp_netdev *dp, struct cmap_position *pos)
2799 {
2800 struct dp_netdev_pmd_thread *next;
2801
2802 do {
2803 struct cmap_node *node;
2804
2805 node = cmap_next_position(&dp->poll_threads, pos);
2806 next = node ? CONTAINER_OF(node, struct dp_netdev_pmd_thread, node)
2807 : NULL;
2808 } while (next && !dp_netdev_pmd_try_ref(next));
2809
2810 return next;
2811 }
2812
2813 static int
2814 core_id_to_qid(unsigned core_id)
2815 {
2816 if (core_id != NON_PMD_CORE_ID) {
2817 return core_id;
2818 } else {
2819 return ovs_numa_get_n_cores();
2820 }
2821 }
2822
2823 /* Configures the 'pmd' based on the input argument. */
2824 static void
2825 dp_netdev_configure_pmd(struct dp_netdev_pmd_thread *pmd, struct dp_netdev *dp,
2826 int index, unsigned core_id, int numa_id)
2827 {
2828 pmd->dp = dp;
2829 pmd->index = index;
2830 pmd->core_id = core_id;
2831 pmd->tx_qid = core_id_to_qid(core_id);
2832 pmd->numa_id = numa_id;
2833
2834 ovs_refcount_init(&pmd->ref_cnt);
2835 latch_init(&pmd->exit_latch);
2836 atomic_init(&pmd->change_seq, PMD_INITIAL_SEQ);
2837 xpthread_cond_init(&pmd->cond, NULL);
2838 ovs_mutex_init(&pmd->cond_mutex);
2839 ovs_mutex_init(&pmd->flow_mutex);
2840 dpcls_init(&pmd->cls);
2841 cmap_init(&pmd->flow_table);
2842 /* init the 'flow_cache' since there is no
2843 * actual thread created for NON_PMD_CORE_ID. */
2844 if (core_id == NON_PMD_CORE_ID) {
2845 emc_cache_init(&pmd->flow_cache);
2846 }
2847 cmap_insert(&dp->poll_threads, CONST_CAST(struct cmap_node *, &pmd->node),
2848 hash_int(core_id, 0));
2849 }
2850
2851 static void
2852 dp_netdev_destroy_pmd(struct dp_netdev_pmd_thread *pmd)
2853 {
2854 dp_netdev_pmd_flow_flush(pmd);
2855 dpcls_destroy(&pmd->cls);
2856 cmap_destroy(&pmd->flow_table);
2857 ovs_mutex_destroy(&pmd->flow_mutex);
2858 latch_destroy(&pmd->exit_latch);
2859 xpthread_cond_destroy(&pmd->cond);
2860 ovs_mutex_destroy(&pmd->cond_mutex);
2861 free(pmd);
2862 }
2863
2864 /* Stops the pmd thread, removes it from the 'dp->poll_threads',
2865 * and unrefs the struct. */
2866 static void
2867 dp_netdev_del_pmd(struct dp_netdev *dp, struct dp_netdev_pmd_thread *pmd)
2868 {
2869 /* Uninit the 'flow_cache' since there is
2870 * no actual thread uninit it for NON_PMD_CORE_ID. */
2871 if (pmd->core_id == NON_PMD_CORE_ID) {
2872 emc_cache_uninit(&pmd->flow_cache);
2873 } else {
2874 latch_set(&pmd->exit_latch);
2875 dp_netdev_reload_pmd__(pmd);
2876 ovs_numa_unpin_core(pmd->core_id);
2877 xpthread_join(pmd->thread, NULL);
2878 }
2879 /* Purges the 'pmd''s flows after stopping the thread, but before
2880 * destroying the flows, so that the flow stats can be collected. */
2881 if (dp->dp_purge_cb) {
2882 dp->dp_purge_cb(dp->dp_purge_aux, pmd->core_id);
2883 }
2884 cmap_remove(&pmd->dp->poll_threads, &pmd->node, hash_int(pmd->core_id, 0));
2885 dp_netdev_pmd_unref(pmd);
2886 }
2887
2888 /* Destroys all pmd threads. */
2889 static void
2890 dp_netdev_destroy_all_pmds(struct dp_netdev *dp)
2891 {
2892 struct dp_netdev_pmd_thread *pmd;
2893
2894 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
2895 dp_netdev_del_pmd(dp, pmd);
2896 }
2897 }
2898
2899 /* Deletes all pmd threads on numa node 'numa_id'. */
2900 static void
2901 dp_netdev_del_pmds_on_numa(struct dp_netdev *dp, int numa_id)
2902 {
2903 struct dp_netdev_pmd_thread *pmd;
2904
2905 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
2906 if (pmd->numa_id == numa_id) {
2907 dp_netdev_del_pmd(dp, pmd);
2908 }
2909 }
2910 }
2911
2912 /* Checks the numa node id of 'netdev' and starts pmd threads for
2913 * the numa node. */
2914 static void
2915 dp_netdev_set_pmds_on_numa(struct dp_netdev *dp, int numa_id)
2916 {
2917 int n_pmds;
2918
2919 if (!ovs_numa_numa_id_is_valid(numa_id)) {
2920 VLOG_ERR("Cannot create pmd threads due to numa id (%d)"
2921 "invalid", numa_id);
2922 return ;
2923 }
2924
2925 n_pmds = get_n_pmd_threads_on_numa(dp, numa_id);
2926
2927 /* If there are already pmd threads created for the numa node
2928 * in which 'netdev' is on, do nothing. Else, creates the
2929 * pmd threads for the numa node. */
2930 if (!n_pmds) {
2931 int can_have, n_unpinned, i;
2932 struct dp_netdev_pmd_thread **pmds;
2933
2934 n_unpinned = ovs_numa_get_n_unpinned_cores_on_numa(numa_id);
2935 if (!n_unpinned) {
2936 VLOG_ERR("Cannot create pmd threads due to out of unpinned "
2937 "cores on numa node");
2938 return;
2939 }
2940
2941 /* If cpu mask is specified, uses all unpinned cores, otherwise
2942 * tries creating NR_PMD_THREADS pmd threads. */
2943 can_have = dp->pmd_cmask ? n_unpinned : MIN(n_unpinned, NR_PMD_THREADS);
2944 pmds = xzalloc(can_have * sizeof *pmds);
2945 for (i = 0; i < can_have; i++) {
2946 unsigned core_id = ovs_numa_get_unpinned_core_on_numa(numa_id);
2947 pmds[i] = xzalloc(sizeof **pmds);
2948 dp_netdev_configure_pmd(pmds[i], dp, i, core_id, numa_id);
2949 }
2950 /* The pmd thread code needs to see all the others configured pmd
2951 * threads on the same numa node. That's why we call
2952 * 'dp_netdev_configure_pmd()' on all the threads and then we actually
2953 * start them. */
2954 for (i = 0; i < can_have; i++) {
2955 /* Each thread will distribute all devices rx-queues among
2956 * themselves. */
2957 pmds[i]->thread = ovs_thread_create("pmd", pmd_thread_main, pmds[i]);
2958 }
2959 free(pmds);
2960 VLOG_INFO("Created %d pmd threads on numa node %d", can_have, numa_id);
2961 }
2962 }
2963
2964 \f
2965 /* Called after pmd threads config change. Restarts pmd threads with
2966 * new configuration. */
2967 static void
2968 dp_netdev_reset_pmd_threads(struct dp_netdev *dp)
2969 {
2970 struct dp_netdev_port *port;
2971
2972 CMAP_FOR_EACH (port, node, &dp->ports) {
2973 if (netdev_is_pmd(port->netdev)) {
2974 int numa_id = netdev_get_numa_id(port->netdev);
2975
2976 dp_netdev_set_pmds_on_numa(dp, numa_id);
2977 }
2978 }
2979 }
2980
2981 static char *
2982 dpif_netdev_get_datapath_version(void)
2983 {
2984 return xstrdup("<built-in>");
2985 }
2986
2987 static void
2988 dp_netdev_flow_used(struct dp_netdev_flow *netdev_flow, int cnt, int size,
2989 uint16_t tcp_flags, long long now)
2990 {
2991 uint16_t flags;
2992
2993 atomic_store_relaxed(&netdev_flow->stats.used, now);
2994 non_atomic_ullong_add(&netdev_flow->stats.packet_count, cnt);
2995 non_atomic_ullong_add(&netdev_flow->stats.byte_count, size);
2996 atomic_read_relaxed(&netdev_flow->stats.tcp_flags, &flags);
2997 flags |= tcp_flags;
2998 atomic_store_relaxed(&netdev_flow->stats.tcp_flags, flags);
2999 }
3000
3001 static void
3002 dp_netdev_count_packet(struct dp_netdev_pmd_thread *pmd,
3003 enum dp_stat_type type, int cnt)
3004 {
3005 non_atomic_ullong_add(&pmd->stats.n[type], cnt);
3006 }
3007
3008 static int
3009 dp_netdev_upcall(struct dp_netdev_pmd_thread *pmd, struct dp_packet *packet_,
3010 struct flow *flow, struct flow_wildcards *wc, ovs_u128 *ufid,
3011 enum dpif_upcall_type type, const struct nlattr *userdata,
3012 struct ofpbuf *actions, struct ofpbuf *put_actions)
3013 {
3014 struct dp_netdev *dp = pmd->dp;
3015 struct flow_tnl orig_tunnel;
3016 int err;
3017
3018 if (OVS_UNLIKELY(!dp->upcall_cb)) {
3019 return ENODEV;
3020 }
3021
3022 /* Upcall processing expects the Geneve options to be in the translated
3023 * format but we need to retain the raw format for datapath use. */
3024 orig_tunnel.flags = flow->tunnel.flags;
3025 if (flow->tunnel.flags & FLOW_TNL_F_UDPIF) {
3026 orig_tunnel.metadata.present.len = flow->tunnel.metadata.present.len;
3027 memcpy(orig_tunnel.metadata.opts.gnv, flow->tunnel.metadata.opts.gnv,
3028 flow->tunnel.metadata.present.len);
3029 err = tun_metadata_from_geneve_udpif(&orig_tunnel, &orig_tunnel,
3030 &flow->tunnel);
3031 if (err) {
3032 return err;
3033 }
3034 }
3035
3036 if (OVS_UNLIKELY(!VLOG_DROP_DBG(&upcall_rl))) {
3037 struct ds ds = DS_EMPTY_INITIALIZER;
3038 char *packet_str;
3039 struct ofpbuf key;
3040 struct odp_flow_key_parms odp_parms = {
3041 .flow = flow,
3042 .mask = &wc->masks,
3043 .odp_in_port = flow->in_port.odp_port,
3044 .support = dp_netdev_support,
3045 };
3046
3047 ofpbuf_init(&key, 0);
3048 odp_flow_key_from_flow(&odp_parms, &key);
3049 packet_str = ofp_packet_to_string(dp_packet_data(packet_),
3050 dp_packet_size(packet_));
3051
3052 odp_flow_key_format(key.data, key.size, &ds);
3053
3054 VLOG_DBG("%s: %s upcall:\n%s\n%s", dp->name,
3055 dpif_upcall_type_to_string(type), ds_cstr(&ds), packet_str);
3056
3057 ofpbuf_uninit(&key);
3058 free(packet_str);
3059
3060 ds_destroy(&ds);
3061 }
3062
3063 err = dp->upcall_cb(packet_, flow, ufid, pmd->core_id, type, userdata,
3064 actions, wc, put_actions, dp->upcall_aux);
3065 if (err && err != ENOSPC) {
3066 return err;
3067 }
3068
3069 /* Translate tunnel metadata masks to datapath format. */
3070 if (wc) {
3071 if (wc->masks.tunnel.metadata.present.map) {
3072 struct geneve_opt opts[GENEVE_TOT_OPT_SIZE /
3073 sizeof(struct geneve_opt)];
3074
3075 tun_metadata_to_geneve_udpif_mask(&flow->tunnel,
3076 &wc->masks.tunnel,
3077 orig_tunnel.metadata.opts.gnv,
3078 orig_tunnel.metadata.present.len,
3079 opts);
3080
3081 memset(&wc->masks.tunnel.metadata, 0,
3082 sizeof wc->masks.tunnel.metadata);
3083 memcpy(&wc->masks.tunnel.metadata.opts.gnv, opts,
3084 orig_tunnel.metadata.present.len);
3085 }
3086 wc->masks.tunnel.metadata.present.len = 0xff;
3087 }
3088
3089 /* Restore tunnel metadata. We need to use the saved options to ensure
3090 * that any unknown options are not lost. The generated mask will have
3091 * the same structure, matching on types and lengths but wildcarding
3092 * option data we don't care about. */
3093 if (orig_tunnel.flags & FLOW_TNL_F_UDPIF) {
3094 memcpy(&flow->tunnel.metadata.opts.gnv, orig_tunnel.metadata.opts.gnv,
3095 orig_tunnel.metadata.present.len);
3096 flow->tunnel.metadata.present.len = orig_tunnel.metadata.present.len;
3097 flow->tunnel.flags |= FLOW_TNL_F_UDPIF;
3098 }
3099
3100 return err;
3101 }
3102
3103 static inline uint32_t
3104 dpif_netdev_packet_get_rss_hash(struct dp_packet *packet,
3105 const struct miniflow *mf)
3106 {
3107 uint32_t hash, recirc_depth;
3108
3109 if (OVS_LIKELY(dp_packet_rss_valid(packet))) {
3110 hash = dp_packet_get_rss_hash(packet);
3111 } else {
3112 hash = miniflow_hash_5tuple(mf, 0);
3113 dp_packet_set_rss_hash(packet, hash);
3114 }
3115
3116 /* The RSS hash must account for the recirculation depth to avoid
3117 * collisions in the exact match cache */
3118 recirc_depth = *recirc_depth_get_unsafe();
3119 if (OVS_UNLIKELY(recirc_depth)) {
3120 hash = hash_finish(hash, recirc_depth);
3121 dp_packet_set_rss_hash(packet, hash);
3122 }
3123 return hash;
3124 }
3125
3126 struct packet_batch {
3127 unsigned int packet_count;
3128 unsigned int byte_count;
3129 uint16_t tcp_flags;
3130
3131 struct dp_netdev_flow *flow;
3132
3133 struct dp_packet *packets[NETDEV_MAX_BURST];
3134 };
3135
3136 static inline void
3137 packet_batch_update(struct packet_batch *batch, struct dp_packet *packet,
3138 const struct miniflow *mf)
3139 {
3140 batch->tcp_flags |= miniflow_get_tcp_flags(mf);
3141 batch->packets[batch->packet_count++] = packet;
3142 batch->byte_count += dp_packet_size(packet);
3143 }
3144
3145 static inline void
3146 packet_batch_init(struct packet_batch *batch, struct dp_netdev_flow *flow)
3147 {
3148 flow->batch = batch;
3149
3150 batch->flow = flow;
3151 batch->packet_count = 0;
3152 batch->byte_count = 0;
3153 batch->tcp_flags = 0;
3154 }
3155
3156 static inline void
3157 packet_batch_execute(struct packet_batch *batch,
3158 struct dp_netdev_pmd_thread *pmd,
3159 long long now)
3160 {
3161 struct dp_netdev_actions *actions;
3162 struct dp_netdev_flow *flow = batch->flow;
3163
3164 dp_netdev_flow_used(flow, batch->packet_count, batch->byte_count,
3165 batch->tcp_flags, now);
3166
3167 actions = dp_netdev_flow_get_actions(flow);
3168
3169 dp_netdev_execute_actions(pmd, batch->packets, batch->packet_count, true,
3170 actions->actions, actions->size);
3171 }
3172
3173 static inline void
3174 dp_netdev_queue_batches(struct dp_packet *pkt,
3175 struct dp_netdev_flow *flow, const struct miniflow *mf,
3176 struct packet_batch *batches, size_t *n_batches)
3177 {
3178 struct packet_batch *batch = flow->batch;
3179
3180 if (OVS_LIKELY(batch)) {
3181 packet_batch_update(batch, pkt, mf);
3182 return;
3183 }
3184
3185 batch = &batches[(*n_batches)++];
3186 packet_batch_init(batch, flow);
3187 packet_batch_update(batch, pkt, mf);
3188 }
3189
3190 static inline void
3191 dp_packet_swap(struct dp_packet **a, struct dp_packet **b)
3192 {
3193 struct dp_packet *tmp = *a;
3194 *a = *b;
3195 *b = tmp;
3196 }
3197
3198 /* Try to process all ('cnt') the 'packets' using only the exact match cache
3199 * 'flow_cache'. If a flow is not found for a packet 'packets[i]', the
3200 * miniflow is copied into 'keys' and the packet pointer is moved at the
3201 * beginning of the 'packets' array.
3202 *
3203 * The function returns the number of packets that needs to be processed in the
3204 * 'packets' array (they have been moved to the beginning of the vector).
3205 */
3206 static inline size_t
3207 emc_processing(struct dp_netdev_pmd_thread *pmd, struct dp_packet **packets,
3208 size_t cnt, struct netdev_flow_key *keys,
3209 struct packet_batch batches[], size_t *n_batches)
3210 {
3211 struct emc_cache *flow_cache = &pmd->flow_cache;
3212 struct netdev_flow_key key;
3213 size_t i, notfound_cnt = 0;
3214
3215 for (i = 0; i < cnt; i++) {
3216 struct dp_netdev_flow *flow;
3217
3218 if (OVS_UNLIKELY(dp_packet_size(packets[i]) < ETH_HEADER_LEN)) {
3219 dp_packet_delete(packets[i]);
3220 continue;
3221 }
3222
3223 if (i != cnt - 1) {
3224 /* Prefetch next packet data */
3225 OVS_PREFETCH(dp_packet_data(packets[i+1]));
3226 }
3227
3228 miniflow_extract(packets[i], &key.mf);
3229 key.len = 0; /* Not computed yet. */
3230 key.hash = dpif_netdev_packet_get_rss_hash(packets[i], &key.mf);
3231
3232 flow = emc_lookup(flow_cache, &key);
3233 if (OVS_LIKELY(flow)) {
3234 dp_netdev_queue_batches(packets[i], flow, &key.mf, batches,
3235 n_batches);
3236 } else {
3237 if (i != notfound_cnt) {
3238 dp_packet_swap(&packets[i], &packets[notfound_cnt]);
3239 }
3240
3241 keys[notfound_cnt++] = key;
3242 }
3243 }
3244
3245 dp_netdev_count_packet(pmd, DP_STAT_EXACT_HIT, cnt - notfound_cnt);
3246
3247 return notfound_cnt;
3248 }
3249
3250 static inline void
3251 fast_path_processing(struct dp_netdev_pmd_thread *pmd,
3252 struct dp_packet **packets, size_t cnt,
3253 struct netdev_flow_key *keys,
3254 struct packet_batch batches[], size_t *n_batches)
3255 {
3256 #if !defined(__CHECKER__) && !defined(_WIN32)
3257 const size_t PKT_ARRAY_SIZE = cnt;
3258 #else
3259 /* Sparse or MSVC doesn't like variable length array. */
3260 enum { PKT_ARRAY_SIZE = NETDEV_MAX_BURST };
3261 #endif
3262 struct dpcls_rule *rules[PKT_ARRAY_SIZE];
3263 struct dp_netdev *dp = pmd->dp;
3264 struct emc_cache *flow_cache = &pmd->flow_cache;
3265 int miss_cnt = 0, lost_cnt = 0;
3266 bool any_miss;
3267 size_t i;
3268
3269 for (i = 0; i < cnt; i++) {
3270 /* Key length is needed in all the cases, hash computed on demand. */
3271 keys[i].len = netdev_flow_key_size(miniflow_n_values(&keys[i].mf));
3272 }
3273 any_miss = !dpcls_lookup(&pmd->cls, keys, rules, cnt);
3274 if (OVS_UNLIKELY(any_miss) && !fat_rwlock_tryrdlock(&dp->upcall_rwlock)) {
3275 uint64_t actions_stub[512 / 8], slow_stub[512 / 8];
3276 struct ofpbuf actions, put_actions;
3277 ovs_u128 ufid;
3278
3279 ofpbuf_use_stub(&actions, actions_stub, sizeof actions_stub);
3280 ofpbuf_use_stub(&put_actions, slow_stub, sizeof slow_stub);
3281
3282 for (i = 0; i < cnt; i++) {
3283 struct dp_netdev_flow *netdev_flow;
3284 struct ofpbuf *add_actions;
3285 struct match match;
3286 int error;
3287
3288 if (OVS_LIKELY(rules[i])) {
3289 continue;
3290 }
3291
3292 /* It's possible that an earlier slow path execution installed
3293 * a rule covering this flow. In this case, it's a lot cheaper
3294 * to catch it here than execute a miss. */
3295 netdev_flow = dp_netdev_pmd_lookup_flow(pmd, &keys[i]);
3296 if (netdev_flow) {
3297 rules[i] = &netdev_flow->cr;
3298 continue;
3299 }
3300
3301 miss_cnt++;
3302
3303 miniflow_expand(&keys[i].mf, &match.flow);
3304
3305 ofpbuf_clear(&actions);
3306 ofpbuf_clear(&put_actions);
3307
3308 dpif_flow_hash(dp->dpif, &match.flow, sizeof match.flow, &ufid);
3309 error = dp_netdev_upcall(pmd, packets[i], &match.flow, &match.wc,
3310 &ufid, DPIF_UC_MISS, NULL, &actions,
3311 &put_actions);
3312 if (OVS_UNLIKELY(error && error != ENOSPC)) {
3313 dp_packet_delete(packets[i]);
3314 lost_cnt++;
3315 continue;
3316 }
3317
3318 /* The Netlink encoding of datapath flow keys cannot express
3319 * wildcarding the presence of a VLAN tag. Instead, a missing VLAN
3320 * tag is interpreted as exact match on the fact that there is no
3321 * VLAN. Unless we refactor a lot of code that translates between
3322 * Netlink and struct flow representations, we have to do the same
3323 * here. */
3324 if (!match.wc.masks.vlan_tci) {
3325 match.wc.masks.vlan_tci = htons(0xffff);
3326 }
3327
3328 /* We can't allow the packet batching in the next loop to execute
3329 * the actions. Otherwise, if there are any slow path actions,
3330 * we'll send the packet up twice. */
3331 dp_netdev_execute_actions(pmd, &packets[i], 1, true,
3332 actions.data, actions.size);
3333
3334 add_actions = put_actions.size ? &put_actions : &actions;
3335 if (OVS_LIKELY(error != ENOSPC)) {
3336 /* XXX: There's a race window where a flow covering this packet
3337 * could have already been installed since we last did the flow
3338 * lookup before upcall. This could be solved by moving the
3339 * mutex lock outside the loop, but that's an awful long time
3340 * to be locking everyone out of making flow installs. If we
3341 * move to a per-core classifier, it would be reasonable. */
3342 ovs_mutex_lock(&pmd->flow_mutex);
3343 netdev_flow = dp_netdev_pmd_lookup_flow(pmd, &keys[i]);
3344 if (OVS_LIKELY(!netdev_flow)) {
3345 netdev_flow = dp_netdev_flow_add(pmd, &match, &ufid,
3346 add_actions->data,
3347 add_actions->size);
3348 }
3349 ovs_mutex_unlock(&pmd->flow_mutex);
3350
3351 emc_insert(flow_cache, &keys[i], netdev_flow);
3352 }
3353 }
3354
3355 ofpbuf_uninit(&actions);
3356 ofpbuf_uninit(&put_actions);
3357 fat_rwlock_unlock(&dp->upcall_rwlock);
3358 dp_netdev_count_packet(pmd, DP_STAT_LOST, lost_cnt);
3359 } else if (OVS_UNLIKELY(any_miss)) {
3360 for (i = 0; i < cnt; i++) {
3361 if (OVS_UNLIKELY(!rules[i])) {
3362 dp_packet_delete(packets[i]);
3363 lost_cnt++;
3364 miss_cnt++;
3365 }
3366 }
3367 }
3368
3369 for (i = 0; i < cnt; i++) {
3370 struct dp_packet *packet = packets[i];
3371 struct dp_netdev_flow *flow;
3372
3373 if (OVS_UNLIKELY(!rules[i])) {
3374 continue;
3375 }
3376
3377 flow = dp_netdev_flow_cast(rules[i]);
3378
3379 emc_insert(flow_cache, &keys[i], flow);
3380 dp_netdev_queue_batches(packet, flow, &keys[i].mf, batches, n_batches);
3381 }
3382
3383 dp_netdev_count_packet(pmd, DP_STAT_MASKED_HIT, cnt - miss_cnt);
3384 dp_netdev_count_packet(pmd, DP_STAT_MISS, miss_cnt);
3385 dp_netdev_count_packet(pmd, DP_STAT_LOST, lost_cnt);
3386 }
3387
3388 static void
3389 dp_netdev_input(struct dp_netdev_pmd_thread *pmd,
3390 struct dp_packet **packets, int cnt)
3391 {
3392 #if !defined(__CHECKER__) && !defined(_WIN32)
3393 const size_t PKT_ARRAY_SIZE = cnt;
3394 #else
3395 /* Sparse or MSVC doesn't like variable length array. */
3396 enum { PKT_ARRAY_SIZE = NETDEV_MAX_BURST };
3397 #endif
3398 struct netdev_flow_key keys[PKT_ARRAY_SIZE];
3399 struct packet_batch batches[PKT_ARRAY_SIZE];
3400 long long now = time_msec();
3401 size_t newcnt, n_batches, i;
3402
3403 n_batches = 0;
3404 newcnt = emc_processing(pmd, packets, cnt, keys, batches, &n_batches);
3405 if (OVS_UNLIKELY(newcnt)) {
3406 fast_path_processing(pmd, packets, newcnt, keys, batches, &n_batches);
3407 }
3408
3409 for (i = 0; i < n_batches; i++) {
3410 batches[i].flow->batch = NULL;
3411 }
3412
3413 for (i = 0; i < n_batches; i++) {
3414 packet_batch_execute(&batches[i], pmd, now);
3415 }
3416 }
3417
3418 struct dp_netdev_execute_aux {
3419 struct dp_netdev_pmd_thread *pmd;
3420 };
3421
3422 static void
3423 dpif_netdev_register_dp_purge_cb(struct dpif *dpif, dp_purge_callback *cb,
3424 void *aux)
3425 {
3426 struct dp_netdev *dp = get_dp_netdev(dpif);
3427 dp->dp_purge_aux = aux;
3428 dp->dp_purge_cb = cb;
3429 }
3430
3431 static void
3432 dpif_netdev_register_upcall_cb(struct dpif *dpif, upcall_callback *cb,
3433 void *aux)
3434 {
3435 struct dp_netdev *dp = get_dp_netdev(dpif);
3436 dp->upcall_aux = aux;
3437 dp->upcall_cb = cb;
3438 }
3439
3440 static void
3441 dp_netdev_drop_packets(struct dp_packet **packets, int cnt, bool may_steal)
3442 {
3443 if (may_steal) {
3444 int i;
3445
3446 for (i = 0; i < cnt; i++) {
3447 dp_packet_delete(packets[i]);
3448 }
3449 }
3450 }
3451
3452 static int
3453 push_tnl_action(const struct dp_netdev *dp,
3454 const struct nlattr *attr,
3455 struct dp_packet **packets, int cnt)
3456 {
3457 struct dp_netdev_port *tun_port;
3458 const struct ovs_action_push_tnl *data;
3459
3460 data = nl_attr_get(attr);
3461
3462 tun_port = dp_netdev_lookup_port(dp, u32_to_odp(data->tnl_port));
3463 if (!tun_port) {
3464 return -EINVAL;
3465 }
3466 netdev_push_header(tun_port->netdev, packets, cnt, data);
3467
3468 return 0;
3469 }
3470
3471 static void
3472 dp_netdev_clone_pkt_batch(struct dp_packet **dst_pkts,
3473 struct dp_packet **src_pkts, int cnt)
3474 {
3475 int i;
3476
3477 for (i = 0; i < cnt; i++) {
3478 dst_pkts[i] = dp_packet_clone(src_pkts[i]);
3479 }
3480 }
3481
3482 static void
3483 dp_execute_cb(void *aux_, struct dp_packet **packets, int cnt,
3484 const struct nlattr *a, bool may_steal)
3485 OVS_NO_THREAD_SAFETY_ANALYSIS
3486 {
3487 struct dp_netdev_execute_aux *aux = aux_;
3488 uint32_t *depth = recirc_depth_get();
3489 struct dp_netdev_pmd_thread *pmd = aux->pmd;
3490 struct dp_netdev *dp = pmd->dp;
3491 int type = nl_attr_type(a);
3492 struct dp_netdev_port *p;
3493 int i;
3494
3495 switch ((enum ovs_action_attr)type) {
3496 case OVS_ACTION_ATTR_OUTPUT:
3497 p = dp_netdev_lookup_port(dp, u32_to_odp(nl_attr_get_u32(a)));
3498 if (OVS_LIKELY(p)) {
3499 netdev_send(p->netdev, pmd->tx_qid, packets, cnt, may_steal);
3500 return;
3501 }
3502 break;
3503
3504 case OVS_ACTION_ATTR_TUNNEL_PUSH:
3505 if (*depth < MAX_RECIRC_DEPTH) {
3506 struct dp_packet *tnl_pkt[NETDEV_MAX_BURST];
3507 int err;
3508
3509 if (!may_steal) {
3510 dp_netdev_clone_pkt_batch(tnl_pkt, packets, cnt);
3511 packets = tnl_pkt;
3512 }
3513
3514 err = push_tnl_action(dp, a, packets, cnt);
3515 if (!err) {
3516 (*depth)++;
3517 dp_netdev_input(pmd, packets, cnt);
3518 (*depth)--;
3519 } else {
3520 dp_netdev_drop_packets(tnl_pkt, cnt, !may_steal);
3521 }
3522 return;
3523 }
3524 break;
3525
3526 case OVS_ACTION_ATTR_TUNNEL_POP:
3527 if (*depth < MAX_RECIRC_DEPTH) {
3528 odp_port_t portno = u32_to_odp(nl_attr_get_u32(a));
3529
3530 p = dp_netdev_lookup_port(dp, portno);
3531 if (p) {
3532 struct dp_packet *tnl_pkt[NETDEV_MAX_BURST];
3533 int err;
3534
3535 if (!may_steal) {
3536 dp_netdev_clone_pkt_batch(tnl_pkt, packets, cnt);
3537 packets = tnl_pkt;
3538 }
3539
3540 err = netdev_pop_header(p->netdev, packets, cnt);
3541 if (!err) {
3542
3543 for (i = 0; i < cnt; i++) {
3544 packets[i]->md.in_port.odp_port = portno;
3545 }
3546
3547 (*depth)++;
3548 dp_netdev_input(pmd, packets, cnt);
3549 (*depth)--;
3550 } else {
3551 dp_netdev_drop_packets(tnl_pkt, cnt, !may_steal);
3552 }
3553 return;
3554 }
3555 }
3556 break;
3557
3558 case OVS_ACTION_ATTR_USERSPACE:
3559 if (!fat_rwlock_tryrdlock(&dp->upcall_rwlock)) {
3560 const struct nlattr *userdata;
3561 struct ofpbuf actions;
3562 struct flow flow;
3563 ovs_u128 ufid;
3564
3565 userdata = nl_attr_find_nested(a, OVS_USERSPACE_ATTR_USERDATA);
3566 ofpbuf_init(&actions, 0);
3567
3568 for (i = 0; i < cnt; i++) {
3569 int error;
3570
3571 ofpbuf_clear(&actions);
3572
3573 flow_extract(packets[i], &flow);
3574 dpif_flow_hash(dp->dpif, &flow, sizeof flow, &ufid);
3575 error = dp_netdev_upcall(pmd, packets[i], &flow, NULL, &ufid,
3576 DPIF_UC_ACTION, userdata,&actions,
3577 NULL);
3578 if (!error || error == ENOSPC) {
3579 dp_netdev_execute_actions(pmd, &packets[i], 1, may_steal,
3580 actions.data, actions.size);
3581 } else if (may_steal) {
3582 dp_packet_delete(packets[i]);
3583 }
3584 }
3585 ofpbuf_uninit(&actions);
3586 fat_rwlock_unlock(&dp->upcall_rwlock);
3587
3588 return;
3589 }
3590 break;
3591
3592 case OVS_ACTION_ATTR_RECIRC:
3593 if (*depth < MAX_RECIRC_DEPTH) {
3594 struct dp_packet *recirc_pkts[NETDEV_MAX_BURST];
3595
3596 if (!may_steal) {
3597 dp_netdev_clone_pkt_batch(recirc_pkts, packets, cnt);
3598 packets = recirc_pkts;
3599 }
3600
3601 for (i = 0; i < cnt; i++) {
3602 packets[i]->md.recirc_id = nl_attr_get_u32(a);
3603 }
3604
3605 (*depth)++;
3606 dp_netdev_input(pmd, packets, cnt);
3607 (*depth)--;
3608
3609 return;
3610 }
3611
3612 VLOG_WARN("Packet dropped. Max recirculation depth exceeded.");
3613 break;
3614
3615 case OVS_ACTION_ATTR_CT:
3616 /* If a flow with this action is slow-pathed, datapath assistance is
3617 * required to implement it. However, we don't support this action
3618 * in the userspace datapath. */
3619 VLOG_WARN("Cannot execute conntrack action in userspace.");
3620 break;
3621
3622 case OVS_ACTION_ATTR_PUSH_VLAN:
3623 case OVS_ACTION_ATTR_POP_VLAN:
3624 case OVS_ACTION_ATTR_PUSH_MPLS:
3625 case OVS_ACTION_ATTR_POP_MPLS:
3626 case OVS_ACTION_ATTR_SET:
3627 case OVS_ACTION_ATTR_SET_MASKED:
3628 case OVS_ACTION_ATTR_SAMPLE:
3629 case OVS_ACTION_ATTR_HASH:
3630 case OVS_ACTION_ATTR_UNSPEC:
3631 case __OVS_ACTION_ATTR_MAX:
3632 OVS_NOT_REACHED();
3633 }
3634
3635 dp_netdev_drop_packets(packets, cnt, may_steal);
3636 }
3637
3638 static void
3639 dp_netdev_execute_actions(struct dp_netdev_pmd_thread *pmd,
3640 struct dp_packet **packets, int cnt,
3641 bool may_steal,
3642 const struct nlattr *actions, size_t actions_len)
3643 {
3644 struct dp_netdev_execute_aux aux = { pmd };
3645
3646 odp_execute_actions(&aux, packets, cnt, may_steal, actions,
3647 actions_len, dp_execute_cb);
3648 }
3649
3650 const struct dpif_class dpif_netdev_class = {
3651 "netdev",
3652 dpif_netdev_init,
3653 dpif_netdev_enumerate,
3654 dpif_netdev_port_open_type,
3655 dpif_netdev_open,
3656 dpif_netdev_close,
3657 dpif_netdev_destroy,
3658 dpif_netdev_run,
3659 dpif_netdev_wait,
3660 dpif_netdev_get_stats,
3661 dpif_netdev_port_add,
3662 dpif_netdev_port_del,
3663 dpif_netdev_port_query_by_number,
3664 dpif_netdev_port_query_by_name,
3665 NULL, /* port_get_pid */
3666 dpif_netdev_port_dump_start,
3667 dpif_netdev_port_dump_next,
3668 dpif_netdev_port_dump_done,
3669 dpif_netdev_port_poll,
3670 dpif_netdev_port_poll_wait,
3671 dpif_netdev_flow_flush,
3672 dpif_netdev_flow_dump_create,
3673 dpif_netdev_flow_dump_destroy,
3674 dpif_netdev_flow_dump_thread_create,
3675 dpif_netdev_flow_dump_thread_destroy,
3676 dpif_netdev_flow_dump_next,
3677 dpif_netdev_operate,
3678 NULL, /* recv_set */
3679 NULL, /* handlers_set */
3680 dpif_netdev_pmd_set,
3681 dpif_netdev_queue_to_priority,
3682 NULL, /* recv */
3683 NULL, /* recv_wait */
3684 NULL, /* recv_purge */
3685 dpif_netdev_register_dp_purge_cb,
3686 dpif_netdev_register_upcall_cb,
3687 dpif_netdev_enable_upcall,
3688 dpif_netdev_disable_upcall,
3689 dpif_netdev_get_datapath_version,
3690 };
3691
3692 static void
3693 dpif_dummy_change_port_number(struct unixctl_conn *conn, int argc OVS_UNUSED,
3694 const char *argv[], void *aux OVS_UNUSED)
3695 {
3696 struct dp_netdev_port *old_port;
3697 struct dp_netdev_port *new_port;
3698 struct dp_netdev *dp;
3699 odp_port_t port_no;
3700
3701 ovs_mutex_lock(&dp_netdev_mutex);
3702 dp = shash_find_data(&dp_netdevs, argv[1]);
3703 if (!dp || !dpif_netdev_class_is_dummy(dp->class)) {
3704 ovs_mutex_unlock(&dp_netdev_mutex);
3705 unixctl_command_reply_error(conn, "unknown datapath or not a dummy");
3706 return;
3707 }
3708 ovs_refcount_ref(&dp->ref_cnt);
3709 ovs_mutex_unlock(&dp_netdev_mutex);
3710
3711 ovs_mutex_lock(&dp->port_mutex);
3712 if (get_port_by_name(dp, argv[2], &old_port)) {
3713 unixctl_command_reply_error(conn, "unknown port");
3714 goto exit;
3715 }
3716
3717 port_no = u32_to_odp(atoi(argv[3]));
3718 if (!port_no || port_no == ODPP_NONE) {
3719 unixctl_command_reply_error(conn, "bad port number");
3720 goto exit;
3721 }
3722 if (dp_netdev_lookup_port(dp, port_no)) {
3723 unixctl_command_reply_error(conn, "port number already in use");
3724 goto exit;
3725 }
3726
3727 /* Remove old port. */
3728 cmap_remove(&dp->ports, &old_port->node, hash_port_no(old_port->port_no));
3729 ovsrcu_postpone(free, old_port);
3730
3731 /* Insert new port (cmap semantics mean we cannot re-insert 'old_port'). */
3732 new_port = xmemdup(old_port, sizeof *old_port);
3733 new_port->port_no = port_no;
3734 cmap_insert(&dp->ports, &new_port->node, hash_port_no(port_no));
3735
3736 seq_change(dp->port_seq);
3737 unixctl_command_reply(conn, NULL);
3738
3739 exit:
3740 ovs_mutex_unlock(&dp->port_mutex);
3741 dp_netdev_unref(dp);
3742 }
3743
3744 static void
3745 dpif_dummy_delete_port(struct unixctl_conn *conn, int argc OVS_UNUSED,
3746 const char *argv[], void *aux OVS_UNUSED)
3747 {
3748 struct dp_netdev_port *port;
3749 struct dp_netdev *dp;
3750
3751 ovs_mutex_lock(&dp_netdev_mutex);
3752 dp = shash_find_data(&dp_netdevs, argv[1]);
3753 if (!dp || !dpif_netdev_class_is_dummy(dp->class)) {
3754 ovs_mutex_unlock(&dp_netdev_mutex);
3755 unixctl_command_reply_error(conn, "unknown datapath or not a dummy");
3756 return;
3757 }
3758 ovs_refcount_ref(&dp->ref_cnt);
3759 ovs_mutex_unlock(&dp_netdev_mutex);
3760
3761 ovs_mutex_lock(&dp->port_mutex);
3762 if (get_port_by_name(dp, argv[2], &port)) {
3763 unixctl_command_reply_error(conn, "unknown port");
3764 } else if (port->port_no == ODPP_LOCAL) {
3765 unixctl_command_reply_error(conn, "can't delete local port");
3766 } else {
3767 do_del_port(dp, port);
3768 unixctl_command_reply(conn, NULL);
3769 }
3770 ovs_mutex_unlock(&dp->port_mutex);
3771
3772 dp_netdev_unref(dp);
3773 }
3774
3775 static void
3776 dpif_dummy_register__(const char *type)
3777 {
3778 struct dpif_class *class;
3779
3780 class = xmalloc(sizeof *class);
3781 *class = dpif_netdev_class;
3782 class->type = xstrdup(type);
3783 dp_register_provider(class);
3784 }
3785
3786 static void
3787 dpif_dummy_override(const char *type)
3788 {
3789 int error;
3790
3791 /*
3792 * Ignore EAFNOSUPPORT to allow --enable-dummy=system with
3793 * a userland-only build. It's useful for testsuite.
3794 */
3795 error = dp_unregister_provider(type);
3796 if (error == 0 || error == EAFNOSUPPORT) {
3797 dpif_dummy_register__(type);
3798 }
3799 }
3800
3801 void
3802 dpif_dummy_register(enum dummy_level level)
3803 {
3804 if (level == DUMMY_OVERRIDE_ALL) {
3805 struct sset types;
3806 const char *type;
3807
3808 sset_init(&types);
3809 dp_enumerate_types(&types);
3810 SSET_FOR_EACH (type, &types) {
3811 dpif_dummy_override(type);
3812 }
3813 sset_destroy(&types);
3814 } else if (level == DUMMY_OVERRIDE_SYSTEM) {
3815 dpif_dummy_override("system");
3816 }
3817
3818 dpif_dummy_register__("dummy");
3819
3820 unixctl_command_register("dpif-dummy/change-port-number",
3821 "dp port new-number",
3822 3, 3, dpif_dummy_change_port_number, NULL);
3823 unixctl_command_register("dpif-dummy/delete-port", "dp port",
3824 2, 2, dpif_dummy_delete_port, NULL);
3825 }
3826 \f
3827 /* Datapath Classifier. */
3828
3829 /* A set of rules that all have the same fields wildcarded. */
3830 struct dpcls_subtable {
3831 /* The fields are only used by writers. */
3832 struct cmap_node cmap_node OVS_GUARDED; /* Within dpcls 'subtables_map'. */
3833
3834 /* These fields are accessed by readers. */
3835 struct cmap rules; /* Contains "struct dpcls_rule"s. */
3836 struct netdev_flow_key mask; /* Wildcards for fields (const). */
3837 /* 'mask' must be the last field, additional space is allocated here. */
3838 };
3839
3840 /* Initializes 'cls' as a classifier that initially contains no classification
3841 * rules. */
3842 static void
3843 dpcls_init(struct dpcls *cls)
3844 {
3845 cmap_init(&cls->subtables_map);
3846 pvector_init(&cls->subtables);
3847 }
3848
3849 static void
3850 dpcls_destroy_subtable(struct dpcls *cls, struct dpcls_subtable *subtable)
3851 {
3852 pvector_remove(&cls->subtables, subtable);
3853 cmap_remove(&cls->subtables_map, &subtable->cmap_node,
3854 subtable->mask.hash);
3855 cmap_destroy(&subtable->rules);
3856 ovsrcu_postpone(free, subtable);
3857 }
3858
3859 /* Destroys 'cls'. Rules within 'cls', if any, are not freed; this is the
3860 * caller's responsibility.
3861 * May only be called after all the readers have been terminated. */
3862 static void
3863 dpcls_destroy(struct dpcls *cls)
3864 {
3865 if (cls) {
3866 struct dpcls_subtable *subtable;
3867
3868 CMAP_FOR_EACH (subtable, cmap_node, &cls->subtables_map) {
3869 ovs_assert(cmap_count(&subtable->rules) == 0);
3870 dpcls_destroy_subtable(cls, subtable);
3871 }
3872 cmap_destroy(&cls->subtables_map);
3873 pvector_destroy(&cls->subtables);
3874 }
3875 }
3876
3877 static struct dpcls_subtable *
3878 dpcls_create_subtable(struct dpcls *cls, const struct netdev_flow_key *mask)
3879 {
3880 struct dpcls_subtable *subtable;
3881
3882 /* Need to add one. */
3883 subtable = xmalloc(sizeof *subtable
3884 - sizeof subtable->mask.mf + mask->len);
3885 cmap_init(&subtable->rules);
3886 netdev_flow_key_clone(&subtable->mask, mask);
3887 cmap_insert(&cls->subtables_map, &subtable->cmap_node, mask->hash);
3888 pvector_insert(&cls->subtables, subtable, 0);
3889 pvector_publish(&cls->subtables);
3890
3891 return subtable;
3892 }
3893
3894 static inline struct dpcls_subtable *
3895 dpcls_find_subtable(struct dpcls *cls, const struct netdev_flow_key *mask)
3896 {
3897 struct dpcls_subtable *subtable;
3898
3899 CMAP_FOR_EACH_WITH_HASH (subtable, cmap_node, mask->hash,
3900 &cls->subtables_map) {
3901 if (netdev_flow_key_equal(&subtable->mask, mask)) {
3902 return subtable;
3903 }
3904 }
3905 return dpcls_create_subtable(cls, mask);
3906 }
3907
3908 /* Insert 'rule' into 'cls'. */
3909 static void
3910 dpcls_insert(struct dpcls *cls, struct dpcls_rule *rule,
3911 const struct netdev_flow_key *mask)
3912 {
3913 struct dpcls_subtable *subtable = dpcls_find_subtable(cls, mask);
3914
3915 rule->mask = &subtable->mask;
3916 cmap_insert(&subtable->rules, &rule->cmap_node, rule->flow.hash);
3917 }
3918
3919 /* Removes 'rule' from 'cls', also destructing the 'rule'. */
3920 static void
3921 dpcls_remove(struct dpcls *cls, struct dpcls_rule *rule)
3922 {
3923 struct dpcls_subtable *subtable;
3924
3925 ovs_assert(rule->mask);
3926
3927 INIT_CONTAINER(subtable, rule->mask, mask);
3928
3929 if (cmap_remove(&subtable->rules, &rule->cmap_node, rule->flow.hash)
3930 == 0) {
3931 dpcls_destroy_subtable(cls, subtable);
3932 pvector_publish(&cls->subtables);
3933 }
3934 }
3935
3936 /* Returns true if 'target' satisfies 'key' in 'mask', that is, if each 1-bit
3937 * in 'mask' the values in 'key' and 'target' are the same. */
3938 static inline bool
3939 dpcls_rule_matches_key(const struct dpcls_rule *rule,
3940 const struct netdev_flow_key *target)
3941 {
3942 const uint64_t *keyp = miniflow_get_values(&rule->flow.mf);
3943 const uint64_t *maskp = miniflow_get_values(&rule->mask->mf);
3944 uint64_t value;
3945
3946 NETDEV_FLOW_KEY_FOR_EACH_IN_FLOWMAP(value, target, rule->flow.mf.map) {
3947 if (OVS_UNLIKELY((value & *maskp++) != *keyp++)) {
3948 return false;
3949 }
3950 }
3951 return true;
3952 }
3953
3954 /* For each miniflow in 'flows' performs a classifier lookup writing the result
3955 * into the corresponding slot in 'rules'. If a particular entry in 'flows' is
3956 * NULL it is skipped.
3957 *
3958 * This function is optimized for use in the userspace datapath and therefore
3959 * does not implement a lot of features available in the standard
3960 * classifier_lookup() function. Specifically, it does not implement
3961 * priorities, instead returning any rule which matches the flow.
3962 *
3963 * Returns true if all flows found a corresponding rule. */
3964 static bool
3965 dpcls_lookup(const struct dpcls *cls, const struct netdev_flow_key keys[],
3966 struct dpcls_rule **rules, const size_t cnt)
3967 {
3968 /* The batch size 16 was experimentally found faster than 8 or 32. */
3969 typedef uint16_t map_type;
3970 #define MAP_BITS (sizeof(map_type) * CHAR_BIT)
3971
3972 #if !defined(__CHECKER__) && !defined(_WIN32)
3973 const int N_MAPS = DIV_ROUND_UP(cnt, MAP_BITS);
3974 #else
3975 enum { N_MAPS = DIV_ROUND_UP(NETDEV_MAX_BURST, MAP_BITS) };
3976 #endif
3977 map_type maps[N_MAPS];
3978 struct dpcls_subtable *subtable;
3979
3980 memset(maps, 0xff, sizeof maps);
3981 if (cnt % MAP_BITS) {
3982 maps[N_MAPS - 1] >>= MAP_BITS - cnt % MAP_BITS; /* Clear extra bits. */
3983 }
3984 memset(rules, 0, cnt * sizeof *rules);
3985
3986 PVECTOR_FOR_EACH (subtable, &cls->subtables) {
3987 const struct netdev_flow_key *mkeys = keys;
3988 struct dpcls_rule **mrules = rules;
3989 map_type remains = 0;
3990 int m;
3991
3992 BUILD_ASSERT_DECL(sizeof remains == sizeof *maps);
3993
3994 for (m = 0; m < N_MAPS; m++, mkeys += MAP_BITS, mrules += MAP_BITS) {
3995 uint32_t hashes[MAP_BITS];
3996 const struct cmap_node *nodes[MAP_BITS];
3997 unsigned long map = maps[m];
3998 int i;
3999
4000 if (!map) {
4001 continue; /* Skip empty maps. */
4002 }
4003
4004 /* Compute hashes for the remaining keys. */
4005 ULLONG_FOR_EACH_1(i, map) {
4006 hashes[i] = netdev_flow_key_hash_in_mask(&mkeys[i],
4007 &subtable->mask);
4008 }
4009 /* Lookup. */
4010 map = cmap_find_batch(&subtable->rules, map, hashes, nodes);
4011 /* Check results. */
4012 ULLONG_FOR_EACH_1(i, map) {
4013 struct dpcls_rule *rule;
4014
4015 CMAP_NODE_FOR_EACH (rule, cmap_node, nodes[i]) {
4016 if (OVS_LIKELY(dpcls_rule_matches_key(rule, &mkeys[i]))) {
4017 mrules[i] = rule;
4018 goto next;
4019 }
4020 }
4021 ULLONG_SET0(map, i); /* Did not match. */
4022 next:
4023 ; /* Keep Sparse happy. */
4024 }
4025 maps[m] &= ~map; /* Clear the found rules. */
4026 remains |= maps[m];
4027 }
4028 if (!remains) {
4029 return true; /* All found. */
4030 }
4031 }
4032 return false; /* Some misses. */
4033 }