]> git.proxmox.com Git - mirror_ovs.git/blob - lib/dpif-netdev.c
dpif-netdev: Destroy pmd_thread cmap at exit
[mirror_ovs.git] / lib / dpif-netdev.c
1 /*
2 * Copyright (c) 2009, 2010, 2011, 2012, 2013, 2014 Nicira, Inc.
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at:
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <config.h>
18 #include "dpif-netdev.h"
19
20 #include <ctype.h>
21 #include <errno.h>
22 #include <fcntl.h>
23 #include <inttypes.h>
24 #include <netinet/in.h>
25 #include <sys/socket.h>
26 #include <net/if.h>
27 #include <stdint.h>
28 #include <stdlib.h>
29 #include <string.h>
30 #include <sys/ioctl.h>
31 #include <sys/stat.h>
32 #include <unistd.h>
33
34 #include "classifier.h"
35 #include "cmap.h"
36 #include "csum.h"
37 #include "dpif.h"
38 #include "dpif-provider.h"
39 #include "dummy.h"
40 #include "dynamic-string.h"
41 #include "fat-rwlock.h"
42 #include "flow.h"
43 #include "cmap.h"
44 #include "latch.h"
45 #include "list.h"
46 #include "meta-flow.h"
47 #include "netdev.h"
48 #include "netdev-dpdk.h"
49 #include "netdev-vport.h"
50 #include "netlink.h"
51 #include "odp-execute.h"
52 #include "odp-util.h"
53 #include "ofp-print.h"
54 #include "ofpbuf.h"
55 #include "ovs-numa.h"
56 #include "ovs-rcu.h"
57 #include "packet-dpif.h"
58 #include "packets.h"
59 #include "poll-loop.h"
60 #include "random.h"
61 #include "seq.h"
62 #include "shash.h"
63 #include "sset.h"
64 #include "timeval.h"
65 #include "unixctl.h"
66 #include "util.h"
67 #include "vlog.h"
68
69 VLOG_DEFINE_THIS_MODULE(dpif_netdev);
70
71 /* By default, choose a priority in the middle. */
72 #define NETDEV_RULE_PRIORITY 0x8000
73
74 #define FLOW_DUMP_MAX_BATCH 50
75 /* Use per thread recirc_depth to prevent recirculation loop. */
76 #define MAX_RECIRC_DEPTH 5
77 DEFINE_STATIC_PER_THREAD_DATA(uint32_t, recirc_depth, 0)
78
79 /* Configuration parameters. */
80 enum { MAX_FLOWS = 65536 }; /* Maximum number of flows in flow table. */
81
82 /* Protects against changes to 'dp_netdevs'. */
83 static struct ovs_mutex dp_netdev_mutex = OVS_MUTEX_INITIALIZER;
84
85 /* Contains all 'struct dp_netdev's. */
86 static struct shash dp_netdevs OVS_GUARDED_BY(dp_netdev_mutex)
87 = SHASH_INITIALIZER(&dp_netdevs);
88
89 static struct vlog_rate_limit upcall_rl = VLOG_RATE_LIMIT_INIT(600, 600);
90
91 /* Stores a miniflow with inline values */
92
93 /* There are fields in the flow structure that we never use. Therefore we can
94 * save a few words of memory */
95 #define NETDEV_KEY_BUF_SIZE_U32 (FLOW_U32S \
96 - MINI_N_INLINE \
97 - FLOW_U32_SIZE(regs) \
98 - FLOW_U32_SIZE(metadata) \
99 )
100 struct netdev_flow_key {
101 struct miniflow flow;
102 uint32_t buf[NETDEV_KEY_BUF_SIZE_U32];
103 };
104
105 /* Exact match cache for frequently used flows
106 *
107 * The cache uses a 32-bit hash of the packet (which can be the RSS hash) to
108 * search its entries for a miniflow that matches exactly the miniflow of the
109 * packet. It stores the 'cls_rule'(rule) that matches the miniflow.
110 *
111 * A cache entry holds a reference to its 'dp_netdev_flow'.
112 *
113 * A miniflow with a given hash can be in one of EM_FLOW_HASH_SEGS different
114 * entries. The 32-bit hash is split into EM_FLOW_HASH_SEGS values (each of
115 * them is EM_FLOW_HASH_SHIFT bits wide and the remainder is thrown away). Each
116 * value is the index of a cache entry where the miniflow could be.
117 *
118 *
119 * Thread-safety
120 * =============
121 *
122 * Each pmd_thread has its own private exact match cache.
123 * If dp_netdev_input is not called from a pmd thread, a mutex is used.
124 */
125
126 #define EM_FLOW_HASH_SHIFT 10
127 #define EM_FLOW_HASH_ENTRIES (1u << EM_FLOW_HASH_SHIFT)
128 #define EM_FLOW_HASH_MASK (EM_FLOW_HASH_ENTRIES - 1)
129 #define EM_FLOW_HASH_SEGS 2
130
131 struct emc_entry {
132 uint32_t hash;
133 uint32_t mf_len;
134 struct netdev_flow_key mf;
135 struct dp_netdev_flow *flow;
136 };
137
138 struct emc_cache {
139 struct emc_entry entries[EM_FLOW_HASH_ENTRIES];
140 };
141
142 /* Iterate in the exact match cache through every entry that might contain a
143 * miniflow with hash 'HASH'. */
144 #define EMC_FOR_EACH_POS_WITH_HASH(EMC, CURRENT_ENTRY, HASH) \
145 for (uint32_t i__ = 0, srch_hash__ = (HASH); \
146 (CURRENT_ENTRY) = &(EMC)->entries[srch_hash__ & EM_FLOW_HASH_MASK], \
147 i__ < EM_FLOW_HASH_SEGS; \
148 i__++, srch_hash__ >>= EM_FLOW_HASH_SHIFT)
149
150 /* Datapath based on the network device interface from netdev.h.
151 *
152 *
153 * Thread-safety
154 * =============
155 *
156 * Some members, marked 'const', are immutable. Accessing other members
157 * requires synchronization, as noted in more detail below.
158 *
159 * Acquisition order is, from outermost to innermost:
160 *
161 * dp_netdev_mutex (global)
162 * port_mutex
163 * flow_mutex
164 */
165 struct dp_netdev {
166 const struct dpif_class *const class;
167 const char *const name;
168 struct dpif *dpif;
169 struct ovs_refcount ref_cnt;
170 atomic_flag destroyed;
171
172 /* Flows.
173 *
174 * Writers of 'flow_table' must take the 'flow_mutex'. Corresponding
175 * changes to 'cls' must be made while still holding the 'flow_mutex'.
176 */
177 struct ovs_mutex flow_mutex;
178 struct classifier cls;
179 struct cmap flow_table OVS_GUARDED; /* Flow table. */
180
181 /* Statistics.
182 *
183 * ovsthread_stats is internally synchronized. */
184 struct ovsthread_stats stats; /* Contains 'struct dp_netdev_stats *'. */
185
186 /* Ports.
187 *
188 * Protected by RCU. Take the mutex to add or remove ports. */
189 struct ovs_mutex port_mutex;
190 struct cmap ports;
191 struct seq *port_seq; /* Incremented whenever a port changes. */
192
193 /* Protects access to ofproto-dpif-upcall interface during revalidator
194 * thread synchronization. */
195 struct fat_rwlock upcall_rwlock;
196 upcall_callback *upcall_cb; /* Callback function for executing upcalls. */
197 void *upcall_aux;
198
199 /* Stores all 'struct dp_netdev_pmd_thread's. */
200 struct cmap poll_threads;
201
202 /* Protects the access of the 'struct dp_netdev_pmd_thread'
203 * instance for non-pmd thread. */
204 struct ovs_mutex non_pmd_mutex;
205
206 /* Each pmd thread will store its pointer to
207 * 'struct dp_netdev_pmd_thread' in 'per_pmd_key'. */
208 ovsthread_key_t per_pmd_key;
209
210 /* Number of rx queues for each dpdk interface and the cpu mask
211 * for pin of pmd threads. */
212 size_t n_dpdk_rxqs;
213 char *pmd_cmask;
214 };
215
216 static struct dp_netdev_port *dp_netdev_lookup_port(const struct dp_netdev *dp,
217 odp_port_t);
218
219 enum dp_stat_type {
220 DP_STAT_HIT, /* Packets that matched in the flow table. */
221 DP_STAT_MISS, /* Packets that did not match. */
222 DP_STAT_LOST, /* Packets not passed up to the client. */
223 DP_N_STATS
224 };
225
226 /* Contained by struct dp_netdev's 'stats' member. */
227 struct dp_netdev_stats {
228 struct ovs_mutex mutex; /* Protects 'n'. */
229
230 /* Indexed by DP_STAT_*, protected by 'mutex'. */
231 unsigned long long int n[DP_N_STATS] OVS_GUARDED;
232 };
233
234
235 /* A port in a netdev-based datapath. */
236 struct dp_netdev_port {
237 struct cmap_node node; /* Node in dp_netdev's 'ports'. */
238 odp_port_t port_no;
239 struct netdev *netdev;
240 struct netdev_saved_flags *sf;
241 struct netdev_rxq **rxq;
242 struct ovs_refcount ref_cnt;
243 char *type; /* Port type as requested by user. */
244 };
245
246 /* A flow in dp_netdev's 'flow_table'.
247 *
248 *
249 * Thread-safety
250 * =============
251 *
252 * Except near the beginning or ending of its lifespan, rule 'rule' belongs to
253 * its dp_netdev's classifier. The text below calls this classifier 'cls'.
254 *
255 * Motivation
256 * ----------
257 *
258 * The thread safety rules described here for "struct dp_netdev_flow" are
259 * motivated by two goals:
260 *
261 * - Prevent threads that read members of "struct dp_netdev_flow" from
262 * reading bad data due to changes by some thread concurrently modifying
263 * those members.
264 *
265 * - Prevent two threads making changes to members of a given "struct
266 * dp_netdev_flow" from interfering with each other.
267 *
268 *
269 * Rules
270 * -----
271 *
272 * A flow 'flow' may be accessed without a risk of being freed during an RCU
273 * grace period. Code that needs to hold onto a flow for a while
274 * should try incrementing 'flow->ref_cnt' with dp_netdev_flow_ref().
275 *
276 * 'flow->ref_cnt' protects 'flow' from being freed. It doesn't protect the
277 * flow from being deleted from 'cls' and it doesn't protect members of 'flow'
278 * from modification.
279 *
280 * Some members, marked 'const', are immutable. Accessing other members
281 * requires synchronization, as noted in more detail below.
282 */
283 struct dp_netdev_flow {
284 bool dead;
285 /* Packet classification. */
286 const struct cls_rule cr; /* In owning dp_netdev's 'cls'. */
287
288 /* Hash table index by unmasked flow. */
289 const struct cmap_node node; /* In owning dp_netdev's 'flow_table'. */
290 const struct flow flow; /* The flow that created this entry. */
291
292 /* Number of references.
293 * The classifier owns one reference.
294 * Any thread trying to keep a rule from being freed should hold its own
295 * reference. */
296 struct ovs_refcount ref_cnt;
297
298 /* Statistics.
299 *
300 * Reading or writing these members requires 'mutex'. */
301 struct ovsthread_stats stats; /* Contains "struct dp_netdev_flow_stats". */
302
303 /* Actions. */
304 OVSRCU_TYPE(struct dp_netdev_actions *) actions;
305 };
306
307 static void dp_netdev_flow_unref(struct dp_netdev_flow *);
308 static bool dp_netdev_flow_ref(struct dp_netdev_flow *);
309
310 /* Contained by struct dp_netdev_flow's 'stats' member. */
311 struct dp_netdev_flow_stats {
312 struct ovs_mutex mutex; /* Guards all the other members. */
313
314 long long int used OVS_GUARDED; /* Last used time, in monotonic msecs. */
315 long long int packet_count OVS_GUARDED; /* Number of packets matched. */
316 long long int byte_count OVS_GUARDED; /* Number of bytes matched. */
317 uint16_t tcp_flags OVS_GUARDED; /* Bitwise-OR of seen tcp_flags values. */
318 };
319
320 /* A set of datapath actions within a "struct dp_netdev_flow".
321 *
322 *
323 * Thread-safety
324 * =============
325 *
326 * A struct dp_netdev_actions 'actions' is protected with RCU. */
327 struct dp_netdev_actions {
328 /* These members are immutable: they do not change during the struct's
329 * lifetime. */
330 struct nlattr *actions; /* Sequence of OVS_ACTION_ATTR_* attributes. */
331 unsigned int size; /* Size of 'actions', in bytes. */
332 };
333
334 struct dp_netdev_actions *dp_netdev_actions_create(const struct nlattr *,
335 size_t);
336 struct dp_netdev_actions *dp_netdev_flow_get_actions(
337 const struct dp_netdev_flow *);
338 static void dp_netdev_actions_free(struct dp_netdev_actions *);
339
340 /* PMD: Poll modes drivers. PMD accesses devices via polling to eliminate
341 * the performance overhead of interrupt processing. Therefore netdev can
342 * not implement rx-wait for these devices. dpif-netdev needs to poll
343 * these device to check for recv buffer. pmd-thread does polling for
344 * devices assigned to itself thread.
345 *
346 * DPDK used PMD for accessing NIC.
347 *
348 * Note, instance with cpu core id NON_PMD_CORE_ID will be reserved for
349 * I/O of all non-pmd threads. There will be no actual thread created
350 * for the instance.
351 **/
352 struct dp_netdev_pmd_thread {
353 struct dp_netdev *dp;
354 struct cmap_node node; /* In 'dp->poll_threads'. */
355 /* Per thread exact-match cache. Note, the instance for cpu core
356 * NON_PMD_CORE_ID can be accessed by multiple threads, and thusly
357 * need to be protected (e.g. by 'dp_netdev_mutex'). All other
358 * instances will only be accessed by its own pmd thread. */
359 struct emc_cache flow_cache;
360 struct latch exit_latch; /* For terminating the pmd thread. */
361 atomic_uint change_seq; /* For reloading pmd ports. */
362 pthread_t thread;
363 int index; /* Idx of this pmd thread among pmd*/
364 /* threads on same numa node. */
365 int core_id; /* CPU core id of this pmd thread. */
366 int numa_id; /* numa node id of this pmd thread. */
367 };
368
369 #define PMD_INITIAL_SEQ 1
370
371 /* Interface to netdev-based datapath. */
372 struct dpif_netdev {
373 struct dpif dpif;
374 struct dp_netdev *dp;
375 uint64_t last_port_seq;
376 };
377
378 static int get_port_by_number(struct dp_netdev *dp, odp_port_t port_no,
379 struct dp_netdev_port **portp);
380 static int get_port_by_name(struct dp_netdev *dp, const char *devname,
381 struct dp_netdev_port **portp);
382 static void dp_netdev_free(struct dp_netdev *)
383 OVS_REQUIRES(dp_netdev_mutex);
384 static void dp_netdev_flow_flush(struct dp_netdev *);
385 static int do_add_port(struct dp_netdev *dp, const char *devname,
386 const char *type, odp_port_t port_no)
387 OVS_REQUIRES(dp->port_mutex);
388 static void do_del_port(struct dp_netdev *dp, struct dp_netdev_port *)
389 OVS_REQUIRES(dp->port_mutex);
390 static int dpif_netdev_open(const struct dpif_class *, const char *name,
391 bool create, struct dpif **);
392 static void dp_netdev_execute_actions(struct dp_netdev_pmd_thread *pmd,
393 struct dpif_packet **, int c,
394 bool may_steal, struct pkt_metadata *,
395 const struct nlattr *actions,
396 size_t actions_len);
397 static void dp_netdev_input(struct dp_netdev_pmd_thread *,
398 struct dpif_packet **, int cnt,
399 struct pkt_metadata *);
400 static void dp_netdev_disable_upcall(struct dp_netdev *);
401 static void dp_netdev_configure_pmd(struct dp_netdev_pmd_thread *pmd,
402 struct dp_netdev *dp, int index,
403 int core_id, int numa_id);
404 static void dp_netdev_set_nonpmd(struct dp_netdev *dp);
405 static struct dp_netdev_pmd_thread *dp_netdev_get_nonpmd(struct dp_netdev *dp);
406 static void dp_netdev_destroy_all_pmds(struct dp_netdev *dp);
407 static void dp_netdev_del_pmds_on_numa(struct dp_netdev *dp, int numa_id);
408 static void dp_netdev_set_pmds_on_numa(struct dp_netdev *dp, int numa_id);
409 static void dp_netdev_reset_pmd_threads(struct dp_netdev *dp);
410
411 static void emc_clear_entry(struct emc_entry *ce);
412
413 static void
414 emc_cache_init(struct emc_cache *flow_cache)
415 {
416 int i;
417
418 for (i = 0; i < ARRAY_SIZE(flow_cache->entries); i++) {
419 flow_cache->entries[i].flow = NULL;
420 flow_cache->entries[i].hash = 0;
421 flow_cache->entries[i].mf_len = 0;
422 miniflow_initialize(&flow_cache->entries[i].mf.flow,
423 flow_cache->entries[i].mf.buf);
424 }
425 }
426
427 static void
428 emc_cache_uninit(struct emc_cache *flow_cache)
429 {
430 int i;
431
432 for (i = 0; i < ARRAY_SIZE(flow_cache->entries); i++) {
433 emc_clear_entry(&flow_cache->entries[i]);
434 }
435 }
436
437 static struct dpif_netdev *
438 dpif_netdev_cast(const struct dpif *dpif)
439 {
440 ovs_assert(dpif->dpif_class->open == dpif_netdev_open);
441 return CONTAINER_OF(dpif, struct dpif_netdev, dpif);
442 }
443
444 static struct dp_netdev *
445 get_dp_netdev(const struct dpif *dpif)
446 {
447 return dpif_netdev_cast(dpif)->dp;
448 }
449
450 static int
451 dpif_netdev_enumerate(struct sset *all_dps,
452 const struct dpif_class *dpif_class)
453 {
454 struct shash_node *node;
455
456 ovs_mutex_lock(&dp_netdev_mutex);
457 SHASH_FOR_EACH(node, &dp_netdevs) {
458 struct dp_netdev *dp = node->data;
459 if (dpif_class != dp->class) {
460 /* 'dp_netdevs' contains both "netdev" and "dummy" dpifs.
461 * If the class doesn't match, skip this dpif. */
462 continue;
463 }
464 sset_add(all_dps, node->name);
465 }
466 ovs_mutex_unlock(&dp_netdev_mutex);
467
468 return 0;
469 }
470
471 static bool
472 dpif_netdev_class_is_dummy(const struct dpif_class *class)
473 {
474 return class != &dpif_netdev_class;
475 }
476
477 static const char *
478 dpif_netdev_port_open_type(const struct dpif_class *class, const char *type)
479 {
480 return strcmp(type, "internal") ? type
481 : dpif_netdev_class_is_dummy(class) ? "dummy"
482 : "tap";
483 }
484
485 static struct dpif *
486 create_dpif_netdev(struct dp_netdev *dp)
487 {
488 uint16_t netflow_id = hash_string(dp->name, 0);
489 struct dpif_netdev *dpif;
490
491 ovs_refcount_ref(&dp->ref_cnt);
492
493 dpif = xmalloc(sizeof *dpif);
494 dpif_init(&dpif->dpif, dp->class, dp->name, netflow_id >> 8, netflow_id);
495 dpif->dp = dp;
496 dpif->last_port_seq = seq_read(dp->port_seq);
497
498 return &dpif->dpif;
499 }
500
501 /* Choose an unused, non-zero port number and return it on success.
502 * Return ODPP_NONE on failure. */
503 static odp_port_t
504 choose_port(struct dp_netdev *dp, const char *name)
505 OVS_REQUIRES(dp->port_mutex)
506 {
507 uint32_t port_no;
508
509 if (dp->class != &dpif_netdev_class) {
510 const char *p;
511 int start_no = 0;
512
513 /* If the port name begins with "br", start the number search at
514 * 100 to make writing tests easier. */
515 if (!strncmp(name, "br", 2)) {
516 start_no = 100;
517 }
518
519 /* If the port name contains a number, try to assign that port number.
520 * This can make writing unit tests easier because port numbers are
521 * predictable. */
522 for (p = name; *p != '\0'; p++) {
523 if (isdigit((unsigned char) *p)) {
524 port_no = start_no + strtol(p, NULL, 10);
525 if (port_no > 0 && port_no != odp_to_u32(ODPP_NONE)
526 && !dp_netdev_lookup_port(dp, u32_to_odp(port_no))) {
527 return u32_to_odp(port_no);
528 }
529 break;
530 }
531 }
532 }
533
534 for (port_no = 1; port_no <= UINT16_MAX; port_no++) {
535 if (!dp_netdev_lookup_port(dp, u32_to_odp(port_no))) {
536 return u32_to_odp(port_no);
537 }
538 }
539
540 return ODPP_NONE;
541 }
542
543 static int
544 create_dp_netdev(const char *name, const struct dpif_class *class,
545 struct dp_netdev **dpp)
546 OVS_REQUIRES(dp_netdev_mutex)
547 {
548 struct dp_netdev *dp;
549 int error;
550
551 dp = xzalloc(sizeof *dp);
552 shash_add(&dp_netdevs, name, dp);
553
554 *CONST_CAST(const struct dpif_class **, &dp->class) = class;
555 *CONST_CAST(const char **, &dp->name) = xstrdup(name);
556 ovs_refcount_init(&dp->ref_cnt);
557 atomic_flag_clear(&dp->destroyed);
558
559 ovs_mutex_init(&dp->flow_mutex);
560 classifier_init(&dp->cls, NULL);
561 cmap_init(&dp->flow_table);
562
563 ovsthread_stats_init(&dp->stats);
564
565 ovs_mutex_init(&dp->port_mutex);
566 cmap_init(&dp->ports);
567 dp->port_seq = seq_create();
568 fat_rwlock_init(&dp->upcall_rwlock);
569
570 /* Disable upcalls by default. */
571 dp_netdev_disable_upcall(dp);
572 dp->upcall_aux = NULL;
573 dp->upcall_cb = NULL;
574
575 cmap_init(&dp->poll_threads);
576 ovs_mutex_init_recursive(&dp->non_pmd_mutex);
577 ovsthread_key_create(&dp->per_pmd_key, NULL);
578
579 /* Reserves the core NON_PMD_CORE_ID for all non-pmd threads. */
580 ovs_numa_try_pin_core_specific(NON_PMD_CORE_ID);
581 dp_netdev_set_nonpmd(dp);
582 dp->n_dpdk_rxqs = NR_QUEUE;
583
584 ovs_mutex_lock(&dp->port_mutex);
585 error = do_add_port(dp, name, "internal", ODPP_LOCAL);
586 ovs_mutex_unlock(&dp->port_mutex);
587 if (error) {
588 dp_netdev_free(dp);
589 return error;
590 }
591
592 *dpp = dp;
593 return 0;
594 }
595
596 static int
597 dpif_netdev_open(const struct dpif_class *class, const char *name,
598 bool create, struct dpif **dpifp)
599 {
600 struct dp_netdev *dp;
601 int error;
602
603 ovs_mutex_lock(&dp_netdev_mutex);
604 dp = shash_find_data(&dp_netdevs, name);
605 if (!dp) {
606 error = create ? create_dp_netdev(name, class, &dp) : ENODEV;
607 } else {
608 error = (dp->class != class ? EINVAL
609 : create ? EEXIST
610 : 0);
611 }
612 if (!error) {
613 *dpifp = create_dpif_netdev(dp);
614 dp->dpif = *dpifp;
615 }
616 ovs_mutex_unlock(&dp_netdev_mutex);
617
618 return error;
619 }
620
621 static void
622 dp_netdev_destroy_upcall_lock(struct dp_netdev *dp)
623 OVS_NO_THREAD_SAFETY_ANALYSIS
624 {
625 /* Check that upcalls are disabled, i.e. that the rwlock is taken */
626 ovs_assert(fat_rwlock_tryrdlock(&dp->upcall_rwlock));
627
628 /* Before freeing a lock we should release it */
629 fat_rwlock_unlock(&dp->upcall_rwlock);
630 fat_rwlock_destroy(&dp->upcall_rwlock);
631 }
632
633 /* Requires dp_netdev_mutex so that we can't get a new reference to 'dp'
634 * through the 'dp_netdevs' shash while freeing 'dp'. */
635 static void
636 dp_netdev_free(struct dp_netdev *dp)
637 OVS_REQUIRES(dp_netdev_mutex)
638 {
639 struct dp_netdev_port *port;
640 struct dp_netdev_stats *bucket;
641 int i;
642
643 shash_find_and_delete(&dp_netdevs, dp->name);
644
645 dp_netdev_destroy_all_pmds(dp);
646 cmap_destroy(&dp->poll_threads);
647 ovs_mutex_destroy(&dp->non_pmd_mutex);
648 ovsthread_key_delete(dp->per_pmd_key);
649
650 dp_netdev_flow_flush(dp);
651 ovs_mutex_lock(&dp->port_mutex);
652 CMAP_FOR_EACH (port, node, &dp->ports) {
653 do_del_port(dp, port);
654 }
655 ovs_mutex_unlock(&dp->port_mutex);
656
657 OVSTHREAD_STATS_FOR_EACH_BUCKET (bucket, i, &dp->stats) {
658 ovs_mutex_destroy(&bucket->mutex);
659 free_cacheline(bucket);
660 }
661 ovsthread_stats_destroy(&dp->stats);
662
663 classifier_destroy(&dp->cls);
664 cmap_destroy(&dp->flow_table);
665 ovs_mutex_destroy(&dp->flow_mutex);
666 seq_destroy(dp->port_seq);
667 cmap_destroy(&dp->ports);
668
669 /* Upcalls must be disabled at this point */
670 dp_netdev_destroy_upcall_lock(dp);
671
672 free(dp->pmd_cmask);
673 free(CONST_CAST(char *, dp->name));
674 free(dp);
675 }
676
677 static void
678 dp_netdev_unref(struct dp_netdev *dp)
679 {
680 if (dp) {
681 /* Take dp_netdev_mutex so that, if dp->ref_cnt falls to zero, we can't
682 * get a new reference to 'dp' through the 'dp_netdevs' shash. */
683 ovs_mutex_lock(&dp_netdev_mutex);
684 if (ovs_refcount_unref_relaxed(&dp->ref_cnt) == 1) {
685 dp_netdev_free(dp);
686 }
687 ovs_mutex_unlock(&dp_netdev_mutex);
688 }
689 }
690
691 static void
692 dpif_netdev_close(struct dpif *dpif)
693 {
694 struct dp_netdev *dp = get_dp_netdev(dpif);
695
696 dp_netdev_unref(dp);
697 free(dpif);
698 }
699
700 static int
701 dpif_netdev_destroy(struct dpif *dpif)
702 {
703 struct dp_netdev *dp = get_dp_netdev(dpif);
704
705 if (!atomic_flag_test_and_set(&dp->destroyed)) {
706 if (ovs_refcount_unref_relaxed(&dp->ref_cnt) == 1) {
707 /* Can't happen: 'dpif' still owns a reference to 'dp'. */
708 OVS_NOT_REACHED();
709 }
710 }
711
712 return 0;
713 }
714
715 static int
716 dpif_netdev_get_stats(const struct dpif *dpif, struct dpif_dp_stats *stats)
717 {
718 struct dp_netdev *dp = get_dp_netdev(dpif);
719 struct dp_netdev_stats *bucket;
720 size_t i;
721
722 stats->n_flows = cmap_count(&dp->flow_table);
723
724 stats->n_hit = stats->n_missed = stats->n_lost = 0;
725 OVSTHREAD_STATS_FOR_EACH_BUCKET (bucket, i, &dp->stats) {
726 ovs_mutex_lock(&bucket->mutex);
727 stats->n_hit += bucket->n[DP_STAT_HIT];
728 stats->n_missed += bucket->n[DP_STAT_MISS];
729 stats->n_lost += bucket->n[DP_STAT_LOST];
730 ovs_mutex_unlock(&bucket->mutex);
731 }
732 stats->n_masks = UINT32_MAX;
733 stats->n_mask_hit = UINT64_MAX;
734
735 return 0;
736 }
737
738 static void
739 dp_netdev_reload_pmd__(struct dp_netdev_pmd_thread *pmd)
740 {
741 int old_seq;
742
743 atomic_add_relaxed(&pmd->change_seq, 1, &old_seq);
744 }
745
746 /* Causes all pmd threads to reload its tx/rx devices.
747 * Must be called after adding/removing ports. */
748 static void
749 dp_netdev_reload_pmds(struct dp_netdev *dp)
750 {
751 struct dp_netdev_pmd_thread *pmd;
752
753 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
754 dp_netdev_reload_pmd__(pmd);
755 }
756 }
757
758 static uint32_t
759 hash_port_no(odp_port_t port_no)
760 {
761 return hash_int(odp_to_u32(port_no), 0);
762 }
763
764 static int
765 do_add_port(struct dp_netdev *dp, const char *devname, const char *type,
766 odp_port_t port_no)
767 OVS_REQUIRES(dp->port_mutex)
768 {
769 struct netdev_saved_flags *sf;
770 struct dp_netdev_port *port;
771 struct netdev *netdev;
772 enum netdev_flags flags;
773 const char *open_type;
774 int error;
775 int i;
776
777 /* XXX reject devices already in some dp_netdev. */
778
779 /* Open and validate network device. */
780 open_type = dpif_netdev_port_open_type(dp->class, type);
781 error = netdev_open(devname, open_type, &netdev);
782 if (error) {
783 return error;
784 }
785 /* XXX reject non-Ethernet devices */
786
787 netdev_get_flags(netdev, &flags);
788 if (flags & NETDEV_LOOPBACK) {
789 VLOG_ERR("%s: cannot add a loopback device", devname);
790 netdev_close(netdev);
791 return EINVAL;
792 }
793
794 if (netdev_is_pmd(netdev)) {
795 int n_cores = ovs_numa_get_n_cores();
796
797 if (n_cores == OVS_CORE_UNSPEC) {
798 VLOG_ERR("%s, cannot get cpu core info", devname);
799 return ENOENT;
800 }
801 /* There can only be ovs_numa_get_n_cores() pmd threads,
802 * so creates a txq for each. */
803 error = netdev_set_multiq(netdev, n_cores, dp->n_dpdk_rxqs);
804 if (error) {
805 VLOG_ERR("%s, cannot set multiq", devname);
806 return errno;
807 }
808 }
809 port = xzalloc(sizeof *port);
810 port->port_no = port_no;
811 port->netdev = netdev;
812 port->rxq = xmalloc(sizeof *port->rxq * netdev_n_rxq(netdev));
813 port->type = xstrdup(type);
814 for (i = 0; i < netdev_n_rxq(netdev); i++) {
815 error = netdev_rxq_open(netdev, &port->rxq[i], i);
816 if (error
817 && !(error == EOPNOTSUPP && dpif_netdev_class_is_dummy(dp->class))) {
818 VLOG_ERR("%s: cannot receive packets on this network device (%s)",
819 devname, ovs_strerror(errno));
820 netdev_close(netdev);
821 free(port->type);
822 free(port->rxq);
823 free(port);
824 return error;
825 }
826 }
827
828 error = netdev_turn_flags_on(netdev, NETDEV_PROMISC, &sf);
829 if (error) {
830 for (i = 0; i < netdev_n_rxq(netdev); i++) {
831 netdev_rxq_close(port->rxq[i]);
832 }
833 netdev_close(netdev);
834 free(port->type);
835 free(port->rxq);
836 free(port);
837 return error;
838 }
839 port->sf = sf;
840
841 if (netdev_is_pmd(netdev)) {
842 dp_netdev_set_pmds_on_numa(dp, netdev_get_numa_id(netdev));
843 dp_netdev_reload_pmds(dp);
844 }
845 ovs_refcount_init(&port->ref_cnt);
846
847 cmap_insert(&dp->ports, &port->node, hash_port_no(port_no));
848 seq_change(dp->port_seq);
849
850 return 0;
851 }
852
853 static int
854 dpif_netdev_port_add(struct dpif *dpif, struct netdev *netdev,
855 odp_port_t *port_nop)
856 {
857 struct dp_netdev *dp = get_dp_netdev(dpif);
858 char namebuf[NETDEV_VPORT_NAME_BUFSIZE];
859 const char *dpif_port;
860 odp_port_t port_no;
861 int error;
862
863 ovs_mutex_lock(&dp->port_mutex);
864 dpif_port = netdev_vport_get_dpif_port(netdev, namebuf, sizeof namebuf);
865 if (*port_nop != ODPP_NONE) {
866 port_no = *port_nop;
867 error = dp_netdev_lookup_port(dp, *port_nop) ? EBUSY : 0;
868 } else {
869 port_no = choose_port(dp, dpif_port);
870 error = port_no == ODPP_NONE ? EFBIG : 0;
871 }
872 if (!error) {
873 *port_nop = port_no;
874 error = do_add_port(dp, dpif_port, netdev_get_type(netdev), port_no);
875 }
876 ovs_mutex_unlock(&dp->port_mutex);
877
878 return error;
879 }
880
881 static int
882 dpif_netdev_port_del(struct dpif *dpif, odp_port_t port_no)
883 {
884 struct dp_netdev *dp = get_dp_netdev(dpif);
885 int error;
886
887 ovs_mutex_lock(&dp->port_mutex);
888 if (port_no == ODPP_LOCAL) {
889 error = EINVAL;
890 } else {
891 struct dp_netdev_port *port;
892
893 error = get_port_by_number(dp, port_no, &port);
894 if (!error) {
895 do_del_port(dp, port);
896 }
897 }
898 ovs_mutex_unlock(&dp->port_mutex);
899
900 return error;
901 }
902
903 static bool
904 is_valid_port_number(odp_port_t port_no)
905 {
906 return port_no != ODPP_NONE;
907 }
908
909 static struct dp_netdev_port *
910 dp_netdev_lookup_port(const struct dp_netdev *dp, odp_port_t port_no)
911 {
912 struct dp_netdev_port *port;
913
914 CMAP_FOR_EACH_WITH_HASH (port, node, hash_port_no(port_no), &dp->ports) {
915 if (port->port_no == port_no) {
916 return port;
917 }
918 }
919 return NULL;
920 }
921
922 static int
923 get_port_by_number(struct dp_netdev *dp,
924 odp_port_t port_no, struct dp_netdev_port **portp)
925 {
926 if (!is_valid_port_number(port_no)) {
927 *portp = NULL;
928 return EINVAL;
929 } else {
930 *portp = dp_netdev_lookup_port(dp, port_no);
931 return *portp ? 0 : ENOENT;
932 }
933 }
934
935 static void
936 port_ref(struct dp_netdev_port *port)
937 {
938 if (port) {
939 ovs_refcount_ref(&port->ref_cnt);
940 }
941 }
942
943 static bool
944 port_try_ref(struct dp_netdev_port *port)
945 {
946 if (port) {
947 return ovs_refcount_try_ref_rcu(&port->ref_cnt);
948 }
949
950 return false;
951 }
952
953 static void
954 port_destroy__(struct dp_netdev_port *port)
955 {
956 int n_rxq = netdev_n_rxq(port->netdev);
957 int i;
958
959 netdev_close(port->netdev);
960 netdev_restore_flags(port->sf);
961
962 for (i = 0; i < n_rxq; i++) {
963 netdev_rxq_close(port->rxq[i]);
964 }
965 free(port->rxq);
966 free(port->type);
967 free(port);
968 }
969
970 static void
971 port_unref(struct dp_netdev_port *port)
972 {
973 if (port && ovs_refcount_unref_relaxed(&port->ref_cnt) == 1) {
974 ovsrcu_postpone(port_destroy__, port);
975 }
976 }
977
978 static int
979 get_port_by_name(struct dp_netdev *dp,
980 const char *devname, struct dp_netdev_port **portp)
981 OVS_REQUIRES(dp->port_mutex)
982 {
983 struct dp_netdev_port *port;
984
985 CMAP_FOR_EACH (port, node, &dp->ports) {
986 if (!strcmp(netdev_get_name(port->netdev), devname)) {
987 *portp = port;
988 return 0;
989 }
990 }
991 return ENOENT;
992 }
993
994 static int
995 get_n_pmd_threads_on_numa(struct dp_netdev *dp, int numa_id)
996 {
997 struct dp_netdev_pmd_thread *pmd;
998 int n_pmds = 0;
999
1000 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
1001 if (pmd->numa_id == numa_id) {
1002 n_pmds++;
1003 }
1004 }
1005
1006 return n_pmds;
1007 }
1008
1009 /* Returns 'true' if there is a port with pmd netdev and the netdev
1010 * is on numa node 'numa_id'. */
1011 static bool
1012 has_pmd_port_for_numa(struct dp_netdev *dp, int numa_id)
1013 {
1014 struct dp_netdev_port *port;
1015
1016 CMAP_FOR_EACH (port, node, &dp->ports) {
1017 if (netdev_is_pmd(port->netdev)
1018 && netdev_get_numa_id(port->netdev) == numa_id) {
1019 return true;
1020 }
1021 }
1022
1023 return false;
1024 }
1025
1026
1027 static void
1028 do_del_port(struct dp_netdev *dp, struct dp_netdev_port *port)
1029 OVS_REQUIRES(dp->port_mutex)
1030 {
1031 cmap_remove(&dp->ports, &port->node, hash_odp_port(port->port_no));
1032 seq_change(dp->port_seq);
1033 if (netdev_is_pmd(port->netdev)) {
1034 int numa_id = netdev_get_numa_id(port->netdev);
1035
1036 /* If there is no netdev on the numa node, deletes the pmd threads
1037 * for that numa. Else, just reloads the queues. */
1038 if (!has_pmd_port_for_numa(dp, numa_id)) {
1039 dp_netdev_del_pmds_on_numa(dp, numa_id);
1040 }
1041 dp_netdev_reload_pmds(dp);
1042 }
1043
1044 port_unref(port);
1045 }
1046
1047 static void
1048 answer_port_query(const struct dp_netdev_port *port,
1049 struct dpif_port *dpif_port)
1050 {
1051 dpif_port->name = xstrdup(netdev_get_name(port->netdev));
1052 dpif_port->type = xstrdup(port->type);
1053 dpif_port->port_no = port->port_no;
1054 }
1055
1056 static int
1057 dpif_netdev_port_query_by_number(const struct dpif *dpif, odp_port_t port_no,
1058 struct dpif_port *dpif_port)
1059 {
1060 struct dp_netdev *dp = get_dp_netdev(dpif);
1061 struct dp_netdev_port *port;
1062 int error;
1063
1064 error = get_port_by_number(dp, port_no, &port);
1065 if (!error && dpif_port) {
1066 answer_port_query(port, dpif_port);
1067 }
1068
1069 return error;
1070 }
1071
1072 static int
1073 dpif_netdev_port_query_by_name(const struct dpif *dpif, const char *devname,
1074 struct dpif_port *dpif_port)
1075 {
1076 struct dp_netdev *dp = get_dp_netdev(dpif);
1077 struct dp_netdev_port *port;
1078 int error;
1079
1080 ovs_mutex_lock(&dp->port_mutex);
1081 error = get_port_by_name(dp, devname, &port);
1082 if (!error && dpif_port) {
1083 answer_port_query(port, dpif_port);
1084 }
1085 ovs_mutex_unlock(&dp->port_mutex);
1086
1087 return error;
1088 }
1089
1090 static void
1091 dp_netdev_flow_free(struct dp_netdev_flow *flow)
1092 {
1093 struct dp_netdev_flow_stats *bucket;
1094 size_t i;
1095
1096 OVSTHREAD_STATS_FOR_EACH_BUCKET (bucket, i, &flow->stats) {
1097 ovs_mutex_destroy(&bucket->mutex);
1098 free_cacheline(bucket);
1099 }
1100 ovsthread_stats_destroy(&flow->stats);
1101
1102 cls_rule_destroy(CONST_CAST(struct cls_rule *, &flow->cr));
1103 dp_netdev_actions_free(dp_netdev_flow_get_actions(flow));
1104 free(flow);
1105 }
1106
1107 static void dp_netdev_flow_unref(struct dp_netdev_flow *flow)
1108 {
1109 if (ovs_refcount_unref_relaxed(&flow->ref_cnt) == 1) {
1110 ovsrcu_postpone(dp_netdev_flow_free, flow);
1111 }
1112 }
1113
1114 static void
1115 dp_netdev_remove_flow(struct dp_netdev *dp, struct dp_netdev_flow *flow)
1116 OVS_REQUIRES(dp->flow_mutex)
1117 {
1118 struct cls_rule *cr = CONST_CAST(struct cls_rule *, &flow->cr);
1119 struct cmap_node *node = CONST_CAST(struct cmap_node *, &flow->node);
1120
1121 classifier_remove(&dp->cls, cr);
1122 cmap_remove(&dp->flow_table, node, flow_hash(&flow->flow, 0));
1123 flow->dead = true;
1124
1125 dp_netdev_flow_unref(flow);
1126 }
1127
1128 static void
1129 dp_netdev_flow_flush(struct dp_netdev *dp)
1130 {
1131 struct dp_netdev_flow *netdev_flow;
1132
1133 ovs_mutex_lock(&dp->flow_mutex);
1134 CMAP_FOR_EACH (netdev_flow, node, &dp->flow_table) {
1135 dp_netdev_remove_flow(dp, netdev_flow);
1136 }
1137 ovs_mutex_unlock(&dp->flow_mutex);
1138 }
1139
1140 static int
1141 dpif_netdev_flow_flush(struct dpif *dpif)
1142 {
1143 struct dp_netdev *dp = get_dp_netdev(dpif);
1144
1145 dp_netdev_flow_flush(dp);
1146 return 0;
1147 }
1148
1149 struct dp_netdev_port_state {
1150 struct cmap_position position;
1151 char *name;
1152 };
1153
1154 static int
1155 dpif_netdev_port_dump_start(const struct dpif *dpif OVS_UNUSED, void **statep)
1156 {
1157 *statep = xzalloc(sizeof(struct dp_netdev_port_state));
1158 return 0;
1159 }
1160
1161 static int
1162 dpif_netdev_port_dump_next(const struct dpif *dpif, void *state_,
1163 struct dpif_port *dpif_port)
1164 {
1165 struct dp_netdev_port_state *state = state_;
1166 struct dp_netdev *dp = get_dp_netdev(dpif);
1167 struct cmap_node *node;
1168 int retval;
1169
1170 node = cmap_next_position(&dp->ports, &state->position);
1171 if (node) {
1172 struct dp_netdev_port *port;
1173
1174 port = CONTAINER_OF(node, struct dp_netdev_port, node);
1175
1176 free(state->name);
1177 state->name = xstrdup(netdev_get_name(port->netdev));
1178 dpif_port->name = state->name;
1179 dpif_port->type = port->type;
1180 dpif_port->port_no = port->port_no;
1181
1182 retval = 0;
1183 } else {
1184 retval = EOF;
1185 }
1186
1187 return retval;
1188 }
1189
1190 static int
1191 dpif_netdev_port_dump_done(const struct dpif *dpif OVS_UNUSED, void *state_)
1192 {
1193 struct dp_netdev_port_state *state = state_;
1194 free(state->name);
1195 free(state);
1196 return 0;
1197 }
1198
1199 static int
1200 dpif_netdev_port_poll(const struct dpif *dpif_, char **devnamep OVS_UNUSED)
1201 {
1202 struct dpif_netdev *dpif = dpif_netdev_cast(dpif_);
1203 uint64_t new_port_seq;
1204 int error;
1205
1206 new_port_seq = seq_read(dpif->dp->port_seq);
1207 if (dpif->last_port_seq != new_port_seq) {
1208 dpif->last_port_seq = new_port_seq;
1209 error = ENOBUFS;
1210 } else {
1211 error = EAGAIN;
1212 }
1213
1214 return error;
1215 }
1216
1217 static void
1218 dpif_netdev_port_poll_wait(const struct dpif *dpif_)
1219 {
1220 struct dpif_netdev *dpif = dpif_netdev_cast(dpif_);
1221
1222 seq_wait(dpif->dp->port_seq, dpif->last_port_seq);
1223 }
1224
1225 static struct dp_netdev_flow *
1226 dp_netdev_flow_cast(const struct cls_rule *cr)
1227 {
1228 return cr ? CONTAINER_OF(cr, struct dp_netdev_flow, cr) : NULL;
1229 }
1230
1231 static bool dp_netdev_flow_ref(struct dp_netdev_flow *flow)
1232 {
1233 return ovs_refcount_try_ref_rcu(&flow->ref_cnt);
1234 }
1235
1236 /* netdev_flow_key utilities.
1237 *
1238 * netdev_flow_key is basically a miniflow. We use these functions
1239 * (netdev_flow_key_clone, netdev_flow_key_equal, ...) instead of the miniflow
1240 * functions (miniflow_clone_inline, miniflow_equal, ...), because:
1241 *
1242 * - Since we are dealing exclusively with miniflows created by
1243 * miniflow_extract(), if the map is different the miniflow is different.
1244 * Therefore we can be faster by comparing the map and the miniflow in a
1245 * single memcmp().
1246 * _ netdev_flow_key's miniflow has always inline values.
1247 * - These functions can be inlined by the compiler.
1248 *
1249 * The following assertions make sure that what we're doing with miniflow is
1250 * safe
1251 */
1252 BUILD_ASSERT_DECL(offsetof(struct miniflow, inline_values)
1253 == sizeof(uint64_t));
1254 BUILD_ASSERT_DECL(offsetof(struct netdev_flow_key, flow) == 0);
1255
1256 static inline struct netdev_flow_key *
1257 miniflow_to_netdev_flow_key(const struct miniflow *mf)
1258 {
1259 return (struct netdev_flow_key *) CONST_CAST(struct miniflow *, mf);
1260 }
1261
1262 /* Given the number of bits set in the miniflow map, returns the size of the
1263 * netdev_flow key */
1264 static inline uint32_t
1265 netdev_flow_key_size(uint32_t flow_u32s)
1266 {
1267 return MINIFLOW_VALUES_SIZE(flow_u32s)
1268 + offsetof(struct miniflow, inline_values);
1269 }
1270
1271 /* Used to compare 'netdev_flow_key's (miniflows) in the exact match cache. */
1272 static inline bool
1273 netdev_flow_key_equal(const struct netdev_flow_key *a,
1274 const struct netdev_flow_key *b,
1275 uint32_t size)
1276 {
1277 return !memcmp(a, b, size);
1278 }
1279
1280 static inline void
1281 netdev_flow_key_clone(struct netdev_flow_key *dst,
1282 const struct netdev_flow_key *src,
1283 uint32_t size)
1284 {
1285 memcpy(dst, src, size);
1286 }
1287
1288 static inline bool
1289 emc_entry_alive(struct emc_entry *ce)
1290 {
1291 return ce->flow && !ce->flow->dead;
1292 }
1293
1294 static void
1295 emc_clear_entry(struct emc_entry *ce)
1296 {
1297 if (ce->flow) {
1298 dp_netdev_flow_unref(ce->flow);
1299 ce->flow = NULL;
1300 }
1301 }
1302
1303 static inline void
1304 emc_change_entry(struct emc_entry *ce, struct dp_netdev_flow *flow,
1305 const struct netdev_flow_key *mf, uint32_t hash)
1306 {
1307 if (ce->flow != flow) {
1308 if (ce->flow) {
1309 dp_netdev_flow_unref(ce->flow);
1310 }
1311
1312 if (dp_netdev_flow_ref(flow)) {
1313 ce->flow = flow;
1314 } else {
1315 ce->flow = NULL;
1316 }
1317 }
1318 if (mf) {
1319 uint32_t mf_len = netdev_flow_key_size(count_1bits(mf->flow.map));
1320
1321 netdev_flow_key_clone(&ce->mf, mf, mf_len);
1322 ce->hash = hash;
1323 ce->mf_len = mf_len;
1324 }
1325 }
1326
1327 static inline void
1328 emc_insert(struct emc_cache *cache, const struct miniflow *mf, uint32_t hash,
1329 struct dp_netdev_flow *flow)
1330 {
1331 struct emc_entry *to_be_replaced = NULL;
1332 struct emc_entry *current_entry;
1333
1334 EMC_FOR_EACH_POS_WITH_HASH(cache, current_entry, hash) {
1335 if (current_entry->hash == hash
1336 && netdev_flow_key_equal(&current_entry->mf,
1337 miniflow_to_netdev_flow_key(mf),
1338 current_entry->mf_len)) {
1339
1340 /* We found the entry with the 'mf' miniflow */
1341 emc_change_entry(current_entry, flow, NULL, 0);
1342 return;
1343 }
1344
1345 /* Replacement policy: put the flow in an empty (not alive) entry, or
1346 * in the first entry where it can be */
1347 if (!to_be_replaced
1348 || (emc_entry_alive(to_be_replaced)
1349 && !emc_entry_alive(current_entry))
1350 || current_entry->hash < to_be_replaced->hash) {
1351 to_be_replaced = current_entry;
1352 }
1353 }
1354 /* We didn't find the miniflow in the cache.
1355 * The 'to_be_replaced' entry is where the new flow will be stored */
1356
1357 emc_change_entry(to_be_replaced, flow, miniflow_to_netdev_flow_key(mf),
1358 hash);
1359 }
1360
1361 static inline struct dp_netdev_flow *
1362 emc_lookup(struct emc_cache *cache, const struct miniflow *mf, uint32_t hash)
1363 {
1364 struct emc_entry *current_entry;
1365
1366 EMC_FOR_EACH_POS_WITH_HASH(cache, current_entry, hash) {
1367 if (current_entry->hash == hash && emc_entry_alive(current_entry)
1368 && netdev_flow_key_equal(&current_entry->mf,
1369 miniflow_to_netdev_flow_key(mf),
1370 current_entry->mf_len)) {
1371
1372 /* We found the entry with the 'mf' miniflow */
1373 return current_entry->flow;
1374 }
1375 }
1376
1377 return NULL;
1378 }
1379
1380 static struct dp_netdev_flow *
1381 dp_netdev_lookup_flow(const struct dp_netdev *dp, const struct miniflow *key)
1382 {
1383 struct dp_netdev_flow *netdev_flow;
1384 struct cls_rule *rule;
1385
1386 classifier_lookup_miniflow_batch(&dp->cls, &key, &rule, 1);
1387 netdev_flow = dp_netdev_flow_cast(rule);
1388
1389 return netdev_flow;
1390 }
1391
1392 static struct dp_netdev_flow *
1393 dp_netdev_find_flow(const struct dp_netdev *dp, const struct flow *flow)
1394 {
1395 struct dp_netdev_flow *netdev_flow;
1396
1397 CMAP_FOR_EACH_WITH_HASH (netdev_flow, node, flow_hash(flow, 0),
1398 &dp->flow_table) {
1399 if (flow_equal(&netdev_flow->flow, flow)) {
1400 return netdev_flow;
1401 }
1402 }
1403
1404 return NULL;
1405 }
1406
1407 static void
1408 get_dpif_flow_stats(const struct dp_netdev_flow *netdev_flow,
1409 struct dpif_flow_stats *stats)
1410 {
1411 struct dp_netdev_flow_stats *bucket;
1412 size_t i;
1413
1414 memset(stats, 0, sizeof *stats);
1415 OVSTHREAD_STATS_FOR_EACH_BUCKET (bucket, i, &netdev_flow->stats) {
1416 ovs_mutex_lock(&bucket->mutex);
1417 stats->n_packets += bucket->packet_count;
1418 stats->n_bytes += bucket->byte_count;
1419 stats->used = MAX(stats->used, bucket->used);
1420 stats->tcp_flags |= bucket->tcp_flags;
1421 ovs_mutex_unlock(&bucket->mutex);
1422 }
1423 }
1424
1425 static void
1426 dp_netdev_flow_to_dpif_flow(const struct dp_netdev_flow *netdev_flow,
1427 struct ofpbuf *buffer, struct dpif_flow *flow)
1428 {
1429 struct flow_wildcards wc;
1430 struct dp_netdev_actions *actions;
1431
1432 minimask_expand(&netdev_flow->cr.match.mask, &wc);
1433 odp_flow_key_from_mask(buffer, &wc.masks, &netdev_flow->flow,
1434 odp_to_u32(wc.masks.in_port.odp_port),
1435 SIZE_MAX, true);
1436 flow->mask = ofpbuf_data(buffer);
1437 flow->mask_len = ofpbuf_size(buffer);
1438
1439 actions = dp_netdev_flow_get_actions(netdev_flow);
1440 flow->actions = actions->actions;
1441 flow->actions_len = actions->size;
1442
1443 get_dpif_flow_stats(netdev_flow, &flow->stats);
1444 }
1445
1446 static int
1447 dpif_netdev_mask_from_nlattrs(const struct nlattr *key, uint32_t key_len,
1448 const struct nlattr *mask_key,
1449 uint32_t mask_key_len, const struct flow *flow,
1450 struct flow *mask)
1451 {
1452 if (mask_key_len) {
1453 enum odp_key_fitness fitness;
1454
1455 fitness = odp_flow_key_to_mask(mask_key, mask_key_len, mask, flow);
1456 if (fitness) {
1457 /* This should not happen: it indicates that
1458 * odp_flow_key_from_mask() and odp_flow_key_to_mask()
1459 * disagree on the acceptable form of a mask. Log the problem
1460 * as an error, with enough details to enable debugging. */
1461 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
1462
1463 if (!VLOG_DROP_ERR(&rl)) {
1464 struct ds s;
1465
1466 ds_init(&s);
1467 odp_flow_format(key, key_len, mask_key, mask_key_len, NULL, &s,
1468 true);
1469 VLOG_ERR("internal error parsing flow mask %s (%s)",
1470 ds_cstr(&s), odp_key_fitness_to_string(fitness));
1471 ds_destroy(&s);
1472 }
1473
1474 return EINVAL;
1475 }
1476 } else {
1477 enum mf_field_id id;
1478 /* No mask key, unwildcard everything except fields whose
1479 * prerequisities are not met. */
1480 memset(mask, 0x0, sizeof *mask);
1481
1482 for (id = 0; id < MFF_N_IDS; ++id) {
1483 /* Skip registers and metadata. */
1484 if (!(id >= MFF_REG0 && id < MFF_REG0 + FLOW_N_REGS)
1485 && id != MFF_METADATA) {
1486 const struct mf_field *mf = mf_from_id(id);
1487 if (mf_are_prereqs_ok(mf, flow)) {
1488 mf_mask_field(mf, mask);
1489 }
1490 }
1491 }
1492 }
1493
1494 /* Force unwildcard the in_port.
1495 *
1496 * We need to do this even in the case where we unwildcard "everything"
1497 * above because "everything" only includes the 16-bit OpenFlow port number
1498 * mask->in_port.ofp_port, which only covers half of the 32-bit datapath
1499 * port number mask->in_port.odp_port. */
1500 mask->in_port.odp_port = u32_to_odp(UINT32_MAX);
1501
1502 return 0;
1503 }
1504
1505 static int
1506 dpif_netdev_flow_from_nlattrs(const struct nlattr *key, uint32_t key_len,
1507 struct flow *flow)
1508 {
1509 odp_port_t in_port;
1510
1511 if (odp_flow_key_to_flow(key, key_len, flow)) {
1512 /* This should not happen: it indicates that odp_flow_key_from_flow()
1513 * and odp_flow_key_to_flow() disagree on the acceptable form of a
1514 * flow. Log the problem as an error, with enough details to enable
1515 * debugging. */
1516 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
1517
1518 if (!VLOG_DROP_ERR(&rl)) {
1519 struct ds s;
1520
1521 ds_init(&s);
1522 odp_flow_format(key, key_len, NULL, 0, NULL, &s, true);
1523 VLOG_ERR("internal error parsing flow key %s", ds_cstr(&s));
1524 ds_destroy(&s);
1525 }
1526
1527 return EINVAL;
1528 }
1529
1530 in_port = flow->in_port.odp_port;
1531 if (!is_valid_port_number(in_port) && in_port != ODPP_NONE) {
1532 return EINVAL;
1533 }
1534
1535 return 0;
1536 }
1537
1538 static int
1539 dpif_netdev_flow_get(const struct dpif *dpif, const struct dpif_flow_get *get)
1540 {
1541 struct dp_netdev *dp = get_dp_netdev(dpif);
1542 struct dp_netdev_flow *netdev_flow;
1543 struct flow key;
1544 int error;
1545
1546 error = dpif_netdev_flow_from_nlattrs(get->key, get->key_len, &key);
1547 if (error) {
1548 return error;
1549 }
1550
1551 netdev_flow = dp_netdev_find_flow(dp, &key);
1552
1553 if (netdev_flow) {
1554 dp_netdev_flow_to_dpif_flow(netdev_flow, get->buffer, get->flow);
1555 } else {
1556 error = ENOENT;
1557 }
1558
1559 return error;
1560 }
1561
1562 static int
1563 dp_netdev_flow_add(struct dp_netdev *dp, struct match *match,
1564 const struct nlattr *actions, size_t actions_len)
1565 OVS_REQUIRES(dp->flow_mutex)
1566 {
1567 struct dp_netdev_flow *netdev_flow;
1568
1569 netdev_flow = xzalloc(sizeof *netdev_flow);
1570 *CONST_CAST(struct flow *, &netdev_flow->flow) = match->flow;
1571
1572 ovs_refcount_init(&netdev_flow->ref_cnt);
1573
1574 ovsthread_stats_init(&netdev_flow->stats);
1575
1576 ovsrcu_set(&netdev_flow->actions,
1577 dp_netdev_actions_create(actions, actions_len));
1578
1579 cls_rule_init(CONST_CAST(struct cls_rule *, &netdev_flow->cr),
1580 match, NETDEV_RULE_PRIORITY);
1581 cmap_insert(&dp->flow_table,
1582 CONST_CAST(struct cmap_node *, &netdev_flow->node),
1583 flow_hash(&match->flow, 0));
1584 classifier_insert(&dp->cls,
1585 CONST_CAST(struct cls_rule *, &netdev_flow->cr));
1586
1587 if (OVS_UNLIKELY(VLOG_IS_DBG_ENABLED())) {
1588 struct ds ds = DS_EMPTY_INITIALIZER;
1589
1590 ds_put_cstr(&ds, "flow_add: ");
1591 match_format(match, &ds, OFP_DEFAULT_PRIORITY);
1592 ds_put_cstr(&ds, ", actions:");
1593 format_odp_actions(&ds, actions, actions_len);
1594
1595 VLOG_DBG_RL(&upcall_rl, "%s", ds_cstr(&ds));
1596
1597 ds_destroy(&ds);
1598 }
1599
1600 return 0;
1601 }
1602
1603 static void
1604 clear_stats(struct dp_netdev_flow *netdev_flow)
1605 {
1606 struct dp_netdev_flow_stats *bucket;
1607 size_t i;
1608
1609 OVSTHREAD_STATS_FOR_EACH_BUCKET (bucket, i, &netdev_flow->stats) {
1610 ovs_mutex_lock(&bucket->mutex);
1611 bucket->used = 0;
1612 bucket->packet_count = 0;
1613 bucket->byte_count = 0;
1614 bucket->tcp_flags = 0;
1615 ovs_mutex_unlock(&bucket->mutex);
1616 }
1617 }
1618
1619 static int
1620 dpif_netdev_flow_put(struct dpif *dpif, const struct dpif_flow_put *put)
1621 {
1622 struct dp_netdev *dp = get_dp_netdev(dpif);
1623 struct dp_netdev_flow *netdev_flow;
1624 struct miniflow miniflow;
1625 struct match match;
1626 int error;
1627
1628 error = dpif_netdev_flow_from_nlattrs(put->key, put->key_len, &match.flow);
1629 if (error) {
1630 return error;
1631 }
1632 error = dpif_netdev_mask_from_nlattrs(put->key, put->key_len,
1633 put->mask, put->mask_len,
1634 &match.flow, &match.wc.masks);
1635 if (error) {
1636 return error;
1637 }
1638 miniflow_init(&miniflow, &match.flow);
1639
1640 ovs_mutex_lock(&dp->flow_mutex);
1641 netdev_flow = dp_netdev_lookup_flow(dp, &miniflow);
1642 if (!netdev_flow) {
1643 if (put->flags & DPIF_FP_CREATE) {
1644 if (cmap_count(&dp->flow_table) < MAX_FLOWS) {
1645 if (put->stats) {
1646 memset(put->stats, 0, sizeof *put->stats);
1647 }
1648 error = dp_netdev_flow_add(dp, &match, put->actions,
1649 put->actions_len);
1650 } else {
1651 error = EFBIG;
1652 }
1653 } else {
1654 error = ENOENT;
1655 }
1656 } else {
1657 if (put->flags & DPIF_FP_MODIFY
1658 && flow_equal(&match.flow, &netdev_flow->flow)) {
1659 struct dp_netdev_actions *new_actions;
1660 struct dp_netdev_actions *old_actions;
1661
1662 new_actions = dp_netdev_actions_create(put->actions,
1663 put->actions_len);
1664
1665 old_actions = dp_netdev_flow_get_actions(netdev_flow);
1666 ovsrcu_set(&netdev_flow->actions, new_actions);
1667
1668 if (put->stats) {
1669 get_dpif_flow_stats(netdev_flow, put->stats);
1670 }
1671 if (put->flags & DPIF_FP_ZERO_STATS) {
1672 clear_stats(netdev_flow);
1673 }
1674
1675 ovsrcu_postpone(dp_netdev_actions_free, old_actions);
1676 } else if (put->flags & DPIF_FP_CREATE) {
1677 error = EEXIST;
1678 } else {
1679 /* Overlapping flow. */
1680 error = EINVAL;
1681 }
1682 }
1683 ovs_mutex_unlock(&dp->flow_mutex);
1684 miniflow_destroy(&miniflow);
1685
1686 return error;
1687 }
1688
1689 static int
1690 dpif_netdev_flow_del(struct dpif *dpif, const struct dpif_flow_del *del)
1691 {
1692 struct dp_netdev *dp = get_dp_netdev(dpif);
1693 struct dp_netdev_flow *netdev_flow;
1694 struct flow key;
1695 int error;
1696
1697 error = dpif_netdev_flow_from_nlattrs(del->key, del->key_len, &key);
1698 if (error) {
1699 return error;
1700 }
1701
1702 ovs_mutex_lock(&dp->flow_mutex);
1703 netdev_flow = dp_netdev_find_flow(dp, &key);
1704 if (netdev_flow) {
1705 if (del->stats) {
1706 get_dpif_flow_stats(netdev_flow, del->stats);
1707 }
1708 dp_netdev_remove_flow(dp, netdev_flow);
1709 } else {
1710 error = ENOENT;
1711 }
1712 ovs_mutex_unlock(&dp->flow_mutex);
1713
1714 return error;
1715 }
1716
1717 struct dpif_netdev_flow_dump {
1718 struct dpif_flow_dump up;
1719 struct cmap_position pos;
1720 int status;
1721 struct ovs_mutex mutex;
1722 };
1723
1724 static struct dpif_netdev_flow_dump *
1725 dpif_netdev_flow_dump_cast(struct dpif_flow_dump *dump)
1726 {
1727 return CONTAINER_OF(dump, struct dpif_netdev_flow_dump, up);
1728 }
1729
1730 static struct dpif_flow_dump *
1731 dpif_netdev_flow_dump_create(const struct dpif *dpif_)
1732 {
1733 struct dpif_netdev_flow_dump *dump;
1734
1735 dump = xmalloc(sizeof *dump);
1736 dpif_flow_dump_init(&dump->up, dpif_);
1737 memset(&dump->pos, 0, sizeof dump->pos);
1738 dump->status = 0;
1739 ovs_mutex_init(&dump->mutex);
1740
1741 return &dump->up;
1742 }
1743
1744 static int
1745 dpif_netdev_flow_dump_destroy(struct dpif_flow_dump *dump_)
1746 {
1747 struct dpif_netdev_flow_dump *dump = dpif_netdev_flow_dump_cast(dump_);
1748
1749 ovs_mutex_destroy(&dump->mutex);
1750 free(dump);
1751 return 0;
1752 }
1753
1754 struct dpif_netdev_flow_dump_thread {
1755 struct dpif_flow_dump_thread up;
1756 struct dpif_netdev_flow_dump *dump;
1757 struct odputil_keybuf keybuf[FLOW_DUMP_MAX_BATCH];
1758 struct odputil_keybuf maskbuf[FLOW_DUMP_MAX_BATCH];
1759 };
1760
1761 static struct dpif_netdev_flow_dump_thread *
1762 dpif_netdev_flow_dump_thread_cast(struct dpif_flow_dump_thread *thread)
1763 {
1764 return CONTAINER_OF(thread, struct dpif_netdev_flow_dump_thread, up);
1765 }
1766
1767 static struct dpif_flow_dump_thread *
1768 dpif_netdev_flow_dump_thread_create(struct dpif_flow_dump *dump_)
1769 {
1770 struct dpif_netdev_flow_dump *dump = dpif_netdev_flow_dump_cast(dump_);
1771 struct dpif_netdev_flow_dump_thread *thread;
1772
1773 thread = xmalloc(sizeof *thread);
1774 dpif_flow_dump_thread_init(&thread->up, &dump->up);
1775 thread->dump = dump;
1776 return &thread->up;
1777 }
1778
1779 static void
1780 dpif_netdev_flow_dump_thread_destroy(struct dpif_flow_dump_thread *thread_)
1781 {
1782 struct dpif_netdev_flow_dump_thread *thread
1783 = dpif_netdev_flow_dump_thread_cast(thread_);
1784
1785 free(thread);
1786 }
1787
1788 static int
1789 dpif_netdev_flow_dump_next(struct dpif_flow_dump_thread *thread_,
1790 struct dpif_flow *flows, int max_flows)
1791 {
1792 struct dpif_netdev_flow_dump_thread *thread
1793 = dpif_netdev_flow_dump_thread_cast(thread_);
1794 struct dpif_netdev_flow_dump *dump = thread->dump;
1795 struct dpif_netdev *dpif = dpif_netdev_cast(thread->up.dpif);
1796 struct dp_netdev_flow *netdev_flows[FLOW_DUMP_MAX_BATCH];
1797 struct dp_netdev *dp = get_dp_netdev(&dpif->dpif);
1798 int n_flows = 0;
1799 int i;
1800
1801 ovs_mutex_lock(&dump->mutex);
1802 if (!dump->status) {
1803 for (n_flows = 0; n_flows < MIN(max_flows, FLOW_DUMP_MAX_BATCH);
1804 n_flows++) {
1805 struct cmap_node *node;
1806
1807 node = cmap_next_position(&dp->flow_table, &dump->pos);
1808 if (!node) {
1809 dump->status = EOF;
1810 break;
1811 }
1812 netdev_flows[n_flows] = CONTAINER_OF(node, struct dp_netdev_flow,
1813 node);
1814 }
1815 }
1816 ovs_mutex_unlock(&dump->mutex);
1817
1818 for (i = 0; i < n_flows; i++) {
1819 struct odputil_keybuf *maskbuf = &thread->maskbuf[i];
1820 struct odputil_keybuf *keybuf = &thread->keybuf[i];
1821 struct dp_netdev_flow *netdev_flow = netdev_flows[i];
1822 struct dpif_flow *f = &flows[i];
1823 struct dp_netdev_actions *dp_actions;
1824 struct flow_wildcards wc;
1825 struct ofpbuf buf;
1826
1827 minimask_expand(&netdev_flow->cr.match.mask, &wc);
1828
1829 /* Key. */
1830 ofpbuf_use_stack(&buf, keybuf, sizeof *keybuf);
1831 odp_flow_key_from_flow(&buf, &netdev_flow->flow, &wc.masks,
1832 netdev_flow->flow.in_port.odp_port, true);
1833 f->key = ofpbuf_data(&buf);
1834 f->key_len = ofpbuf_size(&buf);
1835
1836 /* Mask. */
1837 ofpbuf_use_stack(&buf, maskbuf, sizeof *maskbuf);
1838 odp_flow_key_from_mask(&buf, &wc.masks, &netdev_flow->flow,
1839 odp_to_u32(wc.masks.in_port.odp_port),
1840 SIZE_MAX, true);
1841 f->mask = ofpbuf_data(&buf);
1842 f->mask_len = ofpbuf_size(&buf);
1843
1844 /* Actions. */
1845 dp_actions = dp_netdev_flow_get_actions(netdev_flow);
1846 f->actions = dp_actions->actions;
1847 f->actions_len = dp_actions->size;
1848
1849 /* Stats. */
1850 get_dpif_flow_stats(netdev_flow, &f->stats);
1851 }
1852
1853 return n_flows;
1854 }
1855
1856 static int
1857 dpif_netdev_execute(struct dpif *dpif, struct dpif_execute *execute)
1858 OVS_NO_THREAD_SAFETY_ANALYSIS
1859 {
1860 struct dp_netdev *dp = get_dp_netdev(dpif);
1861 struct dp_netdev_pmd_thread *pmd;
1862 struct dpif_packet packet, *pp;
1863 struct pkt_metadata *md = &execute->md;
1864
1865 if (ofpbuf_size(execute->packet) < ETH_HEADER_LEN ||
1866 ofpbuf_size(execute->packet) > UINT16_MAX) {
1867 return EINVAL;
1868 }
1869
1870 packet.ofpbuf = *execute->packet;
1871 pp = &packet;
1872
1873 /* Tries finding the 'pmd'. If NULL is returned, that means
1874 * the current thread is a non-pmd thread and should use
1875 * dp_netdev_get_nonpmd(). */
1876 pmd = ovsthread_getspecific(dp->per_pmd_key);
1877 if (!pmd) {
1878 pmd = dp_netdev_get_nonpmd(dp);
1879 }
1880
1881 /* If the current thread is non-pmd thread, acquires
1882 * the 'non_pmd_mutex'. */
1883 if (pmd->core_id == NON_PMD_CORE_ID) {
1884 ovs_mutex_lock(&dp->non_pmd_mutex);
1885 }
1886 dp_netdev_execute_actions(pmd, &pp, 1, false, md, execute->actions,
1887 execute->actions_len);
1888 if (pmd->core_id == NON_PMD_CORE_ID) {
1889 ovs_mutex_unlock(&dp->non_pmd_mutex);
1890 }
1891
1892 /* Even though may_steal is set to false, some actions could modify or
1893 * reallocate the ofpbuf memory. We need to pass those changes to the
1894 * caller */
1895 *execute->packet = packet.ofpbuf;
1896
1897 return 0;
1898 }
1899
1900 static void
1901 dpif_netdev_operate(struct dpif *dpif, struct dpif_op **ops, size_t n_ops)
1902 {
1903 size_t i;
1904
1905 for (i = 0; i < n_ops; i++) {
1906 struct dpif_op *op = ops[i];
1907
1908 switch (op->type) {
1909 case DPIF_OP_FLOW_PUT:
1910 op->error = dpif_netdev_flow_put(dpif, &op->u.flow_put);
1911 break;
1912
1913 case DPIF_OP_FLOW_DEL:
1914 op->error = dpif_netdev_flow_del(dpif, &op->u.flow_del);
1915 break;
1916
1917 case DPIF_OP_EXECUTE:
1918 op->error = dpif_netdev_execute(dpif, &op->u.execute);
1919 break;
1920
1921 case DPIF_OP_FLOW_GET:
1922 op->error = dpif_netdev_flow_get(dpif, &op->u.flow_get);
1923 break;
1924 }
1925 }
1926 }
1927
1928 /* Returns true if the configuration for rx queues or cpu mask
1929 * is changed. */
1930 static bool
1931 pmd_config_changed(const struct dp_netdev *dp, size_t rxqs, const char *cmask)
1932 {
1933 if (dp->n_dpdk_rxqs != rxqs) {
1934 return true;
1935 } else {
1936 if (dp->pmd_cmask != NULL && cmask != NULL) {
1937 return strcmp(dp->pmd_cmask, cmask);
1938 } else {
1939 return (dp->pmd_cmask != NULL || cmask != NULL);
1940 }
1941 }
1942 }
1943
1944 /* Resets pmd threads if the configuration for 'rxq's or cpu mask changes. */
1945 static int
1946 dpif_netdev_pmd_set(struct dpif *dpif, unsigned int n_rxqs, const char *cmask)
1947 {
1948 struct dp_netdev *dp = get_dp_netdev(dpif);
1949
1950 if (pmd_config_changed(dp, n_rxqs, cmask)) {
1951 struct dp_netdev_port *port;
1952
1953 dp_netdev_destroy_all_pmds(dp);
1954
1955 CMAP_FOR_EACH (port, node, &dp->ports) {
1956 if (netdev_is_pmd(port->netdev)) {
1957 int i, err;
1958
1959 /* Closes the existing 'rxq's. */
1960 for (i = 0; i < netdev_n_rxq(port->netdev); i++) {
1961 netdev_rxq_close(port->rxq[i]);
1962 port->rxq[i] = NULL;
1963 }
1964
1965 /* Sets the new rx queue config. */
1966 err = netdev_set_multiq(port->netdev, ovs_numa_get_n_cores(),
1967 n_rxqs);
1968 if (err) {
1969 VLOG_ERR("Failed to set dpdk interface %s rx_queue to:"
1970 " %u", netdev_get_name(port->netdev),
1971 n_rxqs);
1972 return err;
1973 }
1974
1975 /* If the set_multiq() above succeeds, reopens the 'rxq's. */
1976 port->rxq = xrealloc(port->rxq, sizeof *port->rxq
1977 * netdev_n_rxq(port->netdev));
1978 for (i = 0; i < netdev_n_rxq(port->netdev); i++) {
1979 netdev_rxq_open(port->netdev, &port->rxq[i], i);
1980 }
1981 }
1982 }
1983 dp->n_dpdk_rxqs = n_rxqs;
1984
1985 /* Reconfigures the cpu mask. */
1986 ovs_numa_set_cpu_mask(cmask);
1987 free(dp->pmd_cmask);
1988 dp->pmd_cmask = cmask ? xstrdup(cmask) : NULL;
1989
1990 /* Restores the non-pmd. */
1991 dp_netdev_set_nonpmd(dp);
1992 /* Restores all pmd threads. */
1993 dp_netdev_reset_pmd_threads(dp);
1994 }
1995
1996 return 0;
1997 }
1998
1999 static int
2000 dpif_netdev_queue_to_priority(const struct dpif *dpif OVS_UNUSED,
2001 uint32_t queue_id, uint32_t *priority)
2002 {
2003 *priority = queue_id;
2004 return 0;
2005 }
2006
2007 \f
2008 /* Creates and returns a new 'struct dp_netdev_actions', with a reference count
2009 * of 1, whose actions are a copy of from the 'ofpacts_len' bytes of
2010 * 'ofpacts'. */
2011 struct dp_netdev_actions *
2012 dp_netdev_actions_create(const struct nlattr *actions, size_t size)
2013 {
2014 struct dp_netdev_actions *netdev_actions;
2015
2016 netdev_actions = xmalloc(sizeof *netdev_actions);
2017 netdev_actions->actions = xmemdup(actions, size);
2018 netdev_actions->size = size;
2019
2020 return netdev_actions;
2021 }
2022
2023 struct dp_netdev_actions *
2024 dp_netdev_flow_get_actions(const struct dp_netdev_flow *flow)
2025 {
2026 return ovsrcu_get(struct dp_netdev_actions *, &flow->actions);
2027 }
2028
2029 static void
2030 dp_netdev_actions_free(struct dp_netdev_actions *actions)
2031 {
2032 free(actions->actions);
2033 free(actions);
2034 }
2035 \f
2036
2037 static void
2038 dp_netdev_process_rxq_port(struct dp_netdev_pmd_thread *pmd,
2039 struct dp_netdev_port *port,
2040 struct netdev_rxq *rxq)
2041 {
2042 struct dpif_packet *packets[NETDEV_MAX_RX_BATCH];
2043 int error, cnt;
2044
2045 error = netdev_rxq_recv(rxq, packets, &cnt);
2046 if (!error) {
2047 struct pkt_metadata md = PKT_METADATA_INITIALIZER(port->port_no);
2048
2049 *recirc_depth_get() = 0;
2050 dp_netdev_input(pmd, packets, cnt, &md);
2051 } else if (error != EAGAIN && error != EOPNOTSUPP) {
2052 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
2053
2054 VLOG_ERR_RL(&rl, "error receiving data from %s: %s",
2055 netdev_get_name(port->netdev), ovs_strerror(error));
2056 }
2057 }
2058
2059 static void
2060 dpif_netdev_run(struct dpif *dpif)
2061 {
2062 struct dp_netdev_port *port;
2063 struct dp_netdev *dp = get_dp_netdev(dpif);
2064 struct dp_netdev_pmd_thread *non_pmd = dp_netdev_get_nonpmd(dp);
2065
2066 ovs_mutex_lock(&dp->non_pmd_mutex);
2067 CMAP_FOR_EACH (port, node, &dp->ports) {
2068 if (!netdev_is_pmd(port->netdev)) {
2069 int i;
2070
2071 for (i = 0; i < netdev_n_rxq(port->netdev); i++) {
2072 dp_netdev_process_rxq_port(non_pmd, port, port->rxq[i]);
2073 }
2074 }
2075 }
2076 ovs_mutex_unlock(&dp->non_pmd_mutex);
2077 }
2078
2079 static void
2080 dpif_netdev_wait(struct dpif *dpif)
2081 {
2082 struct dp_netdev_port *port;
2083 struct dp_netdev *dp = get_dp_netdev(dpif);
2084
2085 ovs_mutex_lock(&dp_netdev_mutex);
2086 CMAP_FOR_EACH (port, node, &dp->ports) {
2087 if (!netdev_is_pmd(port->netdev)) {
2088 int i;
2089
2090 for (i = 0; i < netdev_n_rxq(port->netdev); i++) {
2091 netdev_rxq_wait(port->rxq[i]);
2092 }
2093 }
2094 }
2095 ovs_mutex_unlock(&dp_netdev_mutex);
2096 }
2097
2098 struct rxq_poll {
2099 struct dp_netdev_port *port;
2100 struct netdev_rxq *rx;
2101 };
2102
2103 static int
2104 pmd_load_queues(struct dp_netdev_pmd_thread *pmd,
2105 struct rxq_poll **ppoll_list, int poll_cnt)
2106 {
2107 struct rxq_poll *poll_list = *ppoll_list;
2108 struct dp_netdev_port *port;
2109 int n_pmds_on_numa, index, i;
2110
2111 /* Simple scheduler for netdev rx polling. */
2112 for (i = 0; i < poll_cnt; i++) {
2113 port_unref(poll_list[i].port);
2114 }
2115
2116 poll_cnt = 0;
2117 n_pmds_on_numa = get_n_pmd_threads_on_numa(pmd->dp, pmd->numa_id);
2118 index = 0;
2119
2120 CMAP_FOR_EACH (port, node, &pmd->dp->ports) {
2121 /* Calls port_try_ref() to prevent the main thread
2122 * from deleting the port. */
2123 if (port_try_ref(port)) {
2124 if (netdev_is_pmd(port->netdev)
2125 && netdev_get_numa_id(port->netdev) == pmd->numa_id) {
2126 int i;
2127
2128 for (i = 0; i < netdev_n_rxq(port->netdev); i++) {
2129 if ((index % n_pmds_on_numa) == pmd->index) {
2130 poll_list = xrealloc(poll_list,
2131 sizeof *poll_list * (poll_cnt + 1));
2132
2133 port_ref(port);
2134 poll_list[poll_cnt].port = port;
2135 poll_list[poll_cnt].rx = port->rxq[i];
2136 poll_cnt++;
2137 }
2138 index++;
2139 }
2140 }
2141 /* Unrefs the port_try_ref(). */
2142 port_unref(port);
2143 }
2144 }
2145
2146 *ppoll_list = poll_list;
2147 return poll_cnt;
2148 }
2149
2150 static void *
2151 pmd_thread_main(void *f_)
2152 {
2153 struct dp_netdev_pmd_thread *pmd = f_;
2154 unsigned int lc = 0;
2155 struct rxq_poll *poll_list;
2156 unsigned int port_seq = PMD_INITIAL_SEQ;
2157 int poll_cnt;
2158 int i;
2159
2160 poll_cnt = 0;
2161 poll_list = NULL;
2162
2163 /* Stores the pmd thread's 'pmd' to 'per_pmd_key'. */
2164 ovsthread_setspecific(pmd->dp->per_pmd_key, pmd);
2165 pmd_thread_setaffinity_cpu(pmd->core_id);
2166 reload:
2167 emc_cache_init(&pmd->flow_cache);
2168 poll_cnt = pmd_load_queues(pmd, &poll_list, poll_cnt);
2169
2170 for (;;) {
2171 int i;
2172
2173 for (i = 0; i < poll_cnt; i++) {
2174 dp_netdev_process_rxq_port(pmd, poll_list[i].port, poll_list[i].rx);
2175 }
2176
2177 if (lc++ > 1024) {
2178 unsigned int seq;
2179
2180 lc = 0;
2181
2182 ovsrcu_quiesce();
2183
2184 atomic_read_relaxed(&pmd->change_seq, &seq);
2185 if (seq != port_seq) {
2186 port_seq = seq;
2187 break;
2188 }
2189 }
2190 }
2191
2192 emc_cache_uninit(&pmd->flow_cache);
2193
2194 if (!latch_is_set(&pmd->exit_latch)){
2195 goto reload;
2196 }
2197
2198 for (i = 0; i < poll_cnt; i++) {
2199 port_unref(poll_list[i].port);
2200 }
2201
2202 free(poll_list);
2203 return NULL;
2204 }
2205
2206 static void
2207 dp_netdev_disable_upcall(struct dp_netdev *dp)
2208 OVS_ACQUIRES(dp->upcall_rwlock)
2209 {
2210 fat_rwlock_wrlock(&dp->upcall_rwlock);
2211 }
2212
2213 static void
2214 dpif_netdev_disable_upcall(struct dpif *dpif)
2215 OVS_NO_THREAD_SAFETY_ANALYSIS
2216 {
2217 struct dp_netdev *dp = get_dp_netdev(dpif);
2218 dp_netdev_disable_upcall(dp);
2219 }
2220
2221 static void
2222 dp_netdev_enable_upcall(struct dp_netdev *dp)
2223 OVS_RELEASES(dp->upcall_rwlock)
2224 {
2225 fat_rwlock_unlock(&dp->upcall_rwlock);
2226 }
2227
2228 static void
2229 dpif_netdev_enable_upcall(struct dpif *dpif)
2230 OVS_NO_THREAD_SAFETY_ANALYSIS
2231 {
2232 struct dp_netdev *dp = get_dp_netdev(dpif);
2233 dp_netdev_enable_upcall(dp);
2234 }
2235
2236 /* Returns the pointer to the dp_netdev_pmd_thread for non-pmd threads. */
2237 static struct dp_netdev_pmd_thread *
2238 dp_netdev_get_nonpmd(struct dp_netdev *dp)
2239 {
2240 struct dp_netdev_pmd_thread *pmd;
2241 struct cmap_node *pnode;
2242
2243 pnode = cmap_find(&dp->poll_threads, hash_int(NON_PMD_CORE_ID, 0));
2244 ovs_assert(pnode);
2245 pmd = CONTAINER_OF(pnode, struct dp_netdev_pmd_thread, node);
2246
2247 return pmd;
2248 }
2249
2250 /* Sets the 'struct dp_netdev_pmd_thread' for non-pmd threads. */
2251 static void
2252 dp_netdev_set_nonpmd(struct dp_netdev *dp)
2253 {
2254 struct dp_netdev_pmd_thread *non_pmd;
2255
2256 non_pmd = xzalloc(sizeof *non_pmd);
2257 dp_netdev_configure_pmd(non_pmd, dp, 0, NON_PMD_CORE_ID,
2258 OVS_NUMA_UNSPEC);
2259 }
2260
2261 /* Configures the 'pmd' based on the input argument. */
2262 static void
2263 dp_netdev_configure_pmd(struct dp_netdev_pmd_thread *pmd, struct dp_netdev *dp,
2264 int index, int core_id, int numa_id)
2265 {
2266 pmd->dp = dp;
2267 pmd->index = index;
2268 pmd->core_id = core_id;
2269 pmd->numa_id = numa_id;
2270 latch_init(&pmd->exit_latch);
2271 atomic_init(&pmd->change_seq, PMD_INITIAL_SEQ);
2272 /* init the 'flow_cache' since there is no
2273 * actual thread created for NON_PMD_CORE_ID. */
2274 if (core_id == NON_PMD_CORE_ID) {
2275 emc_cache_init(&pmd->flow_cache);
2276 }
2277 cmap_insert(&dp->poll_threads, CONST_CAST(struct cmap_node *, &pmd->node),
2278 hash_int(core_id, 0));
2279 }
2280
2281 /* Stops the pmd thread, removes it from the 'dp->poll_threads'
2282 * and destroys the struct. */
2283 static void
2284 dp_netdev_del_pmd(struct dp_netdev_pmd_thread *pmd)
2285 {
2286 /* Uninit the 'flow_cache' since there is
2287 * no actual thread uninit it. */
2288 if (pmd->core_id == NON_PMD_CORE_ID) {
2289 emc_cache_uninit(&pmd->flow_cache);
2290 } else {
2291 latch_set(&pmd->exit_latch);
2292 dp_netdev_reload_pmd__(pmd);
2293 ovs_numa_unpin_core(pmd->core_id);
2294 xpthread_join(pmd->thread, NULL);
2295 }
2296 cmap_remove(&pmd->dp->poll_threads, &pmd->node, hash_int(pmd->core_id, 0));
2297 latch_destroy(&pmd->exit_latch);
2298 free(pmd);
2299 }
2300
2301 /* Destroys all pmd threads. */
2302 static void
2303 dp_netdev_destroy_all_pmds(struct dp_netdev *dp)
2304 {
2305 struct dp_netdev_pmd_thread *pmd;
2306
2307 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
2308 dp_netdev_del_pmd(pmd);
2309 }
2310 }
2311
2312 /* Deletes all pmd threads on numa node 'numa_id'. */
2313 static void
2314 dp_netdev_del_pmds_on_numa(struct dp_netdev *dp, int numa_id)
2315 {
2316 struct dp_netdev_pmd_thread *pmd;
2317
2318 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
2319 if (pmd->numa_id == numa_id) {
2320 dp_netdev_del_pmd(pmd);
2321 }
2322 }
2323 }
2324
2325 /* Checks the numa node id of 'netdev' and starts pmd threads for
2326 * the numa node. */
2327 static void
2328 dp_netdev_set_pmds_on_numa(struct dp_netdev *dp, int numa_id)
2329 {
2330 int n_pmds;
2331
2332 if (!ovs_numa_numa_id_is_valid(numa_id)) {
2333 VLOG_ERR("Cannot create pmd threads due to numa id (%d)"
2334 "invalid", numa_id);
2335 return ;
2336 }
2337
2338 n_pmds = get_n_pmd_threads_on_numa(dp, numa_id);
2339
2340 /* If there are already pmd threads created for the numa node
2341 * in which 'netdev' is on, do nothing. Else, creates the
2342 * pmd threads for the numa node. */
2343 if (!n_pmds) {
2344 int can_have, n_unpinned, i;
2345
2346 n_unpinned = ovs_numa_get_n_unpinned_cores_on_numa(numa_id);
2347 if (!n_unpinned) {
2348 VLOG_ERR("Cannot create pmd threads due to out of unpinned "
2349 "cores on numa node");
2350 return;
2351 }
2352
2353 /* If cpu mask is specified, uses all unpinned cores, otherwise
2354 * tries creating NR_PMD_THREADS pmd threads. */
2355 can_have = dp->pmd_cmask ? n_unpinned : MIN(n_unpinned, NR_PMD_THREADS);
2356 for (i = 0; i < can_have; i++) {
2357 struct dp_netdev_pmd_thread *pmd = xzalloc(sizeof *pmd);
2358 int core_id = ovs_numa_get_unpinned_core_on_numa(numa_id);
2359
2360 dp_netdev_configure_pmd(pmd, dp, i, core_id, numa_id);
2361 /* Each thread will distribute all devices rx-queues among
2362 * themselves. */
2363 pmd->thread = ovs_thread_create("pmd", pmd_thread_main, pmd);
2364 }
2365 VLOG_INFO("Created %d pmd threads on numa node %d", can_have, numa_id);
2366 }
2367 }
2368
2369 \f
2370 static void *
2371 dp_netdev_flow_stats_new_cb(void)
2372 {
2373 struct dp_netdev_flow_stats *bucket = xzalloc_cacheline(sizeof *bucket);
2374 ovs_mutex_init(&bucket->mutex);
2375 return bucket;
2376 }
2377
2378 /* Called after pmd threads config change. Restarts pmd threads with
2379 * new configuration. */
2380 static void
2381 dp_netdev_reset_pmd_threads(struct dp_netdev *dp)
2382 {
2383 struct dp_netdev_port *port;
2384
2385 CMAP_FOR_EACH (port, node, &dp->ports) {
2386 if (netdev_is_pmd(port->netdev)) {
2387 int numa_id = netdev_get_numa_id(port->netdev);
2388
2389 dp_netdev_set_pmds_on_numa(dp, numa_id);
2390 }
2391 }
2392 }
2393
2394 static void
2395 dp_netdev_flow_used(struct dp_netdev_flow *netdev_flow,
2396 int cnt, int size,
2397 uint16_t tcp_flags)
2398 {
2399 long long int now = time_msec();
2400 struct dp_netdev_flow_stats *bucket;
2401
2402 bucket = ovsthread_stats_bucket_get(&netdev_flow->stats,
2403 dp_netdev_flow_stats_new_cb);
2404
2405 ovs_mutex_lock(&bucket->mutex);
2406 bucket->used = MAX(now, bucket->used);
2407 bucket->packet_count += cnt;
2408 bucket->byte_count += size;
2409 bucket->tcp_flags |= tcp_flags;
2410 ovs_mutex_unlock(&bucket->mutex);
2411 }
2412
2413 static void *
2414 dp_netdev_stats_new_cb(void)
2415 {
2416 struct dp_netdev_stats *bucket = xzalloc_cacheline(sizeof *bucket);
2417 ovs_mutex_init(&bucket->mutex);
2418 return bucket;
2419 }
2420
2421 static void
2422 dp_netdev_count_packet(struct dp_netdev *dp, enum dp_stat_type type, int cnt)
2423 {
2424 struct dp_netdev_stats *bucket;
2425
2426 bucket = ovsthread_stats_bucket_get(&dp->stats, dp_netdev_stats_new_cb);
2427 ovs_mutex_lock(&bucket->mutex);
2428 bucket->n[type] += cnt;
2429 ovs_mutex_unlock(&bucket->mutex);
2430 }
2431
2432 static int
2433 dp_netdev_upcall(struct dp_netdev *dp, struct dpif_packet *packet_,
2434 struct flow *flow, struct flow_wildcards *wc,
2435 enum dpif_upcall_type type, const struct nlattr *userdata,
2436 struct ofpbuf *actions, struct ofpbuf *put_actions)
2437 {
2438 struct ofpbuf *packet = &packet_->ofpbuf;
2439
2440 if (type == DPIF_UC_MISS) {
2441 dp_netdev_count_packet(dp, DP_STAT_MISS, 1);
2442 }
2443
2444 if (OVS_UNLIKELY(!dp->upcall_cb)) {
2445 return ENODEV;
2446 }
2447
2448 if (OVS_UNLIKELY(!VLOG_DROP_DBG(&upcall_rl))) {
2449 struct ds ds = DS_EMPTY_INITIALIZER;
2450 struct ofpbuf key;
2451 char *packet_str;
2452
2453 ofpbuf_init(&key, 0);
2454 odp_flow_key_from_flow(&key, flow, &wc->masks, flow->in_port.odp_port,
2455 true);
2456
2457 packet_str = ofp_packet_to_string(ofpbuf_data(packet),
2458 ofpbuf_size(packet));
2459
2460 odp_flow_key_format(ofpbuf_data(&key), ofpbuf_size(&key), &ds);
2461
2462 VLOG_DBG("%s: %s upcall:\n%s\n%s", dp->name,
2463 dpif_upcall_type_to_string(type), ds_cstr(&ds), packet_str);
2464
2465 ofpbuf_uninit(&key);
2466 free(packet_str);
2467 ds_destroy(&ds);
2468 }
2469
2470 return dp->upcall_cb(packet, flow, type, userdata, actions, wc,
2471 put_actions, dp->upcall_aux);
2472 }
2473
2474 static inline uint32_t
2475 dpif_netdev_packet_get_dp_hash(struct dpif_packet *packet,
2476 const struct miniflow *mf)
2477 {
2478 uint32_t hash;
2479
2480 hash = dpif_packet_get_dp_hash(packet);
2481 if (OVS_UNLIKELY(!hash)) {
2482 hash = miniflow_hash_5tuple(mf, 0);
2483 dpif_packet_set_dp_hash(packet, hash);
2484 }
2485 return hash;
2486 }
2487
2488 struct packet_batch {
2489 unsigned int packet_count;
2490 unsigned int byte_count;
2491 uint16_t tcp_flags;
2492
2493 struct dp_netdev_flow *flow;
2494
2495 struct dpif_packet *packets[NETDEV_MAX_RX_BATCH];
2496 struct pkt_metadata md;
2497 };
2498
2499 static inline void
2500 packet_batch_update(struct packet_batch *batch, struct dpif_packet *packet,
2501 const struct miniflow *mf)
2502 {
2503 batch->tcp_flags |= miniflow_get_tcp_flags(mf);
2504 batch->packets[batch->packet_count++] = packet;
2505 batch->byte_count += ofpbuf_size(&packet->ofpbuf);
2506 }
2507
2508 static inline void
2509 packet_batch_init(struct packet_batch *batch, struct dp_netdev_flow *flow,
2510 struct pkt_metadata *md)
2511 {
2512 batch->flow = flow;
2513 batch->md = *md;
2514
2515 batch->packet_count = 0;
2516 batch->byte_count = 0;
2517 batch->tcp_flags = 0;
2518 }
2519
2520 static inline void
2521 packet_batch_execute(struct packet_batch *batch,
2522 struct dp_netdev_pmd_thread *pmd)
2523 {
2524 struct dp_netdev_actions *actions;
2525 struct dp_netdev_flow *flow = batch->flow;
2526
2527 dp_netdev_flow_used(batch->flow, batch->packet_count, batch->byte_count,
2528 batch->tcp_flags);
2529
2530 actions = dp_netdev_flow_get_actions(flow);
2531
2532 dp_netdev_execute_actions(pmd, batch->packets, batch->packet_count, true,
2533 &batch->md, actions->actions, actions->size);
2534
2535 dp_netdev_count_packet(pmd->dp, DP_STAT_HIT, batch->packet_count);
2536 }
2537
2538 static inline bool
2539 dp_netdev_queue_batches(struct dpif_packet *pkt, struct pkt_metadata *md,
2540 struct dp_netdev_flow *flow, const struct miniflow *mf,
2541 struct packet_batch *batches, size_t *n_batches,
2542 size_t max_batches)
2543 {
2544 struct packet_batch *batch = NULL;
2545 int j;
2546
2547 if (OVS_UNLIKELY(!flow)) {
2548 return false;
2549 }
2550 /* XXX: This O(n^2) algortihm makes sense if we're operating under the
2551 * assumption that the number of distinct flows (and therefore the
2552 * number of distinct batches) is quite small. If this turns out not
2553 * to be the case, it may make sense to pre sort based on the
2554 * netdev_flow pointer. That done we can get the appropriate batching
2555 * in O(n * log(n)) instead. */
2556 for (j = *n_batches - 1; j >= 0; j--) {
2557 if (batches[j].flow == flow) {
2558 batch = &batches[j];
2559 packet_batch_update(batch, pkt, mf);
2560 return true;
2561 }
2562 }
2563 if (OVS_UNLIKELY(*n_batches >= max_batches)) {
2564 return false;
2565 }
2566
2567 batch = &batches[(*n_batches)++];
2568 packet_batch_init(batch, flow, md);
2569 packet_batch_update(batch, pkt, mf);
2570 return true;
2571 }
2572
2573 static inline void
2574 dpif_packet_swap(struct dpif_packet **a, struct dpif_packet **b)
2575 {
2576 struct dpif_packet *tmp = *a;
2577 *a = *b;
2578 *b = tmp;
2579 }
2580
2581 /* Try to process all ('cnt') the 'packets' using only the exact match cache
2582 * 'flow_cache'. If a flow is not found for a packet 'packets[i]', or if there
2583 * is no matching batch for a packet's flow, the miniflow is copied into 'keys'
2584 * and the packet pointer is moved at the beginning of the 'packets' array.
2585 *
2586 * The function returns the number of packets that needs to be processed in the
2587 * 'packets' array (they have been moved to the beginning of the vector).
2588 */
2589 static inline size_t
2590 emc_processing(struct dp_netdev_pmd_thread *pmd, struct dpif_packet **packets,
2591 size_t cnt, struct pkt_metadata *md,
2592 struct netdev_flow_key *keys)
2593 {
2594 struct netdev_flow_key key;
2595 struct packet_batch batches[4];
2596 struct emc_cache *flow_cache = &pmd->flow_cache;
2597 size_t n_batches, i;
2598 size_t notfound_cnt = 0;
2599
2600 n_batches = 0;
2601 miniflow_initialize(&key.flow, key.buf);
2602 for (i = 0; i < cnt; i++) {
2603 struct dp_netdev_flow *flow;
2604 uint32_t hash;
2605
2606 if (OVS_UNLIKELY(ofpbuf_size(&packets[i]->ofpbuf) < ETH_HEADER_LEN)) {
2607 dpif_packet_delete(packets[i]);
2608 continue;
2609 }
2610
2611 miniflow_extract(&packets[i]->ofpbuf, md, &key.flow);
2612
2613 hash = dpif_netdev_packet_get_dp_hash(packets[i], &key.flow);
2614
2615 flow = emc_lookup(flow_cache, &key.flow, hash);
2616 if (OVS_UNLIKELY(!dp_netdev_queue_batches(packets[i], md,
2617 flow, &key.flow,
2618 batches, &n_batches,
2619 ARRAY_SIZE(batches)))) {
2620 if (i != notfound_cnt) {
2621 dpif_packet_swap(&packets[i], &packets[notfound_cnt]);
2622 }
2623
2624 keys[notfound_cnt++] = key;
2625 }
2626 }
2627
2628 for (i = 0; i < n_batches; i++) {
2629 packet_batch_execute(&batches[i], pmd);
2630 }
2631
2632 return notfound_cnt;
2633 }
2634
2635 static inline void
2636 fast_path_processing(struct dp_netdev_pmd_thread *pmd,
2637 struct dpif_packet **packets, size_t cnt,
2638 struct pkt_metadata *md, struct netdev_flow_key *keys)
2639 {
2640 #if !defined(__CHECKER__) && !defined(_WIN32)
2641 const size_t PKT_ARRAY_SIZE = cnt;
2642 #else
2643 /* Sparse or MSVC doesn't like variable length array. */
2644 enum { PKT_ARRAY_SIZE = NETDEV_MAX_RX_BATCH };
2645 #endif
2646 struct packet_batch batches[PKT_ARRAY_SIZE];
2647 const struct miniflow *mfs[PKT_ARRAY_SIZE]; /* NULL at bad packets. */
2648 struct cls_rule *rules[PKT_ARRAY_SIZE];
2649 struct dp_netdev *dp = pmd->dp;
2650 struct emc_cache *flow_cache = &pmd->flow_cache;
2651 size_t n_batches, i;
2652 bool any_miss;
2653
2654 for (i = 0; i < cnt; i++) {
2655 mfs[i] = &keys[i].flow;
2656 }
2657 any_miss = !classifier_lookup_miniflow_batch(&dp->cls, mfs, rules, cnt);
2658 if (OVS_UNLIKELY(any_miss) && !fat_rwlock_tryrdlock(&dp->upcall_rwlock)) {
2659 uint64_t actions_stub[512 / 8], slow_stub[512 / 8];
2660 struct ofpbuf actions, put_actions;
2661 struct match match;
2662
2663 ofpbuf_use_stub(&actions, actions_stub, sizeof actions_stub);
2664 ofpbuf_use_stub(&put_actions, slow_stub, sizeof slow_stub);
2665
2666 for (i = 0; i < cnt; i++) {
2667 const struct dp_netdev_flow *netdev_flow;
2668 struct ofpbuf *add_actions;
2669 int error;
2670
2671 if (OVS_LIKELY(rules[i] || !mfs[i])) {
2672 continue;
2673 }
2674
2675 /* It's possible that an earlier slow path execution installed
2676 * the rule this flow needs. In this case, it's a lot cheaper
2677 * to catch it here than execute a miss. */
2678 netdev_flow = dp_netdev_lookup_flow(dp, mfs[i]);
2679 if (netdev_flow) {
2680 rules[i] = CONST_CAST(struct cls_rule *, &netdev_flow->cr);
2681 continue;
2682 }
2683
2684 miniflow_expand(mfs[i], &match.flow);
2685
2686 ofpbuf_clear(&actions);
2687 ofpbuf_clear(&put_actions);
2688
2689 error = dp_netdev_upcall(dp, packets[i], &match.flow, &match.wc,
2690 DPIF_UC_MISS, NULL, &actions,
2691 &put_actions);
2692 if (OVS_UNLIKELY(error && error != ENOSPC)) {
2693 continue;
2694 }
2695
2696 /* We can't allow the packet batching in the next loop to execute
2697 * the actions. Otherwise, if there are any slow path actions,
2698 * we'll send the packet up twice. */
2699 dp_netdev_execute_actions(pmd, &packets[i], 1, true, md,
2700 ofpbuf_data(&actions),
2701 ofpbuf_size(&actions));
2702
2703 add_actions = ofpbuf_size(&put_actions)
2704 ? &put_actions
2705 : &actions;
2706
2707 ovs_mutex_lock(&dp->flow_mutex);
2708 /* XXX: There's a brief race where this flow could have already
2709 * been installed since we last did the flow lookup. This could be
2710 * solved by moving the mutex lock outside the loop, but that's an
2711 * awful long time to be locking everyone out of making flow
2712 * installs. If we move to a per-core classifier, it would be
2713 * reasonable. */
2714 if (OVS_LIKELY(error != ENOSPC)
2715 && !dp_netdev_lookup_flow(dp, mfs[i])) {
2716 dp_netdev_flow_add(dp, &match, ofpbuf_data(add_actions),
2717 ofpbuf_size(add_actions));
2718 }
2719 ovs_mutex_unlock(&dp->flow_mutex);
2720 }
2721
2722 ofpbuf_uninit(&actions);
2723 ofpbuf_uninit(&put_actions);
2724 fat_rwlock_unlock(&dp->upcall_rwlock);
2725 } else if (OVS_UNLIKELY(any_miss)) {
2726 int dropped_cnt = 0;
2727
2728 for (i = 0; i < cnt; i++) {
2729 if (OVS_UNLIKELY(!rules[i] && mfs[i])) {
2730 dpif_packet_delete(packets[i]);
2731 dropped_cnt++;
2732 }
2733 }
2734
2735 dp_netdev_count_packet(dp, DP_STAT_LOST, dropped_cnt);
2736 }
2737
2738 n_batches = 0;
2739 for (i = 0; i < cnt; i++) {
2740 struct dpif_packet *packet = packets[i];
2741 struct dp_netdev_flow *flow;
2742
2743 if (OVS_UNLIKELY(!rules[i] || !mfs[i])) {
2744 continue;
2745 }
2746
2747 flow = dp_netdev_flow_cast(rules[i]);
2748 emc_insert(flow_cache, mfs[i], dpif_packet_get_dp_hash(packet),
2749 flow);
2750 dp_netdev_queue_batches(packet, md, flow, mfs[i], batches, &n_batches,
2751 ARRAY_SIZE(batches));
2752 }
2753
2754 for (i = 0; i < n_batches; i++) {
2755 packet_batch_execute(&batches[i], pmd);
2756 }
2757 }
2758
2759 static void
2760 dp_netdev_input(struct dp_netdev_pmd_thread *pmd,
2761 struct dpif_packet **packets, int cnt, struct pkt_metadata *md)
2762 {
2763 #if !defined(__CHECKER__) && !defined(_WIN32)
2764 const size_t PKT_ARRAY_SIZE = cnt;
2765 #else
2766 /* Sparse or MSVC doesn't like variable length array. */
2767 enum { PKT_ARRAY_SIZE = NETDEV_MAX_RX_BATCH };
2768 #endif
2769 struct netdev_flow_key keys[PKT_ARRAY_SIZE];
2770 size_t newcnt;
2771
2772 newcnt = emc_processing(pmd, packets, cnt, md, keys);
2773 if (OVS_UNLIKELY(newcnt)) {
2774 fast_path_processing(pmd, packets, newcnt, md, keys);
2775 }
2776 }
2777
2778 struct dp_netdev_execute_aux {
2779 struct dp_netdev_pmd_thread *pmd;
2780 };
2781
2782 static void
2783 dpif_netdev_register_upcall_cb(struct dpif *dpif, upcall_callback *cb,
2784 void *aux)
2785 {
2786 struct dp_netdev *dp = get_dp_netdev(dpif);
2787 dp->upcall_aux = aux;
2788 dp->upcall_cb = cb;
2789 }
2790
2791 static void
2792 dp_netdev_drop_packets(struct dpif_packet ** packets, int cnt, bool may_steal)
2793 {
2794 int i;
2795
2796 if (may_steal) {
2797 for (i = 0; i < cnt; i++) {
2798 dpif_packet_delete(packets[i]);
2799 }
2800 }
2801 }
2802
2803 static void
2804 dp_execute_cb(void *aux_, struct dpif_packet **packets, int cnt,
2805 struct pkt_metadata *md,
2806 const struct nlattr *a, bool may_steal)
2807 OVS_NO_THREAD_SAFETY_ANALYSIS
2808 {
2809 struct dp_netdev_execute_aux *aux = aux_;
2810 uint32_t *depth = recirc_depth_get();
2811 struct dp_netdev_pmd_thread *pmd= aux->pmd;
2812 struct dp_netdev *dp= pmd->dp;
2813 int type = nl_attr_type(a);
2814 struct dp_netdev_port *p;
2815 int i;
2816
2817 switch ((enum ovs_action_attr)type) {
2818 case OVS_ACTION_ATTR_OUTPUT:
2819 p = dp_netdev_lookup_port(dp, u32_to_odp(nl_attr_get_u32(a)));
2820 if (OVS_LIKELY(p)) {
2821 netdev_send(p->netdev, pmd->core_id, packets, cnt, may_steal);
2822 return;
2823 }
2824 break;
2825
2826 case OVS_ACTION_ATTR_USERSPACE:
2827 if (!fat_rwlock_tryrdlock(&dp->upcall_rwlock)) {
2828 const struct nlattr *userdata;
2829 struct ofpbuf actions;
2830 struct flow flow;
2831
2832 userdata = nl_attr_find_nested(a, OVS_USERSPACE_ATTR_USERDATA);
2833 ofpbuf_init(&actions, 0);
2834
2835 for (i = 0; i < cnt; i++) {
2836 int error;
2837
2838 ofpbuf_clear(&actions);
2839
2840 flow_extract(&packets[i]->ofpbuf, md, &flow);
2841 error = dp_netdev_upcall(dp, packets[i], &flow, NULL,
2842 DPIF_UC_ACTION, userdata, &actions,
2843 NULL);
2844 if (!error || error == ENOSPC) {
2845 dp_netdev_execute_actions(pmd, &packets[i], 1, may_steal,
2846 md, ofpbuf_data(&actions),
2847 ofpbuf_size(&actions));
2848 } else if (may_steal) {
2849 dpif_packet_delete(packets[i]);
2850 }
2851 }
2852 ofpbuf_uninit(&actions);
2853 fat_rwlock_unlock(&dp->upcall_rwlock);
2854
2855 return;
2856 }
2857 break;
2858
2859 case OVS_ACTION_ATTR_HASH: {
2860 const struct ovs_action_hash *hash_act;
2861 uint32_t hash;
2862
2863 hash_act = nl_attr_get(a);
2864
2865 for (i = 0; i < cnt; i++) {
2866
2867 if (hash_act->hash_alg == OVS_HASH_ALG_L4) {
2868 /* Hash need not be symmetric, nor does it need to include
2869 * L2 fields. */
2870 hash = hash_2words(dpif_packet_get_dp_hash(packets[i]),
2871 hash_act->hash_basis);
2872 } else {
2873 VLOG_WARN("Unknown hash algorithm specified "
2874 "for the hash action.");
2875 hash = 2;
2876 }
2877
2878 if (!hash) {
2879 hash = 1; /* 0 is not valid */
2880 }
2881
2882 if (i == 0) {
2883 md->dp_hash = hash;
2884 }
2885 dpif_packet_set_dp_hash(packets[i], hash);
2886 }
2887 return;
2888 }
2889
2890 case OVS_ACTION_ATTR_RECIRC:
2891 if (*depth < MAX_RECIRC_DEPTH) {
2892
2893 (*depth)++;
2894 for (i = 0; i < cnt; i++) {
2895 struct dpif_packet *recirc_pkt;
2896 struct pkt_metadata recirc_md = *md;
2897
2898 recirc_pkt = (may_steal) ? packets[i]
2899 : dpif_packet_clone(packets[i]);
2900
2901 recirc_md.recirc_id = nl_attr_get_u32(a);
2902
2903 /* Hash is private to each packet */
2904 recirc_md.dp_hash = dpif_packet_get_dp_hash(packets[i]);
2905
2906 dp_netdev_input(pmd, &recirc_pkt, 1,
2907 &recirc_md);
2908 }
2909 (*depth)--;
2910
2911 return;
2912 }
2913
2914 VLOG_WARN("Packet dropped. Max recirculation depth exceeded.");
2915 break;
2916
2917 case OVS_ACTION_ATTR_PUSH_VLAN:
2918 case OVS_ACTION_ATTR_POP_VLAN:
2919 case OVS_ACTION_ATTR_PUSH_MPLS:
2920 case OVS_ACTION_ATTR_POP_MPLS:
2921 case OVS_ACTION_ATTR_SET:
2922 case OVS_ACTION_ATTR_SET_MASKED:
2923 case OVS_ACTION_ATTR_SAMPLE:
2924 case OVS_ACTION_ATTR_UNSPEC:
2925 case __OVS_ACTION_ATTR_MAX:
2926 OVS_NOT_REACHED();
2927 }
2928
2929 dp_netdev_drop_packets(packets, cnt, may_steal);
2930 }
2931
2932 static void
2933 dp_netdev_execute_actions(struct dp_netdev_pmd_thread *pmd,
2934 struct dpif_packet **packets, int cnt,
2935 bool may_steal, struct pkt_metadata *md,
2936 const struct nlattr *actions, size_t actions_len)
2937 {
2938 struct dp_netdev_execute_aux aux = {pmd};
2939
2940 odp_execute_actions(&aux, packets, cnt, may_steal, md, actions,
2941 actions_len, dp_execute_cb);
2942 }
2943
2944 const struct dpif_class dpif_netdev_class = {
2945 "netdev",
2946 dpif_netdev_enumerate,
2947 dpif_netdev_port_open_type,
2948 dpif_netdev_open,
2949 dpif_netdev_close,
2950 dpif_netdev_destroy,
2951 dpif_netdev_run,
2952 dpif_netdev_wait,
2953 dpif_netdev_get_stats,
2954 dpif_netdev_port_add,
2955 dpif_netdev_port_del,
2956 dpif_netdev_port_query_by_number,
2957 dpif_netdev_port_query_by_name,
2958 NULL, /* port_get_pid */
2959 dpif_netdev_port_dump_start,
2960 dpif_netdev_port_dump_next,
2961 dpif_netdev_port_dump_done,
2962 dpif_netdev_port_poll,
2963 dpif_netdev_port_poll_wait,
2964 dpif_netdev_flow_flush,
2965 dpif_netdev_flow_dump_create,
2966 dpif_netdev_flow_dump_destroy,
2967 dpif_netdev_flow_dump_thread_create,
2968 dpif_netdev_flow_dump_thread_destroy,
2969 dpif_netdev_flow_dump_next,
2970 dpif_netdev_operate,
2971 NULL, /* recv_set */
2972 NULL, /* handlers_set */
2973 dpif_netdev_pmd_set,
2974 dpif_netdev_queue_to_priority,
2975 NULL, /* recv */
2976 NULL, /* recv_wait */
2977 NULL, /* recv_purge */
2978 dpif_netdev_register_upcall_cb,
2979 dpif_netdev_enable_upcall,
2980 dpif_netdev_disable_upcall,
2981 };
2982
2983 static void
2984 dpif_dummy_change_port_number(struct unixctl_conn *conn, int argc OVS_UNUSED,
2985 const char *argv[], void *aux OVS_UNUSED)
2986 {
2987 struct dp_netdev_port *old_port;
2988 struct dp_netdev_port *new_port;
2989 struct dp_netdev *dp;
2990 odp_port_t port_no;
2991
2992 ovs_mutex_lock(&dp_netdev_mutex);
2993 dp = shash_find_data(&dp_netdevs, argv[1]);
2994 if (!dp || !dpif_netdev_class_is_dummy(dp->class)) {
2995 ovs_mutex_unlock(&dp_netdev_mutex);
2996 unixctl_command_reply_error(conn, "unknown datapath or not a dummy");
2997 return;
2998 }
2999 ovs_refcount_ref(&dp->ref_cnt);
3000 ovs_mutex_unlock(&dp_netdev_mutex);
3001
3002 ovs_mutex_lock(&dp->port_mutex);
3003 if (get_port_by_name(dp, argv[2], &old_port)) {
3004 unixctl_command_reply_error(conn, "unknown port");
3005 goto exit;
3006 }
3007
3008 port_no = u32_to_odp(atoi(argv[3]));
3009 if (!port_no || port_no == ODPP_NONE) {
3010 unixctl_command_reply_error(conn, "bad port number");
3011 goto exit;
3012 }
3013 if (dp_netdev_lookup_port(dp, port_no)) {
3014 unixctl_command_reply_error(conn, "port number already in use");
3015 goto exit;
3016 }
3017
3018 /* Remove old port. */
3019 cmap_remove(&dp->ports, &old_port->node, hash_port_no(old_port->port_no));
3020 ovsrcu_postpone(free, old_port);
3021
3022 /* Insert new port (cmap semantics mean we cannot re-insert 'old_port'). */
3023 new_port = xmemdup(old_port, sizeof *old_port);
3024 new_port->port_no = port_no;
3025 cmap_insert(&dp->ports, &new_port->node, hash_port_no(port_no));
3026
3027 seq_change(dp->port_seq);
3028 unixctl_command_reply(conn, NULL);
3029
3030 exit:
3031 ovs_mutex_unlock(&dp->port_mutex);
3032 dp_netdev_unref(dp);
3033 }
3034
3035 static void
3036 dpif_dummy_delete_port(struct unixctl_conn *conn, int argc OVS_UNUSED,
3037 const char *argv[], void *aux OVS_UNUSED)
3038 {
3039 struct dp_netdev_port *port;
3040 struct dp_netdev *dp;
3041
3042 ovs_mutex_lock(&dp_netdev_mutex);
3043 dp = shash_find_data(&dp_netdevs, argv[1]);
3044 if (!dp || !dpif_netdev_class_is_dummy(dp->class)) {
3045 ovs_mutex_unlock(&dp_netdev_mutex);
3046 unixctl_command_reply_error(conn, "unknown datapath or not a dummy");
3047 return;
3048 }
3049 ovs_refcount_ref(&dp->ref_cnt);
3050 ovs_mutex_unlock(&dp_netdev_mutex);
3051
3052 ovs_mutex_lock(&dp->port_mutex);
3053 if (get_port_by_name(dp, argv[2], &port)) {
3054 unixctl_command_reply_error(conn, "unknown port");
3055 } else if (port->port_no == ODPP_LOCAL) {
3056 unixctl_command_reply_error(conn, "can't delete local port");
3057 } else {
3058 do_del_port(dp, port);
3059 unixctl_command_reply(conn, NULL);
3060 }
3061 ovs_mutex_unlock(&dp->port_mutex);
3062
3063 dp_netdev_unref(dp);
3064 }
3065
3066 static void
3067 dpif_dummy_register__(const char *type)
3068 {
3069 struct dpif_class *class;
3070
3071 class = xmalloc(sizeof *class);
3072 *class = dpif_netdev_class;
3073 class->type = xstrdup(type);
3074 dp_register_provider(class);
3075 }
3076
3077 void
3078 dpif_dummy_register(bool override)
3079 {
3080 if (override) {
3081 struct sset types;
3082 const char *type;
3083
3084 sset_init(&types);
3085 dp_enumerate_types(&types);
3086 SSET_FOR_EACH (type, &types) {
3087 if (!dp_unregister_provider(type)) {
3088 dpif_dummy_register__(type);
3089 }
3090 }
3091 sset_destroy(&types);
3092 }
3093
3094 dpif_dummy_register__("dummy");
3095
3096 unixctl_command_register("dpif-dummy/change-port-number",
3097 "dp port new-number",
3098 3, 3, dpif_dummy_change_port_number, NULL);
3099 unixctl_command_register("dpif-dummy/delete-port", "dp port",
3100 2, 2, dpif_dummy_delete_port, NULL);
3101 }