]> git.proxmox.com Git - mirror_ovs.git/blob - lib/dpif-netdev.c
dpif-netdev: Store actions data and size contiguously.
[mirror_ovs.git] / lib / dpif-netdev.c
1 /*
2 * Copyright (c) 2009, 2010, 2011, 2012, 2013, 2014 Nicira, Inc.
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at:
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <config.h>
18 #include "dpif-netdev.h"
19
20 #include <ctype.h>
21 #include <errno.h>
22 #include <fcntl.h>
23 #include <inttypes.h>
24 #include <netinet/in.h>
25 #include <sys/socket.h>
26 #include <net/if.h>
27 #include <stdint.h>
28 #include <stdlib.h>
29 #include <string.h>
30 #include <sys/ioctl.h>
31 #include <sys/stat.h>
32 #include <unistd.h>
33
34 #include "cmap.h"
35 #include "csum.h"
36 #include "dp-packet.h"
37 #include "dpif.h"
38 #include "dpif-provider.h"
39 #include "dummy.h"
40 #include "dynamic-string.h"
41 #include "fat-rwlock.h"
42 #include "flow.h"
43 #include "cmap.h"
44 #include "latch.h"
45 #include "list.h"
46 #include "match.h"
47 #include "meta-flow.h"
48 #include "netdev.h"
49 #include "netdev-dpdk.h"
50 #include "netdev-vport.h"
51 #include "netlink.h"
52 #include "odp-execute.h"
53 #include "odp-util.h"
54 #include "ofp-print.h"
55 #include "ofpbuf.h"
56 #include "ovs-numa.h"
57 #include "ovs-rcu.h"
58 #include "packets.h"
59 #include "poll-loop.h"
60 #include "pvector.h"
61 #include "random.h"
62 #include "seq.h"
63 #include "shash.h"
64 #include "sset.h"
65 #include "timeval.h"
66 #include "tnl-arp-cache.h"
67 #include "unixctl.h"
68 #include "util.h"
69 #include "openvswitch/vlog.h"
70
71 VLOG_DEFINE_THIS_MODULE(dpif_netdev);
72
73 #define FLOW_DUMP_MAX_BATCH 50
74 /* Use per thread recirc_depth to prevent recirculation loop. */
75 #define MAX_RECIRC_DEPTH 5
76 DEFINE_STATIC_PER_THREAD_DATA(uint32_t, recirc_depth, 0)
77
78 /* Configuration parameters. */
79 enum { MAX_FLOWS = 65536 }; /* Maximum number of flows in flow table. */
80
81 /* Protects against changes to 'dp_netdevs'. */
82 static struct ovs_mutex dp_netdev_mutex = OVS_MUTEX_INITIALIZER;
83
84 /* Contains all 'struct dp_netdev's. */
85 static struct shash dp_netdevs OVS_GUARDED_BY(dp_netdev_mutex)
86 = SHASH_INITIALIZER(&dp_netdevs);
87
88 static struct vlog_rate_limit upcall_rl = VLOG_RATE_LIMIT_INIT(600, 600);
89
90 /* Stores a miniflow with inline values */
91
92 struct netdev_flow_key {
93 uint32_t hash; /* Hash function differs for different users. */
94 uint32_t len; /* Length of the following miniflow (incl. map). */
95 struct miniflow mf;
96 uint64_t buf[FLOW_MAX_PACKET_U64S - MINI_N_INLINE];
97 };
98
99 /* Exact match cache for frequently used flows
100 *
101 * The cache uses a 32-bit hash of the packet (which can be the RSS hash) to
102 * search its entries for a miniflow that matches exactly the miniflow of the
103 * packet. It stores the 'dpcls_rule' (rule) that matches the miniflow.
104 *
105 * A cache entry holds a reference to its 'dp_netdev_flow'.
106 *
107 * A miniflow with a given hash can be in one of EM_FLOW_HASH_SEGS different
108 * entries. The 32-bit hash is split into EM_FLOW_HASH_SEGS values (each of
109 * them is EM_FLOW_HASH_SHIFT bits wide and the remainder is thrown away). Each
110 * value is the index of a cache entry where the miniflow could be.
111 *
112 *
113 * Thread-safety
114 * =============
115 *
116 * Each pmd_thread has its own private exact match cache.
117 * If dp_netdev_input is not called from a pmd thread, a mutex is used.
118 */
119
120 #define EM_FLOW_HASH_SHIFT 10
121 #define EM_FLOW_HASH_ENTRIES (1u << EM_FLOW_HASH_SHIFT)
122 #define EM_FLOW_HASH_MASK (EM_FLOW_HASH_ENTRIES - 1)
123 #define EM_FLOW_HASH_SEGS 2
124
125 struct emc_entry {
126 struct dp_netdev_flow *flow;
127 struct netdev_flow_key key; /* key.hash used for emc hash value. */
128 };
129
130 struct emc_cache {
131 struct emc_entry entries[EM_FLOW_HASH_ENTRIES];
132 int sweep_idx; /* For emc_cache_slow_sweep(). */
133 };
134
135 /* Iterate in the exact match cache through every entry that might contain a
136 * miniflow with hash 'HASH'. */
137 #define EMC_FOR_EACH_POS_WITH_HASH(EMC, CURRENT_ENTRY, HASH) \
138 for (uint32_t i__ = 0, srch_hash__ = (HASH); \
139 (CURRENT_ENTRY) = &(EMC)->entries[srch_hash__ & EM_FLOW_HASH_MASK], \
140 i__ < EM_FLOW_HASH_SEGS; \
141 i__++, srch_hash__ >>= EM_FLOW_HASH_SHIFT)
142 \f
143 /* Simple non-wildcarding single-priority classifier. */
144
145 struct dpcls {
146 struct cmap subtables_map;
147 struct pvector subtables;
148 };
149
150 /* A rule to be inserted to the classifier. */
151 struct dpcls_rule {
152 struct cmap_node cmap_node; /* Within struct dpcls_subtable 'rules'. */
153 struct netdev_flow_key *mask; /* Subtable's mask. */
154 struct netdev_flow_key flow; /* Matching key. */
155 /* 'flow' must be the last field, additional space is allocated here. */
156 };
157
158 static void dpcls_init(struct dpcls *);
159 static void dpcls_destroy(struct dpcls *);
160 static void dpcls_insert(struct dpcls *, struct dpcls_rule *,
161 const struct netdev_flow_key *mask);
162 static void dpcls_remove(struct dpcls *, struct dpcls_rule *);
163 static bool dpcls_lookup(const struct dpcls *cls,
164 const struct netdev_flow_key keys[],
165 struct dpcls_rule **rules, size_t cnt);
166 \f
167 /* Datapath based on the network device interface from netdev.h.
168 *
169 *
170 * Thread-safety
171 * =============
172 *
173 * Some members, marked 'const', are immutable. Accessing other members
174 * requires synchronization, as noted in more detail below.
175 *
176 * Acquisition order is, from outermost to innermost:
177 *
178 * dp_netdev_mutex (global)
179 * port_mutex
180 */
181 struct dp_netdev {
182 const struct dpif_class *const class;
183 const char *const name;
184 struct dpif *dpif;
185 struct ovs_refcount ref_cnt;
186 atomic_flag destroyed;
187
188 /* Ports.
189 *
190 * Protected by RCU. Take the mutex to add or remove ports. */
191 struct ovs_mutex port_mutex;
192 struct cmap ports;
193 struct seq *port_seq; /* Incremented whenever a port changes. */
194
195 /* Protects access to ofproto-dpif-upcall interface during revalidator
196 * thread synchronization. */
197 struct fat_rwlock upcall_rwlock;
198 upcall_callback *upcall_cb; /* Callback function for executing upcalls. */
199 void *upcall_aux;
200
201 /* Stores all 'struct dp_netdev_pmd_thread's. */
202 struct cmap poll_threads;
203
204 /* Protects the access of the 'struct dp_netdev_pmd_thread'
205 * instance for non-pmd thread. */
206 struct ovs_mutex non_pmd_mutex;
207
208 /* Each pmd thread will store its pointer to
209 * 'struct dp_netdev_pmd_thread' in 'per_pmd_key'. */
210 ovsthread_key_t per_pmd_key;
211
212 /* Number of rx queues for each dpdk interface and the cpu mask
213 * for pin of pmd threads. */
214 size_t n_dpdk_rxqs;
215 char *pmd_cmask;
216 uint64_t last_tnl_conf_seq;
217 };
218
219 static struct dp_netdev_port *dp_netdev_lookup_port(const struct dp_netdev *dp,
220 odp_port_t);
221
222 enum dp_stat_type {
223 DP_STAT_EXACT_HIT, /* Packets that had an exact match (emc). */
224 DP_STAT_MASKED_HIT, /* Packets that matched in the flow table. */
225 DP_STAT_MISS, /* Packets that did not match. */
226 DP_STAT_LOST, /* Packets not passed up to the client. */
227 DP_N_STATS
228 };
229
230 enum pmd_cycles_counter_type {
231 PMD_CYCLES_POLLING, /* Cycles spent polling NICs. */
232 PMD_CYCLES_PROCESSING, /* Cycles spent processing packets */
233 PMD_N_CYCLES
234 };
235
236 /* A port in a netdev-based datapath. */
237 struct dp_netdev_port {
238 struct cmap_node node; /* Node in dp_netdev's 'ports'. */
239 odp_port_t port_no;
240 struct netdev *netdev;
241 struct netdev_saved_flags *sf;
242 struct netdev_rxq **rxq;
243 struct ovs_refcount ref_cnt;
244 char *type; /* Port type as requested by user. */
245 };
246
247 /* Contained by struct dp_netdev_flow's 'stats' member. */
248 struct dp_netdev_flow_stats {
249 atomic_llong used; /* Last used time, in monotonic msecs. */
250 atomic_ullong packet_count; /* Number of packets matched. */
251 atomic_ullong byte_count; /* Number of bytes matched. */
252 atomic_uint16_t tcp_flags; /* Bitwise-OR of seen tcp_flags values. */
253 };
254
255 /* A flow in 'dp_netdev_pmd_thread's 'flow_table'.
256 *
257 *
258 * Thread-safety
259 * =============
260 *
261 * Except near the beginning or ending of its lifespan, rule 'rule' belongs to
262 * its pmd thread's classifier. The text below calls this classifier 'cls'.
263 *
264 * Motivation
265 * ----------
266 *
267 * The thread safety rules described here for "struct dp_netdev_flow" are
268 * motivated by two goals:
269 *
270 * - Prevent threads that read members of "struct dp_netdev_flow" from
271 * reading bad data due to changes by some thread concurrently modifying
272 * those members.
273 *
274 * - Prevent two threads making changes to members of a given "struct
275 * dp_netdev_flow" from interfering with each other.
276 *
277 *
278 * Rules
279 * -----
280 *
281 * A flow 'flow' may be accessed without a risk of being freed during an RCU
282 * grace period. Code that needs to hold onto a flow for a while
283 * should try incrementing 'flow->ref_cnt' with dp_netdev_flow_ref().
284 *
285 * 'flow->ref_cnt' protects 'flow' from being freed. It doesn't protect the
286 * flow from being deleted from 'cls' and it doesn't protect members of 'flow'
287 * from modification.
288 *
289 * Some members, marked 'const', are immutable. Accessing other members
290 * requires synchronization, as noted in more detail below.
291 */
292 struct dp_netdev_flow {
293 bool dead;
294
295 /* Hash table index by unmasked flow. */
296 const struct cmap_node node; /* In owning dp_netdev_pmd_thread's */
297 /* 'flow_table'. */
298 const ovs_u128 ufid; /* Unique flow identifier. */
299 const struct flow flow; /* Unmasked flow that created this entry. */
300 const int pmd_id; /* The 'core_id' of pmd thread owning this */
301 /* flow. */
302
303 /* Number of references.
304 * The classifier owns one reference.
305 * Any thread trying to keep a rule from being freed should hold its own
306 * reference. */
307 struct ovs_refcount ref_cnt;
308
309 /* Statistics. */
310 struct dp_netdev_flow_stats stats;
311
312 /* Actions. */
313 OVSRCU_TYPE(struct dp_netdev_actions *) actions;
314
315 /* Packet classification. */
316 struct dpcls_rule cr; /* In owning dp_netdev's 'cls'. */
317 /* 'cr' must be the last member. */
318 };
319
320 static void dp_netdev_flow_unref(struct dp_netdev_flow *);
321 static bool dp_netdev_flow_ref(struct dp_netdev_flow *);
322 static int dpif_netdev_flow_from_nlattrs(const struct nlattr *, uint32_t,
323 struct flow *);
324
325 /* A set of datapath actions within a "struct dp_netdev_flow".
326 *
327 *
328 * Thread-safety
329 * =============
330 *
331 * A struct dp_netdev_actions 'actions' is protected with RCU. */
332 struct dp_netdev_actions {
333 /* These members are immutable: they do not change during the struct's
334 * lifetime. */
335 unsigned int size; /* Size of 'actions', in bytes. */
336 struct nlattr actions[]; /* Sequence of OVS_ACTION_ATTR_* attributes. */
337 };
338
339 struct dp_netdev_actions *dp_netdev_actions_create(const struct nlattr *,
340 size_t);
341 struct dp_netdev_actions *dp_netdev_flow_get_actions(
342 const struct dp_netdev_flow *);
343 static void dp_netdev_actions_free(struct dp_netdev_actions *);
344
345 /* Contained by struct dp_netdev_pmd_thread's 'stats' member. */
346 struct dp_netdev_pmd_stats {
347 /* Indexed by DP_STAT_*. */
348 atomic_ullong n[DP_N_STATS];
349 };
350
351 /* Contained by struct dp_netdev_pmd_thread's 'cycle' member. */
352 struct dp_netdev_pmd_cycles {
353 /* Indexed by PMD_CYCLES_*. */
354 atomic_ullong n[PMD_N_CYCLES];
355 };
356
357 /* PMD: Poll modes drivers. PMD accesses devices via polling to eliminate
358 * the performance overhead of interrupt processing. Therefore netdev can
359 * not implement rx-wait for these devices. dpif-netdev needs to poll
360 * these device to check for recv buffer. pmd-thread does polling for
361 * devices assigned to itself.
362 *
363 * DPDK used PMD for accessing NIC.
364 *
365 * Note, instance with cpu core id NON_PMD_CORE_ID will be reserved for
366 * I/O of all non-pmd threads. There will be no actual thread created
367 * for the instance.
368 *
369 * Each struct has its own flow table and classifier. Packets received
370 * from managed ports are looked up in the corresponding pmd thread's
371 * flow table, and are executed with the found actions.
372 * */
373 struct dp_netdev_pmd_thread {
374 struct dp_netdev *dp;
375 struct ovs_refcount ref_cnt; /* Every reference must be refcount'ed. */
376 struct cmap_node node; /* In 'dp->poll_threads'. */
377
378 pthread_cond_t cond; /* For synchronizing pmd thread reload. */
379 struct ovs_mutex cond_mutex; /* Mutex for condition variable. */
380
381 /* Per thread exact-match cache. Note, the instance for cpu core
382 * NON_PMD_CORE_ID can be accessed by multiple threads, and thusly
383 * need to be protected (e.g. by 'dp_netdev_mutex'). All other
384 * instances will only be accessed by its own pmd thread. */
385 struct emc_cache flow_cache;
386
387 /* Classifier and Flow-Table.
388 *
389 * Writers of 'flow_table' must take the 'flow_mutex'. Corresponding
390 * changes to 'cls' must be made while still holding the 'flow_mutex'.
391 */
392 struct ovs_mutex flow_mutex;
393 struct dpcls cls;
394 struct cmap flow_table OVS_GUARDED; /* Flow table. */
395
396 /* Statistics. */
397 struct dp_netdev_pmd_stats stats;
398
399 /* Cycles counters */
400 struct dp_netdev_pmd_cycles cycles;
401
402 /* Used to count cicles. See 'cycles_counter_end()' */
403 unsigned long long last_cycles;
404
405 struct latch exit_latch; /* For terminating the pmd thread. */
406 atomic_uint change_seq; /* For reloading pmd ports. */
407 pthread_t thread;
408 int index; /* Idx of this pmd thread among pmd*/
409 /* threads on same numa node. */
410 int core_id; /* CPU core id of this pmd thread. */
411 int numa_id; /* numa node id of this pmd thread. */
412
413 /* Only a pmd thread can write on its own 'cycles' and 'stats'.
414 * The main thread keeps 'stats_zero' and 'cycles_zero' as base
415 * values and subtracts them from 'stats' and 'cycles' before
416 * reporting to the user */
417 unsigned long long stats_zero[DP_N_STATS];
418 uint64_t cycles_zero[PMD_N_CYCLES];
419 };
420
421 #define PMD_INITIAL_SEQ 1
422
423 /* Interface to netdev-based datapath. */
424 struct dpif_netdev {
425 struct dpif dpif;
426 struct dp_netdev *dp;
427 uint64_t last_port_seq;
428 };
429
430 static int get_port_by_number(struct dp_netdev *dp, odp_port_t port_no,
431 struct dp_netdev_port **portp);
432 static int get_port_by_name(struct dp_netdev *dp, const char *devname,
433 struct dp_netdev_port **portp);
434 static void dp_netdev_free(struct dp_netdev *)
435 OVS_REQUIRES(dp_netdev_mutex);
436 static int do_add_port(struct dp_netdev *dp, const char *devname,
437 const char *type, odp_port_t port_no)
438 OVS_REQUIRES(dp->port_mutex);
439 static void do_del_port(struct dp_netdev *dp, struct dp_netdev_port *)
440 OVS_REQUIRES(dp->port_mutex);
441 static int dpif_netdev_open(const struct dpif_class *, const char *name,
442 bool create, struct dpif **);
443 static void dp_netdev_execute_actions(struct dp_netdev_pmd_thread *pmd,
444 struct dp_packet **, int c,
445 bool may_steal,
446 const struct nlattr *actions,
447 size_t actions_len);
448 static void dp_netdev_input(struct dp_netdev_pmd_thread *,
449 struct dp_packet **, int cnt);
450
451 static void dp_netdev_disable_upcall(struct dp_netdev *);
452 void dp_netdev_pmd_reload_done(struct dp_netdev_pmd_thread *pmd);
453 static void dp_netdev_configure_pmd(struct dp_netdev_pmd_thread *pmd,
454 struct dp_netdev *dp, int index,
455 int core_id, int numa_id);
456 static void dp_netdev_destroy_pmd(struct dp_netdev_pmd_thread *pmd);
457 static void dp_netdev_set_nonpmd(struct dp_netdev *dp);
458 static struct dp_netdev_pmd_thread *dp_netdev_get_pmd(struct dp_netdev *dp,
459 int core_id);
460 static struct dp_netdev_pmd_thread *
461 dp_netdev_pmd_get_next(struct dp_netdev *dp, struct cmap_position *pos);
462 static void dp_netdev_destroy_all_pmds(struct dp_netdev *dp);
463 static void dp_netdev_del_pmds_on_numa(struct dp_netdev *dp, int numa_id);
464 static void dp_netdev_set_pmds_on_numa(struct dp_netdev *dp, int numa_id);
465 static void dp_netdev_reset_pmd_threads(struct dp_netdev *dp);
466 static bool dp_netdev_pmd_try_ref(struct dp_netdev_pmd_thread *pmd);
467 static void dp_netdev_pmd_unref(struct dp_netdev_pmd_thread *pmd);
468 static void dp_netdev_pmd_flow_flush(struct dp_netdev_pmd_thread *pmd);
469
470 static inline bool emc_entry_alive(struct emc_entry *ce);
471 static void emc_clear_entry(struct emc_entry *ce);
472
473 static void
474 emc_cache_init(struct emc_cache *flow_cache)
475 {
476 int i;
477
478 BUILD_ASSERT(offsetof(struct miniflow, inline_values) == sizeof(uint64_t));
479
480 flow_cache->sweep_idx = 0;
481 for (i = 0; i < ARRAY_SIZE(flow_cache->entries); i++) {
482 flow_cache->entries[i].flow = NULL;
483 flow_cache->entries[i].key.hash = 0;
484 flow_cache->entries[i].key.len
485 = offsetof(struct miniflow, inline_values);
486 miniflow_initialize(&flow_cache->entries[i].key.mf,
487 flow_cache->entries[i].key.buf);
488 }
489 }
490
491 static void
492 emc_cache_uninit(struct emc_cache *flow_cache)
493 {
494 int i;
495
496 for (i = 0; i < ARRAY_SIZE(flow_cache->entries); i++) {
497 emc_clear_entry(&flow_cache->entries[i]);
498 }
499 }
500
501 /* Check and clear dead flow references slowly (one entry at each
502 * invocation). */
503 static void
504 emc_cache_slow_sweep(struct emc_cache *flow_cache)
505 {
506 struct emc_entry *entry = &flow_cache->entries[flow_cache->sweep_idx];
507
508 if (!emc_entry_alive(entry)) {
509 emc_clear_entry(entry);
510 }
511 flow_cache->sweep_idx = (flow_cache->sweep_idx + 1) & EM_FLOW_HASH_MASK;
512 }
513
514 static struct dpif_netdev *
515 dpif_netdev_cast(const struct dpif *dpif)
516 {
517 ovs_assert(dpif->dpif_class->open == dpif_netdev_open);
518 return CONTAINER_OF(dpif, struct dpif_netdev, dpif);
519 }
520
521 static struct dp_netdev *
522 get_dp_netdev(const struct dpif *dpif)
523 {
524 return dpif_netdev_cast(dpif)->dp;
525 }
526 \f
527 enum pmd_info_type {
528 PMD_INFO_SHOW_STATS, /* show how cpu cycles are spent */
529 PMD_INFO_CLEAR_STATS /* set the cycles count to 0 */
530 };
531
532 static void
533 pmd_info_show_stats(struct ds *reply,
534 struct dp_netdev_pmd_thread *pmd,
535 unsigned long long stats[DP_N_STATS],
536 uint64_t cycles[PMD_N_CYCLES])
537 {
538 unsigned long long total_packets = 0;
539 uint64_t total_cycles = 0;
540 int i;
541
542 /* These loops subtracts reference values ('*_zero') from the counters.
543 * Since loads and stores are relaxed, it might be possible for a '*_zero'
544 * value to be more recent than the current value we're reading from the
545 * counter. This is not a big problem, since these numbers are not
546 * supposed to be too accurate, but we should at least make sure that
547 * the result is not negative. */
548 for (i = 0; i < DP_N_STATS; i++) {
549 if (stats[i] > pmd->stats_zero[i]) {
550 stats[i] -= pmd->stats_zero[i];
551 } else {
552 stats[i] = 0;
553 }
554
555 if (i != DP_STAT_LOST) {
556 /* Lost packets are already included in DP_STAT_MISS */
557 total_packets += stats[i];
558 }
559 }
560
561 for (i = 0; i < PMD_N_CYCLES; i++) {
562 if (cycles[i] > pmd->cycles_zero[i]) {
563 cycles[i] -= pmd->cycles_zero[i];
564 } else {
565 cycles[i] = 0;
566 }
567
568 total_cycles += cycles[i];
569 }
570
571 ds_put_cstr(reply, (pmd->core_id == NON_PMD_CORE_ID)
572 ? "main thread" : "pmd thread");
573
574 if (pmd->numa_id != OVS_NUMA_UNSPEC) {
575 ds_put_format(reply, " numa_id %d", pmd->numa_id);
576 }
577 if (pmd->core_id != OVS_CORE_UNSPEC) {
578 ds_put_format(reply, " core_id %d", pmd->core_id);
579 }
580 ds_put_cstr(reply, ":\n");
581
582 ds_put_format(reply,
583 "\temc hits:%llu\n\tmegaflow hits:%llu\n"
584 "\tmiss:%llu\n\tlost:%llu\n",
585 stats[DP_STAT_EXACT_HIT], stats[DP_STAT_MASKED_HIT],
586 stats[DP_STAT_MISS], stats[DP_STAT_LOST]);
587
588 if (total_cycles == 0) {
589 return;
590 }
591
592 ds_put_format(reply,
593 "\tpolling cycles:%"PRIu64" (%.02f%%)\n"
594 "\tprocessing cycles:%"PRIu64" (%.02f%%)\n",
595 cycles[PMD_CYCLES_POLLING],
596 cycles[PMD_CYCLES_POLLING] / (double)total_cycles * 100,
597 cycles[PMD_CYCLES_PROCESSING],
598 cycles[PMD_CYCLES_PROCESSING] / (double)total_cycles * 100);
599
600 if (total_packets == 0) {
601 return;
602 }
603
604 ds_put_format(reply,
605 "\tavg cycles per packet: %.02f (%"PRIu64"/%llu)\n",
606 total_cycles / (double)total_packets,
607 total_cycles, total_packets);
608
609 ds_put_format(reply,
610 "\tavg processing cycles per packet: "
611 "%.02f (%"PRIu64"/%llu)\n",
612 cycles[PMD_CYCLES_PROCESSING] / (double)total_packets,
613 cycles[PMD_CYCLES_PROCESSING], total_packets);
614 }
615
616 static void
617 pmd_info_clear_stats(struct ds *reply OVS_UNUSED,
618 struct dp_netdev_pmd_thread *pmd,
619 unsigned long long stats[DP_N_STATS],
620 uint64_t cycles[PMD_N_CYCLES])
621 {
622 int i;
623
624 /* We cannot write 'stats' and 'cycles' (because they're written by other
625 * threads) and we shouldn't change 'stats' (because they're used to count
626 * datapath stats, which must not be cleared here). Instead, we save the
627 * current values and subtract them from the values to be displayed in the
628 * future */
629 for (i = 0; i < DP_N_STATS; i++) {
630 pmd->stats_zero[i] = stats[i];
631 }
632 for (i = 0; i < PMD_N_CYCLES; i++) {
633 pmd->cycles_zero[i] = cycles[i];
634 }
635 }
636
637 static void
638 dpif_netdev_pmd_info(struct unixctl_conn *conn, int argc, const char *argv[],
639 void *aux)
640 {
641 struct ds reply = DS_EMPTY_INITIALIZER;
642 struct dp_netdev_pmd_thread *pmd;
643 struct dp_netdev *dp = NULL;
644 enum pmd_info_type type = *(enum pmd_info_type *) aux;
645
646 ovs_mutex_lock(&dp_netdev_mutex);
647
648 if (argc == 2) {
649 dp = shash_find_data(&dp_netdevs, argv[1]);
650 } else if (shash_count(&dp_netdevs) == 1) {
651 /* There's only one datapath */
652 dp = shash_first(&dp_netdevs)->data;
653 }
654
655 if (!dp) {
656 ovs_mutex_unlock(&dp_netdev_mutex);
657 unixctl_command_reply_error(conn,
658 "please specify an existing datapath");
659 return;
660 }
661
662 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
663 unsigned long long stats[DP_N_STATS];
664 uint64_t cycles[PMD_N_CYCLES];
665 int i;
666
667 /* Read current stats and cycle counters */
668 for (i = 0; i < ARRAY_SIZE(stats); i++) {
669 atomic_read_relaxed(&pmd->stats.n[i], &stats[i]);
670 }
671 for (i = 0; i < ARRAY_SIZE(cycles); i++) {
672 atomic_read_relaxed(&pmd->cycles.n[i], &cycles[i]);
673 }
674
675 if (type == PMD_INFO_CLEAR_STATS) {
676 pmd_info_clear_stats(&reply, pmd, stats, cycles);
677 } else if (type == PMD_INFO_SHOW_STATS) {
678 pmd_info_show_stats(&reply, pmd, stats, cycles);
679 }
680 }
681
682 ovs_mutex_unlock(&dp_netdev_mutex);
683
684 unixctl_command_reply(conn, ds_cstr(&reply));
685 ds_destroy(&reply);
686 }
687 \f
688 static int
689 dpif_netdev_init(void)
690 {
691 static enum pmd_info_type show_aux = PMD_INFO_SHOW_STATS,
692 clear_aux = PMD_INFO_CLEAR_STATS;
693
694 unixctl_command_register("dpif-netdev/pmd-stats-show", "[dp]",
695 0, 1, dpif_netdev_pmd_info,
696 (void *)&show_aux);
697 unixctl_command_register("dpif-netdev/pmd-stats-clear", "[dp]",
698 0, 1, dpif_netdev_pmd_info,
699 (void *)&clear_aux);
700 return 0;
701 }
702
703 static int
704 dpif_netdev_enumerate(struct sset *all_dps,
705 const struct dpif_class *dpif_class)
706 {
707 struct shash_node *node;
708
709 ovs_mutex_lock(&dp_netdev_mutex);
710 SHASH_FOR_EACH(node, &dp_netdevs) {
711 struct dp_netdev *dp = node->data;
712 if (dpif_class != dp->class) {
713 /* 'dp_netdevs' contains both "netdev" and "dummy" dpifs.
714 * If the class doesn't match, skip this dpif. */
715 continue;
716 }
717 sset_add(all_dps, node->name);
718 }
719 ovs_mutex_unlock(&dp_netdev_mutex);
720
721 return 0;
722 }
723
724 static bool
725 dpif_netdev_class_is_dummy(const struct dpif_class *class)
726 {
727 return class != &dpif_netdev_class;
728 }
729
730 static const char *
731 dpif_netdev_port_open_type(const struct dpif_class *class, const char *type)
732 {
733 return strcmp(type, "internal") ? type
734 : dpif_netdev_class_is_dummy(class) ? "dummy"
735 : "tap";
736 }
737
738 static struct dpif *
739 create_dpif_netdev(struct dp_netdev *dp)
740 {
741 uint16_t netflow_id = hash_string(dp->name, 0);
742 struct dpif_netdev *dpif;
743
744 ovs_refcount_ref(&dp->ref_cnt);
745
746 dpif = xmalloc(sizeof *dpif);
747 dpif_init(&dpif->dpif, dp->class, dp->name, netflow_id >> 8, netflow_id);
748 dpif->dp = dp;
749 dpif->last_port_seq = seq_read(dp->port_seq);
750
751 return &dpif->dpif;
752 }
753
754 /* Choose an unused, non-zero port number and return it on success.
755 * Return ODPP_NONE on failure. */
756 static odp_port_t
757 choose_port(struct dp_netdev *dp, const char *name)
758 OVS_REQUIRES(dp->port_mutex)
759 {
760 uint32_t port_no;
761
762 if (dp->class != &dpif_netdev_class) {
763 const char *p;
764 int start_no = 0;
765
766 /* If the port name begins with "br", start the number search at
767 * 100 to make writing tests easier. */
768 if (!strncmp(name, "br", 2)) {
769 start_no = 100;
770 }
771
772 /* If the port name contains a number, try to assign that port number.
773 * This can make writing unit tests easier because port numbers are
774 * predictable. */
775 for (p = name; *p != '\0'; p++) {
776 if (isdigit((unsigned char) *p)) {
777 port_no = start_no + strtol(p, NULL, 10);
778 if (port_no > 0 && port_no != odp_to_u32(ODPP_NONE)
779 && !dp_netdev_lookup_port(dp, u32_to_odp(port_no))) {
780 return u32_to_odp(port_no);
781 }
782 break;
783 }
784 }
785 }
786
787 for (port_no = 1; port_no <= UINT16_MAX; port_no++) {
788 if (!dp_netdev_lookup_port(dp, u32_to_odp(port_no))) {
789 return u32_to_odp(port_no);
790 }
791 }
792
793 return ODPP_NONE;
794 }
795
796 static int
797 create_dp_netdev(const char *name, const struct dpif_class *class,
798 struct dp_netdev **dpp)
799 OVS_REQUIRES(dp_netdev_mutex)
800 {
801 struct dp_netdev *dp;
802 int error;
803
804 dp = xzalloc(sizeof *dp);
805 shash_add(&dp_netdevs, name, dp);
806
807 *CONST_CAST(const struct dpif_class **, &dp->class) = class;
808 *CONST_CAST(const char **, &dp->name) = xstrdup(name);
809 ovs_refcount_init(&dp->ref_cnt);
810 atomic_flag_clear(&dp->destroyed);
811
812 ovs_mutex_init(&dp->port_mutex);
813 cmap_init(&dp->ports);
814 dp->port_seq = seq_create();
815 fat_rwlock_init(&dp->upcall_rwlock);
816
817 /* Disable upcalls by default. */
818 dp_netdev_disable_upcall(dp);
819 dp->upcall_aux = NULL;
820 dp->upcall_cb = NULL;
821
822 cmap_init(&dp->poll_threads);
823 ovs_mutex_init_recursive(&dp->non_pmd_mutex);
824 ovsthread_key_create(&dp->per_pmd_key, NULL);
825
826 /* Reserves the core NON_PMD_CORE_ID for all non-pmd threads. */
827 ovs_numa_try_pin_core_specific(NON_PMD_CORE_ID);
828 dp_netdev_set_nonpmd(dp);
829 dp->n_dpdk_rxqs = NR_QUEUE;
830
831 ovs_mutex_lock(&dp->port_mutex);
832 error = do_add_port(dp, name, "internal", ODPP_LOCAL);
833 ovs_mutex_unlock(&dp->port_mutex);
834 if (error) {
835 dp_netdev_free(dp);
836 return error;
837 }
838
839 dp->last_tnl_conf_seq = seq_read(tnl_conf_seq);
840 *dpp = dp;
841 return 0;
842 }
843
844 static int
845 dpif_netdev_open(const struct dpif_class *class, const char *name,
846 bool create, struct dpif **dpifp)
847 {
848 struct dp_netdev *dp;
849 int error;
850
851 ovs_mutex_lock(&dp_netdev_mutex);
852 dp = shash_find_data(&dp_netdevs, name);
853 if (!dp) {
854 error = create ? create_dp_netdev(name, class, &dp) : ENODEV;
855 } else {
856 error = (dp->class != class ? EINVAL
857 : create ? EEXIST
858 : 0);
859 }
860 if (!error) {
861 *dpifp = create_dpif_netdev(dp);
862 dp->dpif = *dpifp;
863 }
864 ovs_mutex_unlock(&dp_netdev_mutex);
865
866 return error;
867 }
868
869 static void
870 dp_netdev_destroy_upcall_lock(struct dp_netdev *dp)
871 OVS_NO_THREAD_SAFETY_ANALYSIS
872 {
873 /* Check that upcalls are disabled, i.e. that the rwlock is taken */
874 ovs_assert(fat_rwlock_tryrdlock(&dp->upcall_rwlock));
875
876 /* Before freeing a lock we should release it */
877 fat_rwlock_unlock(&dp->upcall_rwlock);
878 fat_rwlock_destroy(&dp->upcall_rwlock);
879 }
880
881 /* Requires dp_netdev_mutex so that we can't get a new reference to 'dp'
882 * through the 'dp_netdevs' shash while freeing 'dp'. */
883 static void
884 dp_netdev_free(struct dp_netdev *dp)
885 OVS_REQUIRES(dp_netdev_mutex)
886 {
887 struct dp_netdev_port *port;
888
889 shash_find_and_delete(&dp_netdevs, dp->name);
890
891 dp_netdev_destroy_all_pmds(dp);
892 cmap_destroy(&dp->poll_threads);
893 ovs_mutex_destroy(&dp->non_pmd_mutex);
894 ovsthread_key_delete(dp->per_pmd_key);
895
896 ovs_mutex_lock(&dp->port_mutex);
897 CMAP_FOR_EACH (port, node, &dp->ports) {
898 do_del_port(dp, port);
899 }
900 ovs_mutex_unlock(&dp->port_mutex);
901
902 seq_destroy(dp->port_seq);
903 cmap_destroy(&dp->ports);
904
905 /* Upcalls must be disabled at this point */
906 dp_netdev_destroy_upcall_lock(dp);
907
908 free(dp->pmd_cmask);
909 free(CONST_CAST(char *, dp->name));
910 free(dp);
911 }
912
913 static void
914 dp_netdev_unref(struct dp_netdev *dp)
915 {
916 if (dp) {
917 /* Take dp_netdev_mutex so that, if dp->ref_cnt falls to zero, we can't
918 * get a new reference to 'dp' through the 'dp_netdevs' shash. */
919 ovs_mutex_lock(&dp_netdev_mutex);
920 if (ovs_refcount_unref_relaxed(&dp->ref_cnt) == 1) {
921 dp_netdev_free(dp);
922 }
923 ovs_mutex_unlock(&dp_netdev_mutex);
924 }
925 }
926
927 static void
928 dpif_netdev_close(struct dpif *dpif)
929 {
930 struct dp_netdev *dp = get_dp_netdev(dpif);
931
932 dp_netdev_unref(dp);
933 free(dpif);
934 }
935
936 static int
937 dpif_netdev_destroy(struct dpif *dpif)
938 {
939 struct dp_netdev *dp = get_dp_netdev(dpif);
940
941 if (!atomic_flag_test_and_set(&dp->destroyed)) {
942 if (ovs_refcount_unref_relaxed(&dp->ref_cnt) == 1) {
943 /* Can't happen: 'dpif' still owns a reference to 'dp'. */
944 OVS_NOT_REACHED();
945 }
946 }
947
948 return 0;
949 }
950
951 /* Add 'n' to the atomic variable 'var' non-atomically and using relaxed
952 * load/store semantics. While the increment is not atomic, the load and
953 * store operations are, making it impossible to read inconsistent values.
954 *
955 * This is used to update thread local stats counters. */
956 static void
957 non_atomic_ullong_add(atomic_ullong *var, unsigned long long n)
958 {
959 unsigned long long tmp;
960
961 atomic_read_relaxed(var, &tmp);
962 tmp += n;
963 atomic_store_relaxed(var, tmp);
964 }
965
966 static int
967 dpif_netdev_get_stats(const struct dpif *dpif, struct dpif_dp_stats *stats)
968 {
969 struct dp_netdev *dp = get_dp_netdev(dpif);
970 struct dp_netdev_pmd_thread *pmd;
971
972 stats->n_flows = stats->n_hit = stats->n_missed = stats->n_lost = 0;
973 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
974 unsigned long long n;
975 stats->n_flows += cmap_count(&pmd->flow_table);
976
977 atomic_read_relaxed(&pmd->stats.n[DP_STAT_MASKED_HIT], &n);
978 stats->n_hit += n;
979 atomic_read_relaxed(&pmd->stats.n[DP_STAT_EXACT_HIT], &n);
980 stats->n_hit += n;
981 atomic_read_relaxed(&pmd->stats.n[DP_STAT_MISS], &n);
982 stats->n_missed += n;
983 atomic_read_relaxed(&pmd->stats.n[DP_STAT_LOST], &n);
984 stats->n_lost += n;
985 }
986 stats->n_masks = UINT32_MAX;
987 stats->n_mask_hit = UINT64_MAX;
988
989 return 0;
990 }
991
992 static void
993 dp_netdev_reload_pmd__(struct dp_netdev_pmd_thread *pmd)
994 {
995 int old_seq;
996
997 if (pmd->core_id == NON_PMD_CORE_ID) {
998 return;
999 }
1000
1001 ovs_mutex_lock(&pmd->cond_mutex);
1002 atomic_add_relaxed(&pmd->change_seq, 1, &old_seq);
1003 ovs_mutex_cond_wait(&pmd->cond, &pmd->cond_mutex);
1004 ovs_mutex_unlock(&pmd->cond_mutex);
1005 }
1006
1007 /* Causes all pmd threads to reload its tx/rx devices.
1008 * Must be called after adding/removing ports. */
1009 static void
1010 dp_netdev_reload_pmds(struct dp_netdev *dp)
1011 {
1012 struct dp_netdev_pmd_thread *pmd;
1013
1014 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
1015 dp_netdev_reload_pmd__(pmd);
1016 }
1017 }
1018
1019 static uint32_t
1020 hash_port_no(odp_port_t port_no)
1021 {
1022 return hash_int(odp_to_u32(port_no), 0);
1023 }
1024
1025 static int
1026 do_add_port(struct dp_netdev *dp, const char *devname, const char *type,
1027 odp_port_t port_no)
1028 OVS_REQUIRES(dp->port_mutex)
1029 {
1030 struct netdev_saved_flags *sf;
1031 struct dp_netdev_port *port;
1032 struct netdev *netdev;
1033 enum netdev_flags flags;
1034 const char *open_type;
1035 int error;
1036 int i;
1037
1038 /* Reject devices already in 'dp'. */
1039 if (!get_port_by_name(dp, devname, &port)) {
1040 return EEXIST;
1041 }
1042
1043 /* Open and validate network device. */
1044 open_type = dpif_netdev_port_open_type(dp->class, type);
1045 error = netdev_open(devname, open_type, &netdev);
1046 if (error) {
1047 return error;
1048 }
1049 /* XXX reject non-Ethernet devices */
1050
1051 netdev_get_flags(netdev, &flags);
1052 if (flags & NETDEV_LOOPBACK) {
1053 VLOG_ERR("%s: cannot add a loopback device", devname);
1054 netdev_close(netdev);
1055 return EINVAL;
1056 }
1057
1058 if (netdev_is_pmd(netdev)) {
1059 int n_cores = ovs_numa_get_n_cores();
1060
1061 if (n_cores == OVS_CORE_UNSPEC) {
1062 VLOG_ERR("%s, cannot get cpu core info", devname);
1063 return ENOENT;
1064 }
1065 /* There can only be ovs_numa_get_n_cores() pmd threads,
1066 * so creates a txq for each. */
1067 error = netdev_set_multiq(netdev, n_cores, dp->n_dpdk_rxqs);
1068 if (error && (error != EOPNOTSUPP)) {
1069 VLOG_ERR("%s, cannot set multiq", devname);
1070 return errno;
1071 }
1072 }
1073 port = xzalloc(sizeof *port);
1074 port->port_no = port_no;
1075 port->netdev = netdev;
1076 port->rxq = xmalloc(sizeof *port->rxq * netdev_n_rxq(netdev));
1077 port->type = xstrdup(type);
1078 for (i = 0; i < netdev_n_rxq(netdev); i++) {
1079 error = netdev_rxq_open(netdev, &port->rxq[i], i);
1080 if (error
1081 && !(error == EOPNOTSUPP && dpif_netdev_class_is_dummy(dp->class))) {
1082 VLOG_ERR("%s: cannot receive packets on this network device (%s)",
1083 devname, ovs_strerror(errno));
1084 netdev_close(netdev);
1085 free(port->type);
1086 free(port->rxq);
1087 free(port);
1088 return error;
1089 }
1090 }
1091
1092 error = netdev_turn_flags_on(netdev, NETDEV_PROMISC, &sf);
1093 if (error) {
1094 for (i = 0; i < netdev_n_rxq(netdev); i++) {
1095 netdev_rxq_close(port->rxq[i]);
1096 }
1097 netdev_close(netdev);
1098 free(port->type);
1099 free(port->rxq);
1100 free(port);
1101 return error;
1102 }
1103 port->sf = sf;
1104
1105 ovs_refcount_init(&port->ref_cnt);
1106 cmap_insert(&dp->ports, &port->node, hash_port_no(port_no));
1107
1108 if (netdev_is_pmd(netdev)) {
1109 dp_netdev_set_pmds_on_numa(dp, netdev_get_numa_id(netdev));
1110 dp_netdev_reload_pmds(dp);
1111 }
1112 seq_change(dp->port_seq);
1113
1114 return 0;
1115 }
1116
1117 static int
1118 dpif_netdev_port_add(struct dpif *dpif, struct netdev *netdev,
1119 odp_port_t *port_nop)
1120 {
1121 struct dp_netdev *dp = get_dp_netdev(dpif);
1122 char namebuf[NETDEV_VPORT_NAME_BUFSIZE];
1123 const char *dpif_port;
1124 odp_port_t port_no;
1125 int error;
1126
1127 ovs_mutex_lock(&dp->port_mutex);
1128 dpif_port = netdev_vport_get_dpif_port(netdev, namebuf, sizeof namebuf);
1129 if (*port_nop != ODPP_NONE) {
1130 port_no = *port_nop;
1131 error = dp_netdev_lookup_port(dp, *port_nop) ? EBUSY : 0;
1132 } else {
1133 port_no = choose_port(dp, dpif_port);
1134 error = port_no == ODPP_NONE ? EFBIG : 0;
1135 }
1136 if (!error) {
1137 *port_nop = port_no;
1138 error = do_add_port(dp, dpif_port, netdev_get_type(netdev), port_no);
1139 }
1140 ovs_mutex_unlock(&dp->port_mutex);
1141
1142 return error;
1143 }
1144
1145 static int
1146 dpif_netdev_port_del(struct dpif *dpif, odp_port_t port_no)
1147 {
1148 struct dp_netdev *dp = get_dp_netdev(dpif);
1149 int error;
1150
1151 ovs_mutex_lock(&dp->port_mutex);
1152 if (port_no == ODPP_LOCAL) {
1153 error = EINVAL;
1154 } else {
1155 struct dp_netdev_port *port;
1156
1157 error = get_port_by_number(dp, port_no, &port);
1158 if (!error) {
1159 do_del_port(dp, port);
1160 }
1161 }
1162 ovs_mutex_unlock(&dp->port_mutex);
1163
1164 return error;
1165 }
1166
1167 static bool
1168 is_valid_port_number(odp_port_t port_no)
1169 {
1170 return port_no != ODPP_NONE;
1171 }
1172
1173 static struct dp_netdev_port *
1174 dp_netdev_lookup_port(const struct dp_netdev *dp, odp_port_t port_no)
1175 {
1176 struct dp_netdev_port *port;
1177
1178 CMAP_FOR_EACH_WITH_HASH (port, node, hash_port_no(port_no), &dp->ports) {
1179 if (port->port_no == port_no) {
1180 return port;
1181 }
1182 }
1183 return NULL;
1184 }
1185
1186 static int
1187 get_port_by_number(struct dp_netdev *dp,
1188 odp_port_t port_no, struct dp_netdev_port **portp)
1189 {
1190 if (!is_valid_port_number(port_no)) {
1191 *portp = NULL;
1192 return EINVAL;
1193 } else {
1194 *portp = dp_netdev_lookup_port(dp, port_no);
1195 return *portp ? 0 : ENOENT;
1196 }
1197 }
1198
1199 static void
1200 port_ref(struct dp_netdev_port *port)
1201 {
1202 if (port) {
1203 ovs_refcount_ref(&port->ref_cnt);
1204 }
1205 }
1206
1207 static bool
1208 port_try_ref(struct dp_netdev_port *port)
1209 {
1210 if (port) {
1211 return ovs_refcount_try_ref_rcu(&port->ref_cnt);
1212 }
1213
1214 return false;
1215 }
1216
1217 static void
1218 port_unref(struct dp_netdev_port *port)
1219 {
1220 if (port && ovs_refcount_unref_relaxed(&port->ref_cnt) == 1) {
1221 int n_rxq = netdev_n_rxq(port->netdev);
1222 int i;
1223
1224 netdev_close(port->netdev);
1225 netdev_restore_flags(port->sf);
1226
1227 for (i = 0; i < n_rxq; i++) {
1228 netdev_rxq_close(port->rxq[i]);
1229 }
1230 free(port->rxq);
1231 free(port->type);
1232 free(port);
1233 }
1234 }
1235
1236 static int
1237 get_port_by_name(struct dp_netdev *dp,
1238 const char *devname, struct dp_netdev_port **portp)
1239 OVS_REQUIRES(dp->port_mutex)
1240 {
1241 struct dp_netdev_port *port;
1242
1243 CMAP_FOR_EACH (port, node, &dp->ports) {
1244 if (!strcmp(netdev_get_name(port->netdev), devname)) {
1245 *portp = port;
1246 return 0;
1247 }
1248 }
1249 return ENOENT;
1250 }
1251
1252 static int
1253 get_n_pmd_threads_on_numa(struct dp_netdev *dp, int numa_id)
1254 {
1255 struct dp_netdev_pmd_thread *pmd;
1256 int n_pmds = 0;
1257
1258 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
1259 if (pmd->numa_id == numa_id) {
1260 n_pmds++;
1261 }
1262 }
1263
1264 return n_pmds;
1265 }
1266
1267 /* Returns 'true' if there is a port with pmd netdev and the netdev
1268 * is on numa node 'numa_id'. */
1269 static bool
1270 has_pmd_port_for_numa(struct dp_netdev *dp, int numa_id)
1271 {
1272 struct dp_netdev_port *port;
1273
1274 CMAP_FOR_EACH (port, node, &dp->ports) {
1275 if (netdev_is_pmd(port->netdev)
1276 && netdev_get_numa_id(port->netdev) == numa_id) {
1277 return true;
1278 }
1279 }
1280
1281 return false;
1282 }
1283
1284
1285 static void
1286 do_del_port(struct dp_netdev *dp, struct dp_netdev_port *port)
1287 OVS_REQUIRES(dp->port_mutex)
1288 {
1289 cmap_remove(&dp->ports, &port->node, hash_odp_port(port->port_no));
1290 seq_change(dp->port_seq);
1291 if (netdev_is_pmd(port->netdev)) {
1292 int numa_id = netdev_get_numa_id(port->netdev);
1293
1294 /* If there is no netdev on the numa node, deletes the pmd threads
1295 * for that numa. Else, just reloads the queues. */
1296 if (!has_pmd_port_for_numa(dp, numa_id)) {
1297 dp_netdev_del_pmds_on_numa(dp, numa_id);
1298 }
1299 dp_netdev_reload_pmds(dp);
1300 }
1301
1302 port_unref(port);
1303 }
1304
1305 static void
1306 answer_port_query(const struct dp_netdev_port *port,
1307 struct dpif_port *dpif_port)
1308 {
1309 dpif_port->name = xstrdup(netdev_get_name(port->netdev));
1310 dpif_port->type = xstrdup(port->type);
1311 dpif_port->port_no = port->port_no;
1312 }
1313
1314 static int
1315 dpif_netdev_port_query_by_number(const struct dpif *dpif, odp_port_t port_no,
1316 struct dpif_port *dpif_port)
1317 {
1318 struct dp_netdev *dp = get_dp_netdev(dpif);
1319 struct dp_netdev_port *port;
1320 int error;
1321
1322 error = get_port_by_number(dp, port_no, &port);
1323 if (!error && dpif_port) {
1324 answer_port_query(port, dpif_port);
1325 }
1326
1327 return error;
1328 }
1329
1330 static int
1331 dpif_netdev_port_query_by_name(const struct dpif *dpif, const char *devname,
1332 struct dpif_port *dpif_port)
1333 {
1334 struct dp_netdev *dp = get_dp_netdev(dpif);
1335 struct dp_netdev_port *port;
1336 int error;
1337
1338 ovs_mutex_lock(&dp->port_mutex);
1339 error = get_port_by_name(dp, devname, &port);
1340 if (!error && dpif_port) {
1341 answer_port_query(port, dpif_port);
1342 }
1343 ovs_mutex_unlock(&dp->port_mutex);
1344
1345 return error;
1346 }
1347
1348 static void
1349 dp_netdev_flow_free(struct dp_netdev_flow *flow)
1350 {
1351 dp_netdev_actions_free(dp_netdev_flow_get_actions(flow));
1352 free(flow);
1353 }
1354
1355 static void dp_netdev_flow_unref(struct dp_netdev_flow *flow)
1356 {
1357 if (ovs_refcount_unref_relaxed(&flow->ref_cnt) == 1) {
1358 ovsrcu_postpone(dp_netdev_flow_free, flow);
1359 }
1360 }
1361
1362 static uint32_t
1363 dp_netdev_flow_hash(const ovs_u128 *ufid)
1364 {
1365 return ufid->u32[0];
1366 }
1367
1368 static void
1369 dp_netdev_pmd_remove_flow(struct dp_netdev_pmd_thread *pmd,
1370 struct dp_netdev_flow *flow)
1371 OVS_REQUIRES(pmd->flow_mutex)
1372 {
1373 struct cmap_node *node = CONST_CAST(struct cmap_node *, &flow->node);
1374
1375 dpcls_remove(&pmd->cls, &flow->cr);
1376 cmap_remove(&pmd->flow_table, node, dp_netdev_flow_hash(&flow->ufid));
1377 flow->dead = true;
1378
1379 dp_netdev_flow_unref(flow);
1380 }
1381
1382 static void
1383 dp_netdev_pmd_flow_flush(struct dp_netdev_pmd_thread *pmd)
1384 {
1385 struct dp_netdev_flow *netdev_flow;
1386
1387 ovs_mutex_lock(&pmd->flow_mutex);
1388 CMAP_FOR_EACH (netdev_flow, node, &pmd->flow_table) {
1389 dp_netdev_pmd_remove_flow(pmd, netdev_flow);
1390 }
1391 ovs_mutex_unlock(&pmd->flow_mutex);
1392 }
1393
1394 static int
1395 dpif_netdev_flow_flush(struct dpif *dpif)
1396 {
1397 struct dp_netdev *dp = get_dp_netdev(dpif);
1398 struct dp_netdev_pmd_thread *pmd;
1399
1400 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
1401 dp_netdev_pmd_flow_flush(pmd);
1402 }
1403
1404 return 0;
1405 }
1406
1407 struct dp_netdev_port_state {
1408 struct cmap_position position;
1409 char *name;
1410 };
1411
1412 static int
1413 dpif_netdev_port_dump_start(const struct dpif *dpif OVS_UNUSED, void **statep)
1414 {
1415 *statep = xzalloc(sizeof(struct dp_netdev_port_state));
1416 return 0;
1417 }
1418
1419 static int
1420 dpif_netdev_port_dump_next(const struct dpif *dpif, void *state_,
1421 struct dpif_port *dpif_port)
1422 {
1423 struct dp_netdev_port_state *state = state_;
1424 struct dp_netdev *dp = get_dp_netdev(dpif);
1425 struct cmap_node *node;
1426 int retval;
1427
1428 node = cmap_next_position(&dp->ports, &state->position);
1429 if (node) {
1430 struct dp_netdev_port *port;
1431
1432 port = CONTAINER_OF(node, struct dp_netdev_port, node);
1433
1434 free(state->name);
1435 state->name = xstrdup(netdev_get_name(port->netdev));
1436 dpif_port->name = state->name;
1437 dpif_port->type = port->type;
1438 dpif_port->port_no = port->port_no;
1439
1440 retval = 0;
1441 } else {
1442 retval = EOF;
1443 }
1444
1445 return retval;
1446 }
1447
1448 static int
1449 dpif_netdev_port_dump_done(const struct dpif *dpif OVS_UNUSED, void *state_)
1450 {
1451 struct dp_netdev_port_state *state = state_;
1452 free(state->name);
1453 free(state);
1454 return 0;
1455 }
1456
1457 static int
1458 dpif_netdev_port_poll(const struct dpif *dpif_, char **devnamep OVS_UNUSED)
1459 {
1460 struct dpif_netdev *dpif = dpif_netdev_cast(dpif_);
1461 uint64_t new_port_seq;
1462 int error;
1463
1464 new_port_seq = seq_read(dpif->dp->port_seq);
1465 if (dpif->last_port_seq != new_port_seq) {
1466 dpif->last_port_seq = new_port_seq;
1467 error = ENOBUFS;
1468 } else {
1469 error = EAGAIN;
1470 }
1471
1472 return error;
1473 }
1474
1475 static void
1476 dpif_netdev_port_poll_wait(const struct dpif *dpif_)
1477 {
1478 struct dpif_netdev *dpif = dpif_netdev_cast(dpif_);
1479
1480 seq_wait(dpif->dp->port_seq, dpif->last_port_seq);
1481 }
1482
1483 static struct dp_netdev_flow *
1484 dp_netdev_flow_cast(const struct dpcls_rule *cr)
1485 {
1486 return cr ? CONTAINER_OF(cr, struct dp_netdev_flow, cr) : NULL;
1487 }
1488
1489 static bool dp_netdev_flow_ref(struct dp_netdev_flow *flow)
1490 {
1491 return ovs_refcount_try_ref_rcu(&flow->ref_cnt);
1492 }
1493
1494 /* netdev_flow_key utilities.
1495 *
1496 * netdev_flow_key is basically a miniflow. We use these functions
1497 * (netdev_flow_key_clone, netdev_flow_key_equal, ...) instead of the miniflow
1498 * functions (miniflow_clone_inline, miniflow_equal, ...), because:
1499 *
1500 * - Since we are dealing exclusively with miniflows created by
1501 * miniflow_extract(), if the map is different the miniflow is different.
1502 * Therefore we can be faster by comparing the map and the miniflow in a
1503 * single memcmp().
1504 * _ netdev_flow_key's miniflow has always inline values.
1505 * - These functions can be inlined by the compiler.
1506 *
1507 * The following assertions make sure that what we're doing with miniflow is
1508 * safe
1509 */
1510 BUILD_ASSERT_DECL(offsetof(struct miniflow, inline_values)
1511 == sizeof(uint64_t));
1512
1513 /* Given the number of bits set in the miniflow map, returns the size of the
1514 * 'netdev_flow_key.mf' */
1515 static inline uint32_t
1516 netdev_flow_key_size(uint32_t flow_u32s)
1517 {
1518 return offsetof(struct miniflow, inline_values) +
1519 MINIFLOW_VALUES_SIZE(flow_u32s);
1520 }
1521
1522 static inline bool
1523 netdev_flow_key_equal(const struct netdev_flow_key *a,
1524 const struct netdev_flow_key *b)
1525 {
1526 /* 'b->len' may be not set yet. */
1527 return a->hash == b->hash && !memcmp(&a->mf, &b->mf, a->len);
1528 }
1529
1530 /* Used to compare 'netdev_flow_key' in the exact match cache to a miniflow.
1531 * The maps are compared bitwise, so both 'key->mf' 'mf' must have been
1532 * generated by miniflow_extract. */
1533 static inline bool
1534 netdev_flow_key_equal_mf(const struct netdev_flow_key *key,
1535 const struct miniflow *mf)
1536 {
1537 return !memcmp(&key->mf, mf, key->len);
1538 }
1539
1540 static inline void
1541 netdev_flow_key_clone(struct netdev_flow_key *dst,
1542 const struct netdev_flow_key *src)
1543 {
1544 memcpy(dst, src,
1545 offsetof(struct netdev_flow_key, mf) + src->len);
1546 }
1547
1548 /* Slow. */
1549 static void
1550 netdev_flow_key_from_flow(struct netdev_flow_key *dst,
1551 const struct flow *src)
1552 {
1553 struct dp_packet packet;
1554 uint64_t buf_stub[512 / 8];
1555
1556 miniflow_initialize(&dst->mf, dst->buf);
1557
1558 dp_packet_use_stub(&packet, buf_stub, sizeof buf_stub);
1559 pkt_metadata_from_flow(&packet.md, src);
1560 flow_compose(&packet, src);
1561 miniflow_extract(&packet, &dst->mf);
1562 dp_packet_uninit(&packet);
1563
1564 dst->len = netdev_flow_key_size(count_1bits(dst->mf.map));
1565 dst->hash = 0; /* Not computed yet. */
1566 }
1567
1568 /* Initialize a netdev_flow_key 'mask' from 'match'. */
1569 static inline void
1570 netdev_flow_mask_init(struct netdev_flow_key *mask,
1571 const struct match *match)
1572 {
1573 const uint64_t *mask_u64 = (const uint64_t *) &match->wc.masks;
1574 uint64_t *dst = mask->mf.inline_values;
1575 uint64_t map, mask_map = 0;
1576 uint32_t hash = 0;
1577 int n;
1578
1579 /* Only check masks that make sense for the flow. */
1580 map = flow_wc_map(&match->flow);
1581
1582 while (map) {
1583 uint64_t rm1bit = rightmost_1bit(map);
1584 int i = raw_ctz(map);
1585
1586 if (mask_u64[i]) {
1587 mask_map |= rm1bit;
1588 *dst++ = mask_u64[i];
1589 hash = hash_add64(hash, mask_u64[i]);
1590 }
1591 map -= rm1bit;
1592 }
1593
1594 mask->mf.values_inline = true;
1595 mask->mf.map = mask_map;
1596
1597 hash = hash_add64(hash, mask_map);
1598
1599 n = dst - mask->mf.inline_values;
1600
1601 mask->hash = hash_finish(hash, n * 8);
1602 mask->len = netdev_flow_key_size(n);
1603 }
1604
1605 /* Initializes 'dst' as a copy of 'src' masked with 'mask'. */
1606 static inline void
1607 netdev_flow_key_init_masked(struct netdev_flow_key *dst,
1608 const struct flow *flow,
1609 const struct netdev_flow_key *mask)
1610 {
1611 uint64_t *dst_u64 = dst->mf.inline_values;
1612 const uint64_t *mask_u64 = mask->mf.inline_values;
1613 uint32_t hash = 0;
1614 uint64_t value;
1615
1616 dst->len = mask->len;
1617 dst->mf.values_inline = true;
1618 dst->mf.map = mask->mf.map;
1619
1620 FLOW_FOR_EACH_IN_MAP(value, flow, mask->mf.map) {
1621 *dst_u64 = value & *mask_u64++;
1622 hash = hash_add64(hash, *dst_u64++);
1623 }
1624 dst->hash = hash_finish(hash, (dst_u64 - dst->mf.inline_values) * 8);
1625 }
1626
1627 /* Iterate through all netdev_flow_key u64 values specified by 'MAP' */
1628 #define NETDEV_FLOW_KEY_FOR_EACH_IN_MAP(VALUE, KEY, MAP) \
1629 for (struct mf_for_each_in_map_aux aux__ \
1630 = { (KEY)->mf.inline_values, (KEY)->mf.map, MAP }; \
1631 mf_get_next_in_map(&aux__, &(VALUE)); \
1632 )
1633
1634 /* Returns a hash value for the bits of 'key' where there are 1-bits in
1635 * 'mask'. */
1636 static inline uint32_t
1637 netdev_flow_key_hash_in_mask(const struct netdev_flow_key *key,
1638 const struct netdev_flow_key *mask)
1639 {
1640 const uint64_t *p = mask->mf.inline_values;
1641 uint32_t hash = 0;
1642 uint64_t key_u64;
1643
1644 NETDEV_FLOW_KEY_FOR_EACH_IN_MAP(key_u64, key, mask->mf.map) {
1645 hash = hash_add64(hash, key_u64 & *p++);
1646 }
1647
1648 return hash_finish(hash, (p - mask->mf.inline_values) * 8);
1649 }
1650
1651 static inline bool
1652 emc_entry_alive(struct emc_entry *ce)
1653 {
1654 return ce->flow && !ce->flow->dead;
1655 }
1656
1657 static void
1658 emc_clear_entry(struct emc_entry *ce)
1659 {
1660 if (ce->flow) {
1661 dp_netdev_flow_unref(ce->flow);
1662 ce->flow = NULL;
1663 }
1664 }
1665
1666 static inline void
1667 emc_change_entry(struct emc_entry *ce, struct dp_netdev_flow *flow,
1668 const struct netdev_flow_key *key)
1669 {
1670 if (ce->flow != flow) {
1671 if (ce->flow) {
1672 dp_netdev_flow_unref(ce->flow);
1673 }
1674
1675 if (dp_netdev_flow_ref(flow)) {
1676 ce->flow = flow;
1677 } else {
1678 ce->flow = NULL;
1679 }
1680 }
1681 if (key) {
1682 netdev_flow_key_clone(&ce->key, key);
1683 }
1684 }
1685
1686 static inline void
1687 emc_insert(struct emc_cache *cache, const struct netdev_flow_key *key,
1688 struct dp_netdev_flow *flow)
1689 {
1690 struct emc_entry *to_be_replaced = NULL;
1691 struct emc_entry *current_entry;
1692
1693 EMC_FOR_EACH_POS_WITH_HASH(cache, current_entry, key->hash) {
1694 if (netdev_flow_key_equal(&current_entry->key, key)) {
1695 /* We found the entry with the 'mf' miniflow */
1696 emc_change_entry(current_entry, flow, NULL);
1697 return;
1698 }
1699
1700 /* Replacement policy: put the flow in an empty (not alive) entry, or
1701 * in the first entry where it can be */
1702 if (!to_be_replaced
1703 || (emc_entry_alive(to_be_replaced)
1704 && !emc_entry_alive(current_entry))
1705 || current_entry->key.hash < to_be_replaced->key.hash) {
1706 to_be_replaced = current_entry;
1707 }
1708 }
1709 /* We didn't find the miniflow in the cache.
1710 * The 'to_be_replaced' entry is where the new flow will be stored */
1711
1712 emc_change_entry(to_be_replaced, flow, key);
1713 }
1714
1715 static inline struct dp_netdev_flow *
1716 emc_lookup(struct emc_cache *cache, const struct netdev_flow_key *key)
1717 {
1718 struct emc_entry *current_entry;
1719
1720 EMC_FOR_EACH_POS_WITH_HASH(cache, current_entry, key->hash) {
1721 if (current_entry->key.hash == key->hash
1722 && emc_entry_alive(current_entry)
1723 && netdev_flow_key_equal_mf(&current_entry->key, &key->mf)) {
1724
1725 /* We found the entry with the 'key->mf' miniflow */
1726 return current_entry->flow;
1727 }
1728 }
1729
1730 return NULL;
1731 }
1732
1733 static struct dp_netdev_flow *
1734 dp_netdev_pmd_lookup_flow(const struct dp_netdev_pmd_thread *pmd,
1735 const struct netdev_flow_key *key)
1736 {
1737 struct dp_netdev_flow *netdev_flow;
1738 struct dpcls_rule *rule;
1739
1740 dpcls_lookup(&pmd->cls, key, &rule, 1);
1741 netdev_flow = dp_netdev_flow_cast(rule);
1742
1743 return netdev_flow;
1744 }
1745
1746 static struct dp_netdev_flow *
1747 dp_netdev_pmd_find_flow(const struct dp_netdev_pmd_thread *pmd,
1748 const ovs_u128 *ufidp, const struct nlattr *key,
1749 size_t key_len)
1750 {
1751 struct dp_netdev_flow *netdev_flow;
1752 struct flow flow;
1753 ovs_u128 ufid;
1754
1755 /* If a UFID is not provided, determine one based on the key. */
1756 if (!ufidp && key && key_len
1757 && !dpif_netdev_flow_from_nlattrs(key, key_len, &flow)) {
1758 dpif_flow_hash(pmd->dp->dpif, &flow, sizeof flow, &ufid);
1759 ufidp = &ufid;
1760 }
1761
1762 if (ufidp) {
1763 CMAP_FOR_EACH_WITH_HASH (netdev_flow, node, dp_netdev_flow_hash(ufidp),
1764 &pmd->flow_table) {
1765 if (ovs_u128_equal(&netdev_flow->ufid, ufidp)) {
1766 return netdev_flow;
1767 }
1768 }
1769 }
1770
1771 return NULL;
1772 }
1773
1774 static void
1775 get_dpif_flow_stats(const struct dp_netdev_flow *netdev_flow_,
1776 struct dpif_flow_stats *stats)
1777 {
1778 struct dp_netdev_flow *netdev_flow;
1779 unsigned long long n;
1780 long long used;
1781 uint16_t flags;
1782
1783 netdev_flow = CONST_CAST(struct dp_netdev_flow *, netdev_flow_);
1784
1785 atomic_read_relaxed(&netdev_flow->stats.packet_count, &n);
1786 stats->n_packets = n;
1787 atomic_read_relaxed(&netdev_flow->stats.byte_count, &n);
1788 stats->n_bytes = n;
1789 atomic_read_relaxed(&netdev_flow->stats.used, &used);
1790 stats->used = used;
1791 atomic_read_relaxed(&netdev_flow->stats.tcp_flags, &flags);
1792 stats->tcp_flags = flags;
1793 }
1794
1795 /* Converts to the dpif_flow format, using 'key_buf' and 'mask_buf' for
1796 * storing the netlink-formatted key/mask. 'key_buf' may be the same as
1797 * 'mask_buf'. Actions will be returned without copying, by relying on RCU to
1798 * protect them. */
1799 static void
1800 dp_netdev_flow_to_dpif_flow(const struct dp_netdev_flow *netdev_flow,
1801 struct ofpbuf *key_buf, struct ofpbuf *mask_buf,
1802 struct dpif_flow *flow, bool terse)
1803 {
1804 if (terse) {
1805 memset(flow, 0, sizeof *flow);
1806 } else {
1807 struct flow_wildcards wc;
1808 struct dp_netdev_actions *actions;
1809 size_t offset;
1810
1811 miniflow_expand(&netdev_flow->cr.mask->mf, &wc.masks);
1812
1813 /* Key */
1814 offset = key_buf->size;
1815 flow->key = ofpbuf_tail(key_buf);
1816 odp_flow_key_from_flow(key_buf, &netdev_flow->flow, &wc.masks,
1817 netdev_flow->flow.in_port.odp_port, true);
1818 flow->key_len = key_buf->size - offset;
1819
1820 /* Mask */
1821 offset = mask_buf->size;
1822 flow->mask = ofpbuf_tail(mask_buf);
1823 odp_flow_key_from_mask(mask_buf, &wc.masks, &netdev_flow->flow,
1824 odp_to_u32(wc.masks.in_port.odp_port),
1825 SIZE_MAX, true);
1826 flow->mask_len = mask_buf->size - offset;
1827
1828 /* Actions */
1829 actions = dp_netdev_flow_get_actions(netdev_flow);
1830 flow->actions = actions->actions;
1831 flow->actions_len = actions->size;
1832 }
1833
1834 flow->ufid = netdev_flow->ufid;
1835 flow->ufid_present = true;
1836 flow->pmd_id = netdev_flow->pmd_id;
1837 get_dpif_flow_stats(netdev_flow, &flow->stats);
1838 }
1839
1840 static int
1841 dpif_netdev_mask_from_nlattrs(const struct nlattr *key, uint32_t key_len,
1842 const struct nlattr *mask_key,
1843 uint32_t mask_key_len, const struct flow *flow,
1844 struct flow *mask)
1845 {
1846 if (mask_key_len) {
1847 enum odp_key_fitness fitness;
1848
1849 fitness = odp_flow_key_to_mask(mask_key, mask_key_len, mask, flow);
1850 if (fitness) {
1851 /* This should not happen: it indicates that
1852 * odp_flow_key_from_mask() and odp_flow_key_to_mask()
1853 * disagree on the acceptable form of a mask. Log the problem
1854 * as an error, with enough details to enable debugging. */
1855 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
1856
1857 if (!VLOG_DROP_ERR(&rl)) {
1858 struct ds s;
1859
1860 ds_init(&s);
1861 odp_flow_format(key, key_len, mask_key, mask_key_len, NULL, &s,
1862 true);
1863 VLOG_ERR("internal error parsing flow mask %s (%s)",
1864 ds_cstr(&s), odp_key_fitness_to_string(fitness));
1865 ds_destroy(&s);
1866 }
1867
1868 return EINVAL;
1869 }
1870 } else {
1871 enum mf_field_id id;
1872 /* No mask key, unwildcard everything except fields whose
1873 * prerequisities are not met. */
1874 memset(mask, 0x0, sizeof *mask);
1875
1876 for (id = 0; id < MFF_N_IDS; ++id) {
1877 /* Skip registers and metadata. */
1878 if (!(id >= MFF_REG0 && id < MFF_REG0 + FLOW_N_REGS)
1879 && id != MFF_METADATA) {
1880 const struct mf_field *mf = mf_from_id(id);
1881 if (mf_are_prereqs_ok(mf, flow)) {
1882 mf_mask_field(mf, mask);
1883 }
1884 }
1885 }
1886 }
1887
1888 /* Force unwildcard the in_port.
1889 *
1890 * We need to do this even in the case where we unwildcard "everything"
1891 * above because "everything" only includes the 16-bit OpenFlow port number
1892 * mask->in_port.ofp_port, which only covers half of the 32-bit datapath
1893 * port number mask->in_port.odp_port. */
1894 mask->in_port.odp_port = u32_to_odp(UINT32_MAX);
1895
1896 return 0;
1897 }
1898
1899 static int
1900 dpif_netdev_flow_from_nlattrs(const struct nlattr *key, uint32_t key_len,
1901 struct flow *flow)
1902 {
1903 odp_port_t in_port;
1904
1905 if (odp_flow_key_to_flow(key, key_len, flow)) {
1906 /* This should not happen: it indicates that odp_flow_key_from_flow()
1907 * and odp_flow_key_to_flow() disagree on the acceptable form of a
1908 * flow. Log the problem as an error, with enough details to enable
1909 * debugging. */
1910 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
1911
1912 if (!VLOG_DROP_ERR(&rl)) {
1913 struct ds s;
1914
1915 ds_init(&s);
1916 odp_flow_format(key, key_len, NULL, 0, NULL, &s, true);
1917 VLOG_ERR("internal error parsing flow key %s", ds_cstr(&s));
1918 ds_destroy(&s);
1919 }
1920
1921 return EINVAL;
1922 }
1923
1924 in_port = flow->in_port.odp_port;
1925 if (!is_valid_port_number(in_port) && in_port != ODPP_NONE) {
1926 return EINVAL;
1927 }
1928
1929 return 0;
1930 }
1931
1932 static int
1933 dpif_netdev_flow_get(const struct dpif *dpif, const struct dpif_flow_get *get)
1934 {
1935 struct dp_netdev *dp = get_dp_netdev(dpif);
1936 struct dp_netdev_flow *netdev_flow;
1937 struct dp_netdev_pmd_thread *pmd;
1938 int pmd_id = get->pmd_id == PMD_ID_NULL ? NON_PMD_CORE_ID : get->pmd_id;
1939 int error = 0;
1940
1941 pmd = dp_netdev_get_pmd(dp, pmd_id);
1942 if (!pmd) {
1943 return EINVAL;
1944 }
1945
1946 netdev_flow = dp_netdev_pmd_find_flow(pmd, get->ufid, get->key,
1947 get->key_len);
1948 if (netdev_flow) {
1949 dp_netdev_flow_to_dpif_flow(netdev_flow, get->buffer, get->buffer,
1950 get->flow, false);
1951 } else {
1952 error = ENOENT;
1953 }
1954 dp_netdev_pmd_unref(pmd);
1955
1956
1957 return error;
1958 }
1959
1960 static struct dp_netdev_flow *
1961 dp_netdev_flow_add(struct dp_netdev_pmd_thread *pmd,
1962 struct match *match, const ovs_u128 *ufid,
1963 const struct nlattr *actions, size_t actions_len)
1964 OVS_REQUIRES(pmd->flow_mutex)
1965 {
1966 struct dp_netdev_flow *flow;
1967 struct netdev_flow_key mask;
1968
1969 netdev_flow_mask_init(&mask, match);
1970 /* Make sure wc does not have metadata. */
1971 ovs_assert(!(mask.mf.map & (MINIFLOW_MAP(metadata) | MINIFLOW_MAP(regs))));
1972
1973 /* Do not allocate extra space. */
1974 flow = xmalloc(sizeof *flow - sizeof flow->cr.flow.mf + mask.len);
1975 memset(&flow->stats, 0, sizeof flow->stats);
1976 flow->dead = false;
1977 *CONST_CAST(int *, &flow->pmd_id) = pmd->core_id;
1978 *CONST_CAST(struct flow *, &flow->flow) = match->flow;
1979 *CONST_CAST(ovs_u128 *, &flow->ufid) = *ufid;
1980 ovs_refcount_init(&flow->ref_cnt);
1981 ovsrcu_set(&flow->actions, dp_netdev_actions_create(actions, actions_len));
1982
1983 netdev_flow_key_init_masked(&flow->cr.flow, &match->flow, &mask);
1984 dpcls_insert(&pmd->cls, &flow->cr, &mask);
1985
1986 cmap_insert(&pmd->flow_table, CONST_CAST(struct cmap_node *, &flow->node),
1987 dp_netdev_flow_hash(&flow->ufid));
1988
1989 if (OVS_UNLIKELY(VLOG_IS_DBG_ENABLED())) {
1990 struct match match;
1991 struct ds ds = DS_EMPTY_INITIALIZER;
1992
1993 match.flow = flow->flow;
1994 miniflow_expand(&flow->cr.mask->mf, &match.wc.masks);
1995
1996 ds_put_cstr(&ds, "flow_add: ");
1997 odp_format_ufid(ufid, &ds);
1998 ds_put_cstr(&ds, " ");
1999 match_format(&match, &ds, OFP_DEFAULT_PRIORITY);
2000 ds_put_cstr(&ds, ", actions:");
2001 format_odp_actions(&ds, actions, actions_len);
2002
2003 VLOG_DBG_RL(&upcall_rl, "%s", ds_cstr(&ds));
2004
2005 ds_destroy(&ds);
2006 }
2007
2008 return flow;
2009 }
2010
2011 static int
2012 dpif_netdev_flow_put(struct dpif *dpif, const struct dpif_flow_put *put)
2013 {
2014 struct dp_netdev *dp = get_dp_netdev(dpif);
2015 struct dp_netdev_flow *netdev_flow;
2016 struct netdev_flow_key key;
2017 struct dp_netdev_pmd_thread *pmd;
2018 struct match match;
2019 ovs_u128 ufid;
2020 int pmd_id = put->pmd_id == PMD_ID_NULL ? NON_PMD_CORE_ID : put->pmd_id;
2021 int error;
2022
2023 error = dpif_netdev_flow_from_nlattrs(put->key, put->key_len, &match.flow);
2024 if (error) {
2025 return error;
2026 }
2027 error = dpif_netdev_mask_from_nlattrs(put->key, put->key_len,
2028 put->mask, put->mask_len,
2029 &match.flow, &match.wc.masks);
2030 if (error) {
2031 return error;
2032 }
2033
2034 pmd = dp_netdev_get_pmd(dp, pmd_id);
2035 if (!pmd) {
2036 return EINVAL;
2037 }
2038
2039 /* Must produce a netdev_flow_key for lookup.
2040 * This interface is no longer performance critical, since it is not used
2041 * for upcall processing any more. */
2042 netdev_flow_key_from_flow(&key, &match.flow);
2043
2044 if (put->ufid) {
2045 ufid = *put->ufid;
2046 } else {
2047 dpif_flow_hash(dpif, &match.flow, sizeof match.flow, &ufid);
2048 }
2049
2050 ovs_mutex_lock(&pmd->flow_mutex);
2051 netdev_flow = dp_netdev_pmd_lookup_flow(pmd, &key);
2052 if (!netdev_flow) {
2053 if (put->flags & DPIF_FP_CREATE) {
2054 if (cmap_count(&pmd->flow_table) < MAX_FLOWS) {
2055 if (put->stats) {
2056 memset(put->stats, 0, sizeof *put->stats);
2057 }
2058 dp_netdev_flow_add(pmd, &match, &ufid, put->actions,
2059 put->actions_len);
2060 error = 0;
2061 } else {
2062 error = EFBIG;
2063 }
2064 } else {
2065 error = ENOENT;
2066 }
2067 } else {
2068 if (put->flags & DPIF_FP_MODIFY
2069 && flow_equal(&match.flow, &netdev_flow->flow)) {
2070 struct dp_netdev_actions *new_actions;
2071 struct dp_netdev_actions *old_actions;
2072
2073 new_actions = dp_netdev_actions_create(put->actions,
2074 put->actions_len);
2075
2076 old_actions = dp_netdev_flow_get_actions(netdev_flow);
2077 ovsrcu_set(&netdev_flow->actions, new_actions);
2078
2079 if (put->stats) {
2080 get_dpif_flow_stats(netdev_flow, put->stats);
2081 }
2082 if (put->flags & DPIF_FP_ZERO_STATS) {
2083 /* XXX: The userspace datapath uses thread local statistics
2084 * (for flows), which should be updated only by the owning
2085 * thread. Since we cannot write on stats memory here,
2086 * we choose not to support this flag. Please note:
2087 * - This feature is currently used only by dpctl commands with
2088 * option --clear.
2089 * - Should the need arise, this operation can be implemented
2090 * by keeping a base value (to be update here) for each
2091 * counter, and subtracting it before outputting the stats */
2092 error = EOPNOTSUPP;
2093 }
2094
2095 ovsrcu_postpone(dp_netdev_actions_free, old_actions);
2096 } else if (put->flags & DPIF_FP_CREATE) {
2097 error = EEXIST;
2098 } else {
2099 /* Overlapping flow. */
2100 error = EINVAL;
2101 }
2102 }
2103 ovs_mutex_unlock(&pmd->flow_mutex);
2104 dp_netdev_pmd_unref(pmd);
2105
2106 return error;
2107 }
2108
2109 static int
2110 dpif_netdev_flow_del(struct dpif *dpif, const struct dpif_flow_del *del)
2111 {
2112 struct dp_netdev *dp = get_dp_netdev(dpif);
2113 struct dp_netdev_flow *netdev_flow;
2114 struct dp_netdev_pmd_thread *pmd;
2115 int pmd_id = del->pmd_id == PMD_ID_NULL ? NON_PMD_CORE_ID : del->pmd_id;
2116 int error = 0;
2117
2118 pmd = dp_netdev_get_pmd(dp, pmd_id);
2119 if (!pmd) {
2120 return EINVAL;
2121 }
2122
2123 ovs_mutex_lock(&pmd->flow_mutex);
2124 netdev_flow = dp_netdev_pmd_find_flow(pmd, del->ufid, del->key,
2125 del->key_len);
2126 if (netdev_flow) {
2127 if (del->stats) {
2128 get_dpif_flow_stats(netdev_flow, del->stats);
2129 }
2130 dp_netdev_pmd_remove_flow(pmd, netdev_flow);
2131 } else {
2132 error = ENOENT;
2133 }
2134 ovs_mutex_unlock(&pmd->flow_mutex);
2135 dp_netdev_pmd_unref(pmd);
2136
2137 return error;
2138 }
2139
2140 struct dpif_netdev_flow_dump {
2141 struct dpif_flow_dump up;
2142 struct cmap_position poll_thread_pos;
2143 struct cmap_position flow_pos;
2144 struct dp_netdev_pmd_thread *cur_pmd;
2145 int status;
2146 struct ovs_mutex mutex;
2147 };
2148
2149 static struct dpif_netdev_flow_dump *
2150 dpif_netdev_flow_dump_cast(struct dpif_flow_dump *dump)
2151 {
2152 return CONTAINER_OF(dump, struct dpif_netdev_flow_dump, up);
2153 }
2154
2155 static struct dpif_flow_dump *
2156 dpif_netdev_flow_dump_create(const struct dpif *dpif_, bool terse)
2157 {
2158 struct dpif_netdev_flow_dump *dump;
2159
2160 dump = xzalloc(sizeof *dump);
2161 dpif_flow_dump_init(&dump->up, dpif_);
2162 dump->up.terse = terse;
2163 ovs_mutex_init(&dump->mutex);
2164
2165 return &dump->up;
2166 }
2167
2168 static int
2169 dpif_netdev_flow_dump_destroy(struct dpif_flow_dump *dump_)
2170 {
2171 struct dpif_netdev_flow_dump *dump = dpif_netdev_flow_dump_cast(dump_);
2172
2173 ovs_mutex_destroy(&dump->mutex);
2174 free(dump);
2175 return 0;
2176 }
2177
2178 struct dpif_netdev_flow_dump_thread {
2179 struct dpif_flow_dump_thread up;
2180 struct dpif_netdev_flow_dump *dump;
2181 struct odputil_keybuf keybuf[FLOW_DUMP_MAX_BATCH];
2182 struct odputil_keybuf maskbuf[FLOW_DUMP_MAX_BATCH];
2183 };
2184
2185 static struct dpif_netdev_flow_dump_thread *
2186 dpif_netdev_flow_dump_thread_cast(struct dpif_flow_dump_thread *thread)
2187 {
2188 return CONTAINER_OF(thread, struct dpif_netdev_flow_dump_thread, up);
2189 }
2190
2191 static struct dpif_flow_dump_thread *
2192 dpif_netdev_flow_dump_thread_create(struct dpif_flow_dump *dump_)
2193 {
2194 struct dpif_netdev_flow_dump *dump = dpif_netdev_flow_dump_cast(dump_);
2195 struct dpif_netdev_flow_dump_thread *thread;
2196
2197 thread = xmalloc(sizeof *thread);
2198 dpif_flow_dump_thread_init(&thread->up, &dump->up);
2199 thread->dump = dump;
2200 return &thread->up;
2201 }
2202
2203 static void
2204 dpif_netdev_flow_dump_thread_destroy(struct dpif_flow_dump_thread *thread_)
2205 {
2206 struct dpif_netdev_flow_dump_thread *thread
2207 = dpif_netdev_flow_dump_thread_cast(thread_);
2208
2209 free(thread);
2210 }
2211
2212 static int
2213 dpif_netdev_flow_dump_next(struct dpif_flow_dump_thread *thread_,
2214 struct dpif_flow *flows, int max_flows)
2215 {
2216 struct dpif_netdev_flow_dump_thread *thread
2217 = dpif_netdev_flow_dump_thread_cast(thread_);
2218 struct dpif_netdev_flow_dump *dump = thread->dump;
2219 struct dp_netdev_flow *netdev_flows[FLOW_DUMP_MAX_BATCH];
2220 int n_flows = 0;
2221 int i;
2222
2223 ovs_mutex_lock(&dump->mutex);
2224 if (!dump->status) {
2225 struct dpif_netdev *dpif = dpif_netdev_cast(thread->up.dpif);
2226 struct dp_netdev *dp = get_dp_netdev(&dpif->dpif);
2227 struct dp_netdev_pmd_thread *pmd = dump->cur_pmd;
2228 int flow_limit = MIN(max_flows, FLOW_DUMP_MAX_BATCH);
2229
2230 /* First call to dump_next(), extracts the first pmd thread.
2231 * If there is no pmd thread, returns immediately. */
2232 if (!pmd) {
2233 pmd = dp_netdev_pmd_get_next(dp, &dump->poll_thread_pos);
2234 if (!pmd) {
2235 ovs_mutex_unlock(&dump->mutex);
2236 return n_flows;
2237
2238 }
2239 }
2240
2241 do {
2242 for (n_flows = 0; n_flows < flow_limit; n_flows++) {
2243 struct cmap_node *node;
2244
2245 node = cmap_next_position(&pmd->flow_table, &dump->flow_pos);
2246 if (!node) {
2247 break;
2248 }
2249 netdev_flows[n_flows] = CONTAINER_OF(node,
2250 struct dp_netdev_flow,
2251 node);
2252 }
2253 /* When finishing dumping the current pmd thread, moves to
2254 * the next. */
2255 if (n_flows < flow_limit) {
2256 memset(&dump->flow_pos, 0, sizeof dump->flow_pos);
2257 dp_netdev_pmd_unref(pmd);
2258 pmd = dp_netdev_pmd_get_next(dp, &dump->poll_thread_pos);
2259 if (!pmd) {
2260 dump->status = EOF;
2261 break;
2262 }
2263 }
2264 /* Keeps the reference to next caller. */
2265 dump->cur_pmd = pmd;
2266
2267 /* If the current dump is empty, do not exit the loop, since the
2268 * remaining pmds could have flows to be dumped. Just dumps again
2269 * on the new 'pmd'. */
2270 } while (!n_flows);
2271 }
2272 ovs_mutex_unlock(&dump->mutex);
2273
2274 for (i = 0; i < n_flows; i++) {
2275 struct odputil_keybuf *maskbuf = &thread->maskbuf[i];
2276 struct odputil_keybuf *keybuf = &thread->keybuf[i];
2277 struct dp_netdev_flow *netdev_flow = netdev_flows[i];
2278 struct dpif_flow *f = &flows[i];
2279 struct ofpbuf key, mask;
2280
2281 ofpbuf_use_stack(&key, keybuf, sizeof *keybuf);
2282 ofpbuf_use_stack(&mask, maskbuf, sizeof *maskbuf);
2283 dp_netdev_flow_to_dpif_flow(netdev_flow, &key, &mask, f,
2284 dump->up.terse);
2285 }
2286
2287 return n_flows;
2288 }
2289
2290 static int
2291 dpif_netdev_execute(struct dpif *dpif, struct dpif_execute *execute)
2292 OVS_NO_THREAD_SAFETY_ANALYSIS
2293 {
2294 struct dp_netdev *dp = get_dp_netdev(dpif);
2295 struct dp_netdev_pmd_thread *pmd;
2296 struct dp_packet *pp;
2297
2298 if (dp_packet_size(execute->packet) < ETH_HEADER_LEN ||
2299 dp_packet_size(execute->packet) > UINT16_MAX) {
2300 return EINVAL;
2301 }
2302
2303 /* Tries finding the 'pmd'. If NULL is returned, that means
2304 * the current thread is a non-pmd thread and should use
2305 * dp_netdev_get_pmd(dp, NON_PMD_CORE_ID). */
2306 pmd = ovsthread_getspecific(dp->per_pmd_key);
2307 if (!pmd) {
2308 pmd = dp_netdev_get_pmd(dp, NON_PMD_CORE_ID);
2309 }
2310
2311 /* If the current thread is non-pmd thread, acquires
2312 * the 'non_pmd_mutex'. */
2313 if (pmd->core_id == NON_PMD_CORE_ID) {
2314 ovs_mutex_lock(&dp->non_pmd_mutex);
2315 ovs_mutex_lock(&dp->port_mutex);
2316 }
2317
2318 pp = execute->packet;
2319 dp_netdev_execute_actions(pmd, &pp, 1, false, execute->actions,
2320 execute->actions_len);
2321 if (pmd->core_id == NON_PMD_CORE_ID) {
2322 dp_netdev_pmd_unref(pmd);
2323 ovs_mutex_unlock(&dp->port_mutex);
2324 ovs_mutex_unlock(&dp->non_pmd_mutex);
2325 }
2326
2327 return 0;
2328 }
2329
2330 static void
2331 dpif_netdev_operate(struct dpif *dpif, struct dpif_op **ops, size_t n_ops)
2332 {
2333 size_t i;
2334
2335 for (i = 0; i < n_ops; i++) {
2336 struct dpif_op *op = ops[i];
2337
2338 switch (op->type) {
2339 case DPIF_OP_FLOW_PUT:
2340 op->error = dpif_netdev_flow_put(dpif, &op->u.flow_put);
2341 break;
2342
2343 case DPIF_OP_FLOW_DEL:
2344 op->error = dpif_netdev_flow_del(dpif, &op->u.flow_del);
2345 break;
2346
2347 case DPIF_OP_EXECUTE:
2348 op->error = dpif_netdev_execute(dpif, &op->u.execute);
2349 break;
2350
2351 case DPIF_OP_FLOW_GET:
2352 op->error = dpif_netdev_flow_get(dpif, &op->u.flow_get);
2353 break;
2354 }
2355 }
2356 }
2357
2358 /* Returns true if the configuration for rx queues or cpu mask
2359 * is changed. */
2360 static bool
2361 pmd_config_changed(const struct dp_netdev *dp, size_t rxqs, const char *cmask)
2362 {
2363 if (dp->n_dpdk_rxqs != rxqs) {
2364 return true;
2365 } else {
2366 if (dp->pmd_cmask != NULL && cmask != NULL) {
2367 return strcmp(dp->pmd_cmask, cmask);
2368 } else {
2369 return (dp->pmd_cmask != NULL || cmask != NULL);
2370 }
2371 }
2372 }
2373
2374 /* Resets pmd threads if the configuration for 'rxq's or cpu mask changes. */
2375 static int
2376 dpif_netdev_pmd_set(struct dpif *dpif, unsigned int n_rxqs, const char *cmask)
2377 {
2378 struct dp_netdev *dp = get_dp_netdev(dpif);
2379
2380 if (pmd_config_changed(dp, n_rxqs, cmask)) {
2381 struct dp_netdev_port *port;
2382
2383 dp_netdev_destroy_all_pmds(dp);
2384
2385 CMAP_FOR_EACH (port, node, &dp->ports) {
2386 if (netdev_is_pmd(port->netdev)) {
2387 int i, err;
2388
2389 /* Closes the existing 'rxq's. */
2390 for (i = 0; i < netdev_n_rxq(port->netdev); i++) {
2391 netdev_rxq_close(port->rxq[i]);
2392 port->rxq[i] = NULL;
2393 }
2394
2395 /* Sets the new rx queue config. */
2396 err = netdev_set_multiq(port->netdev, ovs_numa_get_n_cores(),
2397 n_rxqs);
2398 if (err && (err != EOPNOTSUPP)) {
2399 VLOG_ERR("Failed to set dpdk interface %s rx_queue to:"
2400 " %u", netdev_get_name(port->netdev),
2401 n_rxqs);
2402 return err;
2403 }
2404
2405 /* If the set_multiq() above succeeds, reopens the 'rxq's. */
2406 port->rxq = xrealloc(port->rxq, sizeof *port->rxq
2407 * netdev_n_rxq(port->netdev));
2408 for (i = 0; i < netdev_n_rxq(port->netdev); i++) {
2409 netdev_rxq_open(port->netdev, &port->rxq[i], i);
2410 }
2411 }
2412 }
2413 dp->n_dpdk_rxqs = n_rxqs;
2414
2415 /* Reconfigures the cpu mask. */
2416 ovs_numa_set_cpu_mask(cmask);
2417 free(dp->pmd_cmask);
2418 dp->pmd_cmask = cmask ? xstrdup(cmask) : NULL;
2419
2420 /* Restores the non-pmd. */
2421 dp_netdev_set_nonpmd(dp);
2422 /* Restores all pmd threads. */
2423 dp_netdev_reset_pmd_threads(dp);
2424 }
2425
2426 return 0;
2427 }
2428
2429 static int
2430 dpif_netdev_queue_to_priority(const struct dpif *dpif OVS_UNUSED,
2431 uint32_t queue_id, uint32_t *priority)
2432 {
2433 *priority = queue_id;
2434 return 0;
2435 }
2436
2437 \f
2438 /* Creates and returns a new 'struct dp_netdev_actions', whose actions are
2439 * a copy of the 'ofpacts_len' bytes of 'ofpacts'. */
2440 struct dp_netdev_actions *
2441 dp_netdev_actions_create(const struct nlattr *actions, size_t size)
2442 {
2443 struct dp_netdev_actions *netdev_actions;
2444
2445 netdev_actions = xmalloc(sizeof *netdev_actions + size);
2446 memcpy(netdev_actions->actions, actions, size);
2447 netdev_actions->size = size;
2448
2449 return netdev_actions;
2450 }
2451
2452 struct dp_netdev_actions *
2453 dp_netdev_flow_get_actions(const struct dp_netdev_flow *flow)
2454 {
2455 return ovsrcu_get(struct dp_netdev_actions *, &flow->actions);
2456 }
2457
2458 static void
2459 dp_netdev_actions_free(struct dp_netdev_actions *actions)
2460 {
2461 free(actions);
2462 }
2463 \f
2464 static inline unsigned long long
2465 cycles_counter(void)
2466 {
2467 #ifdef DPDK_NETDEV
2468 return rte_get_tsc_cycles();
2469 #else
2470 return 0;
2471 #endif
2472 }
2473
2474 /* Fake mutex to make sure that the calls to cycles_count_* are balanced */
2475 extern struct ovs_mutex cycles_counter_fake_mutex;
2476
2477 /* Start counting cycles. Must be followed by 'cycles_count_end()' */
2478 static inline void
2479 cycles_count_start(struct dp_netdev_pmd_thread *pmd)
2480 OVS_ACQUIRES(&cycles_counter_fake_mutex)
2481 OVS_NO_THREAD_SAFETY_ANALYSIS
2482 {
2483 pmd->last_cycles = cycles_counter();
2484 }
2485
2486 /* Stop counting cycles and add them to the counter 'type' */
2487 static inline void
2488 cycles_count_end(struct dp_netdev_pmd_thread *pmd,
2489 enum pmd_cycles_counter_type type)
2490 OVS_RELEASES(&cycles_counter_fake_mutex)
2491 OVS_NO_THREAD_SAFETY_ANALYSIS
2492 {
2493 unsigned long long interval = cycles_counter() - pmd->last_cycles;
2494
2495 non_atomic_ullong_add(&pmd->cycles.n[type], interval);
2496 }
2497
2498 static void
2499 dp_netdev_process_rxq_port(struct dp_netdev_pmd_thread *pmd,
2500 struct dp_netdev_port *port,
2501 struct netdev_rxq *rxq)
2502 {
2503 struct dp_packet *packets[NETDEV_MAX_RX_BATCH];
2504 int error, cnt;
2505
2506 cycles_count_start(pmd);
2507 error = netdev_rxq_recv(rxq, packets, &cnt);
2508 cycles_count_end(pmd, PMD_CYCLES_POLLING);
2509 if (!error) {
2510 int i;
2511
2512 *recirc_depth_get() = 0;
2513
2514 /* XXX: initialize md in netdev implementation. */
2515 for (i = 0; i < cnt; i++) {
2516 packets[i]->md = PKT_METADATA_INITIALIZER(port->port_no);
2517 }
2518 cycles_count_start(pmd);
2519 dp_netdev_input(pmd, packets, cnt);
2520 cycles_count_end(pmd, PMD_CYCLES_PROCESSING);
2521 } else if (error != EAGAIN && error != EOPNOTSUPP) {
2522 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
2523
2524 VLOG_ERR_RL(&rl, "error receiving data from %s: %s",
2525 netdev_get_name(port->netdev), ovs_strerror(error));
2526 }
2527 }
2528
2529 /* Return true if needs to revalidate datapath flows. */
2530 static bool
2531 dpif_netdev_run(struct dpif *dpif)
2532 {
2533 struct dp_netdev_port *port;
2534 struct dp_netdev *dp = get_dp_netdev(dpif);
2535 struct dp_netdev_pmd_thread *non_pmd = dp_netdev_get_pmd(dp,
2536 NON_PMD_CORE_ID);
2537 uint64_t new_tnl_seq;
2538
2539 ovs_mutex_lock(&dp->non_pmd_mutex);
2540 CMAP_FOR_EACH (port, node, &dp->ports) {
2541 if (!netdev_is_pmd(port->netdev)) {
2542 int i;
2543
2544 for (i = 0; i < netdev_n_rxq(port->netdev); i++) {
2545 dp_netdev_process_rxq_port(non_pmd, port, port->rxq[i]);
2546 }
2547 }
2548 }
2549 ovs_mutex_unlock(&dp->non_pmd_mutex);
2550 dp_netdev_pmd_unref(non_pmd);
2551
2552 tnl_arp_cache_run();
2553 new_tnl_seq = seq_read(tnl_conf_seq);
2554
2555 if (dp->last_tnl_conf_seq != new_tnl_seq) {
2556 dp->last_tnl_conf_seq = new_tnl_seq;
2557 return true;
2558 }
2559 return false;
2560 }
2561
2562 static void
2563 dpif_netdev_wait(struct dpif *dpif)
2564 {
2565 struct dp_netdev_port *port;
2566 struct dp_netdev *dp = get_dp_netdev(dpif);
2567
2568 ovs_mutex_lock(&dp_netdev_mutex);
2569 CMAP_FOR_EACH (port, node, &dp->ports) {
2570 if (!netdev_is_pmd(port->netdev)) {
2571 int i;
2572
2573 for (i = 0; i < netdev_n_rxq(port->netdev); i++) {
2574 netdev_rxq_wait(port->rxq[i]);
2575 }
2576 }
2577 }
2578 ovs_mutex_unlock(&dp_netdev_mutex);
2579 seq_wait(tnl_conf_seq, dp->last_tnl_conf_seq);
2580 }
2581
2582 struct rxq_poll {
2583 struct dp_netdev_port *port;
2584 struct netdev_rxq *rx;
2585 };
2586
2587 static int
2588 pmd_load_queues(struct dp_netdev_pmd_thread *pmd,
2589 struct rxq_poll **ppoll_list, int poll_cnt)
2590 {
2591 struct rxq_poll *poll_list = *ppoll_list;
2592 struct dp_netdev_port *port;
2593 int n_pmds_on_numa, index, i;
2594
2595 /* Simple scheduler for netdev rx polling. */
2596 for (i = 0; i < poll_cnt; i++) {
2597 port_unref(poll_list[i].port);
2598 }
2599
2600 poll_cnt = 0;
2601 n_pmds_on_numa = get_n_pmd_threads_on_numa(pmd->dp, pmd->numa_id);
2602 index = 0;
2603
2604 CMAP_FOR_EACH (port, node, &pmd->dp->ports) {
2605 /* Calls port_try_ref() to prevent the main thread
2606 * from deleting the port. */
2607 if (port_try_ref(port)) {
2608 if (netdev_is_pmd(port->netdev)
2609 && netdev_get_numa_id(port->netdev) == pmd->numa_id) {
2610 int i;
2611
2612 for (i = 0; i < netdev_n_rxq(port->netdev); i++) {
2613 if ((index % n_pmds_on_numa) == pmd->index) {
2614 poll_list = xrealloc(poll_list,
2615 sizeof *poll_list * (poll_cnt + 1));
2616
2617 port_ref(port);
2618 poll_list[poll_cnt].port = port;
2619 poll_list[poll_cnt].rx = port->rxq[i];
2620 poll_cnt++;
2621 }
2622 index++;
2623 }
2624 }
2625 /* Unrefs the port_try_ref(). */
2626 port_unref(port);
2627 }
2628 }
2629
2630 *ppoll_list = poll_list;
2631 return poll_cnt;
2632 }
2633
2634 static void *
2635 pmd_thread_main(void *f_)
2636 {
2637 struct dp_netdev_pmd_thread *pmd = f_;
2638 unsigned int lc = 0;
2639 struct rxq_poll *poll_list;
2640 unsigned int port_seq = PMD_INITIAL_SEQ;
2641 int poll_cnt;
2642 int i;
2643
2644 poll_cnt = 0;
2645 poll_list = NULL;
2646
2647 /* Stores the pmd thread's 'pmd' to 'per_pmd_key'. */
2648 ovsthread_setspecific(pmd->dp->per_pmd_key, pmd);
2649 pmd_thread_setaffinity_cpu(pmd->core_id);
2650 reload:
2651 emc_cache_init(&pmd->flow_cache);
2652 poll_cnt = pmd_load_queues(pmd, &poll_list, poll_cnt);
2653
2654 /* Signal here to make sure the pmd finishes
2655 * reloading the updated configuration. */
2656 dp_netdev_pmd_reload_done(pmd);
2657
2658 for (;;) {
2659 int i;
2660
2661 for (i = 0; i < poll_cnt; i++) {
2662 dp_netdev_process_rxq_port(pmd, poll_list[i].port, poll_list[i].rx);
2663 }
2664
2665 if (lc++ > 1024) {
2666 unsigned int seq;
2667
2668 lc = 0;
2669
2670 emc_cache_slow_sweep(&pmd->flow_cache);
2671 ovsrcu_quiesce();
2672
2673 atomic_read_relaxed(&pmd->change_seq, &seq);
2674 if (seq != port_seq) {
2675 port_seq = seq;
2676 break;
2677 }
2678 }
2679 }
2680
2681 emc_cache_uninit(&pmd->flow_cache);
2682
2683 if (!latch_is_set(&pmd->exit_latch)){
2684 goto reload;
2685 }
2686
2687 for (i = 0; i < poll_cnt; i++) {
2688 port_unref(poll_list[i].port);
2689 }
2690
2691 dp_netdev_pmd_reload_done(pmd);
2692
2693 free(poll_list);
2694 return NULL;
2695 }
2696
2697 static void
2698 dp_netdev_disable_upcall(struct dp_netdev *dp)
2699 OVS_ACQUIRES(dp->upcall_rwlock)
2700 {
2701 fat_rwlock_wrlock(&dp->upcall_rwlock);
2702 }
2703
2704 static void
2705 dpif_netdev_disable_upcall(struct dpif *dpif)
2706 OVS_NO_THREAD_SAFETY_ANALYSIS
2707 {
2708 struct dp_netdev *dp = get_dp_netdev(dpif);
2709 dp_netdev_disable_upcall(dp);
2710 }
2711
2712 static void
2713 dp_netdev_enable_upcall(struct dp_netdev *dp)
2714 OVS_RELEASES(dp->upcall_rwlock)
2715 {
2716 fat_rwlock_unlock(&dp->upcall_rwlock);
2717 }
2718
2719 static void
2720 dpif_netdev_enable_upcall(struct dpif *dpif)
2721 OVS_NO_THREAD_SAFETY_ANALYSIS
2722 {
2723 struct dp_netdev *dp = get_dp_netdev(dpif);
2724 dp_netdev_enable_upcall(dp);
2725 }
2726
2727 void
2728 dp_netdev_pmd_reload_done(struct dp_netdev_pmd_thread *pmd)
2729 {
2730 ovs_mutex_lock(&pmd->cond_mutex);
2731 xpthread_cond_signal(&pmd->cond);
2732 ovs_mutex_unlock(&pmd->cond_mutex);
2733 }
2734
2735 /* Finds and refs the dp_netdev_pmd_thread on core 'core_id'. Returns
2736 * the pointer if succeeds, otherwise, NULL.
2737 *
2738 * Caller must unrefs the returned reference. */
2739 static struct dp_netdev_pmd_thread *
2740 dp_netdev_get_pmd(struct dp_netdev *dp, int core_id)
2741 {
2742 struct dp_netdev_pmd_thread *pmd;
2743 const struct cmap_node *pnode;
2744
2745 pnode = cmap_find(&dp->poll_threads, hash_int(core_id, 0));
2746 if (!pnode) {
2747 return NULL;
2748 }
2749 pmd = CONTAINER_OF(pnode, struct dp_netdev_pmd_thread, node);
2750
2751 return dp_netdev_pmd_try_ref(pmd) ? pmd : NULL;
2752 }
2753
2754 /* Sets the 'struct dp_netdev_pmd_thread' for non-pmd threads. */
2755 static void
2756 dp_netdev_set_nonpmd(struct dp_netdev *dp)
2757 {
2758 struct dp_netdev_pmd_thread *non_pmd;
2759
2760 non_pmd = xzalloc(sizeof *non_pmd);
2761 dp_netdev_configure_pmd(non_pmd, dp, 0, NON_PMD_CORE_ID,
2762 OVS_NUMA_UNSPEC);
2763 }
2764
2765 /* Caller must have valid pointer to 'pmd'. */
2766 static bool
2767 dp_netdev_pmd_try_ref(struct dp_netdev_pmd_thread *pmd)
2768 {
2769 return ovs_refcount_try_ref_rcu(&pmd->ref_cnt);
2770 }
2771
2772 static void
2773 dp_netdev_pmd_unref(struct dp_netdev_pmd_thread *pmd)
2774 {
2775 if (pmd && ovs_refcount_unref(&pmd->ref_cnt) == 1) {
2776 ovsrcu_postpone(dp_netdev_destroy_pmd, pmd);
2777 }
2778 }
2779
2780 /* Given cmap position 'pos', tries to ref the next node. If try_ref()
2781 * fails, keeps checking for next node until reaching the end of cmap.
2782 *
2783 * Caller must unrefs the returned reference. */
2784 static struct dp_netdev_pmd_thread *
2785 dp_netdev_pmd_get_next(struct dp_netdev *dp, struct cmap_position *pos)
2786 {
2787 struct dp_netdev_pmd_thread *next;
2788
2789 do {
2790 struct cmap_node *node;
2791
2792 node = cmap_next_position(&dp->poll_threads, pos);
2793 next = node ? CONTAINER_OF(node, struct dp_netdev_pmd_thread, node)
2794 : NULL;
2795 } while (next && !dp_netdev_pmd_try_ref(next));
2796
2797 return next;
2798 }
2799
2800 /* Configures the 'pmd' based on the input argument. */
2801 static void
2802 dp_netdev_configure_pmd(struct dp_netdev_pmd_thread *pmd, struct dp_netdev *dp,
2803 int index, int core_id, int numa_id)
2804 {
2805 pmd->dp = dp;
2806 pmd->index = index;
2807 pmd->core_id = core_id;
2808 pmd->numa_id = numa_id;
2809
2810 ovs_refcount_init(&pmd->ref_cnt);
2811 latch_init(&pmd->exit_latch);
2812 atomic_init(&pmd->change_seq, PMD_INITIAL_SEQ);
2813 xpthread_cond_init(&pmd->cond, NULL);
2814 ovs_mutex_init(&pmd->cond_mutex);
2815 ovs_mutex_init(&pmd->flow_mutex);
2816 dpcls_init(&pmd->cls);
2817 cmap_init(&pmd->flow_table);
2818 /* init the 'flow_cache' since there is no
2819 * actual thread created for NON_PMD_CORE_ID. */
2820 if (core_id == NON_PMD_CORE_ID) {
2821 emc_cache_init(&pmd->flow_cache);
2822 }
2823 cmap_insert(&dp->poll_threads, CONST_CAST(struct cmap_node *, &pmd->node),
2824 hash_int(core_id, 0));
2825 }
2826
2827 static void
2828 dp_netdev_destroy_pmd(struct dp_netdev_pmd_thread *pmd)
2829 {
2830 dp_netdev_pmd_flow_flush(pmd);
2831 dpcls_destroy(&pmd->cls);
2832 cmap_destroy(&pmd->flow_table);
2833 ovs_mutex_destroy(&pmd->flow_mutex);
2834 latch_destroy(&pmd->exit_latch);
2835 xpthread_cond_destroy(&pmd->cond);
2836 ovs_mutex_destroy(&pmd->cond_mutex);
2837 free(pmd);
2838 }
2839
2840 /* Stops the pmd thread, removes it from the 'dp->poll_threads',
2841 * and unrefs the struct. */
2842 static void
2843 dp_netdev_del_pmd(struct dp_netdev_pmd_thread *pmd)
2844 {
2845 /* Uninit the 'flow_cache' since there is
2846 * no actual thread uninit it for NON_PMD_CORE_ID. */
2847 if (pmd->core_id == NON_PMD_CORE_ID) {
2848 emc_cache_uninit(&pmd->flow_cache);
2849 } else {
2850 latch_set(&pmd->exit_latch);
2851 dp_netdev_reload_pmd__(pmd);
2852 ovs_numa_unpin_core(pmd->core_id);
2853 xpthread_join(pmd->thread, NULL);
2854 }
2855 cmap_remove(&pmd->dp->poll_threads, &pmd->node, hash_int(pmd->core_id, 0));
2856 dp_netdev_pmd_unref(pmd);
2857 }
2858
2859 /* Destroys all pmd threads. */
2860 static void
2861 dp_netdev_destroy_all_pmds(struct dp_netdev *dp)
2862 {
2863 struct dp_netdev_pmd_thread *pmd;
2864
2865 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
2866 dp_netdev_del_pmd(pmd);
2867 }
2868 }
2869
2870 /* Deletes all pmd threads on numa node 'numa_id'. */
2871 static void
2872 dp_netdev_del_pmds_on_numa(struct dp_netdev *dp, int numa_id)
2873 {
2874 struct dp_netdev_pmd_thread *pmd;
2875
2876 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
2877 if (pmd->numa_id == numa_id) {
2878 dp_netdev_del_pmd(pmd);
2879 }
2880 }
2881 }
2882
2883 /* Checks the numa node id of 'netdev' and starts pmd threads for
2884 * the numa node. */
2885 static void
2886 dp_netdev_set_pmds_on_numa(struct dp_netdev *dp, int numa_id)
2887 {
2888 int n_pmds;
2889
2890 if (!ovs_numa_numa_id_is_valid(numa_id)) {
2891 VLOG_ERR("Cannot create pmd threads due to numa id (%d)"
2892 "invalid", numa_id);
2893 return ;
2894 }
2895
2896 n_pmds = get_n_pmd_threads_on_numa(dp, numa_id);
2897
2898 /* If there are already pmd threads created for the numa node
2899 * in which 'netdev' is on, do nothing. Else, creates the
2900 * pmd threads for the numa node. */
2901 if (!n_pmds) {
2902 int can_have, n_unpinned, i;
2903
2904 n_unpinned = ovs_numa_get_n_unpinned_cores_on_numa(numa_id);
2905 if (!n_unpinned) {
2906 VLOG_ERR("Cannot create pmd threads due to out of unpinned "
2907 "cores on numa node");
2908 return;
2909 }
2910
2911 /* If cpu mask is specified, uses all unpinned cores, otherwise
2912 * tries creating NR_PMD_THREADS pmd threads. */
2913 can_have = dp->pmd_cmask ? n_unpinned : MIN(n_unpinned, NR_PMD_THREADS);
2914 for (i = 0; i < can_have; i++) {
2915 struct dp_netdev_pmd_thread *pmd = xzalloc(sizeof *pmd);
2916 int core_id = ovs_numa_get_unpinned_core_on_numa(numa_id);
2917
2918 dp_netdev_configure_pmd(pmd, dp, i, core_id, numa_id);
2919 /* Each thread will distribute all devices rx-queues among
2920 * themselves. */
2921 pmd->thread = ovs_thread_create("pmd", pmd_thread_main, pmd);
2922 }
2923 VLOG_INFO("Created %d pmd threads on numa node %d", can_have, numa_id);
2924 }
2925 }
2926
2927 \f
2928 /* Called after pmd threads config change. Restarts pmd threads with
2929 * new configuration. */
2930 static void
2931 dp_netdev_reset_pmd_threads(struct dp_netdev *dp)
2932 {
2933 struct dp_netdev_port *port;
2934
2935 CMAP_FOR_EACH (port, node, &dp->ports) {
2936 if (netdev_is_pmd(port->netdev)) {
2937 int numa_id = netdev_get_numa_id(port->netdev);
2938
2939 dp_netdev_set_pmds_on_numa(dp, numa_id);
2940 }
2941 }
2942 }
2943
2944 static char *
2945 dpif_netdev_get_datapath_version(void)
2946 {
2947 return xstrdup("<built-in>");
2948 }
2949
2950 static void
2951 dp_netdev_flow_used(struct dp_netdev_flow *netdev_flow, int cnt, int size,
2952 uint16_t tcp_flags)
2953 {
2954 long long now = time_msec();
2955 uint16_t flags;
2956
2957 atomic_store_relaxed(&netdev_flow->stats.used, now);
2958 non_atomic_ullong_add(&netdev_flow->stats.packet_count, cnt);
2959 non_atomic_ullong_add(&netdev_flow->stats.byte_count, size);
2960 atomic_read_relaxed(&netdev_flow->stats.tcp_flags, &flags);
2961 flags |= tcp_flags;
2962 atomic_store_relaxed(&netdev_flow->stats.tcp_flags, flags);
2963 }
2964
2965 static void
2966 dp_netdev_count_packet(struct dp_netdev_pmd_thread *pmd,
2967 enum dp_stat_type type, int cnt)
2968 {
2969 non_atomic_ullong_add(&pmd->stats.n[type], cnt);
2970 }
2971
2972 static int
2973 dp_netdev_upcall(struct dp_netdev_pmd_thread *pmd, struct dp_packet *packet_,
2974 struct flow *flow, struct flow_wildcards *wc, ovs_u128 *ufid,
2975 enum dpif_upcall_type type, const struct nlattr *userdata,
2976 struct ofpbuf *actions, struct ofpbuf *put_actions)
2977 {
2978 struct dp_netdev *dp = pmd->dp;
2979
2980 if (OVS_UNLIKELY(!dp->upcall_cb)) {
2981 return ENODEV;
2982 }
2983
2984 if (OVS_UNLIKELY(!VLOG_DROP_DBG(&upcall_rl))) {
2985 struct ds ds = DS_EMPTY_INITIALIZER;
2986 char *packet_str;
2987 struct ofpbuf key;
2988
2989 ofpbuf_init(&key, 0);
2990 odp_flow_key_from_flow(&key, flow, &wc->masks, flow->in_port.odp_port,
2991 true);
2992 packet_str = ofp_packet_to_string(dp_packet_data(packet_),
2993 dp_packet_size(packet_));
2994
2995 odp_flow_key_format(key.data, key.size, &ds);
2996
2997 VLOG_DBG("%s: %s upcall:\n%s\n%s", dp->name,
2998 dpif_upcall_type_to_string(type), ds_cstr(&ds), packet_str);
2999
3000 ofpbuf_uninit(&key);
3001 free(packet_str);
3002
3003 ds_destroy(&ds);
3004 }
3005
3006 return dp->upcall_cb(packet_, flow, ufid, pmd->core_id, type, userdata,
3007 actions, wc, put_actions, dp->upcall_aux);
3008 }
3009
3010 static inline uint32_t
3011 dpif_netdev_packet_get_dp_hash(struct dp_packet *packet,
3012 const struct miniflow *mf)
3013 {
3014 uint32_t hash;
3015
3016 hash = dp_packet_get_dp_hash(packet);
3017 if (OVS_UNLIKELY(!hash)) {
3018 hash = miniflow_hash_5tuple(mf, 0);
3019 dp_packet_set_dp_hash(packet, hash);
3020 }
3021 return hash;
3022 }
3023
3024 struct packet_batch {
3025 unsigned int packet_count;
3026 unsigned int byte_count;
3027 uint16_t tcp_flags;
3028
3029 struct dp_netdev_flow *flow;
3030
3031 struct dp_packet *packets[NETDEV_MAX_RX_BATCH];
3032 };
3033
3034 static inline void
3035 packet_batch_update(struct packet_batch *batch, struct dp_packet *packet,
3036 const struct miniflow *mf)
3037 {
3038 batch->tcp_flags |= miniflow_get_tcp_flags(mf);
3039 batch->packets[batch->packet_count++] = packet;
3040 batch->byte_count += dp_packet_size(packet);
3041 }
3042
3043 static inline void
3044 packet_batch_init(struct packet_batch *batch, struct dp_netdev_flow *flow)
3045 {
3046 batch->flow = flow;
3047
3048 batch->packet_count = 0;
3049 batch->byte_count = 0;
3050 batch->tcp_flags = 0;
3051 }
3052
3053 static inline void
3054 packet_batch_execute(struct packet_batch *batch,
3055 struct dp_netdev_pmd_thread *pmd,
3056 enum dp_stat_type hit_type)
3057 {
3058 struct dp_netdev_actions *actions;
3059 struct dp_netdev_flow *flow = batch->flow;
3060
3061 dp_netdev_flow_used(batch->flow, batch->packet_count, batch->byte_count,
3062 batch->tcp_flags);
3063
3064 actions = dp_netdev_flow_get_actions(flow);
3065
3066 dp_netdev_execute_actions(pmd, batch->packets, batch->packet_count, true,
3067 actions->actions, actions->size);
3068
3069 dp_netdev_count_packet(pmd, hit_type, batch->packet_count);
3070 }
3071
3072 static inline bool
3073 dp_netdev_queue_batches(struct dp_packet *pkt,
3074 struct dp_netdev_flow *flow, const struct miniflow *mf,
3075 struct packet_batch *batches, size_t *n_batches,
3076 size_t max_batches)
3077 {
3078 struct packet_batch *batch = NULL;
3079 int j;
3080
3081 if (OVS_UNLIKELY(!flow)) {
3082 return false;
3083 }
3084 /* XXX: This O(n^2) algortihm makes sense if we're operating under the
3085 * assumption that the number of distinct flows (and therefore the
3086 * number of distinct batches) is quite small. If this turns out not
3087 * to be the case, it may make sense to pre sort based on the
3088 * netdev_flow pointer. That done we can get the appropriate batching
3089 * in O(n * log(n)) instead. */
3090 for (j = *n_batches - 1; j >= 0; j--) {
3091 if (batches[j].flow == flow) {
3092 batch = &batches[j];
3093 packet_batch_update(batch, pkt, mf);
3094 return true;
3095 }
3096 }
3097 if (OVS_UNLIKELY(*n_batches >= max_batches)) {
3098 return false;
3099 }
3100
3101 batch = &batches[(*n_batches)++];
3102 packet_batch_init(batch, flow);
3103 packet_batch_update(batch, pkt, mf);
3104 return true;
3105 }
3106
3107 static inline void
3108 dp_packet_swap(struct dp_packet **a, struct dp_packet **b)
3109 {
3110 struct dp_packet *tmp = *a;
3111 *a = *b;
3112 *b = tmp;
3113 }
3114
3115 /* Try to process all ('cnt') the 'packets' using only the exact match cache
3116 * 'flow_cache'. If a flow is not found for a packet 'packets[i]', or if there
3117 * is no matching batch for a packet's flow, the miniflow is copied into 'keys'
3118 * and the packet pointer is moved at the beginning of the 'packets' array.
3119 *
3120 * The function returns the number of packets that needs to be processed in the
3121 * 'packets' array (they have been moved to the beginning of the vector).
3122 */
3123 static inline size_t
3124 emc_processing(struct dp_netdev_pmd_thread *pmd, struct dp_packet **packets,
3125 size_t cnt, struct netdev_flow_key *keys)
3126 {
3127 struct netdev_flow_key key;
3128 struct packet_batch batches[4];
3129 struct emc_cache *flow_cache = &pmd->flow_cache;
3130 size_t n_batches, i;
3131 size_t notfound_cnt = 0;
3132
3133 n_batches = 0;
3134 miniflow_initialize(&key.mf, key.buf);
3135 for (i = 0; i < cnt; i++) {
3136 struct dp_netdev_flow *flow;
3137
3138 if (OVS_UNLIKELY(dp_packet_size(packets[i]) < ETH_HEADER_LEN)) {
3139 dp_packet_delete(packets[i]);
3140 continue;
3141 }
3142
3143 miniflow_extract(packets[i], &key.mf);
3144 key.len = 0; /* Not computed yet. */
3145 key.hash = dpif_netdev_packet_get_dp_hash(packets[i], &key.mf);
3146
3147 flow = emc_lookup(flow_cache, &key);
3148 if (OVS_UNLIKELY(!dp_netdev_queue_batches(packets[i], flow, &key.mf,
3149 batches, &n_batches,
3150 ARRAY_SIZE(batches)))) {
3151 if (i != notfound_cnt) {
3152 dp_packet_swap(&packets[i], &packets[notfound_cnt]);
3153 }
3154
3155 keys[notfound_cnt++] = key;
3156 }
3157 }
3158
3159 for (i = 0; i < n_batches; i++) {
3160 packet_batch_execute(&batches[i], pmd, DP_STAT_EXACT_HIT);
3161 }
3162
3163 return notfound_cnt;
3164 }
3165
3166 static inline void
3167 fast_path_processing(struct dp_netdev_pmd_thread *pmd,
3168 struct dp_packet **packets, size_t cnt,
3169 struct netdev_flow_key *keys)
3170 {
3171 #if !defined(__CHECKER__) && !defined(_WIN32)
3172 const size_t PKT_ARRAY_SIZE = cnt;
3173 #else
3174 /* Sparse or MSVC doesn't like variable length array. */
3175 enum { PKT_ARRAY_SIZE = NETDEV_MAX_RX_BATCH };
3176 #endif
3177 struct packet_batch batches[PKT_ARRAY_SIZE];
3178 struct dpcls_rule *rules[PKT_ARRAY_SIZE];
3179 struct dp_netdev *dp = pmd->dp;
3180 struct emc_cache *flow_cache = &pmd->flow_cache;
3181 size_t n_batches, i;
3182 bool any_miss;
3183
3184 for (i = 0; i < cnt; i++) {
3185 /* Key length is needed in all the cases, hash computed on demand. */
3186 keys[i].len = netdev_flow_key_size(count_1bits(keys[i].mf.map));
3187 }
3188 any_miss = !dpcls_lookup(&pmd->cls, keys, rules, cnt);
3189 if (OVS_UNLIKELY(any_miss) && !fat_rwlock_tryrdlock(&dp->upcall_rwlock)) {
3190 uint64_t actions_stub[512 / 8], slow_stub[512 / 8];
3191 struct ofpbuf actions, put_actions;
3192 int miss_cnt = 0, lost_cnt = 0;
3193 ovs_u128 ufid;
3194
3195 ofpbuf_use_stub(&actions, actions_stub, sizeof actions_stub);
3196 ofpbuf_use_stub(&put_actions, slow_stub, sizeof slow_stub);
3197
3198 for (i = 0; i < cnt; i++) {
3199 struct dp_netdev_flow *netdev_flow;
3200 struct ofpbuf *add_actions;
3201 struct match match;
3202 int error;
3203
3204 if (OVS_LIKELY(rules[i])) {
3205 continue;
3206 }
3207
3208 /* It's possible that an earlier slow path execution installed
3209 * a rule covering this flow. In this case, it's a lot cheaper
3210 * to catch it here than execute a miss. */
3211 netdev_flow = dp_netdev_pmd_lookup_flow(pmd, &keys[i]);
3212 if (netdev_flow) {
3213 rules[i] = &netdev_flow->cr;
3214 continue;
3215 }
3216
3217 miss_cnt++;
3218
3219 miniflow_expand(&keys[i].mf, &match.flow);
3220
3221 ofpbuf_clear(&actions);
3222 ofpbuf_clear(&put_actions);
3223
3224 dpif_flow_hash(dp->dpif, &match.flow, sizeof match.flow, &ufid);
3225 error = dp_netdev_upcall(pmd, packets[i], &match.flow, &match.wc,
3226 &ufid, DPIF_UC_MISS, NULL, &actions,
3227 &put_actions);
3228 if (OVS_UNLIKELY(error && error != ENOSPC)) {
3229 dp_packet_delete(packets[i]);
3230 lost_cnt++;
3231 continue;
3232 }
3233
3234 /* We can't allow the packet batching in the next loop to execute
3235 * the actions. Otherwise, if there are any slow path actions,
3236 * we'll send the packet up twice. */
3237 dp_netdev_execute_actions(pmd, &packets[i], 1, true,
3238 actions.data, actions.size);
3239
3240 add_actions = put_actions.size ? &put_actions : &actions;
3241 if (OVS_LIKELY(error != ENOSPC)) {
3242 /* XXX: There's a race window where a flow covering this packet
3243 * could have already been installed since we last did the flow
3244 * lookup before upcall. This could be solved by moving the
3245 * mutex lock outside the loop, but that's an awful long time
3246 * to be locking everyone out of making flow installs. If we
3247 * move to a per-core classifier, it would be reasonable. */
3248 ovs_mutex_lock(&pmd->flow_mutex);
3249 netdev_flow = dp_netdev_pmd_lookup_flow(pmd, &keys[i]);
3250 if (OVS_LIKELY(!netdev_flow)) {
3251 netdev_flow = dp_netdev_flow_add(pmd, &match, &ufid,
3252 add_actions->data,
3253 add_actions->size);
3254 }
3255 ovs_mutex_unlock(&pmd->flow_mutex);
3256
3257 emc_insert(flow_cache, &keys[i], netdev_flow);
3258 }
3259 }
3260
3261 ofpbuf_uninit(&actions);
3262 ofpbuf_uninit(&put_actions);
3263 fat_rwlock_unlock(&dp->upcall_rwlock);
3264 dp_netdev_count_packet(pmd, DP_STAT_MISS, miss_cnt);
3265 dp_netdev_count_packet(pmd, DP_STAT_LOST, lost_cnt);
3266 } else if (OVS_UNLIKELY(any_miss)) {
3267 int dropped_cnt = 0;
3268
3269 for (i = 0; i < cnt; i++) {
3270 if (OVS_UNLIKELY(!rules[i])) {
3271 dp_packet_delete(packets[i]);
3272 dropped_cnt++;
3273 }
3274 }
3275
3276 dp_netdev_count_packet(pmd, DP_STAT_MISS, dropped_cnt);
3277 dp_netdev_count_packet(pmd, DP_STAT_LOST, dropped_cnt);
3278 }
3279
3280 n_batches = 0;
3281 for (i = 0; i < cnt; i++) {
3282 struct dp_packet *packet = packets[i];
3283 struct dp_netdev_flow *flow;
3284
3285 if (OVS_UNLIKELY(!rules[i])) {
3286 continue;
3287 }
3288
3289 flow = dp_netdev_flow_cast(rules[i]);
3290
3291 emc_insert(flow_cache, &keys[i], flow);
3292 dp_netdev_queue_batches(packet, flow, &keys[i].mf, batches,
3293 &n_batches, ARRAY_SIZE(batches));
3294 }
3295
3296 for (i = 0; i < n_batches; i++) {
3297 packet_batch_execute(&batches[i], pmd, DP_STAT_MASKED_HIT);
3298 }
3299 }
3300
3301 static void
3302 dp_netdev_input(struct dp_netdev_pmd_thread *pmd,
3303 struct dp_packet **packets, int cnt)
3304 {
3305 #if !defined(__CHECKER__) && !defined(_WIN32)
3306 const size_t PKT_ARRAY_SIZE = cnt;
3307 #else
3308 /* Sparse or MSVC doesn't like variable length array. */
3309 enum { PKT_ARRAY_SIZE = NETDEV_MAX_RX_BATCH };
3310 #endif
3311 struct netdev_flow_key keys[PKT_ARRAY_SIZE];
3312 size_t newcnt;
3313
3314 newcnt = emc_processing(pmd, packets, cnt, keys);
3315 if (OVS_UNLIKELY(newcnt)) {
3316 fast_path_processing(pmd, packets, newcnt, keys);
3317 }
3318 }
3319
3320 struct dp_netdev_execute_aux {
3321 struct dp_netdev_pmd_thread *pmd;
3322 };
3323
3324 static void
3325 dpif_netdev_register_upcall_cb(struct dpif *dpif, upcall_callback *cb,
3326 void *aux)
3327 {
3328 struct dp_netdev *dp = get_dp_netdev(dpif);
3329 dp->upcall_aux = aux;
3330 dp->upcall_cb = cb;
3331 }
3332
3333 static void
3334 dp_netdev_drop_packets(struct dp_packet ** packets, int cnt, bool may_steal)
3335 {
3336 if (may_steal) {
3337 int i;
3338
3339 for (i = 0; i < cnt; i++) {
3340 dp_packet_delete(packets[i]);
3341 }
3342 }
3343 }
3344
3345 static int
3346 push_tnl_action(const struct dp_netdev *dp,
3347 const struct nlattr *attr,
3348 struct dp_packet **packets, int cnt)
3349 {
3350 struct dp_netdev_port *tun_port;
3351 const struct ovs_action_push_tnl *data;
3352
3353 data = nl_attr_get(attr);
3354
3355 tun_port = dp_netdev_lookup_port(dp, u32_to_odp(data->tnl_port));
3356 if (!tun_port) {
3357 return -EINVAL;
3358 }
3359 netdev_push_header(tun_port->netdev, packets, cnt, data);
3360
3361 return 0;
3362 }
3363
3364 static void
3365 dp_netdev_clone_pkt_batch(struct dp_packet **tnl_pkt,
3366 struct dp_packet **packets, int cnt)
3367 {
3368 int i;
3369
3370 for (i = 0; i < cnt; i++) {
3371 tnl_pkt[i] = dp_packet_clone(packets[i]);
3372 }
3373 }
3374
3375 static void
3376 dp_execute_cb(void *aux_, struct dp_packet **packets, int cnt,
3377 const struct nlattr *a, bool may_steal)
3378 OVS_NO_THREAD_SAFETY_ANALYSIS
3379 {
3380 struct dp_netdev_execute_aux *aux = aux_;
3381 uint32_t *depth = recirc_depth_get();
3382 struct dp_netdev_pmd_thread *pmd= aux->pmd;
3383 struct dp_netdev *dp= pmd->dp;
3384 int type = nl_attr_type(a);
3385 struct dp_netdev_port *p;
3386 int i;
3387
3388 switch ((enum ovs_action_attr)type) {
3389 case OVS_ACTION_ATTR_OUTPUT:
3390 p = dp_netdev_lookup_port(dp, u32_to_odp(nl_attr_get_u32(a)));
3391 if (OVS_LIKELY(p)) {
3392 netdev_send(p->netdev, pmd->core_id, packets, cnt, may_steal);
3393 return;
3394 }
3395 break;
3396
3397 case OVS_ACTION_ATTR_TUNNEL_PUSH:
3398 if (*depth < MAX_RECIRC_DEPTH) {
3399 struct dp_packet *tnl_pkt[NETDEV_MAX_RX_BATCH];
3400 int err;
3401
3402 if (!may_steal) {
3403 dp_netdev_clone_pkt_batch(tnl_pkt, packets, cnt);
3404 packets = tnl_pkt;
3405 }
3406
3407 err = push_tnl_action(dp, a, packets, cnt);
3408 if (!err) {
3409 (*depth)++;
3410 dp_netdev_input(pmd, packets, cnt);
3411 (*depth)--;
3412 } else {
3413 dp_netdev_drop_packets(tnl_pkt, cnt, !may_steal);
3414 }
3415 return;
3416 }
3417 break;
3418
3419 case OVS_ACTION_ATTR_TUNNEL_POP:
3420 if (*depth < MAX_RECIRC_DEPTH) {
3421 odp_port_t portno = u32_to_odp(nl_attr_get_u32(a));
3422
3423 p = dp_netdev_lookup_port(dp, portno);
3424 if (p) {
3425 struct dp_packet *tnl_pkt[NETDEV_MAX_RX_BATCH];
3426 int err;
3427
3428 if (!may_steal) {
3429 dp_netdev_clone_pkt_batch(tnl_pkt, packets, cnt);
3430 packets = tnl_pkt;
3431 }
3432
3433 err = netdev_pop_header(p->netdev, packets, cnt);
3434 if (!err) {
3435
3436 for (i = 0; i < cnt; i++) {
3437 packets[i]->md.in_port.odp_port = portno;
3438 }
3439
3440 (*depth)++;
3441 dp_netdev_input(pmd, packets, cnt);
3442 (*depth)--;
3443 } else {
3444 dp_netdev_drop_packets(tnl_pkt, cnt, !may_steal);
3445 }
3446 return;
3447 }
3448 }
3449 break;
3450
3451 case OVS_ACTION_ATTR_USERSPACE:
3452 if (!fat_rwlock_tryrdlock(&dp->upcall_rwlock)) {
3453 const struct nlattr *userdata;
3454 struct ofpbuf actions;
3455 struct flow flow;
3456 ovs_u128 ufid;
3457
3458 userdata = nl_attr_find_nested(a, OVS_USERSPACE_ATTR_USERDATA);
3459 ofpbuf_init(&actions, 0);
3460
3461 for (i = 0; i < cnt; i++) {
3462 int error;
3463
3464 ofpbuf_clear(&actions);
3465
3466 flow_extract(packets[i], &flow);
3467 dpif_flow_hash(dp->dpif, &flow, sizeof flow, &ufid);
3468 error = dp_netdev_upcall(pmd, packets[i], &flow, NULL, &ufid,
3469 DPIF_UC_ACTION, userdata,&actions,
3470 NULL);
3471 if (!error || error == ENOSPC) {
3472 dp_netdev_execute_actions(pmd, &packets[i], 1, may_steal,
3473 actions.data, actions.size);
3474 } else if (may_steal) {
3475 dp_packet_delete(packets[i]);
3476 }
3477 }
3478 ofpbuf_uninit(&actions);
3479 fat_rwlock_unlock(&dp->upcall_rwlock);
3480
3481 return;
3482 }
3483 break;
3484
3485 case OVS_ACTION_ATTR_RECIRC:
3486 if (*depth < MAX_RECIRC_DEPTH) {
3487
3488 (*depth)++;
3489 for (i = 0; i < cnt; i++) {
3490 struct dp_packet *recirc_pkt;
3491
3492 recirc_pkt = (may_steal) ? packets[i]
3493 : dp_packet_clone(packets[i]);
3494
3495 recirc_pkt->md.recirc_id = nl_attr_get_u32(a);
3496
3497 /* Hash is private to each packet */
3498 recirc_pkt->md.dp_hash = dp_packet_get_dp_hash(packets[i]);
3499
3500 dp_netdev_input(pmd, &recirc_pkt, 1);
3501 }
3502 (*depth)--;
3503
3504 return;
3505 }
3506
3507 VLOG_WARN("Packet dropped. Max recirculation depth exceeded.");
3508 break;
3509
3510 case OVS_ACTION_ATTR_PUSH_VLAN:
3511 case OVS_ACTION_ATTR_POP_VLAN:
3512 case OVS_ACTION_ATTR_PUSH_MPLS:
3513 case OVS_ACTION_ATTR_POP_MPLS:
3514 case OVS_ACTION_ATTR_SET:
3515 case OVS_ACTION_ATTR_SET_MASKED:
3516 case OVS_ACTION_ATTR_SAMPLE:
3517 case OVS_ACTION_ATTR_HASH:
3518 case OVS_ACTION_ATTR_UNSPEC:
3519 case __OVS_ACTION_ATTR_MAX:
3520 OVS_NOT_REACHED();
3521 }
3522
3523 dp_netdev_drop_packets(packets, cnt, may_steal);
3524 }
3525
3526 static void
3527 dp_netdev_execute_actions(struct dp_netdev_pmd_thread *pmd,
3528 struct dp_packet **packets, int cnt,
3529 bool may_steal,
3530 const struct nlattr *actions, size_t actions_len)
3531 {
3532 struct dp_netdev_execute_aux aux = { pmd };
3533
3534 odp_execute_actions(&aux, packets, cnt, may_steal, actions,
3535 actions_len, dp_execute_cb);
3536 }
3537
3538 const struct dpif_class dpif_netdev_class = {
3539 "netdev",
3540 dpif_netdev_init,
3541 dpif_netdev_enumerate,
3542 dpif_netdev_port_open_type,
3543 dpif_netdev_open,
3544 dpif_netdev_close,
3545 dpif_netdev_destroy,
3546 dpif_netdev_run,
3547 dpif_netdev_wait,
3548 dpif_netdev_get_stats,
3549 dpif_netdev_port_add,
3550 dpif_netdev_port_del,
3551 dpif_netdev_port_query_by_number,
3552 dpif_netdev_port_query_by_name,
3553 NULL, /* port_get_pid */
3554 dpif_netdev_port_dump_start,
3555 dpif_netdev_port_dump_next,
3556 dpif_netdev_port_dump_done,
3557 dpif_netdev_port_poll,
3558 dpif_netdev_port_poll_wait,
3559 dpif_netdev_flow_flush,
3560 dpif_netdev_flow_dump_create,
3561 dpif_netdev_flow_dump_destroy,
3562 dpif_netdev_flow_dump_thread_create,
3563 dpif_netdev_flow_dump_thread_destroy,
3564 dpif_netdev_flow_dump_next,
3565 dpif_netdev_operate,
3566 NULL, /* recv_set */
3567 NULL, /* handlers_set */
3568 dpif_netdev_pmd_set,
3569 dpif_netdev_queue_to_priority,
3570 NULL, /* recv */
3571 NULL, /* recv_wait */
3572 NULL, /* recv_purge */
3573 dpif_netdev_register_upcall_cb,
3574 dpif_netdev_enable_upcall,
3575 dpif_netdev_disable_upcall,
3576 dpif_netdev_get_datapath_version,
3577 };
3578
3579 static void
3580 dpif_dummy_change_port_number(struct unixctl_conn *conn, int argc OVS_UNUSED,
3581 const char *argv[], void *aux OVS_UNUSED)
3582 {
3583 struct dp_netdev_port *old_port;
3584 struct dp_netdev_port *new_port;
3585 struct dp_netdev *dp;
3586 odp_port_t port_no;
3587
3588 ovs_mutex_lock(&dp_netdev_mutex);
3589 dp = shash_find_data(&dp_netdevs, argv[1]);
3590 if (!dp || !dpif_netdev_class_is_dummy(dp->class)) {
3591 ovs_mutex_unlock(&dp_netdev_mutex);
3592 unixctl_command_reply_error(conn, "unknown datapath or not a dummy");
3593 return;
3594 }
3595 ovs_refcount_ref(&dp->ref_cnt);
3596 ovs_mutex_unlock(&dp_netdev_mutex);
3597
3598 ovs_mutex_lock(&dp->port_mutex);
3599 if (get_port_by_name(dp, argv[2], &old_port)) {
3600 unixctl_command_reply_error(conn, "unknown port");
3601 goto exit;
3602 }
3603
3604 port_no = u32_to_odp(atoi(argv[3]));
3605 if (!port_no || port_no == ODPP_NONE) {
3606 unixctl_command_reply_error(conn, "bad port number");
3607 goto exit;
3608 }
3609 if (dp_netdev_lookup_port(dp, port_no)) {
3610 unixctl_command_reply_error(conn, "port number already in use");
3611 goto exit;
3612 }
3613
3614 /* Remove old port. */
3615 cmap_remove(&dp->ports, &old_port->node, hash_port_no(old_port->port_no));
3616 ovsrcu_postpone(free, old_port);
3617
3618 /* Insert new port (cmap semantics mean we cannot re-insert 'old_port'). */
3619 new_port = xmemdup(old_port, sizeof *old_port);
3620 new_port->port_no = port_no;
3621 cmap_insert(&dp->ports, &new_port->node, hash_port_no(port_no));
3622
3623 seq_change(dp->port_seq);
3624 unixctl_command_reply(conn, NULL);
3625
3626 exit:
3627 ovs_mutex_unlock(&dp->port_mutex);
3628 dp_netdev_unref(dp);
3629 }
3630
3631 static void
3632 dpif_dummy_delete_port(struct unixctl_conn *conn, int argc OVS_UNUSED,
3633 const char *argv[], void *aux OVS_UNUSED)
3634 {
3635 struct dp_netdev_port *port;
3636 struct dp_netdev *dp;
3637
3638 ovs_mutex_lock(&dp_netdev_mutex);
3639 dp = shash_find_data(&dp_netdevs, argv[1]);
3640 if (!dp || !dpif_netdev_class_is_dummy(dp->class)) {
3641 ovs_mutex_unlock(&dp_netdev_mutex);
3642 unixctl_command_reply_error(conn, "unknown datapath or not a dummy");
3643 return;
3644 }
3645 ovs_refcount_ref(&dp->ref_cnt);
3646 ovs_mutex_unlock(&dp_netdev_mutex);
3647
3648 ovs_mutex_lock(&dp->port_mutex);
3649 if (get_port_by_name(dp, argv[2], &port)) {
3650 unixctl_command_reply_error(conn, "unknown port");
3651 } else if (port->port_no == ODPP_LOCAL) {
3652 unixctl_command_reply_error(conn, "can't delete local port");
3653 } else {
3654 do_del_port(dp, port);
3655 unixctl_command_reply(conn, NULL);
3656 }
3657 ovs_mutex_unlock(&dp->port_mutex);
3658
3659 dp_netdev_unref(dp);
3660 }
3661
3662 static void
3663 dpif_dummy_register__(const char *type)
3664 {
3665 struct dpif_class *class;
3666
3667 class = xmalloc(sizeof *class);
3668 *class = dpif_netdev_class;
3669 class->type = xstrdup(type);
3670 dp_register_provider(class);
3671 }
3672
3673 void
3674 dpif_dummy_register(bool override)
3675 {
3676 if (override) {
3677 struct sset types;
3678 const char *type;
3679
3680 sset_init(&types);
3681 dp_enumerate_types(&types);
3682 SSET_FOR_EACH (type, &types) {
3683 if (!dp_unregister_provider(type)) {
3684 dpif_dummy_register__(type);
3685 }
3686 }
3687 sset_destroy(&types);
3688 }
3689
3690 dpif_dummy_register__("dummy");
3691
3692 unixctl_command_register("dpif-dummy/change-port-number",
3693 "dp port new-number",
3694 3, 3, dpif_dummy_change_port_number, NULL);
3695 unixctl_command_register("dpif-dummy/delete-port", "dp port",
3696 2, 2, dpif_dummy_delete_port, NULL);
3697 }
3698 \f
3699 /* Datapath Classifier. */
3700
3701 /* A set of rules that all have the same fields wildcarded. */
3702 struct dpcls_subtable {
3703 /* The fields are only used by writers. */
3704 struct cmap_node cmap_node OVS_GUARDED; /* Within dpcls 'subtables_map'. */
3705
3706 /* These fields are accessed by readers. */
3707 struct cmap rules; /* Contains "struct dpcls_rule"s. */
3708 struct netdev_flow_key mask; /* Wildcards for fields (const). */
3709 /* 'mask' must be the last field, additional space is allocated here. */
3710 };
3711
3712 /* Initializes 'cls' as a classifier that initially contains no classification
3713 * rules. */
3714 static void
3715 dpcls_init(struct dpcls *cls)
3716 {
3717 cmap_init(&cls->subtables_map);
3718 pvector_init(&cls->subtables);
3719 }
3720
3721 static void
3722 dpcls_destroy_subtable(struct dpcls *cls, struct dpcls_subtable *subtable)
3723 {
3724 pvector_remove(&cls->subtables, subtable);
3725 cmap_remove(&cls->subtables_map, &subtable->cmap_node,
3726 subtable->mask.hash);
3727 cmap_destroy(&subtable->rules);
3728 ovsrcu_postpone(free, subtable);
3729 }
3730
3731 /* Destroys 'cls'. Rules within 'cls', if any, are not freed; this is the
3732 * caller's responsibility.
3733 * May only be called after all the readers have been terminated. */
3734 static void
3735 dpcls_destroy(struct dpcls *cls)
3736 {
3737 if (cls) {
3738 struct dpcls_subtable *subtable;
3739
3740 CMAP_FOR_EACH (subtable, cmap_node, &cls->subtables_map) {
3741 dpcls_destroy_subtable(cls, subtable);
3742 }
3743 cmap_destroy(&cls->subtables_map);
3744 pvector_destroy(&cls->subtables);
3745 }
3746 }
3747
3748 static struct dpcls_subtable *
3749 dpcls_create_subtable(struct dpcls *cls, const struct netdev_flow_key *mask)
3750 {
3751 struct dpcls_subtable *subtable;
3752
3753 /* Need to add one. */
3754 subtable = xmalloc(sizeof *subtable
3755 - sizeof subtable->mask.mf + mask->len);
3756 cmap_init(&subtable->rules);
3757 netdev_flow_key_clone(&subtable->mask, mask);
3758 cmap_insert(&cls->subtables_map, &subtable->cmap_node, mask->hash);
3759 pvector_insert(&cls->subtables, subtable, 0);
3760 pvector_publish(&cls->subtables);
3761
3762 return subtable;
3763 }
3764
3765 static inline struct dpcls_subtable *
3766 dpcls_find_subtable(struct dpcls *cls, const struct netdev_flow_key *mask)
3767 {
3768 struct dpcls_subtable *subtable;
3769
3770 CMAP_FOR_EACH_WITH_HASH (subtable, cmap_node, mask->hash,
3771 &cls->subtables_map) {
3772 if (netdev_flow_key_equal(&subtable->mask, mask)) {
3773 return subtable;
3774 }
3775 }
3776 return dpcls_create_subtable(cls, mask);
3777 }
3778
3779 /* Insert 'rule' into 'cls'. */
3780 static void
3781 dpcls_insert(struct dpcls *cls, struct dpcls_rule *rule,
3782 const struct netdev_flow_key *mask)
3783 {
3784 struct dpcls_subtable *subtable = dpcls_find_subtable(cls, mask);
3785
3786 rule->mask = &subtable->mask;
3787 cmap_insert(&subtable->rules, &rule->cmap_node, rule->flow.hash);
3788 }
3789
3790 /* Removes 'rule' from 'cls', also destructing the 'rule'. */
3791 static void
3792 dpcls_remove(struct dpcls *cls, struct dpcls_rule *rule)
3793 {
3794 struct dpcls_subtable *subtable;
3795
3796 ovs_assert(rule->mask);
3797
3798 INIT_CONTAINER(subtable, rule->mask, mask);
3799
3800 if (cmap_remove(&subtable->rules, &rule->cmap_node, rule->flow.hash)
3801 == 0) {
3802 dpcls_destroy_subtable(cls, subtable);
3803 pvector_publish(&cls->subtables);
3804 }
3805 }
3806
3807 /* Returns true if 'target' satisifies 'key' in 'mask', that is, if each 1-bit
3808 * in 'mask' the values in 'key' and 'target' are the same.
3809 *
3810 * Note: 'key' and 'mask' have the same mask, and 'key' is already masked. */
3811 static inline bool
3812 dpcls_rule_matches_key(const struct dpcls_rule *rule,
3813 const struct netdev_flow_key *target)
3814 {
3815 const uint64_t *keyp = rule->flow.mf.inline_values;
3816 const uint64_t *maskp = rule->mask->mf.inline_values;
3817 uint64_t target_u64;
3818
3819 NETDEV_FLOW_KEY_FOR_EACH_IN_MAP(target_u64, target, rule->flow.mf.map) {
3820 if (OVS_UNLIKELY((target_u64 & *maskp++) != *keyp++)) {
3821 return false;
3822 }
3823 }
3824 return true;
3825 }
3826
3827 /* For each miniflow in 'flows' performs a classifier lookup writing the result
3828 * into the corresponding slot in 'rules'. If a particular entry in 'flows' is
3829 * NULL it is skipped.
3830 *
3831 * This function is optimized for use in the userspace datapath and therefore
3832 * does not implement a lot of features available in the standard
3833 * classifier_lookup() function. Specifically, it does not implement
3834 * priorities, instead returning any rule which matches the flow.
3835 *
3836 * Returns true if all flows found a corresponding rule. */
3837 static bool
3838 dpcls_lookup(const struct dpcls *cls, const struct netdev_flow_key keys[],
3839 struct dpcls_rule **rules, const size_t cnt)
3840 {
3841 /* The batch size 16 was experimentally found faster than 8 or 32. */
3842 typedef uint16_t map_type;
3843 #define MAP_BITS (sizeof(map_type) * CHAR_BIT)
3844
3845 #if !defined(__CHECKER__) && !defined(_WIN32)
3846 const int N_MAPS = DIV_ROUND_UP(cnt, MAP_BITS);
3847 #else
3848 enum { N_MAPS = DIV_ROUND_UP(NETDEV_MAX_RX_BATCH, MAP_BITS) };
3849 #endif
3850 map_type maps[N_MAPS];
3851 struct dpcls_subtable *subtable;
3852
3853 memset(maps, 0xff, sizeof maps);
3854 if (cnt % MAP_BITS) {
3855 maps[N_MAPS - 1] >>= MAP_BITS - cnt % MAP_BITS; /* Clear extra bits. */
3856 }
3857 memset(rules, 0, cnt * sizeof *rules);
3858
3859 PVECTOR_FOR_EACH (subtable, &cls->subtables) {
3860 const struct netdev_flow_key *mkeys = keys;
3861 struct dpcls_rule **mrules = rules;
3862 map_type remains = 0;
3863 int m;
3864
3865 BUILD_ASSERT_DECL(sizeof remains == sizeof *maps);
3866
3867 for (m = 0; m < N_MAPS; m++, mkeys += MAP_BITS, mrules += MAP_BITS) {
3868 uint32_t hashes[MAP_BITS];
3869 const struct cmap_node *nodes[MAP_BITS];
3870 unsigned long map = maps[m];
3871 int i;
3872
3873 if (!map) {
3874 continue; /* Skip empty maps. */
3875 }
3876
3877 /* Compute hashes for the remaining keys. */
3878 ULONG_FOR_EACH_1(i, map) {
3879 hashes[i] = netdev_flow_key_hash_in_mask(&mkeys[i],
3880 &subtable->mask);
3881 }
3882 /* Lookup. */
3883 map = cmap_find_batch(&subtable->rules, map, hashes, nodes);
3884 /* Check results. */
3885 ULONG_FOR_EACH_1(i, map) {
3886 struct dpcls_rule *rule;
3887
3888 CMAP_NODE_FOR_EACH (rule, cmap_node, nodes[i]) {
3889 if (OVS_LIKELY(dpcls_rule_matches_key(rule, &mkeys[i]))) {
3890 mrules[i] = rule;
3891 goto next;
3892 }
3893 }
3894 ULONG_SET0(map, i); /* Did not match. */
3895 next:
3896 ; /* Keep Sparse happy. */
3897 }
3898 maps[m] &= ~map; /* Clear the found rules. */
3899 remains |= maps[m];
3900 }
3901 if (!remains) {
3902 return true; /* All found. */
3903 }
3904 }
3905 return false; /* Some misses. */
3906 }