]> git.proxmox.com Git - ovs.git/blob - lib/dpif-netdev.c
types: Rename and move ovs_u128_equal().
[ovs.git] / lib / dpif-netdev.c
1 /*
2 * Copyright (c) 2009, 2010, 2011, 2012, 2013, 2014 Nicira, Inc.
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at:
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <config.h>
18 #include "dpif-netdev.h"
19
20 #include <ctype.h>
21 #include <errno.h>
22 #include <fcntl.h>
23 #include <inttypes.h>
24 #include <netinet/in.h>
25 #include <sys/socket.h>
26 #include <net/if.h>
27 #include <stdint.h>
28 #include <stdlib.h>
29 #include <string.h>
30 #include <sys/ioctl.h>
31 #include <sys/stat.h>
32 #include <unistd.h>
33
34 #include "cmap.h"
35 #include "csum.h"
36 #include "dp-packet.h"
37 #include "dpif.h"
38 #include "dpif-provider.h"
39 #include "dummy.h"
40 #include "dynamic-string.h"
41 #include "fat-rwlock.h"
42 #include "flow.h"
43 #include "cmap.h"
44 #include "latch.h"
45 #include "list.h"
46 #include "match.h"
47 #include "meta-flow.h"
48 #include "netdev.h"
49 #include "netdev-dpdk.h"
50 #include "netdev-vport.h"
51 #include "netlink.h"
52 #include "odp-execute.h"
53 #include "odp-util.h"
54 #include "ofp-print.h"
55 #include "ofpbuf.h"
56 #include "ovs-numa.h"
57 #include "ovs-rcu.h"
58 #include "packets.h"
59 #include "poll-loop.h"
60 #include "pvector.h"
61 #include "random.h"
62 #include "seq.h"
63 #include "shash.h"
64 #include "sset.h"
65 #include "timeval.h"
66 #include "tnl-arp-cache.h"
67 #include "unixctl.h"
68 #include "util.h"
69 #include "openvswitch/vlog.h"
70
71 VLOG_DEFINE_THIS_MODULE(dpif_netdev);
72
73 #define FLOW_DUMP_MAX_BATCH 50
74 /* Use per thread recirc_depth to prevent recirculation loop. */
75 #define MAX_RECIRC_DEPTH 5
76 DEFINE_STATIC_PER_THREAD_DATA(uint32_t, recirc_depth, 0)
77
78 /* Configuration parameters. */
79 enum { MAX_FLOWS = 65536 }; /* Maximum number of flows in flow table. */
80
81 /* Protects against changes to 'dp_netdevs'. */
82 static struct ovs_mutex dp_netdev_mutex = OVS_MUTEX_INITIALIZER;
83
84 /* Contains all 'struct dp_netdev's. */
85 static struct shash dp_netdevs OVS_GUARDED_BY(dp_netdev_mutex)
86 = SHASH_INITIALIZER(&dp_netdevs);
87
88 static struct vlog_rate_limit upcall_rl = VLOG_RATE_LIMIT_INIT(600, 600);
89
90 /* Stores a miniflow with inline values */
91
92 struct netdev_flow_key {
93 uint32_t hash; /* Hash function differs for different users. */
94 uint32_t len; /* Length of the following miniflow (incl. map). */
95 struct miniflow mf;
96 uint64_t buf[FLOW_MAX_PACKET_U64S - MINI_N_INLINE];
97 };
98
99 /* Exact match cache for frequently used flows
100 *
101 * The cache uses a 32-bit hash of the packet (which can be the RSS hash) to
102 * search its entries for a miniflow that matches exactly the miniflow of the
103 * packet. It stores the 'dpcls_rule' (rule) that matches the miniflow.
104 *
105 * A cache entry holds a reference to its 'dp_netdev_flow'.
106 *
107 * A miniflow with a given hash can be in one of EM_FLOW_HASH_SEGS different
108 * entries. The 32-bit hash is split into EM_FLOW_HASH_SEGS values (each of
109 * them is EM_FLOW_HASH_SHIFT bits wide and the remainder is thrown away). Each
110 * value is the index of a cache entry where the miniflow could be.
111 *
112 *
113 * Thread-safety
114 * =============
115 *
116 * Each pmd_thread has its own private exact match cache.
117 * If dp_netdev_input is not called from a pmd thread, a mutex is used.
118 */
119
120 #define EM_FLOW_HASH_SHIFT 13
121 #define EM_FLOW_HASH_ENTRIES (1u << EM_FLOW_HASH_SHIFT)
122 #define EM_FLOW_HASH_MASK (EM_FLOW_HASH_ENTRIES - 1)
123 #define EM_FLOW_HASH_SEGS 2
124
125 struct emc_entry {
126 struct dp_netdev_flow *flow;
127 struct netdev_flow_key key; /* key.hash used for emc hash value. */
128 };
129
130 struct emc_cache {
131 struct emc_entry entries[EM_FLOW_HASH_ENTRIES];
132 int sweep_idx; /* For emc_cache_slow_sweep(). */
133 };
134
135 /* Iterate in the exact match cache through every entry that might contain a
136 * miniflow with hash 'HASH'. */
137 #define EMC_FOR_EACH_POS_WITH_HASH(EMC, CURRENT_ENTRY, HASH) \
138 for (uint32_t i__ = 0, srch_hash__ = (HASH); \
139 (CURRENT_ENTRY) = &(EMC)->entries[srch_hash__ & EM_FLOW_HASH_MASK], \
140 i__ < EM_FLOW_HASH_SEGS; \
141 i__++, srch_hash__ >>= EM_FLOW_HASH_SHIFT)
142 \f
143 /* Simple non-wildcarding single-priority classifier. */
144
145 struct dpcls {
146 struct cmap subtables_map;
147 struct pvector subtables;
148 };
149
150 /* A rule to be inserted to the classifier. */
151 struct dpcls_rule {
152 struct cmap_node cmap_node; /* Within struct dpcls_subtable 'rules'. */
153 struct netdev_flow_key *mask; /* Subtable's mask. */
154 struct netdev_flow_key flow; /* Matching key. */
155 /* 'flow' must be the last field, additional space is allocated here. */
156 };
157
158 static void dpcls_init(struct dpcls *);
159 static void dpcls_destroy(struct dpcls *);
160 static void dpcls_insert(struct dpcls *, struct dpcls_rule *,
161 const struct netdev_flow_key *mask);
162 static void dpcls_remove(struct dpcls *, struct dpcls_rule *);
163 static bool dpcls_lookup(const struct dpcls *cls,
164 const struct netdev_flow_key keys[],
165 struct dpcls_rule **rules, size_t cnt);
166 \f
167 /* Datapath based on the network device interface from netdev.h.
168 *
169 *
170 * Thread-safety
171 * =============
172 *
173 * Some members, marked 'const', are immutable. Accessing other members
174 * requires synchronization, as noted in more detail below.
175 *
176 * Acquisition order is, from outermost to innermost:
177 *
178 * dp_netdev_mutex (global)
179 * port_mutex
180 */
181 struct dp_netdev {
182 const struct dpif_class *const class;
183 const char *const name;
184 struct dpif *dpif;
185 struct ovs_refcount ref_cnt;
186 atomic_flag destroyed;
187
188 /* Ports.
189 *
190 * Protected by RCU. Take the mutex to add or remove ports. */
191 struct ovs_mutex port_mutex;
192 struct cmap ports;
193 struct seq *port_seq; /* Incremented whenever a port changes. */
194
195 /* Protects access to ofproto-dpif-upcall interface during revalidator
196 * thread synchronization. */
197 struct fat_rwlock upcall_rwlock;
198 upcall_callback *upcall_cb; /* Callback function for executing upcalls. */
199 void *upcall_aux;
200
201 /* Stores all 'struct dp_netdev_pmd_thread's. */
202 struct cmap poll_threads;
203
204 /* Protects the access of the 'struct dp_netdev_pmd_thread'
205 * instance for non-pmd thread. */
206 struct ovs_mutex non_pmd_mutex;
207
208 /* Each pmd thread will store its pointer to
209 * 'struct dp_netdev_pmd_thread' in 'per_pmd_key'. */
210 ovsthread_key_t per_pmd_key;
211
212 /* Number of rx queues for each dpdk interface and the cpu mask
213 * for pin of pmd threads. */
214 size_t n_dpdk_rxqs;
215 char *pmd_cmask;
216 uint64_t last_tnl_conf_seq;
217 };
218
219 static struct dp_netdev_port *dp_netdev_lookup_port(const struct dp_netdev *dp,
220 odp_port_t);
221
222 enum dp_stat_type {
223 DP_STAT_EXACT_HIT, /* Packets that had an exact match (emc). */
224 DP_STAT_MASKED_HIT, /* Packets that matched in the flow table. */
225 DP_STAT_MISS, /* Packets that did not match. */
226 DP_STAT_LOST, /* Packets not passed up to the client. */
227 DP_N_STATS
228 };
229
230 enum pmd_cycles_counter_type {
231 PMD_CYCLES_POLLING, /* Cycles spent polling NICs. */
232 PMD_CYCLES_PROCESSING, /* Cycles spent processing packets */
233 PMD_N_CYCLES
234 };
235
236 /* A port in a netdev-based datapath. */
237 struct dp_netdev_port {
238 struct pkt_metadata md;
239 struct netdev *netdev;
240 struct cmap_node node; /* Node in dp_netdev's 'ports'. */
241 struct netdev_saved_flags *sf;
242 struct netdev_rxq **rxq;
243 struct ovs_refcount ref_cnt;
244 char *type; /* Port type as requested by user. */
245 };
246
247 /* Contained by struct dp_netdev_flow's 'stats' member. */
248 struct dp_netdev_flow_stats {
249 atomic_llong used; /* Last used time, in monotonic msecs. */
250 atomic_ullong packet_count; /* Number of packets matched. */
251 atomic_ullong byte_count; /* Number of bytes matched. */
252 atomic_uint16_t tcp_flags; /* Bitwise-OR of seen tcp_flags values. */
253 };
254
255 /* A flow in 'dp_netdev_pmd_thread's 'flow_table'.
256 *
257 *
258 * Thread-safety
259 * =============
260 *
261 * Except near the beginning or ending of its lifespan, rule 'rule' belongs to
262 * its pmd thread's classifier. The text below calls this classifier 'cls'.
263 *
264 * Motivation
265 * ----------
266 *
267 * The thread safety rules described here for "struct dp_netdev_flow" are
268 * motivated by two goals:
269 *
270 * - Prevent threads that read members of "struct dp_netdev_flow" from
271 * reading bad data due to changes by some thread concurrently modifying
272 * those members.
273 *
274 * - Prevent two threads making changes to members of a given "struct
275 * dp_netdev_flow" from interfering with each other.
276 *
277 *
278 * Rules
279 * -----
280 *
281 * A flow 'flow' may be accessed without a risk of being freed during an RCU
282 * grace period. Code that needs to hold onto a flow for a while
283 * should try incrementing 'flow->ref_cnt' with dp_netdev_flow_ref().
284 *
285 * 'flow->ref_cnt' protects 'flow' from being freed. It doesn't protect the
286 * flow from being deleted from 'cls' and it doesn't protect members of 'flow'
287 * from modification.
288 *
289 * Some members, marked 'const', are immutable. Accessing other members
290 * requires synchronization, as noted in more detail below.
291 */
292 struct dp_netdev_flow {
293 const struct flow flow; /* Unmasked flow that created this entry. */
294 /* Hash table index by unmasked flow. */
295 const struct cmap_node node; /* In owning dp_netdev_pmd_thread's */
296 /* 'flow_table'. */
297 const ovs_u128 ufid; /* Unique flow identifier. */
298 const unsigned pmd_id; /* The 'core_id' of pmd thread owning this */
299 /* flow. */
300
301 /* Number of references.
302 * The classifier owns one reference.
303 * Any thread trying to keep a rule from being freed should hold its own
304 * reference. */
305 struct ovs_refcount ref_cnt;
306
307 bool dead;
308
309 /* Statistics. */
310 struct dp_netdev_flow_stats stats;
311
312 /* Actions. */
313 OVSRCU_TYPE(struct dp_netdev_actions *) actions;
314
315 /* While processing a group of input packets, the datapath uses the next
316 * member to store a pointer to the output batch for the flow. It is
317 * reset after the batch has been sent out (See dp_netdev_queue_batches(),
318 * packet_batch_init() and packet_batch_execute()). */
319 struct packet_batch *batch;
320
321 /* Packet classification. */
322 struct dpcls_rule cr; /* In owning dp_netdev's 'cls'. */
323 /* 'cr' must be the last member. */
324 };
325
326 static void dp_netdev_flow_unref(struct dp_netdev_flow *);
327 static bool dp_netdev_flow_ref(struct dp_netdev_flow *);
328 static int dpif_netdev_flow_from_nlattrs(const struct nlattr *, uint32_t,
329 struct flow *);
330
331 /* A set of datapath actions within a "struct dp_netdev_flow".
332 *
333 *
334 * Thread-safety
335 * =============
336 *
337 * A struct dp_netdev_actions 'actions' is protected with RCU. */
338 struct dp_netdev_actions {
339 /* These members are immutable: they do not change during the struct's
340 * lifetime. */
341 unsigned int size; /* Size of 'actions', in bytes. */
342 struct nlattr actions[]; /* Sequence of OVS_ACTION_ATTR_* attributes. */
343 };
344
345 struct dp_netdev_actions *dp_netdev_actions_create(const struct nlattr *,
346 size_t);
347 struct dp_netdev_actions *dp_netdev_flow_get_actions(
348 const struct dp_netdev_flow *);
349 static void dp_netdev_actions_free(struct dp_netdev_actions *);
350
351 /* Contained by struct dp_netdev_pmd_thread's 'stats' member. */
352 struct dp_netdev_pmd_stats {
353 /* Indexed by DP_STAT_*. */
354 atomic_ullong n[DP_N_STATS];
355 };
356
357 /* Contained by struct dp_netdev_pmd_thread's 'cycle' member. */
358 struct dp_netdev_pmd_cycles {
359 /* Indexed by PMD_CYCLES_*. */
360 atomic_ullong n[PMD_N_CYCLES];
361 };
362
363 /* PMD: Poll modes drivers. PMD accesses devices via polling to eliminate
364 * the performance overhead of interrupt processing. Therefore netdev can
365 * not implement rx-wait for these devices. dpif-netdev needs to poll
366 * these device to check for recv buffer. pmd-thread does polling for
367 * devices assigned to itself.
368 *
369 * DPDK used PMD for accessing NIC.
370 *
371 * Note, instance with cpu core id NON_PMD_CORE_ID will be reserved for
372 * I/O of all non-pmd threads. There will be no actual thread created
373 * for the instance.
374 *
375 * Each struct has its own flow table and classifier. Packets received
376 * from managed ports are looked up in the corresponding pmd thread's
377 * flow table, and are executed with the found actions.
378 * */
379 struct dp_netdev_pmd_thread {
380 struct dp_netdev *dp;
381 struct ovs_refcount ref_cnt; /* Every reference must be refcount'ed. */
382 struct cmap_node node; /* In 'dp->poll_threads'. */
383
384 pthread_cond_t cond; /* For synchronizing pmd thread reload. */
385 struct ovs_mutex cond_mutex; /* Mutex for condition variable. */
386
387 /* Per thread exact-match cache. Note, the instance for cpu core
388 * NON_PMD_CORE_ID can be accessed by multiple threads, and thusly
389 * need to be protected (e.g. by 'dp_netdev_mutex'). All other
390 * instances will only be accessed by its own pmd thread. */
391 struct emc_cache flow_cache;
392
393 /* Classifier and Flow-Table.
394 *
395 * Writers of 'flow_table' must take the 'flow_mutex'. Corresponding
396 * changes to 'cls' must be made while still holding the 'flow_mutex'.
397 */
398 struct ovs_mutex flow_mutex;
399 struct dpcls cls;
400 struct cmap flow_table OVS_GUARDED; /* Flow table. */
401
402 /* Statistics. */
403 struct dp_netdev_pmd_stats stats;
404
405 /* Cycles counters */
406 struct dp_netdev_pmd_cycles cycles;
407
408 /* Used to count cicles. See 'cycles_counter_end()' */
409 unsigned long long last_cycles;
410
411 struct latch exit_latch; /* For terminating the pmd thread. */
412 atomic_uint change_seq; /* For reloading pmd ports. */
413 pthread_t thread;
414 int index; /* Idx of this pmd thread among pmd*/
415 /* threads on same numa node. */
416 unsigned core_id; /* CPU core id of this pmd thread. */
417 int numa_id; /* numa node id of this pmd thread. */
418 int tx_qid; /* Queue id used by this pmd thread to
419 * send packets on all netdevs */
420
421 /* Only a pmd thread can write on its own 'cycles' and 'stats'.
422 * The main thread keeps 'stats_zero' and 'cycles_zero' as base
423 * values and subtracts them from 'stats' and 'cycles' before
424 * reporting to the user */
425 unsigned long long stats_zero[DP_N_STATS];
426 uint64_t cycles_zero[PMD_N_CYCLES];
427 };
428
429 #define PMD_INITIAL_SEQ 1
430
431 /* Interface to netdev-based datapath. */
432 struct dpif_netdev {
433 struct dpif dpif;
434 struct dp_netdev *dp;
435 uint64_t last_port_seq;
436 };
437
438 static int get_port_by_number(struct dp_netdev *dp, odp_port_t port_no,
439 struct dp_netdev_port **portp);
440 static int get_port_by_name(struct dp_netdev *dp, const char *devname,
441 struct dp_netdev_port **portp);
442 static void dp_netdev_free(struct dp_netdev *)
443 OVS_REQUIRES(dp_netdev_mutex);
444 static int do_add_port(struct dp_netdev *dp, const char *devname,
445 const char *type, odp_port_t port_no)
446 OVS_REQUIRES(dp->port_mutex);
447 static void do_del_port(struct dp_netdev *dp, struct dp_netdev_port *)
448 OVS_REQUIRES(dp->port_mutex);
449 static int dpif_netdev_open(const struct dpif_class *, const char *name,
450 bool create, struct dpif **);
451 static void dp_netdev_execute_actions(struct dp_netdev_pmd_thread *pmd,
452 struct dp_packet **, int c,
453 bool may_steal,
454 const struct nlattr *actions,
455 size_t actions_len);
456 static void dp_netdev_input(struct dp_netdev_pmd_thread *,
457 struct dp_packet **, int cnt);
458
459 static void dp_netdev_disable_upcall(struct dp_netdev *);
460 void dp_netdev_pmd_reload_done(struct dp_netdev_pmd_thread *pmd);
461 static void dp_netdev_configure_pmd(struct dp_netdev_pmd_thread *pmd,
462 struct dp_netdev *dp, int index,
463 unsigned core_id, int numa_id);
464 static void dp_netdev_destroy_pmd(struct dp_netdev_pmd_thread *pmd);
465 static void dp_netdev_set_nonpmd(struct dp_netdev *dp);
466 static struct dp_netdev_pmd_thread *dp_netdev_get_pmd(struct dp_netdev *dp,
467 unsigned core_id);
468 static struct dp_netdev_pmd_thread *
469 dp_netdev_pmd_get_next(struct dp_netdev *dp, struct cmap_position *pos);
470 static void dp_netdev_destroy_all_pmds(struct dp_netdev *dp);
471 static void dp_netdev_del_pmds_on_numa(struct dp_netdev *dp, int numa_id);
472 static void dp_netdev_set_pmds_on_numa(struct dp_netdev *dp, int numa_id);
473 static void dp_netdev_reset_pmd_threads(struct dp_netdev *dp);
474 static bool dp_netdev_pmd_try_ref(struct dp_netdev_pmd_thread *pmd);
475 static void dp_netdev_pmd_unref(struct dp_netdev_pmd_thread *pmd);
476 static void dp_netdev_pmd_flow_flush(struct dp_netdev_pmd_thread *pmd);
477
478 static inline bool emc_entry_alive(struct emc_entry *ce);
479 static void emc_clear_entry(struct emc_entry *ce);
480
481 static void
482 emc_cache_init(struct emc_cache *flow_cache)
483 {
484 int i;
485
486 BUILD_ASSERT(offsetof(struct miniflow, inline_values) == sizeof(uint64_t));
487
488 flow_cache->sweep_idx = 0;
489 for (i = 0; i < ARRAY_SIZE(flow_cache->entries); i++) {
490 flow_cache->entries[i].flow = NULL;
491 flow_cache->entries[i].key.hash = 0;
492 flow_cache->entries[i].key.len
493 = offsetof(struct miniflow, inline_values);
494 miniflow_initialize(&flow_cache->entries[i].key.mf,
495 flow_cache->entries[i].key.buf);
496 }
497 }
498
499 static void
500 emc_cache_uninit(struct emc_cache *flow_cache)
501 {
502 int i;
503
504 for (i = 0; i < ARRAY_SIZE(flow_cache->entries); i++) {
505 emc_clear_entry(&flow_cache->entries[i]);
506 }
507 }
508
509 /* Check and clear dead flow references slowly (one entry at each
510 * invocation). */
511 static void
512 emc_cache_slow_sweep(struct emc_cache *flow_cache)
513 {
514 struct emc_entry *entry = &flow_cache->entries[flow_cache->sweep_idx];
515
516 if (!emc_entry_alive(entry)) {
517 emc_clear_entry(entry);
518 }
519 flow_cache->sweep_idx = (flow_cache->sweep_idx + 1) & EM_FLOW_HASH_MASK;
520 }
521
522 static struct dpif_netdev *
523 dpif_netdev_cast(const struct dpif *dpif)
524 {
525 ovs_assert(dpif->dpif_class->open == dpif_netdev_open);
526 return CONTAINER_OF(dpif, struct dpif_netdev, dpif);
527 }
528
529 static struct dp_netdev *
530 get_dp_netdev(const struct dpif *dpif)
531 {
532 return dpif_netdev_cast(dpif)->dp;
533 }
534 \f
535 enum pmd_info_type {
536 PMD_INFO_SHOW_STATS, /* show how cpu cycles are spent */
537 PMD_INFO_CLEAR_STATS /* set the cycles count to 0 */
538 };
539
540 static void
541 pmd_info_show_stats(struct ds *reply,
542 struct dp_netdev_pmd_thread *pmd,
543 unsigned long long stats[DP_N_STATS],
544 uint64_t cycles[PMD_N_CYCLES])
545 {
546 unsigned long long total_packets = 0;
547 uint64_t total_cycles = 0;
548 int i;
549
550 /* These loops subtracts reference values ('*_zero') from the counters.
551 * Since loads and stores are relaxed, it might be possible for a '*_zero'
552 * value to be more recent than the current value we're reading from the
553 * counter. This is not a big problem, since these numbers are not
554 * supposed to be too accurate, but we should at least make sure that
555 * the result is not negative. */
556 for (i = 0; i < DP_N_STATS; i++) {
557 if (stats[i] > pmd->stats_zero[i]) {
558 stats[i] -= pmd->stats_zero[i];
559 } else {
560 stats[i] = 0;
561 }
562
563 if (i != DP_STAT_LOST) {
564 /* Lost packets are already included in DP_STAT_MISS */
565 total_packets += stats[i];
566 }
567 }
568
569 for (i = 0; i < PMD_N_CYCLES; i++) {
570 if (cycles[i] > pmd->cycles_zero[i]) {
571 cycles[i] -= pmd->cycles_zero[i];
572 } else {
573 cycles[i] = 0;
574 }
575
576 total_cycles += cycles[i];
577 }
578
579 ds_put_cstr(reply, (pmd->core_id == NON_PMD_CORE_ID)
580 ? "main thread" : "pmd thread");
581
582 if (pmd->numa_id != OVS_NUMA_UNSPEC) {
583 ds_put_format(reply, " numa_id %d", pmd->numa_id);
584 }
585 if (pmd->core_id != OVS_CORE_UNSPEC && pmd->core_id != NON_PMD_CORE_ID) {
586 ds_put_format(reply, " core_id %u", pmd->core_id);
587 }
588 ds_put_cstr(reply, ":\n");
589
590 ds_put_format(reply,
591 "\temc hits:%llu\n\tmegaflow hits:%llu\n"
592 "\tmiss:%llu\n\tlost:%llu\n",
593 stats[DP_STAT_EXACT_HIT], stats[DP_STAT_MASKED_HIT],
594 stats[DP_STAT_MISS], stats[DP_STAT_LOST]);
595
596 if (total_cycles == 0) {
597 return;
598 }
599
600 ds_put_format(reply,
601 "\tpolling cycles:%"PRIu64" (%.02f%%)\n"
602 "\tprocessing cycles:%"PRIu64" (%.02f%%)\n",
603 cycles[PMD_CYCLES_POLLING],
604 cycles[PMD_CYCLES_POLLING] / (double)total_cycles * 100,
605 cycles[PMD_CYCLES_PROCESSING],
606 cycles[PMD_CYCLES_PROCESSING] / (double)total_cycles * 100);
607
608 if (total_packets == 0) {
609 return;
610 }
611
612 ds_put_format(reply,
613 "\tavg cycles per packet: %.02f (%"PRIu64"/%llu)\n",
614 total_cycles / (double)total_packets,
615 total_cycles, total_packets);
616
617 ds_put_format(reply,
618 "\tavg processing cycles per packet: "
619 "%.02f (%"PRIu64"/%llu)\n",
620 cycles[PMD_CYCLES_PROCESSING] / (double)total_packets,
621 cycles[PMD_CYCLES_PROCESSING], total_packets);
622 }
623
624 static void
625 pmd_info_clear_stats(struct ds *reply OVS_UNUSED,
626 struct dp_netdev_pmd_thread *pmd,
627 unsigned long long stats[DP_N_STATS],
628 uint64_t cycles[PMD_N_CYCLES])
629 {
630 int i;
631
632 /* We cannot write 'stats' and 'cycles' (because they're written by other
633 * threads) and we shouldn't change 'stats' (because they're used to count
634 * datapath stats, which must not be cleared here). Instead, we save the
635 * current values and subtract them from the values to be displayed in the
636 * future */
637 for (i = 0; i < DP_N_STATS; i++) {
638 pmd->stats_zero[i] = stats[i];
639 }
640 for (i = 0; i < PMD_N_CYCLES; i++) {
641 pmd->cycles_zero[i] = cycles[i];
642 }
643 }
644
645 static void
646 dpif_netdev_pmd_info(struct unixctl_conn *conn, int argc, const char *argv[],
647 void *aux)
648 {
649 struct ds reply = DS_EMPTY_INITIALIZER;
650 struct dp_netdev_pmd_thread *pmd;
651 struct dp_netdev *dp = NULL;
652 enum pmd_info_type type = *(enum pmd_info_type *) aux;
653
654 ovs_mutex_lock(&dp_netdev_mutex);
655
656 if (argc == 2) {
657 dp = shash_find_data(&dp_netdevs, argv[1]);
658 } else if (shash_count(&dp_netdevs) == 1) {
659 /* There's only one datapath */
660 dp = shash_first(&dp_netdevs)->data;
661 }
662
663 if (!dp) {
664 ovs_mutex_unlock(&dp_netdev_mutex);
665 unixctl_command_reply_error(conn,
666 "please specify an existing datapath");
667 return;
668 }
669
670 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
671 unsigned long long stats[DP_N_STATS];
672 uint64_t cycles[PMD_N_CYCLES];
673 int i;
674
675 /* Read current stats and cycle counters */
676 for (i = 0; i < ARRAY_SIZE(stats); i++) {
677 atomic_read_relaxed(&pmd->stats.n[i], &stats[i]);
678 }
679 for (i = 0; i < ARRAY_SIZE(cycles); i++) {
680 atomic_read_relaxed(&pmd->cycles.n[i], &cycles[i]);
681 }
682
683 if (type == PMD_INFO_CLEAR_STATS) {
684 pmd_info_clear_stats(&reply, pmd, stats, cycles);
685 } else if (type == PMD_INFO_SHOW_STATS) {
686 pmd_info_show_stats(&reply, pmd, stats, cycles);
687 }
688 }
689
690 ovs_mutex_unlock(&dp_netdev_mutex);
691
692 unixctl_command_reply(conn, ds_cstr(&reply));
693 ds_destroy(&reply);
694 }
695 \f
696 static int
697 dpif_netdev_init(void)
698 {
699 static enum pmd_info_type show_aux = PMD_INFO_SHOW_STATS,
700 clear_aux = PMD_INFO_CLEAR_STATS;
701
702 unixctl_command_register("dpif-netdev/pmd-stats-show", "[dp]",
703 0, 1, dpif_netdev_pmd_info,
704 (void *)&show_aux);
705 unixctl_command_register("dpif-netdev/pmd-stats-clear", "[dp]",
706 0, 1, dpif_netdev_pmd_info,
707 (void *)&clear_aux);
708 return 0;
709 }
710
711 static int
712 dpif_netdev_enumerate(struct sset *all_dps,
713 const struct dpif_class *dpif_class)
714 {
715 struct shash_node *node;
716
717 ovs_mutex_lock(&dp_netdev_mutex);
718 SHASH_FOR_EACH(node, &dp_netdevs) {
719 struct dp_netdev *dp = node->data;
720 if (dpif_class != dp->class) {
721 /* 'dp_netdevs' contains both "netdev" and "dummy" dpifs.
722 * If the class doesn't match, skip this dpif. */
723 continue;
724 }
725 sset_add(all_dps, node->name);
726 }
727 ovs_mutex_unlock(&dp_netdev_mutex);
728
729 return 0;
730 }
731
732 static bool
733 dpif_netdev_class_is_dummy(const struct dpif_class *class)
734 {
735 return class != &dpif_netdev_class;
736 }
737
738 static const char *
739 dpif_netdev_port_open_type(const struct dpif_class *class, const char *type)
740 {
741 return strcmp(type, "internal") ? type
742 : dpif_netdev_class_is_dummy(class) ? "dummy"
743 : "tap";
744 }
745
746 static struct dpif *
747 create_dpif_netdev(struct dp_netdev *dp)
748 {
749 uint16_t netflow_id = hash_string(dp->name, 0);
750 struct dpif_netdev *dpif;
751
752 ovs_refcount_ref(&dp->ref_cnt);
753
754 dpif = xmalloc(sizeof *dpif);
755 dpif_init(&dpif->dpif, dp->class, dp->name, netflow_id >> 8, netflow_id);
756 dpif->dp = dp;
757 dpif->last_port_seq = seq_read(dp->port_seq);
758
759 return &dpif->dpif;
760 }
761
762 /* Choose an unused, non-zero port number and return it on success.
763 * Return ODPP_NONE on failure. */
764 static odp_port_t
765 choose_port(struct dp_netdev *dp, const char *name)
766 OVS_REQUIRES(dp->port_mutex)
767 {
768 uint32_t port_no;
769
770 if (dp->class != &dpif_netdev_class) {
771 const char *p;
772 int start_no = 0;
773
774 /* If the port name begins with "br", start the number search at
775 * 100 to make writing tests easier. */
776 if (!strncmp(name, "br", 2)) {
777 start_no = 100;
778 }
779
780 /* If the port name contains a number, try to assign that port number.
781 * This can make writing unit tests easier because port numbers are
782 * predictable. */
783 for (p = name; *p != '\0'; p++) {
784 if (isdigit((unsigned char) *p)) {
785 port_no = start_no + strtol(p, NULL, 10);
786 if (port_no > 0 && port_no != odp_to_u32(ODPP_NONE)
787 && !dp_netdev_lookup_port(dp, u32_to_odp(port_no))) {
788 return u32_to_odp(port_no);
789 }
790 break;
791 }
792 }
793 }
794
795 for (port_no = 1; port_no <= UINT16_MAX; port_no++) {
796 if (!dp_netdev_lookup_port(dp, u32_to_odp(port_no))) {
797 return u32_to_odp(port_no);
798 }
799 }
800
801 return ODPP_NONE;
802 }
803
804 static int
805 create_dp_netdev(const char *name, const struct dpif_class *class,
806 struct dp_netdev **dpp)
807 OVS_REQUIRES(dp_netdev_mutex)
808 {
809 struct dp_netdev *dp;
810 int error;
811
812 dp = xzalloc(sizeof *dp);
813 shash_add(&dp_netdevs, name, dp);
814
815 *CONST_CAST(const struct dpif_class **, &dp->class) = class;
816 *CONST_CAST(const char **, &dp->name) = xstrdup(name);
817 ovs_refcount_init(&dp->ref_cnt);
818 atomic_flag_clear(&dp->destroyed);
819
820 ovs_mutex_init(&dp->port_mutex);
821 cmap_init(&dp->ports);
822 dp->port_seq = seq_create();
823 fat_rwlock_init(&dp->upcall_rwlock);
824
825 /* Disable upcalls by default. */
826 dp_netdev_disable_upcall(dp);
827 dp->upcall_aux = NULL;
828 dp->upcall_cb = NULL;
829
830 cmap_init(&dp->poll_threads);
831 ovs_mutex_init_recursive(&dp->non_pmd_mutex);
832 ovsthread_key_create(&dp->per_pmd_key, NULL);
833
834 dp_netdev_set_nonpmd(dp);
835 dp->n_dpdk_rxqs = NR_QUEUE;
836
837 ovs_mutex_lock(&dp->port_mutex);
838 error = do_add_port(dp, name, "internal", ODPP_LOCAL);
839 ovs_mutex_unlock(&dp->port_mutex);
840 if (error) {
841 dp_netdev_free(dp);
842 return error;
843 }
844
845 dp->last_tnl_conf_seq = seq_read(tnl_conf_seq);
846 *dpp = dp;
847 return 0;
848 }
849
850 static int
851 dpif_netdev_open(const struct dpif_class *class, const char *name,
852 bool create, struct dpif **dpifp)
853 {
854 struct dp_netdev *dp;
855 int error;
856
857 ovs_mutex_lock(&dp_netdev_mutex);
858 dp = shash_find_data(&dp_netdevs, name);
859 if (!dp) {
860 error = create ? create_dp_netdev(name, class, &dp) : ENODEV;
861 } else {
862 error = (dp->class != class ? EINVAL
863 : create ? EEXIST
864 : 0);
865 }
866 if (!error) {
867 *dpifp = create_dpif_netdev(dp);
868 dp->dpif = *dpifp;
869 }
870 ovs_mutex_unlock(&dp_netdev_mutex);
871
872 return error;
873 }
874
875 static void
876 dp_netdev_destroy_upcall_lock(struct dp_netdev *dp)
877 OVS_NO_THREAD_SAFETY_ANALYSIS
878 {
879 /* Check that upcalls are disabled, i.e. that the rwlock is taken */
880 ovs_assert(fat_rwlock_tryrdlock(&dp->upcall_rwlock));
881
882 /* Before freeing a lock we should release it */
883 fat_rwlock_unlock(&dp->upcall_rwlock);
884 fat_rwlock_destroy(&dp->upcall_rwlock);
885 }
886
887 /* Requires dp_netdev_mutex so that we can't get a new reference to 'dp'
888 * through the 'dp_netdevs' shash while freeing 'dp'. */
889 static void
890 dp_netdev_free(struct dp_netdev *dp)
891 OVS_REQUIRES(dp_netdev_mutex)
892 {
893 struct dp_netdev_port *port;
894
895 shash_find_and_delete(&dp_netdevs, dp->name);
896
897 dp_netdev_destroy_all_pmds(dp);
898 cmap_destroy(&dp->poll_threads);
899 ovs_mutex_destroy(&dp->non_pmd_mutex);
900 ovsthread_key_delete(dp->per_pmd_key);
901
902 ovs_mutex_lock(&dp->port_mutex);
903 CMAP_FOR_EACH (port, node, &dp->ports) {
904 do_del_port(dp, port);
905 }
906 ovs_mutex_unlock(&dp->port_mutex);
907
908 seq_destroy(dp->port_seq);
909 cmap_destroy(&dp->ports);
910
911 /* Upcalls must be disabled at this point */
912 dp_netdev_destroy_upcall_lock(dp);
913
914 free(dp->pmd_cmask);
915 free(CONST_CAST(char *, dp->name));
916 free(dp);
917 }
918
919 static void
920 dp_netdev_unref(struct dp_netdev *dp)
921 {
922 if (dp) {
923 /* Take dp_netdev_mutex so that, if dp->ref_cnt falls to zero, we can't
924 * get a new reference to 'dp' through the 'dp_netdevs' shash. */
925 ovs_mutex_lock(&dp_netdev_mutex);
926 if (ovs_refcount_unref_relaxed(&dp->ref_cnt) == 1) {
927 dp_netdev_free(dp);
928 }
929 ovs_mutex_unlock(&dp_netdev_mutex);
930 }
931 }
932
933 static void
934 dpif_netdev_close(struct dpif *dpif)
935 {
936 struct dp_netdev *dp = get_dp_netdev(dpif);
937
938 dp_netdev_unref(dp);
939 free(dpif);
940 }
941
942 static int
943 dpif_netdev_destroy(struct dpif *dpif)
944 {
945 struct dp_netdev *dp = get_dp_netdev(dpif);
946
947 if (!atomic_flag_test_and_set(&dp->destroyed)) {
948 if (ovs_refcount_unref_relaxed(&dp->ref_cnt) == 1) {
949 /* Can't happen: 'dpif' still owns a reference to 'dp'. */
950 OVS_NOT_REACHED();
951 }
952 }
953
954 return 0;
955 }
956
957 /* Add 'n' to the atomic variable 'var' non-atomically and using relaxed
958 * load/store semantics. While the increment is not atomic, the load and
959 * store operations are, making it impossible to read inconsistent values.
960 *
961 * This is used to update thread local stats counters. */
962 static void
963 non_atomic_ullong_add(atomic_ullong *var, unsigned long long n)
964 {
965 unsigned long long tmp;
966
967 atomic_read_relaxed(var, &tmp);
968 tmp += n;
969 atomic_store_relaxed(var, tmp);
970 }
971
972 static int
973 dpif_netdev_get_stats(const struct dpif *dpif, struct dpif_dp_stats *stats)
974 {
975 struct dp_netdev *dp = get_dp_netdev(dpif);
976 struct dp_netdev_pmd_thread *pmd;
977
978 stats->n_flows = stats->n_hit = stats->n_missed = stats->n_lost = 0;
979 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
980 unsigned long long n;
981 stats->n_flows += cmap_count(&pmd->flow_table);
982
983 atomic_read_relaxed(&pmd->stats.n[DP_STAT_MASKED_HIT], &n);
984 stats->n_hit += n;
985 atomic_read_relaxed(&pmd->stats.n[DP_STAT_EXACT_HIT], &n);
986 stats->n_hit += n;
987 atomic_read_relaxed(&pmd->stats.n[DP_STAT_MISS], &n);
988 stats->n_missed += n;
989 atomic_read_relaxed(&pmd->stats.n[DP_STAT_LOST], &n);
990 stats->n_lost += n;
991 }
992 stats->n_masks = UINT32_MAX;
993 stats->n_mask_hit = UINT64_MAX;
994
995 return 0;
996 }
997
998 static void
999 dp_netdev_reload_pmd__(struct dp_netdev_pmd_thread *pmd)
1000 {
1001 int old_seq;
1002
1003 if (pmd->core_id == NON_PMD_CORE_ID) {
1004 return;
1005 }
1006
1007 ovs_mutex_lock(&pmd->cond_mutex);
1008 atomic_add_relaxed(&pmd->change_seq, 1, &old_seq);
1009 ovs_mutex_cond_wait(&pmd->cond, &pmd->cond_mutex);
1010 ovs_mutex_unlock(&pmd->cond_mutex);
1011 }
1012
1013 /* Causes all pmd threads to reload its tx/rx devices.
1014 * Must be called after adding/removing ports. */
1015 static void
1016 dp_netdev_reload_pmds(struct dp_netdev *dp)
1017 {
1018 struct dp_netdev_pmd_thread *pmd;
1019
1020 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
1021 dp_netdev_reload_pmd__(pmd);
1022 }
1023 }
1024
1025 static uint32_t
1026 hash_port_no(odp_port_t port_no)
1027 {
1028 return hash_int(odp_to_u32(port_no), 0);
1029 }
1030
1031 static int
1032 do_add_port(struct dp_netdev *dp, const char *devname, const char *type,
1033 odp_port_t port_no)
1034 OVS_REQUIRES(dp->port_mutex)
1035 {
1036 struct netdev_saved_flags *sf;
1037 struct dp_netdev_port *port;
1038 struct netdev *netdev;
1039 enum netdev_flags flags;
1040 const char *open_type;
1041 int error;
1042 int i;
1043
1044 /* Reject devices already in 'dp'. */
1045 if (!get_port_by_name(dp, devname, &port)) {
1046 return EEXIST;
1047 }
1048
1049 /* Open and validate network device. */
1050 open_type = dpif_netdev_port_open_type(dp->class, type);
1051 error = netdev_open(devname, open_type, &netdev);
1052 if (error) {
1053 return error;
1054 }
1055 /* XXX reject non-Ethernet devices */
1056
1057 netdev_get_flags(netdev, &flags);
1058 if (flags & NETDEV_LOOPBACK) {
1059 VLOG_ERR("%s: cannot add a loopback device", devname);
1060 netdev_close(netdev);
1061 return EINVAL;
1062 }
1063
1064 if (netdev_is_pmd(netdev)) {
1065 int n_cores = ovs_numa_get_n_cores();
1066
1067 if (n_cores == OVS_CORE_UNSPEC) {
1068 VLOG_ERR("%s, cannot get cpu core info", devname);
1069 return ENOENT;
1070 }
1071 /* There can only be ovs_numa_get_n_cores() pmd threads,
1072 * so creates a txq for each, and one extra for the non
1073 * pmd threads. */
1074 error = netdev_set_multiq(netdev, n_cores + 1, dp->n_dpdk_rxqs);
1075 if (error && (error != EOPNOTSUPP)) {
1076 VLOG_ERR("%s, cannot set multiq", devname);
1077 return errno;
1078 }
1079 }
1080 port = xzalloc(sizeof *port);
1081 port->md = PKT_METADATA_INITIALIZER(port_no);
1082 port->netdev = netdev;
1083 port->rxq = xmalloc(sizeof *port->rxq * netdev_n_rxq(netdev));
1084 port->type = xstrdup(type);
1085 for (i = 0; i < netdev_n_rxq(netdev); i++) {
1086 error = netdev_rxq_open(netdev, &port->rxq[i], i);
1087 if (error
1088 && !(error == EOPNOTSUPP && dpif_netdev_class_is_dummy(dp->class))) {
1089 VLOG_ERR("%s: cannot receive packets on this network device (%s)",
1090 devname, ovs_strerror(errno));
1091 netdev_close(netdev);
1092 free(port->type);
1093 free(port->rxq);
1094 free(port);
1095 return error;
1096 }
1097 }
1098
1099 error = netdev_turn_flags_on(netdev, NETDEV_PROMISC, &sf);
1100 if (error) {
1101 for (i = 0; i < netdev_n_rxq(netdev); i++) {
1102 netdev_rxq_close(port->rxq[i]);
1103 }
1104 netdev_close(netdev);
1105 free(port->type);
1106 free(port->rxq);
1107 free(port);
1108 return error;
1109 }
1110 port->sf = sf;
1111
1112 ovs_refcount_init(&port->ref_cnt);
1113 cmap_insert(&dp->ports, &port->node, hash_port_no(port_no));
1114
1115 if (netdev_is_pmd(netdev)) {
1116 dp_netdev_set_pmds_on_numa(dp, netdev_get_numa_id(netdev));
1117 dp_netdev_reload_pmds(dp);
1118 }
1119 seq_change(dp->port_seq);
1120
1121 return 0;
1122 }
1123
1124 static int
1125 dpif_netdev_port_add(struct dpif *dpif, struct netdev *netdev,
1126 odp_port_t *port_nop)
1127 {
1128 struct dp_netdev *dp = get_dp_netdev(dpif);
1129 char namebuf[NETDEV_VPORT_NAME_BUFSIZE];
1130 const char *dpif_port;
1131 odp_port_t port_no;
1132 int error;
1133
1134 ovs_mutex_lock(&dp->port_mutex);
1135 dpif_port = netdev_vport_get_dpif_port(netdev, namebuf, sizeof namebuf);
1136 if (*port_nop != ODPP_NONE) {
1137 port_no = *port_nop;
1138 error = dp_netdev_lookup_port(dp, *port_nop) ? EBUSY : 0;
1139 } else {
1140 port_no = choose_port(dp, dpif_port);
1141 error = port_no == ODPP_NONE ? EFBIG : 0;
1142 }
1143 if (!error) {
1144 *port_nop = port_no;
1145 error = do_add_port(dp, dpif_port, netdev_get_type(netdev), port_no);
1146 }
1147 ovs_mutex_unlock(&dp->port_mutex);
1148
1149 return error;
1150 }
1151
1152 static int
1153 dpif_netdev_port_del(struct dpif *dpif, odp_port_t port_no)
1154 {
1155 struct dp_netdev *dp = get_dp_netdev(dpif);
1156 int error;
1157
1158 ovs_mutex_lock(&dp->port_mutex);
1159 if (port_no == ODPP_LOCAL) {
1160 error = EINVAL;
1161 } else {
1162 struct dp_netdev_port *port;
1163
1164 error = get_port_by_number(dp, port_no, &port);
1165 if (!error) {
1166 do_del_port(dp, port);
1167 }
1168 }
1169 ovs_mutex_unlock(&dp->port_mutex);
1170
1171 return error;
1172 }
1173
1174 static bool
1175 is_valid_port_number(odp_port_t port_no)
1176 {
1177 return port_no != ODPP_NONE;
1178 }
1179
1180 static struct dp_netdev_port *
1181 dp_netdev_lookup_port(const struct dp_netdev *dp, odp_port_t port_no)
1182 {
1183 struct dp_netdev_port *port;
1184
1185 CMAP_FOR_EACH_WITH_HASH (port, node, hash_port_no(port_no), &dp->ports) {
1186 if (port->md.in_port.odp_port == port_no) {
1187 return port;
1188 }
1189 }
1190 return NULL;
1191 }
1192
1193 static int
1194 get_port_by_number(struct dp_netdev *dp,
1195 odp_port_t port_no, struct dp_netdev_port **portp)
1196 {
1197 if (!is_valid_port_number(port_no)) {
1198 *portp = NULL;
1199 return EINVAL;
1200 } else {
1201 *portp = dp_netdev_lookup_port(dp, port_no);
1202 return *portp ? 0 : ENOENT;
1203 }
1204 }
1205
1206 static void
1207 port_ref(struct dp_netdev_port *port)
1208 {
1209 if (port) {
1210 ovs_refcount_ref(&port->ref_cnt);
1211 }
1212 }
1213
1214 static bool
1215 port_try_ref(struct dp_netdev_port *port)
1216 {
1217 if (port) {
1218 return ovs_refcount_try_ref_rcu(&port->ref_cnt);
1219 }
1220
1221 return false;
1222 }
1223
1224 static void
1225 port_unref(struct dp_netdev_port *port)
1226 {
1227 if (port && ovs_refcount_unref_relaxed(&port->ref_cnt) == 1) {
1228 int n_rxq = netdev_n_rxq(port->netdev);
1229 int i;
1230
1231 netdev_close(port->netdev);
1232 netdev_restore_flags(port->sf);
1233
1234 for (i = 0; i < n_rxq; i++) {
1235 netdev_rxq_close(port->rxq[i]);
1236 }
1237 free(port->rxq);
1238 free(port->type);
1239 free(port);
1240 }
1241 }
1242
1243 static int
1244 get_port_by_name(struct dp_netdev *dp,
1245 const char *devname, struct dp_netdev_port **portp)
1246 OVS_REQUIRES(dp->port_mutex)
1247 {
1248 struct dp_netdev_port *port;
1249
1250 CMAP_FOR_EACH (port, node, &dp->ports) {
1251 if (!strcmp(netdev_get_name(port->netdev), devname)) {
1252 *portp = port;
1253 return 0;
1254 }
1255 }
1256 return ENOENT;
1257 }
1258
1259 static int
1260 get_n_pmd_threads_on_numa(struct dp_netdev *dp, int numa_id)
1261 {
1262 struct dp_netdev_pmd_thread *pmd;
1263 int n_pmds = 0;
1264
1265 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
1266 if (pmd->numa_id == numa_id) {
1267 n_pmds++;
1268 }
1269 }
1270
1271 return n_pmds;
1272 }
1273
1274 /* Returns 'true' if there is a port with pmd netdev and the netdev
1275 * is on numa node 'numa_id'. */
1276 static bool
1277 has_pmd_port_for_numa(struct dp_netdev *dp, int numa_id)
1278 {
1279 struct dp_netdev_port *port;
1280
1281 CMAP_FOR_EACH (port, node, &dp->ports) {
1282 if (netdev_is_pmd(port->netdev)
1283 && netdev_get_numa_id(port->netdev) == numa_id) {
1284 return true;
1285 }
1286 }
1287
1288 return false;
1289 }
1290
1291
1292 static void
1293 do_del_port(struct dp_netdev *dp, struct dp_netdev_port *port)
1294 OVS_REQUIRES(dp->port_mutex)
1295 {
1296 cmap_remove(&dp->ports, &port->node,
1297 hash_odp_port(port->md.in_port.odp_port));
1298 seq_change(dp->port_seq);
1299 if (netdev_is_pmd(port->netdev)) {
1300 int numa_id = netdev_get_numa_id(port->netdev);
1301
1302 /* If there is no netdev on the numa node, deletes the pmd threads
1303 * for that numa. Else, just reloads the queues. */
1304 if (!has_pmd_port_for_numa(dp, numa_id)) {
1305 dp_netdev_del_pmds_on_numa(dp, numa_id);
1306 }
1307 dp_netdev_reload_pmds(dp);
1308 }
1309
1310 port_unref(port);
1311 }
1312
1313 static void
1314 answer_port_query(const struct dp_netdev_port *port,
1315 struct dpif_port *dpif_port)
1316 {
1317 dpif_port->name = xstrdup(netdev_get_name(port->netdev));
1318 dpif_port->type = xstrdup(port->type);
1319 dpif_port->port_no = port->md.in_port.odp_port;
1320 }
1321
1322 static int
1323 dpif_netdev_port_query_by_number(const struct dpif *dpif, odp_port_t port_no,
1324 struct dpif_port *dpif_port)
1325 {
1326 struct dp_netdev *dp = get_dp_netdev(dpif);
1327 struct dp_netdev_port *port;
1328 int error;
1329
1330 error = get_port_by_number(dp, port_no, &port);
1331 if (!error && dpif_port) {
1332 answer_port_query(port, dpif_port);
1333 }
1334
1335 return error;
1336 }
1337
1338 static int
1339 dpif_netdev_port_query_by_name(const struct dpif *dpif, const char *devname,
1340 struct dpif_port *dpif_port)
1341 {
1342 struct dp_netdev *dp = get_dp_netdev(dpif);
1343 struct dp_netdev_port *port;
1344 int error;
1345
1346 ovs_mutex_lock(&dp->port_mutex);
1347 error = get_port_by_name(dp, devname, &port);
1348 if (!error && dpif_port) {
1349 answer_port_query(port, dpif_port);
1350 }
1351 ovs_mutex_unlock(&dp->port_mutex);
1352
1353 return error;
1354 }
1355
1356 static void
1357 dp_netdev_flow_free(struct dp_netdev_flow *flow)
1358 {
1359 dp_netdev_actions_free(dp_netdev_flow_get_actions(flow));
1360 free(flow);
1361 }
1362
1363 static void dp_netdev_flow_unref(struct dp_netdev_flow *flow)
1364 {
1365 if (ovs_refcount_unref_relaxed(&flow->ref_cnt) == 1) {
1366 ovsrcu_postpone(dp_netdev_flow_free, flow);
1367 }
1368 }
1369
1370 static uint32_t
1371 dp_netdev_flow_hash(const ovs_u128 *ufid)
1372 {
1373 return ufid->u32[0];
1374 }
1375
1376 static void
1377 dp_netdev_pmd_remove_flow(struct dp_netdev_pmd_thread *pmd,
1378 struct dp_netdev_flow *flow)
1379 OVS_REQUIRES(pmd->flow_mutex)
1380 {
1381 struct cmap_node *node = CONST_CAST(struct cmap_node *, &flow->node);
1382
1383 dpcls_remove(&pmd->cls, &flow->cr);
1384 cmap_remove(&pmd->flow_table, node, dp_netdev_flow_hash(&flow->ufid));
1385 flow->dead = true;
1386
1387 dp_netdev_flow_unref(flow);
1388 }
1389
1390 static void
1391 dp_netdev_pmd_flow_flush(struct dp_netdev_pmd_thread *pmd)
1392 {
1393 struct dp_netdev_flow *netdev_flow;
1394
1395 ovs_mutex_lock(&pmd->flow_mutex);
1396 CMAP_FOR_EACH (netdev_flow, node, &pmd->flow_table) {
1397 dp_netdev_pmd_remove_flow(pmd, netdev_flow);
1398 }
1399 ovs_mutex_unlock(&pmd->flow_mutex);
1400 }
1401
1402 static int
1403 dpif_netdev_flow_flush(struct dpif *dpif)
1404 {
1405 struct dp_netdev *dp = get_dp_netdev(dpif);
1406 struct dp_netdev_pmd_thread *pmd;
1407
1408 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
1409 dp_netdev_pmd_flow_flush(pmd);
1410 }
1411
1412 return 0;
1413 }
1414
1415 struct dp_netdev_port_state {
1416 struct cmap_position position;
1417 char *name;
1418 };
1419
1420 static int
1421 dpif_netdev_port_dump_start(const struct dpif *dpif OVS_UNUSED, void **statep)
1422 {
1423 *statep = xzalloc(sizeof(struct dp_netdev_port_state));
1424 return 0;
1425 }
1426
1427 static int
1428 dpif_netdev_port_dump_next(const struct dpif *dpif, void *state_,
1429 struct dpif_port *dpif_port)
1430 {
1431 struct dp_netdev_port_state *state = state_;
1432 struct dp_netdev *dp = get_dp_netdev(dpif);
1433 struct cmap_node *node;
1434 int retval;
1435
1436 node = cmap_next_position(&dp->ports, &state->position);
1437 if (node) {
1438 struct dp_netdev_port *port;
1439
1440 port = CONTAINER_OF(node, struct dp_netdev_port, node);
1441
1442 free(state->name);
1443 state->name = xstrdup(netdev_get_name(port->netdev));
1444 dpif_port->name = state->name;
1445 dpif_port->type = port->type;
1446 dpif_port->port_no = port->md.in_port.odp_port;
1447
1448 retval = 0;
1449 } else {
1450 retval = EOF;
1451 }
1452
1453 return retval;
1454 }
1455
1456 static int
1457 dpif_netdev_port_dump_done(const struct dpif *dpif OVS_UNUSED, void *state_)
1458 {
1459 struct dp_netdev_port_state *state = state_;
1460 free(state->name);
1461 free(state);
1462 return 0;
1463 }
1464
1465 static int
1466 dpif_netdev_port_poll(const struct dpif *dpif_, char **devnamep OVS_UNUSED)
1467 {
1468 struct dpif_netdev *dpif = dpif_netdev_cast(dpif_);
1469 uint64_t new_port_seq;
1470 int error;
1471
1472 new_port_seq = seq_read(dpif->dp->port_seq);
1473 if (dpif->last_port_seq != new_port_seq) {
1474 dpif->last_port_seq = new_port_seq;
1475 error = ENOBUFS;
1476 } else {
1477 error = EAGAIN;
1478 }
1479
1480 return error;
1481 }
1482
1483 static void
1484 dpif_netdev_port_poll_wait(const struct dpif *dpif_)
1485 {
1486 struct dpif_netdev *dpif = dpif_netdev_cast(dpif_);
1487
1488 seq_wait(dpif->dp->port_seq, dpif->last_port_seq);
1489 }
1490
1491 static struct dp_netdev_flow *
1492 dp_netdev_flow_cast(const struct dpcls_rule *cr)
1493 {
1494 return cr ? CONTAINER_OF(cr, struct dp_netdev_flow, cr) : NULL;
1495 }
1496
1497 static bool dp_netdev_flow_ref(struct dp_netdev_flow *flow)
1498 {
1499 return ovs_refcount_try_ref_rcu(&flow->ref_cnt);
1500 }
1501
1502 /* netdev_flow_key utilities.
1503 *
1504 * netdev_flow_key is basically a miniflow. We use these functions
1505 * (netdev_flow_key_clone, netdev_flow_key_equal, ...) instead of the miniflow
1506 * functions (miniflow_clone_inline, miniflow_equal, ...), because:
1507 *
1508 * - Since we are dealing exclusively with miniflows created by
1509 * miniflow_extract(), if the map is different the miniflow is different.
1510 * Therefore we can be faster by comparing the map and the miniflow in a
1511 * single memcmp().
1512 * _ netdev_flow_key's miniflow has always inline values.
1513 * - These functions can be inlined by the compiler.
1514 *
1515 * The following assertions make sure that what we're doing with miniflow is
1516 * safe
1517 */
1518 BUILD_ASSERT_DECL(offsetof(struct miniflow, inline_values)
1519 == sizeof(uint64_t));
1520
1521 /* Given the number of bits set in the miniflow map, returns the size of the
1522 * 'netdev_flow_key.mf' */
1523 static inline uint32_t
1524 netdev_flow_key_size(uint32_t flow_u32s)
1525 {
1526 return offsetof(struct miniflow, inline_values) +
1527 MINIFLOW_VALUES_SIZE(flow_u32s);
1528 }
1529
1530 static inline bool
1531 netdev_flow_key_equal(const struct netdev_flow_key *a,
1532 const struct netdev_flow_key *b)
1533 {
1534 /* 'b->len' may be not set yet. */
1535 return a->hash == b->hash && !memcmp(&a->mf, &b->mf, a->len);
1536 }
1537
1538 /* Used to compare 'netdev_flow_key' in the exact match cache to a miniflow.
1539 * The maps are compared bitwise, so both 'key->mf' 'mf' must have been
1540 * generated by miniflow_extract. */
1541 static inline bool
1542 netdev_flow_key_equal_mf(const struct netdev_flow_key *key,
1543 const struct miniflow *mf)
1544 {
1545 return !memcmp(&key->mf, mf, key->len);
1546 }
1547
1548 static inline void
1549 netdev_flow_key_clone(struct netdev_flow_key *dst,
1550 const struct netdev_flow_key *src)
1551 {
1552 memcpy(dst, src,
1553 offsetof(struct netdev_flow_key, mf) + src->len);
1554 }
1555
1556 /* Slow. */
1557 static void
1558 netdev_flow_key_from_flow(struct netdev_flow_key *dst,
1559 const struct flow *src)
1560 {
1561 struct dp_packet packet;
1562 uint64_t buf_stub[512 / 8];
1563
1564 miniflow_initialize(&dst->mf, dst->buf);
1565
1566 dp_packet_use_stub(&packet, buf_stub, sizeof buf_stub);
1567 pkt_metadata_from_flow(&packet.md, src);
1568 flow_compose(&packet, src);
1569 miniflow_extract(&packet, &dst->mf);
1570 dp_packet_uninit(&packet);
1571
1572 dst->len = netdev_flow_key_size(count_1bits(dst->mf.map));
1573 dst->hash = 0; /* Not computed yet. */
1574 }
1575
1576 /* Initialize a netdev_flow_key 'mask' from 'match'. */
1577 static inline void
1578 netdev_flow_mask_init(struct netdev_flow_key *mask,
1579 const struct match *match)
1580 {
1581 const uint64_t *mask_u64 = (const uint64_t *) &match->wc.masks;
1582 uint64_t *dst = mask->mf.inline_values;
1583 uint64_t map, mask_map = 0;
1584 uint32_t hash = 0;
1585 int n;
1586
1587 /* Only check masks that make sense for the flow. */
1588 map = flow_wc_map(&match->flow);
1589
1590 while (map) {
1591 uint64_t rm1bit = rightmost_1bit(map);
1592 int i = raw_ctz(map);
1593
1594 if (mask_u64[i]) {
1595 mask_map |= rm1bit;
1596 *dst++ = mask_u64[i];
1597 hash = hash_add64(hash, mask_u64[i]);
1598 }
1599 map -= rm1bit;
1600 }
1601
1602 mask->mf.values_inline = true;
1603 mask->mf.map = mask_map;
1604
1605 hash = hash_add64(hash, mask_map);
1606
1607 n = dst - mask->mf.inline_values;
1608
1609 mask->hash = hash_finish(hash, n * 8);
1610 mask->len = netdev_flow_key_size(n);
1611 }
1612
1613 /* Initializes 'dst' as a copy of 'src' masked with 'mask'. */
1614 static inline void
1615 netdev_flow_key_init_masked(struct netdev_flow_key *dst,
1616 const struct flow *flow,
1617 const struct netdev_flow_key *mask)
1618 {
1619 uint64_t *dst_u64 = dst->mf.inline_values;
1620 const uint64_t *mask_u64 = mask->mf.inline_values;
1621 uint32_t hash = 0;
1622 uint64_t value;
1623
1624 dst->len = mask->len;
1625 dst->mf.values_inline = true;
1626 dst->mf.map = mask->mf.map;
1627
1628 FLOW_FOR_EACH_IN_MAP(value, flow, mask->mf.map) {
1629 *dst_u64 = value & *mask_u64++;
1630 hash = hash_add64(hash, *dst_u64++);
1631 }
1632 dst->hash = hash_finish(hash, (dst_u64 - dst->mf.inline_values) * 8);
1633 }
1634
1635 /* Iterate through all netdev_flow_key u64 values specified by 'MAP' */
1636 #define NETDEV_FLOW_KEY_FOR_EACH_IN_MAP(VALUE, KEY, MAP) \
1637 for (struct mf_for_each_in_map_aux aux__ \
1638 = { (KEY)->mf.inline_values, (KEY)->mf.map, MAP }; \
1639 mf_get_next_in_map(&aux__, &(VALUE)); \
1640 )
1641
1642 /* Returns a hash value for the bits of 'key' where there are 1-bits in
1643 * 'mask'. */
1644 static inline uint32_t
1645 netdev_flow_key_hash_in_mask(const struct netdev_flow_key *key,
1646 const struct netdev_flow_key *mask)
1647 {
1648 const uint64_t *p = mask->mf.inline_values;
1649 uint32_t hash = 0;
1650 uint64_t key_u64;
1651
1652 NETDEV_FLOW_KEY_FOR_EACH_IN_MAP(key_u64, key, mask->mf.map) {
1653 hash = hash_add64(hash, key_u64 & *p++);
1654 }
1655
1656 return hash_finish(hash, (p - mask->mf.inline_values) * 8);
1657 }
1658
1659 static inline bool
1660 emc_entry_alive(struct emc_entry *ce)
1661 {
1662 return ce->flow && !ce->flow->dead;
1663 }
1664
1665 static void
1666 emc_clear_entry(struct emc_entry *ce)
1667 {
1668 if (ce->flow) {
1669 dp_netdev_flow_unref(ce->flow);
1670 ce->flow = NULL;
1671 }
1672 }
1673
1674 static inline void
1675 emc_change_entry(struct emc_entry *ce, struct dp_netdev_flow *flow,
1676 const struct netdev_flow_key *key)
1677 {
1678 if (ce->flow != flow) {
1679 if (ce->flow) {
1680 dp_netdev_flow_unref(ce->flow);
1681 }
1682
1683 if (dp_netdev_flow_ref(flow)) {
1684 ce->flow = flow;
1685 } else {
1686 ce->flow = NULL;
1687 }
1688 }
1689 if (key) {
1690 netdev_flow_key_clone(&ce->key, key);
1691 }
1692 }
1693
1694 static inline void
1695 emc_insert(struct emc_cache *cache, const struct netdev_flow_key *key,
1696 struct dp_netdev_flow *flow)
1697 {
1698 struct emc_entry *to_be_replaced = NULL;
1699 struct emc_entry *current_entry;
1700
1701 EMC_FOR_EACH_POS_WITH_HASH(cache, current_entry, key->hash) {
1702 if (netdev_flow_key_equal(&current_entry->key, key)) {
1703 /* We found the entry with the 'mf' miniflow */
1704 emc_change_entry(current_entry, flow, NULL);
1705 return;
1706 }
1707
1708 /* Replacement policy: put the flow in an empty (not alive) entry, or
1709 * in the first entry where it can be */
1710 if (!to_be_replaced
1711 || (emc_entry_alive(to_be_replaced)
1712 && !emc_entry_alive(current_entry))
1713 || current_entry->key.hash < to_be_replaced->key.hash) {
1714 to_be_replaced = current_entry;
1715 }
1716 }
1717 /* We didn't find the miniflow in the cache.
1718 * The 'to_be_replaced' entry is where the new flow will be stored */
1719
1720 emc_change_entry(to_be_replaced, flow, key);
1721 }
1722
1723 static inline struct dp_netdev_flow *
1724 emc_lookup(struct emc_cache *cache, const struct netdev_flow_key *key)
1725 {
1726 struct emc_entry *current_entry;
1727
1728 EMC_FOR_EACH_POS_WITH_HASH(cache, current_entry, key->hash) {
1729 if (current_entry->key.hash == key->hash
1730 && emc_entry_alive(current_entry)
1731 && netdev_flow_key_equal_mf(&current_entry->key, &key->mf)) {
1732
1733 /* We found the entry with the 'key->mf' miniflow */
1734 return current_entry->flow;
1735 }
1736 }
1737
1738 return NULL;
1739 }
1740
1741 static struct dp_netdev_flow *
1742 dp_netdev_pmd_lookup_flow(const struct dp_netdev_pmd_thread *pmd,
1743 const struct netdev_flow_key *key)
1744 {
1745 struct dp_netdev_flow *netdev_flow;
1746 struct dpcls_rule *rule;
1747
1748 dpcls_lookup(&pmd->cls, key, &rule, 1);
1749 netdev_flow = dp_netdev_flow_cast(rule);
1750
1751 return netdev_flow;
1752 }
1753
1754 static struct dp_netdev_flow *
1755 dp_netdev_pmd_find_flow(const struct dp_netdev_pmd_thread *pmd,
1756 const ovs_u128 *ufidp, const struct nlattr *key,
1757 size_t key_len)
1758 {
1759 struct dp_netdev_flow *netdev_flow;
1760 struct flow flow;
1761 ovs_u128 ufid;
1762
1763 /* If a UFID is not provided, determine one based on the key. */
1764 if (!ufidp && key && key_len
1765 && !dpif_netdev_flow_from_nlattrs(key, key_len, &flow)) {
1766 dpif_flow_hash(pmd->dp->dpif, &flow, sizeof flow, &ufid);
1767 ufidp = &ufid;
1768 }
1769
1770 if (ufidp) {
1771 CMAP_FOR_EACH_WITH_HASH (netdev_flow, node, dp_netdev_flow_hash(ufidp),
1772 &pmd->flow_table) {
1773 if (ovs_u128_equals(&netdev_flow->ufid, ufidp)) {
1774 return netdev_flow;
1775 }
1776 }
1777 }
1778
1779 return NULL;
1780 }
1781
1782 static void
1783 get_dpif_flow_stats(const struct dp_netdev_flow *netdev_flow_,
1784 struct dpif_flow_stats *stats)
1785 {
1786 struct dp_netdev_flow *netdev_flow;
1787 unsigned long long n;
1788 long long used;
1789 uint16_t flags;
1790
1791 netdev_flow = CONST_CAST(struct dp_netdev_flow *, netdev_flow_);
1792
1793 atomic_read_relaxed(&netdev_flow->stats.packet_count, &n);
1794 stats->n_packets = n;
1795 atomic_read_relaxed(&netdev_flow->stats.byte_count, &n);
1796 stats->n_bytes = n;
1797 atomic_read_relaxed(&netdev_flow->stats.used, &used);
1798 stats->used = used;
1799 atomic_read_relaxed(&netdev_flow->stats.tcp_flags, &flags);
1800 stats->tcp_flags = flags;
1801 }
1802
1803 /* Converts to the dpif_flow format, using 'key_buf' and 'mask_buf' for
1804 * storing the netlink-formatted key/mask. 'key_buf' may be the same as
1805 * 'mask_buf'. Actions will be returned without copying, by relying on RCU to
1806 * protect them. */
1807 static void
1808 dp_netdev_flow_to_dpif_flow(const struct dp_netdev_flow *netdev_flow,
1809 struct ofpbuf *key_buf, struct ofpbuf *mask_buf,
1810 struct dpif_flow *flow, bool terse)
1811 {
1812 if (terse) {
1813 memset(flow, 0, sizeof *flow);
1814 } else {
1815 struct flow_wildcards wc;
1816 struct dp_netdev_actions *actions;
1817 size_t offset;
1818
1819 miniflow_expand(&netdev_flow->cr.mask->mf, &wc.masks);
1820
1821 /* Key */
1822 offset = key_buf->size;
1823 flow->key = ofpbuf_tail(key_buf);
1824 odp_flow_key_from_flow(key_buf, &netdev_flow->flow, &wc.masks,
1825 netdev_flow->flow.in_port.odp_port, true);
1826 flow->key_len = key_buf->size - offset;
1827
1828 /* Mask */
1829 offset = mask_buf->size;
1830 flow->mask = ofpbuf_tail(mask_buf);
1831 odp_flow_key_from_mask(mask_buf, &wc.masks, &netdev_flow->flow,
1832 odp_to_u32(wc.masks.in_port.odp_port),
1833 SIZE_MAX, true);
1834 flow->mask_len = mask_buf->size - offset;
1835
1836 /* Actions */
1837 actions = dp_netdev_flow_get_actions(netdev_flow);
1838 flow->actions = actions->actions;
1839 flow->actions_len = actions->size;
1840 }
1841
1842 flow->ufid = netdev_flow->ufid;
1843 flow->ufid_present = true;
1844 flow->pmd_id = netdev_flow->pmd_id;
1845 get_dpif_flow_stats(netdev_flow, &flow->stats);
1846 }
1847
1848 static int
1849 dpif_netdev_mask_from_nlattrs(const struct nlattr *key, uint32_t key_len,
1850 const struct nlattr *mask_key,
1851 uint32_t mask_key_len, const struct flow *flow,
1852 struct flow *mask)
1853 {
1854 if (mask_key_len) {
1855 enum odp_key_fitness fitness;
1856
1857 fitness = odp_flow_key_to_mask(mask_key, mask_key_len, mask, flow);
1858 if (fitness) {
1859 /* This should not happen: it indicates that
1860 * odp_flow_key_from_mask() and odp_flow_key_to_mask()
1861 * disagree on the acceptable form of a mask. Log the problem
1862 * as an error, with enough details to enable debugging. */
1863 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
1864
1865 if (!VLOG_DROP_ERR(&rl)) {
1866 struct ds s;
1867
1868 ds_init(&s);
1869 odp_flow_format(key, key_len, mask_key, mask_key_len, NULL, &s,
1870 true);
1871 VLOG_ERR("internal error parsing flow mask %s (%s)",
1872 ds_cstr(&s), odp_key_fitness_to_string(fitness));
1873 ds_destroy(&s);
1874 }
1875
1876 return EINVAL;
1877 }
1878 } else {
1879 enum mf_field_id id;
1880 /* No mask key, unwildcard everything except fields whose
1881 * prerequisities are not met. */
1882 memset(mask, 0x0, sizeof *mask);
1883
1884 for (id = 0; id < MFF_N_IDS; ++id) {
1885 /* Skip registers and metadata. */
1886 if (!(id >= MFF_REG0 && id < MFF_REG0 + FLOW_N_REGS)
1887 && id != MFF_METADATA) {
1888 const struct mf_field *mf = mf_from_id(id);
1889 if (mf_are_prereqs_ok(mf, flow)) {
1890 mf_mask_field(mf, mask);
1891 }
1892 }
1893 }
1894 }
1895
1896 /* Force unwildcard the in_port.
1897 *
1898 * We need to do this even in the case where we unwildcard "everything"
1899 * above because "everything" only includes the 16-bit OpenFlow port number
1900 * mask->in_port.ofp_port, which only covers half of the 32-bit datapath
1901 * port number mask->in_port.odp_port. */
1902 mask->in_port.odp_port = u32_to_odp(UINT32_MAX);
1903
1904 return 0;
1905 }
1906
1907 static int
1908 dpif_netdev_flow_from_nlattrs(const struct nlattr *key, uint32_t key_len,
1909 struct flow *flow)
1910 {
1911 odp_port_t in_port;
1912
1913 if (odp_flow_key_to_flow(key, key_len, flow)) {
1914 /* This should not happen: it indicates that odp_flow_key_from_flow()
1915 * and odp_flow_key_to_flow() disagree on the acceptable form of a
1916 * flow. Log the problem as an error, with enough details to enable
1917 * debugging. */
1918 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
1919
1920 if (!VLOG_DROP_ERR(&rl)) {
1921 struct ds s;
1922
1923 ds_init(&s);
1924 odp_flow_format(key, key_len, NULL, 0, NULL, &s, true);
1925 VLOG_ERR("internal error parsing flow key %s", ds_cstr(&s));
1926 ds_destroy(&s);
1927 }
1928
1929 return EINVAL;
1930 }
1931
1932 in_port = flow->in_port.odp_port;
1933 if (!is_valid_port_number(in_port) && in_port != ODPP_NONE) {
1934 return EINVAL;
1935 }
1936
1937 return 0;
1938 }
1939
1940 static int
1941 dpif_netdev_flow_get(const struct dpif *dpif, const struct dpif_flow_get *get)
1942 {
1943 struct dp_netdev *dp = get_dp_netdev(dpif);
1944 struct dp_netdev_flow *netdev_flow;
1945 struct dp_netdev_pmd_thread *pmd;
1946 unsigned pmd_id = get->pmd_id == PMD_ID_NULL
1947 ? NON_PMD_CORE_ID : get->pmd_id;
1948 int error = 0;
1949
1950 pmd = dp_netdev_get_pmd(dp, pmd_id);
1951 if (!pmd) {
1952 return EINVAL;
1953 }
1954
1955 netdev_flow = dp_netdev_pmd_find_flow(pmd, get->ufid, get->key,
1956 get->key_len);
1957 if (netdev_flow) {
1958 dp_netdev_flow_to_dpif_flow(netdev_flow, get->buffer, get->buffer,
1959 get->flow, false);
1960 } else {
1961 error = ENOENT;
1962 }
1963 dp_netdev_pmd_unref(pmd);
1964
1965
1966 return error;
1967 }
1968
1969 static struct dp_netdev_flow *
1970 dp_netdev_flow_add(struct dp_netdev_pmd_thread *pmd,
1971 struct match *match, const ovs_u128 *ufid,
1972 const struct nlattr *actions, size_t actions_len)
1973 OVS_REQUIRES(pmd->flow_mutex)
1974 {
1975 struct dp_netdev_flow *flow;
1976 struct netdev_flow_key mask;
1977
1978 netdev_flow_mask_init(&mask, match);
1979 /* Make sure wc does not have metadata. */
1980 ovs_assert(!(mask.mf.map & (MINIFLOW_MAP(metadata) | MINIFLOW_MAP(regs))));
1981
1982 /* Do not allocate extra space. */
1983 flow = xmalloc(sizeof *flow - sizeof flow->cr.flow.mf + mask.len);
1984 memset(&flow->stats, 0, sizeof flow->stats);
1985 flow->dead = false;
1986 flow->batch = NULL;
1987 *CONST_CAST(unsigned *, &flow->pmd_id) = pmd->core_id;
1988 *CONST_CAST(struct flow *, &flow->flow) = match->flow;
1989 *CONST_CAST(ovs_u128 *, &flow->ufid) = *ufid;
1990 ovs_refcount_init(&flow->ref_cnt);
1991 ovsrcu_set(&flow->actions, dp_netdev_actions_create(actions, actions_len));
1992
1993 netdev_flow_key_init_masked(&flow->cr.flow, &match->flow, &mask);
1994 dpcls_insert(&pmd->cls, &flow->cr, &mask);
1995
1996 cmap_insert(&pmd->flow_table, CONST_CAST(struct cmap_node *, &flow->node),
1997 dp_netdev_flow_hash(&flow->ufid));
1998
1999 if (OVS_UNLIKELY(VLOG_IS_DBG_ENABLED())) {
2000 struct match match;
2001 struct ds ds = DS_EMPTY_INITIALIZER;
2002
2003 match.flow = flow->flow;
2004 miniflow_expand(&flow->cr.mask->mf, &match.wc.masks);
2005
2006 ds_put_cstr(&ds, "flow_add: ");
2007 odp_format_ufid(ufid, &ds);
2008 ds_put_cstr(&ds, " ");
2009 match_format(&match, &ds, OFP_DEFAULT_PRIORITY);
2010 ds_put_cstr(&ds, ", actions:");
2011 format_odp_actions(&ds, actions, actions_len);
2012
2013 VLOG_DBG_RL(&upcall_rl, "%s", ds_cstr(&ds));
2014
2015 ds_destroy(&ds);
2016 }
2017
2018 return flow;
2019 }
2020
2021 static int
2022 dpif_netdev_flow_put(struct dpif *dpif, const struct dpif_flow_put *put)
2023 {
2024 struct dp_netdev *dp = get_dp_netdev(dpif);
2025 struct dp_netdev_flow *netdev_flow;
2026 struct netdev_flow_key key;
2027 struct dp_netdev_pmd_thread *pmd;
2028 struct match match;
2029 ovs_u128 ufid;
2030 unsigned pmd_id = put->pmd_id == PMD_ID_NULL
2031 ? NON_PMD_CORE_ID : put->pmd_id;
2032 int error;
2033
2034 error = dpif_netdev_flow_from_nlattrs(put->key, put->key_len, &match.flow);
2035 if (error) {
2036 return error;
2037 }
2038 error = dpif_netdev_mask_from_nlattrs(put->key, put->key_len,
2039 put->mask, put->mask_len,
2040 &match.flow, &match.wc.masks);
2041 if (error) {
2042 return error;
2043 }
2044
2045 pmd = dp_netdev_get_pmd(dp, pmd_id);
2046 if (!pmd) {
2047 return EINVAL;
2048 }
2049
2050 /* Must produce a netdev_flow_key for lookup.
2051 * This interface is no longer performance critical, since it is not used
2052 * for upcall processing any more. */
2053 netdev_flow_key_from_flow(&key, &match.flow);
2054
2055 if (put->ufid) {
2056 ufid = *put->ufid;
2057 } else {
2058 dpif_flow_hash(dpif, &match.flow, sizeof match.flow, &ufid);
2059 }
2060
2061 ovs_mutex_lock(&pmd->flow_mutex);
2062 netdev_flow = dp_netdev_pmd_lookup_flow(pmd, &key);
2063 if (!netdev_flow) {
2064 if (put->flags & DPIF_FP_CREATE) {
2065 if (cmap_count(&pmd->flow_table) < MAX_FLOWS) {
2066 if (put->stats) {
2067 memset(put->stats, 0, sizeof *put->stats);
2068 }
2069 dp_netdev_flow_add(pmd, &match, &ufid, put->actions,
2070 put->actions_len);
2071 error = 0;
2072 } else {
2073 error = EFBIG;
2074 }
2075 } else {
2076 error = ENOENT;
2077 }
2078 } else {
2079 if (put->flags & DPIF_FP_MODIFY
2080 && flow_equal(&match.flow, &netdev_flow->flow)) {
2081 struct dp_netdev_actions *new_actions;
2082 struct dp_netdev_actions *old_actions;
2083
2084 new_actions = dp_netdev_actions_create(put->actions,
2085 put->actions_len);
2086
2087 old_actions = dp_netdev_flow_get_actions(netdev_flow);
2088 ovsrcu_set(&netdev_flow->actions, new_actions);
2089
2090 if (put->stats) {
2091 get_dpif_flow_stats(netdev_flow, put->stats);
2092 }
2093 if (put->flags & DPIF_FP_ZERO_STATS) {
2094 /* XXX: The userspace datapath uses thread local statistics
2095 * (for flows), which should be updated only by the owning
2096 * thread. Since we cannot write on stats memory here,
2097 * we choose not to support this flag. Please note:
2098 * - This feature is currently used only by dpctl commands with
2099 * option --clear.
2100 * - Should the need arise, this operation can be implemented
2101 * by keeping a base value (to be update here) for each
2102 * counter, and subtracting it before outputting the stats */
2103 error = EOPNOTSUPP;
2104 }
2105
2106 ovsrcu_postpone(dp_netdev_actions_free, old_actions);
2107 } else if (put->flags & DPIF_FP_CREATE) {
2108 error = EEXIST;
2109 } else {
2110 /* Overlapping flow. */
2111 error = EINVAL;
2112 }
2113 }
2114 ovs_mutex_unlock(&pmd->flow_mutex);
2115 dp_netdev_pmd_unref(pmd);
2116
2117 return error;
2118 }
2119
2120 static int
2121 dpif_netdev_flow_del(struct dpif *dpif, const struct dpif_flow_del *del)
2122 {
2123 struct dp_netdev *dp = get_dp_netdev(dpif);
2124 struct dp_netdev_flow *netdev_flow;
2125 struct dp_netdev_pmd_thread *pmd;
2126 unsigned pmd_id = del->pmd_id == PMD_ID_NULL
2127 ? NON_PMD_CORE_ID : del->pmd_id;
2128 int error = 0;
2129
2130 pmd = dp_netdev_get_pmd(dp, pmd_id);
2131 if (!pmd) {
2132 return EINVAL;
2133 }
2134
2135 ovs_mutex_lock(&pmd->flow_mutex);
2136 netdev_flow = dp_netdev_pmd_find_flow(pmd, del->ufid, del->key,
2137 del->key_len);
2138 if (netdev_flow) {
2139 if (del->stats) {
2140 get_dpif_flow_stats(netdev_flow, del->stats);
2141 }
2142 dp_netdev_pmd_remove_flow(pmd, netdev_flow);
2143 } else {
2144 error = ENOENT;
2145 }
2146 ovs_mutex_unlock(&pmd->flow_mutex);
2147 dp_netdev_pmd_unref(pmd);
2148
2149 return error;
2150 }
2151
2152 struct dpif_netdev_flow_dump {
2153 struct dpif_flow_dump up;
2154 struct cmap_position poll_thread_pos;
2155 struct cmap_position flow_pos;
2156 struct dp_netdev_pmd_thread *cur_pmd;
2157 int status;
2158 struct ovs_mutex mutex;
2159 };
2160
2161 static struct dpif_netdev_flow_dump *
2162 dpif_netdev_flow_dump_cast(struct dpif_flow_dump *dump)
2163 {
2164 return CONTAINER_OF(dump, struct dpif_netdev_flow_dump, up);
2165 }
2166
2167 static struct dpif_flow_dump *
2168 dpif_netdev_flow_dump_create(const struct dpif *dpif_, bool terse)
2169 {
2170 struct dpif_netdev_flow_dump *dump;
2171
2172 dump = xzalloc(sizeof *dump);
2173 dpif_flow_dump_init(&dump->up, dpif_);
2174 dump->up.terse = terse;
2175 ovs_mutex_init(&dump->mutex);
2176
2177 return &dump->up;
2178 }
2179
2180 static int
2181 dpif_netdev_flow_dump_destroy(struct dpif_flow_dump *dump_)
2182 {
2183 struct dpif_netdev_flow_dump *dump = dpif_netdev_flow_dump_cast(dump_);
2184
2185 ovs_mutex_destroy(&dump->mutex);
2186 free(dump);
2187 return 0;
2188 }
2189
2190 struct dpif_netdev_flow_dump_thread {
2191 struct dpif_flow_dump_thread up;
2192 struct dpif_netdev_flow_dump *dump;
2193 struct odputil_keybuf keybuf[FLOW_DUMP_MAX_BATCH];
2194 struct odputil_keybuf maskbuf[FLOW_DUMP_MAX_BATCH];
2195 };
2196
2197 static struct dpif_netdev_flow_dump_thread *
2198 dpif_netdev_flow_dump_thread_cast(struct dpif_flow_dump_thread *thread)
2199 {
2200 return CONTAINER_OF(thread, struct dpif_netdev_flow_dump_thread, up);
2201 }
2202
2203 static struct dpif_flow_dump_thread *
2204 dpif_netdev_flow_dump_thread_create(struct dpif_flow_dump *dump_)
2205 {
2206 struct dpif_netdev_flow_dump *dump = dpif_netdev_flow_dump_cast(dump_);
2207 struct dpif_netdev_flow_dump_thread *thread;
2208
2209 thread = xmalloc(sizeof *thread);
2210 dpif_flow_dump_thread_init(&thread->up, &dump->up);
2211 thread->dump = dump;
2212 return &thread->up;
2213 }
2214
2215 static void
2216 dpif_netdev_flow_dump_thread_destroy(struct dpif_flow_dump_thread *thread_)
2217 {
2218 struct dpif_netdev_flow_dump_thread *thread
2219 = dpif_netdev_flow_dump_thread_cast(thread_);
2220
2221 free(thread);
2222 }
2223
2224 static int
2225 dpif_netdev_flow_dump_next(struct dpif_flow_dump_thread *thread_,
2226 struct dpif_flow *flows, int max_flows)
2227 {
2228 struct dpif_netdev_flow_dump_thread *thread
2229 = dpif_netdev_flow_dump_thread_cast(thread_);
2230 struct dpif_netdev_flow_dump *dump = thread->dump;
2231 struct dp_netdev_flow *netdev_flows[FLOW_DUMP_MAX_BATCH];
2232 int n_flows = 0;
2233 int i;
2234
2235 ovs_mutex_lock(&dump->mutex);
2236 if (!dump->status) {
2237 struct dpif_netdev *dpif = dpif_netdev_cast(thread->up.dpif);
2238 struct dp_netdev *dp = get_dp_netdev(&dpif->dpif);
2239 struct dp_netdev_pmd_thread *pmd = dump->cur_pmd;
2240 int flow_limit = MIN(max_flows, FLOW_DUMP_MAX_BATCH);
2241
2242 /* First call to dump_next(), extracts the first pmd thread.
2243 * If there is no pmd thread, returns immediately. */
2244 if (!pmd) {
2245 pmd = dp_netdev_pmd_get_next(dp, &dump->poll_thread_pos);
2246 if (!pmd) {
2247 ovs_mutex_unlock(&dump->mutex);
2248 return n_flows;
2249
2250 }
2251 }
2252
2253 do {
2254 for (n_flows = 0; n_flows < flow_limit; n_flows++) {
2255 struct cmap_node *node;
2256
2257 node = cmap_next_position(&pmd->flow_table, &dump->flow_pos);
2258 if (!node) {
2259 break;
2260 }
2261 netdev_flows[n_flows] = CONTAINER_OF(node,
2262 struct dp_netdev_flow,
2263 node);
2264 }
2265 /* When finishing dumping the current pmd thread, moves to
2266 * the next. */
2267 if (n_flows < flow_limit) {
2268 memset(&dump->flow_pos, 0, sizeof dump->flow_pos);
2269 dp_netdev_pmd_unref(pmd);
2270 pmd = dp_netdev_pmd_get_next(dp, &dump->poll_thread_pos);
2271 if (!pmd) {
2272 dump->status = EOF;
2273 break;
2274 }
2275 }
2276 /* Keeps the reference to next caller. */
2277 dump->cur_pmd = pmd;
2278
2279 /* If the current dump is empty, do not exit the loop, since the
2280 * remaining pmds could have flows to be dumped. Just dumps again
2281 * on the new 'pmd'. */
2282 } while (!n_flows);
2283 }
2284 ovs_mutex_unlock(&dump->mutex);
2285
2286 for (i = 0; i < n_flows; i++) {
2287 struct odputil_keybuf *maskbuf = &thread->maskbuf[i];
2288 struct odputil_keybuf *keybuf = &thread->keybuf[i];
2289 struct dp_netdev_flow *netdev_flow = netdev_flows[i];
2290 struct dpif_flow *f = &flows[i];
2291 struct ofpbuf key, mask;
2292
2293 ofpbuf_use_stack(&key, keybuf, sizeof *keybuf);
2294 ofpbuf_use_stack(&mask, maskbuf, sizeof *maskbuf);
2295 dp_netdev_flow_to_dpif_flow(netdev_flow, &key, &mask, f,
2296 dump->up.terse);
2297 }
2298
2299 return n_flows;
2300 }
2301
2302 static int
2303 dpif_netdev_execute(struct dpif *dpif, struct dpif_execute *execute)
2304 OVS_NO_THREAD_SAFETY_ANALYSIS
2305 {
2306 struct dp_netdev *dp = get_dp_netdev(dpif);
2307 struct dp_netdev_pmd_thread *pmd;
2308 struct dp_packet *pp;
2309
2310 if (dp_packet_size(execute->packet) < ETH_HEADER_LEN ||
2311 dp_packet_size(execute->packet) > UINT16_MAX) {
2312 return EINVAL;
2313 }
2314
2315 /* Tries finding the 'pmd'. If NULL is returned, that means
2316 * the current thread is a non-pmd thread and should use
2317 * dp_netdev_get_pmd(dp, NON_PMD_CORE_ID). */
2318 pmd = ovsthread_getspecific(dp->per_pmd_key);
2319 if (!pmd) {
2320 pmd = dp_netdev_get_pmd(dp, NON_PMD_CORE_ID);
2321 }
2322
2323 /* If the current thread is non-pmd thread, acquires
2324 * the 'non_pmd_mutex'. */
2325 if (pmd->core_id == NON_PMD_CORE_ID) {
2326 ovs_mutex_lock(&dp->non_pmd_mutex);
2327 ovs_mutex_lock(&dp->port_mutex);
2328 }
2329
2330 pp = execute->packet;
2331 dp_netdev_execute_actions(pmd, &pp, 1, false, execute->actions,
2332 execute->actions_len);
2333 if (pmd->core_id == NON_PMD_CORE_ID) {
2334 dp_netdev_pmd_unref(pmd);
2335 ovs_mutex_unlock(&dp->port_mutex);
2336 ovs_mutex_unlock(&dp->non_pmd_mutex);
2337 }
2338
2339 return 0;
2340 }
2341
2342 static void
2343 dpif_netdev_operate(struct dpif *dpif, struct dpif_op **ops, size_t n_ops)
2344 {
2345 size_t i;
2346
2347 for (i = 0; i < n_ops; i++) {
2348 struct dpif_op *op = ops[i];
2349
2350 switch (op->type) {
2351 case DPIF_OP_FLOW_PUT:
2352 op->error = dpif_netdev_flow_put(dpif, &op->u.flow_put);
2353 break;
2354
2355 case DPIF_OP_FLOW_DEL:
2356 op->error = dpif_netdev_flow_del(dpif, &op->u.flow_del);
2357 break;
2358
2359 case DPIF_OP_EXECUTE:
2360 op->error = dpif_netdev_execute(dpif, &op->u.execute);
2361 break;
2362
2363 case DPIF_OP_FLOW_GET:
2364 op->error = dpif_netdev_flow_get(dpif, &op->u.flow_get);
2365 break;
2366 }
2367 }
2368 }
2369
2370 /* Returns true if the configuration for rx queues or cpu mask
2371 * is changed. */
2372 static bool
2373 pmd_config_changed(const struct dp_netdev *dp, size_t rxqs, const char *cmask)
2374 {
2375 if (dp->n_dpdk_rxqs != rxqs) {
2376 return true;
2377 } else {
2378 if (dp->pmd_cmask != NULL && cmask != NULL) {
2379 return strcmp(dp->pmd_cmask, cmask);
2380 } else {
2381 return (dp->pmd_cmask != NULL || cmask != NULL);
2382 }
2383 }
2384 }
2385
2386 /* Resets pmd threads if the configuration for 'rxq's or cpu mask changes. */
2387 static int
2388 dpif_netdev_pmd_set(struct dpif *dpif, unsigned int n_rxqs, const char *cmask)
2389 {
2390 struct dp_netdev *dp = get_dp_netdev(dpif);
2391
2392 if (pmd_config_changed(dp, n_rxqs, cmask)) {
2393 struct dp_netdev_port *port;
2394
2395 dp_netdev_destroy_all_pmds(dp);
2396
2397 CMAP_FOR_EACH (port, node, &dp->ports) {
2398 if (netdev_is_pmd(port->netdev)) {
2399 int i, err;
2400
2401 /* Closes the existing 'rxq's. */
2402 for (i = 0; i < netdev_n_rxq(port->netdev); i++) {
2403 netdev_rxq_close(port->rxq[i]);
2404 port->rxq[i] = NULL;
2405 }
2406
2407 /* Sets the new rx queue config. */
2408 err = netdev_set_multiq(port->netdev,
2409 ovs_numa_get_n_cores() + 1,
2410 n_rxqs);
2411 if (err && (err != EOPNOTSUPP)) {
2412 VLOG_ERR("Failed to set dpdk interface %s rx_queue to:"
2413 " %u", netdev_get_name(port->netdev),
2414 n_rxqs);
2415 return err;
2416 }
2417
2418 /* If the set_multiq() above succeeds, reopens the 'rxq's. */
2419 port->rxq = xrealloc(port->rxq, sizeof *port->rxq
2420 * netdev_n_rxq(port->netdev));
2421 for (i = 0; i < netdev_n_rxq(port->netdev); i++) {
2422 netdev_rxq_open(port->netdev, &port->rxq[i], i);
2423 }
2424 }
2425 }
2426 dp->n_dpdk_rxqs = n_rxqs;
2427
2428 /* Reconfigures the cpu mask. */
2429 ovs_numa_set_cpu_mask(cmask);
2430 free(dp->pmd_cmask);
2431 dp->pmd_cmask = cmask ? xstrdup(cmask) : NULL;
2432
2433 /* Restores the non-pmd. */
2434 dp_netdev_set_nonpmd(dp);
2435 /* Restores all pmd threads. */
2436 dp_netdev_reset_pmd_threads(dp);
2437 }
2438
2439 return 0;
2440 }
2441
2442 static int
2443 dpif_netdev_queue_to_priority(const struct dpif *dpif OVS_UNUSED,
2444 uint32_t queue_id, uint32_t *priority)
2445 {
2446 *priority = queue_id;
2447 return 0;
2448 }
2449
2450 \f
2451 /* Creates and returns a new 'struct dp_netdev_actions', whose actions are
2452 * a copy of the 'ofpacts_len' bytes of 'ofpacts'. */
2453 struct dp_netdev_actions *
2454 dp_netdev_actions_create(const struct nlattr *actions, size_t size)
2455 {
2456 struct dp_netdev_actions *netdev_actions;
2457
2458 netdev_actions = xmalloc(sizeof *netdev_actions + size);
2459 memcpy(netdev_actions->actions, actions, size);
2460 netdev_actions->size = size;
2461
2462 return netdev_actions;
2463 }
2464
2465 struct dp_netdev_actions *
2466 dp_netdev_flow_get_actions(const struct dp_netdev_flow *flow)
2467 {
2468 return ovsrcu_get(struct dp_netdev_actions *, &flow->actions);
2469 }
2470
2471 static void
2472 dp_netdev_actions_free(struct dp_netdev_actions *actions)
2473 {
2474 free(actions);
2475 }
2476 \f
2477 static inline unsigned long long
2478 cycles_counter(void)
2479 {
2480 #ifdef DPDK_NETDEV
2481 return rte_get_tsc_cycles();
2482 #else
2483 return 0;
2484 #endif
2485 }
2486
2487 /* Fake mutex to make sure that the calls to cycles_count_* are balanced */
2488 extern struct ovs_mutex cycles_counter_fake_mutex;
2489
2490 /* Start counting cycles. Must be followed by 'cycles_count_end()' */
2491 static inline void
2492 cycles_count_start(struct dp_netdev_pmd_thread *pmd)
2493 OVS_ACQUIRES(&cycles_counter_fake_mutex)
2494 OVS_NO_THREAD_SAFETY_ANALYSIS
2495 {
2496 pmd->last_cycles = cycles_counter();
2497 }
2498
2499 /* Stop counting cycles and add them to the counter 'type' */
2500 static inline void
2501 cycles_count_end(struct dp_netdev_pmd_thread *pmd,
2502 enum pmd_cycles_counter_type type)
2503 OVS_RELEASES(&cycles_counter_fake_mutex)
2504 OVS_NO_THREAD_SAFETY_ANALYSIS
2505 {
2506 unsigned long long interval = cycles_counter() - pmd->last_cycles;
2507
2508 non_atomic_ullong_add(&pmd->cycles.n[type], interval);
2509 }
2510
2511 static void
2512 dp_netdev_process_rxq_port(struct dp_netdev_pmd_thread *pmd,
2513 struct dp_netdev_port *port,
2514 struct netdev_rxq *rxq)
2515 {
2516 struct dp_packet *packets[NETDEV_MAX_BURST];
2517 int error, cnt;
2518
2519 cycles_count_start(pmd);
2520 error = netdev_rxq_recv(rxq, packets, &cnt);
2521 cycles_count_end(pmd, PMD_CYCLES_POLLING);
2522 if (!error) {
2523 int i;
2524
2525 *recirc_depth_get() = 0;
2526
2527 /* XXX: initialize md in netdev implementation. */
2528 for (i = 0; i < cnt; i++) {
2529 packets[i]->md = port->md;
2530 }
2531 cycles_count_start(pmd);
2532 dp_netdev_input(pmd, packets, cnt);
2533 cycles_count_end(pmd, PMD_CYCLES_PROCESSING);
2534 } else if (error != EAGAIN && error != EOPNOTSUPP) {
2535 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
2536
2537 VLOG_ERR_RL(&rl, "error receiving data from %s: %s",
2538 netdev_get_name(port->netdev), ovs_strerror(error));
2539 }
2540 }
2541
2542 /* Return true if needs to revalidate datapath flows. */
2543 static bool
2544 dpif_netdev_run(struct dpif *dpif)
2545 {
2546 struct dp_netdev_port *port;
2547 struct dp_netdev *dp = get_dp_netdev(dpif);
2548 struct dp_netdev_pmd_thread *non_pmd = dp_netdev_get_pmd(dp,
2549 NON_PMD_CORE_ID);
2550 uint64_t new_tnl_seq;
2551
2552 ovs_mutex_lock(&dp->non_pmd_mutex);
2553 CMAP_FOR_EACH (port, node, &dp->ports) {
2554 if (!netdev_is_pmd(port->netdev)) {
2555 int i;
2556
2557 for (i = 0; i < netdev_n_rxq(port->netdev); i++) {
2558 dp_netdev_process_rxq_port(non_pmd, port, port->rxq[i]);
2559 }
2560 }
2561 }
2562 ovs_mutex_unlock(&dp->non_pmd_mutex);
2563 dp_netdev_pmd_unref(non_pmd);
2564
2565 tnl_arp_cache_run();
2566 new_tnl_seq = seq_read(tnl_conf_seq);
2567
2568 if (dp->last_tnl_conf_seq != new_tnl_seq) {
2569 dp->last_tnl_conf_seq = new_tnl_seq;
2570 return true;
2571 }
2572 return false;
2573 }
2574
2575 static void
2576 dpif_netdev_wait(struct dpif *dpif)
2577 {
2578 struct dp_netdev_port *port;
2579 struct dp_netdev *dp = get_dp_netdev(dpif);
2580
2581 ovs_mutex_lock(&dp_netdev_mutex);
2582 CMAP_FOR_EACH (port, node, &dp->ports) {
2583 if (!netdev_is_pmd(port->netdev)) {
2584 int i;
2585
2586 for (i = 0; i < netdev_n_rxq(port->netdev); i++) {
2587 netdev_rxq_wait(port->rxq[i]);
2588 }
2589 }
2590 }
2591 ovs_mutex_unlock(&dp_netdev_mutex);
2592 seq_wait(tnl_conf_seq, dp->last_tnl_conf_seq);
2593 }
2594
2595 struct rxq_poll {
2596 struct dp_netdev_port *port;
2597 struct netdev_rxq *rx;
2598 };
2599
2600 static int
2601 pmd_load_queues(struct dp_netdev_pmd_thread *pmd,
2602 struct rxq_poll **ppoll_list, int poll_cnt)
2603 {
2604 struct rxq_poll *poll_list = *ppoll_list;
2605 struct dp_netdev_port *port;
2606 int n_pmds_on_numa, index, i;
2607
2608 /* Simple scheduler for netdev rx polling. */
2609 for (i = 0; i < poll_cnt; i++) {
2610 port_unref(poll_list[i].port);
2611 }
2612
2613 poll_cnt = 0;
2614 n_pmds_on_numa = get_n_pmd_threads_on_numa(pmd->dp, pmd->numa_id);
2615 index = 0;
2616
2617 CMAP_FOR_EACH (port, node, &pmd->dp->ports) {
2618 /* Calls port_try_ref() to prevent the main thread
2619 * from deleting the port. */
2620 if (port_try_ref(port)) {
2621 if (netdev_is_pmd(port->netdev)
2622 && netdev_get_numa_id(port->netdev) == pmd->numa_id) {
2623 int i;
2624
2625 for (i = 0; i < netdev_n_rxq(port->netdev); i++) {
2626 if ((index % n_pmds_on_numa) == pmd->index) {
2627 poll_list = xrealloc(poll_list,
2628 sizeof *poll_list * (poll_cnt + 1));
2629
2630 port_ref(port);
2631 poll_list[poll_cnt].port = port;
2632 poll_list[poll_cnt].rx = port->rxq[i];
2633 poll_cnt++;
2634 }
2635 index++;
2636 }
2637 }
2638 /* Unrefs the port_try_ref(). */
2639 port_unref(port);
2640 }
2641 }
2642
2643 *ppoll_list = poll_list;
2644 return poll_cnt;
2645 }
2646
2647 static void *
2648 pmd_thread_main(void *f_)
2649 {
2650 struct dp_netdev_pmd_thread *pmd = f_;
2651 unsigned int lc = 0;
2652 struct rxq_poll *poll_list;
2653 unsigned int port_seq = PMD_INITIAL_SEQ;
2654 int poll_cnt;
2655 int i;
2656
2657 poll_cnt = 0;
2658 poll_list = NULL;
2659
2660 /* Stores the pmd thread's 'pmd' to 'per_pmd_key'. */
2661 ovsthread_setspecific(pmd->dp->per_pmd_key, pmd);
2662 pmd_thread_setaffinity_cpu(pmd->core_id);
2663 reload:
2664 emc_cache_init(&pmd->flow_cache);
2665 poll_cnt = pmd_load_queues(pmd, &poll_list, poll_cnt);
2666
2667 /* Signal here to make sure the pmd finishes
2668 * reloading the updated configuration. */
2669 dp_netdev_pmd_reload_done(pmd);
2670
2671 for (;;) {
2672 int i;
2673
2674 for (i = 0; i < poll_cnt; i++) {
2675 dp_netdev_process_rxq_port(pmd, poll_list[i].port, poll_list[i].rx);
2676 }
2677
2678 if (lc++ > 1024) {
2679 unsigned int seq;
2680
2681 lc = 0;
2682
2683 emc_cache_slow_sweep(&pmd->flow_cache);
2684 ovsrcu_quiesce();
2685
2686 atomic_read_relaxed(&pmd->change_seq, &seq);
2687 if (seq != port_seq) {
2688 port_seq = seq;
2689 break;
2690 }
2691 }
2692 }
2693
2694 emc_cache_uninit(&pmd->flow_cache);
2695
2696 if (!latch_is_set(&pmd->exit_latch)){
2697 goto reload;
2698 }
2699
2700 for (i = 0; i < poll_cnt; i++) {
2701 port_unref(poll_list[i].port);
2702 }
2703
2704 dp_netdev_pmd_reload_done(pmd);
2705
2706 free(poll_list);
2707 return NULL;
2708 }
2709
2710 static void
2711 dp_netdev_disable_upcall(struct dp_netdev *dp)
2712 OVS_ACQUIRES(dp->upcall_rwlock)
2713 {
2714 fat_rwlock_wrlock(&dp->upcall_rwlock);
2715 }
2716
2717 static void
2718 dpif_netdev_disable_upcall(struct dpif *dpif)
2719 OVS_NO_THREAD_SAFETY_ANALYSIS
2720 {
2721 struct dp_netdev *dp = get_dp_netdev(dpif);
2722 dp_netdev_disable_upcall(dp);
2723 }
2724
2725 static void
2726 dp_netdev_enable_upcall(struct dp_netdev *dp)
2727 OVS_RELEASES(dp->upcall_rwlock)
2728 {
2729 fat_rwlock_unlock(&dp->upcall_rwlock);
2730 }
2731
2732 static void
2733 dpif_netdev_enable_upcall(struct dpif *dpif)
2734 OVS_NO_THREAD_SAFETY_ANALYSIS
2735 {
2736 struct dp_netdev *dp = get_dp_netdev(dpif);
2737 dp_netdev_enable_upcall(dp);
2738 }
2739
2740 void
2741 dp_netdev_pmd_reload_done(struct dp_netdev_pmd_thread *pmd)
2742 {
2743 ovs_mutex_lock(&pmd->cond_mutex);
2744 xpthread_cond_signal(&pmd->cond);
2745 ovs_mutex_unlock(&pmd->cond_mutex);
2746 }
2747
2748 /* Finds and refs the dp_netdev_pmd_thread on core 'core_id'. Returns
2749 * the pointer if succeeds, otherwise, NULL.
2750 *
2751 * Caller must unrefs the returned reference. */
2752 static struct dp_netdev_pmd_thread *
2753 dp_netdev_get_pmd(struct dp_netdev *dp, unsigned core_id)
2754 {
2755 struct dp_netdev_pmd_thread *pmd;
2756 const struct cmap_node *pnode;
2757
2758 pnode = cmap_find(&dp->poll_threads, hash_int(core_id, 0));
2759 if (!pnode) {
2760 return NULL;
2761 }
2762 pmd = CONTAINER_OF(pnode, struct dp_netdev_pmd_thread, node);
2763
2764 return dp_netdev_pmd_try_ref(pmd) ? pmd : NULL;
2765 }
2766
2767 /* Sets the 'struct dp_netdev_pmd_thread' for non-pmd threads. */
2768 static void
2769 dp_netdev_set_nonpmd(struct dp_netdev *dp)
2770 {
2771 struct dp_netdev_pmd_thread *non_pmd;
2772
2773 non_pmd = xzalloc(sizeof *non_pmd);
2774 dp_netdev_configure_pmd(non_pmd, dp, 0, NON_PMD_CORE_ID,
2775 OVS_NUMA_UNSPEC);
2776 }
2777
2778 /* Caller must have valid pointer to 'pmd'. */
2779 static bool
2780 dp_netdev_pmd_try_ref(struct dp_netdev_pmd_thread *pmd)
2781 {
2782 return ovs_refcount_try_ref_rcu(&pmd->ref_cnt);
2783 }
2784
2785 static void
2786 dp_netdev_pmd_unref(struct dp_netdev_pmd_thread *pmd)
2787 {
2788 if (pmd && ovs_refcount_unref(&pmd->ref_cnt) == 1) {
2789 ovsrcu_postpone(dp_netdev_destroy_pmd, pmd);
2790 }
2791 }
2792
2793 /* Given cmap position 'pos', tries to ref the next node. If try_ref()
2794 * fails, keeps checking for next node until reaching the end of cmap.
2795 *
2796 * Caller must unrefs the returned reference. */
2797 static struct dp_netdev_pmd_thread *
2798 dp_netdev_pmd_get_next(struct dp_netdev *dp, struct cmap_position *pos)
2799 {
2800 struct dp_netdev_pmd_thread *next;
2801
2802 do {
2803 struct cmap_node *node;
2804
2805 node = cmap_next_position(&dp->poll_threads, pos);
2806 next = node ? CONTAINER_OF(node, struct dp_netdev_pmd_thread, node)
2807 : NULL;
2808 } while (next && !dp_netdev_pmd_try_ref(next));
2809
2810 return next;
2811 }
2812
2813 static int
2814 core_id_to_qid(unsigned core_id)
2815 {
2816 if (core_id != NON_PMD_CORE_ID) {
2817 return core_id;
2818 } else {
2819 return ovs_numa_get_n_cores();
2820 }
2821 }
2822
2823 /* Configures the 'pmd' based on the input argument. */
2824 static void
2825 dp_netdev_configure_pmd(struct dp_netdev_pmd_thread *pmd, struct dp_netdev *dp,
2826 int index, unsigned core_id, int numa_id)
2827 {
2828 pmd->dp = dp;
2829 pmd->index = index;
2830 pmd->core_id = core_id;
2831 pmd->tx_qid = core_id_to_qid(core_id);
2832 pmd->numa_id = numa_id;
2833
2834 ovs_refcount_init(&pmd->ref_cnt);
2835 latch_init(&pmd->exit_latch);
2836 atomic_init(&pmd->change_seq, PMD_INITIAL_SEQ);
2837 xpthread_cond_init(&pmd->cond, NULL);
2838 ovs_mutex_init(&pmd->cond_mutex);
2839 ovs_mutex_init(&pmd->flow_mutex);
2840 dpcls_init(&pmd->cls);
2841 cmap_init(&pmd->flow_table);
2842 /* init the 'flow_cache' since there is no
2843 * actual thread created for NON_PMD_CORE_ID. */
2844 if (core_id == NON_PMD_CORE_ID) {
2845 emc_cache_init(&pmd->flow_cache);
2846 }
2847 cmap_insert(&dp->poll_threads, CONST_CAST(struct cmap_node *, &pmd->node),
2848 hash_int(core_id, 0));
2849 }
2850
2851 static void
2852 dp_netdev_destroy_pmd(struct dp_netdev_pmd_thread *pmd)
2853 {
2854 dp_netdev_pmd_flow_flush(pmd);
2855 dpcls_destroy(&pmd->cls);
2856 cmap_destroy(&pmd->flow_table);
2857 ovs_mutex_destroy(&pmd->flow_mutex);
2858 latch_destroy(&pmd->exit_latch);
2859 xpthread_cond_destroy(&pmd->cond);
2860 ovs_mutex_destroy(&pmd->cond_mutex);
2861 free(pmd);
2862 }
2863
2864 /* Stops the pmd thread, removes it from the 'dp->poll_threads',
2865 * and unrefs the struct. */
2866 static void
2867 dp_netdev_del_pmd(struct dp_netdev_pmd_thread *pmd)
2868 {
2869 /* Uninit the 'flow_cache' since there is
2870 * no actual thread uninit it for NON_PMD_CORE_ID. */
2871 if (pmd->core_id == NON_PMD_CORE_ID) {
2872 emc_cache_uninit(&pmd->flow_cache);
2873 } else {
2874 latch_set(&pmd->exit_latch);
2875 dp_netdev_reload_pmd__(pmd);
2876 ovs_numa_unpin_core(pmd->core_id);
2877 xpthread_join(pmd->thread, NULL);
2878 }
2879 cmap_remove(&pmd->dp->poll_threads, &pmd->node, hash_int(pmd->core_id, 0));
2880 dp_netdev_pmd_unref(pmd);
2881 }
2882
2883 /* Destroys all pmd threads. */
2884 static void
2885 dp_netdev_destroy_all_pmds(struct dp_netdev *dp)
2886 {
2887 struct dp_netdev_pmd_thread *pmd;
2888
2889 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
2890 dp_netdev_del_pmd(pmd);
2891 }
2892 }
2893
2894 /* Deletes all pmd threads on numa node 'numa_id'. */
2895 static void
2896 dp_netdev_del_pmds_on_numa(struct dp_netdev *dp, int numa_id)
2897 {
2898 struct dp_netdev_pmd_thread *pmd;
2899
2900 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
2901 if (pmd->numa_id == numa_id) {
2902 dp_netdev_del_pmd(pmd);
2903 }
2904 }
2905 }
2906
2907 /* Checks the numa node id of 'netdev' and starts pmd threads for
2908 * the numa node. */
2909 static void
2910 dp_netdev_set_pmds_on_numa(struct dp_netdev *dp, int numa_id)
2911 {
2912 int n_pmds;
2913
2914 if (!ovs_numa_numa_id_is_valid(numa_id)) {
2915 VLOG_ERR("Cannot create pmd threads due to numa id (%d)"
2916 "invalid", numa_id);
2917 return ;
2918 }
2919
2920 n_pmds = get_n_pmd_threads_on_numa(dp, numa_id);
2921
2922 /* If there are already pmd threads created for the numa node
2923 * in which 'netdev' is on, do nothing. Else, creates the
2924 * pmd threads for the numa node. */
2925 if (!n_pmds) {
2926 int can_have, n_unpinned, i;
2927
2928 n_unpinned = ovs_numa_get_n_unpinned_cores_on_numa(numa_id);
2929 if (!n_unpinned) {
2930 VLOG_ERR("Cannot create pmd threads due to out of unpinned "
2931 "cores on numa node");
2932 return;
2933 }
2934
2935 /* If cpu mask is specified, uses all unpinned cores, otherwise
2936 * tries creating NR_PMD_THREADS pmd threads. */
2937 can_have = dp->pmd_cmask ? n_unpinned : MIN(n_unpinned, NR_PMD_THREADS);
2938 for (i = 0; i < can_have; i++) {
2939 struct dp_netdev_pmd_thread *pmd = xzalloc(sizeof *pmd);
2940 unsigned core_id = ovs_numa_get_unpinned_core_on_numa(numa_id);
2941
2942 dp_netdev_configure_pmd(pmd, dp, i, core_id, numa_id);
2943 /* Each thread will distribute all devices rx-queues among
2944 * themselves. */
2945 pmd->thread = ovs_thread_create("pmd", pmd_thread_main, pmd);
2946 }
2947 VLOG_INFO("Created %d pmd threads on numa node %d", can_have, numa_id);
2948 }
2949 }
2950
2951 \f
2952 /* Called after pmd threads config change. Restarts pmd threads with
2953 * new configuration. */
2954 static void
2955 dp_netdev_reset_pmd_threads(struct dp_netdev *dp)
2956 {
2957 struct dp_netdev_port *port;
2958
2959 CMAP_FOR_EACH (port, node, &dp->ports) {
2960 if (netdev_is_pmd(port->netdev)) {
2961 int numa_id = netdev_get_numa_id(port->netdev);
2962
2963 dp_netdev_set_pmds_on_numa(dp, numa_id);
2964 }
2965 }
2966 }
2967
2968 static char *
2969 dpif_netdev_get_datapath_version(void)
2970 {
2971 return xstrdup("<built-in>");
2972 }
2973
2974 static void
2975 dp_netdev_flow_used(struct dp_netdev_flow *netdev_flow, int cnt, int size,
2976 uint16_t tcp_flags, long long now)
2977 {
2978 uint16_t flags;
2979
2980 atomic_store_relaxed(&netdev_flow->stats.used, now);
2981 non_atomic_ullong_add(&netdev_flow->stats.packet_count, cnt);
2982 non_atomic_ullong_add(&netdev_flow->stats.byte_count, size);
2983 atomic_read_relaxed(&netdev_flow->stats.tcp_flags, &flags);
2984 flags |= tcp_flags;
2985 atomic_store_relaxed(&netdev_flow->stats.tcp_flags, flags);
2986 }
2987
2988 static void
2989 dp_netdev_count_packet(struct dp_netdev_pmd_thread *pmd,
2990 enum dp_stat_type type, int cnt)
2991 {
2992 non_atomic_ullong_add(&pmd->stats.n[type], cnt);
2993 }
2994
2995 static int
2996 dp_netdev_upcall(struct dp_netdev_pmd_thread *pmd, struct dp_packet *packet_,
2997 struct flow *flow, struct flow_wildcards *wc, ovs_u128 *ufid,
2998 enum dpif_upcall_type type, const struct nlattr *userdata,
2999 struct ofpbuf *actions, struct ofpbuf *put_actions)
3000 {
3001 struct dp_netdev *dp = pmd->dp;
3002
3003 if (OVS_UNLIKELY(!dp->upcall_cb)) {
3004 return ENODEV;
3005 }
3006
3007 if (OVS_UNLIKELY(!VLOG_DROP_DBG(&upcall_rl))) {
3008 struct ds ds = DS_EMPTY_INITIALIZER;
3009 char *packet_str;
3010 struct ofpbuf key;
3011
3012 ofpbuf_init(&key, 0);
3013 odp_flow_key_from_flow(&key, flow, &wc->masks, flow->in_port.odp_port,
3014 true);
3015 packet_str = ofp_packet_to_string(dp_packet_data(packet_),
3016 dp_packet_size(packet_));
3017
3018 odp_flow_key_format(key.data, key.size, &ds);
3019
3020 VLOG_DBG("%s: %s upcall:\n%s\n%s", dp->name,
3021 dpif_upcall_type_to_string(type), ds_cstr(&ds), packet_str);
3022
3023 ofpbuf_uninit(&key);
3024 free(packet_str);
3025
3026 ds_destroy(&ds);
3027 }
3028
3029 return dp->upcall_cb(packet_, flow, ufid, pmd->core_id, type, userdata,
3030 actions, wc, put_actions, dp->upcall_aux);
3031 }
3032
3033 static inline uint32_t
3034 dpif_netdev_packet_get_rss_hash(struct dp_packet *packet,
3035 const struct miniflow *mf)
3036 {
3037 uint32_t hash, recirc_depth;
3038
3039 hash = dp_packet_get_rss_hash(packet);
3040 if (OVS_UNLIKELY(!hash)) {
3041 hash = miniflow_hash_5tuple(mf, 0);
3042 dp_packet_set_rss_hash(packet, hash);
3043 }
3044
3045 /* The RSS hash must account for the recirculation depth to avoid
3046 * collisions in the exact match cache */
3047 recirc_depth = *recirc_depth_get_unsafe();
3048 if (OVS_UNLIKELY(recirc_depth)) {
3049 hash = hash_finish(hash, recirc_depth);
3050 dp_packet_set_rss_hash(packet, hash);
3051 }
3052 return hash;
3053 }
3054
3055 struct packet_batch {
3056 unsigned int packet_count;
3057 unsigned int byte_count;
3058 uint16_t tcp_flags;
3059
3060 struct dp_netdev_flow *flow;
3061
3062 struct dp_packet *packets[NETDEV_MAX_BURST];
3063 };
3064
3065 static inline void
3066 packet_batch_update(struct packet_batch *batch, struct dp_packet *packet,
3067 const struct miniflow *mf)
3068 {
3069 batch->tcp_flags |= miniflow_get_tcp_flags(mf);
3070 batch->packets[batch->packet_count++] = packet;
3071 batch->byte_count += dp_packet_size(packet);
3072 }
3073
3074 static inline void
3075 packet_batch_init(struct packet_batch *batch, struct dp_netdev_flow *flow)
3076 {
3077 flow->batch = batch;
3078
3079 batch->flow = flow;
3080 batch->packet_count = 0;
3081 batch->byte_count = 0;
3082 batch->tcp_flags = 0;
3083 }
3084
3085 static inline void
3086 packet_batch_execute(struct packet_batch *batch,
3087 struct dp_netdev_pmd_thread *pmd,
3088 long long now)
3089 {
3090 struct dp_netdev_actions *actions;
3091 struct dp_netdev_flow *flow = batch->flow;
3092
3093 dp_netdev_flow_used(flow, batch->packet_count, batch->byte_count,
3094 batch->tcp_flags, now);
3095
3096 actions = dp_netdev_flow_get_actions(flow);
3097
3098 dp_netdev_execute_actions(pmd, batch->packets, batch->packet_count, true,
3099 actions->actions, actions->size);
3100 }
3101
3102 static inline void
3103 dp_netdev_queue_batches(struct dp_packet *pkt,
3104 struct dp_netdev_flow *flow, const struct miniflow *mf,
3105 struct packet_batch *batches, size_t *n_batches)
3106 {
3107 struct packet_batch *batch = flow->batch;
3108
3109 if (OVS_LIKELY(batch)) {
3110 packet_batch_update(batch, pkt, mf);
3111 return;
3112 }
3113
3114 batch = &batches[(*n_batches)++];
3115 packet_batch_init(batch, flow);
3116 packet_batch_update(batch, pkt, mf);
3117 }
3118
3119 static inline void
3120 dp_packet_swap(struct dp_packet **a, struct dp_packet **b)
3121 {
3122 struct dp_packet *tmp = *a;
3123 *a = *b;
3124 *b = tmp;
3125 }
3126
3127 /* Try to process all ('cnt') the 'packets' using only the exact match cache
3128 * 'flow_cache'. If a flow is not found for a packet 'packets[i]', the
3129 * miniflow is copied into 'keys' and the packet pointer is moved at the
3130 * beginning of the 'packets' array.
3131 *
3132 * The function returns the number of packets that needs to be processed in the
3133 * 'packets' array (they have been moved to the beginning of the vector).
3134 */
3135 static inline size_t
3136 emc_processing(struct dp_netdev_pmd_thread *pmd, struct dp_packet **packets,
3137 size_t cnt, struct netdev_flow_key *keys,
3138 struct packet_batch batches[], size_t *n_batches)
3139 {
3140 struct emc_cache *flow_cache = &pmd->flow_cache;
3141 struct netdev_flow_key key;
3142 size_t i, notfound_cnt = 0;
3143
3144 miniflow_initialize(&key.mf, key.buf);
3145 for (i = 0; i < cnt; i++) {
3146 struct dp_netdev_flow *flow;
3147
3148 if (OVS_UNLIKELY(dp_packet_size(packets[i]) < ETH_HEADER_LEN)) {
3149 dp_packet_delete(packets[i]);
3150 continue;
3151 }
3152
3153 miniflow_extract(packets[i], &key.mf);
3154 key.len = 0; /* Not computed yet. */
3155 key.hash = dpif_netdev_packet_get_rss_hash(packets[i], &key.mf);
3156
3157 flow = emc_lookup(flow_cache, &key);
3158 if (OVS_LIKELY(flow)) {
3159 dp_netdev_queue_batches(packets[i], flow, &key.mf, batches,
3160 n_batches);
3161 } else {
3162 if (i != notfound_cnt) {
3163 dp_packet_swap(&packets[i], &packets[notfound_cnt]);
3164 }
3165
3166 keys[notfound_cnt++] = key;
3167 }
3168 }
3169
3170 dp_netdev_count_packet(pmd, DP_STAT_EXACT_HIT, cnt - notfound_cnt);
3171
3172 return notfound_cnt;
3173 }
3174
3175 static inline void
3176 fast_path_processing(struct dp_netdev_pmd_thread *pmd,
3177 struct dp_packet **packets, size_t cnt,
3178 struct netdev_flow_key *keys,
3179 struct packet_batch batches[], size_t *n_batches)
3180 {
3181 #if !defined(__CHECKER__) && !defined(_WIN32)
3182 const size_t PKT_ARRAY_SIZE = cnt;
3183 #else
3184 /* Sparse or MSVC doesn't like variable length array. */
3185 enum { PKT_ARRAY_SIZE = NETDEV_MAX_BURST };
3186 #endif
3187 struct dpcls_rule *rules[PKT_ARRAY_SIZE];
3188 struct dp_netdev *dp = pmd->dp;
3189 struct emc_cache *flow_cache = &pmd->flow_cache;
3190 int miss_cnt = 0, lost_cnt = 0;
3191 bool any_miss;
3192 size_t i;
3193
3194 for (i = 0; i < cnt; i++) {
3195 /* Key length is needed in all the cases, hash computed on demand. */
3196 keys[i].len = netdev_flow_key_size(count_1bits(keys[i].mf.map));
3197 }
3198 any_miss = !dpcls_lookup(&pmd->cls, keys, rules, cnt);
3199 if (OVS_UNLIKELY(any_miss) && !fat_rwlock_tryrdlock(&dp->upcall_rwlock)) {
3200 uint64_t actions_stub[512 / 8], slow_stub[512 / 8];
3201 struct ofpbuf actions, put_actions;
3202 ovs_u128 ufid;
3203
3204 ofpbuf_use_stub(&actions, actions_stub, sizeof actions_stub);
3205 ofpbuf_use_stub(&put_actions, slow_stub, sizeof slow_stub);
3206
3207 for (i = 0; i < cnt; i++) {
3208 struct dp_netdev_flow *netdev_flow;
3209 struct ofpbuf *add_actions;
3210 struct match match;
3211 int error;
3212
3213 if (OVS_LIKELY(rules[i])) {
3214 continue;
3215 }
3216
3217 /* It's possible that an earlier slow path execution installed
3218 * a rule covering this flow. In this case, it's a lot cheaper
3219 * to catch it here than execute a miss. */
3220 netdev_flow = dp_netdev_pmd_lookup_flow(pmd, &keys[i]);
3221 if (netdev_flow) {
3222 rules[i] = &netdev_flow->cr;
3223 continue;
3224 }
3225
3226 miss_cnt++;
3227
3228 miniflow_expand(&keys[i].mf, &match.flow);
3229
3230 ofpbuf_clear(&actions);
3231 ofpbuf_clear(&put_actions);
3232
3233 dpif_flow_hash(dp->dpif, &match.flow, sizeof match.flow, &ufid);
3234 error = dp_netdev_upcall(pmd, packets[i], &match.flow, &match.wc,
3235 &ufid, DPIF_UC_MISS, NULL, &actions,
3236 &put_actions);
3237 if (OVS_UNLIKELY(error && error != ENOSPC)) {
3238 dp_packet_delete(packets[i]);
3239 lost_cnt++;
3240 continue;
3241 }
3242
3243 /* We can't allow the packet batching in the next loop to execute
3244 * the actions. Otherwise, if there are any slow path actions,
3245 * we'll send the packet up twice. */
3246 dp_netdev_execute_actions(pmd, &packets[i], 1, true,
3247 actions.data, actions.size);
3248
3249 add_actions = put_actions.size ? &put_actions : &actions;
3250 if (OVS_LIKELY(error != ENOSPC)) {
3251 /* XXX: There's a race window where a flow covering this packet
3252 * could have already been installed since we last did the flow
3253 * lookup before upcall. This could be solved by moving the
3254 * mutex lock outside the loop, but that's an awful long time
3255 * to be locking everyone out of making flow installs. If we
3256 * move to a per-core classifier, it would be reasonable. */
3257 ovs_mutex_lock(&pmd->flow_mutex);
3258 netdev_flow = dp_netdev_pmd_lookup_flow(pmd, &keys[i]);
3259 if (OVS_LIKELY(!netdev_flow)) {
3260 netdev_flow = dp_netdev_flow_add(pmd, &match, &ufid,
3261 add_actions->data,
3262 add_actions->size);
3263 }
3264 ovs_mutex_unlock(&pmd->flow_mutex);
3265
3266 emc_insert(flow_cache, &keys[i], netdev_flow);
3267 }
3268 }
3269
3270 ofpbuf_uninit(&actions);
3271 ofpbuf_uninit(&put_actions);
3272 fat_rwlock_unlock(&dp->upcall_rwlock);
3273 dp_netdev_count_packet(pmd, DP_STAT_LOST, lost_cnt);
3274 } else if (OVS_UNLIKELY(any_miss)) {
3275 for (i = 0; i < cnt; i++) {
3276 if (OVS_UNLIKELY(!rules[i])) {
3277 dp_packet_delete(packets[i]);
3278 lost_cnt++;
3279 miss_cnt++;
3280 }
3281 }
3282 }
3283
3284 for (i = 0; i < cnt; i++) {
3285 struct dp_packet *packet = packets[i];
3286 struct dp_netdev_flow *flow;
3287
3288 if (OVS_UNLIKELY(!rules[i])) {
3289 continue;
3290 }
3291
3292 flow = dp_netdev_flow_cast(rules[i]);
3293
3294 emc_insert(flow_cache, &keys[i], flow);
3295 dp_netdev_queue_batches(packet, flow, &keys[i].mf, batches, n_batches);
3296 }
3297
3298 dp_netdev_count_packet(pmd, DP_STAT_MASKED_HIT, cnt - miss_cnt);
3299 dp_netdev_count_packet(pmd, DP_STAT_MISS, miss_cnt);
3300 dp_netdev_count_packet(pmd, DP_STAT_LOST, lost_cnt);
3301 }
3302
3303 static void
3304 dp_netdev_input(struct dp_netdev_pmd_thread *pmd,
3305 struct dp_packet **packets, int cnt)
3306 {
3307 #if !defined(__CHECKER__) && !defined(_WIN32)
3308 const size_t PKT_ARRAY_SIZE = cnt;
3309 #else
3310 /* Sparse or MSVC doesn't like variable length array. */
3311 enum { PKT_ARRAY_SIZE = NETDEV_MAX_BURST };
3312 #endif
3313 struct netdev_flow_key keys[PKT_ARRAY_SIZE];
3314 struct packet_batch batches[PKT_ARRAY_SIZE];
3315 long long now = time_msec();
3316 size_t newcnt, n_batches, i;
3317
3318 n_batches = 0;
3319 newcnt = emc_processing(pmd, packets, cnt, keys, batches, &n_batches);
3320 if (OVS_UNLIKELY(newcnt)) {
3321 fast_path_processing(pmd, packets, newcnt, keys, batches, &n_batches);
3322 }
3323
3324 for (i = 0; i < n_batches; i++) {
3325 batches[i].flow->batch = NULL;
3326 }
3327
3328 for (i = 0; i < n_batches; i++) {
3329 packet_batch_execute(&batches[i], pmd, now);
3330 }
3331 }
3332
3333 struct dp_netdev_execute_aux {
3334 struct dp_netdev_pmd_thread *pmd;
3335 };
3336
3337 static void
3338 dpif_netdev_register_upcall_cb(struct dpif *dpif, upcall_callback *cb,
3339 void *aux)
3340 {
3341 struct dp_netdev *dp = get_dp_netdev(dpif);
3342 dp->upcall_aux = aux;
3343 dp->upcall_cb = cb;
3344 }
3345
3346 static void
3347 dp_netdev_drop_packets(struct dp_packet **packets, int cnt, bool may_steal)
3348 {
3349 if (may_steal) {
3350 int i;
3351
3352 for (i = 0; i < cnt; i++) {
3353 dp_packet_delete(packets[i]);
3354 }
3355 }
3356 }
3357
3358 static int
3359 push_tnl_action(const struct dp_netdev *dp,
3360 const struct nlattr *attr,
3361 struct dp_packet **packets, int cnt)
3362 {
3363 struct dp_netdev_port *tun_port;
3364 const struct ovs_action_push_tnl *data;
3365
3366 data = nl_attr_get(attr);
3367
3368 tun_port = dp_netdev_lookup_port(dp, u32_to_odp(data->tnl_port));
3369 if (!tun_port) {
3370 return -EINVAL;
3371 }
3372 netdev_push_header(tun_port->netdev, packets, cnt, data);
3373
3374 return 0;
3375 }
3376
3377 static void
3378 dp_netdev_clone_pkt_batch(struct dp_packet **dst_pkts,
3379 struct dp_packet **src_pkts, int cnt)
3380 {
3381 int i;
3382
3383 for (i = 0; i < cnt; i++) {
3384 dst_pkts[i] = dp_packet_clone(src_pkts[i]);
3385 }
3386 }
3387
3388 static void
3389 dp_execute_cb(void *aux_, struct dp_packet **packets, int cnt,
3390 const struct nlattr *a, bool may_steal)
3391 OVS_NO_THREAD_SAFETY_ANALYSIS
3392 {
3393 struct dp_netdev_execute_aux *aux = aux_;
3394 uint32_t *depth = recirc_depth_get();
3395 struct dp_netdev_pmd_thread *pmd = aux->pmd;
3396 struct dp_netdev *dp = pmd->dp;
3397 int type = nl_attr_type(a);
3398 struct dp_netdev_port *p;
3399 int i;
3400
3401 switch ((enum ovs_action_attr)type) {
3402 case OVS_ACTION_ATTR_OUTPUT:
3403 p = dp_netdev_lookup_port(dp, u32_to_odp(nl_attr_get_u32(a)));
3404 if (OVS_LIKELY(p)) {
3405 netdev_send(p->netdev, pmd->tx_qid, packets, cnt, may_steal);
3406 return;
3407 }
3408 break;
3409
3410 case OVS_ACTION_ATTR_TUNNEL_PUSH:
3411 if (*depth < MAX_RECIRC_DEPTH) {
3412 struct dp_packet *tnl_pkt[NETDEV_MAX_BURST];
3413 int err;
3414
3415 if (!may_steal) {
3416 dp_netdev_clone_pkt_batch(tnl_pkt, packets, cnt);
3417 packets = tnl_pkt;
3418 }
3419
3420 err = push_tnl_action(dp, a, packets, cnt);
3421 if (!err) {
3422 (*depth)++;
3423 dp_netdev_input(pmd, packets, cnt);
3424 (*depth)--;
3425 } else {
3426 dp_netdev_drop_packets(tnl_pkt, cnt, !may_steal);
3427 }
3428 return;
3429 }
3430 break;
3431
3432 case OVS_ACTION_ATTR_TUNNEL_POP:
3433 if (*depth < MAX_RECIRC_DEPTH) {
3434 odp_port_t portno = u32_to_odp(nl_attr_get_u32(a));
3435
3436 p = dp_netdev_lookup_port(dp, portno);
3437 if (p) {
3438 struct dp_packet *tnl_pkt[NETDEV_MAX_BURST];
3439 int err;
3440
3441 if (!may_steal) {
3442 dp_netdev_clone_pkt_batch(tnl_pkt, packets, cnt);
3443 packets = tnl_pkt;
3444 }
3445
3446 err = netdev_pop_header(p->netdev, packets, cnt);
3447 if (!err) {
3448
3449 for (i = 0; i < cnt; i++) {
3450 packets[i]->md.in_port.odp_port = portno;
3451 }
3452
3453 (*depth)++;
3454 dp_netdev_input(pmd, packets, cnt);
3455 (*depth)--;
3456 } else {
3457 dp_netdev_drop_packets(tnl_pkt, cnt, !may_steal);
3458 }
3459 return;
3460 }
3461 }
3462 break;
3463
3464 case OVS_ACTION_ATTR_USERSPACE:
3465 if (!fat_rwlock_tryrdlock(&dp->upcall_rwlock)) {
3466 const struct nlattr *userdata;
3467 struct ofpbuf actions;
3468 struct flow flow;
3469 ovs_u128 ufid;
3470
3471 userdata = nl_attr_find_nested(a, OVS_USERSPACE_ATTR_USERDATA);
3472 ofpbuf_init(&actions, 0);
3473
3474 for (i = 0; i < cnt; i++) {
3475 int error;
3476
3477 ofpbuf_clear(&actions);
3478
3479 flow_extract(packets[i], &flow);
3480 dpif_flow_hash(dp->dpif, &flow, sizeof flow, &ufid);
3481 error = dp_netdev_upcall(pmd, packets[i], &flow, NULL, &ufid,
3482 DPIF_UC_ACTION, userdata,&actions,
3483 NULL);
3484 if (!error || error == ENOSPC) {
3485 dp_netdev_execute_actions(pmd, &packets[i], 1, may_steal,
3486 actions.data, actions.size);
3487 } else if (may_steal) {
3488 dp_packet_delete(packets[i]);
3489 }
3490 }
3491 ofpbuf_uninit(&actions);
3492 fat_rwlock_unlock(&dp->upcall_rwlock);
3493
3494 return;
3495 }
3496 break;
3497
3498 case OVS_ACTION_ATTR_RECIRC:
3499 if (*depth < MAX_RECIRC_DEPTH) {
3500 struct dp_packet *recirc_pkts[NETDEV_MAX_BURST];
3501
3502 if (!may_steal) {
3503 dp_netdev_clone_pkt_batch(recirc_pkts, packets, cnt);
3504 packets = recirc_pkts;
3505 }
3506
3507 for (i = 0; i < cnt; i++) {
3508 packets[i]->md.recirc_id = nl_attr_get_u32(a);
3509 }
3510
3511 (*depth)++;
3512 dp_netdev_input(pmd, packets, cnt);
3513 (*depth)--;
3514
3515 return;
3516 }
3517
3518 VLOG_WARN("Packet dropped. Max recirculation depth exceeded.");
3519 break;
3520
3521 case OVS_ACTION_ATTR_PUSH_VLAN:
3522 case OVS_ACTION_ATTR_POP_VLAN:
3523 case OVS_ACTION_ATTR_PUSH_MPLS:
3524 case OVS_ACTION_ATTR_POP_MPLS:
3525 case OVS_ACTION_ATTR_SET:
3526 case OVS_ACTION_ATTR_SET_MASKED:
3527 case OVS_ACTION_ATTR_SAMPLE:
3528 case OVS_ACTION_ATTR_HASH:
3529 case OVS_ACTION_ATTR_UNSPEC:
3530 case __OVS_ACTION_ATTR_MAX:
3531 OVS_NOT_REACHED();
3532 }
3533
3534 dp_netdev_drop_packets(packets, cnt, may_steal);
3535 }
3536
3537 static void
3538 dp_netdev_execute_actions(struct dp_netdev_pmd_thread *pmd,
3539 struct dp_packet **packets, int cnt,
3540 bool may_steal,
3541 const struct nlattr *actions, size_t actions_len)
3542 {
3543 struct dp_netdev_execute_aux aux = { pmd };
3544
3545 odp_execute_actions(&aux, packets, cnt, may_steal, actions,
3546 actions_len, dp_execute_cb);
3547 }
3548
3549 const struct dpif_class dpif_netdev_class = {
3550 "netdev",
3551 dpif_netdev_init,
3552 dpif_netdev_enumerate,
3553 dpif_netdev_port_open_type,
3554 dpif_netdev_open,
3555 dpif_netdev_close,
3556 dpif_netdev_destroy,
3557 dpif_netdev_run,
3558 dpif_netdev_wait,
3559 dpif_netdev_get_stats,
3560 dpif_netdev_port_add,
3561 dpif_netdev_port_del,
3562 dpif_netdev_port_query_by_number,
3563 dpif_netdev_port_query_by_name,
3564 NULL, /* port_get_pid */
3565 dpif_netdev_port_dump_start,
3566 dpif_netdev_port_dump_next,
3567 dpif_netdev_port_dump_done,
3568 dpif_netdev_port_poll,
3569 dpif_netdev_port_poll_wait,
3570 dpif_netdev_flow_flush,
3571 dpif_netdev_flow_dump_create,
3572 dpif_netdev_flow_dump_destroy,
3573 dpif_netdev_flow_dump_thread_create,
3574 dpif_netdev_flow_dump_thread_destroy,
3575 dpif_netdev_flow_dump_next,
3576 dpif_netdev_operate,
3577 NULL, /* recv_set */
3578 NULL, /* handlers_set */
3579 dpif_netdev_pmd_set,
3580 dpif_netdev_queue_to_priority,
3581 NULL, /* recv */
3582 NULL, /* recv_wait */
3583 NULL, /* recv_purge */
3584 dpif_netdev_register_upcall_cb,
3585 dpif_netdev_enable_upcall,
3586 dpif_netdev_disable_upcall,
3587 dpif_netdev_get_datapath_version,
3588 };
3589
3590 static void
3591 dpif_dummy_change_port_number(struct unixctl_conn *conn, int argc OVS_UNUSED,
3592 const char *argv[], void *aux OVS_UNUSED)
3593 {
3594 struct dp_netdev_port *old_port;
3595 struct dp_netdev_port *new_port;
3596 struct dp_netdev *dp;
3597 odp_port_t port_no;
3598
3599 ovs_mutex_lock(&dp_netdev_mutex);
3600 dp = shash_find_data(&dp_netdevs, argv[1]);
3601 if (!dp || !dpif_netdev_class_is_dummy(dp->class)) {
3602 ovs_mutex_unlock(&dp_netdev_mutex);
3603 unixctl_command_reply_error(conn, "unknown datapath or not a dummy");
3604 return;
3605 }
3606 ovs_refcount_ref(&dp->ref_cnt);
3607 ovs_mutex_unlock(&dp_netdev_mutex);
3608
3609 ovs_mutex_lock(&dp->port_mutex);
3610 if (get_port_by_name(dp, argv[2], &old_port)) {
3611 unixctl_command_reply_error(conn, "unknown port");
3612 goto exit;
3613 }
3614
3615 port_no = u32_to_odp(atoi(argv[3]));
3616 if (!port_no || port_no == ODPP_NONE) {
3617 unixctl_command_reply_error(conn, "bad port number");
3618 goto exit;
3619 }
3620 if (dp_netdev_lookup_port(dp, port_no)) {
3621 unixctl_command_reply_error(conn, "port number already in use");
3622 goto exit;
3623 }
3624
3625 /* Remove old port. */
3626 cmap_remove(&dp->ports, &old_port->node, hash_port_no(old_port->md.in_port.odp_port));
3627 ovsrcu_postpone(free, old_port);
3628
3629 /* Insert new port (cmap semantics mean we cannot re-insert 'old_port'). */
3630 new_port = xmemdup(old_port, sizeof *old_port);
3631 new_port->md.in_port.odp_port = port_no;
3632 cmap_insert(&dp->ports, &new_port->node, hash_port_no(port_no));
3633
3634 seq_change(dp->port_seq);
3635 unixctl_command_reply(conn, NULL);
3636
3637 exit:
3638 ovs_mutex_unlock(&dp->port_mutex);
3639 dp_netdev_unref(dp);
3640 }
3641
3642 static void
3643 dpif_dummy_delete_port(struct unixctl_conn *conn, int argc OVS_UNUSED,
3644 const char *argv[], void *aux OVS_UNUSED)
3645 {
3646 struct dp_netdev_port *port;
3647 struct dp_netdev *dp;
3648
3649 ovs_mutex_lock(&dp_netdev_mutex);
3650 dp = shash_find_data(&dp_netdevs, argv[1]);
3651 if (!dp || !dpif_netdev_class_is_dummy(dp->class)) {
3652 ovs_mutex_unlock(&dp_netdev_mutex);
3653 unixctl_command_reply_error(conn, "unknown datapath or not a dummy");
3654 return;
3655 }
3656 ovs_refcount_ref(&dp->ref_cnt);
3657 ovs_mutex_unlock(&dp_netdev_mutex);
3658
3659 ovs_mutex_lock(&dp->port_mutex);
3660 if (get_port_by_name(dp, argv[2], &port)) {
3661 unixctl_command_reply_error(conn, "unknown port");
3662 } else if (port->md.in_port.odp_port == ODPP_LOCAL) {
3663 unixctl_command_reply_error(conn, "can't delete local port");
3664 } else {
3665 do_del_port(dp, port);
3666 unixctl_command_reply(conn, NULL);
3667 }
3668 ovs_mutex_unlock(&dp->port_mutex);
3669
3670 dp_netdev_unref(dp);
3671 }
3672
3673 static void
3674 dpif_dummy_register__(const char *type)
3675 {
3676 struct dpif_class *class;
3677
3678 class = xmalloc(sizeof *class);
3679 *class = dpif_netdev_class;
3680 class->type = xstrdup(type);
3681 dp_register_provider(class);
3682 }
3683
3684 void
3685 dpif_dummy_register(bool override)
3686 {
3687 if (override) {
3688 struct sset types;
3689 const char *type;
3690
3691 sset_init(&types);
3692 dp_enumerate_types(&types);
3693 SSET_FOR_EACH (type, &types) {
3694 if (!dp_unregister_provider(type)) {
3695 dpif_dummy_register__(type);
3696 }
3697 }
3698 sset_destroy(&types);
3699 }
3700
3701 dpif_dummy_register__("dummy");
3702
3703 unixctl_command_register("dpif-dummy/change-port-number",
3704 "dp port new-number",
3705 3, 3, dpif_dummy_change_port_number, NULL);
3706 unixctl_command_register("dpif-dummy/delete-port", "dp port",
3707 2, 2, dpif_dummy_delete_port, NULL);
3708 }
3709 \f
3710 /* Datapath Classifier. */
3711
3712 /* A set of rules that all have the same fields wildcarded. */
3713 struct dpcls_subtable {
3714 /* The fields are only used by writers. */
3715 struct cmap_node cmap_node OVS_GUARDED; /* Within dpcls 'subtables_map'. */
3716
3717 /* These fields are accessed by readers. */
3718 struct cmap rules; /* Contains "struct dpcls_rule"s. */
3719 struct netdev_flow_key mask; /* Wildcards for fields (const). */
3720 /* 'mask' must be the last field, additional space is allocated here. */
3721 };
3722
3723 /* Initializes 'cls' as a classifier that initially contains no classification
3724 * rules. */
3725 static void
3726 dpcls_init(struct dpcls *cls)
3727 {
3728 cmap_init(&cls->subtables_map);
3729 pvector_init(&cls->subtables);
3730 }
3731
3732 static void
3733 dpcls_destroy_subtable(struct dpcls *cls, struct dpcls_subtable *subtable)
3734 {
3735 pvector_remove(&cls->subtables, subtable);
3736 cmap_remove(&cls->subtables_map, &subtable->cmap_node,
3737 subtable->mask.hash);
3738 cmap_destroy(&subtable->rules);
3739 ovsrcu_postpone(free, subtable);
3740 }
3741
3742 /* Destroys 'cls'. Rules within 'cls', if any, are not freed; this is the
3743 * caller's responsibility.
3744 * May only be called after all the readers have been terminated. */
3745 static void
3746 dpcls_destroy(struct dpcls *cls)
3747 {
3748 if (cls) {
3749 struct dpcls_subtable *subtable;
3750
3751 CMAP_FOR_EACH (subtable, cmap_node, &cls->subtables_map) {
3752 dpcls_destroy_subtable(cls, subtable);
3753 }
3754 cmap_destroy(&cls->subtables_map);
3755 pvector_destroy(&cls->subtables);
3756 }
3757 }
3758
3759 static struct dpcls_subtable *
3760 dpcls_create_subtable(struct dpcls *cls, const struct netdev_flow_key *mask)
3761 {
3762 struct dpcls_subtable *subtable;
3763
3764 /* Need to add one. */
3765 subtable = xmalloc(sizeof *subtable
3766 - sizeof subtable->mask.mf + mask->len);
3767 cmap_init(&subtable->rules);
3768 netdev_flow_key_clone(&subtable->mask, mask);
3769 cmap_insert(&cls->subtables_map, &subtable->cmap_node, mask->hash);
3770 pvector_insert(&cls->subtables, subtable, 0);
3771 pvector_publish(&cls->subtables);
3772
3773 return subtable;
3774 }
3775
3776 static inline struct dpcls_subtable *
3777 dpcls_find_subtable(struct dpcls *cls, const struct netdev_flow_key *mask)
3778 {
3779 struct dpcls_subtable *subtable;
3780
3781 CMAP_FOR_EACH_WITH_HASH (subtable, cmap_node, mask->hash,
3782 &cls->subtables_map) {
3783 if (netdev_flow_key_equal(&subtable->mask, mask)) {
3784 return subtable;
3785 }
3786 }
3787 return dpcls_create_subtable(cls, mask);
3788 }
3789
3790 /* Insert 'rule' into 'cls'. */
3791 static void
3792 dpcls_insert(struct dpcls *cls, struct dpcls_rule *rule,
3793 const struct netdev_flow_key *mask)
3794 {
3795 struct dpcls_subtable *subtable = dpcls_find_subtable(cls, mask);
3796
3797 rule->mask = &subtable->mask;
3798 cmap_insert(&subtable->rules, &rule->cmap_node, rule->flow.hash);
3799 }
3800
3801 /* Removes 'rule' from 'cls', also destructing the 'rule'. */
3802 static void
3803 dpcls_remove(struct dpcls *cls, struct dpcls_rule *rule)
3804 {
3805 struct dpcls_subtable *subtable;
3806
3807 ovs_assert(rule->mask);
3808
3809 INIT_CONTAINER(subtable, rule->mask, mask);
3810
3811 if (cmap_remove(&subtable->rules, &rule->cmap_node, rule->flow.hash)
3812 == 0) {
3813 dpcls_destroy_subtable(cls, subtable);
3814 pvector_publish(&cls->subtables);
3815 }
3816 }
3817
3818 /* Returns true if 'target' satisifies 'key' in 'mask', that is, if each 1-bit
3819 * in 'mask' the values in 'key' and 'target' are the same.
3820 *
3821 * Note: 'key' and 'mask' have the same mask, and 'key' is already masked. */
3822 static inline bool
3823 dpcls_rule_matches_key(const struct dpcls_rule *rule,
3824 const struct netdev_flow_key *target)
3825 {
3826 const uint64_t *keyp = rule->flow.mf.inline_values;
3827 const uint64_t *maskp = rule->mask->mf.inline_values;
3828 uint64_t target_u64;
3829
3830 NETDEV_FLOW_KEY_FOR_EACH_IN_MAP(target_u64, target, rule->flow.mf.map) {
3831 if (OVS_UNLIKELY((target_u64 & *maskp++) != *keyp++)) {
3832 return false;
3833 }
3834 }
3835 return true;
3836 }
3837
3838 /* For each miniflow in 'flows' performs a classifier lookup writing the result
3839 * into the corresponding slot in 'rules'. If a particular entry in 'flows' is
3840 * NULL it is skipped.
3841 *
3842 * This function is optimized for use in the userspace datapath and therefore
3843 * does not implement a lot of features available in the standard
3844 * classifier_lookup() function. Specifically, it does not implement
3845 * priorities, instead returning any rule which matches the flow.
3846 *
3847 * Returns true if all flows found a corresponding rule. */
3848 static bool
3849 dpcls_lookup(const struct dpcls *cls, const struct netdev_flow_key keys[],
3850 struct dpcls_rule **rules, const size_t cnt)
3851 {
3852 /* The batch size 16 was experimentally found faster than 8 or 32. */
3853 typedef uint16_t map_type;
3854 #define MAP_BITS (sizeof(map_type) * CHAR_BIT)
3855
3856 #if !defined(__CHECKER__) && !defined(_WIN32)
3857 const int N_MAPS = DIV_ROUND_UP(cnt, MAP_BITS);
3858 #else
3859 enum { N_MAPS = DIV_ROUND_UP(NETDEV_MAX_BURST, MAP_BITS) };
3860 #endif
3861 map_type maps[N_MAPS];
3862 struct dpcls_subtable *subtable;
3863
3864 memset(maps, 0xff, sizeof maps);
3865 if (cnt % MAP_BITS) {
3866 maps[N_MAPS - 1] >>= MAP_BITS - cnt % MAP_BITS; /* Clear extra bits. */
3867 }
3868 memset(rules, 0, cnt * sizeof *rules);
3869
3870 PVECTOR_FOR_EACH (subtable, &cls->subtables) {
3871 const struct netdev_flow_key *mkeys = keys;
3872 struct dpcls_rule **mrules = rules;
3873 map_type remains = 0;
3874 int m;
3875
3876 BUILD_ASSERT_DECL(sizeof remains == sizeof *maps);
3877
3878 for (m = 0; m < N_MAPS; m++, mkeys += MAP_BITS, mrules += MAP_BITS) {
3879 uint32_t hashes[MAP_BITS];
3880 const struct cmap_node *nodes[MAP_BITS];
3881 unsigned long map = maps[m];
3882 int i;
3883
3884 if (!map) {
3885 continue; /* Skip empty maps. */
3886 }
3887
3888 /* Compute hashes for the remaining keys. */
3889 ULONG_FOR_EACH_1(i, map) {
3890 hashes[i] = netdev_flow_key_hash_in_mask(&mkeys[i],
3891 &subtable->mask);
3892 }
3893 /* Lookup. */
3894 map = cmap_find_batch(&subtable->rules, map, hashes, nodes);
3895 /* Check results. */
3896 ULONG_FOR_EACH_1(i, map) {
3897 struct dpcls_rule *rule;
3898
3899 CMAP_NODE_FOR_EACH (rule, cmap_node, nodes[i]) {
3900 if (OVS_LIKELY(dpcls_rule_matches_key(rule, &mkeys[i]))) {
3901 mrules[i] = rule;
3902 goto next;
3903 }
3904 }
3905 ULONG_SET0(map, i); /* Did not match. */
3906 next:
3907 ; /* Keep Sparse happy. */
3908 }
3909 maps[m] &= ~map; /* Clear the found rules. */
3910 remains |= maps[m];
3911 }
3912 if (!remains) {
3913 return true; /* All found. */
3914 }
3915 }
3916 return false; /* Some misses. */
3917 }