]> git.proxmox.com Git - mirror_ovs.git/blob - lib/dpif-netdev.c
dpif-netdev: Avoid reading RSS hash when EMC is disabled.
[mirror_ovs.git] / lib / dpif-netdev.c
1 /*
2 * Copyright (c) 2009, 2010, 2011, 2012, 2013, 2014, 2016, 2017 Nicira, Inc.
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at:
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <config.h>
18 #include "dpif-netdev.h"
19
20 #include <ctype.h>
21 #include <errno.h>
22 #include <fcntl.h>
23 #include <inttypes.h>
24 #include <net/if.h>
25 #include <netinet/in.h>
26 #include <stdint.h>
27 #include <stdlib.h>
28 #include <string.h>
29 #include <sys/ioctl.h>
30 #include <sys/socket.h>
31 #include <sys/stat.h>
32 #include <unistd.h>
33
34 #ifdef DPDK_NETDEV
35 #include <rte_cycles.h>
36 #endif
37
38 #include "bitmap.h"
39 #include "cmap.h"
40 #include "conntrack.h"
41 #include "coverage.h"
42 #include "ct-dpif.h"
43 #include "csum.h"
44 #include "dp-packet.h"
45 #include "dpif.h"
46 #include "dpif-provider.h"
47 #include "dummy.h"
48 #include "fat-rwlock.h"
49 #include "flow.h"
50 #include "hmapx.h"
51 #include "id-pool.h"
52 #include "latch.h"
53 #include "netdev.h"
54 #include "netdev-vport.h"
55 #include "netlink.h"
56 #include "odp-execute.h"
57 #include "odp-util.h"
58 #include "openvswitch/dynamic-string.h"
59 #include "openvswitch/list.h"
60 #include "openvswitch/match.h"
61 #include "openvswitch/ofp-print.h"
62 #include "openvswitch/ofp-util.h"
63 #include "openvswitch/ofpbuf.h"
64 #include "openvswitch/shash.h"
65 #include "openvswitch/vlog.h"
66 #include "ovs-numa.h"
67 #include "ovs-rcu.h"
68 #include "packets.h"
69 #include "poll-loop.h"
70 #include "pvector.h"
71 #include "random.h"
72 #include "seq.h"
73 #include "smap.h"
74 #include "sset.h"
75 #include "timeval.h"
76 #include "tnl-neigh-cache.h"
77 #include "tnl-ports.h"
78 #include "unixctl.h"
79 #include "util.h"
80
81 VLOG_DEFINE_THIS_MODULE(dpif_netdev);
82
83 #define FLOW_DUMP_MAX_BATCH 50
84 /* Use per thread recirc_depth to prevent recirculation loop. */
85 #define MAX_RECIRC_DEPTH 5
86 DEFINE_STATIC_PER_THREAD_DATA(uint32_t, recirc_depth, 0)
87
88 /* Configuration parameters. */
89 enum { MAX_FLOWS = 65536 }; /* Maximum number of flows in flow table. */
90 enum { MAX_METERS = 65536 }; /* Maximum number of meters. */
91 enum { MAX_BANDS = 8 }; /* Maximum number of bands / meter. */
92 enum { N_METER_LOCKS = 64 }; /* Maximum number of meters. */
93
94 /* Protects against changes to 'dp_netdevs'. */
95 static struct ovs_mutex dp_netdev_mutex = OVS_MUTEX_INITIALIZER;
96
97 /* Contains all 'struct dp_netdev's. */
98 static struct shash dp_netdevs OVS_GUARDED_BY(dp_netdev_mutex)
99 = SHASH_INITIALIZER(&dp_netdevs);
100
101 static struct vlog_rate_limit upcall_rl = VLOG_RATE_LIMIT_INIT(600, 600);
102
103 #define DP_NETDEV_CS_SUPPORTED_MASK (CS_NEW | CS_ESTABLISHED | CS_RELATED \
104 | CS_INVALID | CS_REPLY_DIR | CS_TRACKED \
105 | CS_SRC_NAT | CS_DST_NAT)
106 #define DP_NETDEV_CS_UNSUPPORTED_MASK (~(uint32_t)DP_NETDEV_CS_SUPPORTED_MASK)
107
108 static struct odp_support dp_netdev_support = {
109 .max_vlan_headers = SIZE_MAX,
110 .max_mpls_depth = SIZE_MAX,
111 .recirc = true,
112 .ct_state = true,
113 .ct_zone = true,
114 .ct_mark = true,
115 .ct_label = true,
116 .ct_state_nat = true,
117 .ct_orig_tuple = true,
118 .ct_orig_tuple6 = true,
119 };
120
121 /* Stores a miniflow with inline values */
122
123 struct netdev_flow_key {
124 uint32_t hash; /* Hash function differs for different users. */
125 uint32_t len; /* Length of the following miniflow (incl. map). */
126 struct miniflow mf;
127 uint64_t buf[FLOW_MAX_PACKET_U64S];
128 };
129
130 /* Exact match cache for frequently used flows
131 *
132 * The cache uses a 32-bit hash of the packet (which can be the RSS hash) to
133 * search its entries for a miniflow that matches exactly the miniflow of the
134 * packet. It stores the 'dpcls_rule' (rule) that matches the miniflow.
135 *
136 * A cache entry holds a reference to its 'dp_netdev_flow'.
137 *
138 * A miniflow with a given hash can be in one of EM_FLOW_HASH_SEGS different
139 * entries. The 32-bit hash is split into EM_FLOW_HASH_SEGS values (each of
140 * them is EM_FLOW_HASH_SHIFT bits wide and the remainder is thrown away). Each
141 * value is the index of a cache entry where the miniflow could be.
142 *
143 *
144 * Thread-safety
145 * =============
146 *
147 * Each pmd_thread has its own private exact match cache.
148 * If dp_netdev_input is not called from a pmd thread, a mutex is used.
149 */
150
151 #define EM_FLOW_HASH_SHIFT 13
152 #define EM_FLOW_HASH_ENTRIES (1u << EM_FLOW_HASH_SHIFT)
153 #define EM_FLOW_HASH_MASK (EM_FLOW_HASH_ENTRIES - 1)
154 #define EM_FLOW_HASH_SEGS 2
155
156 /* Default EMC insert probability is 1 / DEFAULT_EM_FLOW_INSERT_INV_PROB */
157 #define DEFAULT_EM_FLOW_INSERT_INV_PROB 100
158 #define DEFAULT_EM_FLOW_INSERT_MIN (UINT32_MAX / \
159 DEFAULT_EM_FLOW_INSERT_INV_PROB)
160
161 struct emc_entry {
162 struct dp_netdev_flow *flow;
163 struct netdev_flow_key key; /* key.hash used for emc hash value. */
164 };
165
166 struct emc_cache {
167 struct emc_entry entries[EM_FLOW_HASH_ENTRIES];
168 int sweep_idx; /* For emc_cache_slow_sweep(). */
169 };
170
171 /* Iterate in the exact match cache through every entry that might contain a
172 * miniflow with hash 'HASH'. */
173 #define EMC_FOR_EACH_POS_WITH_HASH(EMC, CURRENT_ENTRY, HASH) \
174 for (uint32_t i__ = 0, srch_hash__ = (HASH); \
175 (CURRENT_ENTRY) = &(EMC)->entries[srch_hash__ & EM_FLOW_HASH_MASK], \
176 i__ < EM_FLOW_HASH_SEGS; \
177 i__++, srch_hash__ >>= EM_FLOW_HASH_SHIFT)
178 \f
179 /* Simple non-wildcarding single-priority classifier. */
180
181 /* Time in ms between successive optimizations of the dpcls subtable vector */
182 #define DPCLS_OPTIMIZATION_INTERVAL 1000
183
184 /* Time in ms of the interval in which rxq processing cycles used in
185 * rxq to pmd assignments is measured and stored. */
186 #define PMD_RXQ_INTERVAL_LEN 10000
187
188 /* Number of intervals for which cycles are stored
189 * and used during rxq to pmd assignment. */
190 #define PMD_RXQ_INTERVAL_MAX 6
191
192 struct dpcls {
193 struct cmap_node node; /* Within dp_netdev_pmd_thread.classifiers */
194 odp_port_t in_port;
195 struct cmap subtables_map;
196 struct pvector subtables;
197 };
198
199 /* A rule to be inserted to the classifier. */
200 struct dpcls_rule {
201 struct cmap_node cmap_node; /* Within struct dpcls_subtable 'rules'. */
202 struct netdev_flow_key *mask; /* Subtable's mask. */
203 struct netdev_flow_key flow; /* Matching key. */
204 /* 'flow' must be the last field, additional space is allocated here. */
205 };
206
207 static void dpcls_init(struct dpcls *);
208 static void dpcls_destroy(struct dpcls *);
209 static void dpcls_sort_subtable_vector(struct dpcls *);
210 static void dpcls_insert(struct dpcls *, struct dpcls_rule *,
211 const struct netdev_flow_key *mask);
212 static void dpcls_remove(struct dpcls *, struct dpcls_rule *);
213 static bool dpcls_lookup(struct dpcls *cls,
214 const struct netdev_flow_key keys[],
215 struct dpcls_rule **rules, size_t cnt,
216 int *num_lookups_p);
217 \f
218 /* Set of supported meter flags */
219 #define DP_SUPPORTED_METER_FLAGS_MASK \
220 (OFPMF13_STATS | OFPMF13_PKTPS | OFPMF13_KBPS | OFPMF13_BURST)
221
222 /* Set of supported meter band types */
223 #define DP_SUPPORTED_METER_BAND_TYPES \
224 ( 1 << OFPMBT13_DROP )
225
226 struct dp_meter_band {
227 struct ofputil_meter_band up; /* type, prec_level, pad, rate, burst_size */
228 uint32_t bucket; /* In 1/1000 packets (for PKTPS), or in bits (for KBPS) */
229 uint64_t packet_count;
230 uint64_t byte_count;
231 };
232
233 struct dp_meter {
234 uint16_t flags;
235 uint16_t n_bands;
236 uint32_t max_delta_t;
237 uint64_t used;
238 uint64_t packet_count;
239 uint64_t byte_count;
240 struct dp_meter_band bands[];
241 };
242
243 /* Datapath based on the network device interface from netdev.h.
244 *
245 *
246 * Thread-safety
247 * =============
248 *
249 * Some members, marked 'const', are immutable. Accessing other members
250 * requires synchronization, as noted in more detail below.
251 *
252 * Acquisition order is, from outermost to innermost:
253 *
254 * dp_netdev_mutex (global)
255 * port_mutex
256 * non_pmd_mutex
257 */
258 struct dp_netdev {
259 const struct dpif_class *const class;
260 const char *const name;
261 struct dpif *dpif;
262 struct ovs_refcount ref_cnt;
263 atomic_flag destroyed;
264
265 /* Ports.
266 *
267 * Any lookup into 'ports' or any access to the dp_netdev_ports found
268 * through 'ports' requires taking 'port_mutex'. */
269 struct ovs_mutex port_mutex;
270 struct hmap ports;
271 struct seq *port_seq; /* Incremented whenever a port changes. */
272
273 /* Meters. */
274 struct ovs_mutex meter_locks[N_METER_LOCKS];
275 struct dp_meter *meters[MAX_METERS]; /* Meter bands. */
276
277 /* Probability of EMC insertions is a factor of 'emc_insert_min'.*/
278 OVS_ALIGNED_VAR(CACHE_LINE_SIZE) atomic_uint32_t emc_insert_min;
279
280 /* Protects access to ofproto-dpif-upcall interface during revalidator
281 * thread synchronization. */
282 struct fat_rwlock upcall_rwlock;
283 upcall_callback *upcall_cb; /* Callback function for executing upcalls. */
284 void *upcall_aux;
285
286 /* Callback function for notifying the purging of dp flows (during
287 * reseting pmd deletion). */
288 dp_purge_callback *dp_purge_cb;
289 void *dp_purge_aux;
290
291 /* Stores all 'struct dp_netdev_pmd_thread's. */
292 struct cmap poll_threads;
293 /* id pool for per thread static_tx_qid. */
294 struct id_pool *tx_qid_pool;
295 struct ovs_mutex tx_qid_pool_mutex;
296
297 /* Protects the access of the 'struct dp_netdev_pmd_thread'
298 * instance for non-pmd thread. */
299 struct ovs_mutex non_pmd_mutex;
300
301 /* Each pmd thread will store its pointer to
302 * 'struct dp_netdev_pmd_thread' in 'per_pmd_key'. */
303 ovsthread_key_t per_pmd_key;
304
305 struct seq *reconfigure_seq;
306 uint64_t last_reconfigure_seq;
307
308 /* Cpu mask for pin of pmd threads. */
309 char *pmd_cmask;
310
311 uint64_t last_tnl_conf_seq;
312
313 struct conntrack conntrack;
314 };
315
316 static void meter_lock(const struct dp_netdev *dp, uint32_t meter_id)
317 OVS_ACQUIRES(dp->meter_locks[meter_id % N_METER_LOCKS])
318 {
319 ovs_mutex_lock(&dp->meter_locks[meter_id % N_METER_LOCKS]);
320 }
321
322 static void meter_unlock(const struct dp_netdev *dp, uint32_t meter_id)
323 OVS_RELEASES(dp->meter_locks[meter_id % N_METER_LOCKS])
324 {
325 ovs_mutex_unlock(&dp->meter_locks[meter_id % N_METER_LOCKS]);
326 }
327
328
329 static struct dp_netdev_port *dp_netdev_lookup_port(const struct dp_netdev *dp,
330 odp_port_t)
331 OVS_REQUIRES(dp->port_mutex);
332
333 enum dp_stat_type {
334 DP_STAT_EXACT_HIT, /* Packets that had an exact match (emc). */
335 DP_STAT_MASKED_HIT, /* Packets that matched in the flow table. */
336 DP_STAT_MISS, /* Packets that did not match. */
337 DP_STAT_LOST, /* Packets not passed up to the client. */
338 DP_STAT_LOOKUP_HIT, /* Number of subtable lookups for flow table
339 hits */
340 DP_N_STATS
341 };
342
343 enum pmd_cycles_counter_type {
344 PMD_CYCLES_IDLE, /* Cycles spent idle or unsuccessful polling */
345 PMD_CYCLES_PROCESSING, /* Cycles spent successfully polling and
346 * processing polled packets */
347 PMD_N_CYCLES
348 };
349
350 enum rxq_cycles_counter_type {
351 RXQ_CYCLES_PROC_CURR, /* Cycles spent successfully polling and
352 processing packets during the current
353 interval. */
354 RXQ_CYCLES_PROC_HIST, /* Total cycles of all intervals that are used
355 during rxq to pmd assignment. */
356 RXQ_N_CYCLES
357 };
358
359 #define XPS_TIMEOUT_MS 500LL
360
361 /* Contained by struct dp_netdev_port's 'rxqs' member. */
362 struct dp_netdev_rxq {
363 struct dp_netdev_port *port;
364 struct netdev_rxq *rx;
365 unsigned core_id; /* Core to which this queue should be
366 pinned. OVS_CORE_UNSPEC if the
367 queue doesn't need to be pinned to a
368 particular core. */
369 struct dp_netdev_pmd_thread *pmd; /* pmd thread that polls this queue. */
370
371 /* Counters of cycles spent successfully polling and processing pkts. */
372 atomic_ullong cycles[RXQ_N_CYCLES];
373 /* We store PMD_RXQ_INTERVAL_MAX intervals of data for an rxq and then
374 sum them to yield the cycles used for an rxq. */
375 atomic_ullong cycles_intrvl[PMD_RXQ_INTERVAL_MAX];
376 unsigned intrvl_idx; /* Write index for 'cycles_intrvl'. */
377 };
378
379 /* A port in a netdev-based datapath. */
380 struct dp_netdev_port {
381 odp_port_t port_no;
382 bool dynamic_txqs; /* If true XPS will be used. */
383 bool need_reconfigure; /* True if we should reconfigure netdev. */
384 struct netdev *netdev;
385 struct hmap_node node; /* Node in dp_netdev's 'ports'. */
386 struct netdev_saved_flags *sf;
387 struct dp_netdev_rxq *rxqs;
388 unsigned n_rxq; /* Number of elements in 'rxqs' */
389 unsigned *txq_used; /* Number of threads that use each tx queue. */
390 struct ovs_mutex txq_used_mutex;
391 char *type; /* Port type as requested by user. */
392 char *rxq_affinity_list; /* Requested affinity of rx queues. */
393 };
394
395 /* Contained by struct dp_netdev_flow's 'stats' member. */
396 struct dp_netdev_flow_stats {
397 atomic_llong used; /* Last used time, in monotonic msecs. */
398 atomic_ullong packet_count; /* Number of packets matched. */
399 atomic_ullong byte_count; /* Number of bytes matched. */
400 atomic_uint16_t tcp_flags; /* Bitwise-OR of seen tcp_flags values. */
401 };
402
403 /* A flow in 'dp_netdev_pmd_thread's 'flow_table'.
404 *
405 *
406 * Thread-safety
407 * =============
408 *
409 * Except near the beginning or ending of its lifespan, rule 'rule' belongs to
410 * its pmd thread's classifier. The text below calls this classifier 'cls'.
411 *
412 * Motivation
413 * ----------
414 *
415 * The thread safety rules described here for "struct dp_netdev_flow" are
416 * motivated by two goals:
417 *
418 * - Prevent threads that read members of "struct dp_netdev_flow" from
419 * reading bad data due to changes by some thread concurrently modifying
420 * those members.
421 *
422 * - Prevent two threads making changes to members of a given "struct
423 * dp_netdev_flow" from interfering with each other.
424 *
425 *
426 * Rules
427 * -----
428 *
429 * A flow 'flow' may be accessed without a risk of being freed during an RCU
430 * grace period. Code that needs to hold onto a flow for a while
431 * should try incrementing 'flow->ref_cnt' with dp_netdev_flow_ref().
432 *
433 * 'flow->ref_cnt' protects 'flow' from being freed. It doesn't protect the
434 * flow from being deleted from 'cls' and it doesn't protect members of 'flow'
435 * from modification.
436 *
437 * Some members, marked 'const', are immutable. Accessing other members
438 * requires synchronization, as noted in more detail below.
439 */
440 struct dp_netdev_flow {
441 const struct flow flow; /* Unmasked flow that created this entry. */
442 /* Hash table index by unmasked flow. */
443 const struct cmap_node node; /* In owning dp_netdev_pmd_thread's */
444 /* 'flow_table'. */
445 const ovs_u128 ufid; /* Unique flow identifier. */
446 const unsigned pmd_id; /* The 'core_id' of pmd thread owning this */
447 /* flow. */
448
449 /* Number of references.
450 * The classifier owns one reference.
451 * Any thread trying to keep a rule from being freed should hold its own
452 * reference. */
453 struct ovs_refcount ref_cnt;
454
455 bool dead;
456
457 /* Statistics. */
458 struct dp_netdev_flow_stats stats;
459
460 /* Actions. */
461 OVSRCU_TYPE(struct dp_netdev_actions *) actions;
462
463 /* While processing a group of input packets, the datapath uses the next
464 * member to store a pointer to the output batch for the flow. It is
465 * reset after the batch has been sent out (See dp_netdev_queue_batches(),
466 * packet_batch_per_flow_init() and packet_batch_per_flow_execute()). */
467 struct packet_batch_per_flow *batch;
468
469 /* Packet classification. */
470 struct dpcls_rule cr; /* In owning dp_netdev's 'cls'. */
471 /* 'cr' must be the last member. */
472 };
473
474 static void dp_netdev_flow_unref(struct dp_netdev_flow *);
475 static bool dp_netdev_flow_ref(struct dp_netdev_flow *);
476 static int dpif_netdev_flow_from_nlattrs(const struct nlattr *, uint32_t,
477 struct flow *, bool);
478
479 /* A set of datapath actions within a "struct dp_netdev_flow".
480 *
481 *
482 * Thread-safety
483 * =============
484 *
485 * A struct dp_netdev_actions 'actions' is protected with RCU. */
486 struct dp_netdev_actions {
487 /* These members are immutable: they do not change during the struct's
488 * lifetime. */
489 unsigned int size; /* Size of 'actions', in bytes. */
490 struct nlattr actions[]; /* Sequence of OVS_ACTION_ATTR_* attributes. */
491 };
492
493 struct dp_netdev_actions *dp_netdev_actions_create(const struct nlattr *,
494 size_t);
495 struct dp_netdev_actions *dp_netdev_flow_get_actions(
496 const struct dp_netdev_flow *);
497 static void dp_netdev_actions_free(struct dp_netdev_actions *);
498
499 /* Contained by struct dp_netdev_pmd_thread's 'stats' member. */
500 struct dp_netdev_pmd_stats {
501 /* Indexed by DP_STAT_*. */
502 atomic_ullong n[DP_N_STATS];
503 };
504
505 /* Contained by struct dp_netdev_pmd_thread's 'cycle' member. */
506 struct dp_netdev_pmd_cycles {
507 /* Indexed by PMD_CYCLES_*. */
508 atomic_ullong n[PMD_N_CYCLES];
509 };
510
511 struct polled_queue {
512 struct dp_netdev_rxq *rxq;
513 odp_port_t port_no;
514 };
515
516 /* Contained by struct dp_netdev_pmd_thread's 'poll_list' member. */
517 struct rxq_poll {
518 struct dp_netdev_rxq *rxq;
519 struct hmap_node node;
520 };
521
522 /* Contained by struct dp_netdev_pmd_thread's 'send_port_cache',
523 * 'tnl_port_cache' or 'tx_ports'. */
524 struct tx_port {
525 struct dp_netdev_port *port;
526 int qid;
527 long long last_used;
528 struct hmap_node node;
529 };
530
531 /* PMD: Poll modes drivers. PMD accesses devices via polling to eliminate
532 * the performance overhead of interrupt processing. Therefore netdev can
533 * not implement rx-wait for these devices. dpif-netdev needs to poll
534 * these device to check for recv buffer. pmd-thread does polling for
535 * devices assigned to itself.
536 *
537 * DPDK used PMD for accessing NIC.
538 *
539 * Note, instance with cpu core id NON_PMD_CORE_ID will be reserved for
540 * I/O of all non-pmd threads. There will be no actual thread created
541 * for the instance.
542 *
543 * Each struct has its own flow cache and classifier per managed ingress port.
544 * For packets received on ingress port, a look up is done on corresponding PMD
545 * thread's flow cache and in case of a miss, lookup is performed in the
546 * corresponding classifier of port. Packets are executed with the found
547 * actions in either case.
548 * */
549 struct dp_netdev_pmd_thread {
550 struct dp_netdev *dp;
551 struct ovs_refcount ref_cnt; /* Every reference must be refcount'ed. */
552 struct cmap_node node; /* In 'dp->poll_threads'. */
553
554 pthread_cond_t cond; /* For synchronizing pmd thread reload. */
555 struct ovs_mutex cond_mutex; /* Mutex for condition variable. */
556
557 /* Per thread exact-match cache. Note, the instance for cpu core
558 * NON_PMD_CORE_ID can be accessed by multiple threads, and thusly
559 * need to be protected by 'non_pmd_mutex'. Every other instance
560 * will only be accessed by its own pmd thread. */
561 struct emc_cache flow_cache;
562
563 /* Flow-Table and classifiers
564 *
565 * Writers of 'flow_table' must take the 'flow_mutex'. Corresponding
566 * changes to 'classifiers' must be made while still holding the
567 * 'flow_mutex'.
568 */
569 struct ovs_mutex flow_mutex;
570 struct cmap flow_table OVS_GUARDED; /* Flow table. */
571
572 /* One classifier per in_port polled by the pmd */
573 struct cmap classifiers;
574 /* Periodically sort subtable vectors according to hit frequencies */
575 long long int next_optimization;
576 /* End of the next time interval for which processing cycles
577 are stored for each polled rxq. */
578 long long int rxq_interval;
579
580 /* Statistics. */
581 struct dp_netdev_pmd_stats stats;
582
583 /* Cycles counters */
584 struct dp_netdev_pmd_cycles cycles;
585
586 /* Used to count cicles. See 'cycles_counter_end()' */
587 unsigned long long last_cycles;
588
589 struct latch exit_latch; /* For terminating the pmd thread. */
590 struct seq *reload_seq;
591 uint64_t last_reload_seq;
592 atomic_bool reload; /* Do we need to reload ports? */
593 pthread_t thread;
594 unsigned core_id; /* CPU core id of this pmd thread. */
595 int numa_id; /* numa node id of this pmd thread. */
596 bool isolated;
597
598 /* Queue id used by this pmd thread to send packets on all netdevs if
599 * XPS disabled for this netdev. All static_tx_qid's are unique and less
600 * than 'cmap_count(dp->poll_threads)'. */
601 uint32_t static_tx_qid;
602
603 struct ovs_mutex port_mutex; /* Mutex for 'poll_list' and 'tx_ports'. */
604 /* List of rx queues to poll. */
605 struct hmap poll_list OVS_GUARDED;
606 /* Map of 'tx_port's used for transmission. Written by the main thread,
607 * read by the pmd thread. */
608 struct hmap tx_ports OVS_GUARDED;
609
610 /* These are thread-local copies of 'tx_ports'. One contains only tunnel
611 * ports (that support push_tunnel/pop_tunnel), the other contains ports
612 * with at least one txq (that support send). A port can be in both.
613 *
614 * There are two separate maps to make sure that we don't try to execute
615 * OUTPUT on a device which has 0 txqs or PUSH/POP on a non-tunnel device.
616 *
617 * The instances for cpu core NON_PMD_CORE_ID can be accessed by multiple
618 * threads, and thusly need to be protected by 'non_pmd_mutex'. Every
619 * other instance will only be accessed by its own pmd thread. */
620 struct hmap tnl_port_cache;
621 struct hmap send_port_cache;
622
623 /* Only a pmd thread can write on its own 'cycles' and 'stats'.
624 * The main thread keeps 'stats_zero' and 'cycles_zero' as base
625 * values and subtracts them from 'stats' and 'cycles' before
626 * reporting to the user */
627 unsigned long long stats_zero[DP_N_STATS];
628 uint64_t cycles_zero[PMD_N_CYCLES];
629
630 /* Set to true if the pmd thread needs to be reloaded. */
631 bool need_reload;
632 };
633
634 /* Interface to netdev-based datapath. */
635 struct dpif_netdev {
636 struct dpif dpif;
637 struct dp_netdev *dp;
638 uint64_t last_port_seq;
639 };
640
641 static int get_port_by_number(struct dp_netdev *dp, odp_port_t port_no,
642 struct dp_netdev_port **portp)
643 OVS_REQUIRES(dp->port_mutex);
644 static int get_port_by_name(struct dp_netdev *dp, const char *devname,
645 struct dp_netdev_port **portp)
646 OVS_REQUIRES(dp->port_mutex);
647 static void dp_netdev_free(struct dp_netdev *)
648 OVS_REQUIRES(dp_netdev_mutex);
649 static int do_add_port(struct dp_netdev *dp, const char *devname,
650 const char *type, odp_port_t port_no)
651 OVS_REQUIRES(dp->port_mutex);
652 static void do_del_port(struct dp_netdev *dp, struct dp_netdev_port *)
653 OVS_REQUIRES(dp->port_mutex);
654 static int dpif_netdev_open(const struct dpif_class *, const char *name,
655 bool create, struct dpif **);
656 static void dp_netdev_execute_actions(struct dp_netdev_pmd_thread *pmd,
657 struct dp_packet_batch *,
658 bool may_steal, const struct flow *flow,
659 const struct nlattr *actions,
660 size_t actions_len,
661 long long now);
662 static void dp_netdev_input(struct dp_netdev_pmd_thread *,
663 struct dp_packet_batch *, odp_port_t port_no);
664 static void dp_netdev_recirculate(struct dp_netdev_pmd_thread *,
665 struct dp_packet_batch *);
666
667 static void dp_netdev_disable_upcall(struct dp_netdev *);
668 static void dp_netdev_pmd_reload_done(struct dp_netdev_pmd_thread *pmd);
669 static void dp_netdev_configure_pmd(struct dp_netdev_pmd_thread *pmd,
670 struct dp_netdev *dp, unsigned core_id,
671 int numa_id);
672 static void dp_netdev_destroy_pmd(struct dp_netdev_pmd_thread *pmd);
673 static void dp_netdev_set_nonpmd(struct dp_netdev *dp)
674 OVS_REQUIRES(dp->port_mutex);
675
676 static void *pmd_thread_main(void *);
677 static struct dp_netdev_pmd_thread *dp_netdev_get_pmd(struct dp_netdev *dp,
678 unsigned core_id);
679 static struct dp_netdev_pmd_thread *
680 dp_netdev_pmd_get_next(struct dp_netdev *dp, struct cmap_position *pos);
681 static void dp_netdev_del_pmd(struct dp_netdev *dp,
682 struct dp_netdev_pmd_thread *pmd);
683 static void dp_netdev_destroy_all_pmds(struct dp_netdev *dp, bool non_pmd);
684 static void dp_netdev_pmd_clear_ports(struct dp_netdev_pmd_thread *pmd);
685 static void dp_netdev_add_port_tx_to_pmd(struct dp_netdev_pmd_thread *pmd,
686 struct dp_netdev_port *port)
687 OVS_REQUIRES(pmd->port_mutex);
688 static void dp_netdev_del_port_tx_from_pmd(struct dp_netdev_pmd_thread *pmd,
689 struct tx_port *tx)
690 OVS_REQUIRES(pmd->port_mutex);
691 static void dp_netdev_add_rxq_to_pmd(struct dp_netdev_pmd_thread *pmd,
692 struct dp_netdev_rxq *rxq)
693 OVS_REQUIRES(pmd->port_mutex);
694 static void dp_netdev_del_rxq_from_pmd(struct dp_netdev_pmd_thread *pmd,
695 struct rxq_poll *poll)
696 OVS_REQUIRES(pmd->port_mutex);
697 static void reconfigure_datapath(struct dp_netdev *dp)
698 OVS_REQUIRES(dp->port_mutex);
699 static bool dp_netdev_pmd_try_ref(struct dp_netdev_pmd_thread *pmd);
700 static void dp_netdev_pmd_unref(struct dp_netdev_pmd_thread *pmd);
701 static void dp_netdev_pmd_flow_flush(struct dp_netdev_pmd_thread *pmd);
702 static void pmd_load_cached_ports(struct dp_netdev_pmd_thread *pmd)
703 OVS_REQUIRES(pmd->port_mutex);
704 static inline void
705 dp_netdev_pmd_try_optimize(struct dp_netdev_pmd_thread *pmd,
706 struct polled_queue *poll_list, int poll_cnt);
707 static void
708 dp_netdev_rxq_set_cycles(struct dp_netdev_rxq *rx,
709 enum rxq_cycles_counter_type type,
710 unsigned long long cycles);
711 static uint64_t
712 dp_netdev_rxq_get_cycles(struct dp_netdev_rxq *rx,
713 enum rxq_cycles_counter_type type);
714 static void
715 dp_netdev_rxq_set_intrvl_cycles(struct dp_netdev_rxq *rx,
716 unsigned long long cycles);
717 static uint64_t
718 dp_netdev_rxq_get_intrvl_cycles(struct dp_netdev_rxq *rx, unsigned idx);
719 static void
720 dpif_netdev_xps_revalidate_pmd(const struct dp_netdev_pmd_thread *pmd,
721 long long now, bool purge);
722 static int dpif_netdev_xps_get_tx_qid(const struct dp_netdev_pmd_thread *pmd,
723 struct tx_port *tx, long long now);
724
725 static inline bool emc_entry_alive(struct emc_entry *ce);
726 static void emc_clear_entry(struct emc_entry *ce);
727
728 static void dp_netdev_request_reconfigure(struct dp_netdev *dp);
729
730 static void
731 emc_cache_init(struct emc_cache *flow_cache)
732 {
733 int i;
734
735 flow_cache->sweep_idx = 0;
736 for (i = 0; i < ARRAY_SIZE(flow_cache->entries); i++) {
737 flow_cache->entries[i].flow = NULL;
738 flow_cache->entries[i].key.hash = 0;
739 flow_cache->entries[i].key.len = sizeof(struct miniflow);
740 flowmap_init(&flow_cache->entries[i].key.mf.map);
741 }
742 }
743
744 static void
745 emc_cache_uninit(struct emc_cache *flow_cache)
746 {
747 int i;
748
749 for (i = 0; i < ARRAY_SIZE(flow_cache->entries); i++) {
750 emc_clear_entry(&flow_cache->entries[i]);
751 }
752 }
753
754 /* Check and clear dead flow references slowly (one entry at each
755 * invocation). */
756 static void
757 emc_cache_slow_sweep(struct emc_cache *flow_cache)
758 {
759 struct emc_entry *entry = &flow_cache->entries[flow_cache->sweep_idx];
760
761 if (!emc_entry_alive(entry)) {
762 emc_clear_entry(entry);
763 }
764 flow_cache->sweep_idx = (flow_cache->sweep_idx + 1) & EM_FLOW_HASH_MASK;
765 }
766
767 /* Returns true if 'dpif' is a netdev or dummy dpif, false otherwise. */
768 bool
769 dpif_is_netdev(const struct dpif *dpif)
770 {
771 return dpif->dpif_class->open == dpif_netdev_open;
772 }
773
774 static struct dpif_netdev *
775 dpif_netdev_cast(const struct dpif *dpif)
776 {
777 ovs_assert(dpif_is_netdev(dpif));
778 return CONTAINER_OF(dpif, struct dpif_netdev, dpif);
779 }
780
781 static struct dp_netdev *
782 get_dp_netdev(const struct dpif *dpif)
783 {
784 return dpif_netdev_cast(dpif)->dp;
785 }
786 \f
787 enum pmd_info_type {
788 PMD_INFO_SHOW_STATS, /* Show how cpu cycles are spent. */
789 PMD_INFO_CLEAR_STATS, /* Set the cycles count to 0. */
790 PMD_INFO_SHOW_RXQ /* Show poll-lists of pmd threads. */
791 };
792
793 static void
794 pmd_info_show_stats(struct ds *reply,
795 struct dp_netdev_pmd_thread *pmd,
796 unsigned long long stats[DP_N_STATS],
797 uint64_t cycles[PMD_N_CYCLES])
798 {
799 unsigned long long total_packets;
800 uint64_t total_cycles = 0;
801 int i;
802
803 /* These loops subtracts reference values ('*_zero') from the counters.
804 * Since loads and stores are relaxed, it might be possible for a '*_zero'
805 * value to be more recent than the current value we're reading from the
806 * counter. This is not a big problem, since these numbers are not
807 * supposed to be too accurate, but we should at least make sure that
808 * the result is not negative. */
809 for (i = 0; i < DP_N_STATS; i++) {
810 if (stats[i] > pmd->stats_zero[i]) {
811 stats[i] -= pmd->stats_zero[i];
812 } else {
813 stats[i] = 0;
814 }
815 }
816
817 /* Sum of all the matched and not matched packets gives the total. */
818 total_packets = stats[DP_STAT_EXACT_HIT] + stats[DP_STAT_MASKED_HIT]
819 + stats[DP_STAT_MISS];
820
821 for (i = 0; i < PMD_N_CYCLES; i++) {
822 if (cycles[i] > pmd->cycles_zero[i]) {
823 cycles[i] -= pmd->cycles_zero[i];
824 } else {
825 cycles[i] = 0;
826 }
827
828 total_cycles += cycles[i];
829 }
830
831 ds_put_cstr(reply, (pmd->core_id == NON_PMD_CORE_ID)
832 ? "main thread" : "pmd thread");
833
834 if (pmd->numa_id != OVS_NUMA_UNSPEC) {
835 ds_put_format(reply, " numa_id %d", pmd->numa_id);
836 }
837 if (pmd->core_id != OVS_CORE_UNSPEC && pmd->core_id != NON_PMD_CORE_ID) {
838 ds_put_format(reply, " core_id %u", pmd->core_id);
839 }
840 ds_put_cstr(reply, ":\n");
841
842 ds_put_format(reply,
843 "\temc hits:%llu\n\tmegaflow hits:%llu\n"
844 "\tavg. subtable lookups per hit:%.2f\n"
845 "\tmiss:%llu\n\tlost:%llu\n",
846 stats[DP_STAT_EXACT_HIT], stats[DP_STAT_MASKED_HIT],
847 stats[DP_STAT_MASKED_HIT] > 0
848 ? (1.0*stats[DP_STAT_LOOKUP_HIT])/stats[DP_STAT_MASKED_HIT]
849 : 0,
850 stats[DP_STAT_MISS], stats[DP_STAT_LOST]);
851
852 if (total_cycles == 0) {
853 return;
854 }
855
856 ds_put_format(reply,
857 "\tidle cycles:%"PRIu64" (%.02f%%)\n"
858 "\tprocessing cycles:%"PRIu64" (%.02f%%)\n",
859 cycles[PMD_CYCLES_IDLE],
860 cycles[PMD_CYCLES_IDLE] / (double)total_cycles * 100,
861 cycles[PMD_CYCLES_PROCESSING],
862 cycles[PMD_CYCLES_PROCESSING] / (double)total_cycles * 100);
863
864 if (total_packets == 0) {
865 return;
866 }
867
868 ds_put_format(reply,
869 "\tavg cycles per packet: %.02f (%"PRIu64"/%llu)\n",
870 total_cycles / (double)total_packets,
871 total_cycles, total_packets);
872
873 ds_put_format(reply,
874 "\tavg processing cycles per packet: "
875 "%.02f (%"PRIu64"/%llu)\n",
876 cycles[PMD_CYCLES_PROCESSING] / (double)total_packets,
877 cycles[PMD_CYCLES_PROCESSING], total_packets);
878 }
879
880 static void
881 pmd_info_clear_stats(struct ds *reply OVS_UNUSED,
882 struct dp_netdev_pmd_thread *pmd,
883 unsigned long long stats[DP_N_STATS],
884 uint64_t cycles[PMD_N_CYCLES])
885 {
886 int i;
887
888 /* We cannot write 'stats' and 'cycles' (because they're written by other
889 * threads) and we shouldn't change 'stats' (because they're used to count
890 * datapath stats, which must not be cleared here). Instead, we save the
891 * current values and subtract them from the values to be displayed in the
892 * future */
893 for (i = 0; i < DP_N_STATS; i++) {
894 pmd->stats_zero[i] = stats[i];
895 }
896 for (i = 0; i < PMD_N_CYCLES; i++) {
897 pmd->cycles_zero[i] = cycles[i];
898 }
899 }
900
901 static int
902 compare_poll_list(const void *a_, const void *b_)
903 {
904 const struct rxq_poll *a = a_;
905 const struct rxq_poll *b = b_;
906
907 const char *namea = netdev_rxq_get_name(a->rxq->rx);
908 const char *nameb = netdev_rxq_get_name(b->rxq->rx);
909
910 int cmp = strcmp(namea, nameb);
911 if (!cmp) {
912 return netdev_rxq_get_queue_id(a->rxq->rx)
913 - netdev_rxq_get_queue_id(b->rxq->rx);
914 } else {
915 return cmp;
916 }
917 }
918
919 static void
920 sorted_poll_list(struct dp_netdev_pmd_thread *pmd, struct rxq_poll **list,
921 size_t *n)
922 {
923 struct rxq_poll *ret, *poll;
924 size_t i;
925
926 *n = hmap_count(&pmd->poll_list);
927 if (!*n) {
928 ret = NULL;
929 } else {
930 ret = xcalloc(*n, sizeof *ret);
931 i = 0;
932 HMAP_FOR_EACH (poll, node, &pmd->poll_list) {
933 ret[i] = *poll;
934 i++;
935 }
936 ovs_assert(i == *n);
937 qsort(ret, *n, sizeof *ret, compare_poll_list);
938 }
939
940 *list = ret;
941 }
942
943 static void
944 pmd_info_show_rxq(struct ds *reply, struct dp_netdev_pmd_thread *pmd)
945 {
946 if (pmd->core_id != NON_PMD_CORE_ID) {
947 const char *prev_name = NULL;
948 struct rxq_poll *list;
949 size_t i, n;
950
951 ds_put_format(reply,
952 "pmd thread numa_id %d core_id %u:\n\tisolated : %s\n",
953 pmd->numa_id, pmd->core_id, (pmd->isolated)
954 ? "true" : "false");
955
956 ovs_mutex_lock(&pmd->port_mutex);
957 sorted_poll_list(pmd, &list, &n);
958 for (i = 0; i < n; i++) {
959 const char *name = netdev_rxq_get_name(list[i].rxq->rx);
960
961 if (!prev_name || strcmp(name, prev_name)) {
962 if (prev_name) {
963 ds_put_cstr(reply, "\n");
964 }
965 ds_put_format(reply, "\tport: %s\tqueue-id:", name);
966 }
967 ds_put_format(reply, " %d",
968 netdev_rxq_get_queue_id(list[i].rxq->rx));
969 prev_name = name;
970 }
971 ovs_mutex_unlock(&pmd->port_mutex);
972 ds_put_cstr(reply, "\n");
973 free(list);
974 }
975 }
976
977 static int
978 compare_poll_thread_list(const void *a_, const void *b_)
979 {
980 const struct dp_netdev_pmd_thread *a, *b;
981
982 a = *(struct dp_netdev_pmd_thread **)a_;
983 b = *(struct dp_netdev_pmd_thread **)b_;
984
985 if (a->core_id < b->core_id) {
986 return -1;
987 }
988 if (a->core_id > b->core_id) {
989 return 1;
990 }
991 return 0;
992 }
993
994 /* Create a sorted list of pmd's from the dp->poll_threads cmap. We can use
995 * this list, as long as we do not go to quiescent state. */
996 static void
997 sorted_poll_thread_list(struct dp_netdev *dp,
998 struct dp_netdev_pmd_thread ***list,
999 size_t *n)
1000 {
1001 struct dp_netdev_pmd_thread *pmd;
1002 struct dp_netdev_pmd_thread **pmd_list;
1003 size_t k = 0, n_pmds;
1004
1005 n_pmds = cmap_count(&dp->poll_threads);
1006 pmd_list = xcalloc(n_pmds, sizeof *pmd_list);
1007
1008 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
1009 if (k >= n_pmds) {
1010 break;
1011 }
1012 pmd_list[k++] = pmd;
1013 }
1014
1015 qsort(pmd_list, k, sizeof *pmd_list, compare_poll_thread_list);
1016
1017 *list = pmd_list;
1018 *n = k;
1019 }
1020
1021 static void
1022 dpif_netdev_pmd_rebalance(struct unixctl_conn *conn, int argc,
1023 const char *argv[], void *aux OVS_UNUSED)
1024 {
1025 struct ds reply = DS_EMPTY_INITIALIZER;
1026 struct dp_netdev *dp = NULL;
1027
1028 ovs_mutex_lock(&dp_netdev_mutex);
1029
1030 if (argc == 2) {
1031 dp = shash_find_data(&dp_netdevs, argv[1]);
1032 } else if (shash_count(&dp_netdevs) == 1) {
1033 /* There's only one datapath */
1034 dp = shash_first(&dp_netdevs)->data;
1035 }
1036
1037 if (!dp) {
1038 ovs_mutex_unlock(&dp_netdev_mutex);
1039 unixctl_command_reply_error(conn,
1040 "please specify an existing datapath");
1041 return;
1042 }
1043
1044 dp_netdev_request_reconfigure(dp);
1045 ovs_mutex_unlock(&dp_netdev_mutex);
1046 ds_put_cstr(&reply, "pmd rxq rebalance requested.\n");
1047 unixctl_command_reply(conn, ds_cstr(&reply));
1048 ds_destroy(&reply);
1049 }
1050
1051 static void
1052 dpif_netdev_pmd_info(struct unixctl_conn *conn, int argc, const char *argv[],
1053 void *aux)
1054 {
1055 struct ds reply = DS_EMPTY_INITIALIZER;
1056 struct dp_netdev_pmd_thread **pmd_list;
1057 struct dp_netdev *dp = NULL;
1058 size_t n;
1059 enum pmd_info_type type = *(enum pmd_info_type *) aux;
1060
1061 ovs_mutex_lock(&dp_netdev_mutex);
1062
1063 if (argc == 2) {
1064 dp = shash_find_data(&dp_netdevs, argv[1]);
1065 } else if (shash_count(&dp_netdevs) == 1) {
1066 /* There's only one datapath */
1067 dp = shash_first(&dp_netdevs)->data;
1068 }
1069
1070 if (!dp) {
1071 ovs_mutex_unlock(&dp_netdev_mutex);
1072 unixctl_command_reply_error(conn,
1073 "please specify an existing datapath");
1074 return;
1075 }
1076
1077 sorted_poll_thread_list(dp, &pmd_list, &n);
1078 for (size_t i = 0; i < n; i++) {
1079 struct dp_netdev_pmd_thread *pmd = pmd_list[i];
1080 if (!pmd) {
1081 break;
1082 }
1083
1084 if (type == PMD_INFO_SHOW_RXQ) {
1085 pmd_info_show_rxq(&reply, pmd);
1086 } else {
1087 unsigned long long stats[DP_N_STATS];
1088 uint64_t cycles[PMD_N_CYCLES];
1089
1090 /* Read current stats and cycle counters */
1091 for (size_t j = 0; j < ARRAY_SIZE(stats); j++) {
1092 atomic_read_relaxed(&pmd->stats.n[j], &stats[j]);
1093 }
1094 for (size_t j = 0; j < ARRAY_SIZE(cycles); j++) {
1095 atomic_read_relaxed(&pmd->cycles.n[j], &cycles[j]);
1096 }
1097
1098 if (type == PMD_INFO_CLEAR_STATS) {
1099 pmd_info_clear_stats(&reply, pmd, stats, cycles);
1100 } else if (type == PMD_INFO_SHOW_STATS) {
1101 pmd_info_show_stats(&reply, pmd, stats, cycles);
1102 }
1103 }
1104 }
1105 free(pmd_list);
1106
1107 ovs_mutex_unlock(&dp_netdev_mutex);
1108
1109 unixctl_command_reply(conn, ds_cstr(&reply));
1110 ds_destroy(&reply);
1111 }
1112 \f
1113 static int
1114 dpif_netdev_init(void)
1115 {
1116 static enum pmd_info_type show_aux = PMD_INFO_SHOW_STATS,
1117 clear_aux = PMD_INFO_CLEAR_STATS,
1118 poll_aux = PMD_INFO_SHOW_RXQ;
1119
1120 unixctl_command_register("dpif-netdev/pmd-stats-show", "[dp]",
1121 0, 1, dpif_netdev_pmd_info,
1122 (void *)&show_aux);
1123 unixctl_command_register("dpif-netdev/pmd-stats-clear", "[dp]",
1124 0, 1, dpif_netdev_pmd_info,
1125 (void *)&clear_aux);
1126 unixctl_command_register("dpif-netdev/pmd-rxq-show", "[dp]",
1127 0, 1, dpif_netdev_pmd_info,
1128 (void *)&poll_aux);
1129 unixctl_command_register("dpif-netdev/pmd-rxq-rebalance", "[dp]",
1130 0, 1, dpif_netdev_pmd_rebalance,
1131 NULL);
1132 return 0;
1133 }
1134
1135 static int
1136 dpif_netdev_enumerate(struct sset *all_dps,
1137 const struct dpif_class *dpif_class)
1138 {
1139 struct shash_node *node;
1140
1141 ovs_mutex_lock(&dp_netdev_mutex);
1142 SHASH_FOR_EACH(node, &dp_netdevs) {
1143 struct dp_netdev *dp = node->data;
1144 if (dpif_class != dp->class) {
1145 /* 'dp_netdevs' contains both "netdev" and "dummy" dpifs.
1146 * If the class doesn't match, skip this dpif. */
1147 continue;
1148 }
1149 sset_add(all_dps, node->name);
1150 }
1151 ovs_mutex_unlock(&dp_netdev_mutex);
1152
1153 return 0;
1154 }
1155
1156 static bool
1157 dpif_netdev_class_is_dummy(const struct dpif_class *class)
1158 {
1159 return class != &dpif_netdev_class;
1160 }
1161
1162 static const char *
1163 dpif_netdev_port_open_type(const struct dpif_class *class, const char *type)
1164 {
1165 return strcmp(type, "internal") ? type
1166 : dpif_netdev_class_is_dummy(class) ? "dummy-internal"
1167 : "tap";
1168 }
1169
1170 static struct dpif *
1171 create_dpif_netdev(struct dp_netdev *dp)
1172 {
1173 uint16_t netflow_id = hash_string(dp->name, 0);
1174 struct dpif_netdev *dpif;
1175
1176 ovs_refcount_ref(&dp->ref_cnt);
1177
1178 dpif = xmalloc(sizeof *dpif);
1179 dpif_init(&dpif->dpif, dp->class, dp->name, netflow_id >> 8, netflow_id);
1180 dpif->dp = dp;
1181 dpif->last_port_seq = seq_read(dp->port_seq);
1182
1183 return &dpif->dpif;
1184 }
1185
1186 /* Choose an unused, non-zero port number and return it on success.
1187 * Return ODPP_NONE on failure. */
1188 static odp_port_t
1189 choose_port(struct dp_netdev *dp, const char *name)
1190 OVS_REQUIRES(dp->port_mutex)
1191 {
1192 uint32_t port_no;
1193
1194 if (dp->class != &dpif_netdev_class) {
1195 const char *p;
1196 int start_no = 0;
1197
1198 /* If the port name begins with "br", start the number search at
1199 * 100 to make writing tests easier. */
1200 if (!strncmp(name, "br", 2)) {
1201 start_no = 100;
1202 }
1203
1204 /* If the port name contains a number, try to assign that port number.
1205 * This can make writing unit tests easier because port numbers are
1206 * predictable. */
1207 for (p = name; *p != '\0'; p++) {
1208 if (isdigit((unsigned char) *p)) {
1209 port_no = start_no + strtol(p, NULL, 10);
1210 if (port_no > 0 && port_no != odp_to_u32(ODPP_NONE)
1211 && !dp_netdev_lookup_port(dp, u32_to_odp(port_no))) {
1212 return u32_to_odp(port_no);
1213 }
1214 break;
1215 }
1216 }
1217 }
1218
1219 for (port_no = 1; port_no <= UINT16_MAX; port_no++) {
1220 if (!dp_netdev_lookup_port(dp, u32_to_odp(port_no))) {
1221 return u32_to_odp(port_no);
1222 }
1223 }
1224
1225 return ODPP_NONE;
1226 }
1227
1228 static int
1229 create_dp_netdev(const char *name, const struct dpif_class *class,
1230 struct dp_netdev **dpp)
1231 OVS_REQUIRES(dp_netdev_mutex)
1232 {
1233 struct dp_netdev *dp;
1234 int error;
1235
1236 dp = xzalloc(sizeof *dp);
1237 shash_add(&dp_netdevs, name, dp);
1238
1239 *CONST_CAST(const struct dpif_class **, &dp->class) = class;
1240 *CONST_CAST(const char **, &dp->name) = xstrdup(name);
1241 ovs_refcount_init(&dp->ref_cnt);
1242 atomic_flag_clear(&dp->destroyed);
1243
1244 ovs_mutex_init(&dp->port_mutex);
1245 hmap_init(&dp->ports);
1246 dp->port_seq = seq_create();
1247 fat_rwlock_init(&dp->upcall_rwlock);
1248
1249 dp->reconfigure_seq = seq_create();
1250 dp->last_reconfigure_seq = seq_read(dp->reconfigure_seq);
1251
1252 for (int i = 0; i < N_METER_LOCKS; ++i) {
1253 ovs_mutex_init_adaptive(&dp->meter_locks[i]);
1254 }
1255
1256 /* Disable upcalls by default. */
1257 dp_netdev_disable_upcall(dp);
1258 dp->upcall_aux = NULL;
1259 dp->upcall_cb = NULL;
1260
1261 conntrack_init(&dp->conntrack);
1262
1263 atomic_init(&dp->emc_insert_min, DEFAULT_EM_FLOW_INSERT_MIN);
1264
1265 cmap_init(&dp->poll_threads);
1266
1267 ovs_mutex_init(&dp->tx_qid_pool_mutex);
1268 /* We need 1 Tx queue for each possible core + 1 for non-PMD threads. */
1269 dp->tx_qid_pool = id_pool_create(0, ovs_numa_get_n_cores() + 1);
1270
1271 ovs_mutex_init_recursive(&dp->non_pmd_mutex);
1272 ovsthread_key_create(&dp->per_pmd_key, NULL);
1273
1274 ovs_mutex_lock(&dp->port_mutex);
1275 /* non-PMD will be created before all other threads and will
1276 * allocate static_tx_qid = 0. */
1277 dp_netdev_set_nonpmd(dp);
1278
1279 error = do_add_port(dp, name, dpif_netdev_port_open_type(dp->class,
1280 "internal"),
1281 ODPP_LOCAL);
1282 ovs_mutex_unlock(&dp->port_mutex);
1283 if (error) {
1284 dp_netdev_free(dp);
1285 return error;
1286 }
1287
1288 dp->last_tnl_conf_seq = seq_read(tnl_conf_seq);
1289 *dpp = dp;
1290 return 0;
1291 }
1292
1293 static void
1294 dp_netdev_request_reconfigure(struct dp_netdev *dp)
1295 {
1296 seq_change(dp->reconfigure_seq);
1297 }
1298
1299 static bool
1300 dp_netdev_is_reconf_required(struct dp_netdev *dp)
1301 {
1302 return seq_read(dp->reconfigure_seq) != dp->last_reconfigure_seq;
1303 }
1304
1305 static int
1306 dpif_netdev_open(const struct dpif_class *class, const char *name,
1307 bool create, struct dpif **dpifp)
1308 {
1309 struct dp_netdev *dp;
1310 int error;
1311
1312 ovs_mutex_lock(&dp_netdev_mutex);
1313 dp = shash_find_data(&dp_netdevs, name);
1314 if (!dp) {
1315 error = create ? create_dp_netdev(name, class, &dp) : ENODEV;
1316 } else {
1317 error = (dp->class != class ? EINVAL
1318 : create ? EEXIST
1319 : 0);
1320 }
1321 if (!error) {
1322 *dpifp = create_dpif_netdev(dp);
1323 dp->dpif = *dpifp;
1324 }
1325 ovs_mutex_unlock(&dp_netdev_mutex);
1326
1327 return error;
1328 }
1329
1330 static void
1331 dp_netdev_destroy_upcall_lock(struct dp_netdev *dp)
1332 OVS_NO_THREAD_SAFETY_ANALYSIS
1333 {
1334 /* Check that upcalls are disabled, i.e. that the rwlock is taken */
1335 ovs_assert(fat_rwlock_tryrdlock(&dp->upcall_rwlock));
1336
1337 /* Before freeing a lock we should release it */
1338 fat_rwlock_unlock(&dp->upcall_rwlock);
1339 fat_rwlock_destroy(&dp->upcall_rwlock);
1340 }
1341
1342 static void
1343 dp_delete_meter(struct dp_netdev *dp, uint32_t meter_id)
1344 OVS_REQUIRES(dp->meter_locks[meter_id % N_METER_LOCKS])
1345 {
1346 if (dp->meters[meter_id]) {
1347 free(dp->meters[meter_id]);
1348 dp->meters[meter_id] = NULL;
1349 }
1350 }
1351
1352 /* Requires dp_netdev_mutex so that we can't get a new reference to 'dp'
1353 * through the 'dp_netdevs' shash while freeing 'dp'. */
1354 static void
1355 dp_netdev_free(struct dp_netdev *dp)
1356 OVS_REQUIRES(dp_netdev_mutex)
1357 {
1358 struct dp_netdev_port *port, *next;
1359
1360 shash_find_and_delete(&dp_netdevs, dp->name);
1361
1362 ovs_mutex_lock(&dp->port_mutex);
1363 HMAP_FOR_EACH_SAFE (port, next, node, &dp->ports) {
1364 do_del_port(dp, port);
1365 }
1366 ovs_mutex_unlock(&dp->port_mutex);
1367
1368 dp_netdev_destroy_all_pmds(dp, true);
1369 cmap_destroy(&dp->poll_threads);
1370
1371 ovs_mutex_destroy(&dp->tx_qid_pool_mutex);
1372 id_pool_destroy(dp->tx_qid_pool);
1373
1374 ovs_mutex_destroy(&dp->non_pmd_mutex);
1375 ovsthread_key_delete(dp->per_pmd_key);
1376
1377 conntrack_destroy(&dp->conntrack);
1378
1379
1380 seq_destroy(dp->reconfigure_seq);
1381
1382 seq_destroy(dp->port_seq);
1383 hmap_destroy(&dp->ports);
1384 ovs_mutex_destroy(&dp->port_mutex);
1385
1386 /* Upcalls must be disabled at this point */
1387 dp_netdev_destroy_upcall_lock(dp);
1388
1389 int i;
1390
1391 for (i = 0; i < MAX_METERS; ++i) {
1392 meter_lock(dp, i);
1393 dp_delete_meter(dp, i);
1394 meter_unlock(dp, i);
1395 }
1396 for (i = 0; i < N_METER_LOCKS; ++i) {
1397 ovs_mutex_destroy(&dp->meter_locks[i]);
1398 }
1399
1400 free(dp->pmd_cmask);
1401 free(CONST_CAST(char *, dp->name));
1402 free(dp);
1403 }
1404
1405 static void
1406 dp_netdev_unref(struct dp_netdev *dp)
1407 {
1408 if (dp) {
1409 /* Take dp_netdev_mutex so that, if dp->ref_cnt falls to zero, we can't
1410 * get a new reference to 'dp' through the 'dp_netdevs' shash. */
1411 ovs_mutex_lock(&dp_netdev_mutex);
1412 if (ovs_refcount_unref_relaxed(&dp->ref_cnt) == 1) {
1413 dp_netdev_free(dp);
1414 }
1415 ovs_mutex_unlock(&dp_netdev_mutex);
1416 }
1417 }
1418
1419 static void
1420 dpif_netdev_close(struct dpif *dpif)
1421 {
1422 struct dp_netdev *dp = get_dp_netdev(dpif);
1423
1424 dp_netdev_unref(dp);
1425 free(dpif);
1426 }
1427
1428 static int
1429 dpif_netdev_destroy(struct dpif *dpif)
1430 {
1431 struct dp_netdev *dp = get_dp_netdev(dpif);
1432
1433 if (!atomic_flag_test_and_set(&dp->destroyed)) {
1434 if (ovs_refcount_unref_relaxed(&dp->ref_cnt) == 1) {
1435 /* Can't happen: 'dpif' still owns a reference to 'dp'. */
1436 OVS_NOT_REACHED();
1437 }
1438 }
1439
1440 return 0;
1441 }
1442
1443 /* Add 'n' to the atomic variable 'var' non-atomically and using relaxed
1444 * load/store semantics. While the increment is not atomic, the load and
1445 * store operations are, making it impossible to read inconsistent values.
1446 *
1447 * This is used to update thread local stats counters. */
1448 static void
1449 non_atomic_ullong_add(atomic_ullong *var, unsigned long long n)
1450 {
1451 unsigned long long tmp;
1452
1453 atomic_read_relaxed(var, &tmp);
1454 tmp += n;
1455 atomic_store_relaxed(var, tmp);
1456 }
1457
1458 static int
1459 dpif_netdev_get_stats(const struct dpif *dpif, struct dpif_dp_stats *stats)
1460 {
1461 struct dp_netdev *dp = get_dp_netdev(dpif);
1462 struct dp_netdev_pmd_thread *pmd;
1463
1464 stats->n_flows = stats->n_hit = stats->n_missed = stats->n_lost = 0;
1465 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
1466 unsigned long long n;
1467 stats->n_flows += cmap_count(&pmd->flow_table);
1468
1469 atomic_read_relaxed(&pmd->stats.n[DP_STAT_MASKED_HIT], &n);
1470 stats->n_hit += n;
1471 atomic_read_relaxed(&pmd->stats.n[DP_STAT_EXACT_HIT], &n);
1472 stats->n_hit += n;
1473 atomic_read_relaxed(&pmd->stats.n[DP_STAT_MISS], &n);
1474 stats->n_missed += n;
1475 atomic_read_relaxed(&pmd->stats.n[DP_STAT_LOST], &n);
1476 stats->n_lost += n;
1477 }
1478 stats->n_masks = UINT32_MAX;
1479 stats->n_mask_hit = UINT64_MAX;
1480
1481 return 0;
1482 }
1483
1484 static void
1485 dp_netdev_reload_pmd__(struct dp_netdev_pmd_thread *pmd)
1486 {
1487 if (pmd->core_id == NON_PMD_CORE_ID) {
1488 ovs_mutex_lock(&pmd->dp->non_pmd_mutex);
1489 ovs_mutex_lock(&pmd->port_mutex);
1490 pmd_load_cached_ports(pmd);
1491 ovs_mutex_unlock(&pmd->port_mutex);
1492 ovs_mutex_unlock(&pmd->dp->non_pmd_mutex);
1493 return;
1494 }
1495
1496 ovs_mutex_lock(&pmd->cond_mutex);
1497 seq_change(pmd->reload_seq);
1498 atomic_store_relaxed(&pmd->reload, true);
1499 ovs_mutex_cond_wait(&pmd->cond, &pmd->cond_mutex);
1500 ovs_mutex_unlock(&pmd->cond_mutex);
1501 }
1502
1503 static uint32_t
1504 hash_port_no(odp_port_t port_no)
1505 {
1506 return hash_int(odp_to_u32(port_no), 0);
1507 }
1508
1509 static int
1510 port_create(const char *devname, const char *type,
1511 odp_port_t port_no, struct dp_netdev_port **portp)
1512 {
1513 struct netdev_saved_flags *sf;
1514 struct dp_netdev_port *port;
1515 enum netdev_flags flags;
1516 struct netdev *netdev;
1517 int error;
1518
1519 *portp = NULL;
1520
1521 /* Open and validate network device. */
1522 error = netdev_open(devname, type, &netdev);
1523 if (error) {
1524 return error;
1525 }
1526 /* XXX reject non-Ethernet devices */
1527
1528 netdev_get_flags(netdev, &flags);
1529 if (flags & NETDEV_LOOPBACK) {
1530 VLOG_ERR("%s: cannot add a loopback device", devname);
1531 error = EINVAL;
1532 goto out;
1533 }
1534
1535 error = netdev_turn_flags_on(netdev, NETDEV_PROMISC, &sf);
1536 if (error) {
1537 VLOG_ERR("%s: cannot set promisc flag", devname);
1538 goto out;
1539 }
1540
1541 port = xzalloc(sizeof *port);
1542 port->port_no = port_no;
1543 port->netdev = netdev;
1544 port->type = xstrdup(type);
1545 port->sf = sf;
1546 port->need_reconfigure = true;
1547 ovs_mutex_init(&port->txq_used_mutex);
1548
1549 *portp = port;
1550
1551 return 0;
1552
1553 out:
1554 netdev_close(netdev);
1555 return error;
1556 }
1557
1558 static int
1559 do_add_port(struct dp_netdev *dp, const char *devname, const char *type,
1560 odp_port_t port_no)
1561 OVS_REQUIRES(dp->port_mutex)
1562 {
1563 struct dp_netdev_port *port;
1564 int error;
1565
1566 /* Reject devices already in 'dp'. */
1567 if (!get_port_by_name(dp, devname, &port)) {
1568 return EEXIST;
1569 }
1570
1571 error = port_create(devname, type, port_no, &port);
1572 if (error) {
1573 return error;
1574 }
1575
1576 hmap_insert(&dp->ports, &port->node, hash_port_no(port_no));
1577 seq_change(dp->port_seq);
1578
1579 reconfigure_datapath(dp);
1580
1581 return 0;
1582 }
1583
1584 static int
1585 dpif_netdev_port_add(struct dpif *dpif, struct netdev *netdev,
1586 odp_port_t *port_nop)
1587 {
1588 struct dp_netdev *dp = get_dp_netdev(dpif);
1589 char namebuf[NETDEV_VPORT_NAME_BUFSIZE];
1590 const char *dpif_port;
1591 odp_port_t port_no;
1592 int error;
1593
1594 ovs_mutex_lock(&dp->port_mutex);
1595 dpif_port = netdev_vport_get_dpif_port(netdev, namebuf, sizeof namebuf);
1596 if (*port_nop != ODPP_NONE) {
1597 port_no = *port_nop;
1598 error = dp_netdev_lookup_port(dp, *port_nop) ? EBUSY : 0;
1599 } else {
1600 port_no = choose_port(dp, dpif_port);
1601 error = port_no == ODPP_NONE ? EFBIG : 0;
1602 }
1603 if (!error) {
1604 *port_nop = port_no;
1605 error = do_add_port(dp, dpif_port, netdev_get_type(netdev), port_no);
1606 }
1607 ovs_mutex_unlock(&dp->port_mutex);
1608
1609 return error;
1610 }
1611
1612 static int
1613 dpif_netdev_port_del(struct dpif *dpif, odp_port_t port_no)
1614 {
1615 struct dp_netdev *dp = get_dp_netdev(dpif);
1616 int error;
1617
1618 ovs_mutex_lock(&dp->port_mutex);
1619 if (port_no == ODPP_LOCAL) {
1620 error = EINVAL;
1621 } else {
1622 struct dp_netdev_port *port;
1623
1624 error = get_port_by_number(dp, port_no, &port);
1625 if (!error) {
1626 do_del_port(dp, port);
1627 }
1628 }
1629 ovs_mutex_unlock(&dp->port_mutex);
1630
1631 return error;
1632 }
1633
1634 static bool
1635 is_valid_port_number(odp_port_t port_no)
1636 {
1637 return port_no != ODPP_NONE;
1638 }
1639
1640 static struct dp_netdev_port *
1641 dp_netdev_lookup_port(const struct dp_netdev *dp, odp_port_t port_no)
1642 OVS_REQUIRES(dp->port_mutex)
1643 {
1644 struct dp_netdev_port *port;
1645
1646 HMAP_FOR_EACH_WITH_HASH (port, node, hash_port_no(port_no), &dp->ports) {
1647 if (port->port_no == port_no) {
1648 return port;
1649 }
1650 }
1651 return NULL;
1652 }
1653
1654 static int
1655 get_port_by_number(struct dp_netdev *dp,
1656 odp_port_t port_no, struct dp_netdev_port **portp)
1657 OVS_REQUIRES(dp->port_mutex)
1658 {
1659 if (!is_valid_port_number(port_no)) {
1660 *portp = NULL;
1661 return EINVAL;
1662 } else {
1663 *portp = dp_netdev_lookup_port(dp, port_no);
1664 return *portp ? 0 : ENODEV;
1665 }
1666 }
1667
1668 static void
1669 port_destroy(struct dp_netdev_port *port)
1670 {
1671 if (!port) {
1672 return;
1673 }
1674
1675 netdev_close(port->netdev);
1676 netdev_restore_flags(port->sf);
1677
1678 for (unsigned i = 0; i < port->n_rxq; i++) {
1679 netdev_rxq_close(port->rxqs[i].rx);
1680 }
1681 ovs_mutex_destroy(&port->txq_used_mutex);
1682 free(port->rxq_affinity_list);
1683 free(port->txq_used);
1684 free(port->rxqs);
1685 free(port->type);
1686 free(port);
1687 }
1688
1689 static int
1690 get_port_by_name(struct dp_netdev *dp,
1691 const char *devname, struct dp_netdev_port **portp)
1692 OVS_REQUIRES(dp->port_mutex)
1693 {
1694 struct dp_netdev_port *port;
1695
1696 HMAP_FOR_EACH (port, node, &dp->ports) {
1697 if (!strcmp(netdev_get_name(port->netdev), devname)) {
1698 *portp = port;
1699 return 0;
1700 }
1701 }
1702
1703 /* Callers of dpif_netdev_port_query_by_name() expect ENODEV for a non
1704 * existing port. */
1705 return ENODEV;
1706 }
1707
1708 /* Returns 'true' if there is a port with pmd netdev. */
1709 static bool
1710 has_pmd_port(struct dp_netdev *dp)
1711 OVS_REQUIRES(dp->port_mutex)
1712 {
1713 struct dp_netdev_port *port;
1714
1715 HMAP_FOR_EACH (port, node, &dp->ports) {
1716 if (netdev_is_pmd(port->netdev)) {
1717 return true;
1718 }
1719 }
1720
1721 return false;
1722 }
1723
1724 static void
1725 do_del_port(struct dp_netdev *dp, struct dp_netdev_port *port)
1726 OVS_REQUIRES(dp->port_mutex)
1727 {
1728 hmap_remove(&dp->ports, &port->node);
1729 seq_change(dp->port_seq);
1730
1731 reconfigure_datapath(dp);
1732
1733 port_destroy(port);
1734 }
1735
1736 static void
1737 answer_port_query(const struct dp_netdev_port *port,
1738 struct dpif_port *dpif_port)
1739 {
1740 dpif_port->name = xstrdup(netdev_get_name(port->netdev));
1741 dpif_port->type = xstrdup(port->type);
1742 dpif_port->port_no = port->port_no;
1743 }
1744
1745 static int
1746 dpif_netdev_port_query_by_number(const struct dpif *dpif, odp_port_t port_no,
1747 struct dpif_port *dpif_port)
1748 {
1749 struct dp_netdev *dp = get_dp_netdev(dpif);
1750 struct dp_netdev_port *port;
1751 int error;
1752
1753 ovs_mutex_lock(&dp->port_mutex);
1754 error = get_port_by_number(dp, port_no, &port);
1755 if (!error && dpif_port) {
1756 answer_port_query(port, dpif_port);
1757 }
1758 ovs_mutex_unlock(&dp->port_mutex);
1759
1760 return error;
1761 }
1762
1763 static int
1764 dpif_netdev_port_query_by_name(const struct dpif *dpif, const char *devname,
1765 struct dpif_port *dpif_port)
1766 {
1767 struct dp_netdev *dp = get_dp_netdev(dpif);
1768 struct dp_netdev_port *port;
1769 int error;
1770
1771 ovs_mutex_lock(&dp->port_mutex);
1772 error = get_port_by_name(dp, devname, &port);
1773 if (!error && dpif_port) {
1774 answer_port_query(port, dpif_port);
1775 }
1776 ovs_mutex_unlock(&dp->port_mutex);
1777
1778 return error;
1779 }
1780
1781 static void
1782 dp_netdev_flow_free(struct dp_netdev_flow *flow)
1783 {
1784 dp_netdev_actions_free(dp_netdev_flow_get_actions(flow));
1785 free(flow);
1786 }
1787
1788 static void dp_netdev_flow_unref(struct dp_netdev_flow *flow)
1789 {
1790 if (ovs_refcount_unref_relaxed(&flow->ref_cnt) == 1) {
1791 ovsrcu_postpone(dp_netdev_flow_free, flow);
1792 }
1793 }
1794
1795 static uint32_t
1796 dp_netdev_flow_hash(const ovs_u128 *ufid)
1797 {
1798 return ufid->u32[0];
1799 }
1800
1801 static inline struct dpcls *
1802 dp_netdev_pmd_lookup_dpcls(struct dp_netdev_pmd_thread *pmd,
1803 odp_port_t in_port)
1804 {
1805 struct dpcls *cls;
1806 uint32_t hash = hash_port_no(in_port);
1807 CMAP_FOR_EACH_WITH_HASH (cls, node, hash, &pmd->classifiers) {
1808 if (cls->in_port == in_port) {
1809 /* Port classifier exists already */
1810 return cls;
1811 }
1812 }
1813 return NULL;
1814 }
1815
1816 static inline struct dpcls *
1817 dp_netdev_pmd_find_dpcls(struct dp_netdev_pmd_thread *pmd,
1818 odp_port_t in_port)
1819 OVS_REQUIRES(pmd->flow_mutex)
1820 {
1821 struct dpcls *cls = dp_netdev_pmd_lookup_dpcls(pmd, in_port);
1822 uint32_t hash = hash_port_no(in_port);
1823
1824 if (!cls) {
1825 /* Create new classifier for in_port */
1826 cls = xmalloc(sizeof(*cls));
1827 dpcls_init(cls);
1828 cls->in_port = in_port;
1829 cmap_insert(&pmd->classifiers, &cls->node, hash);
1830 VLOG_DBG("Creating dpcls %p for in_port %d", cls, in_port);
1831 }
1832 return cls;
1833 }
1834
1835 static void
1836 dp_netdev_pmd_remove_flow(struct dp_netdev_pmd_thread *pmd,
1837 struct dp_netdev_flow *flow)
1838 OVS_REQUIRES(pmd->flow_mutex)
1839 {
1840 struct cmap_node *node = CONST_CAST(struct cmap_node *, &flow->node);
1841 struct dpcls *cls;
1842 odp_port_t in_port = flow->flow.in_port.odp_port;
1843
1844 cls = dp_netdev_pmd_lookup_dpcls(pmd, in_port);
1845 ovs_assert(cls != NULL);
1846 dpcls_remove(cls, &flow->cr);
1847 cmap_remove(&pmd->flow_table, node, dp_netdev_flow_hash(&flow->ufid));
1848 flow->dead = true;
1849
1850 dp_netdev_flow_unref(flow);
1851 }
1852
1853 static void
1854 dp_netdev_pmd_flow_flush(struct dp_netdev_pmd_thread *pmd)
1855 {
1856 struct dp_netdev_flow *netdev_flow;
1857
1858 ovs_mutex_lock(&pmd->flow_mutex);
1859 CMAP_FOR_EACH (netdev_flow, node, &pmd->flow_table) {
1860 dp_netdev_pmd_remove_flow(pmd, netdev_flow);
1861 }
1862 ovs_mutex_unlock(&pmd->flow_mutex);
1863 }
1864
1865 static int
1866 dpif_netdev_flow_flush(struct dpif *dpif)
1867 {
1868 struct dp_netdev *dp = get_dp_netdev(dpif);
1869 struct dp_netdev_pmd_thread *pmd;
1870
1871 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
1872 dp_netdev_pmd_flow_flush(pmd);
1873 }
1874
1875 return 0;
1876 }
1877
1878 struct dp_netdev_port_state {
1879 struct hmap_position position;
1880 char *name;
1881 };
1882
1883 static int
1884 dpif_netdev_port_dump_start(const struct dpif *dpif OVS_UNUSED, void **statep)
1885 {
1886 *statep = xzalloc(sizeof(struct dp_netdev_port_state));
1887 return 0;
1888 }
1889
1890 static int
1891 dpif_netdev_port_dump_next(const struct dpif *dpif, void *state_,
1892 struct dpif_port *dpif_port)
1893 {
1894 struct dp_netdev_port_state *state = state_;
1895 struct dp_netdev *dp = get_dp_netdev(dpif);
1896 struct hmap_node *node;
1897 int retval;
1898
1899 ovs_mutex_lock(&dp->port_mutex);
1900 node = hmap_at_position(&dp->ports, &state->position);
1901 if (node) {
1902 struct dp_netdev_port *port;
1903
1904 port = CONTAINER_OF(node, struct dp_netdev_port, node);
1905
1906 free(state->name);
1907 state->name = xstrdup(netdev_get_name(port->netdev));
1908 dpif_port->name = state->name;
1909 dpif_port->type = port->type;
1910 dpif_port->port_no = port->port_no;
1911
1912 retval = 0;
1913 } else {
1914 retval = EOF;
1915 }
1916 ovs_mutex_unlock(&dp->port_mutex);
1917
1918 return retval;
1919 }
1920
1921 static int
1922 dpif_netdev_port_dump_done(const struct dpif *dpif OVS_UNUSED, void *state_)
1923 {
1924 struct dp_netdev_port_state *state = state_;
1925 free(state->name);
1926 free(state);
1927 return 0;
1928 }
1929
1930 static int
1931 dpif_netdev_port_poll(const struct dpif *dpif_, char **devnamep OVS_UNUSED)
1932 {
1933 struct dpif_netdev *dpif = dpif_netdev_cast(dpif_);
1934 uint64_t new_port_seq;
1935 int error;
1936
1937 new_port_seq = seq_read(dpif->dp->port_seq);
1938 if (dpif->last_port_seq != new_port_seq) {
1939 dpif->last_port_seq = new_port_seq;
1940 error = ENOBUFS;
1941 } else {
1942 error = EAGAIN;
1943 }
1944
1945 return error;
1946 }
1947
1948 static void
1949 dpif_netdev_port_poll_wait(const struct dpif *dpif_)
1950 {
1951 struct dpif_netdev *dpif = dpif_netdev_cast(dpif_);
1952
1953 seq_wait(dpif->dp->port_seq, dpif->last_port_seq);
1954 }
1955
1956 static struct dp_netdev_flow *
1957 dp_netdev_flow_cast(const struct dpcls_rule *cr)
1958 {
1959 return cr ? CONTAINER_OF(cr, struct dp_netdev_flow, cr) : NULL;
1960 }
1961
1962 static bool dp_netdev_flow_ref(struct dp_netdev_flow *flow)
1963 {
1964 return ovs_refcount_try_ref_rcu(&flow->ref_cnt);
1965 }
1966
1967 /* netdev_flow_key utilities.
1968 *
1969 * netdev_flow_key is basically a miniflow. We use these functions
1970 * (netdev_flow_key_clone, netdev_flow_key_equal, ...) instead of the miniflow
1971 * functions (miniflow_clone_inline, miniflow_equal, ...), because:
1972 *
1973 * - Since we are dealing exclusively with miniflows created by
1974 * miniflow_extract(), if the map is different the miniflow is different.
1975 * Therefore we can be faster by comparing the map and the miniflow in a
1976 * single memcmp().
1977 * - These functions can be inlined by the compiler. */
1978
1979 /* Given the number of bits set in miniflow's maps, returns the size of the
1980 * 'netdev_flow_key.mf' */
1981 static inline size_t
1982 netdev_flow_key_size(size_t flow_u64s)
1983 {
1984 return sizeof(struct miniflow) + MINIFLOW_VALUES_SIZE(flow_u64s);
1985 }
1986
1987 static inline bool
1988 netdev_flow_key_equal(const struct netdev_flow_key *a,
1989 const struct netdev_flow_key *b)
1990 {
1991 /* 'b->len' may be not set yet. */
1992 return a->hash == b->hash && !memcmp(&a->mf, &b->mf, a->len);
1993 }
1994
1995 /* Used to compare 'netdev_flow_key' in the exact match cache to a miniflow.
1996 * The maps are compared bitwise, so both 'key->mf' and 'mf' must have been
1997 * generated by miniflow_extract. */
1998 static inline bool
1999 netdev_flow_key_equal_mf(const struct netdev_flow_key *key,
2000 const struct miniflow *mf)
2001 {
2002 return !memcmp(&key->mf, mf, key->len);
2003 }
2004
2005 static inline void
2006 netdev_flow_key_clone(struct netdev_flow_key *dst,
2007 const struct netdev_flow_key *src)
2008 {
2009 memcpy(dst, src,
2010 offsetof(struct netdev_flow_key, mf) + src->len);
2011 }
2012
2013 /* Initialize a netdev_flow_key 'mask' from 'match'. */
2014 static inline void
2015 netdev_flow_mask_init(struct netdev_flow_key *mask,
2016 const struct match *match)
2017 {
2018 uint64_t *dst = miniflow_values(&mask->mf);
2019 struct flowmap fmap;
2020 uint32_t hash = 0;
2021 size_t idx;
2022
2023 /* Only check masks that make sense for the flow. */
2024 flow_wc_map(&match->flow, &fmap);
2025 flowmap_init(&mask->mf.map);
2026
2027 FLOWMAP_FOR_EACH_INDEX(idx, fmap) {
2028 uint64_t mask_u64 = flow_u64_value(&match->wc.masks, idx);
2029
2030 if (mask_u64) {
2031 flowmap_set(&mask->mf.map, idx, 1);
2032 *dst++ = mask_u64;
2033 hash = hash_add64(hash, mask_u64);
2034 }
2035 }
2036
2037 map_t map;
2038
2039 FLOWMAP_FOR_EACH_MAP (map, mask->mf.map) {
2040 hash = hash_add64(hash, map);
2041 }
2042
2043 size_t n = dst - miniflow_get_values(&mask->mf);
2044
2045 mask->hash = hash_finish(hash, n * 8);
2046 mask->len = netdev_flow_key_size(n);
2047 }
2048
2049 /* Initializes 'dst' as a copy of 'flow' masked with 'mask'. */
2050 static inline void
2051 netdev_flow_key_init_masked(struct netdev_flow_key *dst,
2052 const struct flow *flow,
2053 const struct netdev_flow_key *mask)
2054 {
2055 uint64_t *dst_u64 = miniflow_values(&dst->mf);
2056 const uint64_t *mask_u64 = miniflow_get_values(&mask->mf);
2057 uint32_t hash = 0;
2058 uint64_t value;
2059
2060 dst->len = mask->len;
2061 dst->mf = mask->mf; /* Copy maps. */
2062
2063 FLOW_FOR_EACH_IN_MAPS(value, flow, mask->mf.map) {
2064 *dst_u64 = value & *mask_u64++;
2065 hash = hash_add64(hash, *dst_u64++);
2066 }
2067 dst->hash = hash_finish(hash,
2068 (dst_u64 - miniflow_get_values(&dst->mf)) * 8);
2069 }
2070
2071 /* Iterate through netdev_flow_key TNL u64 values specified by 'FLOWMAP'. */
2072 #define NETDEV_FLOW_KEY_FOR_EACH_IN_FLOWMAP(VALUE, KEY, FLOWMAP) \
2073 MINIFLOW_FOR_EACH_IN_FLOWMAP(VALUE, &(KEY)->mf, FLOWMAP)
2074
2075 /* Returns a hash value for the bits of 'key' where there are 1-bits in
2076 * 'mask'. */
2077 static inline uint32_t
2078 netdev_flow_key_hash_in_mask(const struct netdev_flow_key *key,
2079 const struct netdev_flow_key *mask)
2080 {
2081 const uint64_t *p = miniflow_get_values(&mask->mf);
2082 uint32_t hash = 0;
2083 uint64_t value;
2084
2085 NETDEV_FLOW_KEY_FOR_EACH_IN_FLOWMAP(value, key, mask->mf.map) {
2086 hash = hash_add64(hash, value & *p++);
2087 }
2088
2089 return hash_finish(hash, (p - miniflow_get_values(&mask->mf)) * 8);
2090 }
2091
2092 static inline bool
2093 emc_entry_alive(struct emc_entry *ce)
2094 {
2095 return ce->flow && !ce->flow->dead;
2096 }
2097
2098 static void
2099 emc_clear_entry(struct emc_entry *ce)
2100 {
2101 if (ce->flow) {
2102 dp_netdev_flow_unref(ce->flow);
2103 ce->flow = NULL;
2104 }
2105 }
2106
2107 static inline void
2108 emc_change_entry(struct emc_entry *ce, struct dp_netdev_flow *flow,
2109 const struct netdev_flow_key *key)
2110 {
2111 if (ce->flow != flow) {
2112 if (ce->flow) {
2113 dp_netdev_flow_unref(ce->flow);
2114 }
2115
2116 if (dp_netdev_flow_ref(flow)) {
2117 ce->flow = flow;
2118 } else {
2119 ce->flow = NULL;
2120 }
2121 }
2122 if (key) {
2123 netdev_flow_key_clone(&ce->key, key);
2124 }
2125 }
2126
2127 static inline void
2128 emc_insert(struct emc_cache *cache, const struct netdev_flow_key *key,
2129 struct dp_netdev_flow *flow)
2130 {
2131 struct emc_entry *to_be_replaced = NULL;
2132 struct emc_entry *current_entry;
2133
2134 EMC_FOR_EACH_POS_WITH_HASH(cache, current_entry, key->hash) {
2135 if (netdev_flow_key_equal(&current_entry->key, key)) {
2136 /* We found the entry with the 'mf' miniflow */
2137 emc_change_entry(current_entry, flow, NULL);
2138 return;
2139 }
2140
2141 /* Replacement policy: put the flow in an empty (not alive) entry, or
2142 * in the first entry where it can be */
2143 if (!to_be_replaced
2144 || (emc_entry_alive(to_be_replaced)
2145 && !emc_entry_alive(current_entry))
2146 || current_entry->key.hash < to_be_replaced->key.hash) {
2147 to_be_replaced = current_entry;
2148 }
2149 }
2150 /* We didn't find the miniflow in the cache.
2151 * The 'to_be_replaced' entry is where the new flow will be stored */
2152
2153 emc_change_entry(to_be_replaced, flow, key);
2154 }
2155
2156 static inline void
2157 emc_probabilistic_insert(struct dp_netdev_pmd_thread *pmd,
2158 const struct netdev_flow_key *key,
2159 struct dp_netdev_flow *flow)
2160 {
2161 /* Insert an entry into the EMC based on probability value 'min'. By
2162 * default the value is UINT32_MAX / 100 which yields an insertion
2163 * probability of 1/100 ie. 1% */
2164
2165 uint32_t min;
2166 atomic_read_relaxed(&pmd->dp->emc_insert_min, &min);
2167
2168 if (min && random_uint32() <= min) {
2169 emc_insert(&pmd->flow_cache, key, flow);
2170 }
2171 }
2172
2173 static inline struct dp_netdev_flow *
2174 emc_lookup(struct emc_cache *cache, const struct netdev_flow_key *key)
2175 {
2176 struct emc_entry *current_entry;
2177
2178 EMC_FOR_EACH_POS_WITH_HASH(cache, current_entry, key->hash) {
2179 if (current_entry->key.hash == key->hash
2180 && emc_entry_alive(current_entry)
2181 && netdev_flow_key_equal_mf(&current_entry->key, &key->mf)) {
2182
2183 /* We found the entry with the 'key->mf' miniflow */
2184 return current_entry->flow;
2185 }
2186 }
2187
2188 return NULL;
2189 }
2190
2191 static struct dp_netdev_flow *
2192 dp_netdev_pmd_lookup_flow(struct dp_netdev_pmd_thread *pmd,
2193 const struct netdev_flow_key *key,
2194 int *lookup_num_p)
2195 {
2196 struct dpcls *cls;
2197 struct dpcls_rule *rule;
2198 odp_port_t in_port = u32_to_odp(MINIFLOW_GET_U32(&key->mf, in_port));
2199 struct dp_netdev_flow *netdev_flow = NULL;
2200
2201 cls = dp_netdev_pmd_lookup_dpcls(pmd, in_port);
2202 if (OVS_LIKELY(cls)) {
2203 dpcls_lookup(cls, key, &rule, 1, lookup_num_p);
2204 netdev_flow = dp_netdev_flow_cast(rule);
2205 }
2206 return netdev_flow;
2207 }
2208
2209 static struct dp_netdev_flow *
2210 dp_netdev_pmd_find_flow(const struct dp_netdev_pmd_thread *pmd,
2211 const ovs_u128 *ufidp, const struct nlattr *key,
2212 size_t key_len)
2213 {
2214 struct dp_netdev_flow *netdev_flow;
2215 struct flow flow;
2216 ovs_u128 ufid;
2217
2218 /* If a UFID is not provided, determine one based on the key. */
2219 if (!ufidp && key && key_len
2220 && !dpif_netdev_flow_from_nlattrs(key, key_len, &flow, false)) {
2221 dpif_flow_hash(pmd->dp->dpif, &flow, sizeof flow, &ufid);
2222 ufidp = &ufid;
2223 }
2224
2225 if (ufidp) {
2226 CMAP_FOR_EACH_WITH_HASH (netdev_flow, node, dp_netdev_flow_hash(ufidp),
2227 &pmd->flow_table) {
2228 if (ovs_u128_equals(netdev_flow->ufid, *ufidp)) {
2229 return netdev_flow;
2230 }
2231 }
2232 }
2233
2234 return NULL;
2235 }
2236
2237 static void
2238 get_dpif_flow_stats(const struct dp_netdev_flow *netdev_flow_,
2239 struct dpif_flow_stats *stats)
2240 {
2241 struct dp_netdev_flow *netdev_flow;
2242 unsigned long long n;
2243 long long used;
2244 uint16_t flags;
2245
2246 netdev_flow = CONST_CAST(struct dp_netdev_flow *, netdev_flow_);
2247
2248 atomic_read_relaxed(&netdev_flow->stats.packet_count, &n);
2249 stats->n_packets = n;
2250 atomic_read_relaxed(&netdev_flow->stats.byte_count, &n);
2251 stats->n_bytes = n;
2252 atomic_read_relaxed(&netdev_flow->stats.used, &used);
2253 stats->used = used;
2254 atomic_read_relaxed(&netdev_flow->stats.tcp_flags, &flags);
2255 stats->tcp_flags = flags;
2256 }
2257
2258 /* Converts to the dpif_flow format, using 'key_buf' and 'mask_buf' for
2259 * storing the netlink-formatted key/mask. 'key_buf' may be the same as
2260 * 'mask_buf'. Actions will be returned without copying, by relying on RCU to
2261 * protect them. */
2262 static void
2263 dp_netdev_flow_to_dpif_flow(const struct dp_netdev_flow *netdev_flow,
2264 struct ofpbuf *key_buf, struct ofpbuf *mask_buf,
2265 struct dpif_flow *flow, bool terse)
2266 {
2267 if (terse) {
2268 memset(flow, 0, sizeof *flow);
2269 } else {
2270 struct flow_wildcards wc;
2271 struct dp_netdev_actions *actions;
2272 size_t offset;
2273 struct odp_flow_key_parms odp_parms = {
2274 .flow = &netdev_flow->flow,
2275 .mask = &wc.masks,
2276 .support = dp_netdev_support,
2277 };
2278
2279 miniflow_expand(&netdev_flow->cr.mask->mf, &wc.masks);
2280 /* in_port is exact matched, but we have left it out from the mask for
2281 * optimnization reasons. Add in_port back to the mask. */
2282 wc.masks.in_port.odp_port = ODPP_NONE;
2283
2284 /* Key */
2285 offset = key_buf->size;
2286 flow->key = ofpbuf_tail(key_buf);
2287 odp_flow_key_from_flow(&odp_parms, key_buf);
2288 flow->key_len = key_buf->size - offset;
2289
2290 /* Mask */
2291 offset = mask_buf->size;
2292 flow->mask = ofpbuf_tail(mask_buf);
2293 odp_parms.key_buf = key_buf;
2294 odp_flow_key_from_mask(&odp_parms, mask_buf);
2295 flow->mask_len = mask_buf->size - offset;
2296
2297 /* Actions */
2298 actions = dp_netdev_flow_get_actions(netdev_flow);
2299 flow->actions = actions->actions;
2300 flow->actions_len = actions->size;
2301 }
2302
2303 flow->ufid = netdev_flow->ufid;
2304 flow->ufid_present = true;
2305 flow->pmd_id = netdev_flow->pmd_id;
2306 get_dpif_flow_stats(netdev_flow, &flow->stats);
2307 }
2308
2309 static int
2310 dpif_netdev_mask_from_nlattrs(const struct nlattr *key, uint32_t key_len,
2311 const struct nlattr *mask_key,
2312 uint32_t mask_key_len, const struct flow *flow,
2313 struct flow_wildcards *wc, bool probe)
2314 {
2315 enum odp_key_fitness fitness;
2316
2317 fitness = odp_flow_key_to_mask(mask_key, mask_key_len, wc, flow);
2318 if (fitness) {
2319 if (!probe) {
2320 /* This should not happen: it indicates that
2321 * odp_flow_key_from_mask() and odp_flow_key_to_mask()
2322 * disagree on the acceptable form of a mask. Log the problem
2323 * as an error, with enough details to enable debugging. */
2324 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
2325
2326 if (!VLOG_DROP_ERR(&rl)) {
2327 struct ds s;
2328
2329 ds_init(&s);
2330 odp_flow_format(key, key_len, mask_key, mask_key_len, NULL, &s,
2331 true);
2332 VLOG_ERR("internal error parsing flow mask %s (%s)",
2333 ds_cstr(&s), odp_key_fitness_to_string(fitness));
2334 ds_destroy(&s);
2335 }
2336 }
2337
2338 return EINVAL;
2339 }
2340
2341 return 0;
2342 }
2343
2344 static int
2345 dpif_netdev_flow_from_nlattrs(const struct nlattr *key, uint32_t key_len,
2346 struct flow *flow, bool probe)
2347 {
2348 if (odp_flow_key_to_flow(key, key_len, flow)) {
2349 if (!probe) {
2350 /* This should not happen: it indicates that
2351 * odp_flow_key_from_flow() and odp_flow_key_to_flow() disagree on
2352 * the acceptable form of a flow. Log the problem as an error,
2353 * with enough details to enable debugging. */
2354 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
2355
2356 if (!VLOG_DROP_ERR(&rl)) {
2357 struct ds s;
2358
2359 ds_init(&s);
2360 odp_flow_format(key, key_len, NULL, 0, NULL, &s, true);
2361 VLOG_ERR("internal error parsing flow key %s", ds_cstr(&s));
2362 ds_destroy(&s);
2363 }
2364 }
2365
2366 return EINVAL;
2367 }
2368
2369 if (flow->ct_state & DP_NETDEV_CS_UNSUPPORTED_MASK) {
2370 return EINVAL;
2371 }
2372
2373 return 0;
2374 }
2375
2376 static int
2377 dpif_netdev_flow_get(const struct dpif *dpif, const struct dpif_flow_get *get)
2378 {
2379 struct dp_netdev *dp = get_dp_netdev(dpif);
2380 struct dp_netdev_flow *netdev_flow;
2381 struct dp_netdev_pmd_thread *pmd;
2382 struct hmapx to_find = HMAPX_INITIALIZER(&to_find);
2383 struct hmapx_node *node;
2384 int error = EINVAL;
2385
2386 if (get->pmd_id == PMD_ID_NULL) {
2387 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
2388 if (dp_netdev_pmd_try_ref(pmd) && !hmapx_add(&to_find, pmd)) {
2389 dp_netdev_pmd_unref(pmd);
2390 }
2391 }
2392 } else {
2393 pmd = dp_netdev_get_pmd(dp, get->pmd_id);
2394 if (!pmd) {
2395 goto out;
2396 }
2397 hmapx_add(&to_find, pmd);
2398 }
2399
2400 if (!hmapx_count(&to_find)) {
2401 goto out;
2402 }
2403
2404 HMAPX_FOR_EACH (node, &to_find) {
2405 pmd = (struct dp_netdev_pmd_thread *) node->data;
2406 netdev_flow = dp_netdev_pmd_find_flow(pmd, get->ufid, get->key,
2407 get->key_len);
2408 if (netdev_flow) {
2409 dp_netdev_flow_to_dpif_flow(netdev_flow, get->buffer, get->buffer,
2410 get->flow, false);
2411 error = 0;
2412 break;
2413 } else {
2414 error = ENOENT;
2415 }
2416 }
2417
2418 HMAPX_FOR_EACH (node, &to_find) {
2419 pmd = (struct dp_netdev_pmd_thread *) node->data;
2420 dp_netdev_pmd_unref(pmd);
2421 }
2422 out:
2423 hmapx_destroy(&to_find);
2424 return error;
2425 }
2426
2427 static struct dp_netdev_flow *
2428 dp_netdev_flow_add(struct dp_netdev_pmd_thread *pmd,
2429 struct match *match, const ovs_u128 *ufid,
2430 const struct nlattr *actions, size_t actions_len)
2431 OVS_REQUIRES(pmd->flow_mutex)
2432 {
2433 struct dp_netdev_flow *flow;
2434 struct netdev_flow_key mask;
2435 struct dpcls *cls;
2436
2437 /* Make sure in_port is exact matched before we read it. */
2438 ovs_assert(match->wc.masks.in_port.odp_port == ODPP_NONE);
2439 odp_port_t in_port = match->flow.in_port.odp_port;
2440
2441 /* As we select the dpcls based on the port number, each netdev flow
2442 * belonging to the same dpcls will have the same odp_port value.
2443 * For performance reasons we wildcard odp_port here in the mask. In the
2444 * typical case dp_hash is also wildcarded, and the resulting 8-byte
2445 * chunk {dp_hash, in_port} will be ignored by netdev_flow_mask_init() and
2446 * will not be part of the subtable mask.
2447 * This will speed up the hash computation during dpcls_lookup() because
2448 * there is one less call to hash_add64() in this case. */
2449 match->wc.masks.in_port.odp_port = 0;
2450 netdev_flow_mask_init(&mask, match);
2451 match->wc.masks.in_port.odp_port = ODPP_NONE;
2452
2453 /* Make sure wc does not have metadata. */
2454 ovs_assert(!FLOWMAP_HAS_FIELD(&mask.mf.map, metadata)
2455 && !FLOWMAP_HAS_FIELD(&mask.mf.map, regs));
2456
2457 /* Do not allocate extra space. */
2458 flow = xmalloc(sizeof *flow - sizeof flow->cr.flow.mf + mask.len);
2459 memset(&flow->stats, 0, sizeof flow->stats);
2460 flow->dead = false;
2461 flow->batch = NULL;
2462 *CONST_CAST(unsigned *, &flow->pmd_id) = pmd->core_id;
2463 *CONST_CAST(struct flow *, &flow->flow) = match->flow;
2464 *CONST_CAST(ovs_u128 *, &flow->ufid) = *ufid;
2465 ovs_refcount_init(&flow->ref_cnt);
2466 ovsrcu_set(&flow->actions, dp_netdev_actions_create(actions, actions_len));
2467
2468 netdev_flow_key_init_masked(&flow->cr.flow, &match->flow, &mask);
2469
2470 /* Select dpcls for in_port. Relies on in_port to be exact match. */
2471 cls = dp_netdev_pmd_find_dpcls(pmd, in_port);
2472 dpcls_insert(cls, &flow->cr, &mask);
2473
2474 cmap_insert(&pmd->flow_table, CONST_CAST(struct cmap_node *, &flow->node),
2475 dp_netdev_flow_hash(&flow->ufid));
2476
2477 if (OVS_UNLIKELY(!VLOG_DROP_DBG((&upcall_rl)))) {
2478 struct ds ds = DS_EMPTY_INITIALIZER;
2479 struct ofpbuf key_buf, mask_buf;
2480 struct odp_flow_key_parms odp_parms = {
2481 .flow = &match->flow,
2482 .mask = &match->wc.masks,
2483 .support = dp_netdev_support,
2484 };
2485
2486 ofpbuf_init(&key_buf, 0);
2487 ofpbuf_init(&mask_buf, 0);
2488
2489 odp_flow_key_from_flow(&odp_parms, &key_buf);
2490 odp_parms.key_buf = &key_buf;
2491 odp_flow_key_from_mask(&odp_parms, &mask_buf);
2492
2493 ds_put_cstr(&ds, "flow_add: ");
2494 odp_format_ufid(ufid, &ds);
2495 ds_put_cstr(&ds, " ");
2496 odp_flow_format(key_buf.data, key_buf.size,
2497 mask_buf.data, mask_buf.size,
2498 NULL, &ds, false);
2499 ds_put_cstr(&ds, ", actions:");
2500 format_odp_actions(&ds, actions, actions_len, NULL);
2501
2502 VLOG_DBG("%s", ds_cstr(&ds));
2503
2504 ofpbuf_uninit(&key_buf);
2505 ofpbuf_uninit(&mask_buf);
2506
2507 /* Add a printout of the actual match installed. */
2508 struct match m;
2509 ds_clear(&ds);
2510 ds_put_cstr(&ds, "flow match: ");
2511 miniflow_expand(&flow->cr.flow.mf, &m.flow);
2512 miniflow_expand(&flow->cr.mask->mf, &m.wc.masks);
2513 memset(&m.tun_md, 0, sizeof m.tun_md);
2514 match_format(&m, NULL, &ds, OFP_DEFAULT_PRIORITY);
2515
2516 VLOG_DBG("%s", ds_cstr(&ds));
2517
2518 ds_destroy(&ds);
2519 }
2520
2521 return flow;
2522 }
2523
2524 static int
2525 flow_put_on_pmd(struct dp_netdev_pmd_thread *pmd,
2526 struct netdev_flow_key *key,
2527 struct match *match,
2528 ovs_u128 *ufid,
2529 const struct dpif_flow_put *put,
2530 struct dpif_flow_stats *stats)
2531 {
2532 struct dp_netdev_flow *netdev_flow;
2533 int error = 0;
2534
2535 if (stats) {
2536 memset(stats, 0, sizeof *stats);
2537 }
2538
2539 ovs_mutex_lock(&pmd->flow_mutex);
2540 netdev_flow = dp_netdev_pmd_lookup_flow(pmd, key, NULL);
2541 if (!netdev_flow) {
2542 if (put->flags & DPIF_FP_CREATE) {
2543 if (cmap_count(&pmd->flow_table) < MAX_FLOWS) {
2544 dp_netdev_flow_add(pmd, match, ufid, put->actions,
2545 put->actions_len);
2546 error = 0;
2547 } else {
2548 error = EFBIG;
2549 }
2550 } else {
2551 error = ENOENT;
2552 }
2553 } else {
2554 if (put->flags & DPIF_FP_MODIFY) {
2555 struct dp_netdev_actions *new_actions;
2556 struct dp_netdev_actions *old_actions;
2557
2558 new_actions = dp_netdev_actions_create(put->actions,
2559 put->actions_len);
2560
2561 old_actions = dp_netdev_flow_get_actions(netdev_flow);
2562 ovsrcu_set(&netdev_flow->actions, new_actions);
2563
2564 if (stats) {
2565 get_dpif_flow_stats(netdev_flow, stats);
2566 }
2567 if (put->flags & DPIF_FP_ZERO_STATS) {
2568 /* XXX: The userspace datapath uses thread local statistics
2569 * (for flows), which should be updated only by the owning
2570 * thread. Since we cannot write on stats memory here,
2571 * we choose not to support this flag. Please note:
2572 * - This feature is currently used only by dpctl commands with
2573 * option --clear.
2574 * - Should the need arise, this operation can be implemented
2575 * by keeping a base value (to be update here) for each
2576 * counter, and subtracting it before outputting the stats */
2577 error = EOPNOTSUPP;
2578 }
2579
2580 ovsrcu_postpone(dp_netdev_actions_free, old_actions);
2581 } else if (put->flags & DPIF_FP_CREATE) {
2582 error = EEXIST;
2583 } else {
2584 /* Overlapping flow. */
2585 error = EINVAL;
2586 }
2587 }
2588 ovs_mutex_unlock(&pmd->flow_mutex);
2589 return error;
2590 }
2591
2592 static int
2593 dpif_netdev_flow_put(struct dpif *dpif, const struct dpif_flow_put *put)
2594 {
2595 struct dp_netdev *dp = get_dp_netdev(dpif);
2596 struct netdev_flow_key key, mask;
2597 struct dp_netdev_pmd_thread *pmd;
2598 struct match match;
2599 ovs_u128 ufid;
2600 int error;
2601 bool probe = put->flags & DPIF_FP_PROBE;
2602
2603 if (put->stats) {
2604 memset(put->stats, 0, sizeof *put->stats);
2605 }
2606 error = dpif_netdev_flow_from_nlattrs(put->key, put->key_len, &match.flow,
2607 probe);
2608 if (error) {
2609 return error;
2610 }
2611 error = dpif_netdev_mask_from_nlattrs(put->key, put->key_len,
2612 put->mask, put->mask_len,
2613 &match.flow, &match.wc, probe);
2614 if (error) {
2615 return error;
2616 }
2617
2618 if (put->ufid) {
2619 ufid = *put->ufid;
2620 } else {
2621 dpif_flow_hash(dpif, &match.flow, sizeof match.flow, &ufid);
2622 }
2623
2624 /* Must produce a netdev_flow_key for lookup.
2625 * Use the same method as employed to create the key when adding
2626 * the flow to the dplcs to make sure they match. */
2627 netdev_flow_mask_init(&mask, &match);
2628 netdev_flow_key_init_masked(&key, &match.flow, &mask);
2629
2630 if (put->pmd_id == PMD_ID_NULL) {
2631 if (cmap_count(&dp->poll_threads) == 0) {
2632 return EINVAL;
2633 }
2634 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
2635 struct dpif_flow_stats pmd_stats;
2636 int pmd_error;
2637
2638 pmd_error = flow_put_on_pmd(pmd, &key, &match, &ufid, put,
2639 &pmd_stats);
2640 if (pmd_error) {
2641 error = pmd_error;
2642 } else if (put->stats) {
2643 put->stats->n_packets += pmd_stats.n_packets;
2644 put->stats->n_bytes += pmd_stats.n_bytes;
2645 put->stats->used = MAX(put->stats->used, pmd_stats.used);
2646 put->stats->tcp_flags |= pmd_stats.tcp_flags;
2647 }
2648 }
2649 } else {
2650 pmd = dp_netdev_get_pmd(dp, put->pmd_id);
2651 if (!pmd) {
2652 return EINVAL;
2653 }
2654 error = flow_put_on_pmd(pmd, &key, &match, &ufid, put, put->stats);
2655 dp_netdev_pmd_unref(pmd);
2656 }
2657
2658 return error;
2659 }
2660
2661 static int
2662 flow_del_on_pmd(struct dp_netdev_pmd_thread *pmd,
2663 struct dpif_flow_stats *stats,
2664 const struct dpif_flow_del *del)
2665 {
2666 struct dp_netdev_flow *netdev_flow;
2667 int error = 0;
2668
2669 ovs_mutex_lock(&pmd->flow_mutex);
2670 netdev_flow = dp_netdev_pmd_find_flow(pmd, del->ufid, del->key,
2671 del->key_len);
2672 if (netdev_flow) {
2673 if (stats) {
2674 get_dpif_flow_stats(netdev_flow, stats);
2675 }
2676 dp_netdev_pmd_remove_flow(pmd, netdev_flow);
2677 } else {
2678 error = ENOENT;
2679 }
2680 ovs_mutex_unlock(&pmd->flow_mutex);
2681
2682 return error;
2683 }
2684
2685 static int
2686 dpif_netdev_flow_del(struct dpif *dpif, const struct dpif_flow_del *del)
2687 {
2688 struct dp_netdev *dp = get_dp_netdev(dpif);
2689 struct dp_netdev_pmd_thread *pmd;
2690 int error = 0;
2691
2692 if (del->stats) {
2693 memset(del->stats, 0, sizeof *del->stats);
2694 }
2695
2696 if (del->pmd_id == PMD_ID_NULL) {
2697 if (cmap_count(&dp->poll_threads) == 0) {
2698 return EINVAL;
2699 }
2700 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
2701 struct dpif_flow_stats pmd_stats;
2702 int pmd_error;
2703
2704 pmd_error = flow_del_on_pmd(pmd, &pmd_stats, del);
2705 if (pmd_error) {
2706 error = pmd_error;
2707 } else if (del->stats) {
2708 del->stats->n_packets += pmd_stats.n_packets;
2709 del->stats->n_bytes += pmd_stats.n_bytes;
2710 del->stats->used = MAX(del->stats->used, pmd_stats.used);
2711 del->stats->tcp_flags |= pmd_stats.tcp_flags;
2712 }
2713 }
2714 } else {
2715 pmd = dp_netdev_get_pmd(dp, del->pmd_id);
2716 if (!pmd) {
2717 return EINVAL;
2718 }
2719 error = flow_del_on_pmd(pmd, del->stats, del);
2720 dp_netdev_pmd_unref(pmd);
2721 }
2722
2723
2724 return error;
2725 }
2726
2727 struct dpif_netdev_flow_dump {
2728 struct dpif_flow_dump up;
2729 struct cmap_position poll_thread_pos;
2730 struct cmap_position flow_pos;
2731 struct dp_netdev_pmd_thread *cur_pmd;
2732 int status;
2733 struct ovs_mutex mutex;
2734 };
2735
2736 static struct dpif_netdev_flow_dump *
2737 dpif_netdev_flow_dump_cast(struct dpif_flow_dump *dump)
2738 {
2739 return CONTAINER_OF(dump, struct dpif_netdev_flow_dump, up);
2740 }
2741
2742 static struct dpif_flow_dump *
2743 dpif_netdev_flow_dump_create(const struct dpif *dpif_, bool terse,
2744 char *type OVS_UNUSED)
2745 {
2746 struct dpif_netdev_flow_dump *dump;
2747
2748 dump = xzalloc(sizeof *dump);
2749 dpif_flow_dump_init(&dump->up, dpif_);
2750 dump->up.terse = terse;
2751 ovs_mutex_init(&dump->mutex);
2752
2753 return &dump->up;
2754 }
2755
2756 static int
2757 dpif_netdev_flow_dump_destroy(struct dpif_flow_dump *dump_)
2758 {
2759 struct dpif_netdev_flow_dump *dump = dpif_netdev_flow_dump_cast(dump_);
2760
2761 ovs_mutex_destroy(&dump->mutex);
2762 free(dump);
2763 return 0;
2764 }
2765
2766 struct dpif_netdev_flow_dump_thread {
2767 struct dpif_flow_dump_thread up;
2768 struct dpif_netdev_flow_dump *dump;
2769 struct odputil_keybuf keybuf[FLOW_DUMP_MAX_BATCH];
2770 struct odputil_keybuf maskbuf[FLOW_DUMP_MAX_BATCH];
2771 };
2772
2773 static struct dpif_netdev_flow_dump_thread *
2774 dpif_netdev_flow_dump_thread_cast(struct dpif_flow_dump_thread *thread)
2775 {
2776 return CONTAINER_OF(thread, struct dpif_netdev_flow_dump_thread, up);
2777 }
2778
2779 static struct dpif_flow_dump_thread *
2780 dpif_netdev_flow_dump_thread_create(struct dpif_flow_dump *dump_)
2781 {
2782 struct dpif_netdev_flow_dump *dump = dpif_netdev_flow_dump_cast(dump_);
2783 struct dpif_netdev_flow_dump_thread *thread;
2784
2785 thread = xmalloc(sizeof *thread);
2786 dpif_flow_dump_thread_init(&thread->up, &dump->up);
2787 thread->dump = dump;
2788 return &thread->up;
2789 }
2790
2791 static void
2792 dpif_netdev_flow_dump_thread_destroy(struct dpif_flow_dump_thread *thread_)
2793 {
2794 struct dpif_netdev_flow_dump_thread *thread
2795 = dpif_netdev_flow_dump_thread_cast(thread_);
2796
2797 free(thread);
2798 }
2799
2800 static int
2801 dpif_netdev_flow_dump_next(struct dpif_flow_dump_thread *thread_,
2802 struct dpif_flow *flows, int max_flows)
2803 {
2804 struct dpif_netdev_flow_dump_thread *thread
2805 = dpif_netdev_flow_dump_thread_cast(thread_);
2806 struct dpif_netdev_flow_dump *dump = thread->dump;
2807 struct dp_netdev_flow *netdev_flows[FLOW_DUMP_MAX_BATCH];
2808 int n_flows = 0;
2809 int i;
2810
2811 ovs_mutex_lock(&dump->mutex);
2812 if (!dump->status) {
2813 struct dpif_netdev *dpif = dpif_netdev_cast(thread->up.dpif);
2814 struct dp_netdev *dp = get_dp_netdev(&dpif->dpif);
2815 struct dp_netdev_pmd_thread *pmd = dump->cur_pmd;
2816 int flow_limit = MIN(max_flows, FLOW_DUMP_MAX_BATCH);
2817
2818 /* First call to dump_next(), extracts the first pmd thread.
2819 * If there is no pmd thread, returns immediately. */
2820 if (!pmd) {
2821 pmd = dp_netdev_pmd_get_next(dp, &dump->poll_thread_pos);
2822 if (!pmd) {
2823 ovs_mutex_unlock(&dump->mutex);
2824 return n_flows;
2825
2826 }
2827 }
2828
2829 do {
2830 for (n_flows = 0; n_flows < flow_limit; n_flows++) {
2831 struct cmap_node *node;
2832
2833 node = cmap_next_position(&pmd->flow_table, &dump->flow_pos);
2834 if (!node) {
2835 break;
2836 }
2837 netdev_flows[n_flows] = CONTAINER_OF(node,
2838 struct dp_netdev_flow,
2839 node);
2840 }
2841 /* When finishing dumping the current pmd thread, moves to
2842 * the next. */
2843 if (n_flows < flow_limit) {
2844 memset(&dump->flow_pos, 0, sizeof dump->flow_pos);
2845 dp_netdev_pmd_unref(pmd);
2846 pmd = dp_netdev_pmd_get_next(dp, &dump->poll_thread_pos);
2847 if (!pmd) {
2848 dump->status = EOF;
2849 break;
2850 }
2851 }
2852 /* Keeps the reference to next caller. */
2853 dump->cur_pmd = pmd;
2854
2855 /* If the current dump is empty, do not exit the loop, since the
2856 * remaining pmds could have flows to be dumped. Just dumps again
2857 * on the new 'pmd'. */
2858 } while (!n_flows);
2859 }
2860 ovs_mutex_unlock(&dump->mutex);
2861
2862 for (i = 0; i < n_flows; i++) {
2863 struct odputil_keybuf *maskbuf = &thread->maskbuf[i];
2864 struct odputil_keybuf *keybuf = &thread->keybuf[i];
2865 struct dp_netdev_flow *netdev_flow = netdev_flows[i];
2866 struct dpif_flow *f = &flows[i];
2867 struct ofpbuf key, mask;
2868
2869 ofpbuf_use_stack(&key, keybuf, sizeof *keybuf);
2870 ofpbuf_use_stack(&mask, maskbuf, sizeof *maskbuf);
2871 dp_netdev_flow_to_dpif_flow(netdev_flow, &key, &mask, f,
2872 dump->up.terse);
2873 }
2874
2875 return n_flows;
2876 }
2877
2878 static int
2879 dpif_netdev_execute(struct dpif *dpif, struct dpif_execute *execute)
2880 OVS_NO_THREAD_SAFETY_ANALYSIS
2881 {
2882 struct dp_netdev *dp = get_dp_netdev(dpif);
2883 struct dp_netdev_pmd_thread *pmd;
2884 struct dp_packet_batch pp;
2885
2886 if (dp_packet_size(execute->packet) < ETH_HEADER_LEN ||
2887 dp_packet_size(execute->packet) > UINT16_MAX) {
2888 return EINVAL;
2889 }
2890
2891 /* Tries finding the 'pmd'. If NULL is returned, that means
2892 * the current thread is a non-pmd thread and should use
2893 * dp_netdev_get_pmd(dp, NON_PMD_CORE_ID). */
2894 pmd = ovsthread_getspecific(dp->per_pmd_key);
2895 if (!pmd) {
2896 pmd = dp_netdev_get_pmd(dp, NON_PMD_CORE_ID);
2897 if (!pmd) {
2898 return EBUSY;
2899 }
2900 }
2901
2902 if (execute->probe) {
2903 /* If this is part of a probe, Drop the packet, since executing
2904 * the action may actually cause spurious packets be sent into
2905 * the network. */
2906 return 0;
2907 }
2908
2909 /* If the current thread is non-pmd thread, acquires
2910 * the 'non_pmd_mutex'. */
2911 if (pmd->core_id == NON_PMD_CORE_ID) {
2912 ovs_mutex_lock(&dp->non_pmd_mutex);
2913 }
2914
2915 /* The action processing expects the RSS hash to be valid, because
2916 * it's always initialized at the beginning of datapath processing.
2917 * In this case, though, 'execute->packet' may not have gone through
2918 * the datapath at all, it may have been generated by the upper layer
2919 * (OpenFlow packet-out, BFD frame, ...). */
2920 if (!dp_packet_rss_valid(execute->packet)) {
2921 dp_packet_set_rss_hash(execute->packet,
2922 flow_hash_5tuple(execute->flow, 0));
2923 }
2924
2925 dp_packet_batch_init_packet(&pp, execute->packet);
2926 dp_netdev_execute_actions(pmd, &pp, false, execute->flow,
2927 execute->actions, execute->actions_len,
2928 time_msec());
2929
2930 if (pmd->core_id == NON_PMD_CORE_ID) {
2931 ovs_mutex_unlock(&dp->non_pmd_mutex);
2932 dp_netdev_pmd_unref(pmd);
2933 }
2934
2935 return 0;
2936 }
2937
2938 static void
2939 dpif_netdev_operate(struct dpif *dpif, struct dpif_op **ops, size_t n_ops)
2940 {
2941 size_t i;
2942
2943 for (i = 0; i < n_ops; i++) {
2944 struct dpif_op *op = ops[i];
2945
2946 switch (op->type) {
2947 case DPIF_OP_FLOW_PUT:
2948 op->error = dpif_netdev_flow_put(dpif, &op->u.flow_put);
2949 break;
2950
2951 case DPIF_OP_FLOW_DEL:
2952 op->error = dpif_netdev_flow_del(dpif, &op->u.flow_del);
2953 break;
2954
2955 case DPIF_OP_EXECUTE:
2956 op->error = dpif_netdev_execute(dpif, &op->u.execute);
2957 break;
2958
2959 case DPIF_OP_FLOW_GET:
2960 op->error = dpif_netdev_flow_get(dpif, &op->u.flow_get);
2961 break;
2962 }
2963 }
2964 }
2965
2966 /* Applies datapath configuration from the database. Some of the changes are
2967 * actually applied in dpif_netdev_run(). */
2968 static int
2969 dpif_netdev_set_config(struct dpif *dpif, const struct smap *other_config)
2970 {
2971 struct dp_netdev *dp = get_dp_netdev(dpif);
2972 const char *cmask = smap_get(other_config, "pmd-cpu-mask");
2973 unsigned long long insert_prob =
2974 smap_get_ullong(other_config, "emc-insert-inv-prob",
2975 DEFAULT_EM_FLOW_INSERT_INV_PROB);
2976 uint32_t insert_min, cur_min;
2977
2978 if (!nullable_string_is_equal(dp->pmd_cmask, cmask)) {
2979 free(dp->pmd_cmask);
2980 dp->pmd_cmask = nullable_xstrdup(cmask);
2981 dp_netdev_request_reconfigure(dp);
2982 }
2983
2984 atomic_read_relaxed(&dp->emc_insert_min, &cur_min);
2985 if (insert_prob <= UINT32_MAX) {
2986 insert_min = insert_prob == 0 ? 0 : UINT32_MAX / insert_prob;
2987 } else {
2988 insert_min = DEFAULT_EM_FLOW_INSERT_MIN;
2989 insert_prob = DEFAULT_EM_FLOW_INSERT_INV_PROB;
2990 }
2991
2992 if (insert_min != cur_min) {
2993 atomic_store_relaxed(&dp->emc_insert_min, insert_min);
2994 if (insert_min == 0) {
2995 VLOG_INFO("EMC has been disabled");
2996 } else {
2997 VLOG_INFO("EMC insertion probability changed to 1/%llu (~%.2f%%)",
2998 insert_prob, (100 / (float)insert_prob));
2999 }
3000 }
3001
3002 return 0;
3003 }
3004
3005 /* Parses affinity list and returns result in 'core_ids'. */
3006 static int
3007 parse_affinity_list(const char *affinity_list, unsigned *core_ids, int n_rxq)
3008 {
3009 unsigned i;
3010 char *list, *copy, *key, *value;
3011 int error = 0;
3012
3013 for (i = 0; i < n_rxq; i++) {
3014 core_ids[i] = OVS_CORE_UNSPEC;
3015 }
3016
3017 if (!affinity_list) {
3018 return 0;
3019 }
3020
3021 list = copy = xstrdup(affinity_list);
3022
3023 while (ofputil_parse_key_value(&list, &key, &value)) {
3024 int rxq_id, core_id;
3025
3026 if (!str_to_int(key, 0, &rxq_id) || rxq_id < 0
3027 || !str_to_int(value, 0, &core_id) || core_id < 0) {
3028 error = EINVAL;
3029 break;
3030 }
3031
3032 if (rxq_id < n_rxq) {
3033 core_ids[rxq_id] = core_id;
3034 }
3035 }
3036
3037 free(copy);
3038 return error;
3039 }
3040
3041 /* Parses 'affinity_list' and applies configuration if it is valid. */
3042 static int
3043 dpif_netdev_port_set_rxq_affinity(struct dp_netdev_port *port,
3044 const char *affinity_list)
3045 {
3046 unsigned *core_ids, i;
3047 int error = 0;
3048
3049 core_ids = xmalloc(port->n_rxq * sizeof *core_ids);
3050 if (parse_affinity_list(affinity_list, core_ids, port->n_rxq)) {
3051 error = EINVAL;
3052 goto exit;
3053 }
3054
3055 for (i = 0; i < port->n_rxq; i++) {
3056 port->rxqs[i].core_id = core_ids[i];
3057 }
3058
3059 exit:
3060 free(core_ids);
3061 return error;
3062 }
3063
3064 /* Changes the affinity of port's rx queues. The changes are actually applied
3065 * in dpif_netdev_run(). */
3066 static int
3067 dpif_netdev_port_set_config(struct dpif *dpif, odp_port_t port_no,
3068 const struct smap *cfg)
3069 {
3070 struct dp_netdev *dp = get_dp_netdev(dpif);
3071 struct dp_netdev_port *port;
3072 int error = 0;
3073 const char *affinity_list = smap_get(cfg, "pmd-rxq-affinity");
3074
3075 ovs_mutex_lock(&dp->port_mutex);
3076 error = get_port_by_number(dp, port_no, &port);
3077 if (error || !netdev_is_pmd(port->netdev)
3078 || nullable_string_is_equal(affinity_list, port->rxq_affinity_list)) {
3079 goto unlock;
3080 }
3081
3082 error = dpif_netdev_port_set_rxq_affinity(port, affinity_list);
3083 if (error) {
3084 goto unlock;
3085 }
3086 free(port->rxq_affinity_list);
3087 port->rxq_affinity_list = nullable_xstrdup(affinity_list);
3088
3089 dp_netdev_request_reconfigure(dp);
3090 unlock:
3091 ovs_mutex_unlock(&dp->port_mutex);
3092 return error;
3093 }
3094
3095 static int
3096 dpif_netdev_queue_to_priority(const struct dpif *dpif OVS_UNUSED,
3097 uint32_t queue_id, uint32_t *priority)
3098 {
3099 *priority = queue_id;
3100 return 0;
3101 }
3102
3103 \f
3104 /* Creates and returns a new 'struct dp_netdev_actions', whose actions are
3105 * a copy of the 'size' bytes of 'actions' input parameters. */
3106 struct dp_netdev_actions *
3107 dp_netdev_actions_create(const struct nlattr *actions, size_t size)
3108 {
3109 struct dp_netdev_actions *netdev_actions;
3110
3111 netdev_actions = xmalloc(sizeof *netdev_actions + size);
3112 memcpy(netdev_actions->actions, actions, size);
3113 netdev_actions->size = size;
3114
3115 return netdev_actions;
3116 }
3117
3118 struct dp_netdev_actions *
3119 dp_netdev_flow_get_actions(const struct dp_netdev_flow *flow)
3120 {
3121 return ovsrcu_get(struct dp_netdev_actions *, &flow->actions);
3122 }
3123
3124 static void
3125 dp_netdev_actions_free(struct dp_netdev_actions *actions)
3126 {
3127 free(actions);
3128 }
3129 \f
3130 static inline unsigned long long
3131 cycles_counter(void)
3132 {
3133 #ifdef DPDK_NETDEV
3134 return rte_get_tsc_cycles();
3135 #else
3136 return 0;
3137 #endif
3138 }
3139
3140 /* Fake mutex to make sure that the calls to cycles_count_* are balanced */
3141 extern struct ovs_mutex cycles_counter_fake_mutex;
3142
3143 /* Start counting cycles. Must be followed by 'cycles_count_end()' */
3144 static inline void
3145 cycles_count_start(struct dp_netdev_pmd_thread *pmd)
3146 OVS_ACQUIRES(&cycles_counter_fake_mutex)
3147 OVS_NO_THREAD_SAFETY_ANALYSIS
3148 {
3149 pmd->last_cycles = cycles_counter();
3150 }
3151
3152 /* Stop counting cycles and add them to the counter 'type' */
3153 static inline void
3154 cycles_count_end(struct dp_netdev_pmd_thread *pmd,
3155 enum pmd_cycles_counter_type type)
3156 OVS_RELEASES(&cycles_counter_fake_mutex)
3157 OVS_NO_THREAD_SAFETY_ANALYSIS
3158 {
3159 unsigned long long interval = cycles_counter() - pmd->last_cycles;
3160
3161 non_atomic_ullong_add(&pmd->cycles.n[type], interval);
3162 }
3163
3164 /* Calculate the intermediate cycle result and add to the counter 'type' */
3165 static inline void
3166 cycles_count_intermediate(struct dp_netdev_pmd_thread *pmd,
3167 struct dp_netdev_rxq *rxq,
3168 enum pmd_cycles_counter_type type)
3169 OVS_NO_THREAD_SAFETY_ANALYSIS
3170 {
3171 unsigned long long new_cycles = cycles_counter();
3172 unsigned long long interval = new_cycles - pmd->last_cycles;
3173 pmd->last_cycles = new_cycles;
3174
3175 non_atomic_ullong_add(&pmd->cycles.n[type], interval);
3176 if (rxq && (type == PMD_CYCLES_PROCESSING)) {
3177 /* Add to the amount of current processing cycles. */
3178 non_atomic_ullong_add(&rxq->cycles[RXQ_CYCLES_PROC_CURR], interval);
3179 }
3180 }
3181
3182 static void
3183 dp_netdev_rxq_set_cycles(struct dp_netdev_rxq *rx,
3184 enum rxq_cycles_counter_type type,
3185 unsigned long long cycles)
3186 {
3187 atomic_store_relaxed(&rx->cycles[type], cycles);
3188 }
3189
3190 static uint64_t
3191 dp_netdev_rxq_get_cycles(struct dp_netdev_rxq *rx,
3192 enum rxq_cycles_counter_type type)
3193 {
3194 unsigned long long processing_cycles;
3195 atomic_read_relaxed(&rx->cycles[type], &processing_cycles);
3196 return processing_cycles;
3197 }
3198
3199 static void
3200 dp_netdev_rxq_set_intrvl_cycles(struct dp_netdev_rxq *rx,
3201 unsigned long long cycles)
3202 {
3203 unsigned int idx = rx->intrvl_idx++ % PMD_RXQ_INTERVAL_MAX;
3204 atomic_store_relaxed(&rx->cycles_intrvl[idx], cycles);
3205 }
3206
3207 static uint64_t
3208 dp_netdev_rxq_get_intrvl_cycles(struct dp_netdev_rxq *rx, unsigned idx)
3209 {
3210 unsigned long long processing_cycles;
3211 atomic_read_relaxed(&rx->cycles_intrvl[idx], &processing_cycles);
3212 return processing_cycles;
3213 }
3214
3215 static int
3216 dp_netdev_process_rxq_port(struct dp_netdev_pmd_thread *pmd,
3217 struct netdev_rxq *rx,
3218 odp_port_t port_no)
3219 {
3220 struct dp_packet_batch batch;
3221 int error;
3222 int batch_cnt = 0;
3223
3224 dp_packet_batch_init(&batch);
3225 error = netdev_rxq_recv(rx, &batch);
3226 if (!error) {
3227 *recirc_depth_get() = 0;
3228
3229 batch_cnt = batch.count;
3230 dp_netdev_input(pmd, &batch, port_no);
3231 } else if (error != EAGAIN && error != EOPNOTSUPP) {
3232 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
3233
3234 VLOG_ERR_RL(&rl, "error receiving data from %s: %s",
3235 netdev_rxq_get_name(rx), ovs_strerror(error));
3236 }
3237
3238 return batch_cnt;
3239 }
3240
3241 static struct tx_port *
3242 tx_port_lookup(const struct hmap *hmap, odp_port_t port_no)
3243 {
3244 struct tx_port *tx;
3245
3246 HMAP_FOR_EACH_IN_BUCKET (tx, node, hash_port_no(port_no), hmap) {
3247 if (tx->port->port_no == port_no) {
3248 return tx;
3249 }
3250 }
3251
3252 return NULL;
3253 }
3254
3255 static int
3256 port_reconfigure(struct dp_netdev_port *port)
3257 {
3258 struct netdev *netdev = port->netdev;
3259 int i, err;
3260
3261 port->need_reconfigure = false;
3262
3263 /* Closes the existing 'rxq's. */
3264 for (i = 0; i < port->n_rxq; i++) {
3265 netdev_rxq_close(port->rxqs[i].rx);
3266 port->rxqs[i].rx = NULL;
3267 }
3268 unsigned last_nrxq = port->n_rxq;
3269 port->n_rxq = 0;
3270
3271 /* Allows 'netdev' to apply the pending configuration changes. */
3272 if (netdev_is_reconf_required(netdev)) {
3273 err = netdev_reconfigure(netdev);
3274 if (err && (err != EOPNOTSUPP)) {
3275 VLOG_ERR("Failed to set interface %s new configuration",
3276 netdev_get_name(netdev));
3277 return err;
3278 }
3279 }
3280 /* If the netdev_reconfigure() above succeeds, reopens the 'rxq's. */
3281 port->rxqs = xrealloc(port->rxqs,
3282 sizeof *port->rxqs * netdev_n_rxq(netdev));
3283 /* Realloc 'used' counters for tx queues. */
3284 free(port->txq_used);
3285 port->txq_used = xcalloc(netdev_n_txq(netdev), sizeof *port->txq_used);
3286
3287 for (i = 0; i < netdev_n_rxq(netdev); i++) {
3288 port->rxqs[i].port = port;
3289 if (i >= last_nrxq) {
3290 /* Only reset cycle stats for new queues */
3291 dp_netdev_rxq_set_cycles(&port->rxqs[i], RXQ_CYCLES_PROC_CURR, 0);
3292 dp_netdev_rxq_set_cycles(&port->rxqs[i], RXQ_CYCLES_PROC_HIST, 0);
3293 for (unsigned j = 0; j < PMD_RXQ_INTERVAL_MAX; j++) {
3294 dp_netdev_rxq_set_intrvl_cycles(&port->rxqs[i], 0);
3295 }
3296 }
3297 err = netdev_rxq_open(netdev, &port->rxqs[i].rx, i);
3298 if (err) {
3299 return err;
3300 }
3301 port->n_rxq++;
3302 }
3303
3304 /* Parse affinity list to apply configuration for new queues. */
3305 dpif_netdev_port_set_rxq_affinity(port, port->rxq_affinity_list);
3306
3307 return 0;
3308 }
3309
3310 struct rr_numa_list {
3311 struct hmap numas; /* Contains 'struct rr_numa' */
3312 };
3313
3314 struct rr_numa {
3315 struct hmap_node node;
3316
3317 int numa_id;
3318
3319 /* Non isolated pmds on numa node 'numa_id' */
3320 struct dp_netdev_pmd_thread **pmds;
3321 int n_pmds;
3322
3323 int cur_index;
3324 bool idx_inc;
3325 };
3326
3327 static struct rr_numa *
3328 rr_numa_list_lookup(struct rr_numa_list *rr, int numa_id)
3329 {
3330 struct rr_numa *numa;
3331
3332 HMAP_FOR_EACH_WITH_HASH (numa, node, hash_int(numa_id, 0), &rr->numas) {
3333 if (numa->numa_id == numa_id) {
3334 return numa;
3335 }
3336 }
3337
3338 return NULL;
3339 }
3340
3341 /* Returns the next node in numa list following 'numa' in round-robin fashion.
3342 * Returns first node if 'numa' is a null pointer or the last node in 'rr'.
3343 * Returns NULL if 'rr' numa list is empty. */
3344 static struct rr_numa *
3345 rr_numa_list_next(struct rr_numa_list *rr, const struct rr_numa *numa)
3346 {
3347 struct hmap_node *node = NULL;
3348
3349 if (numa) {
3350 node = hmap_next(&rr->numas, &numa->node);
3351 }
3352 if (!node) {
3353 node = hmap_first(&rr->numas);
3354 }
3355
3356 return (node) ? CONTAINER_OF(node, struct rr_numa, node) : NULL;
3357 }
3358
3359 static void
3360 rr_numa_list_populate(struct dp_netdev *dp, struct rr_numa_list *rr)
3361 {
3362 struct dp_netdev_pmd_thread *pmd;
3363 struct rr_numa *numa;
3364
3365 hmap_init(&rr->numas);
3366
3367 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
3368 if (pmd->core_id == NON_PMD_CORE_ID || pmd->isolated) {
3369 continue;
3370 }
3371
3372 numa = rr_numa_list_lookup(rr, pmd->numa_id);
3373 if (!numa) {
3374 numa = xzalloc(sizeof *numa);
3375 numa->numa_id = pmd->numa_id;
3376 hmap_insert(&rr->numas, &numa->node, hash_int(pmd->numa_id, 0));
3377 }
3378 numa->n_pmds++;
3379 numa->pmds = xrealloc(numa->pmds, numa->n_pmds * sizeof *numa->pmds);
3380 numa->pmds[numa->n_pmds - 1] = pmd;
3381 /* At least one pmd so initialise curr_idx and idx_inc. */
3382 numa->cur_index = 0;
3383 numa->idx_inc = true;
3384 }
3385 }
3386
3387 /* Returns the next pmd from the numa node in
3388 * incrementing or decrementing order. */
3389 static struct dp_netdev_pmd_thread *
3390 rr_numa_get_pmd(struct rr_numa *numa)
3391 {
3392 int numa_idx = numa->cur_index;
3393
3394 if (numa->idx_inc == true) {
3395 /* Incrementing through list of pmds. */
3396 if (numa->cur_index == numa->n_pmds-1) {
3397 /* Reached the last pmd. */
3398 numa->idx_inc = false;
3399 } else {
3400 numa->cur_index++;
3401 }
3402 } else {
3403 /* Decrementing through list of pmds. */
3404 if (numa->cur_index == 0) {
3405 /* Reached the first pmd. */
3406 numa->idx_inc = true;
3407 } else {
3408 numa->cur_index--;
3409 }
3410 }
3411 return numa->pmds[numa_idx];
3412 }
3413
3414 static void
3415 rr_numa_list_destroy(struct rr_numa_list *rr)
3416 {
3417 struct rr_numa *numa;
3418
3419 HMAP_FOR_EACH_POP (numa, node, &rr->numas) {
3420 free(numa->pmds);
3421 free(numa);
3422 }
3423 hmap_destroy(&rr->numas);
3424 }
3425
3426 /* Sort Rx Queues by the processing cycles they are consuming. */
3427 static int
3428 rxq_cycle_sort(const void *a, const void *b)
3429 {
3430 struct dp_netdev_rxq *qa;
3431 struct dp_netdev_rxq *qb;
3432 uint64_t total_qa, total_qb;
3433 unsigned i;
3434
3435 qa = *(struct dp_netdev_rxq **) a;
3436 qb = *(struct dp_netdev_rxq **) b;
3437
3438 total_qa = total_qb = 0;
3439 for (i = 0; i < PMD_RXQ_INTERVAL_MAX; i++) {
3440 total_qa += dp_netdev_rxq_get_intrvl_cycles(qa, i);
3441 total_qb += dp_netdev_rxq_get_intrvl_cycles(qb, i);
3442 }
3443 dp_netdev_rxq_set_cycles(qa, RXQ_CYCLES_PROC_HIST, total_qa);
3444 dp_netdev_rxq_set_cycles(qb, RXQ_CYCLES_PROC_HIST, total_qb);
3445
3446 if (total_qa >= total_qb) {
3447 return -1;
3448 }
3449 return 1;
3450 }
3451
3452 /* Assign pmds to queues. If 'pinned' is true, assign pmds to pinned
3453 * queues and marks the pmds as isolated. Otherwise, assign non isolated
3454 * pmds to unpinned queues.
3455 *
3456 * If 'pinned' is false queues will be sorted by processing cycles they are
3457 * consuming and then assigned to pmds in round robin order.
3458 *
3459 * The function doesn't touch the pmd threads, it just stores the assignment
3460 * in the 'pmd' member of each rxq. */
3461 static void
3462 rxq_scheduling(struct dp_netdev *dp, bool pinned) OVS_REQUIRES(dp->port_mutex)
3463 {
3464 struct dp_netdev_port *port;
3465 struct rr_numa_list rr;
3466 struct rr_numa *non_local_numa = NULL;
3467 struct dp_netdev_rxq ** rxqs = NULL;
3468 int i, n_rxqs = 0;
3469 struct rr_numa *numa = NULL;
3470 int numa_id;
3471
3472 HMAP_FOR_EACH (port, node, &dp->ports) {
3473 if (!netdev_is_pmd(port->netdev)) {
3474 continue;
3475 }
3476
3477 for (int qid = 0; qid < port->n_rxq; qid++) {
3478 struct dp_netdev_rxq *q = &port->rxqs[qid];
3479
3480 if (pinned && q->core_id != OVS_CORE_UNSPEC) {
3481 struct dp_netdev_pmd_thread *pmd;
3482
3483 pmd = dp_netdev_get_pmd(dp, q->core_id);
3484 if (!pmd) {
3485 VLOG_WARN("There is no PMD thread on core %d. Queue "
3486 "%d on port \'%s\' will not be polled.",
3487 q->core_id, qid, netdev_get_name(port->netdev));
3488 } else {
3489 q->pmd = pmd;
3490 pmd->isolated = true;
3491 dp_netdev_pmd_unref(pmd);
3492 }
3493 } else if (!pinned && q->core_id == OVS_CORE_UNSPEC) {
3494 if (n_rxqs == 0) {
3495 rxqs = xmalloc(sizeof *rxqs);
3496 } else {
3497 rxqs = xrealloc(rxqs, sizeof *rxqs * (n_rxqs + 1));
3498 }
3499 /* Store the queue. */
3500 rxqs[n_rxqs++] = q;
3501 }
3502 }
3503 }
3504
3505 if (n_rxqs > 1) {
3506 /* Sort the queues in order of the processing cycles
3507 * they consumed during their last pmd interval. */
3508 qsort(rxqs, n_rxqs, sizeof *rxqs, rxq_cycle_sort);
3509 }
3510
3511 rr_numa_list_populate(dp, &rr);
3512 /* Assign the sorted queues to pmds in round robin. */
3513 for (i = 0; i < n_rxqs; i++) {
3514 numa_id = netdev_get_numa_id(rxqs[i]->port->netdev);
3515 numa = rr_numa_list_lookup(&rr, numa_id);
3516 if (!numa) {
3517 /* There are no pmds on the queue's local NUMA node.
3518 Round robin on the NUMA nodes that do have pmds. */
3519 non_local_numa = rr_numa_list_next(&rr, non_local_numa);
3520 if (!non_local_numa) {
3521 VLOG_ERR("There is no available (non-isolated) pmd "
3522 "thread for port \'%s\' queue %d. This queue "
3523 "will not be polled. Is pmd-cpu-mask set to "
3524 "zero? Or are all PMDs isolated to other "
3525 "queues?", netdev_rxq_get_name(rxqs[i]->rx),
3526 netdev_rxq_get_queue_id(rxqs[i]->rx));
3527 continue;
3528 }
3529 rxqs[i]->pmd = rr_numa_get_pmd(non_local_numa);
3530 VLOG_WARN("There's no available (non-isolated) pmd thread "
3531 "on numa node %d. Queue %d on port \'%s\' will "
3532 "be assigned to the pmd on core %d "
3533 "(numa node %d). Expect reduced performance.",
3534 numa_id, netdev_rxq_get_queue_id(rxqs[i]->rx),
3535 netdev_rxq_get_name(rxqs[i]->rx),
3536 rxqs[i]->pmd->core_id, rxqs[i]->pmd->numa_id);
3537 } else {
3538 rxqs[i]->pmd = rr_numa_get_pmd(numa);
3539 VLOG_INFO("Core %d on numa node %d assigned port \'%s\' "
3540 "rx queue %d (measured processing cycles %"PRIu64").",
3541 rxqs[i]->pmd->core_id, numa_id,
3542 netdev_rxq_get_name(rxqs[i]->rx),
3543 netdev_rxq_get_queue_id(rxqs[i]->rx),
3544 dp_netdev_rxq_get_cycles(rxqs[i], RXQ_CYCLES_PROC_HIST));
3545 }
3546 }
3547
3548 rr_numa_list_destroy(&rr);
3549 free(rxqs);
3550 }
3551
3552 static void
3553 reload_affected_pmds(struct dp_netdev *dp)
3554 {
3555 struct dp_netdev_pmd_thread *pmd;
3556
3557 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
3558 if (pmd->need_reload) {
3559 dp_netdev_reload_pmd__(pmd);
3560 pmd->need_reload = false;
3561 }
3562 }
3563 }
3564
3565 static void
3566 reconfigure_pmd_threads(struct dp_netdev *dp)
3567 OVS_REQUIRES(dp->port_mutex)
3568 {
3569 struct dp_netdev_pmd_thread *pmd;
3570 struct ovs_numa_dump *pmd_cores;
3571 struct ovs_numa_info_core *core;
3572 struct hmapx to_delete = HMAPX_INITIALIZER(&to_delete);
3573 struct hmapx_node *node;
3574 bool changed = false;
3575 bool need_to_adjust_static_tx_qids = false;
3576
3577 /* The pmd threads should be started only if there's a pmd port in the
3578 * datapath. If the user didn't provide any "pmd-cpu-mask", we start
3579 * NR_PMD_THREADS per numa node. */
3580 if (!has_pmd_port(dp)) {
3581 pmd_cores = ovs_numa_dump_n_cores_per_numa(0);
3582 } else if (dp->pmd_cmask && dp->pmd_cmask[0]) {
3583 pmd_cores = ovs_numa_dump_cores_with_cmask(dp->pmd_cmask);
3584 } else {
3585 pmd_cores = ovs_numa_dump_n_cores_per_numa(NR_PMD_THREADS);
3586 }
3587
3588 /* We need to adjust 'static_tx_qid's only if we're reducing number of
3589 * PMD threads. Otherwise, new threads will allocate all the freed ids. */
3590 if (ovs_numa_dump_count(pmd_cores) < cmap_count(&dp->poll_threads) - 1) {
3591 /* Adjustment is required to keep 'static_tx_qid's sequential and
3592 * avoid possible issues, for example, imbalanced tx queue usage
3593 * and unnecessary locking caused by remapping on netdev level. */
3594 need_to_adjust_static_tx_qids = true;
3595 }
3596
3597 /* Check for unwanted pmd threads */
3598 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
3599 if (pmd->core_id == NON_PMD_CORE_ID) {
3600 continue;
3601 }
3602 if (!ovs_numa_dump_contains_core(pmd_cores, pmd->numa_id,
3603 pmd->core_id)) {
3604 hmapx_add(&to_delete, pmd);
3605 } else if (need_to_adjust_static_tx_qids) {
3606 pmd->need_reload = true;
3607 }
3608 }
3609
3610 HMAPX_FOR_EACH (node, &to_delete) {
3611 pmd = (struct dp_netdev_pmd_thread *) node->data;
3612 VLOG_INFO("PMD thread on numa_id: %d, core id: %2d destroyed.",
3613 pmd->numa_id, pmd->core_id);
3614 dp_netdev_del_pmd(dp, pmd);
3615 }
3616 changed = !hmapx_is_empty(&to_delete);
3617 hmapx_destroy(&to_delete);
3618
3619 if (need_to_adjust_static_tx_qids) {
3620 /* 'static_tx_qid's are not sequential now.
3621 * Reload remaining threads to fix this. */
3622 reload_affected_pmds(dp);
3623 }
3624
3625 /* Check for required new pmd threads */
3626 FOR_EACH_CORE_ON_DUMP(core, pmd_cores) {
3627 pmd = dp_netdev_get_pmd(dp, core->core_id);
3628 if (!pmd) {
3629 pmd = xzalloc(sizeof *pmd);
3630 dp_netdev_configure_pmd(pmd, dp, core->core_id, core->numa_id);
3631 pmd->thread = ovs_thread_create("pmd", pmd_thread_main, pmd);
3632 VLOG_INFO("PMD thread on numa_id: %d, core id: %2d created.",
3633 pmd->numa_id, pmd->core_id);
3634 changed = true;
3635 } else {
3636 dp_netdev_pmd_unref(pmd);
3637 }
3638 }
3639
3640 if (changed) {
3641 struct ovs_numa_info_numa *numa;
3642
3643 /* Log the number of pmd threads per numa node. */
3644 FOR_EACH_NUMA_ON_DUMP (numa, pmd_cores) {
3645 VLOG_INFO("There are %"PRIuSIZE" pmd threads on numa node %d",
3646 numa->n_cores, numa->numa_id);
3647 }
3648 }
3649
3650 ovs_numa_dump_destroy(pmd_cores);
3651 }
3652
3653 static void
3654 pmd_remove_stale_ports(struct dp_netdev *dp,
3655 struct dp_netdev_pmd_thread *pmd)
3656 OVS_EXCLUDED(pmd->port_mutex)
3657 OVS_REQUIRES(dp->port_mutex)
3658 {
3659 struct rxq_poll *poll, *poll_next;
3660 struct tx_port *tx, *tx_next;
3661
3662 ovs_mutex_lock(&pmd->port_mutex);
3663 HMAP_FOR_EACH_SAFE (poll, poll_next, node, &pmd->poll_list) {
3664 struct dp_netdev_port *port = poll->rxq->port;
3665
3666 if (port->need_reconfigure
3667 || !hmap_contains(&dp->ports, &port->node)) {
3668 dp_netdev_del_rxq_from_pmd(pmd, poll);
3669 }
3670 }
3671 HMAP_FOR_EACH_SAFE (tx, tx_next, node, &pmd->tx_ports) {
3672 struct dp_netdev_port *port = tx->port;
3673
3674 if (port->need_reconfigure
3675 || !hmap_contains(&dp->ports, &port->node)) {
3676 dp_netdev_del_port_tx_from_pmd(pmd, tx);
3677 }
3678 }
3679 ovs_mutex_unlock(&pmd->port_mutex);
3680 }
3681
3682 /* Must be called each time a port is added/removed or the cmask changes.
3683 * This creates and destroys pmd threads, reconfigures ports, opens their
3684 * rxqs and assigns all rxqs/txqs to pmd threads. */
3685 static void
3686 reconfigure_datapath(struct dp_netdev *dp)
3687 OVS_REQUIRES(dp->port_mutex)
3688 {
3689 struct dp_netdev_pmd_thread *pmd;
3690 struct dp_netdev_port *port;
3691 int wanted_txqs;
3692
3693 dp->last_reconfigure_seq = seq_read(dp->reconfigure_seq);
3694
3695 /* Step 1: Adjust the pmd threads based on the datapath ports, the cores
3696 * on the system and the user configuration. */
3697 reconfigure_pmd_threads(dp);
3698
3699 wanted_txqs = cmap_count(&dp->poll_threads);
3700
3701 /* The number of pmd threads might have changed, or a port can be new:
3702 * adjust the txqs. */
3703 HMAP_FOR_EACH (port, node, &dp->ports) {
3704 netdev_set_tx_multiq(port->netdev, wanted_txqs);
3705 }
3706
3707 /* Step 2: Remove from the pmd threads ports that have been removed or
3708 * need reconfiguration. */
3709
3710 /* Check for all the ports that need reconfiguration. We cache this in
3711 * 'port->need_reconfigure', because netdev_is_reconf_required() can
3712 * change at any time. */
3713 HMAP_FOR_EACH (port, node, &dp->ports) {
3714 if (netdev_is_reconf_required(port->netdev)) {
3715 port->need_reconfigure = true;
3716 }
3717 }
3718
3719 /* Remove from the pmd threads all the ports that have been deleted or
3720 * need reconfiguration. */
3721 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
3722 pmd_remove_stale_ports(dp, pmd);
3723 }
3724
3725 /* Reload affected pmd threads. We must wait for the pmd threads before
3726 * reconfiguring the ports, because a port cannot be reconfigured while
3727 * it's being used. */
3728 reload_affected_pmds(dp);
3729
3730 /* Step 3: Reconfigure ports. */
3731
3732 /* We only reconfigure the ports that we determined above, because they're
3733 * not being used by any pmd thread at the moment. If a port fails to
3734 * reconfigure we remove it from the datapath. */
3735 struct dp_netdev_port *next_port;
3736 HMAP_FOR_EACH_SAFE (port, next_port, node, &dp->ports) {
3737 int err;
3738
3739 if (!port->need_reconfigure) {
3740 continue;
3741 }
3742
3743 err = port_reconfigure(port);
3744 if (err) {
3745 hmap_remove(&dp->ports, &port->node);
3746 seq_change(dp->port_seq);
3747 port_destroy(port);
3748 } else {
3749 port->dynamic_txqs = netdev_n_txq(port->netdev) < wanted_txqs;
3750 }
3751 }
3752
3753 /* Step 4: Compute new rxq scheduling. We don't touch the pmd threads
3754 * for now, we just update the 'pmd' pointer in each rxq to point to the
3755 * wanted thread according to the scheduling policy. */
3756
3757 /* Reset all the pmd threads to non isolated. */
3758 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
3759 pmd->isolated = false;
3760 }
3761
3762 /* Reset all the queues to unassigned */
3763 HMAP_FOR_EACH (port, node, &dp->ports) {
3764 for (int i = 0; i < port->n_rxq; i++) {
3765 port->rxqs[i].pmd = NULL;
3766 }
3767 }
3768
3769 /* Add pinned queues and mark pmd threads isolated. */
3770 rxq_scheduling(dp, true);
3771
3772 /* Add non-pinned queues. */
3773 rxq_scheduling(dp, false);
3774
3775 /* Step 5: Remove queues not compliant with new scheduling. */
3776 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
3777 struct rxq_poll *poll, *poll_next;
3778
3779 ovs_mutex_lock(&pmd->port_mutex);
3780 HMAP_FOR_EACH_SAFE (poll, poll_next, node, &pmd->poll_list) {
3781 if (poll->rxq->pmd != pmd) {
3782 dp_netdev_del_rxq_from_pmd(pmd, poll);
3783 }
3784 }
3785 ovs_mutex_unlock(&pmd->port_mutex);
3786 }
3787
3788 /* Reload affected pmd threads. We must wait for the pmd threads to remove
3789 * the old queues before readding them, otherwise a queue can be polled by
3790 * two threads at the same time. */
3791 reload_affected_pmds(dp);
3792
3793 /* Step 6: Add queues from scheduling, if they're not there already. */
3794 HMAP_FOR_EACH (port, node, &dp->ports) {
3795 if (!netdev_is_pmd(port->netdev)) {
3796 continue;
3797 }
3798
3799 for (int qid = 0; qid < port->n_rxq; qid++) {
3800 struct dp_netdev_rxq *q = &port->rxqs[qid];
3801
3802 if (q->pmd) {
3803 ovs_mutex_lock(&q->pmd->port_mutex);
3804 dp_netdev_add_rxq_to_pmd(q->pmd, q);
3805 ovs_mutex_unlock(&q->pmd->port_mutex);
3806 }
3807 }
3808 }
3809
3810 /* Add every port to the tx cache of every pmd thread, if it's not
3811 * there already and if this pmd has at least one rxq to poll. */
3812 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
3813 ovs_mutex_lock(&pmd->port_mutex);
3814 if (hmap_count(&pmd->poll_list) || pmd->core_id == NON_PMD_CORE_ID) {
3815 HMAP_FOR_EACH (port, node, &dp->ports) {
3816 dp_netdev_add_port_tx_to_pmd(pmd, port);
3817 }
3818 }
3819 ovs_mutex_unlock(&pmd->port_mutex);
3820 }
3821
3822 /* Reload affected pmd threads. */
3823 reload_affected_pmds(dp);
3824 }
3825
3826 /* Returns true if one of the netdevs in 'dp' requires a reconfiguration */
3827 static bool
3828 ports_require_restart(const struct dp_netdev *dp)
3829 OVS_REQUIRES(dp->port_mutex)
3830 {
3831 struct dp_netdev_port *port;
3832
3833 HMAP_FOR_EACH (port, node, &dp->ports) {
3834 if (netdev_is_reconf_required(port->netdev)) {
3835 return true;
3836 }
3837 }
3838
3839 return false;
3840 }
3841
3842 /* Return true if needs to revalidate datapath flows. */
3843 static bool
3844 dpif_netdev_run(struct dpif *dpif)
3845 {
3846 struct dp_netdev_port *port;
3847 struct dp_netdev *dp = get_dp_netdev(dpif);
3848 struct dp_netdev_pmd_thread *non_pmd;
3849 uint64_t new_tnl_seq;
3850 int process_packets = 0;
3851
3852 ovs_mutex_lock(&dp->port_mutex);
3853 non_pmd = dp_netdev_get_pmd(dp, NON_PMD_CORE_ID);
3854 if (non_pmd) {
3855 ovs_mutex_lock(&dp->non_pmd_mutex);
3856 cycles_count_start(non_pmd);
3857 HMAP_FOR_EACH (port, node, &dp->ports) {
3858 if (!netdev_is_pmd(port->netdev)) {
3859 int i;
3860
3861 for (i = 0; i < port->n_rxq; i++) {
3862 process_packets =
3863 dp_netdev_process_rxq_port(non_pmd,
3864 port->rxqs[i].rx,
3865 port->port_no);
3866 cycles_count_intermediate(non_pmd, NULL,
3867 process_packets
3868 ? PMD_CYCLES_PROCESSING
3869 : PMD_CYCLES_IDLE);
3870 }
3871 }
3872 }
3873 cycles_count_end(non_pmd, PMD_CYCLES_IDLE);
3874 dpif_netdev_xps_revalidate_pmd(non_pmd, time_msec(), false);
3875 ovs_mutex_unlock(&dp->non_pmd_mutex);
3876
3877 dp_netdev_pmd_unref(non_pmd);
3878 }
3879
3880 if (dp_netdev_is_reconf_required(dp) || ports_require_restart(dp)) {
3881 reconfigure_datapath(dp);
3882 }
3883 ovs_mutex_unlock(&dp->port_mutex);
3884
3885 tnl_neigh_cache_run();
3886 tnl_port_map_run();
3887 new_tnl_seq = seq_read(tnl_conf_seq);
3888
3889 if (dp->last_tnl_conf_seq != new_tnl_seq) {
3890 dp->last_tnl_conf_seq = new_tnl_seq;
3891 return true;
3892 }
3893 return false;
3894 }
3895
3896 static void
3897 dpif_netdev_wait(struct dpif *dpif)
3898 {
3899 struct dp_netdev_port *port;
3900 struct dp_netdev *dp = get_dp_netdev(dpif);
3901
3902 ovs_mutex_lock(&dp_netdev_mutex);
3903 ovs_mutex_lock(&dp->port_mutex);
3904 HMAP_FOR_EACH (port, node, &dp->ports) {
3905 netdev_wait_reconf_required(port->netdev);
3906 if (!netdev_is_pmd(port->netdev)) {
3907 int i;
3908
3909 for (i = 0; i < port->n_rxq; i++) {
3910 netdev_rxq_wait(port->rxqs[i].rx);
3911 }
3912 }
3913 }
3914 ovs_mutex_unlock(&dp->port_mutex);
3915 ovs_mutex_unlock(&dp_netdev_mutex);
3916 seq_wait(tnl_conf_seq, dp->last_tnl_conf_seq);
3917 }
3918
3919 static void
3920 pmd_free_cached_ports(struct dp_netdev_pmd_thread *pmd)
3921 {
3922 struct tx_port *tx_port_cached;
3923
3924 /* Free all used tx queue ids. */
3925 dpif_netdev_xps_revalidate_pmd(pmd, 0, true);
3926
3927 HMAP_FOR_EACH_POP (tx_port_cached, node, &pmd->tnl_port_cache) {
3928 free(tx_port_cached);
3929 }
3930 HMAP_FOR_EACH_POP (tx_port_cached, node, &pmd->send_port_cache) {
3931 free(tx_port_cached);
3932 }
3933 }
3934
3935 /* Copies ports from 'pmd->tx_ports' (shared with the main thread) to
3936 * 'pmd->port_cache' (thread local) */
3937 static void
3938 pmd_load_cached_ports(struct dp_netdev_pmd_thread *pmd)
3939 OVS_REQUIRES(pmd->port_mutex)
3940 {
3941 struct tx_port *tx_port, *tx_port_cached;
3942
3943 pmd_free_cached_ports(pmd);
3944 hmap_shrink(&pmd->send_port_cache);
3945 hmap_shrink(&pmd->tnl_port_cache);
3946
3947 HMAP_FOR_EACH (tx_port, node, &pmd->tx_ports) {
3948 if (netdev_has_tunnel_push_pop(tx_port->port->netdev)) {
3949 tx_port_cached = xmemdup(tx_port, sizeof *tx_port_cached);
3950 hmap_insert(&pmd->tnl_port_cache, &tx_port_cached->node,
3951 hash_port_no(tx_port_cached->port->port_no));
3952 }
3953
3954 if (netdev_n_txq(tx_port->port->netdev)) {
3955 tx_port_cached = xmemdup(tx_port, sizeof *tx_port_cached);
3956 hmap_insert(&pmd->send_port_cache, &tx_port_cached->node,
3957 hash_port_no(tx_port_cached->port->port_no));
3958 }
3959 }
3960 }
3961
3962 static void
3963 pmd_alloc_static_tx_qid(struct dp_netdev_pmd_thread *pmd)
3964 {
3965 ovs_mutex_lock(&pmd->dp->tx_qid_pool_mutex);
3966 if (!id_pool_alloc_id(pmd->dp->tx_qid_pool, &pmd->static_tx_qid)) {
3967 VLOG_ABORT("static_tx_qid allocation failed for PMD on core %2d"
3968 ", numa_id %d.", pmd->core_id, pmd->numa_id);
3969 }
3970 ovs_mutex_unlock(&pmd->dp->tx_qid_pool_mutex);
3971
3972 VLOG_DBG("static_tx_qid = %d allocated for PMD thread on core %2d"
3973 ", numa_id %d.", pmd->static_tx_qid, pmd->core_id, pmd->numa_id);
3974 }
3975
3976 static void
3977 pmd_free_static_tx_qid(struct dp_netdev_pmd_thread *pmd)
3978 {
3979 ovs_mutex_lock(&pmd->dp->tx_qid_pool_mutex);
3980 id_pool_free_id(pmd->dp->tx_qid_pool, pmd->static_tx_qid);
3981 ovs_mutex_unlock(&pmd->dp->tx_qid_pool_mutex);
3982 }
3983
3984 static int
3985 pmd_load_queues_and_ports(struct dp_netdev_pmd_thread *pmd,
3986 struct polled_queue **ppoll_list)
3987 {
3988 struct polled_queue *poll_list = *ppoll_list;
3989 struct rxq_poll *poll;
3990 int i;
3991
3992 ovs_mutex_lock(&pmd->port_mutex);
3993 poll_list = xrealloc(poll_list, hmap_count(&pmd->poll_list)
3994 * sizeof *poll_list);
3995
3996 i = 0;
3997 HMAP_FOR_EACH (poll, node, &pmd->poll_list) {
3998 poll_list[i].rxq = poll->rxq;
3999 poll_list[i].port_no = poll->rxq->port->port_no;
4000 i++;
4001 }
4002
4003 pmd_load_cached_ports(pmd);
4004
4005 ovs_mutex_unlock(&pmd->port_mutex);
4006
4007 *ppoll_list = poll_list;
4008 return i;
4009 }
4010
4011 static void *
4012 pmd_thread_main(void *f_)
4013 {
4014 struct dp_netdev_pmd_thread *pmd = f_;
4015 unsigned int lc = 0;
4016 struct polled_queue *poll_list;
4017 bool exiting;
4018 int poll_cnt;
4019 int i;
4020 int process_packets = 0;
4021
4022 poll_list = NULL;
4023
4024 /* Stores the pmd thread's 'pmd' to 'per_pmd_key'. */
4025 ovsthread_setspecific(pmd->dp->per_pmd_key, pmd);
4026 ovs_numa_thread_setaffinity_core(pmd->core_id);
4027 dpdk_set_lcore_id(pmd->core_id);
4028 poll_cnt = pmd_load_queues_and_ports(pmd, &poll_list);
4029 emc_cache_init(&pmd->flow_cache);
4030 reload:
4031 pmd_alloc_static_tx_qid(pmd);
4032
4033 /* List port/core affinity */
4034 for (i = 0; i < poll_cnt; i++) {
4035 VLOG_DBG("Core %d processing port \'%s\' with queue-id %d\n",
4036 pmd->core_id, netdev_rxq_get_name(poll_list[i].rxq->rx),
4037 netdev_rxq_get_queue_id(poll_list[i].rxq->rx));
4038 }
4039
4040 if (!poll_cnt) {
4041 while (seq_read(pmd->reload_seq) == pmd->last_reload_seq) {
4042 seq_wait(pmd->reload_seq, pmd->last_reload_seq);
4043 poll_block();
4044 }
4045 lc = UINT_MAX;
4046 }
4047
4048 cycles_count_start(pmd);
4049 for (;;) {
4050 for (i = 0; i < poll_cnt; i++) {
4051 process_packets =
4052 dp_netdev_process_rxq_port(pmd, poll_list[i].rxq->rx,
4053 poll_list[i].port_no);
4054 cycles_count_intermediate(pmd, poll_list[i].rxq,
4055 process_packets ? PMD_CYCLES_PROCESSING
4056 : PMD_CYCLES_IDLE);
4057 }
4058
4059 if (lc++ > 1024) {
4060 bool reload;
4061
4062 lc = 0;
4063
4064 coverage_try_clear();
4065 dp_netdev_pmd_try_optimize(pmd, poll_list, poll_cnt);
4066 if (!ovsrcu_try_quiesce()) {
4067 emc_cache_slow_sweep(&pmd->flow_cache);
4068 }
4069
4070 atomic_read_relaxed(&pmd->reload, &reload);
4071 if (reload) {
4072 break;
4073 }
4074 }
4075 }
4076
4077 cycles_count_end(pmd, PMD_CYCLES_IDLE);
4078
4079 poll_cnt = pmd_load_queues_and_ports(pmd, &poll_list);
4080 exiting = latch_is_set(&pmd->exit_latch);
4081 /* Signal here to make sure the pmd finishes
4082 * reloading the updated configuration. */
4083 dp_netdev_pmd_reload_done(pmd);
4084
4085 pmd_free_static_tx_qid(pmd);
4086
4087 if (!exiting) {
4088 goto reload;
4089 }
4090
4091 emc_cache_uninit(&pmd->flow_cache);
4092 free(poll_list);
4093 pmd_free_cached_ports(pmd);
4094 return NULL;
4095 }
4096
4097 static void
4098 dp_netdev_disable_upcall(struct dp_netdev *dp)
4099 OVS_ACQUIRES(dp->upcall_rwlock)
4100 {
4101 fat_rwlock_wrlock(&dp->upcall_rwlock);
4102 }
4103
4104 \f
4105 /* Meters */
4106 static void
4107 dpif_netdev_meter_get_features(const struct dpif * dpif OVS_UNUSED,
4108 struct ofputil_meter_features *features)
4109 {
4110 features->max_meters = MAX_METERS;
4111 features->band_types = DP_SUPPORTED_METER_BAND_TYPES;
4112 features->capabilities = DP_SUPPORTED_METER_FLAGS_MASK;
4113 features->max_bands = MAX_BANDS;
4114 features->max_color = 0;
4115 }
4116
4117 /* Returns false when packet needs to be dropped. */
4118 static void
4119 dp_netdev_run_meter(struct dp_netdev *dp, struct dp_packet_batch *packets_,
4120 uint32_t meter_id, long long int now)
4121 {
4122 struct dp_meter *meter;
4123 struct dp_meter_band *band;
4124 long long int long_delta_t; /* msec */
4125 uint32_t delta_t; /* msec */
4126 int i;
4127 int cnt = packets_->count;
4128 uint32_t bytes, volume;
4129 int exceeded_band[NETDEV_MAX_BURST];
4130 uint32_t exceeded_rate[NETDEV_MAX_BURST];
4131 int exceeded_pkt = cnt; /* First packet that exceeded a band rate. */
4132
4133 if (meter_id >= MAX_METERS) {
4134 return;
4135 }
4136
4137 meter_lock(dp, meter_id);
4138 meter = dp->meters[meter_id];
4139 if (!meter) {
4140 goto out;
4141 }
4142
4143 /* Initialize as negative values. */
4144 memset(exceeded_band, 0xff, cnt * sizeof *exceeded_band);
4145 /* Initialize as zeroes. */
4146 memset(exceeded_rate, 0, cnt * sizeof *exceeded_rate);
4147
4148 /* All packets will hit the meter at the same time. */
4149 long_delta_t = (now - meter->used); /* msec */
4150
4151 /* Make sure delta_t will not be too large, so that bucket will not
4152 * wrap around below. */
4153 delta_t = (long_delta_t > (long long int)meter->max_delta_t)
4154 ? meter->max_delta_t : (uint32_t)long_delta_t;
4155
4156 /* Update meter stats. */
4157 meter->used = now;
4158 meter->packet_count += cnt;
4159 bytes = 0;
4160 for (i = 0; i < cnt; i++) {
4161 bytes += dp_packet_size(packets_->packets[i]);
4162 }
4163 meter->byte_count += bytes;
4164
4165 /* Meters can operate in terms of packets per second or kilobits per
4166 * second. */
4167 if (meter->flags & OFPMF13_PKTPS) {
4168 /* Rate in packets/second, bucket 1/1000 packets. */
4169 /* msec * packets/sec = 1/1000 packets. */
4170 volume = cnt * 1000; /* Take 'cnt' packets from the bucket. */
4171 } else {
4172 /* Rate in kbps, bucket in bits. */
4173 /* msec * kbps = bits */
4174 volume = bytes * 8;
4175 }
4176
4177 /* Update all bands and find the one hit with the highest rate for each
4178 * packet (if any). */
4179 for (int m = 0; m < meter->n_bands; ++m) {
4180 band = &meter->bands[m];
4181
4182 /* Update band's bucket. */
4183 band->bucket += delta_t * band->up.rate;
4184 if (band->bucket > band->up.burst_size) {
4185 band->bucket = band->up.burst_size;
4186 }
4187
4188 /* Drain the bucket for all the packets, if possible. */
4189 if (band->bucket >= volume) {
4190 band->bucket -= volume;
4191 } else {
4192 int band_exceeded_pkt;
4193
4194 /* Band limit hit, must process packet-by-packet. */
4195 if (meter->flags & OFPMF13_PKTPS) {
4196 band_exceeded_pkt = band->bucket / 1000;
4197 band->bucket %= 1000; /* Remainder stays in bucket. */
4198
4199 /* Update the exceeding band for each exceeding packet.
4200 * (Only one band will be fired by a packet, and that
4201 * can be different for each packet.) */
4202 for (i = band_exceeded_pkt; i < cnt; i++) {
4203 if (band->up.rate > exceeded_rate[i]) {
4204 exceeded_rate[i] = band->up.rate;
4205 exceeded_band[i] = m;
4206 }
4207 }
4208 } else {
4209 /* Packet sizes differ, must process one-by-one. */
4210 band_exceeded_pkt = cnt;
4211 for (i = 0; i < cnt; i++) {
4212 uint32_t bits = dp_packet_size(packets_->packets[i]) * 8;
4213
4214 if (band->bucket >= bits) {
4215 band->bucket -= bits;
4216 } else {
4217 if (i < band_exceeded_pkt) {
4218 band_exceeded_pkt = i;
4219 }
4220 /* Update the exceeding band for the exceeding packet.
4221 * (Only one band will be fired by a packet, and that
4222 * can be different for each packet.) */
4223 if (band->up.rate > exceeded_rate[i]) {
4224 exceeded_rate[i] = band->up.rate;
4225 exceeded_band[i] = m;
4226 }
4227 }
4228 }
4229 }
4230 /* Remember the first exceeding packet. */
4231 if (exceeded_pkt > band_exceeded_pkt) {
4232 exceeded_pkt = band_exceeded_pkt;
4233 }
4234 }
4235 }
4236
4237 /* Fire the highest rate band exceeded by each packet.
4238 * Drop packets if needed, by swapping packet to the end that will be
4239 * ignored. */
4240 const size_t size = dp_packet_batch_size(packets_);
4241 struct dp_packet *packet;
4242 size_t j;
4243 DP_PACKET_BATCH_REFILL_FOR_EACH (j, size, packet, packets_) {
4244 if (exceeded_band[j] >= 0) {
4245 /* Meter drop packet. */
4246 band = &meter->bands[exceeded_band[j]];
4247 band->packet_count += 1;
4248 band->byte_count += dp_packet_size(packet);
4249
4250 dp_packet_delete(packet);
4251 } else {
4252 /* Meter accepts packet. */
4253 dp_packet_batch_refill(packets_, packet, j);
4254 }
4255 }
4256 out:
4257 meter_unlock(dp, meter_id);
4258 }
4259
4260 /* Meter set/get/del processing is still single-threaded. */
4261 static int
4262 dpif_netdev_meter_set(struct dpif *dpif, ofproto_meter_id *meter_id,
4263 struct ofputil_meter_config *config)
4264 {
4265 struct dp_netdev *dp = get_dp_netdev(dpif);
4266 uint32_t mid = meter_id->uint32;
4267 struct dp_meter *meter;
4268 int i;
4269
4270 if (mid >= MAX_METERS) {
4271 return EFBIG; /* Meter_id out of range. */
4272 }
4273
4274 if (config->flags & ~DP_SUPPORTED_METER_FLAGS_MASK ||
4275 !(config->flags & (OFPMF13_KBPS | OFPMF13_PKTPS))) {
4276 return EBADF; /* Unsupported flags set */
4277 }
4278 /* Validate bands */
4279 if (config->n_bands == 0 || config->n_bands > MAX_BANDS) {
4280 return EINVAL; /* Too many bands */
4281 }
4282 for (i = 0; i < config->n_bands; ++i) {
4283 switch (config->bands[i].type) {
4284 case OFPMBT13_DROP:
4285 break;
4286 default:
4287 return ENODEV; /* Unsupported band type */
4288 }
4289 }
4290
4291 /* Allocate meter */
4292 meter = xzalloc(sizeof *meter
4293 + config->n_bands * sizeof(struct dp_meter_band));
4294 if (meter) {
4295 meter->flags = config->flags;
4296 meter->n_bands = config->n_bands;
4297 meter->max_delta_t = 0;
4298 meter->used = time_msec();
4299
4300 /* set up bands */
4301 for (i = 0; i < config->n_bands; ++i) {
4302 uint32_t band_max_delta_t;
4303
4304 /* Set burst size to a workable value if none specified. */
4305 if (config->bands[i].burst_size == 0) {
4306 config->bands[i].burst_size = config->bands[i].rate;
4307 }
4308
4309 meter->bands[i].up = config->bands[i];
4310 /* Convert burst size to the bucket units: */
4311 /* pkts => 1/1000 packets, kilobits => bits. */
4312 meter->bands[i].up.burst_size *= 1000;
4313 /* Initialize bucket to empty. */
4314 meter->bands[i].bucket = 0;
4315
4316 /* Figure out max delta_t that is enough to fill any bucket. */
4317 band_max_delta_t
4318 = meter->bands[i].up.burst_size / meter->bands[i].up.rate;
4319 if (band_max_delta_t > meter->max_delta_t) {
4320 meter->max_delta_t = band_max_delta_t;
4321 }
4322 }
4323
4324 meter_lock(dp, mid);
4325 dp_delete_meter(dp, mid); /* Free existing meter, if any */
4326 dp->meters[mid] = meter;
4327 meter_unlock(dp, mid);
4328
4329 return 0;
4330 }
4331 return ENOMEM;
4332 }
4333
4334 static int
4335 dpif_netdev_meter_get(const struct dpif *dpif,
4336 ofproto_meter_id meter_id_,
4337 struct ofputil_meter_stats *stats, uint16_t n_bands)
4338 {
4339 const struct dp_netdev *dp = get_dp_netdev(dpif);
4340 const struct dp_meter *meter;
4341 uint32_t meter_id = meter_id_.uint32;
4342
4343 if (meter_id >= MAX_METERS) {
4344 return EFBIG;
4345 }
4346 meter = dp->meters[meter_id];
4347 if (!meter) {
4348 return ENOENT;
4349 }
4350 if (stats) {
4351 int i = 0;
4352
4353 meter_lock(dp, meter_id);
4354 stats->packet_in_count = meter->packet_count;
4355 stats->byte_in_count = meter->byte_count;
4356
4357 for (i = 0; i < n_bands && i < meter->n_bands; ++i) {
4358 stats->bands[i].packet_count = meter->bands[i].packet_count;
4359 stats->bands[i].byte_count = meter->bands[i].byte_count;
4360 }
4361 meter_unlock(dp, meter_id);
4362
4363 stats->n_bands = i;
4364 }
4365 return 0;
4366 }
4367
4368 static int
4369 dpif_netdev_meter_del(struct dpif *dpif,
4370 ofproto_meter_id meter_id_,
4371 struct ofputil_meter_stats *stats, uint16_t n_bands)
4372 {
4373 struct dp_netdev *dp = get_dp_netdev(dpif);
4374 int error;
4375
4376 error = dpif_netdev_meter_get(dpif, meter_id_, stats, n_bands);
4377 if (!error) {
4378 uint32_t meter_id = meter_id_.uint32;
4379
4380 meter_lock(dp, meter_id);
4381 dp_delete_meter(dp, meter_id);
4382 meter_unlock(dp, meter_id);
4383 }
4384 return error;
4385 }
4386
4387 \f
4388 static void
4389 dpif_netdev_disable_upcall(struct dpif *dpif)
4390 OVS_NO_THREAD_SAFETY_ANALYSIS
4391 {
4392 struct dp_netdev *dp = get_dp_netdev(dpif);
4393 dp_netdev_disable_upcall(dp);
4394 }
4395
4396 static void
4397 dp_netdev_enable_upcall(struct dp_netdev *dp)
4398 OVS_RELEASES(dp->upcall_rwlock)
4399 {
4400 fat_rwlock_unlock(&dp->upcall_rwlock);
4401 }
4402
4403 static void
4404 dpif_netdev_enable_upcall(struct dpif *dpif)
4405 OVS_NO_THREAD_SAFETY_ANALYSIS
4406 {
4407 struct dp_netdev *dp = get_dp_netdev(dpif);
4408 dp_netdev_enable_upcall(dp);
4409 }
4410
4411 static void
4412 dp_netdev_pmd_reload_done(struct dp_netdev_pmd_thread *pmd)
4413 {
4414 ovs_mutex_lock(&pmd->cond_mutex);
4415 atomic_store_relaxed(&pmd->reload, false);
4416 pmd->last_reload_seq = seq_read(pmd->reload_seq);
4417 xpthread_cond_signal(&pmd->cond);
4418 ovs_mutex_unlock(&pmd->cond_mutex);
4419 }
4420
4421 /* Finds and refs the dp_netdev_pmd_thread on core 'core_id'. Returns
4422 * the pointer if succeeds, otherwise, NULL (it can return NULL even if
4423 * 'core_id' is NON_PMD_CORE_ID).
4424 *
4425 * Caller must unrefs the returned reference. */
4426 static struct dp_netdev_pmd_thread *
4427 dp_netdev_get_pmd(struct dp_netdev *dp, unsigned core_id)
4428 {
4429 struct dp_netdev_pmd_thread *pmd;
4430 const struct cmap_node *pnode;
4431
4432 pnode = cmap_find(&dp->poll_threads, hash_int(core_id, 0));
4433 if (!pnode) {
4434 return NULL;
4435 }
4436 pmd = CONTAINER_OF(pnode, struct dp_netdev_pmd_thread, node);
4437
4438 return dp_netdev_pmd_try_ref(pmd) ? pmd : NULL;
4439 }
4440
4441 /* Sets the 'struct dp_netdev_pmd_thread' for non-pmd threads. */
4442 static void
4443 dp_netdev_set_nonpmd(struct dp_netdev *dp)
4444 OVS_REQUIRES(dp->port_mutex)
4445 {
4446 struct dp_netdev_pmd_thread *non_pmd;
4447
4448 non_pmd = xzalloc(sizeof *non_pmd);
4449 dp_netdev_configure_pmd(non_pmd, dp, NON_PMD_CORE_ID, OVS_NUMA_UNSPEC);
4450 }
4451
4452 /* Caller must have valid pointer to 'pmd'. */
4453 static bool
4454 dp_netdev_pmd_try_ref(struct dp_netdev_pmd_thread *pmd)
4455 {
4456 return ovs_refcount_try_ref_rcu(&pmd->ref_cnt);
4457 }
4458
4459 static void
4460 dp_netdev_pmd_unref(struct dp_netdev_pmd_thread *pmd)
4461 {
4462 if (pmd && ovs_refcount_unref(&pmd->ref_cnt) == 1) {
4463 ovsrcu_postpone(dp_netdev_destroy_pmd, pmd);
4464 }
4465 }
4466
4467 /* Given cmap position 'pos', tries to ref the next node. If try_ref()
4468 * fails, keeps checking for next node until reaching the end of cmap.
4469 *
4470 * Caller must unrefs the returned reference. */
4471 static struct dp_netdev_pmd_thread *
4472 dp_netdev_pmd_get_next(struct dp_netdev *dp, struct cmap_position *pos)
4473 {
4474 struct dp_netdev_pmd_thread *next;
4475
4476 do {
4477 struct cmap_node *node;
4478
4479 node = cmap_next_position(&dp->poll_threads, pos);
4480 next = node ? CONTAINER_OF(node, struct dp_netdev_pmd_thread, node)
4481 : NULL;
4482 } while (next && !dp_netdev_pmd_try_ref(next));
4483
4484 return next;
4485 }
4486
4487 /* Configures the 'pmd' based on the input argument. */
4488 static void
4489 dp_netdev_configure_pmd(struct dp_netdev_pmd_thread *pmd, struct dp_netdev *dp,
4490 unsigned core_id, int numa_id)
4491 {
4492 pmd->dp = dp;
4493 pmd->core_id = core_id;
4494 pmd->numa_id = numa_id;
4495 pmd->need_reload = false;
4496
4497 ovs_refcount_init(&pmd->ref_cnt);
4498 latch_init(&pmd->exit_latch);
4499 pmd->reload_seq = seq_create();
4500 pmd->last_reload_seq = seq_read(pmd->reload_seq);
4501 atomic_init(&pmd->reload, false);
4502 xpthread_cond_init(&pmd->cond, NULL);
4503 ovs_mutex_init(&pmd->cond_mutex);
4504 ovs_mutex_init(&pmd->flow_mutex);
4505 ovs_mutex_init(&pmd->port_mutex);
4506 cmap_init(&pmd->flow_table);
4507 cmap_init(&pmd->classifiers);
4508 pmd->next_optimization = time_msec() + DPCLS_OPTIMIZATION_INTERVAL;
4509 pmd->rxq_interval = time_msec() + PMD_RXQ_INTERVAL_LEN;
4510 hmap_init(&pmd->poll_list);
4511 hmap_init(&pmd->tx_ports);
4512 hmap_init(&pmd->tnl_port_cache);
4513 hmap_init(&pmd->send_port_cache);
4514 /* init the 'flow_cache' since there is no
4515 * actual thread created for NON_PMD_CORE_ID. */
4516 if (core_id == NON_PMD_CORE_ID) {
4517 emc_cache_init(&pmd->flow_cache);
4518 pmd_alloc_static_tx_qid(pmd);
4519 }
4520 cmap_insert(&dp->poll_threads, CONST_CAST(struct cmap_node *, &pmd->node),
4521 hash_int(core_id, 0));
4522 }
4523
4524 static void
4525 dp_netdev_destroy_pmd(struct dp_netdev_pmd_thread *pmd)
4526 {
4527 struct dpcls *cls;
4528
4529 dp_netdev_pmd_flow_flush(pmd);
4530 hmap_destroy(&pmd->send_port_cache);
4531 hmap_destroy(&pmd->tnl_port_cache);
4532 hmap_destroy(&pmd->tx_ports);
4533 hmap_destroy(&pmd->poll_list);
4534 /* All flows (including their dpcls_rules) have been deleted already */
4535 CMAP_FOR_EACH (cls, node, &pmd->classifiers) {
4536 dpcls_destroy(cls);
4537 ovsrcu_postpone(free, cls);
4538 }
4539 cmap_destroy(&pmd->classifiers);
4540 cmap_destroy(&pmd->flow_table);
4541 ovs_mutex_destroy(&pmd->flow_mutex);
4542 latch_destroy(&pmd->exit_latch);
4543 seq_destroy(pmd->reload_seq);
4544 xpthread_cond_destroy(&pmd->cond);
4545 ovs_mutex_destroy(&pmd->cond_mutex);
4546 ovs_mutex_destroy(&pmd->port_mutex);
4547 free(pmd);
4548 }
4549
4550 /* Stops the pmd thread, removes it from the 'dp->poll_threads',
4551 * and unrefs the struct. */
4552 static void
4553 dp_netdev_del_pmd(struct dp_netdev *dp, struct dp_netdev_pmd_thread *pmd)
4554 {
4555 /* NON_PMD_CORE_ID doesn't have a thread, so we don't have to synchronize,
4556 * but extra cleanup is necessary */
4557 if (pmd->core_id == NON_PMD_CORE_ID) {
4558 ovs_mutex_lock(&dp->non_pmd_mutex);
4559 emc_cache_uninit(&pmd->flow_cache);
4560 pmd_free_cached_ports(pmd);
4561 pmd_free_static_tx_qid(pmd);
4562 ovs_mutex_unlock(&dp->non_pmd_mutex);
4563 } else {
4564 latch_set(&pmd->exit_latch);
4565 dp_netdev_reload_pmd__(pmd);
4566 xpthread_join(pmd->thread, NULL);
4567 }
4568
4569 dp_netdev_pmd_clear_ports(pmd);
4570
4571 /* Purges the 'pmd''s flows after stopping the thread, but before
4572 * destroying the flows, so that the flow stats can be collected. */
4573 if (dp->dp_purge_cb) {
4574 dp->dp_purge_cb(dp->dp_purge_aux, pmd->core_id);
4575 }
4576 cmap_remove(&pmd->dp->poll_threads, &pmd->node, hash_int(pmd->core_id, 0));
4577 dp_netdev_pmd_unref(pmd);
4578 }
4579
4580 /* Destroys all pmd threads. If 'non_pmd' is true it also destroys the non pmd
4581 * thread. */
4582 static void
4583 dp_netdev_destroy_all_pmds(struct dp_netdev *dp, bool non_pmd)
4584 {
4585 struct dp_netdev_pmd_thread *pmd;
4586 struct dp_netdev_pmd_thread **pmd_list;
4587 size_t k = 0, n_pmds;
4588
4589 n_pmds = cmap_count(&dp->poll_threads);
4590 pmd_list = xcalloc(n_pmds, sizeof *pmd_list);
4591
4592 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
4593 if (!non_pmd && pmd->core_id == NON_PMD_CORE_ID) {
4594 continue;
4595 }
4596 /* We cannot call dp_netdev_del_pmd(), since it alters
4597 * 'dp->poll_threads' (while we're iterating it) and it
4598 * might quiesce. */
4599 ovs_assert(k < n_pmds);
4600 pmd_list[k++] = pmd;
4601 }
4602
4603 for (size_t i = 0; i < k; i++) {
4604 dp_netdev_del_pmd(dp, pmd_list[i]);
4605 }
4606 free(pmd_list);
4607 }
4608
4609 /* Deletes all rx queues from pmd->poll_list and all the ports from
4610 * pmd->tx_ports. */
4611 static void
4612 dp_netdev_pmd_clear_ports(struct dp_netdev_pmd_thread *pmd)
4613 {
4614 struct rxq_poll *poll;
4615 struct tx_port *port;
4616
4617 ovs_mutex_lock(&pmd->port_mutex);
4618 HMAP_FOR_EACH_POP (poll, node, &pmd->poll_list) {
4619 free(poll);
4620 }
4621 HMAP_FOR_EACH_POP (port, node, &pmd->tx_ports) {
4622 free(port);
4623 }
4624 ovs_mutex_unlock(&pmd->port_mutex);
4625 }
4626
4627 /* Adds rx queue to poll_list of PMD thread, if it's not there already. */
4628 static void
4629 dp_netdev_add_rxq_to_pmd(struct dp_netdev_pmd_thread *pmd,
4630 struct dp_netdev_rxq *rxq)
4631 OVS_REQUIRES(pmd->port_mutex)
4632 {
4633 int qid = netdev_rxq_get_queue_id(rxq->rx);
4634 uint32_t hash = hash_2words(odp_to_u32(rxq->port->port_no), qid);
4635 struct rxq_poll *poll;
4636
4637 HMAP_FOR_EACH_WITH_HASH (poll, node, hash, &pmd->poll_list) {
4638 if (poll->rxq == rxq) {
4639 /* 'rxq' is already polled by this thread. Do nothing. */
4640 return;
4641 }
4642 }
4643
4644 poll = xmalloc(sizeof *poll);
4645 poll->rxq = rxq;
4646 hmap_insert(&pmd->poll_list, &poll->node, hash);
4647
4648 pmd->need_reload = true;
4649 }
4650
4651 /* Delete 'poll' from poll_list of PMD thread. */
4652 static void
4653 dp_netdev_del_rxq_from_pmd(struct dp_netdev_pmd_thread *pmd,
4654 struct rxq_poll *poll)
4655 OVS_REQUIRES(pmd->port_mutex)
4656 {
4657 hmap_remove(&pmd->poll_list, &poll->node);
4658 free(poll);
4659
4660 pmd->need_reload = true;
4661 }
4662
4663 /* Add 'port' to the tx port cache of 'pmd', which must be reloaded for the
4664 * changes to take effect. */
4665 static void
4666 dp_netdev_add_port_tx_to_pmd(struct dp_netdev_pmd_thread *pmd,
4667 struct dp_netdev_port *port)
4668 OVS_REQUIRES(pmd->port_mutex)
4669 {
4670 struct tx_port *tx;
4671
4672 tx = tx_port_lookup(&pmd->tx_ports, port->port_no);
4673 if (tx) {
4674 /* 'port' is already on this thread tx cache. Do nothing. */
4675 return;
4676 }
4677
4678 tx = xzalloc(sizeof *tx);
4679
4680 tx->port = port;
4681 tx->qid = -1;
4682
4683 hmap_insert(&pmd->tx_ports, &tx->node, hash_port_no(tx->port->port_no));
4684 pmd->need_reload = true;
4685 }
4686
4687 /* Del 'tx' from the tx port cache of 'pmd', which must be reloaded for the
4688 * changes to take effect. */
4689 static void
4690 dp_netdev_del_port_tx_from_pmd(struct dp_netdev_pmd_thread *pmd,
4691 struct tx_port *tx)
4692 OVS_REQUIRES(pmd->port_mutex)
4693 {
4694 hmap_remove(&pmd->tx_ports, &tx->node);
4695 free(tx);
4696 pmd->need_reload = true;
4697 }
4698 \f
4699 static char *
4700 dpif_netdev_get_datapath_version(void)
4701 {
4702 return xstrdup("<built-in>");
4703 }
4704
4705 static void
4706 dp_netdev_flow_used(struct dp_netdev_flow *netdev_flow, int cnt, int size,
4707 uint16_t tcp_flags, long long now)
4708 {
4709 uint16_t flags;
4710
4711 atomic_store_relaxed(&netdev_flow->stats.used, now);
4712 non_atomic_ullong_add(&netdev_flow->stats.packet_count, cnt);
4713 non_atomic_ullong_add(&netdev_flow->stats.byte_count, size);
4714 atomic_read_relaxed(&netdev_flow->stats.tcp_flags, &flags);
4715 flags |= tcp_flags;
4716 atomic_store_relaxed(&netdev_flow->stats.tcp_flags, flags);
4717 }
4718
4719 static void
4720 dp_netdev_count_packet(struct dp_netdev_pmd_thread *pmd,
4721 enum dp_stat_type type, int cnt)
4722 {
4723 non_atomic_ullong_add(&pmd->stats.n[type], cnt);
4724 }
4725
4726 static int
4727 dp_netdev_upcall(struct dp_netdev_pmd_thread *pmd, struct dp_packet *packet_,
4728 struct flow *flow, struct flow_wildcards *wc, ovs_u128 *ufid,
4729 enum dpif_upcall_type type, const struct nlattr *userdata,
4730 struct ofpbuf *actions, struct ofpbuf *put_actions)
4731 {
4732 struct dp_netdev *dp = pmd->dp;
4733
4734 if (OVS_UNLIKELY(!dp->upcall_cb)) {
4735 return ENODEV;
4736 }
4737
4738 if (OVS_UNLIKELY(!VLOG_DROP_DBG(&upcall_rl))) {
4739 struct ds ds = DS_EMPTY_INITIALIZER;
4740 char *packet_str;
4741 struct ofpbuf key;
4742 struct odp_flow_key_parms odp_parms = {
4743 .flow = flow,
4744 .mask = wc ? &wc->masks : NULL,
4745 .support = dp_netdev_support,
4746 };
4747
4748 ofpbuf_init(&key, 0);
4749 odp_flow_key_from_flow(&odp_parms, &key);
4750 packet_str = ofp_dp_packet_to_string(packet_);
4751
4752 odp_flow_key_format(key.data, key.size, &ds);
4753
4754 VLOG_DBG("%s: %s upcall:\n%s\n%s", dp->name,
4755 dpif_upcall_type_to_string(type), ds_cstr(&ds), packet_str);
4756
4757 ofpbuf_uninit(&key);
4758 free(packet_str);
4759
4760 ds_destroy(&ds);
4761 }
4762
4763 return dp->upcall_cb(packet_, flow, ufid, pmd->core_id, type, userdata,
4764 actions, wc, put_actions, dp->upcall_aux);
4765 }
4766
4767 static inline uint32_t
4768 dpif_netdev_packet_get_rss_hash_orig_pkt(struct dp_packet *packet,
4769 const struct miniflow *mf)
4770 {
4771 uint32_t hash;
4772
4773 if (OVS_LIKELY(dp_packet_rss_valid(packet))) {
4774 hash = dp_packet_get_rss_hash(packet);
4775 } else {
4776 hash = miniflow_hash_5tuple(mf, 0);
4777 dp_packet_set_rss_hash(packet, hash);
4778 }
4779
4780 return hash;
4781 }
4782
4783 static inline uint32_t
4784 dpif_netdev_packet_get_rss_hash(struct dp_packet *packet,
4785 const struct miniflow *mf)
4786 {
4787 uint32_t hash, recirc_depth;
4788
4789 if (OVS_LIKELY(dp_packet_rss_valid(packet))) {
4790 hash = dp_packet_get_rss_hash(packet);
4791 } else {
4792 hash = miniflow_hash_5tuple(mf, 0);
4793 dp_packet_set_rss_hash(packet, hash);
4794 }
4795
4796 /* The RSS hash must account for the recirculation depth to avoid
4797 * collisions in the exact match cache */
4798 recirc_depth = *recirc_depth_get_unsafe();
4799 if (OVS_UNLIKELY(recirc_depth)) {
4800 hash = hash_finish(hash, recirc_depth);
4801 dp_packet_set_rss_hash(packet, hash);
4802 }
4803 return hash;
4804 }
4805
4806 struct packet_batch_per_flow {
4807 unsigned int byte_count;
4808 uint16_t tcp_flags;
4809 struct dp_netdev_flow *flow;
4810
4811 struct dp_packet_batch array;
4812 };
4813
4814 static inline void
4815 packet_batch_per_flow_update(struct packet_batch_per_flow *batch,
4816 struct dp_packet *packet,
4817 const struct miniflow *mf)
4818 {
4819 batch->byte_count += dp_packet_size(packet);
4820 batch->tcp_flags |= miniflow_get_tcp_flags(mf);
4821 batch->array.packets[batch->array.count++] = packet;
4822 }
4823
4824 static inline void
4825 packet_batch_per_flow_init(struct packet_batch_per_flow *batch,
4826 struct dp_netdev_flow *flow)
4827 {
4828 flow->batch = batch;
4829
4830 batch->flow = flow;
4831 dp_packet_batch_init(&batch->array);
4832 batch->byte_count = 0;
4833 batch->tcp_flags = 0;
4834 }
4835
4836 static inline void
4837 packet_batch_per_flow_execute(struct packet_batch_per_flow *batch,
4838 struct dp_netdev_pmd_thread *pmd,
4839 long long now)
4840 {
4841 struct dp_netdev_actions *actions;
4842 struct dp_netdev_flow *flow = batch->flow;
4843
4844 dp_netdev_flow_used(flow, batch->array.count, batch->byte_count,
4845 batch->tcp_flags, now);
4846
4847 actions = dp_netdev_flow_get_actions(flow);
4848
4849 dp_netdev_execute_actions(pmd, &batch->array, true, &flow->flow,
4850 actions->actions, actions->size, now);
4851 }
4852
4853 static inline void
4854 dp_netdev_queue_batches(struct dp_packet *pkt,
4855 struct dp_netdev_flow *flow, const struct miniflow *mf,
4856 struct packet_batch_per_flow *batches,
4857 size_t *n_batches)
4858 {
4859 struct packet_batch_per_flow *batch = flow->batch;
4860
4861 if (OVS_UNLIKELY(!batch)) {
4862 batch = &batches[(*n_batches)++];
4863 packet_batch_per_flow_init(batch, flow);
4864 }
4865
4866 packet_batch_per_flow_update(batch, pkt, mf);
4867 }
4868
4869 /* Try to process all ('cnt') the 'packets' using only the exact match cache
4870 * 'pmd->flow_cache'. If a flow is not found for a packet 'packets[i]', the
4871 * miniflow is copied into 'keys' and the packet pointer is moved at the
4872 * beginning of the 'packets' array.
4873 *
4874 * The function returns the number of packets that needs to be processed in the
4875 * 'packets' array (they have been moved to the beginning of the vector).
4876 *
4877 * For performance reasons a caller may choose not to initialize the metadata
4878 * in 'packets_'. If 'md_is_valid' is false, the metadata in 'packets'
4879 * is not valid and must be initialized by this function using 'port_no'.
4880 * If 'md_is_valid' is true, the metadata is already valid and 'port_no'
4881 * will be ignored.
4882 */
4883 static inline size_t
4884 emc_processing(struct dp_netdev_pmd_thread *pmd,
4885 struct dp_packet_batch *packets_,
4886 struct netdev_flow_key *keys,
4887 struct packet_batch_per_flow batches[], size_t *n_batches,
4888 bool md_is_valid, odp_port_t port_no)
4889 {
4890 struct emc_cache *flow_cache = &pmd->flow_cache;
4891 struct netdev_flow_key *key = &keys[0];
4892 size_t n_missed = 0, n_dropped = 0;
4893 struct dp_packet *packet;
4894 const size_t cnt = dp_packet_batch_size(packets_);
4895 uint32_t cur_min;
4896 int i;
4897
4898 atomic_read_relaxed(&pmd->dp->emc_insert_min, &cur_min);
4899
4900 DP_PACKET_BATCH_REFILL_FOR_EACH (i, cnt, packet, packets_) {
4901 struct dp_netdev_flow *flow;
4902
4903 if (OVS_UNLIKELY(dp_packet_size(packet) < ETH_HEADER_LEN)) {
4904 dp_packet_delete(packet);
4905 n_dropped++;
4906 continue;
4907 }
4908
4909 if (i != cnt - 1) {
4910 struct dp_packet **packets = packets_->packets;
4911 /* Prefetch next packet data and metadata. */
4912 OVS_PREFETCH(dp_packet_data(packets[i+1]));
4913 pkt_metadata_prefetch_init(&packets[i+1]->md);
4914 }
4915
4916 if (!md_is_valid) {
4917 pkt_metadata_init(&packet->md, port_no);
4918 }
4919 miniflow_extract(packet, &key->mf);
4920 key->len = 0; /* Not computed yet. */
4921 /* If EMC is disabled skip hash computation and emc_lookup */
4922 if (cur_min) {
4923 if (!md_is_valid) {
4924 key->hash = dpif_netdev_packet_get_rss_hash_orig_pkt(packet,
4925 &key->mf);
4926 } else {
4927 key->hash = dpif_netdev_packet_get_rss_hash(packet, &key->mf);
4928 }
4929 flow = emc_lookup(flow_cache, key);
4930 } else {
4931 flow = NULL;
4932 }
4933 if (OVS_LIKELY(flow)) {
4934 dp_netdev_queue_batches(packet, flow, &key->mf, batches,
4935 n_batches);
4936 } else {
4937 /* Exact match cache missed. Group missed packets together at
4938 * the beginning of the 'packets' array. */
4939 dp_packet_batch_refill(packets_, packet, i);
4940 /* 'key[n_missed]' contains the key of the current packet and it
4941 * must be returned to the caller. The next key should be extracted
4942 * to 'keys[n_missed + 1]'. */
4943 key = &keys[++n_missed];
4944 }
4945 }
4946
4947 dp_netdev_count_packet(pmd, DP_STAT_EXACT_HIT,
4948 cnt - n_dropped - n_missed);
4949
4950 return dp_packet_batch_size(packets_);
4951 }
4952
4953 static inline void
4954 handle_packet_upcall(struct dp_netdev_pmd_thread *pmd,
4955 struct dp_packet *packet,
4956 const struct netdev_flow_key *key,
4957 struct ofpbuf *actions, struct ofpbuf *put_actions,
4958 int *lost_cnt, long long now)
4959 {
4960 struct ofpbuf *add_actions;
4961 struct dp_packet_batch b;
4962 struct match match;
4963 ovs_u128 ufid;
4964 int error;
4965
4966 match.tun_md.valid = false;
4967 miniflow_expand(&key->mf, &match.flow);
4968
4969 ofpbuf_clear(actions);
4970 ofpbuf_clear(put_actions);
4971
4972 dpif_flow_hash(pmd->dp->dpif, &match.flow, sizeof match.flow, &ufid);
4973 error = dp_netdev_upcall(pmd, packet, &match.flow, &match.wc,
4974 &ufid, DPIF_UC_MISS, NULL, actions,
4975 put_actions);
4976 if (OVS_UNLIKELY(error && error != ENOSPC)) {
4977 dp_packet_delete(packet);
4978 (*lost_cnt)++;
4979 return;
4980 }
4981
4982 /* The Netlink encoding of datapath flow keys cannot express
4983 * wildcarding the presence of a VLAN tag. Instead, a missing VLAN
4984 * tag is interpreted as exact match on the fact that there is no
4985 * VLAN. Unless we refactor a lot of code that translates between
4986 * Netlink and struct flow representations, we have to do the same
4987 * here. */
4988 if (!match.wc.masks.vlans[0].tci) {
4989 match.wc.masks.vlans[0].tci = htons(0xffff);
4990 }
4991
4992 /* We can't allow the packet batching in the next loop to execute
4993 * the actions. Otherwise, if there are any slow path actions,
4994 * we'll send the packet up twice. */
4995 dp_packet_batch_init_packet(&b, packet);
4996 dp_netdev_execute_actions(pmd, &b, true, &match.flow,
4997 actions->data, actions->size, now);
4998
4999 add_actions = put_actions->size ? put_actions : actions;
5000 if (OVS_LIKELY(error != ENOSPC)) {
5001 struct dp_netdev_flow *netdev_flow;
5002
5003 /* XXX: There's a race window where a flow covering this packet
5004 * could have already been installed since we last did the flow
5005 * lookup before upcall. This could be solved by moving the
5006 * mutex lock outside the loop, but that's an awful long time
5007 * to be locking everyone out of making flow installs. If we
5008 * move to a per-core classifier, it would be reasonable. */
5009 ovs_mutex_lock(&pmd->flow_mutex);
5010 netdev_flow = dp_netdev_pmd_lookup_flow(pmd, key, NULL);
5011 if (OVS_LIKELY(!netdev_flow)) {
5012 netdev_flow = dp_netdev_flow_add(pmd, &match, &ufid,
5013 add_actions->data,
5014 add_actions->size);
5015 }
5016 ovs_mutex_unlock(&pmd->flow_mutex);
5017 emc_probabilistic_insert(pmd, key, netdev_flow);
5018 }
5019 }
5020
5021 static inline void
5022 fast_path_processing(struct dp_netdev_pmd_thread *pmd,
5023 struct dp_packet_batch *packets_,
5024 struct netdev_flow_key *keys,
5025 struct packet_batch_per_flow batches[], size_t *n_batches,
5026 odp_port_t in_port,
5027 long long now)
5028 {
5029 int cnt = packets_->count;
5030 #if !defined(__CHECKER__) && !defined(_WIN32)
5031 const size_t PKT_ARRAY_SIZE = cnt;
5032 #else
5033 /* Sparse or MSVC doesn't like variable length array. */
5034 enum { PKT_ARRAY_SIZE = NETDEV_MAX_BURST };
5035 #endif
5036 struct dp_packet **packets = packets_->packets;
5037 struct dpcls *cls;
5038 struct dpcls_rule *rules[PKT_ARRAY_SIZE];
5039 struct dp_netdev *dp = pmd->dp;
5040 int miss_cnt = 0, lost_cnt = 0;
5041 int lookup_cnt = 0, add_lookup_cnt;
5042 bool any_miss;
5043 size_t i;
5044
5045 for (i = 0; i < cnt; i++) {
5046 /* Key length is needed in all the cases, hash computed on demand. */
5047 keys[i].len = netdev_flow_key_size(miniflow_n_values(&keys[i].mf));
5048 }
5049 /* Get the classifier for the in_port */
5050 cls = dp_netdev_pmd_lookup_dpcls(pmd, in_port);
5051 if (OVS_LIKELY(cls)) {
5052 any_miss = !dpcls_lookup(cls, keys, rules, cnt, &lookup_cnt);
5053 } else {
5054 any_miss = true;
5055 memset(rules, 0, sizeof(rules));
5056 }
5057 if (OVS_UNLIKELY(any_miss) && !fat_rwlock_tryrdlock(&dp->upcall_rwlock)) {
5058 uint64_t actions_stub[512 / 8], slow_stub[512 / 8];
5059 struct ofpbuf actions, put_actions;
5060
5061 ofpbuf_use_stub(&actions, actions_stub, sizeof actions_stub);
5062 ofpbuf_use_stub(&put_actions, slow_stub, sizeof slow_stub);
5063
5064 for (i = 0; i < cnt; i++) {
5065 struct dp_netdev_flow *netdev_flow;
5066
5067 if (OVS_LIKELY(rules[i])) {
5068 continue;
5069 }
5070
5071 /* It's possible that an earlier slow path execution installed
5072 * a rule covering this flow. In this case, it's a lot cheaper
5073 * to catch it here than execute a miss. */
5074 netdev_flow = dp_netdev_pmd_lookup_flow(pmd, &keys[i],
5075 &add_lookup_cnt);
5076 if (netdev_flow) {
5077 lookup_cnt += add_lookup_cnt;
5078 rules[i] = &netdev_flow->cr;
5079 continue;
5080 }
5081
5082 miss_cnt++;
5083 handle_packet_upcall(pmd, packets[i], &keys[i], &actions,
5084 &put_actions, &lost_cnt, now);
5085 }
5086
5087 ofpbuf_uninit(&actions);
5088 ofpbuf_uninit(&put_actions);
5089 fat_rwlock_unlock(&dp->upcall_rwlock);
5090 } else if (OVS_UNLIKELY(any_miss)) {
5091 for (i = 0; i < cnt; i++) {
5092 if (OVS_UNLIKELY(!rules[i])) {
5093 dp_packet_delete(packets[i]);
5094 lost_cnt++;
5095 miss_cnt++;
5096 }
5097 }
5098 }
5099
5100 for (i = 0; i < cnt; i++) {
5101 struct dp_packet *packet = packets[i];
5102 struct dp_netdev_flow *flow;
5103
5104 if (OVS_UNLIKELY(!rules[i])) {
5105 continue;
5106 }
5107
5108 flow = dp_netdev_flow_cast(rules[i]);
5109
5110 emc_probabilistic_insert(pmd, &keys[i], flow);
5111 dp_netdev_queue_batches(packet, flow, &keys[i].mf, batches, n_batches);
5112 }
5113
5114 dp_netdev_count_packet(pmd, DP_STAT_MASKED_HIT, cnt - miss_cnt);
5115 dp_netdev_count_packet(pmd, DP_STAT_LOOKUP_HIT, lookup_cnt);
5116 dp_netdev_count_packet(pmd, DP_STAT_MISS, miss_cnt);
5117 dp_netdev_count_packet(pmd, DP_STAT_LOST, lost_cnt);
5118 }
5119
5120 /* Packets enter the datapath from a port (or from recirculation) here.
5121 *
5122 * When 'md_is_valid' is true the metadata in 'packets' are already valid.
5123 * When false the metadata in 'packets' need to be initialized. */
5124 static void
5125 dp_netdev_input__(struct dp_netdev_pmd_thread *pmd,
5126 struct dp_packet_batch *packets,
5127 bool md_is_valid, odp_port_t port_no)
5128 {
5129 int cnt = packets->count;
5130 #if !defined(__CHECKER__) && !defined(_WIN32)
5131 const size_t PKT_ARRAY_SIZE = cnt;
5132 #else
5133 /* Sparse or MSVC doesn't like variable length array. */
5134 enum { PKT_ARRAY_SIZE = NETDEV_MAX_BURST };
5135 #endif
5136 OVS_ALIGNED_VAR(CACHE_LINE_SIZE)
5137 struct netdev_flow_key keys[PKT_ARRAY_SIZE];
5138 struct packet_batch_per_flow batches[PKT_ARRAY_SIZE];
5139 long long now = time_msec();
5140 size_t n_batches;
5141 odp_port_t in_port;
5142
5143 n_batches = 0;
5144 emc_processing(pmd, packets, keys, batches, &n_batches,
5145 md_is_valid, port_no);
5146 if (!dp_packet_batch_is_empty(packets)) {
5147 /* Get ingress port from first packet's metadata. */
5148 in_port = packets->packets[0]->md.in_port.odp_port;
5149 fast_path_processing(pmd, packets, keys, batches, &n_batches,
5150 in_port, now);
5151 }
5152
5153 /* All the flow batches need to be reset before any call to
5154 * packet_batch_per_flow_execute() as it could potentially trigger
5155 * recirculation. When a packet matching flow ‘j’ happens to be
5156 * recirculated, the nested call to dp_netdev_input__() could potentially
5157 * classify the packet as matching another flow - say 'k'. It could happen
5158 * that in the previous call to dp_netdev_input__() that same flow 'k' had
5159 * already its own batches[k] still waiting to be served. So if its
5160 * ‘batch’ member is not reset, the recirculated packet would be wrongly
5161 * appended to batches[k] of the 1st call to dp_netdev_input__(). */
5162 size_t i;
5163 for (i = 0; i < n_batches; i++) {
5164 batches[i].flow->batch = NULL;
5165 }
5166
5167 for (i = 0; i < n_batches; i++) {
5168 packet_batch_per_flow_execute(&batches[i], pmd, now);
5169 }
5170 }
5171
5172 static void
5173 dp_netdev_input(struct dp_netdev_pmd_thread *pmd,
5174 struct dp_packet_batch *packets,
5175 odp_port_t port_no)
5176 {
5177 dp_netdev_input__(pmd, packets, false, port_no);
5178 }
5179
5180 static void
5181 dp_netdev_recirculate(struct dp_netdev_pmd_thread *pmd,
5182 struct dp_packet_batch *packets)
5183 {
5184 dp_netdev_input__(pmd, packets, true, 0);
5185 }
5186
5187 struct dp_netdev_execute_aux {
5188 struct dp_netdev_pmd_thread *pmd;
5189 long long now;
5190 const struct flow *flow;
5191 };
5192
5193 static void
5194 dpif_netdev_register_dp_purge_cb(struct dpif *dpif, dp_purge_callback *cb,
5195 void *aux)
5196 {
5197 struct dp_netdev *dp = get_dp_netdev(dpif);
5198 dp->dp_purge_aux = aux;
5199 dp->dp_purge_cb = cb;
5200 }
5201
5202 static void
5203 dpif_netdev_register_upcall_cb(struct dpif *dpif, upcall_callback *cb,
5204 void *aux)
5205 {
5206 struct dp_netdev *dp = get_dp_netdev(dpif);
5207 dp->upcall_aux = aux;
5208 dp->upcall_cb = cb;
5209 }
5210
5211 static void
5212 dpif_netdev_xps_revalidate_pmd(const struct dp_netdev_pmd_thread *pmd,
5213 long long now, bool purge)
5214 {
5215 struct tx_port *tx;
5216 struct dp_netdev_port *port;
5217 long long interval;
5218
5219 HMAP_FOR_EACH (tx, node, &pmd->send_port_cache) {
5220 if (!tx->port->dynamic_txqs) {
5221 continue;
5222 }
5223 interval = now - tx->last_used;
5224 if (tx->qid >= 0 && (purge || interval >= XPS_TIMEOUT_MS)) {
5225 port = tx->port;
5226 ovs_mutex_lock(&port->txq_used_mutex);
5227 port->txq_used[tx->qid]--;
5228 ovs_mutex_unlock(&port->txq_used_mutex);
5229 tx->qid = -1;
5230 }
5231 }
5232 }
5233
5234 static int
5235 dpif_netdev_xps_get_tx_qid(const struct dp_netdev_pmd_thread *pmd,
5236 struct tx_port *tx, long long now)
5237 {
5238 struct dp_netdev_port *port;
5239 long long interval;
5240 int i, min_cnt, min_qid;
5241
5242 if (OVS_UNLIKELY(!now)) {
5243 now = time_msec();
5244 }
5245
5246 interval = now - tx->last_used;
5247 tx->last_used = now;
5248
5249 if (OVS_LIKELY(tx->qid >= 0 && interval < XPS_TIMEOUT_MS)) {
5250 return tx->qid;
5251 }
5252
5253 port = tx->port;
5254
5255 ovs_mutex_lock(&port->txq_used_mutex);
5256 if (tx->qid >= 0) {
5257 port->txq_used[tx->qid]--;
5258 tx->qid = -1;
5259 }
5260
5261 min_cnt = -1;
5262 min_qid = 0;
5263 for (i = 0; i < netdev_n_txq(port->netdev); i++) {
5264 if (port->txq_used[i] < min_cnt || min_cnt == -1) {
5265 min_cnt = port->txq_used[i];
5266 min_qid = i;
5267 }
5268 }
5269
5270 port->txq_used[min_qid]++;
5271 tx->qid = min_qid;
5272
5273 ovs_mutex_unlock(&port->txq_used_mutex);
5274
5275 dpif_netdev_xps_revalidate_pmd(pmd, now, false);
5276
5277 VLOG_DBG("Core %d: New TX queue ID %d for port \'%s\'.",
5278 pmd->core_id, tx->qid, netdev_get_name(tx->port->netdev));
5279 return min_qid;
5280 }
5281
5282 static struct tx_port *
5283 pmd_tnl_port_cache_lookup(const struct dp_netdev_pmd_thread *pmd,
5284 odp_port_t port_no)
5285 {
5286 return tx_port_lookup(&pmd->tnl_port_cache, port_no);
5287 }
5288
5289 static struct tx_port *
5290 pmd_send_port_cache_lookup(const struct dp_netdev_pmd_thread *pmd,
5291 odp_port_t port_no)
5292 {
5293 return tx_port_lookup(&pmd->send_port_cache, port_no);
5294 }
5295
5296 static int
5297 push_tnl_action(const struct dp_netdev_pmd_thread *pmd,
5298 const struct nlattr *attr,
5299 struct dp_packet_batch *batch)
5300 {
5301 struct tx_port *tun_port;
5302 const struct ovs_action_push_tnl *data;
5303 int err;
5304
5305 data = nl_attr_get(attr);
5306
5307 tun_port = pmd_tnl_port_cache_lookup(pmd, data->tnl_port);
5308 if (!tun_port) {
5309 err = -EINVAL;
5310 goto error;
5311 }
5312 err = netdev_push_header(tun_port->port->netdev, batch, data);
5313 if (!err) {
5314 return 0;
5315 }
5316 error:
5317 dp_packet_delete_batch(batch, true);
5318 return err;
5319 }
5320
5321 static void
5322 dp_execute_userspace_action(struct dp_netdev_pmd_thread *pmd,
5323 struct dp_packet *packet, bool may_steal,
5324 struct flow *flow, ovs_u128 *ufid,
5325 struct ofpbuf *actions,
5326 const struct nlattr *userdata, long long now)
5327 {
5328 struct dp_packet_batch b;
5329 int error;
5330
5331 ofpbuf_clear(actions);
5332
5333 error = dp_netdev_upcall(pmd, packet, flow, NULL, ufid,
5334 DPIF_UC_ACTION, userdata, actions,
5335 NULL);
5336 if (!error || error == ENOSPC) {
5337 dp_packet_batch_init_packet(&b, packet);
5338 dp_netdev_execute_actions(pmd, &b, may_steal, flow,
5339 actions->data, actions->size, now);
5340 } else if (may_steal) {
5341 dp_packet_delete(packet);
5342 }
5343 }
5344
5345 static void
5346 dp_execute_cb(void *aux_, struct dp_packet_batch *packets_,
5347 const struct nlattr *a, bool may_steal)
5348 OVS_NO_THREAD_SAFETY_ANALYSIS
5349 {
5350 struct dp_netdev_execute_aux *aux = aux_;
5351 uint32_t *depth = recirc_depth_get();
5352 struct dp_netdev_pmd_thread *pmd = aux->pmd;
5353 struct dp_netdev *dp = pmd->dp;
5354 int type = nl_attr_type(a);
5355 long long now = aux->now;
5356 struct tx_port *p;
5357
5358 switch ((enum ovs_action_attr)type) {
5359 case OVS_ACTION_ATTR_OUTPUT:
5360 p = pmd_send_port_cache_lookup(pmd, nl_attr_get_odp_port(a));
5361 if (OVS_LIKELY(p)) {
5362 int tx_qid;
5363 bool dynamic_txqs;
5364
5365 dynamic_txqs = p->port->dynamic_txqs;
5366 if (dynamic_txqs) {
5367 tx_qid = dpif_netdev_xps_get_tx_qid(pmd, p, now);
5368 } else {
5369 tx_qid = pmd->static_tx_qid;
5370 }
5371
5372 netdev_send(p->port->netdev, tx_qid, packets_, may_steal,
5373 dynamic_txqs);
5374 return;
5375 }
5376 break;
5377
5378 case OVS_ACTION_ATTR_TUNNEL_PUSH:
5379 if (*depth < MAX_RECIRC_DEPTH) {
5380 dp_packet_batch_apply_cutlen(packets_);
5381 push_tnl_action(pmd, a, packets_);
5382 return;
5383 }
5384 break;
5385
5386 case OVS_ACTION_ATTR_TUNNEL_POP:
5387 if (*depth < MAX_RECIRC_DEPTH) {
5388 struct dp_packet_batch *orig_packets_ = packets_;
5389 odp_port_t portno = nl_attr_get_odp_port(a);
5390
5391 p = pmd_tnl_port_cache_lookup(pmd, portno);
5392 if (p) {
5393 struct dp_packet_batch tnl_pkt;
5394
5395 if (!may_steal) {
5396 dp_packet_batch_clone(&tnl_pkt, packets_);
5397 packets_ = &tnl_pkt;
5398 dp_packet_batch_reset_cutlen(orig_packets_);
5399 }
5400
5401 dp_packet_batch_apply_cutlen(packets_);
5402
5403 netdev_pop_header(p->port->netdev, packets_);
5404 if (dp_packet_batch_is_empty(packets_)) {
5405 return;
5406 }
5407
5408 struct dp_packet *packet;
5409 DP_PACKET_BATCH_FOR_EACH (packet, packets_) {
5410 packet->md.in_port.odp_port = portno;
5411 }
5412
5413 (*depth)++;
5414 dp_netdev_recirculate(pmd, packets_);
5415 (*depth)--;
5416 return;
5417 }
5418 }
5419 break;
5420
5421 case OVS_ACTION_ATTR_USERSPACE:
5422 if (!fat_rwlock_tryrdlock(&dp->upcall_rwlock)) {
5423 struct dp_packet_batch *orig_packets_ = packets_;
5424 const struct nlattr *userdata;
5425 struct dp_packet_batch usr_pkt;
5426 struct ofpbuf actions;
5427 struct flow flow;
5428 ovs_u128 ufid;
5429 bool clone = false;
5430
5431 userdata = nl_attr_find_nested(a, OVS_USERSPACE_ATTR_USERDATA);
5432 ofpbuf_init(&actions, 0);
5433
5434 if (packets_->trunc) {
5435 if (!may_steal) {
5436 dp_packet_batch_clone(&usr_pkt, packets_);
5437 packets_ = &usr_pkt;
5438 clone = true;
5439 dp_packet_batch_reset_cutlen(orig_packets_);
5440 }
5441
5442 dp_packet_batch_apply_cutlen(packets_);
5443 }
5444
5445 struct dp_packet *packet;
5446 DP_PACKET_BATCH_FOR_EACH (packet, packets_) {
5447 flow_extract(packet, &flow);
5448 dpif_flow_hash(dp->dpif, &flow, sizeof flow, &ufid);
5449 dp_execute_userspace_action(pmd, packet, may_steal, &flow,
5450 &ufid, &actions, userdata, now);
5451 }
5452
5453 if (clone) {
5454 dp_packet_delete_batch(packets_, true);
5455 }
5456
5457 ofpbuf_uninit(&actions);
5458 fat_rwlock_unlock(&dp->upcall_rwlock);
5459
5460 return;
5461 }
5462 break;
5463
5464 case OVS_ACTION_ATTR_RECIRC:
5465 if (*depth < MAX_RECIRC_DEPTH) {
5466 struct dp_packet_batch recirc_pkts;
5467
5468 if (!may_steal) {
5469 dp_packet_batch_clone(&recirc_pkts, packets_);
5470 packets_ = &recirc_pkts;
5471 }
5472
5473 struct dp_packet *packet;
5474 DP_PACKET_BATCH_FOR_EACH (packet, packets_) {
5475 packet->md.recirc_id = nl_attr_get_u32(a);
5476 }
5477
5478 (*depth)++;
5479 dp_netdev_recirculate(pmd, packets_);
5480 (*depth)--;
5481
5482 return;
5483 }
5484
5485 VLOG_WARN("Packet dropped. Max recirculation depth exceeded.");
5486 break;
5487
5488 case OVS_ACTION_ATTR_CT: {
5489 const struct nlattr *b;
5490 bool force = false;
5491 bool commit = false;
5492 unsigned int left;
5493 uint16_t zone = 0;
5494 const char *helper = NULL;
5495 const uint32_t *setmark = NULL;
5496 const struct ovs_key_ct_labels *setlabel = NULL;
5497 struct nat_action_info_t nat_action_info;
5498 struct nat_action_info_t *nat_action_info_ref = NULL;
5499 bool nat_config = false;
5500
5501 NL_ATTR_FOR_EACH_UNSAFE (b, left, nl_attr_get(a),
5502 nl_attr_get_size(a)) {
5503 enum ovs_ct_attr sub_type = nl_attr_type(b);
5504
5505 switch(sub_type) {
5506 case OVS_CT_ATTR_FORCE_COMMIT:
5507 force = true;
5508 /* fall through. */
5509 case OVS_CT_ATTR_COMMIT:
5510 commit = true;
5511 break;
5512 case OVS_CT_ATTR_ZONE:
5513 zone = nl_attr_get_u16(b);
5514 break;
5515 case OVS_CT_ATTR_HELPER:
5516 helper = nl_attr_get_string(b);
5517 break;
5518 case OVS_CT_ATTR_MARK:
5519 setmark = nl_attr_get(b);
5520 break;
5521 case OVS_CT_ATTR_LABELS:
5522 setlabel = nl_attr_get(b);
5523 break;
5524 case OVS_CT_ATTR_EVENTMASK:
5525 /* Silently ignored, as userspace datapath does not generate
5526 * netlink events. */
5527 break;
5528 case OVS_CT_ATTR_NAT: {
5529 const struct nlattr *b_nest;
5530 unsigned int left_nest;
5531 bool ip_min_specified = false;
5532 bool proto_num_min_specified = false;
5533 bool ip_max_specified = false;
5534 bool proto_num_max_specified = false;
5535 memset(&nat_action_info, 0, sizeof nat_action_info);
5536 nat_action_info_ref = &nat_action_info;
5537
5538 NL_NESTED_FOR_EACH_UNSAFE (b_nest, left_nest, b) {
5539 enum ovs_nat_attr sub_type_nest = nl_attr_type(b_nest);
5540
5541 switch (sub_type_nest) {
5542 case OVS_NAT_ATTR_SRC:
5543 case OVS_NAT_ATTR_DST:
5544 nat_config = true;
5545 nat_action_info.nat_action |=
5546 ((sub_type_nest == OVS_NAT_ATTR_SRC)
5547 ? NAT_ACTION_SRC : NAT_ACTION_DST);
5548 break;
5549 case OVS_NAT_ATTR_IP_MIN:
5550 memcpy(&nat_action_info.min_addr,
5551 nl_attr_get(b_nest),
5552 nl_attr_get_size(b_nest));
5553 ip_min_specified = true;
5554 break;
5555 case OVS_NAT_ATTR_IP_MAX:
5556 memcpy(&nat_action_info.max_addr,
5557 nl_attr_get(b_nest),
5558 nl_attr_get_size(b_nest));
5559 ip_max_specified = true;
5560 break;
5561 case OVS_NAT_ATTR_PROTO_MIN:
5562 nat_action_info.min_port =
5563 nl_attr_get_u16(b_nest);
5564 proto_num_min_specified = true;
5565 break;
5566 case OVS_NAT_ATTR_PROTO_MAX:
5567 nat_action_info.max_port =
5568 nl_attr_get_u16(b_nest);
5569 proto_num_max_specified = true;
5570 break;
5571 case OVS_NAT_ATTR_PERSISTENT:
5572 case OVS_NAT_ATTR_PROTO_HASH:
5573 case OVS_NAT_ATTR_PROTO_RANDOM:
5574 break;
5575 case OVS_NAT_ATTR_UNSPEC:
5576 case __OVS_NAT_ATTR_MAX:
5577 OVS_NOT_REACHED();
5578 }
5579 }
5580
5581 if (ip_min_specified && !ip_max_specified) {
5582 nat_action_info.max_addr = nat_action_info.min_addr;
5583 }
5584 if (proto_num_min_specified && !proto_num_max_specified) {
5585 nat_action_info.max_port = nat_action_info.min_port;
5586 }
5587 if (proto_num_min_specified || proto_num_max_specified) {
5588 if (nat_action_info.nat_action & NAT_ACTION_SRC) {
5589 nat_action_info.nat_action |= NAT_ACTION_SRC_PORT;
5590 } else if (nat_action_info.nat_action & NAT_ACTION_DST) {
5591 nat_action_info.nat_action |= NAT_ACTION_DST_PORT;
5592 }
5593 }
5594 break;
5595 }
5596 case OVS_CT_ATTR_UNSPEC:
5597 case __OVS_CT_ATTR_MAX:
5598 OVS_NOT_REACHED();
5599 }
5600 }
5601
5602 /* We won't be able to function properly in this case, hence
5603 * complain loudly. */
5604 if (nat_config && !commit) {
5605 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(5, 5);
5606 VLOG_WARN_RL(&rl, "NAT specified without commit.");
5607 }
5608
5609 conntrack_execute(&dp->conntrack, packets_, aux->flow->dl_type, force,
5610 commit, zone, setmark, setlabel, helper,
5611 nat_action_info_ref, now);
5612 break;
5613 }
5614
5615 case OVS_ACTION_ATTR_METER:
5616 dp_netdev_run_meter(pmd->dp, packets_, nl_attr_get_u32(a),
5617 time_msec());
5618 break;
5619
5620 case OVS_ACTION_ATTR_PUSH_VLAN:
5621 case OVS_ACTION_ATTR_POP_VLAN:
5622 case OVS_ACTION_ATTR_PUSH_MPLS:
5623 case OVS_ACTION_ATTR_POP_MPLS:
5624 case OVS_ACTION_ATTR_SET:
5625 case OVS_ACTION_ATTR_SET_MASKED:
5626 case OVS_ACTION_ATTR_SAMPLE:
5627 case OVS_ACTION_ATTR_HASH:
5628 case OVS_ACTION_ATTR_UNSPEC:
5629 case OVS_ACTION_ATTR_TRUNC:
5630 case OVS_ACTION_ATTR_PUSH_ETH:
5631 case OVS_ACTION_ATTR_POP_ETH:
5632 case OVS_ACTION_ATTR_CLONE:
5633 case OVS_ACTION_ATTR_ENCAP_NSH:
5634 case OVS_ACTION_ATTR_DECAP_NSH:
5635 case __OVS_ACTION_ATTR_MAX:
5636 OVS_NOT_REACHED();
5637 }
5638
5639 dp_packet_delete_batch(packets_, may_steal);
5640 }
5641
5642 static void
5643 dp_netdev_execute_actions(struct dp_netdev_pmd_thread *pmd,
5644 struct dp_packet_batch *packets,
5645 bool may_steal, const struct flow *flow,
5646 const struct nlattr *actions, size_t actions_len,
5647 long long now)
5648 {
5649 struct dp_netdev_execute_aux aux = { pmd, now, flow };
5650
5651 odp_execute_actions(&aux, packets, may_steal, actions,
5652 actions_len, dp_execute_cb);
5653 }
5654
5655 struct dp_netdev_ct_dump {
5656 struct ct_dpif_dump_state up;
5657 struct conntrack_dump dump;
5658 struct conntrack *ct;
5659 struct dp_netdev *dp;
5660 };
5661
5662 static int
5663 dpif_netdev_ct_dump_start(struct dpif *dpif, struct ct_dpif_dump_state **dump_,
5664 const uint16_t *pzone, int *ptot_bkts)
5665 {
5666 struct dp_netdev *dp = get_dp_netdev(dpif);
5667 struct dp_netdev_ct_dump *dump;
5668
5669 dump = xzalloc(sizeof *dump);
5670 dump->dp = dp;
5671 dump->ct = &dp->conntrack;
5672
5673 conntrack_dump_start(&dp->conntrack, &dump->dump, pzone, ptot_bkts);
5674
5675 *dump_ = &dump->up;
5676
5677 return 0;
5678 }
5679
5680 static int
5681 dpif_netdev_ct_dump_next(struct dpif *dpif OVS_UNUSED,
5682 struct ct_dpif_dump_state *dump_,
5683 struct ct_dpif_entry *entry)
5684 {
5685 struct dp_netdev_ct_dump *dump;
5686
5687 INIT_CONTAINER(dump, dump_, up);
5688
5689 return conntrack_dump_next(&dump->dump, entry);
5690 }
5691
5692 static int
5693 dpif_netdev_ct_dump_done(struct dpif *dpif OVS_UNUSED,
5694 struct ct_dpif_dump_state *dump_)
5695 {
5696 struct dp_netdev_ct_dump *dump;
5697 int err;
5698
5699 INIT_CONTAINER(dump, dump_, up);
5700
5701 err = conntrack_dump_done(&dump->dump);
5702
5703 free(dump);
5704
5705 return err;
5706 }
5707
5708 static int
5709 dpif_netdev_ct_flush(struct dpif *dpif, const uint16_t *zone)
5710 {
5711 struct dp_netdev *dp = get_dp_netdev(dpif);
5712
5713 return conntrack_flush(&dp->conntrack, zone);
5714 }
5715
5716 const struct dpif_class dpif_netdev_class = {
5717 "netdev",
5718 dpif_netdev_init,
5719 dpif_netdev_enumerate,
5720 dpif_netdev_port_open_type,
5721 dpif_netdev_open,
5722 dpif_netdev_close,
5723 dpif_netdev_destroy,
5724 dpif_netdev_run,
5725 dpif_netdev_wait,
5726 dpif_netdev_get_stats,
5727 dpif_netdev_port_add,
5728 dpif_netdev_port_del,
5729 dpif_netdev_port_set_config,
5730 dpif_netdev_port_query_by_number,
5731 dpif_netdev_port_query_by_name,
5732 NULL, /* port_get_pid */
5733 dpif_netdev_port_dump_start,
5734 dpif_netdev_port_dump_next,
5735 dpif_netdev_port_dump_done,
5736 dpif_netdev_port_poll,
5737 dpif_netdev_port_poll_wait,
5738 dpif_netdev_flow_flush,
5739 dpif_netdev_flow_dump_create,
5740 dpif_netdev_flow_dump_destroy,
5741 dpif_netdev_flow_dump_thread_create,
5742 dpif_netdev_flow_dump_thread_destroy,
5743 dpif_netdev_flow_dump_next,
5744 dpif_netdev_operate,
5745 NULL, /* recv_set */
5746 NULL, /* handlers_set */
5747 dpif_netdev_set_config,
5748 dpif_netdev_queue_to_priority,
5749 NULL, /* recv */
5750 NULL, /* recv_wait */
5751 NULL, /* recv_purge */
5752 dpif_netdev_register_dp_purge_cb,
5753 dpif_netdev_register_upcall_cb,
5754 dpif_netdev_enable_upcall,
5755 dpif_netdev_disable_upcall,
5756 dpif_netdev_get_datapath_version,
5757 dpif_netdev_ct_dump_start,
5758 dpif_netdev_ct_dump_next,
5759 dpif_netdev_ct_dump_done,
5760 dpif_netdev_ct_flush,
5761 dpif_netdev_meter_get_features,
5762 dpif_netdev_meter_set,
5763 dpif_netdev_meter_get,
5764 dpif_netdev_meter_del,
5765 };
5766
5767 static void
5768 dpif_dummy_change_port_number(struct unixctl_conn *conn, int argc OVS_UNUSED,
5769 const char *argv[], void *aux OVS_UNUSED)
5770 {
5771 struct dp_netdev_port *port;
5772 struct dp_netdev *dp;
5773 odp_port_t port_no;
5774
5775 ovs_mutex_lock(&dp_netdev_mutex);
5776 dp = shash_find_data(&dp_netdevs, argv[1]);
5777 if (!dp || !dpif_netdev_class_is_dummy(dp->class)) {
5778 ovs_mutex_unlock(&dp_netdev_mutex);
5779 unixctl_command_reply_error(conn, "unknown datapath or not a dummy");
5780 return;
5781 }
5782 ovs_refcount_ref(&dp->ref_cnt);
5783 ovs_mutex_unlock(&dp_netdev_mutex);
5784
5785 ovs_mutex_lock(&dp->port_mutex);
5786 if (get_port_by_name(dp, argv[2], &port)) {
5787 unixctl_command_reply_error(conn, "unknown port");
5788 goto exit;
5789 }
5790
5791 port_no = u32_to_odp(atoi(argv[3]));
5792 if (!port_no || port_no == ODPP_NONE) {
5793 unixctl_command_reply_error(conn, "bad port number");
5794 goto exit;
5795 }
5796 if (dp_netdev_lookup_port(dp, port_no)) {
5797 unixctl_command_reply_error(conn, "port number already in use");
5798 goto exit;
5799 }
5800
5801 /* Remove port. */
5802 hmap_remove(&dp->ports, &port->node);
5803 reconfigure_datapath(dp);
5804
5805 /* Reinsert with new port number. */
5806 port->port_no = port_no;
5807 hmap_insert(&dp->ports, &port->node, hash_port_no(port_no));
5808 reconfigure_datapath(dp);
5809
5810 seq_change(dp->port_seq);
5811 unixctl_command_reply(conn, NULL);
5812
5813 exit:
5814 ovs_mutex_unlock(&dp->port_mutex);
5815 dp_netdev_unref(dp);
5816 }
5817
5818 static void
5819 dpif_dummy_register__(const char *type)
5820 {
5821 struct dpif_class *class;
5822
5823 class = xmalloc(sizeof *class);
5824 *class = dpif_netdev_class;
5825 class->type = xstrdup(type);
5826 dp_register_provider(class);
5827 }
5828
5829 static void
5830 dpif_dummy_override(const char *type)
5831 {
5832 int error;
5833
5834 /*
5835 * Ignore EAFNOSUPPORT to allow --enable-dummy=system with
5836 * a userland-only build. It's useful for testsuite.
5837 */
5838 error = dp_unregister_provider(type);
5839 if (error == 0 || error == EAFNOSUPPORT) {
5840 dpif_dummy_register__(type);
5841 }
5842 }
5843
5844 void
5845 dpif_dummy_register(enum dummy_level level)
5846 {
5847 if (level == DUMMY_OVERRIDE_ALL) {
5848 struct sset types;
5849 const char *type;
5850
5851 sset_init(&types);
5852 dp_enumerate_types(&types);
5853 SSET_FOR_EACH (type, &types) {
5854 dpif_dummy_override(type);
5855 }
5856 sset_destroy(&types);
5857 } else if (level == DUMMY_OVERRIDE_SYSTEM) {
5858 dpif_dummy_override("system");
5859 }
5860
5861 dpif_dummy_register__("dummy");
5862
5863 unixctl_command_register("dpif-dummy/change-port-number",
5864 "dp port new-number",
5865 3, 3, dpif_dummy_change_port_number, NULL);
5866 }
5867 \f
5868 /* Datapath Classifier. */
5869
5870 /* A set of rules that all have the same fields wildcarded. */
5871 struct dpcls_subtable {
5872 /* The fields are only used by writers. */
5873 struct cmap_node cmap_node OVS_GUARDED; /* Within dpcls 'subtables_map'. */
5874
5875 /* These fields are accessed by readers. */
5876 struct cmap rules; /* Contains "struct dpcls_rule"s. */
5877 uint32_t hit_cnt; /* Number of match hits in subtable in current
5878 optimization interval. */
5879 struct netdev_flow_key mask; /* Wildcards for fields (const). */
5880 /* 'mask' must be the last field, additional space is allocated here. */
5881 };
5882
5883 /* Initializes 'cls' as a classifier that initially contains no classification
5884 * rules. */
5885 static void
5886 dpcls_init(struct dpcls *cls)
5887 {
5888 cmap_init(&cls->subtables_map);
5889 pvector_init(&cls->subtables);
5890 }
5891
5892 static void
5893 dpcls_destroy_subtable(struct dpcls *cls, struct dpcls_subtable *subtable)
5894 {
5895 VLOG_DBG("Destroying subtable %p for in_port %d", subtable, cls->in_port);
5896 pvector_remove(&cls->subtables, subtable);
5897 cmap_remove(&cls->subtables_map, &subtable->cmap_node,
5898 subtable->mask.hash);
5899 cmap_destroy(&subtable->rules);
5900 ovsrcu_postpone(free, subtable);
5901 }
5902
5903 /* Destroys 'cls'. Rules within 'cls', if any, are not freed; this is the
5904 * caller's responsibility.
5905 * May only be called after all the readers have been terminated. */
5906 static void
5907 dpcls_destroy(struct dpcls *cls)
5908 {
5909 if (cls) {
5910 struct dpcls_subtable *subtable;
5911
5912 CMAP_FOR_EACH (subtable, cmap_node, &cls->subtables_map) {
5913 ovs_assert(cmap_count(&subtable->rules) == 0);
5914 dpcls_destroy_subtable(cls, subtable);
5915 }
5916 cmap_destroy(&cls->subtables_map);
5917 pvector_destroy(&cls->subtables);
5918 }
5919 }
5920
5921 static struct dpcls_subtable *
5922 dpcls_create_subtable(struct dpcls *cls, const struct netdev_flow_key *mask)
5923 {
5924 struct dpcls_subtable *subtable;
5925
5926 /* Need to add one. */
5927 subtable = xmalloc(sizeof *subtable
5928 - sizeof subtable->mask.mf + mask->len);
5929 cmap_init(&subtable->rules);
5930 subtable->hit_cnt = 0;
5931 netdev_flow_key_clone(&subtable->mask, mask);
5932 cmap_insert(&cls->subtables_map, &subtable->cmap_node, mask->hash);
5933 /* Add the new subtable at the end of the pvector (with no hits yet) */
5934 pvector_insert(&cls->subtables, subtable, 0);
5935 VLOG_DBG("Creating %"PRIuSIZE". subtable %p for in_port %d",
5936 cmap_count(&cls->subtables_map), subtable, cls->in_port);
5937 pvector_publish(&cls->subtables);
5938
5939 return subtable;
5940 }
5941
5942 static inline struct dpcls_subtable *
5943 dpcls_find_subtable(struct dpcls *cls, const struct netdev_flow_key *mask)
5944 {
5945 struct dpcls_subtable *subtable;
5946
5947 CMAP_FOR_EACH_WITH_HASH (subtable, cmap_node, mask->hash,
5948 &cls->subtables_map) {
5949 if (netdev_flow_key_equal(&subtable->mask, mask)) {
5950 return subtable;
5951 }
5952 }
5953 return dpcls_create_subtable(cls, mask);
5954 }
5955
5956
5957 /* Periodically sort the dpcls subtable vectors according to hit counts */
5958 static void
5959 dpcls_sort_subtable_vector(struct dpcls *cls)
5960 {
5961 struct pvector *pvec = &cls->subtables;
5962 struct dpcls_subtable *subtable;
5963
5964 PVECTOR_FOR_EACH (subtable, pvec) {
5965 pvector_change_priority(pvec, subtable, subtable->hit_cnt);
5966 subtable->hit_cnt = 0;
5967 }
5968 pvector_publish(pvec);
5969 }
5970
5971 static inline void
5972 dp_netdev_pmd_try_optimize(struct dp_netdev_pmd_thread *pmd,
5973 struct polled_queue *poll_list, int poll_cnt)
5974 {
5975 struct dpcls *cls;
5976 long long int now = time_msec();
5977
5978 if (now > pmd->rxq_interval) {
5979 /* Get the cycles that were used to process each queue and store. */
5980 for (unsigned i = 0; i < poll_cnt; i++) {
5981 uint64_t rxq_cyc_curr = dp_netdev_rxq_get_cycles(poll_list[i].rxq,
5982 RXQ_CYCLES_PROC_CURR);
5983 dp_netdev_rxq_set_intrvl_cycles(poll_list[i].rxq, rxq_cyc_curr);
5984 dp_netdev_rxq_set_cycles(poll_list[i].rxq, RXQ_CYCLES_PROC_CURR,
5985 0);
5986 }
5987 /* Start new measuring interval */
5988 pmd->rxq_interval = now + PMD_RXQ_INTERVAL_LEN;
5989 }
5990
5991 if (now > pmd->next_optimization) {
5992 /* Try to obtain the flow lock to block out revalidator threads.
5993 * If not possible, just try next time. */
5994 if (!ovs_mutex_trylock(&pmd->flow_mutex)) {
5995 /* Optimize each classifier */
5996 CMAP_FOR_EACH (cls, node, &pmd->classifiers) {
5997 dpcls_sort_subtable_vector(cls);
5998 }
5999 ovs_mutex_unlock(&pmd->flow_mutex);
6000 /* Start new measuring interval */
6001 pmd->next_optimization = now + DPCLS_OPTIMIZATION_INTERVAL;
6002 }
6003 }
6004 }
6005
6006 /* Insert 'rule' into 'cls'. */
6007 static void
6008 dpcls_insert(struct dpcls *cls, struct dpcls_rule *rule,
6009 const struct netdev_flow_key *mask)
6010 {
6011 struct dpcls_subtable *subtable = dpcls_find_subtable(cls, mask);
6012
6013 /* Refer to subtable's mask, also for later removal. */
6014 rule->mask = &subtable->mask;
6015 cmap_insert(&subtable->rules, &rule->cmap_node, rule->flow.hash);
6016 }
6017
6018 /* Removes 'rule' from 'cls', also destructing the 'rule'. */
6019 static void
6020 dpcls_remove(struct dpcls *cls, struct dpcls_rule *rule)
6021 {
6022 struct dpcls_subtable *subtable;
6023
6024 ovs_assert(rule->mask);
6025
6026 /* Get subtable from reference in rule->mask. */
6027 INIT_CONTAINER(subtable, rule->mask, mask);
6028 if (cmap_remove(&subtable->rules, &rule->cmap_node, rule->flow.hash)
6029 == 0) {
6030 /* Delete empty subtable. */
6031 dpcls_destroy_subtable(cls, subtable);
6032 pvector_publish(&cls->subtables);
6033 }
6034 }
6035
6036 /* Returns true if 'target' satisfies 'key' in 'mask', that is, if each 1-bit
6037 * in 'mask' the values in 'key' and 'target' are the same. */
6038 static inline bool
6039 dpcls_rule_matches_key(const struct dpcls_rule *rule,
6040 const struct netdev_flow_key *target)
6041 {
6042 const uint64_t *keyp = miniflow_get_values(&rule->flow.mf);
6043 const uint64_t *maskp = miniflow_get_values(&rule->mask->mf);
6044 uint64_t value;
6045
6046 NETDEV_FLOW_KEY_FOR_EACH_IN_FLOWMAP(value, target, rule->flow.mf.map) {
6047 if (OVS_UNLIKELY((value & *maskp++) != *keyp++)) {
6048 return false;
6049 }
6050 }
6051 return true;
6052 }
6053
6054 /* For each miniflow in 'keys' performs a classifier lookup writing the result
6055 * into the corresponding slot in 'rules'. If a particular entry in 'keys' is
6056 * NULL it is skipped.
6057 *
6058 * This function is optimized for use in the userspace datapath and therefore
6059 * does not implement a lot of features available in the standard
6060 * classifier_lookup() function. Specifically, it does not implement
6061 * priorities, instead returning any rule which matches the flow.
6062 *
6063 * Returns true if all miniflows found a corresponding rule. */
6064 static bool
6065 dpcls_lookup(struct dpcls *cls, const struct netdev_flow_key keys[],
6066 struct dpcls_rule **rules, const size_t cnt,
6067 int *num_lookups_p)
6068 {
6069 /* The received 'cnt' miniflows are the search-keys that will be processed
6070 * to find a matching entry into the available subtables.
6071 * The number of bits in map_type is equal to NETDEV_MAX_BURST. */
6072 typedef uint32_t map_type;
6073 #define MAP_BITS (sizeof(map_type) * CHAR_BIT)
6074 BUILD_ASSERT_DECL(MAP_BITS >= NETDEV_MAX_BURST);
6075
6076 struct dpcls_subtable *subtable;
6077
6078 map_type keys_map = TYPE_MAXIMUM(map_type); /* Set all bits. */
6079 map_type found_map;
6080 uint32_t hashes[MAP_BITS];
6081 const struct cmap_node *nodes[MAP_BITS];
6082
6083 if (cnt != MAP_BITS) {
6084 keys_map >>= MAP_BITS - cnt; /* Clear extra bits. */
6085 }
6086 memset(rules, 0, cnt * sizeof *rules);
6087
6088 int lookups_match = 0, subtable_pos = 1;
6089
6090 /* The Datapath classifier - aka dpcls - is composed of subtables.
6091 * Subtables are dynamically created as needed when new rules are inserted.
6092 * Each subtable collects rules with matches on a specific subset of packet
6093 * fields as defined by the subtable's mask. We proceed to process every
6094 * search-key against each subtable, but when a match is found for a
6095 * search-key, the search for that key can stop because the rules are
6096 * non-overlapping. */
6097 PVECTOR_FOR_EACH (subtable, &cls->subtables) {
6098 int i;
6099
6100 /* Compute hashes for the remaining keys. Each search-key is
6101 * masked with the subtable's mask to avoid hashing the wildcarded
6102 * bits. */
6103 ULLONG_FOR_EACH_1(i, keys_map) {
6104 hashes[i] = netdev_flow_key_hash_in_mask(&keys[i],
6105 &subtable->mask);
6106 }
6107 /* Lookup. */
6108 found_map = cmap_find_batch(&subtable->rules, keys_map, hashes, nodes);
6109 /* Check results. When the i-th bit of found_map is set, it means
6110 * that a set of nodes with a matching hash value was found for the
6111 * i-th search-key. Due to possible hash collisions we need to check
6112 * which of the found rules, if any, really matches our masked
6113 * search-key. */
6114 ULLONG_FOR_EACH_1(i, found_map) {
6115 struct dpcls_rule *rule;
6116
6117 CMAP_NODE_FOR_EACH (rule, cmap_node, nodes[i]) {
6118 if (OVS_LIKELY(dpcls_rule_matches_key(rule, &keys[i]))) {
6119 rules[i] = rule;
6120 /* Even at 20 Mpps the 32-bit hit_cnt cannot wrap
6121 * within one second optimization interval. */
6122 subtable->hit_cnt++;
6123 lookups_match += subtable_pos;
6124 goto next;
6125 }
6126 }
6127 /* None of the found rules was a match. Reset the i-th bit to
6128 * keep searching this key in the next subtable. */
6129 ULLONG_SET0(found_map, i); /* Did not match. */
6130 next:
6131 ; /* Keep Sparse happy. */
6132 }
6133 keys_map &= ~found_map; /* Clear the found rules. */
6134 if (!keys_map) {
6135 if (num_lookups_p) {
6136 *num_lookups_p = lookups_match;
6137 }
6138 return true; /* All found. */
6139 }
6140 subtable_pos++;
6141 }
6142 if (num_lookups_p) {
6143 *num_lookups_p = lookups_match;
6144 }
6145 return false; /* Some misses. */
6146 }