]> git.proxmox.com Git - ovs.git/blob - lib/dpif-netdev.c
dpif: Generalize test for dummy dpifs beyond the name.
[ovs.git] / lib / dpif-netdev.c
1 /*
2 * Copyright (c) 2009, 2010, 2011, 2012, 2013, 2014 Nicira, Inc.
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at:
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <config.h>
18 #include "dpif-netdev.h"
19
20 #include <ctype.h>
21 #include <errno.h>
22 #include <fcntl.h>
23 #include <inttypes.h>
24 #include <netinet/in.h>
25 #include <sys/socket.h>
26 #include <net/if.h>
27 #include <stdint.h>
28 #include <stdlib.h>
29 #include <string.h>
30 #include <sys/ioctl.h>
31 #include <sys/stat.h>
32 #include <unistd.h>
33
34 #include "cmap.h"
35 #include "csum.h"
36 #include "dp-packet.h"
37 #include "dpif.h"
38 #include "dpif-provider.h"
39 #include "dummy.h"
40 #include "dynamic-string.h"
41 #include "fat-rwlock.h"
42 #include "flow.h"
43 #include "cmap.h"
44 #include "latch.h"
45 #include "list.h"
46 #include "match.h"
47 #include "meta-flow.h"
48 #include "netdev.h"
49 #include "netdev-dpdk.h"
50 #include "netdev-vport.h"
51 #include "netlink.h"
52 #include "odp-execute.h"
53 #include "odp-util.h"
54 #include "ofp-print.h"
55 #include "ofpbuf.h"
56 #include "ovs-numa.h"
57 #include "ovs-rcu.h"
58 #include "packets.h"
59 #include "poll-loop.h"
60 #include "pvector.h"
61 #include "random.h"
62 #include "seq.h"
63 #include "shash.h"
64 #include "sset.h"
65 #include "timeval.h"
66 #include "tnl-arp-cache.h"
67 #include "unixctl.h"
68 #include "util.h"
69 #include "openvswitch/vlog.h"
70
71 VLOG_DEFINE_THIS_MODULE(dpif_netdev);
72
73 #define FLOW_DUMP_MAX_BATCH 50
74 /* Use per thread recirc_depth to prevent recirculation loop. */
75 #define MAX_RECIRC_DEPTH 5
76 DEFINE_STATIC_PER_THREAD_DATA(uint32_t, recirc_depth, 0)
77
78 /* Configuration parameters. */
79 enum { MAX_FLOWS = 65536 }; /* Maximum number of flows in flow table. */
80
81 /* Protects against changes to 'dp_netdevs'. */
82 static struct ovs_mutex dp_netdev_mutex = OVS_MUTEX_INITIALIZER;
83
84 /* Contains all 'struct dp_netdev's. */
85 static struct shash dp_netdevs OVS_GUARDED_BY(dp_netdev_mutex)
86 = SHASH_INITIALIZER(&dp_netdevs);
87
88 static struct vlog_rate_limit upcall_rl = VLOG_RATE_LIMIT_INIT(600, 600);
89
90 /* Stores a miniflow with inline values */
91
92 struct netdev_flow_key {
93 uint32_t hash; /* Hash function differs for different users. */
94 uint32_t len; /* Length of the following miniflow (incl. map). */
95 struct miniflow mf;
96 uint64_t buf[FLOW_MAX_PACKET_U64S - MINI_N_INLINE];
97 };
98
99 /* Exact match cache for frequently used flows
100 *
101 * The cache uses a 32-bit hash of the packet (which can be the RSS hash) to
102 * search its entries for a miniflow that matches exactly the miniflow of the
103 * packet. It stores the 'dpcls_rule' (rule) that matches the miniflow.
104 *
105 * A cache entry holds a reference to its 'dp_netdev_flow'.
106 *
107 * A miniflow with a given hash can be in one of EM_FLOW_HASH_SEGS different
108 * entries. The 32-bit hash is split into EM_FLOW_HASH_SEGS values (each of
109 * them is EM_FLOW_HASH_SHIFT bits wide and the remainder is thrown away). Each
110 * value is the index of a cache entry where the miniflow could be.
111 *
112 *
113 * Thread-safety
114 * =============
115 *
116 * Each pmd_thread has its own private exact match cache.
117 * If dp_netdev_input is not called from a pmd thread, a mutex is used.
118 */
119
120 #define EM_FLOW_HASH_SHIFT 13
121 #define EM_FLOW_HASH_ENTRIES (1u << EM_FLOW_HASH_SHIFT)
122 #define EM_FLOW_HASH_MASK (EM_FLOW_HASH_ENTRIES - 1)
123 #define EM_FLOW_HASH_SEGS 2
124
125 struct emc_entry {
126 struct dp_netdev_flow *flow;
127 struct netdev_flow_key key; /* key.hash used for emc hash value. */
128 };
129
130 struct emc_cache {
131 struct emc_entry entries[EM_FLOW_HASH_ENTRIES];
132 int sweep_idx; /* For emc_cache_slow_sweep(). */
133 };
134
135 /* Iterate in the exact match cache through every entry that might contain a
136 * miniflow with hash 'HASH'. */
137 #define EMC_FOR_EACH_POS_WITH_HASH(EMC, CURRENT_ENTRY, HASH) \
138 for (uint32_t i__ = 0, srch_hash__ = (HASH); \
139 (CURRENT_ENTRY) = &(EMC)->entries[srch_hash__ & EM_FLOW_HASH_MASK], \
140 i__ < EM_FLOW_HASH_SEGS; \
141 i__++, srch_hash__ >>= EM_FLOW_HASH_SHIFT)
142 \f
143 /* Simple non-wildcarding single-priority classifier. */
144
145 struct dpcls {
146 struct cmap subtables_map;
147 struct pvector subtables;
148 };
149
150 /* A rule to be inserted to the classifier. */
151 struct dpcls_rule {
152 struct cmap_node cmap_node; /* Within struct dpcls_subtable 'rules'. */
153 struct netdev_flow_key *mask; /* Subtable's mask. */
154 struct netdev_flow_key flow; /* Matching key. */
155 /* 'flow' must be the last field, additional space is allocated here. */
156 };
157
158 static void dpcls_init(struct dpcls *);
159 static void dpcls_destroy(struct dpcls *);
160 static void dpcls_insert(struct dpcls *, struct dpcls_rule *,
161 const struct netdev_flow_key *mask);
162 static void dpcls_remove(struct dpcls *, struct dpcls_rule *);
163 static bool dpcls_lookup(const struct dpcls *cls,
164 const struct netdev_flow_key keys[],
165 struct dpcls_rule **rules, size_t cnt);
166 \f
167 /* Datapath based on the network device interface from netdev.h.
168 *
169 *
170 * Thread-safety
171 * =============
172 *
173 * Some members, marked 'const', are immutable. Accessing other members
174 * requires synchronization, as noted in more detail below.
175 *
176 * Acquisition order is, from outermost to innermost:
177 *
178 * dp_netdev_mutex (global)
179 * port_mutex
180 */
181 struct dp_netdev {
182 const struct dpif_class *const class;
183 const char *const name;
184 struct dpif *dpif;
185 struct ovs_refcount ref_cnt;
186 atomic_flag destroyed;
187
188 /* Ports.
189 *
190 * Protected by RCU. Take the mutex to add or remove ports. */
191 struct ovs_mutex port_mutex;
192 struct cmap ports;
193 struct seq *port_seq; /* Incremented whenever a port changes. */
194
195 /* Protects access to ofproto-dpif-upcall interface during revalidator
196 * thread synchronization. */
197 struct fat_rwlock upcall_rwlock;
198 upcall_callback *upcall_cb; /* Callback function for executing upcalls. */
199 void *upcall_aux;
200
201 /* Stores all 'struct dp_netdev_pmd_thread's. */
202 struct cmap poll_threads;
203
204 /* Protects the access of the 'struct dp_netdev_pmd_thread'
205 * instance for non-pmd thread. */
206 struct ovs_mutex non_pmd_mutex;
207
208 /* Each pmd thread will store its pointer to
209 * 'struct dp_netdev_pmd_thread' in 'per_pmd_key'. */
210 ovsthread_key_t per_pmd_key;
211
212 /* Number of rx queues for each dpdk interface and the cpu mask
213 * for pin of pmd threads. */
214 size_t n_dpdk_rxqs;
215 char *pmd_cmask;
216 uint64_t last_tnl_conf_seq;
217 };
218
219 static struct dp_netdev_port *dp_netdev_lookup_port(const struct dp_netdev *dp,
220 odp_port_t);
221
222 enum dp_stat_type {
223 DP_STAT_EXACT_HIT, /* Packets that had an exact match (emc). */
224 DP_STAT_MASKED_HIT, /* Packets that matched in the flow table. */
225 DP_STAT_MISS, /* Packets that did not match. */
226 DP_STAT_LOST, /* Packets not passed up to the client. */
227 DP_N_STATS
228 };
229
230 enum pmd_cycles_counter_type {
231 PMD_CYCLES_POLLING, /* Cycles spent polling NICs. */
232 PMD_CYCLES_PROCESSING, /* Cycles spent processing packets */
233 PMD_N_CYCLES
234 };
235
236 /* A port in a netdev-based datapath. */
237 struct dp_netdev_port {
238 struct pkt_metadata md;
239 struct netdev *netdev;
240 struct cmap_node node; /* Node in dp_netdev's 'ports'. */
241 struct netdev_saved_flags *sf;
242 struct netdev_rxq **rxq;
243 struct ovs_refcount ref_cnt;
244 char *type; /* Port type as requested by user. */
245 };
246
247 /* Contained by struct dp_netdev_flow's 'stats' member. */
248 struct dp_netdev_flow_stats {
249 atomic_llong used; /* Last used time, in monotonic msecs. */
250 atomic_ullong packet_count; /* Number of packets matched. */
251 atomic_ullong byte_count; /* Number of bytes matched. */
252 atomic_uint16_t tcp_flags; /* Bitwise-OR of seen tcp_flags values. */
253 };
254
255 /* A flow in 'dp_netdev_pmd_thread's 'flow_table'.
256 *
257 *
258 * Thread-safety
259 * =============
260 *
261 * Except near the beginning or ending of its lifespan, rule 'rule' belongs to
262 * its pmd thread's classifier. The text below calls this classifier 'cls'.
263 *
264 * Motivation
265 * ----------
266 *
267 * The thread safety rules described here for "struct dp_netdev_flow" are
268 * motivated by two goals:
269 *
270 * - Prevent threads that read members of "struct dp_netdev_flow" from
271 * reading bad data due to changes by some thread concurrently modifying
272 * those members.
273 *
274 * - Prevent two threads making changes to members of a given "struct
275 * dp_netdev_flow" from interfering with each other.
276 *
277 *
278 * Rules
279 * -----
280 *
281 * A flow 'flow' may be accessed without a risk of being freed during an RCU
282 * grace period. Code that needs to hold onto a flow for a while
283 * should try incrementing 'flow->ref_cnt' with dp_netdev_flow_ref().
284 *
285 * 'flow->ref_cnt' protects 'flow' from being freed. It doesn't protect the
286 * flow from being deleted from 'cls' and it doesn't protect members of 'flow'
287 * from modification.
288 *
289 * Some members, marked 'const', are immutable. Accessing other members
290 * requires synchronization, as noted in more detail below.
291 */
292 struct dp_netdev_flow {
293 const struct flow flow; /* Unmasked flow that created this entry. */
294 /* Hash table index by unmasked flow. */
295 const struct cmap_node node; /* In owning dp_netdev_pmd_thread's */
296 /* 'flow_table'. */
297 const ovs_u128 ufid; /* Unique flow identifier. */
298 const unsigned pmd_id; /* The 'core_id' of pmd thread owning this */
299 /* flow. */
300
301 /* Number of references.
302 * The classifier owns one reference.
303 * Any thread trying to keep a rule from being freed should hold its own
304 * reference. */
305 struct ovs_refcount ref_cnt;
306
307 bool dead;
308
309 /* Statistics. */
310 struct dp_netdev_flow_stats stats;
311
312 /* Actions. */
313 OVSRCU_TYPE(struct dp_netdev_actions *) actions;
314
315 /* While processing a group of input packets, the datapath uses the next
316 * member to store a pointer to the output batch for the flow. It is
317 * reset after the batch has been sent out (See dp_netdev_queue_batches(),
318 * packet_batch_init() and packet_batch_execute()). */
319 struct packet_batch *batch;
320
321 /* Packet classification. */
322 struct dpcls_rule cr; /* In owning dp_netdev's 'cls'. */
323 /* 'cr' must be the last member. */
324 };
325
326 static void dp_netdev_flow_unref(struct dp_netdev_flow *);
327 static bool dp_netdev_flow_ref(struct dp_netdev_flow *);
328 static int dpif_netdev_flow_from_nlattrs(const struct nlattr *, uint32_t,
329 struct flow *);
330
331 /* A set of datapath actions within a "struct dp_netdev_flow".
332 *
333 *
334 * Thread-safety
335 * =============
336 *
337 * A struct dp_netdev_actions 'actions' is protected with RCU. */
338 struct dp_netdev_actions {
339 /* These members are immutable: they do not change during the struct's
340 * lifetime. */
341 unsigned int size; /* Size of 'actions', in bytes. */
342 struct nlattr actions[]; /* Sequence of OVS_ACTION_ATTR_* attributes. */
343 };
344
345 struct dp_netdev_actions *dp_netdev_actions_create(const struct nlattr *,
346 size_t);
347 struct dp_netdev_actions *dp_netdev_flow_get_actions(
348 const struct dp_netdev_flow *);
349 static void dp_netdev_actions_free(struct dp_netdev_actions *);
350
351 /* Contained by struct dp_netdev_pmd_thread's 'stats' member. */
352 struct dp_netdev_pmd_stats {
353 /* Indexed by DP_STAT_*. */
354 atomic_ullong n[DP_N_STATS];
355 };
356
357 /* Contained by struct dp_netdev_pmd_thread's 'cycle' member. */
358 struct dp_netdev_pmd_cycles {
359 /* Indexed by PMD_CYCLES_*. */
360 atomic_ullong n[PMD_N_CYCLES];
361 };
362
363 /* PMD: Poll modes drivers. PMD accesses devices via polling to eliminate
364 * the performance overhead of interrupt processing. Therefore netdev can
365 * not implement rx-wait for these devices. dpif-netdev needs to poll
366 * these device to check for recv buffer. pmd-thread does polling for
367 * devices assigned to itself.
368 *
369 * DPDK used PMD for accessing NIC.
370 *
371 * Note, instance with cpu core id NON_PMD_CORE_ID will be reserved for
372 * I/O of all non-pmd threads. There will be no actual thread created
373 * for the instance.
374 *
375 * Each struct has its own flow table and classifier. Packets received
376 * from managed ports are looked up in the corresponding pmd thread's
377 * flow table, and are executed with the found actions.
378 * */
379 struct dp_netdev_pmd_thread {
380 struct dp_netdev *dp;
381 struct ovs_refcount ref_cnt; /* Every reference must be refcount'ed. */
382 struct cmap_node node; /* In 'dp->poll_threads'. */
383
384 pthread_cond_t cond; /* For synchronizing pmd thread reload. */
385 struct ovs_mutex cond_mutex; /* Mutex for condition variable. */
386
387 /* Per thread exact-match cache. Note, the instance for cpu core
388 * NON_PMD_CORE_ID can be accessed by multiple threads, and thusly
389 * need to be protected (e.g. by 'dp_netdev_mutex'). All other
390 * instances will only be accessed by its own pmd thread. */
391 struct emc_cache flow_cache;
392
393 /* Classifier and Flow-Table.
394 *
395 * Writers of 'flow_table' must take the 'flow_mutex'. Corresponding
396 * changes to 'cls' must be made while still holding the 'flow_mutex'.
397 */
398 struct ovs_mutex flow_mutex;
399 struct dpcls cls;
400 struct cmap flow_table OVS_GUARDED; /* Flow table. */
401
402 /* Statistics. */
403 struct dp_netdev_pmd_stats stats;
404
405 /* Cycles counters */
406 struct dp_netdev_pmd_cycles cycles;
407
408 /* Used to count cicles. See 'cycles_counter_end()' */
409 unsigned long long last_cycles;
410
411 struct latch exit_latch; /* For terminating the pmd thread. */
412 atomic_uint change_seq; /* For reloading pmd ports. */
413 pthread_t thread;
414 int index; /* Idx of this pmd thread among pmd*/
415 /* threads on same numa node. */
416 unsigned core_id; /* CPU core id of this pmd thread. */
417 int numa_id; /* numa node id of this pmd thread. */
418 int tx_qid; /* Queue id used by this pmd thread to
419 * send packets on all netdevs */
420
421 /* Only a pmd thread can write on its own 'cycles' and 'stats'.
422 * The main thread keeps 'stats_zero' and 'cycles_zero' as base
423 * values and subtracts them from 'stats' and 'cycles' before
424 * reporting to the user */
425 unsigned long long stats_zero[DP_N_STATS];
426 uint64_t cycles_zero[PMD_N_CYCLES];
427 };
428
429 #define PMD_INITIAL_SEQ 1
430
431 /* Interface to netdev-based datapath. */
432 struct dpif_netdev {
433 struct dpif dpif;
434 struct dp_netdev *dp;
435 uint64_t last_port_seq;
436 };
437
438 static int get_port_by_number(struct dp_netdev *dp, odp_port_t port_no,
439 struct dp_netdev_port **portp);
440 static int get_port_by_name(struct dp_netdev *dp, const char *devname,
441 struct dp_netdev_port **portp);
442 static void dp_netdev_free(struct dp_netdev *)
443 OVS_REQUIRES(dp_netdev_mutex);
444 static int do_add_port(struct dp_netdev *dp, const char *devname,
445 const char *type, odp_port_t port_no)
446 OVS_REQUIRES(dp->port_mutex);
447 static void do_del_port(struct dp_netdev *dp, struct dp_netdev_port *)
448 OVS_REQUIRES(dp->port_mutex);
449 static int dpif_netdev_open(const struct dpif_class *, const char *name,
450 bool create, struct dpif **);
451 static void dp_netdev_execute_actions(struct dp_netdev_pmd_thread *pmd,
452 struct dp_packet **, int c,
453 bool may_steal,
454 const struct nlattr *actions,
455 size_t actions_len);
456 static void dp_netdev_input(struct dp_netdev_pmd_thread *,
457 struct dp_packet **, int cnt);
458
459 static void dp_netdev_disable_upcall(struct dp_netdev *);
460 void dp_netdev_pmd_reload_done(struct dp_netdev_pmd_thread *pmd);
461 static void dp_netdev_configure_pmd(struct dp_netdev_pmd_thread *pmd,
462 struct dp_netdev *dp, int index,
463 unsigned core_id, int numa_id);
464 static void dp_netdev_destroy_pmd(struct dp_netdev_pmd_thread *pmd);
465 static void dp_netdev_set_nonpmd(struct dp_netdev *dp);
466 static struct dp_netdev_pmd_thread *dp_netdev_get_pmd(struct dp_netdev *dp,
467 unsigned core_id);
468 static struct dp_netdev_pmd_thread *
469 dp_netdev_pmd_get_next(struct dp_netdev *dp, struct cmap_position *pos);
470 static void dp_netdev_destroy_all_pmds(struct dp_netdev *dp);
471 static void dp_netdev_del_pmds_on_numa(struct dp_netdev *dp, int numa_id);
472 static void dp_netdev_set_pmds_on_numa(struct dp_netdev *dp, int numa_id);
473 static void dp_netdev_reset_pmd_threads(struct dp_netdev *dp);
474 static bool dp_netdev_pmd_try_ref(struct dp_netdev_pmd_thread *pmd);
475 static void dp_netdev_pmd_unref(struct dp_netdev_pmd_thread *pmd);
476 static void dp_netdev_pmd_flow_flush(struct dp_netdev_pmd_thread *pmd);
477
478 static inline bool emc_entry_alive(struct emc_entry *ce);
479 static void emc_clear_entry(struct emc_entry *ce);
480
481 static void
482 emc_cache_init(struct emc_cache *flow_cache)
483 {
484 int i;
485
486 BUILD_ASSERT(offsetof(struct miniflow, inline_values) == sizeof(uint64_t));
487
488 flow_cache->sweep_idx = 0;
489 for (i = 0; i < ARRAY_SIZE(flow_cache->entries); i++) {
490 flow_cache->entries[i].flow = NULL;
491 flow_cache->entries[i].key.hash = 0;
492 flow_cache->entries[i].key.len
493 = offsetof(struct miniflow, inline_values);
494 miniflow_initialize(&flow_cache->entries[i].key.mf,
495 flow_cache->entries[i].key.buf);
496 }
497 }
498
499 static void
500 emc_cache_uninit(struct emc_cache *flow_cache)
501 {
502 int i;
503
504 for (i = 0; i < ARRAY_SIZE(flow_cache->entries); i++) {
505 emc_clear_entry(&flow_cache->entries[i]);
506 }
507 }
508
509 /* Check and clear dead flow references slowly (one entry at each
510 * invocation). */
511 static void
512 emc_cache_slow_sweep(struct emc_cache *flow_cache)
513 {
514 struct emc_entry *entry = &flow_cache->entries[flow_cache->sweep_idx];
515
516 if (!emc_entry_alive(entry)) {
517 emc_clear_entry(entry);
518 }
519 flow_cache->sweep_idx = (flow_cache->sweep_idx + 1) & EM_FLOW_HASH_MASK;
520 }
521
522 /* Returns true if 'dpif' is a netdev or dummy dpif, false otherwise. */
523 bool
524 dpif_is_netdev(const struct dpif *dpif)
525 {
526 return dpif->dpif_class->open == dpif_netdev_open;
527 }
528
529 static struct dpif_netdev *
530 dpif_netdev_cast(const struct dpif *dpif)
531 {
532 ovs_assert(dpif_is_netdev(dpif));
533 return CONTAINER_OF(dpif, struct dpif_netdev, dpif);
534 }
535
536 static struct dp_netdev *
537 get_dp_netdev(const struct dpif *dpif)
538 {
539 return dpif_netdev_cast(dpif)->dp;
540 }
541 \f
542 enum pmd_info_type {
543 PMD_INFO_SHOW_STATS, /* show how cpu cycles are spent */
544 PMD_INFO_CLEAR_STATS /* set the cycles count to 0 */
545 };
546
547 static void
548 pmd_info_show_stats(struct ds *reply,
549 struct dp_netdev_pmd_thread *pmd,
550 unsigned long long stats[DP_N_STATS],
551 uint64_t cycles[PMD_N_CYCLES])
552 {
553 unsigned long long total_packets = 0;
554 uint64_t total_cycles = 0;
555 int i;
556
557 /* These loops subtracts reference values ('*_zero') from the counters.
558 * Since loads and stores are relaxed, it might be possible for a '*_zero'
559 * value to be more recent than the current value we're reading from the
560 * counter. This is not a big problem, since these numbers are not
561 * supposed to be too accurate, but we should at least make sure that
562 * the result is not negative. */
563 for (i = 0; i < DP_N_STATS; i++) {
564 if (stats[i] > pmd->stats_zero[i]) {
565 stats[i] -= pmd->stats_zero[i];
566 } else {
567 stats[i] = 0;
568 }
569
570 if (i != DP_STAT_LOST) {
571 /* Lost packets are already included in DP_STAT_MISS */
572 total_packets += stats[i];
573 }
574 }
575
576 for (i = 0; i < PMD_N_CYCLES; i++) {
577 if (cycles[i] > pmd->cycles_zero[i]) {
578 cycles[i] -= pmd->cycles_zero[i];
579 } else {
580 cycles[i] = 0;
581 }
582
583 total_cycles += cycles[i];
584 }
585
586 ds_put_cstr(reply, (pmd->core_id == NON_PMD_CORE_ID)
587 ? "main thread" : "pmd thread");
588
589 if (pmd->numa_id != OVS_NUMA_UNSPEC) {
590 ds_put_format(reply, " numa_id %d", pmd->numa_id);
591 }
592 if (pmd->core_id != OVS_CORE_UNSPEC && pmd->core_id != NON_PMD_CORE_ID) {
593 ds_put_format(reply, " core_id %u", pmd->core_id);
594 }
595 ds_put_cstr(reply, ":\n");
596
597 ds_put_format(reply,
598 "\temc hits:%llu\n\tmegaflow hits:%llu\n"
599 "\tmiss:%llu\n\tlost:%llu\n",
600 stats[DP_STAT_EXACT_HIT], stats[DP_STAT_MASKED_HIT],
601 stats[DP_STAT_MISS], stats[DP_STAT_LOST]);
602
603 if (total_cycles == 0) {
604 return;
605 }
606
607 ds_put_format(reply,
608 "\tpolling cycles:%"PRIu64" (%.02f%%)\n"
609 "\tprocessing cycles:%"PRIu64" (%.02f%%)\n",
610 cycles[PMD_CYCLES_POLLING],
611 cycles[PMD_CYCLES_POLLING] / (double)total_cycles * 100,
612 cycles[PMD_CYCLES_PROCESSING],
613 cycles[PMD_CYCLES_PROCESSING] / (double)total_cycles * 100);
614
615 if (total_packets == 0) {
616 return;
617 }
618
619 ds_put_format(reply,
620 "\tavg cycles per packet: %.02f (%"PRIu64"/%llu)\n",
621 total_cycles / (double)total_packets,
622 total_cycles, total_packets);
623
624 ds_put_format(reply,
625 "\tavg processing cycles per packet: "
626 "%.02f (%"PRIu64"/%llu)\n",
627 cycles[PMD_CYCLES_PROCESSING] / (double)total_packets,
628 cycles[PMD_CYCLES_PROCESSING], total_packets);
629 }
630
631 static void
632 pmd_info_clear_stats(struct ds *reply OVS_UNUSED,
633 struct dp_netdev_pmd_thread *pmd,
634 unsigned long long stats[DP_N_STATS],
635 uint64_t cycles[PMD_N_CYCLES])
636 {
637 int i;
638
639 /* We cannot write 'stats' and 'cycles' (because they're written by other
640 * threads) and we shouldn't change 'stats' (because they're used to count
641 * datapath stats, which must not be cleared here). Instead, we save the
642 * current values and subtract them from the values to be displayed in the
643 * future */
644 for (i = 0; i < DP_N_STATS; i++) {
645 pmd->stats_zero[i] = stats[i];
646 }
647 for (i = 0; i < PMD_N_CYCLES; i++) {
648 pmd->cycles_zero[i] = cycles[i];
649 }
650 }
651
652 static void
653 dpif_netdev_pmd_info(struct unixctl_conn *conn, int argc, const char *argv[],
654 void *aux)
655 {
656 struct ds reply = DS_EMPTY_INITIALIZER;
657 struct dp_netdev_pmd_thread *pmd;
658 struct dp_netdev *dp = NULL;
659 enum pmd_info_type type = *(enum pmd_info_type *) aux;
660
661 ovs_mutex_lock(&dp_netdev_mutex);
662
663 if (argc == 2) {
664 dp = shash_find_data(&dp_netdevs, argv[1]);
665 } else if (shash_count(&dp_netdevs) == 1) {
666 /* There's only one datapath */
667 dp = shash_first(&dp_netdevs)->data;
668 }
669
670 if (!dp) {
671 ovs_mutex_unlock(&dp_netdev_mutex);
672 unixctl_command_reply_error(conn,
673 "please specify an existing datapath");
674 return;
675 }
676
677 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
678 unsigned long long stats[DP_N_STATS];
679 uint64_t cycles[PMD_N_CYCLES];
680 int i;
681
682 /* Read current stats and cycle counters */
683 for (i = 0; i < ARRAY_SIZE(stats); i++) {
684 atomic_read_relaxed(&pmd->stats.n[i], &stats[i]);
685 }
686 for (i = 0; i < ARRAY_SIZE(cycles); i++) {
687 atomic_read_relaxed(&pmd->cycles.n[i], &cycles[i]);
688 }
689
690 if (type == PMD_INFO_CLEAR_STATS) {
691 pmd_info_clear_stats(&reply, pmd, stats, cycles);
692 } else if (type == PMD_INFO_SHOW_STATS) {
693 pmd_info_show_stats(&reply, pmd, stats, cycles);
694 }
695 }
696
697 ovs_mutex_unlock(&dp_netdev_mutex);
698
699 unixctl_command_reply(conn, ds_cstr(&reply));
700 ds_destroy(&reply);
701 }
702 \f
703 static int
704 dpif_netdev_init(void)
705 {
706 static enum pmd_info_type show_aux = PMD_INFO_SHOW_STATS,
707 clear_aux = PMD_INFO_CLEAR_STATS;
708
709 unixctl_command_register("dpif-netdev/pmd-stats-show", "[dp]",
710 0, 1, dpif_netdev_pmd_info,
711 (void *)&show_aux);
712 unixctl_command_register("dpif-netdev/pmd-stats-clear", "[dp]",
713 0, 1, dpif_netdev_pmd_info,
714 (void *)&clear_aux);
715 return 0;
716 }
717
718 static int
719 dpif_netdev_enumerate(struct sset *all_dps,
720 const struct dpif_class *dpif_class)
721 {
722 struct shash_node *node;
723
724 ovs_mutex_lock(&dp_netdev_mutex);
725 SHASH_FOR_EACH(node, &dp_netdevs) {
726 struct dp_netdev *dp = node->data;
727 if (dpif_class != dp->class) {
728 /* 'dp_netdevs' contains both "netdev" and "dummy" dpifs.
729 * If the class doesn't match, skip this dpif. */
730 continue;
731 }
732 sset_add(all_dps, node->name);
733 }
734 ovs_mutex_unlock(&dp_netdev_mutex);
735
736 return 0;
737 }
738
739 static bool
740 dpif_netdev_class_is_dummy(const struct dpif_class *class)
741 {
742 return class != &dpif_netdev_class;
743 }
744
745 static const char *
746 dpif_netdev_port_open_type(const struct dpif_class *class, const char *type)
747 {
748 return strcmp(type, "internal") ? type
749 : dpif_netdev_class_is_dummy(class) ? "dummy"
750 : "tap";
751 }
752
753 static struct dpif *
754 create_dpif_netdev(struct dp_netdev *dp)
755 {
756 uint16_t netflow_id = hash_string(dp->name, 0);
757 struct dpif_netdev *dpif;
758
759 ovs_refcount_ref(&dp->ref_cnt);
760
761 dpif = xmalloc(sizeof *dpif);
762 dpif_init(&dpif->dpif, dp->class, dp->name, netflow_id >> 8, netflow_id);
763 dpif->dp = dp;
764 dpif->last_port_seq = seq_read(dp->port_seq);
765
766 return &dpif->dpif;
767 }
768
769 /* Choose an unused, non-zero port number and return it on success.
770 * Return ODPP_NONE on failure. */
771 static odp_port_t
772 choose_port(struct dp_netdev *dp, const char *name)
773 OVS_REQUIRES(dp->port_mutex)
774 {
775 uint32_t port_no;
776
777 if (dp->class != &dpif_netdev_class) {
778 const char *p;
779 int start_no = 0;
780
781 /* If the port name begins with "br", start the number search at
782 * 100 to make writing tests easier. */
783 if (!strncmp(name, "br", 2)) {
784 start_no = 100;
785 }
786
787 /* If the port name contains a number, try to assign that port number.
788 * This can make writing unit tests easier because port numbers are
789 * predictable. */
790 for (p = name; *p != '\0'; p++) {
791 if (isdigit((unsigned char) *p)) {
792 port_no = start_no + strtol(p, NULL, 10);
793 if (port_no > 0 && port_no != odp_to_u32(ODPP_NONE)
794 && !dp_netdev_lookup_port(dp, u32_to_odp(port_no))) {
795 return u32_to_odp(port_no);
796 }
797 break;
798 }
799 }
800 }
801
802 for (port_no = 1; port_no <= UINT16_MAX; port_no++) {
803 if (!dp_netdev_lookup_port(dp, u32_to_odp(port_no))) {
804 return u32_to_odp(port_no);
805 }
806 }
807
808 return ODPP_NONE;
809 }
810
811 static int
812 create_dp_netdev(const char *name, const struct dpif_class *class,
813 struct dp_netdev **dpp)
814 OVS_REQUIRES(dp_netdev_mutex)
815 {
816 struct dp_netdev *dp;
817 int error;
818
819 dp = xzalloc(sizeof *dp);
820 shash_add(&dp_netdevs, name, dp);
821
822 *CONST_CAST(const struct dpif_class **, &dp->class) = class;
823 *CONST_CAST(const char **, &dp->name) = xstrdup(name);
824 ovs_refcount_init(&dp->ref_cnt);
825 atomic_flag_clear(&dp->destroyed);
826
827 ovs_mutex_init(&dp->port_mutex);
828 cmap_init(&dp->ports);
829 dp->port_seq = seq_create();
830 fat_rwlock_init(&dp->upcall_rwlock);
831
832 /* Disable upcalls by default. */
833 dp_netdev_disable_upcall(dp);
834 dp->upcall_aux = NULL;
835 dp->upcall_cb = NULL;
836
837 cmap_init(&dp->poll_threads);
838 ovs_mutex_init_recursive(&dp->non_pmd_mutex);
839 ovsthread_key_create(&dp->per_pmd_key, NULL);
840
841 dp_netdev_set_nonpmd(dp);
842 dp->n_dpdk_rxqs = NR_QUEUE;
843
844 ovs_mutex_lock(&dp->port_mutex);
845 error = do_add_port(dp, name, "internal", ODPP_LOCAL);
846 ovs_mutex_unlock(&dp->port_mutex);
847 if (error) {
848 dp_netdev_free(dp);
849 return error;
850 }
851
852 dp->last_tnl_conf_seq = seq_read(tnl_conf_seq);
853 *dpp = dp;
854 return 0;
855 }
856
857 static int
858 dpif_netdev_open(const struct dpif_class *class, const char *name,
859 bool create, struct dpif **dpifp)
860 {
861 struct dp_netdev *dp;
862 int error;
863
864 ovs_mutex_lock(&dp_netdev_mutex);
865 dp = shash_find_data(&dp_netdevs, name);
866 if (!dp) {
867 error = create ? create_dp_netdev(name, class, &dp) : ENODEV;
868 } else {
869 error = (dp->class != class ? EINVAL
870 : create ? EEXIST
871 : 0);
872 }
873 if (!error) {
874 *dpifp = create_dpif_netdev(dp);
875 dp->dpif = *dpifp;
876 }
877 ovs_mutex_unlock(&dp_netdev_mutex);
878
879 return error;
880 }
881
882 static void
883 dp_netdev_destroy_upcall_lock(struct dp_netdev *dp)
884 OVS_NO_THREAD_SAFETY_ANALYSIS
885 {
886 /* Check that upcalls are disabled, i.e. that the rwlock is taken */
887 ovs_assert(fat_rwlock_tryrdlock(&dp->upcall_rwlock));
888
889 /* Before freeing a lock we should release it */
890 fat_rwlock_unlock(&dp->upcall_rwlock);
891 fat_rwlock_destroy(&dp->upcall_rwlock);
892 }
893
894 /* Requires dp_netdev_mutex so that we can't get a new reference to 'dp'
895 * through the 'dp_netdevs' shash while freeing 'dp'. */
896 static void
897 dp_netdev_free(struct dp_netdev *dp)
898 OVS_REQUIRES(dp_netdev_mutex)
899 {
900 struct dp_netdev_port *port;
901
902 shash_find_and_delete(&dp_netdevs, dp->name);
903
904 dp_netdev_destroy_all_pmds(dp);
905 cmap_destroy(&dp->poll_threads);
906 ovs_mutex_destroy(&dp->non_pmd_mutex);
907 ovsthread_key_delete(dp->per_pmd_key);
908
909 ovs_mutex_lock(&dp->port_mutex);
910 CMAP_FOR_EACH (port, node, &dp->ports) {
911 do_del_port(dp, port);
912 }
913 ovs_mutex_unlock(&dp->port_mutex);
914
915 seq_destroy(dp->port_seq);
916 cmap_destroy(&dp->ports);
917
918 /* Upcalls must be disabled at this point */
919 dp_netdev_destroy_upcall_lock(dp);
920
921 free(dp->pmd_cmask);
922 free(CONST_CAST(char *, dp->name));
923 free(dp);
924 }
925
926 static void
927 dp_netdev_unref(struct dp_netdev *dp)
928 {
929 if (dp) {
930 /* Take dp_netdev_mutex so that, if dp->ref_cnt falls to zero, we can't
931 * get a new reference to 'dp' through the 'dp_netdevs' shash. */
932 ovs_mutex_lock(&dp_netdev_mutex);
933 if (ovs_refcount_unref_relaxed(&dp->ref_cnt) == 1) {
934 dp_netdev_free(dp);
935 }
936 ovs_mutex_unlock(&dp_netdev_mutex);
937 }
938 }
939
940 static void
941 dpif_netdev_close(struct dpif *dpif)
942 {
943 struct dp_netdev *dp = get_dp_netdev(dpif);
944
945 dp_netdev_unref(dp);
946 free(dpif);
947 }
948
949 static int
950 dpif_netdev_destroy(struct dpif *dpif)
951 {
952 struct dp_netdev *dp = get_dp_netdev(dpif);
953
954 if (!atomic_flag_test_and_set(&dp->destroyed)) {
955 if (ovs_refcount_unref_relaxed(&dp->ref_cnt) == 1) {
956 /* Can't happen: 'dpif' still owns a reference to 'dp'. */
957 OVS_NOT_REACHED();
958 }
959 }
960
961 return 0;
962 }
963
964 /* Add 'n' to the atomic variable 'var' non-atomically and using relaxed
965 * load/store semantics. While the increment is not atomic, the load and
966 * store operations are, making it impossible to read inconsistent values.
967 *
968 * This is used to update thread local stats counters. */
969 static void
970 non_atomic_ullong_add(atomic_ullong *var, unsigned long long n)
971 {
972 unsigned long long tmp;
973
974 atomic_read_relaxed(var, &tmp);
975 tmp += n;
976 atomic_store_relaxed(var, tmp);
977 }
978
979 static int
980 dpif_netdev_get_stats(const struct dpif *dpif, struct dpif_dp_stats *stats)
981 {
982 struct dp_netdev *dp = get_dp_netdev(dpif);
983 struct dp_netdev_pmd_thread *pmd;
984
985 stats->n_flows = stats->n_hit = stats->n_missed = stats->n_lost = 0;
986 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
987 unsigned long long n;
988 stats->n_flows += cmap_count(&pmd->flow_table);
989
990 atomic_read_relaxed(&pmd->stats.n[DP_STAT_MASKED_HIT], &n);
991 stats->n_hit += n;
992 atomic_read_relaxed(&pmd->stats.n[DP_STAT_EXACT_HIT], &n);
993 stats->n_hit += n;
994 atomic_read_relaxed(&pmd->stats.n[DP_STAT_MISS], &n);
995 stats->n_missed += n;
996 atomic_read_relaxed(&pmd->stats.n[DP_STAT_LOST], &n);
997 stats->n_lost += n;
998 }
999 stats->n_masks = UINT32_MAX;
1000 stats->n_mask_hit = UINT64_MAX;
1001
1002 return 0;
1003 }
1004
1005 static void
1006 dp_netdev_reload_pmd__(struct dp_netdev_pmd_thread *pmd)
1007 {
1008 int old_seq;
1009
1010 if (pmd->core_id == NON_PMD_CORE_ID) {
1011 return;
1012 }
1013
1014 ovs_mutex_lock(&pmd->cond_mutex);
1015 atomic_add_relaxed(&pmd->change_seq, 1, &old_seq);
1016 ovs_mutex_cond_wait(&pmd->cond, &pmd->cond_mutex);
1017 ovs_mutex_unlock(&pmd->cond_mutex);
1018 }
1019
1020 /* Causes all pmd threads to reload its tx/rx devices.
1021 * Must be called after adding/removing ports. */
1022 static void
1023 dp_netdev_reload_pmds(struct dp_netdev *dp)
1024 {
1025 struct dp_netdev_pmd_thread *pmd;
1026
1027 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
1028 dp_netdev_reload_pmd__(pmd);
1029 }
1030 }
1031
1032 static uint32_t
1033 hash_port_no(odp_port_t port_no)
1034 {
1035 return hash_int(odp_to_u32(port_no), 0);
1036 }
1037
1038 static int
1039 do_add_port(struct dp_netdev *dp, const char *devname, const char *type,
1040 odp_port_t port_no)
1041 OVS_REQUIRES(dp->port_mutex)
1042 {
1043 struct netdev_saved_flags *sf;
1044 struct dp_netdev_port *port;
1045 struct netdev *netdev;
1046 enum netdev_flags flags;
1047 const char *open_type;
1048 int error;
1049 int i;
1050
1051 /* Reject devices already in 'dp'. */
1052 if (!get_port_by_name(dp, devname, &port)) {
1053 return EEXIST;
1054 }
1055
1056 /* Open and validate network device. */
1057 open_type = dpif_netdev_port_open_type(dp->class, type);
1058 error = netdev_open(devname, open_type, &netdev);
1059 if (error) {
1060 return error;
1061 }
1062 /* XXX reject non-Ethernet devices */
1063
1064 netdev_get_flags(netdev, &flags);
1065 if (flags & NETDEV_LOOPBACK) {
1066 VLOG_ERR("%s: cannot add a loopback device", devname);
1067 netdev_close(netdev);
1068 return EINVAL;
1069 }
1070
1071 if (netdev_is_pmd(netdev)) {
1072 int n_cores = ovs_numa_get_n_cores();
1073
1074 if (n_cores == OVS_CORE_UNSPEC) {
1075 VLOG_ERR("%s, cannot get cpu core info", devname);
1076 return ENOENT;
1077 }
1078 /* There can only be ovs_numa_get_n_cores() pmd threads,
1079 * so creates a txq for each, and one extra for the non
1080 * pmd threads. */
1081 error = netdev_set_multiq(netdev, n_cores + 1, dp->n_dpdk_rxqs);
1082 if (error && (error != EOPNOTSUPP)) {
1083 VLOG_ERR("%s, cannot set multiq", devname);
1084 return errno;
1085 }
1086 }
1087 port = xzalloc(sizeof *port);
1088 port->md = PKT_METADATA_INITIALIZER(port_no);
1089 port->netdev = netdev;
1090 port->rxq = xmalloc(sizeof *port->rxq * netdev_n_rxq(netdev));
1091 port->type = xstrdup(type);
1092 for (i = 0; i < netdev_n_rxq(netdev); i++) {
1093 error = netdev_rxq_open(netdev, &port->rxq[i], i);
1094 if (error
1095 && !(error == EOPNOTSUPP && dpif_netdev_class_is_dummy(dp->class))) {
1096 VLOG_ERR("%s: cannot receive packets on this network device (%s)",
1097 devname, ovs_strerror(errno));
1098 netdev_close(netdev);
1099 free(port->type);
1100 free(port->rxq);
1101 free(port);
1102 return error;
1103 }
1104 }
1105
1106 error = netdev_turn_flags_on(netdev, NETDEV_PROMISC, &sf);
1107 if (error) {
1108 for (i = 0; i < netdev_n_rxq(netdev); i++) {
1109 netdev_rxq_close(port->rxq[i]);
1110 }
1111 netdev_close(netdev);
1112 free(port->type);
1113 free(port->rxq);
1114 free(port);
1115 return error;
1116 }
1117 port->sf = sf;
1118
1119 ovs_refcount_init(&port->ref_cnt);
1120 cmap_insert(&dp->ports, &port->node, hash_port_no(port_no));
1121
1122 if (netdev_is_pmd(netdev)) {
1123 dp_netdev_set_pmds_on_numa(dp, netdev_get_numa_id(netdev));
1124 dp_netdev_reload_pmds(dp);
1125 }
1126 seq_change(dp->port_seq);
1127
1128 return 0;
1129 }
1130
1131 static int
1132 dpif_netdev_port_add(struct dpif *dpif, struct netdev *netdev,
1133 odp_port_t *port_nop)
1134 {
1135 struct dp_netdev *dp = get_dp_netdev(dpif);
1136 char namebuf[NETDEV_VPORT_NAME_BUFSIZE];
1137 const char *dpif_port;
1138 odp_port_t port_no;
1139 int error;
1140
1141 ovs_mutex_lock(&dp->port_mutex);
1142 dpif_port = netdev_vport_get_dpif_port(netdev, namebuf, sizeof namebuf);
1143 if (*port_nop != ODPP_NONE) {
1144 port_no = *port_nop;
1145 error = dp_netdev_lookup_port(dp, *port_nop) ? EBUSY : 0;
1146 } else {
1147 port_no = choose_port(dp, dpif_port);
1148 error = port_no == ODPP_NONE ? EFBIG : 0;
1149 }
1150 if (!error) {
1151 *port_nop = port_no;
1152 error = do_add_port(dp, dpif_port, netdev_get_type(netdev), port_no);
1153 }
1154 ovs_mutex_unlock(&dp->port_mutex);
1155
1156 return error;
1157 }
1158
1159 static int
1160 dpif_netdev_port_del(struct dpif *dpif, odp_port_t port_no)
1161 {
1162 struct dp_netdev *dp = get_dp_netdev(dpif);
1163 int error;
1164
1165 ovs_mutex_lock(&dp->port_mutex);
1166 if (port_no == ODPP_LOCAL) {
1167 error = EINVAL;
1168 } else {
1169 struct dp_netdev_port *port;
1170
1171 error = get_port_by_number(dp, port_no, &port);
1172 if (!error) {
1173 do_del_port(dp, port);
1174 }
1175 }
1176 ovs_mutex_unlock(&dp->port_mutex);
1177
1178 return error;
1179 }
1180
1181 static bool
1182 is_valid_port_number(odp_port_t port_no)
1183 {
1184 return port_no != ODPP_NONE;
1185 }
1186
1187 static struct dp_netdev_port *
1188 dp_netdev_lookup_port(const struct dp_netdev *dp, odp_port_t port_no)
1189 {
1190 struct dp_netdev_port *port;
1191
1192 CMAP_FOR_EACH_WITH_HASH (port, node, hash_port_no(port_no), &dp->ports) {
1193 if (port->md.in_port.odp_port == port_no) {
1194 return port;
1195 }
1196 }
1197 return NULL;
1198 }
1199
1200 static int
1201 get_port_by_number(struct dp_netdev *dp,
1202 odp_port_t port_no, struct dp_netdev_port **portp)
1203 {
1204 if (!is_valid_port_number(port_no)) {
1205 *portp = NULL;
1206 return EINVAL;
1207 } else {
1208 *portp = dp_netdev_lookup_port(dp, port_no);
1209 return *portp ? 0 : ENOENT;
1210 }
1211 }
1212
1213 static void
1214 port_ref(struct dp_netdev_port *port)
1215 {
1216 if (port) {
1217 ovs_refcount_ref(&port->ref_cnt);
1218 }
1219 }
1220
1221 static bool
1222 port_try_ref(struct dp_netdev_port *port)
1223 {
1224 if (port) {
1225 return ovs_refcount_try_ref_rcu(&port->ref_cnt);
1226 }
1227
1228 return false;
1229 }
1230
1231 static void
1232 port_unref(struct dp_netdev_port *port)
1233 {
1234 if (port && ovs_refcount_unref_relaxed(&port->ref_cnt) == 1) {
1235 int n_rxq = netdev_n_rxq(port->netdev);
1236 int i;
1237
1238 netdev_close(port->netdev);
1239 netdev_restore_flags(port->sf);
1240
1241 for (i = 0; i < n_rxq; i++) {
1242 netdev_rxq_close(port->rxq[i]);
1243 }
1244 free(port->rxq);
1245 free(port->type);
1246 free(port);
1247 }
1248 }
1249
1250 static int
1251 get_port_by_name(struct dp_netdev *dp,
1252 const char *devname, struct dp_netdev_port **portp)
1253 OVS_REQUIRES(dp->port_mutex)
1254 {
1255 struct dp_netdev_port *port;
1256
1257 CMAP_FOR_EACH (port, node, &dp->ports) {
1258 if (!strcmp(netdev_get_name(port->netdev), devname)) {
1259 *portp = port;
1260 return 0;
1261 }
1262 }
1263 return ENOENT;
1264 }
1265
1266 static int
1267 get_n_pmd_threads_on_numa(struct dp_netdev *dp, int numa_id)
1268 {
1269 struct dp_netdev_pmd_thread *pmd;
1270 int n_pmds = 0;
1271
1272 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
1273 if (pmd->numa_id == numa_id) {
1274 n_pmds++;
1275 }
1276 }
1277
1278 return n_pmds;
1279 }
1280
1281 /* Returns 'true' if there is a port with pmd netdev and the netdev
1282 * is on numa node 'numa_id'. */
1283 static bool
1284 has_pmd_port_for_numa(struct dp_netdev *dp, int numa_id)
1285 {
1286 struct dp_netdev_port *port;
1287
1288 CMAP_FOR_EACH (port, node, &dp->ports) {
1289 if (netdev_is_pmd(port->netdev)
1290 && netdev_get_numa_id(port->netdev) == numa_id) {
1291 return true;
1292 }
1293 }
1294
1295 return false;
1296 }
1297
1298
1299 static void
1300 do_del_port(struct dp_netdev *dp, struct dp_netdev_port *port)
1301 OVS_REQUIRES(dp->port_mutex)
1302 {
1303 cmap_remove(&dp->ports, &port->node,
1304 hash_odp_port(port->md.in_port.odp_port));
1305 seq_change(dp->port_seq);
1306 if (netdev_is_pmd(port->netdev)) {
1307 int numa_id = netdev_get_numa_id(port->netdev);
1308
1309 /* If there is no netdev on the numa node, deletes the pmd threads
1310 * for that numa. Else, just reloads the queues. */
1311 if (!has_pmd_port_for_numa(dp, numa_id)) {
1312 dp_netdev_del_pmds_on_numa(dp, numa_id);
1313 }
1314 dp_netdev_reload_pmds(dp);
1315 }
1316
1317 port_unref(port);
1318 }
1319
1320 static void
1321 answer_port_query(const struct dp_netdev_port *port,
1322 struct dpif_port *dpif_port)
1323 {
1324 dpif_port->name = xstrdup(netdev_get_name(port->netdev));
1325 dpif_port->type = xstrdup(port->type);
1326 dpif_port->port_no = port->md.in_port.odp_port;
1327 }
1328
1329 static int
1330 dpif_netdev_port_query_by_number(const struct dpif *dpif, odp_port_t port_no,
1331 struct dpif_port *dpif_port)
1332 {
1333 struct dp_netdev *dp = get_dp_netdev(dpif);
1334 struct dp_netdev_port *port;
1335 int error;
1336
1337 error = get_port_by_number(dp, port_no, &port);
1338 if (!error && dpif_port) {
1339 answer_port_query(port, dpif_port);
1340 }
1341
1342 return error;
1343 }
1344
1345 static int
1346 dpif_netdev_port_query_by_name(const struct dpif *dpif, const char *devname,
1347 struct dpif_port *dpif_port)
1348 {
1349 struct dp_netdev *dp = get_dp_netdev(dpif);
1350 struct dp_netdev_port *port;
1351 int error;
1352
1353 ovs_mutex_lock(&dp->port_mutex);
1354 error = get_port_by_name(dp, devname, &port);
1355 if (!error && dpif_port) {
1356 answer_port_query(port, dpif_port);
1357 }
1358 ovs_mutex_unlock(&dp->port_mutex);
1359
1360 return error;
1361 }
1362
1363 static void
1364 dp_netdev_flow_free(struct dp_netdev_flow *flow)
1365 {
1366 dp_netdev_actions_free(dp_netdev_flow_get_actions(flow));
1367 free(flow);
1368 }
1369
1370 static void dp_netdev_flow_unref(struct dp_netdev_flow *flow)
1371 {
1372 if (ovs_refcount_unref_relaxed(&flow->ref_cnt) == 1) {
1373 ovsrcu_postpone(dp_netdev_flow_free, flow);
1374 }
1375 }
1376
1377 static uint32_t
1378 dp_netdev_flow_hash(const ovs_u128 *ufid)
1379 {
1380 return ufid->u32[0];
1381 }
1382
1383 static void
1384 dp_netdev_pmd_remove_flow(struct dp_netdev_pmd_thread *pmd,
1385 struct dp_netdev_flow *flow)
1386 OVS_REQUIRES(pmd->flow_mutex)
1387 {
1388 struct cmap_node *node = CONST_CAST(struct cmap_node *, &flow->node);
1389
1390 dpcls_remove(&pmd->cls, &flow->cr);
1391 cmap_remove(&pmd->flow_table, node, dp_netdev_flow_hash(&flow->ufid));
1392 flow->dead = true;
1393
1394 dp_netdev_flow_unref(flow);
1395 }
1396
1397 static void
1398 dp_netdev_pmd_flow_flush(struct dp_netdev_pmd_thread *pmd)
1399 {
1400 struct dp_netdev_flow *netdev_flow;
1401
1402 ovs_mutex_lock(&pmd->flow_mutex);
1403 CMAP_FOR_EACH (netdev_flow, node, &pmd->flow_table) {
1404 dp_netdev_pmd_remove_flow(pmd, netdev_flow);
1405 }
1406 ovs_mutex_unlock(&pmd->flow_mutex);
1407 }
1408
1409 static int
1410 dpif_netdev_flow_flush(struct dpif *dpif)
1411 {
1412 struct dp_netdev *dp = get_dp_netdev(dpif);
1413 struct dp_netdev_pmd_thread *pmd;
1414
1415 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
1416 dp_netdev_pmd_flow_flush(pmd);
1417 }
1418
1419 return 0;
1420 }
1421
1422 struct dp_netdev_port_state {
1423 struct cmap_position position;
1424 char *name;
1425 };
1426
1427 static int
1428 dpif_netdev_port_dump_start(const struct dpif *dpif OVS_UNUSED, void **statep)
1429 {
1430 *statep = xzalloc(sizeof(struct dp_netdev_port_state));
1431 return 0;
1432 }
1433
1434 static int
1435 dpif_netdev_port_dump_next(const struct dpif *dpif, void *state_,
1436 struct dpif_port *dpif_port)
1437 {
1438 struct dp_netdev_port_state *state = state_;
1439 struct dp_netdev *dp = get_dp_netdev(dpif);
1440 struct cmap_node *node;
1441 int retval;
1442
1443 node = cmap_next_position(&dp->ports, &state->position);
1444 if (node) {
1445 struct dp_netdev_port *port;
1446
1447 port = CONTAINER_OF(node, struct dp_netdev_port, node);
1448
1449 free(state->name);
1450 state->name = xstrdup(netdev_get_name(port->netdev));
1451 dpif_port->name = state->name;
1452 dpif_port->type = port->type;
1453 dpif_port->port_no = port->md.in_port.odp_port;
1454
1455 retval = 0;
1456 } else {
1457 retval = EOF;
1458 }
1459
1460 return retval;
1461 }
1462
1463 static int
1464 dpif_netdev_port_dump_done(const struct dpif *dpif OVS_UNUSED, void *state_)
1465 {
1466 struct dp_netdev_port_state *state = state_;
1467 free(state->name);
1468 free(state);
1469 return 0;
1470 }
1471
1472 static int
1473 dpif_netdev_port_poll(const struct dpif *dpif_, char **devnamep OVS_UNUSED)
1474 {
1475 struct dpif_netdev *dpif = dpif_netdev_cast(dpif_);
1476 uint64_t new_port_seq;
1477 int error;
1478
1479 new_port_seq = seq_read(dpif->dp->port_seq);
1480 if (dpif->last_port_seq != new_port_seq) {
1481 dpif->last_port_seq = new_port_seq;
1482 error = ENOBUFS;
1483 } else {
1484 error = EAGAIN;
1485 }
1486
1487 return error;
1488 }
1489
1490 static void
1491 dpif_netdev_port_poll_wait(const struct dpif *dpif_)
1492 {
1493 struct dpif_netdev *dpif = dpif_netdev_cast(dpif_);
1494
1495 seq_wait(dpif->dp->port_seq, dpif->last_port_seq);
1496 }
1497
1498 static struct dp_netdev_flow *
1499 dp_netdev_flow_cast(const struct dpcls_rule *cr)
1500 {
1501 return cr ? CONTAINER_OF(cr, struct dp_netdev_flow, cr) : NULL;
1502 }
1503
1504 static bool dp_netdev_flow_ref(struct dp_netdev_flow *flow)
1505 {
1506 return ovs_refcount_try_ref_rcu(&flow->ref_cnt);
1507 }
1508
1509 /* netdev_flow_key utilities.
1510 *
1511 * netdev_flow_key is basically a miniflow. We use these functions
1512 * (netdev_flow_key_clone, netdev_flow_key_equal, ...) instead of the miniflow
1513 * functions (miniflow_clone_inline, miniflow_equal, ...), because:
1514 *
1515 * - Since we are dealing exclusively with miniflows created by
1516 * miniflow_extract(), if the map is different the miniflow is different.
1517 * Therefore we can be faster by comparing the map and the miniflow in a
1518 * single memcmp().
1519 * _ netdev_flow_key's miniflow has always inline values.
1520 * - These functions can be inlined by the compiler.
1521 *
1522 * The following assertions make sure that what we're doing with miniflow is
1523 * safe
1524 */
1525 BUILD_ASSERT_DECL(offsetof(struct miniflow, inline_values)
1526 == sizeof(uint64_t));
1527
1528 /* Given the number of bits set in the miniflow map, returns the size of the
1529 * 'netdev_flow_key.mf' */
1530 static inline uint32_t
1531 netdev_flow_key_size(uint32_t flow_u32s)
1532 {
1533 return offsetof(struct miniflow, inline_values) +
1534 MINIFLOW_VALUES_SIZE(flow_u32s);
1535 }
1536
1537 static inline bool
1538 netdev_flow_key_equal(const struct netdev_flow_key *a,
1539 const struct netdev_flow_key *b)
1540 {
1541 /* 'b->len' may be not set yet. */
1542 return a->hash == b->hash && !memcmp(&a->mf, &b->mf, a->len);
1543 }
1544
1545 /* Used to compare 'netdev_flow_key' in the exact match cache to a miniflow.
1546 * The maps are compared bitwise, so both 'key->mf' 'mf' must have been
1547 * generated by miniflow_extract. */
1548 static inline bool
1549 netdev_flow_key_equal_mf(const struct netdev_flow_key *key,
1550 const struct miniflow *mf)
1551 {
1552 return !memcmp(&key->mf, mf, key->len);
1553 }
1554
1555 static inline void
1556 netdev_flow_key_clone(struct netdev_flow_key *dst,
1557 const struct netdev_flow_key *src)
1558 {
1559 memcpy(dst, src,
1560 offsetof(struct netdev_flow_key, mf) + src->len);
1561 }
1562
1563 /* Slow. */
1564 static void
1565 netdev_flow_key_from_flow(struct netdev_flow_key *dst,
1566 const struct flow *src)
1567 {
1568 struct dp_packet packet;
1569 uint64_t buf_stub[512 / 8];
1570
1571 miniflow_initialize(&dst->mf, dst->buf);
1572
1573 dp_packet_use_stub(&packet, buf_stub, sizeof buf_stub);
1574 pkt_metadata_from_flow(&packet.md, src);
1575 flow_compose(&packet, src);
1576 miniflow_extract(&packet, &dst->mf);
1577 dp_packet_uninit(&packet);
1578
1579 dst->len = netdev_flow_key_size(count_1bits(dst->mf.map));
1580 dst->hash = 0; /* Not computed yet. */
1581 }
1582
1583 /* Initialize a netdev_flow_key 'mask' from 'match'. */
1584 static inline void
1585 netdev_flow_mask_init(struct netdev_flow_key *mask,
1586 const struct match *match)
1587 {
1588 const uint64_t *mask_u64 = (const uint64_t *) &match->wc.masks;
1589 uint64_t *dst = mask->mf.inline_values;
1590 uint64_t map, mask_map = 0;
1591 uint32_t hash = 0;
1592 int n;
1593
1594 /* Only check masks that make sense for the flow. */
1595 map = flow_wc_map(&match->flow);
1596
1597 while (map) {
1598 uint64_t rm1bit = rightmost_1bit(map);
1599 int i = raw_ctz(map);
1600
1601 if (mask_u64[i]) {
1602 mask_map |= rm1bit;
1603 *dst++ = mask_u64[i];
1604 hash = hash_add64(hash, mask_u64[i]);
1605 }
1606 map -= rm1bit;
1607 }
1608
1609 mask->mf.values_inline = true;
1610 mask->mf.map = mask_map;
1611
1612 hash = hash_add64(hash, mask_map);
1613
1614 n = dst - mask->mf.inline_values;
1615
1616 mask->hash = hash_finish(hash, n * 8);
1617 mask->len = netdev_flow_key_size(n);
1618 }
1619
1620 /* Initializes 'dst' as a copy of 'src' masked with 'mask'. */
1621 static inline void
1622 netdev_flow_key_init_masked(struct netdev_flow_key *dst,
1623 const struct flow *flow,
1624 const struct netdev_flow_key *mask)
1625 {
1626 uint64_t *dst_u64 = dst->mf.inline_values;
1627 const uint64_t *mask_u64 = mask->mf.inline_values;
1628 uint32_t hash = 0;
1629 uint64_t value;
1630
1631 dst->len = mask->len;
1632 dst->mf.values_inline = true;
1633 dst->mf.map = mask->mf.map;
1634
1635 FLOW_FOR_EACH_IN_MAP(value, flow, mask->mf.map) {
1636 *dst_u64 = value & *mask_u64++;
1637 hash = hash_add64(hash, *dst_u64++);
1638 }
1639 dst->hash = hash_finish(hash, (dst_u64 - dst->mf.inline_values) * 8);
1640 }
1641
1642 /* Iterate through all netdev_flow_key u64 values specified by 'MAP' */
1643 #define NETDEV_FLOW_KEY_FOR_EACH_IN_MAP(VALUE, KEY, MAP) \
1644 for (struct mf_for_each_in_map_aux aux__ \
1645 = { (KEY)->mf.inline_values, (KEY)->mf.map, MAP }; \
1646 mf_get_next_in_map(&aux__, &(VALUE)); \
1647 )
1648
1649 /* Returns a hash value for the bits of 'key' where there are 1-bits in
1650 * 'mask'. */
1651 static inline uint32_t
1652 netdev_flow_key_hash_in_mask(const struct netdev_flow_key *key,
1653 const struct netdev_flow_key *mask)
1654 {
1655 const uint64_t *p = mask->mf.inline_values;
1656 uint32_t hash = 0;
1657 uint64_t key_u64;
1658
1659 NETDEV_FLOW_KEY_FOR_EACH_IN_MAP(key_u64, key, mask->mf.map) {
1660 hash = hash_add64(hash, key_u64 & *p++);
1661 }
1662
1663 return hash_finish(hash, (p - mask->mf.inline_values) * 8);
1664 }
1665
1666 static inline bool
1667 emc_entry_alive(struct emc_entry *ce)
1668 {
1669 return ce->flow && !ce->flow->dead;
1670 }
1671
1672 static void
1673 emc_clear_entry(struct emc_entry *ce)
1674 {
1675 if (ce->flow) {
1676 dp_netdev_flow_unref(ce->flow);
1677 ce->flow = NULL;
1678 }
1679 }
1680
1681 static inline void
1682 emc_change_entry(struct emc_entry *ce, struct dp_netdev_flow *flow,
1683 const struct netdev_flow_key *key)
1684 {
1685 if (ce->flow != flow) {
1686 if (ce->flow) {
1687 dp_netdev_flow_unref(ce->flow);
1688 }
1689
1690 if (dp_netdev_flow_ref(flow)) {
1691 ce->flow = flow;
1692 } else {
1693 ce->flow = NULL;
1694 }
1695 }
1696 if (key) {
1697 netdev_flow_key_clone(&ce->key, key);
1698 }
1699 }
1700
1701 static inline void
1702 emc_insert(struct emc_cache *cache, const struct netdev_flow_key *key,
1703 struct dp_netdev_flow *flow)
1704 {
1705 struct emc_entry *to_be_replaced = NULL;
1706 struct emc_entry *current_entry;
1707
1708 EMC_FOR_EACH_POS_WITH_HASH(cache, current_entry, key->hash) {
1709 if (netdev_flow_key_equal(&current_entry->key, key)) {
1710 /* We found the entry with the 'mf' miniflow */
1711 emc_change_entry(current_entry, flow, NULL);
1712 return;
1713 }
1714
1715 /* Replacement policy: put the flow in an empty (not alive) entry, or
1716 * in the first entry where it can be */
1717 if (!to_be_replaced
1718 || (emc_entry_alive(to_be_replaced)
1719 && !emc_entry_alive(current_entry))
1720 || current_entry->key.hash < to_be_replaced->key.hash) {
1721 to_be_replaced = current_entry;
1722 }
1723 }
1724 /* We didn't find the miniflow in the cache.
1725 * The 'to_be_replaced' entry is where the new flow will be stored */
1726
1727 emc_change_entry(to_be_replaced, flow, key);
1728 }
1729
1730 static inline struct dp_netdev_flow *
1731 emc_lookup(struct emc_cache *cache, const struct netdev_flow_key *key)
1732 {
1733 struct emc_entry *current_entry;
1734
1735 EMC_FOR_EACH_POS_WITH_HASH(cache, current_entry, key->hash) {
1736 if (current_entry->key.hash == key->hash
1737 && emc_entry_alive(current_entry)
1738 && netdev_flow_key_equal_mf(&current_entry->key, &key->mf)) {
1739
1740 /* We found the entry with the 'key->mf' miniflow */
1741 return current_entry->flow;
1742 }
1743 }
1744
1745 return NULL;
1746 }
1747
1748 static struct dp_netdev_flow *
1749 dp_netdev_pmd_lookup_flow(const struct dp_netdev_pmd_thread *pmd,
1750 const struct netdev_flow_key *key)
1751 {
1752 struct dp_netdev_flow *netdev_flow;
1753 struct dpcls_rule *rule;
1754
1755 dpcls_lookup(&pmd->cls, key, &rule, 1);
1756 netdev_flow = dp_netdev_flow_cast(rule);
1757
1758 return netdev_flow;
1759 }
1760
1761 static struct dp_netdev_flow *
1762 dp_netdev_pmd_find_flow(const struct dp_netdev_pmd_thread *pmd,
1763 const ovs_u128 *ufidp, const struct nlattr *key,
1764 size_t key_len)
1765 {
1766 struct dp_netdev_flow *netdev_flow;
1767 struct flow flow;
1768 ovs_u128 ufid;
1769
1770 /* If a UFID is not provided, determine one based on the key. */
1771 if (!ufidp && key && key_len
1772 && !dpif_netdev_flow_from_nlattrs(key, key_len, &flow)) {
1773 dpif_flow_hash(pmd->dp->dpif, &flow, sizeof flow, &ufid);
1774 ufidp = &ufid;
1775 }
1776
1777 if (ufidp) {
1778 CMAP_FOR_EACH_WITH_HASH (netdev_flow, node, dp_netdev_flow_hash(ufidp),
1779 &pmd->flow_table) {
1780 if (ovs_u128_equals(&netdev_flow->ufid, ufidp)) {
1781 return netdev_flow;
1782 }
1783 }
1784 }
1785
1786 return NULL;
1787 }
1788
1789 static void
1790 get_dpif_flow_stats(const struct dp_netdev_flow *netdev_flow_,
1791 struct dpif_flow_stats *stats)
1792 {
1793 struct dp_netdev_flow *netdev_flow;
1794 unsigned long long n;
1795 long long used;
1796 uint16_t flags;
1797
1798 netdev_flow = CONST_CAST(struct dp_netdev_flow *, netdev_flow_);
1799
1800 atomic_read_relaxed(&netdev_flow->stats.packet_count, &n);
1801 stats->n_packets = n;
1802 atomic_read_relaxed(&netdev_flow->stats.byte_count, &n);
1803 stats->n_bytes = n;
1804 atomic_read_relaxed(&netdev_flow->stats.used, &used);
1805 stats->used = used;
1806 atomic_read_relaxed(&netdev_flow->stats.tcp_flags, &flags);
1807 stats->tcp_flags = flags;
1808 }
1809
1810 /* Converts to the dpif_flow format, using 'key_buf' and 'mask_buf' for
1811 * storing the netlink-formatted key/mask. 'key_buf' may be the same as
1812 * 'mask_buf'. Actions will be returned without copying, by relying on RCU to
1813 * protect them. */
1814 static void
1815 dp_netdev_flow_to_dpif_flow(const struct dp_netdev_flow *netdev_flow,
1816 struct ofpbuf *key_buf, struct ofpbuf *mask_buf,
1817 struct dpif_flow *flow, bool terse)
1818 {
1819 if (terse) {
1820 memset(flow, 0, sizeof *flow);
1821 } else {
1822 struct flow_wildcards wc;
1823 struct dp_netdev_actions *actions;
1824 size_t offset;
1825
1826 miniflow_expand(&netdev_flow->cr.mask->mf, &wc.masks);
1827
1828 /* Key */
1829 offset = key_buf->size;
1830 flow->key = ofpbuf_tail(key_buf);
1831 odp_flow_key_from_flow(key_buf, &netdev_flow->flow, &wc.masks,
1832 netdev_flow->flow.in_port.odp_port, true);
1833 flow->key_len = key_buf->size - offset;
1834
1835 /* Mask */
1836 offset = mask_buf->size;
1837 flow->mask = ofpbuf_tail(mask_buf);
1838 odp_flow_key_from_mask(mask_buf, &wc.masks, &netdev_flow->flow,
1839 odp_to_u32(wc.masks.in_port.odp_port),
1840 SIZE_MAX, true);
1841 flow->mask_len = mask_buf->size - offset;
1842
1843 /* Actions */
1844 actions = dp_netdev_flow_get_actions(netdev_flow);
1845 flow->actions = actions->actions;
1846 flow->actions_len = actions->size;
1847 }
1848
1849 flow->ufid = netdev_flow->ufid;
1850 flow->ufid_present = true;
1851 flow->pmd_id = netdev_flow->pmd_id;
1852 get_dpif_flow_stats(netdev_flow, &flow->stats);
1853 }
1854
1855 static int
1856 dpif_netdev_mask_from_nlattrs(const struct nlattr *key, uint32_t key_len,
1857 const struct nlattr *mask_key,
1858 uint32_t mask_key_len, const struct flow *flow,
1859 struct flow *mask)
1860 {
1861 if (mask_key_len) {
1862 enum odp_key_fitness fitness;
1863
1864 fitness = odp_flow_key_to_mask(mask_key, mask_key_len, mask, flow);
1865 if (fitness) {
1866 /* This should not happen: it indicates that
1867 * odp_flow_key_from_mask() and odp_flow_key_to_mask()
1868 * disagree on the acceptable form of a mask. Log the problem
1869 * as an error, with enough details to enable debugging. */
1870 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
1871
1872 if (!VLOG_DROP_ERR(&rl)) {
1873 struct ds s;
1874
1875 ds_init(&s);
1876 odp_flow_format(key, key_len, mask_key, mask_key_len, NULL, &s,
1877 true);
1878 VLOG_ERR("internal error parsing flow mask %s (%s)",
1879 ds_cstr(&s), odp_key_fitness_to_string(fitness));
1880 ds_destroy(&s);
1881 }
1882
1883 return EINVAL;
1884 }
1885 } else {
1886 enum mf_field_id id;
1887 /* No mask key, unwildcard everything except fields whose
1888 * prerequisities are not met. */
1889 memset(mask, 0x0, sizeof *mask);
1890
1891 for (id = 0; id < MFF_N_IDS; ++id) {
1892 /* Skip registers and metadata. */
1893 if (!(id >= MFF_REG0 && id < MFF_REG0 + FLOW_N_REGS)
1894 && id != MFF_METADATA) {
1895 const struct mf_field *mf = mf_from_id(id);
1896 if (mf_are_prereqs_ok(mf, flow)) {
1897 mf_mask_field(mf, mask);
1898 }
1899 }
1900 }
1901 }
1902
1903 /* Force unwildcard the in_port.
1904 *
1905 * We need to do this even in the case where we unwildcard "everything"
1906 * above because "everything" only includes the 16-bit OpenFlow port number
1907 * mask->in_port.ofp_port, which only covers half of the 32-bit datapath
1908 * port number mask->in_port.odp_port. */
1909 mask->in_port.odp_port = u32_to_odp(UINT32_MAX);
1910
1911 return 0;
1912 }
1913
1914 static int
1915 dpif_netdev_flow_from_nlattrs(const struct nlattr *key, uint32_t key_len,
1916 struct flow *flow)
1917 {
1918 odp_port_t in_port;
1919
1920 if (odp_flow_key_to_flow(key, key_len, flow)) {
1921 /* This should not happen: it indicates that odp_flow_key_from_flow()
1922 * and odp_flow_key_to_flow() disagree on the acceptable form of a
1923 * flow. Log the problem as an error, with enough details to enable
1924 * debugging. */
1925 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
1926
1927 if (!VLOG_DROP_ERR(&rl)) {
1928 struct ds s;
1929
1930 ds_init(&s);
1931 odp_flow_format(key, key_len, NULL, 0, NULL, &s, true);
1932 VLOG_ERR("internal error parsing flow key %s", ds_cstr(&s));
1933 ds_destroy(&s);
1934 }
1935
1936 return EINVAL;
1937 }
1938
1939 in_port = flow->in_port.odp_port;
1940 if (!is_valid_port_number(in_port) && in_port != ODPP_NONE) {
1941 return EINVAL;
1942 }
1943
1944 return 0;
1945 }
1946
1947 static int
1948 dpif_netdev_flow_get(const struct dpif *dpif, const struct dpif_flow_get *get)
1949 {
1950 struct dp_netdev *dp = get_dp_netdev(dpif);
1951 struct dp_netdev_flow *netdev_flow;
1952 struct dp_netdev_pmd_thread *pmd;
1953 unsigned pmd_id = get->pmd_id == PMD_ID_NULL
1954 ? NON_PMD_CORE_ID : get->pmd_id;
1955 int error = 0;
1956
1957 pmd = dp_netdev_get_pmd(dp, pmd_id);
1958 if (!pmd) {
1959 return EINVAL;
1960 }
1961
1962 netdev_flow = dp_netdev_pmd_find_flow(pmd, get->ufid, get->key,
1963 get->key_len);
1964 if (netdev_flow) {
1965 dp_netdev_flow_to_dpif_flow(netdev_flow, get->buffer, get->buffer,
1966 get->flow, false);
1967 } else {
1968 error = ENOENT;
1969 }
1970 dp_netdev_pmd_unref(pmd);
1971
1972
1973 return error;
1974 }
1975
1976 static struct dp_netdev_flow *
1977 dp_netdev_flow_add(struct dp_netdev_pmd_thread *pmd,
1978 struct match *match, const ovs_u128 *ufid,
1979 const struct nlattr *actions, size_t actions_len)
1980 OVS_REQUIRES(pmd->flow_mutex)
1981 {
1982 struct dp_netdev_flow *flow;
1983 struct netdev_flow_key mask;
1984
1985 netdev_flow_mask_init(&mask, match);
1986 /* Make sure wc does not have metadata. */
1987 ovs_assert(!(mask.mf.map & (MINIFLOW_MAP(metadata) | MINIFLOW_MAP(regs))));
1988
1989 /* Do not allocate extra space. */
1990 flow = xmalloc(sizeof *flow - sizeof flow->cr.flow.mf + mask.len);
1991 memset(&flow->stats, 0, sizeof flow->stats);
1992 flow->dead = false;
1993 flow->batch = NULL;
1994 *CONST_CAST(unsigned *, &flow->pmd_id) = pmd->core_id;
1995 *CONST_CAST(struct flow *, &flow->flow) = match->flow;
1996 *CONST_CAST(ovs_u128 *, &flow->ufid) = *ufid;
1997 ovs_refcount_init(&flow->ref_cnt);
1998 ovsrcu_set(&flow->actions, dp_netdev_actions_create(actions, actions_len));
1999
2000 netdev_flow_key_init_masked(&flow->cr.flow, &match->flow, &mask);
2001 dpcls_insert(&pmd->cls, &flow->cr, &mask);
2002
2003 cmap_insert(&pmd->flow_table, CONST_CAST(struct cmap_node *, &flow->node),
2004 dp_netdev_flow_hash(&flow->ufid));
2005
2006 if (OVS_UNLIKELY(VLOG_IS_DBG_ENABLED())) {
2007 struct match match;
2008 struct ds ds = DS_EMPTY_INITIALIZER;
2009
2010 match.flow = flow->flow;
2011 miniflow_expand(&flow->cr.mask->mf, &match.wc.masks);
2012
2013 ds_put_cstr(&ds, "flow_add: ");
2014 odp_format_ufid(ufid, &ds);
2015 ds_put_cstr(&ds, " ");
2016 match_format(&match, &ds, OFP_DEFAULT_PRIORITY);
2017 ds_put_cstr(&ds, ", actions:");
2018 format_odp_actions(&ds, actions, actions_len);
2019
2020 VLOG_DBG_RL(&upcall_rl, "%s", ds_cstr(&ds));
2021
2022 ds_destroy(&ds);
2023 }
2024
2025 return flow;
2026 }
2027
2028 static int
2029 dpif_netdev_flow_put(struct dpif *dpif, const struct dpif_flow_put *put)
2030 {
2031 struct dp_netdev *dp = get_dp_netdev(dpif);
2032 struct dp_netdev_flow *netdev_flow;
2033 struct netdev_flow_key key;
2034 struct dp_netdev_pmd_thread *pmd;
2035 struct match match;
2036 ovs_u128 ufid;
2037 unsigned pmd_id = put->pmd_id == PMD_ID_NULL
2038 ? NON_PMD_CORE_ID : put->pmd_id;
2039 int error;
2040
2041 error = dpif_netdev_flow_from_nlattrs(put->key, put->key_len, &match.flow);
2042 if (error) {
2043 return error;
2044 }
2045 error = dpif_netdev_mask_from_nlattrs(put->key, put->key_len,
2046 put->mask, put->mask_len,
2047 &match.flow, &match.wc.masks);
2048 if (error) {
2049 return error;
2050 }
2051
2052 pmd = dp_netdev_get_pmd(dp, pmd_id);
2053 if (!pmd) {
2054 return EINVAL;
2055 }
2056
2057 /* Must produce a netdev_flow_key for lookup.
2058 * This interface is no longer performance critical, since it is not used
2059 * for upcall processing any more. */
2060 netdev_flow_key_from_flow(&key, &match.flow);
2061
2062 if (put->ufid) {
2063 ufid = *put->ufid;
2064 } else {
2065 dpif_flow_hash(dpif, &match.flow, sizeof match.flow, &ufid);
2066 }
2067
2068 ovs_mutex_lock(&pmd->flow_mutex);
2069 netdev_flow = dp_netdev_pmd_lookup_flow(pmd, &key);
2070 if (!netdev_flow) {
2071 if (put->flags & DPIF_FP_CREATE) {
2072 if (cmap_count(&pmd->flow_table) < MAX_FLOWS) {
2073 if (put->stats) {
2074 memset(put->stats, 0, sizeof *put->stats);
2075 }
2076 dp_netdev_flow_add(pmd, &match, &ufid, put->actions,
2077 put->actions_len);
2078 error = 0;
2079 } else {
2080 error = EFBIG;
2081 }
2082 } else {
2083 error = ENOENT;
2084 }
2085 } else {
2086 if (put->flags & DPIF_FP_MODIFY
2087 && flow_equal(&match.flow, &netdev_flow->flow)) {
2088 struct dp_netdev_actions *new_actions;
2089 struct dp_netdev_actions *old_actions;
2090
2091 new_actions = dp_netdev_actions_create(put->actions,
2092 put->actions_len);
2093
2094 old_actions = dp_netdev_flow_get_actions(netdev_flow);
2095 ovsrcu_set(&netdev_flow->actions, new_actions);
2096
2097 if (put->stats) {
2098 get_dpif_flow_stats(netdev_flow, put->stats);
2099 }
2100 if (put->flags & DPIF_FP_ZERO_STATS) {
2101 /* XXX: The userspace datapath uses thread local statistics
2102 * (for flows), which should be updated only by the owning
2103 * thread. Since we cannot write on stats memory here,
2104 * we choose not to support this flag. Please note:
2105 * - This feature is currently used only by dpctl commands with
2106 * option --clear.
2107 * - Should the need arise, this operation can be implemented
2108 * by keeping a base value (to be update here) for each
2109 * counter, and subtracting it before outputting the stats */
2110 error = EOPNOTSUPP;
2111 }
2112
2113 ovsrcu_postpone(dp_netdev_actions_free, old_actions);
2114 } else if (put->flags & DPIF_FP_CREATE) {
2115 error = EEXIST;
2116 } else {
2117 /* Overlapping flow. */
2118 error = EINVAL;
2119 }
2120 }
2121 ovs_mutex_unlock(&pmd->flow_mutex);
2122 dp_netdev_pmd_unref(pmd);
2123
2124 return error;
2125 }
2126
2127 static int
2128 dpif_netdev_flow_del(struct dpif *dpif, const struct dpif_flow_del *del)
2129 {
2130 struct dp_netdev *dp = get_dp_netdev(dpif);
2131 struct dp_netdev_flow *netdev_flow;
2132 struct dp_netdev_pmd_thread *pmd;
2133 unsigned pmd_id = del->pmd_id == PMD_ID_NULL
2134 ? NON_PMD_CORE_ID : del->pmd_id;
2135 int error = 0;
2136
2137 pmd = dp_netdev_get_pmd(dp, pmd_id);
2138 if (!pmd) {
2139 return EINVAL;
2140 }
2141
2142 ovs_mutex_lock(&pmd->flow_mutex);
2143 netdev_flow = dp_netdev_pmd_find_flow(pmd, del->ufid, del->key,
2144 del->key_len);
2145 if (netdev_flow) {
2146 if (del->stats) {
2147 get_dpif_flow_stats(netdev_flow, del->stats);
2148 }
2149 dp_netdev_pmd_remove_flow(pmd, netdev_flow);
2150 } else {
2151 error = ENOENT;
2152 }
2153 ovs_mutex_unlock(&pmd->flow_mutex);
2154 dp_netdev_pmd_unref(pmd);
2155
2156 return error;
2157 }
2158
2159 struct dpif_netdev_flow_dump {
2160 struct dpif_flow_dump up;
2161 struct cmap_position poll_thread_pos;
2162 struct cmap_position flow_pos;
2163 struct dp_netdev_pmd_thread *cur_pmd;
2164 int status;
2165 struct ovs_mutex mutex;
2166 };
2167
2168 static struct dpif_netdev_flow_dump *
2169 dpif_netdev_flow_dump_cast(struct dpif_flow_dump *dump)
2170 {
2171 return CONTAINER_OF(dump, struct dpif_netdev_flow_dump, up);
2172 }
2173
2174 static struct dpif_flow_dump *
2175 dpif_netdev_flow_dump_create(const struct dpif *dpif_, bool terse)
2176 {
2177 struct dpif_netdev_flow_dump *dump;
2178
2179 dump = xzalloc(sizeof *dump);
2180 dpif_flow_dump_init(&dump->up, dpif_);
2181 dump->up.terse = terse;
2182 ovs_mutex_init(&dump->mutex);
2183
2184 return &dump->up;
2185 }
2186
2187 static int
2188 dpif_netdev_flow_dump_destroy(struct dpif_flow_dump *dump_)
2189 {
2190 struct dpif_netdev_flow_dump *dump = dpif_netdev_flow_dump_cast(dump_);
2191
2192 ovs_mutex_destroy(&dump->mutex);
2193 free(dump);
2194 return 0;
2195 }
2196
2197 struct dpif_netdev_flow_dump_thread {
2198 struct dpif_flow_dump_thread up;
2199 struct dpif_netdev_flow_dump *dump;
2200 struct odputil_keybuf keybuf[FLOW_DUMP_MAX_BATCH];
2201 struct odputil_keybuf maskbuf[FLOW_DUMP_MAX_BATCH];
2202 };
2203
2204 static struct dpif_netdev_flow_dump_thread *
2205 dpif_netdev_flow_dump_thread_cast(struct dpif_flow_dump_thread *thread)
2206 {
2207 return CONTAINER_OF(thread, struct dpif_netdev_flow_dump_thread, up);
2208 }
2209
2210 static struct dpif_flow_dump_thread *
2211 dpif_netdev_flow_dump_thread_create(struct dpif_flow_dump *dump_)
2212 {
2213 struct dpif_netdev_flow_dump *dump = dpif_netdev_flow_dump_cast(dump_);
2214 struct dpif_netdev_flow_dump_thread *thread;
2215
2216 thread = xmalloc(sizeof *thread);
2217 dpif_flow_dump_thread_init(&thread->up, &dump->up);
2218 thread->dump = dump;
2219 return &thread->up;
2220 }
2221
2222 static void
2223 dpif_netdev_flow_dump_thread_destroy(struct dpif_flow_dump_thread *thread_)
2224 {
2225 struct dpif_netdev_flow_dump_thread *thread
2226 = dpif_netdev_flow_dump_thread_cast(thread_);
2227
2228 free(thread);
2229 }
2230
2231 static int
2232 dpif_netdev_flow_dump_next(struct dpif_flow_dump_thread *thread_,
2233 struct dpif_flow *flows, int max_flows)
2234 {
2235 struct dpif_netdev_flow_dump_thread *thread
2236 = dpif_netdev_flow_dump_thread_cast(thread_);
2237 struct dpif_netdev_flow_dump *dump = thread->dump;
2238 struct dp_netdev_flow *netdev_flows[FLOW_DUMP_MAX_BATCH];
2239 int n_flows = 0;
2240 int i;
2241
2242 ovs_mutex_lock(&dump->mutex);
2243 if (!dump->status) {
2244 struct dpif_netdev *dpif = dpif_netdev_cast(thread->up.dpif);
2245 struct dp_netdev *dp = get_dp_netdev(&dpif->dpif);
2246 struct dp_netdev_pmd_thread *pmd = dump->cur_pmd;
2247 int flow_limit = MIN(max_flows, FLOW_DUMP_MAX_BATCH);
2248
2249 /* First call to dump_next(), extracts the first pmd thread.
2250 * If there is no pmd thread, returns immediately. */
2251 if (!pmd) {
2252 pmd = dp_netdev_pmd_get_next(dp, &dump->poll_thread_pos);
2253 if (!pmd) {
2254 ovs_mutex_unlock(&dump->mutex);
2255 return n_flows;
2256
2257 }
2258 }
2259
2260 do {
2261 for (n_flows = 0; n_flows < flow_limit; n_flows++) {
2262 struct cmap_node *node;
2263
2264 node = cmap_next_position(&pmd->flow_table, &dump->flow_pos);
2265 if (!node) {
2266 break;
2267 }
2268 netdev_flows[n_flows] = CONTAINER_OF(node,
2269 struct dp_netdev_flow,
2270 node);
2271 }
2272 /* When finishing dumping the current pmd thread, moves to
2273 * the next. */
2274 if (n_flows < flow_limit) {
2275 memset(&dump->flow_pos, 0, sizeof dump->flow_pos);
2276 dp_netdev_pmd_unref(pmd);
2277 pmd = dp_netdev_pmd_get_next(dp, &dump->poll_thread_pos);
2278 if (!pmd) {
2279 dump->status = EOF;
2280 break;
2281 }
2282 }
2283 /* Keeps the reference to next caller. */
2284 dump->cur_pmd = pmd;
2285
2286 /* If the current dump is empty, do not exit the loop, since the
2287 * remaining pmds could have flows to be dumped. Just dumps again
2288 * on the new 'pmd'. */
2289 } while (!n_flows);
2290 }
2291 ovs_mutex_unlock(&dump->mutex);
2292
2293 for (i = 0; i < n_flows; i++) {
2294 struct odputil_keybuf *maskbuf = &thread->maskbuf[i];
2295 struct odputil_keybuf *keybuf = &thread->keybuf[i];
2296 struct dp_netdev_flow *netdev_flow = netdev_flows[i];
2297 struct dpif_flow *f = &flows[i];
2298 struct ofpbuf key, mask;
2299
2300 ofpbuf_use_stack(&key, keybuf, sizeof *keybuf);
2301 ofpbuf_use_stack(&mask, maskbuf, sizeof *maskbuf);
2302 dp_netdev_flow_to_dpif_flow(netdev_flow, &key, &mask, f,
2303 dump->up.terse);
2304 }
2305
2306 return n_flows;
2307 }
2308
2309 static int
2310 dpif_netdev_execute(struct dpif *dpif, struct dpif_execute *execute)
2311 OVS_NO_THREAD_SAFETY_ANALYSIS
2312 {
2313 struct dp_netdev *dp = get_dp_netdev(dpif);
2314 struct dp_netdev_pmd_thread *pmd;
2315 struct dp_packet *pp;
2316
2317 if (dp_packet_size(execute->packet) < ETH_HEADER_LEN ||
2318 dp_packet_size(execute->packet) > UINT16_MAX) {
2319 return EINVAL;
2320 }
2321
2322 /* Tries finding the 'pmd'. If NULL is returned, that means
2323 * the current thread is a non-pmd thread and should use
2324 * dp_netdev_get_pmd(dp, NON_PMD_CORE_ID). */
2325 pmd = ovsthread_getspecific(dp->per_pmd_key);
2326 if (!pmd) {
2327 pmd = dp_netdev_get_pmd(dp, NON_PMD_CORE_ID);
2328 }
2329
2330 /* If the current thread is non-pmd thread, acquires
2331 * the 'non_pmd_mutex'. */
2332 if (pmd->core_id == NON_PMD_CORE_ID) {
2333 ovs_mutex_lock(&dp->non_pmd_mutex);
2334 ovs_mutex_lock(&dp->port_mutex);
2335 }
2336
2337 pp = execute->packet;
2338 dp_netdev_execute_actions(pmd, &pp, 1, false, execute->actions,
2339 execute->actions_len);
2340 if (pmd->core_id == NON_PMD_CORE_ID) {
2341 dp_netdev_pmd_unref(pmd);
2342 ovs_mutex_unlock(&dp->port_mutex);
2343 ovs_mutex_unlock(&dp->non_pmd_mutex);
2344 }
2345
2346 return 0;
2347 }
2348
2349 static void
2350 dpif_netdev_operate(struct dpif *dpif, struct dpif_op **ops, size_t n_ops)
2351 {
2352 size_t i;
2353
2354 for (i = 0; i < n_ops; i++) {
2355 struct dpif_op *op = ops[i];
2356
2357 switch (op->type) {
2358 case DPIF_OP_FLOW_PUT:
2359 op->error = dpif_netdev_flow_put(dpif, &op->u.flow_put);
2360 break;
2361
2362 case DPIF_OP_FLOW_DEL:
2363 op->error = dpif_netdev_flow_del(dpif, &op->u.flow_del);
2364 break;
2365
2366 case DPIF_OP_EXECUTE:
2367 op->error = dpif_netdev_execute(dpif, &op->u.execute);
2368 break;
2369
2370 case DPIF_OP_FLOW_GET:
2371 op->error = dpif_netdev_flow_get(dpif, &op->u.flow_get);
2372 break;
2373 }
2374 }
2375 }
2376
2377 /* Returns true if the configuration for rx queues or cpu mask
2378 * is changed. */
2379 static bool
2380 pmd_config_changed(const struct dp_netdev *dp, size_t rxqs, const char *cmask)
2381 {
2382 if (dp->n_dpdk_rxqs != rxqs) {
2383 return true;
2384 } else {
2385 if (dp->pmd_cmask != NULL && cmask != NULL) {
2386 return strcmp(dp->pmd_cmask, cmask);
2387 } else {
2388 return (dp->pmd_cmask != NULL || cmask != NULL);
2389 }
2390 }
2391 }
2392
2393 /* Resets pmd threads if the configuration for 'rxq's or cpu mask changes. */
2394 static int
2395 dpif_netdev_pmd_set(struct dpif *dpif, unsigned int n_rxqs, const char *cmask)
2396 {
2397 struct dp_netdev *dp = get_dp_netdev(dpif);
2398
2399 if (pmd_config_changed(dp, n_rxqs, cmask)) {
2400 struct dp_netdev_port *port;
2401
2402 dp_netdev_destroy_all_pmds(dp);
2403
2404 CMAP_FOR_EACH (port, node, &dp->ports) {
2405 if (netdev_is_pmd(port->netdev)) {
2406 int i, err;
2407
2408 /* Closes the existing 'rxq's. */
2409 for (i = 0; i < netdev_n_rxq(port->netdev); i++) {
2410 netdev_rxq_close(port->rxq[i]);
2411 port->rxq[i] = NULL;
2412 }
2413
2414 /* Sets the new rx queue config. */
2415 err = netdev_set_multiq(port->netdev,
2416 ovs_numa_get_n_cores() + 1,
2417 n_rxqs);
2418 if (err && (err != EOPNOTSUPP)) {
2419 VLOG_ERR("Failed to set dpdk interface %s rx_queue to:"
2420 " %u", netdev_get_name(port->netdev),
2421 n_rxqs);
2422 return err;
2423 }
2424
2425 /* If the set_multiq() above succeeds, reopens the 'rxq's. */
2426 port->rxq = xrealloc(port->rxq, sizeof *port->rxq
2427 * netdev_n_rxq(port->netdev));
2428 for (i = 0; i < netdev_n_rxq(port->netdev); i++) {
2429 netdev_rxq_open(port->netdev, &port->rxq[i], i);
2430 }
2431 }
2432 }
2433 dp->n_dpdk_rxqs = n_rxqs;
2434
2435 /* Reconfigures the cpu mask. */
2436 ovs_numa_set_cpu_mask(cmask);
2437 free(dp->pmd_cmask);
2438 dp->pmd_cmask = cmask ? xstrdup(cmask) : NULL;
2439
2440 /* Restores the non-pmd. */
2441 dp_netdev_set_nonpmd(dp);
2442 /* Restores all pmd threads. */
2443 dp_netdev_reset_pmd_threads(dp);
2444 }
2445
2446 return 0;
2447 }
2448
2449 static int
2450 dpif_netdev_queue_to_priority(const struct dpif *dpif OVS_UNUSED,
2451 uint32_t queue_id, uint32_t *priority)
2452 {
2453 *priority = queue_id;
2454 return 0;
2455 }
2456
2457 \f
2458 /* Creates and returns a new 'struct dp_netdev_actions', whose actions are
2459 * a copy of the 'ofpacts_len' bytes of 'ofpacts'. */
2460 struct dp_netdev_actions *
2461 dp_netdev_actions_create(const struct nlattr *actions, size_t size)
2462 {
2463 struct dp_netdev_actions *netdev_actions;
2464
2465 netdev_actions = xmalloc(sizeof *netdev_actions + size);
2466 memcpy(netdev_actions->actions, actions, size);
2467 netdev_actions->size = size;
2468
2469 return netdev_actions;
2470 }
2471
2472 struct dp_netdev_actions *
2473 dp_netdev_flow_get_actions(const struct dp_netdev_flow *flow)
2474 {
2475 return ovsrcu_get(struct dp_netdev_actions *, &flow->actions);
2476 }
2477
2478 static void
2479 dp_netdev_actions_free(struct dp_netdev_actions *actions)
2480 {
2481 free(actions);
2482 }
2483 \f
2484 static inline unsigned long long
2485 cycles_counter(void)
2486 {
2487 #ifdef DPDK_NETDEV
2488 return rte_get_tsc_cycles();
2489 #else
2490 return 0;
2491 #endif
2492 }
2493
2494 /* Fake mutex to make sure that the calls to cycles_count_* are balanced */
2495 extern struct ovs_mutex cycles_counter_fake_mutex;
2496
2497 /* Start counting cycles. Must be followed by 'cycles_count_end()' */
2498 static inline void
2499 cycles_count_start(struct dp_netdev_pmd_thread *pmd)
2500 OVS_ACQUIRES(&cycles_counter_fake_mutex)
2501 OVS_NO_THREAD_SAFETY_ANALYSIS
2502 {
2503 pmd->last_cycles = cycles_counter();
2504 }
2505
2506 /* Stop counting cycles and add them to the counter 'type' */
2507 static inline void
2508 cycles_count_end(struct dp_netdev_pmd_thread *pmd,
2509 enum pmd_cycles_counter_type type)
2510 OVS_RELEASES(&cycles_counter_fake_mutex)
2511 OVS_NO_THREAD_SAFETY_ANALYSIS
2512 {
2513 unsigned long long interval = cycles_counter() - pmd->last_cycles;
2514
2515 non_atomic_ullong_add(&pmd->cycles.n[type], interval);
2516 }
2517
2518 static void
2519 dp_netdev_process_rxq_port(struct dp_netdev_pmd_thread *pmd,
2520 struct dp_netdev_port *port,
2521 struct netdev_rxq *rxq)
2522 {
2523 struct dp_packet *packets[NETDEV_MAX_BURST];
2524 int error, cnt;
2525
2526 cycles_count_start(pmd);
2527 error = netdev_rxq_recv(rxq, packets, &cnt);
2528 cycles_count_end(pmd, PMD_CYCLES_POLLING);
2529 if (!error) {
2530 int i;
2531
2532 *recirc_depth_get() = 0;
2533
2534 /* XXX: initialize md in netdev implementation. */
2535 for (i = 0; i < cnt; i++) {
2536 packets[i]->md = port->md;
2537 }
2538 cycles_count_start(pmd);
2539 dp_netdev_input(pmd, packets, cnt);
2540 cycles_count_end(pmd, PMD_CYCLES_PROCESSING);
2541 } else if (error != EAGAIN && error != EOPNOTSUPP) {
2542 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
2543
2544 VLOG_ERR_RL(&rl, "error receiving data from %s: %s",
2545 netdev_get_name(port->netdev), ovs_strerror(error));
2546 }
2547 }
2548
2549 /* Return true if needs to revalidate datapath flows. */
2550 static bool
2551 dpif_netdev_run(struct dpif *dpif)
2552 {
2553 struct dp_netdev_port *port;
2554 struct dp_netdev *dp = get_dp_netdev(dpif);
2555 struct dp_netdev_pmd_thread *non_pmd = dp_netdev_get_pmd(dp,
2556 NON_PMD_CORE_ID);
2557 uint64_t new_tnl_seq;
2558
2559 ovs_mutex_lock(&dp->non_pmd_mutex);
2560 CMAP_FOR_EACH (port, node, &dp->ports) {
2561 if (!netdev_is_pmd(port->netdev)) {
2562 int i;
2563
2564 for (i = 0; i < netdev_n_rxq(port->netdev); i++) {
2565 dp_netdev_process_rxq_port(non_pmd, port, port->rxq[i]);
2566 }
2567 }
2568 }
2569 ovs_mutex_unlock(&dp->non_pmd_mutex);
2570 dp_netdev_pmd_unref(non_pmd);
2571
2572 tnl_arp_cache_run();
2573 new_tnl_seq = seq_read(tnl_conf_seq);
2574
2575 if (dp->last_tnl_conf_seq != new_tnl_seq) {
2576 dp->last_tnl_conf_seq = new_tnl_seq;
2577 return true;
2578 }
2579 return false;
2580 }
2581
2582 static void
2583 dpif_netdev_wait(struct dpif *dpif)
2584 {
2585 struct dp_netdev_port *port;
2586 struct dp_netdev *dp = get_dp_netdev(dpif);
2587
2588 ovs_mutex_lock(&dp_netdev_mutex);
2589 CMAP_FOR_EACH (port, node, &dp->ports) {
2590 if (!netdev_is_pmd(port->netdev)) {
2591 int i;
2592
2593 for (i = 0; i < netdev_n_rxq(port->netdev); i++) {
2594 netdev_rxq_wait(port->rxq[i]);
2595 }
2596 }
2597 }
2598 ovs_mutex_unlock(&dp_netdev_mutex);
2599 seq_wait(tnl_conf_seq, dp->last_tnl_conf_seq);
2600 }
2601
2602 struct rxq_poll {
2603 struct dp_netdev_port *port;
2604 struct netdev_rxq *rx;
2605 };
2606
2607 static int
2608 pmd_load_queues(struct dp_netdev_pmd_thread *pmd,
2609 struct rxq_poll **ppoll_list, int poll_cnt)
2610 {
2611 struct rxq_poll *poll_list = *ppoll_list;
2612 struct dp_netdev_port *port;
2613 int n_pmds_on_numa, index, i;
2614
2615 /* Simple scheduler for netdev rx polling. */
2616 for (i = 0; i < poll_cnt; i++) {
2617 port_unref(poll_list[i].port);
2618 }
2619
2620 poll_cnt = 0;
2621 n_pmds_on_numa = get_n_pmd_threads_on_numa(pmd->dp, pmd->numa_id);
2622 index = 0;
2623
2624 CMAP_FOR_EACH (port, node, &pmd->dp->ports) {
2625 /* Calls port_try_ref() to prevent the main thread
2626 * from deleting the port. */
2627 if (port_try_ref(port)) {
2628 if (netdev_is_pmd(port->netdev)
2629 && netdev_get_numa_id(port->netdev) == pmd->numa_id) {
2630 int i;
2631
2632 for (i = 0; i < netdev_n_rxq(port->netdev); i++) {
2633 if ((index % n_pmds_on_numa) == pmd->index) {
2634 poll_list = xrealloc(poll_list,
2635 sizeof *poll_list * (poll_cnt + 1));
2636
2637 port_ref(port);
2638 poll_list[poll_cnt].port = port;
2639 poll_list[poll_cnt].rx = port->rxq[i];
2640 poll_cnt++;
2641 }
2642 index++;
2643 }
2644 }
2645 /* Unrefs the port_try_ref(). */
2646 port_unref(port);
2647 }
2648 }
2649
2650 *ppoll_list = poll_list;
2651 return poll_cnt;
2652 }
2653
2654 static void *
2655 pmd_thread_main(void *f_)
2656 {
2657 struct dp_netdev_pmd_thread *pmd = f_;
2658 unsigned int lc = 0;
2659 struct rxq_poll *poll_list;
2660 unsigned int port_seq = PMD_INITIAL_SEQ;
2661 int poll_cnt;
2662 int i;
2663
2664 poll_cnt = 0;
2665 poll_list = NULL;
2666
2667 /* Stores the pmd thread's 'pmd' to 'per_pmd_key'. */
2668 ovsthread_setspecific(pmd->dp->per_pmd_key, pmd);
2669 pmd_thread_setaffinity_cpu(pmd->core_id);
2670 reload:
2671 emc_cache_init(&pmd->flow_cache);
2672 poll_cnt = pmd_load_queues(pmd, &poll_list, poll_cnt);
2673
2674 /* Signal here to make sure the pmd finishes
2675 * reloading the updated configuration. */
2676 dp_netdev_pmd_reload_done(pmd);
2677
2678 for (;;) {
2679 int i;
2680
2681 for (i = 0; i < poll_cnt; i++) {
2682 dp_netdev_process_rxq_port(pmd, poll_list[i].port, poll_list[i].rx);
2683 }
2684
2685 if (lc++ > 1024) {
2686 unsigned int seq;
2687
2688 lc = 0;
2689
2690 emc_cache_slow_sweep(&pmd->flow_cache);
2691 ovsrcu_quiesce();
2692
2693 atomic_read_relaxed(&pmd->change_seq, &seq);
2694 if (seq != port_seq) {
2695 port_seq = seq;
2696 break;
2697 }
2698 }
2699 }
2700
2701 emc_cache_uninit(&pmd->flow_cache);
2702
2703 if (!latch_is_set(&pmd->exit_latch)){
2704 goto reload;
2705 }
2706
2707 for (i = 0; i < poll_cnt; i++) {
2708 port_unref(poll_list[i].port);
2709 }
2710
2711 dp_netdev_pmd_reload_done(pmd);
2712
2713 free(poll_list);
2714 return NULL;
2715 }
2716
2717 static void
2718 dp_netdev_disable_upcall(struct dp_netdev *dp)
2719 OVS_ACQUIRES(dp->upcall_rwlock)
2720 {
2721 fat_rwlock_wrlock(&dp->upcall_rwlock);
2722 }
2723
2724 static void
2725 dpif_netdev_disable_upcall(struct dpif *dpif)
2726 OVS_NO_THREAD_SAFETY_ANALYSIS
2727 {
2728 struct dp_netdev *dp = get_dp_netdev(dpif);
2729 dp_netdev_disable_upcall(dp);
2730 }
2731
2732 static void
2733 dp_netdev_enable_upcall(struct dp_netdev *dp)
2734 OVS_RELEASES(dp->upcall_rwlock)
2735 {
2736 fat_rwlock_unlock(&dp->upcall_rwlock);
2737 }
2738
2739 static void
2740 dpif_netdev_enable_upcall(struct dpif *dpif)
2741 OVS_NO_THREAD_SAFETY_ANALYSIS
2742 {
2743 struct dp_netdev *dp = get_dp_netdev(dpif);
2744 dp_netdev_enable_upcall(dp);
2745 }
2746
2747 void
2748 dp_netdev_pmd_reload_done(struct dp_netdev_pmd_thread *pmd)
2749 {
2750 ovs_mutex_lock(&pmd->cond_mutex);
2751 xpthread_cond_signal(&pmd->cond);
2752 ovs_mutex_unlock(&pmd->cond_mutex);
2753 }
2754
2755 /* Finds and refs the dp_netdev_pmd_thread on core 'core_id'. Returns
2756 * the pointer if succeeds, otherwise, NULL.
2757 *
2758 * Caller must unrefs the returned reference. */
2759 static struct dp_netdev_pmd_thread *
2760 dp_netdev_get_pmd(struct dp_netdev *dp, unsigned core_id)
2761 {
2762 struct dp_netdev_pmd_thread *pmd;
2763 const struct cmap_node *pnode;
2764
2765 pnode = cmap_find(&dp->poll_threads, hash_int(core_id, 0));
2766 if (!pnode) {
2767 return NULL;
2768 }
2769 pmd = CONTAINER_OF(pnode, struct dp_netdev_pmd_thread, node);
2770
2771 return dp_netdev_pmd_try_ref(pmd) ? pmd : NULL;
2772 }
2773
2774 /* Sets the 'struct dp_netdev_pmd_thread' for non-pmd threads. */
2775 static void
2776 dp_netdev_set_nonpmd(struct dp_netdev *dp)
2777 {
2778 struct dp_netdev_pmd_thread *non_pmd;
2779
2780 non_pmd = xzalloc(sizeof *non_pmd);
2781 dp_netdev_configure_pmd(non_pmd, dp, 0, NON_PMD_CORE_ID,
2782 OVS_NUMA_UNSPEC);
2783 }
2784
2785 /* Caller must have valid pointer to 'pmd'. */
2786 static bool
2787 dp_netdev_pmd_try_ref(struct dp_netdev_pmd_thread *pmd)
2788 {
2789 return ovs_refcount_try_ref_rcu(&pmd->ref_cnt);
2790 }
2791
2792 static void
2793 dp_netdev_pmd_unref(struct dp_netdev_pmd_thread *pmd)
2794 {
2795 if (pmd && ovs_refcount_unref(&pmd->ref_cnt) == 1) {
2796 ovsrcu_postpone(dp_netdev_destroy_pmd, pmd);
2797 }
2798 }
2799
2800 /* Given cmap position 'pos', tries to ref the next node. If try_ref()
2801 * fails, keeps checking for next node until reaching the end of cmap.
2802 *
2803 * Caller must unrefs the returned reference. */
2804 static struct dp_netdev_pmd_thread *
2805 dp_netdev_pmd_get_next(struct dp_netdev *dp, struct cmap_position *pos)
2806 {
2807 struct dp_netdev_pmd_thread *next;
2808
2809 do {
2810 struct cmap_node *node;
2811
2812 node = cmap_next_position(&dp->poll_threads, pos);
2813 next = node ? CONTAINER_OF(node, struct dp_netdev_pmd_thread, node)
2814 : NULL;
2815 } while (next && !dp_netdev_pmd_try_ref(next));
2816
2817 return next;
2818 }
2819
2820 static int
2821 core_id_to_qid(unsigned core_id)
2822 {
2823 if (core_id != NON_PMD_CORE_ID) {
2824 return core_id;
2825 } else {
2826 return ovs_numa_get_n_cores();
2827 }
2828 }
2829
2830 /* Configures the 'pmd' based on the input argument. */
2831 static void
2832 dp_netdev_configure_pmd(struct dp_netdev_pmd_thread *pmd, struct dp_netdev *dp,
2833 int index, unsigned core_id, int numa_id)
2834 {
2835 pmd->dp = dp;
2836 pmd->index = index;
2837 pmd->core_id = core_id;
2838 pmd->tx_qid = core_id_to_qid(core_id);
2839 pmd->numa_id = numa_id;
2840
2841 ovs_refcount_init(&pmd->ref_cnt);
2842 latch_init(&pmd->exit_latch);
2843 atomic_init(&pmd->change_seq, PMD_INITIAL_SEQ);
2844 xpthread_cond_init(&pmd->cond, NULL);
2845 ovs_mutex_init(&pmd->cond_mutex);
2846 ovs_mutex_init(&pmd->flow_mutex);
2847 dpcls_init(&pmd->cls);
2848 cmap_init(&pmd->flow_table);
2849 /* init the 'flow_cache' since there is no
2850 * actual thread created for NON_PMD_CORE_ID. */
2851 if (core_id == NON_PMD_CORE_ID) {
2852 emc_cache_init(&pmd->flow_cache);
2853 }
2854 cmap_insert(&dp->poll_threads, CONST_CAST(struct cmap_node *, &pmd->node),
2855 hash_int(core_id, 0));
2856 }
2857
2858 static void
2859 dp_netdev_destroy_pmd(struct dp_netdev_pmd_thread *pmd)
2860 {
2861 dp_netdev_pmd_flow_flush(pmd);
2862 dpcls_destroy(&pmd->cls);
2863 cmap_destroy(&pmd->flow_table);
2864 ovs_mutex_destroy(&pmd->flow_mutex);
2865 latch_destroy(&pmd->exit_latch);
2866 xpthread_cond_destroy(&pmd->cond);
2867 ovs_mutex_destroy(&pmd->cond_mutex);
2868 free(pmd);
2869 }
2870
2871 /* Stops the pmd thread, removes it from the 'dp->poll_threads',
2872 * and unrefs the struct. */
2873 static void
2874 dp_netdev_del_pmd(struct dp_netdev_pmd_thread *pmd)
2875 {
2876 /* Uninit the 'flow_cache' since there is
2877 * no actual thread uninit it for NON_PMD_CORE_ID. */
2878 if (pmd->core_id == NON_PMD_CORE_ID) {
2879 emc_cache_uninit(&pmd->flow_cache);
2880 } else {
2881 latch_set(&pmd->exit_latch);
2882 dp_netdev_reload_pmd__(pmd);
2883 ovs_numa_unpin_core(pmd->core_id);
2884 xpthread_join(pmd->thread, NULL);
2885 }
2886 cmap_remove(&pmd->dp->poll_threads, &pmd->node, hash_int(pmd->core_id, 0));
2887 dp_netdev_pmd_unref(pmd);
2888 }
2889
2890 /* Destroys all pmd threads. */
2891 static void
2892 dp_netdev_destroy_all_pmds(struct dp_netdev *dp)
2893 {
2894 struct dp_netdev_pmd_thread *pmd;
2895
2896 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
2897 dp_netdev_del_pmd(pmd);
2898 }
2899 }
2900
2901 /* Deletes all pmd threads on numa node 'numa_id'. */
2902 static void
2903 dp_netdev_del_pmds_on_numa(struct dp_netdev *dp, int numa_id)
2904 {
2905 struct dp_netdev_pmd_thread *pmd;
2906
2907 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
2908 if (pmd->numa_id == numa_id) {
2909 dp_netdev_del_pmd(pmd);
2910 }
2911 }
2912 }
2913
2914 /* Checks the numa node id of 'netdev' and starts pmd threads for
2915 * the numa node. */
2916 static void
2917 dp_netdev_set_pmds_on_numa(struct dp_netdev *dp, int numa_id)
2918 {
2919 int n_pmds;
2920
2921 if (!ovs_numa_numa_id_is_valid(numa_id)) {
2922 VLOG_ERR("Cannot create pmd threads due to numa id (%d)"
2923 "invalid", numa_id);
2924 return ;
2925 }
2926
2927 n_pmds = get_n_pmd_threads_on_numa(dp, numa_id);
2928
2929 /* If there are already pmd threads created for the numa node
2930 * in which 'netdev' is on, do nothing. Else, creates the
2931 * pmd threads for the numa node. */
2932 if (!n_pmds) {
2933 int can_have, n_unpinned, i;
2934
2935 n_unpinned = ovs_numa_get_n_unpinned_cores_on_numa(numa_id);
2936 if (!n_unpinned) {
2937 VLOG_ERR("Cannot create pmd threads due to out of unpinned "
2938 "cores on numa node");
2939 return;
2940 }
2941
2942 /* If cpu mask is specified, uses all unpinned cores, otherwise
2943 * tries creating NR_PMD_THREADS pmd threads. */
2944 can_have = dp->pmd_cmask ? n_unpinned : MIN(n_unpinned, NR_PMD_THREADS);
2945 for (i = 0; i < can_have; i++) {
2946 struct dp_netdev_pmd_thread *pmd = xzalloc(sizeof *pmd);
2947 unsigned core_id = ovs_numa_get_unpinned_core_on_numa(numa_id);
2948
2949 dp_netdev_configure_pmd(pmd, dp, i, core_id, numa_id);
2950 /* Each thread will distribute all devices rx-queues among
2951 * themselves. */
2952 pmd->thread = ovs_thread_create("pmd", pmd_thread_main, pmd);
2953 }
2954 VLOG_INFO("Created %d pmd threads on numa node %d", can_have, numa_id);
2955 }
2956 }
2957
2958 \f
2959 /* Called after pmd threads config change. Restarts pmd threads with
2960 * new configuration. */
2961 static void
2962 dp_netdev_reset_pmd_threads(struct dp_netdev *dp)
2963 {
2964 struct dp_netdev_port *port;
2965
2966 CMAP_FOR_EACH (port, node, &dp->ports) {
2967 if (netdev_is_pmd(port->netdev)) {
2968 int numa_id = netdev_get_numa_id(port->netdev);
2969
2970 dp_netdev_set_pmds_on_numa(dp, numa_id);
2971 }
2972 }
2973 }
2974
2975 static char *
2976 dpif_netdev_get_datapath_version(void)
2977 {
2978 return xstrdup("<built-in>");
2979 }
2980
2981 static void
2982 dp_netdev_flow_used(struct dp_netdev_flow *netdev_flow, int cnt, int size,
2983 uint16_t tcp_flags, long long now)
2984 {
2985 uint16_t flags;
2986
2987 atomic_store_relaxed(&netdev_flow->stats.used, now);
2988 non_atomic_ullong_add(&netdev_flow->stats.packet_count, cnt);
2989 non_atomic_ullong_add(&netdev_flow->stats.byte_count, size);
2990 atomic_read_relaxed(&netdev_flow->stats.tcp_flags, &flags);
2991 flags |= tcp_flags;
2992 atomic_store_relaxed(&netdev_flow->stats.tcp_flags, flags);
2993 }
2994
2995 static void
2996 dp_netdev_count_packet(struct dp_netdev_pmd_thread *pmd,
2997 enum dp_stat_type type, int cnt)
2998 {
2999 non_atomic_ullong_add(&pmd->stats.n[type], cnt);
3000 }
3001
3002 static int
3003 dp_netdev_upcall(struct dp_netdev_pmd_thread *pmd, struct dp_packet *packet_,
3004 struct flow *flow, struct flow_wildcards *wc, ovs_u128 *ufid,
3005 enum dpif_upcall_type type, const struct nlattr *userdata,
3006 struct ofpbuf *actions, struct ofpbuf *put_actions)
3007 {
3008 struct dp_netdev *dp = pmd->dp;
3009
3010 if (OVS_UNLIKELY(!dp->upcall_cb)) {
3011 return ENODEV;
3012 }
3013
3014 if (OVS_UNLIKELY(!VLOG_DROP_DBG(&upcall_rl))) {
3015 struct ds ds = DS_EMPTY_INITIALIZER;
3016 char *packet_str;
3017 struct ofpbuf key;
3018
3019 ofpbuf_init(&key, 0);
3020 odp_flow_key_from_flow(&key, flow, &wc->masks, flow->in_port.odp_port,
3021 true);
3022 packet_str = ofp_packet_to_string(dp_packet_data(packet_),
3023 dp_packet_size(packet_));
3024
3025 odp_flow_key_format(key.data, key.size, &ds);
3026
3027 VLOG_DBG("%s: %s upcall:\n%s\n%s", dp->name,
3028 dpif_upcall_type_to_string(type), ds_cstr(&ds), packet_str);
3029
3030 ofpbuf_uninit(&key);
3031 free(packet_str);
3032
3033 ds_destroy(&ds);
3034 }
3035
3036 return dp->upcall_cb(packet_, flow, ufid, pmd->core_id, type, userdata,
3037 actions, wc, put_actions, dp->upcall_aux);
3038 }
3039
3040 static inline uint32_t
3041 dpif_netdev_packet_get_rss_hash(struct dp_packet *packet,
3042 const struct miniflow *mf)
3043 {
3044 uint32_t hash, recirc_depth;
3045
3046 hash = dp_packet_get_rss_hash(packet);
3047 if (OVS_UNLIKELY(!hash)) {
3048 hash = miniflow_hash_5tuple(mf, 0);
3049 dp_packet_set_rss_hash(packet, hash);
3050 }
3051
3052 /* The RSS hash must account for the recirculation depth to avoid
3053 * collisions in the exact match cache */
3054 recirc_depth = *recirc_depth_get_unsafe();
3055 if (OVS_UNLIKELY(recirc_depth)) {
3056 hash = hash_finish(hash, recirc_depth);
3057 dp_packet_set_rss_hash(packet, hash);
3058 }
3059 return hash;
3060 }
3061
3062 struct packet_batch {
3063 unsigned int packet_count;
3064 unsigned int byte_count;
3065 uint16_t tcp_flags;
3066
3067 struct dp_netdev_flow *flow;
3068
3069 struct dp_packet *packets[NETDEV_MAX_BURST];
3070 };
3071
3072 static inline void
3073 packet_batch_update(struct packet_batch *batch, struct dp_packet *packet,
3074 const struct miniflow *mf)
3075 {
3076 batch->tcp_flags |= miniflow_get_tcp_flags(mf);
3077 batch->packets[batch->packet_count++] = packet;
3078 batch->byte_count += dp_packet_size(packet);
3079 }
3080
3081 static inline void
3082 packet_batch_init(struct packet_batch *batch, struct dp_netdev_flow *flow)
3083 {
3084 flow->batch = batch;
3085
3086 batch->flow = flow;
3087 batch->packet_count = 0;
3088 batch->byte_count = 0;
3089 batch->tcp_flags = 0;
3090 }
3091
3092 static inline void
3093 packet_batch_execute(struct packet_batch *batch,
3094 struct dp_netdev_pmd_thread *pmd,
3095 long long now)
3096 {
3097 struct dp_netdev_actions *actions;
3098 struct dp_netdev_flow *flow = batch->flow;
3099
3100 dp_netdev_flow_used(flow, batch->packet_count, batch->byte_count,
3101 batch->tcp_flags, now);
3102
3103 actions = dp_netdev_flow_get_actions(flow);
3104
3105 dp_netdev_execute_actions(pmd, batch->packets, batch->packet_count, true,
3106 actions->actions, actions->size);
3107 }
3108
3109 static inline void
3110 dp_netdev_queue_batches(struct dp_packet *pkt,
3111 struct dp_netdev_flow *flow, const struct miniflow *mf,
3112 struct packet_batch *batches, size_t *n_batches)
3113 {
3114 struct packet_batch *batch = flow->batch;
3115
3116 if (OVS_LIKELY(batch)) {
3117 packet_batch_update(batch, pkt, mf);
3118 return;
3119 }
3120
3121 batch = &batches[(*n_batches)++];
3122 packet_batch_init(batch, flow);
3123 packet_batch_update(batch, pkt, mf);
3124 }
3125
3126 static inline void
3127 dp_packet_swap(struct dp_packet **a, struct dp_packet **b)
3128 {
3129 struct dp_packet *tmp = *a;
3130 *a = *b;
3131 *b = tmp;
3132 }
3133
3134 /* Try to process all ('cnt') the 'packets' using only the exact match cache
3135 * 'flow_cache'. If a flow is not found for a packet 'packets[i]', the
3136 * miniflow is copied into 'keys' and the packet pointer is moved at the
3137 * beginning of the 'packets' array.
3138 *
3139 * The function returns the number of packets that needs to be processed in the
3140 * 'packets' array (they have been moved to the beginning of the vector).
3141 */
3142 static inline size_t
3143 emc_processing(struct dp_netdev_pmd_thread *pmd, struct dp_packet **packets,
3144 size_t cnt, struct netdev_flow_key *keys,
3145 struct packet_batch batches[], size_t *n_batches)
3146 {
3147 struct emc_cache *flow_cache = &pmd->flow_cache;
3148 struct netdev_flow_key key;
3149 size_t i, notfound_cnt = 0;
3150
3151 miniflow_initialize(&key.mf, key.buf);
3152 for (i = 0; i < cnt; i++) {
3153 struct dp_netdev_flow *flow;
3154
3155 if (OVS_UNLIKELY(dp_packet_size(packets[i]) < ETH_HEADER_LEN)) {
3156 dp_packet_delete(packets[i]);
3157 continue;
3158 }
3159
3160 miniflow_extract(packets[i], &key.mf);
3161 key.len = 0; /* Not computed yet. */
3162 key.hash = dpif_netdev_packet_get_rss_hash(packets[i], &key.mf);
3163
3164 flow = emc_lookup(flow_cache, &key);
3165 if (OVS_LIKELY(flow)) {
3166 dp_netdev_queue_batches(packets[i], flow, &key.mf, batches,
3167 n_batches);
3168 } else {
3169 if (i != notfound_cnt) {
3170 dp_packet_swap(&packets[i], &packets[notfound_cnt]);
3171 }
3172
3173 keys[notfound_cnt++] = key;
3174 }
3175 }
3176
3177 dp_netdev_count_packet(pmd, DP_STAT_EXACT_HIT, cnt - notfound_cnt);
3178
3179 return notfound_cnt;
3180 }
3181
3182 static inline void
3183 fast_path_processing(struct dp_netdev_pmd_thread *pmd,
3184 struct dp_packet **packets, size_t cnt,
3185 struct netdev_flow_key *keys,
3186 struct packet_batch batches[], size_t *n_batches)
3187 {
3188 #if !defined(__CHECKER__) && !defined(_WIN32)
3189 const size_t PKT_ARRAY_SIZE = cnt;
3190 #else
3191 /* Sparse or MSVC doesn't like variable length array. */
3192 enum { PKT_ARRAY_SIZE = NETDEV_MAX_BURST };
3193 #endif
3194 struct dpcls_rule *rules[PKT_ARRAY_SIZE];
3195 struct dp_netdev *dp = pmd->dp;
3196 struct emc_cache *flow_cache = &pmd->flow_cache;
3197 int miss_cnt = 0, lost_cnt = 0;
3198 bool any_miss;
3199 size_t i;
3200
3201 for (i = 0; i < cnt; i++) {
3202 /* Key length is needed in all the cases, hash computed on demand. */
3203 keys[i].len = netdev_flow_key_size(count_1bits(keys[i].mf.map));
3204 }
3205 any_miss = !dpcls_lookup(&pmd->cls, keys, rules, cnt);
3206 if (OVS_UNLIKELY(any_miss) && !fat_rwlock_tryrdlock(&dp->upcall_rwlock)) {
3207 uint64_t actions_stub[512 / 8], slow_stub[512 / 8];
3208 struct ofpbuf actions, put_actions;
3209 ovs_u128 ufid;
3210
3211 ofpbuf_use_stub(&actions, actions_stub, sizeof actions_stub);
3212 ofpbuf_use_stub(&put_actions, slow_stub, sizeof slow_stub);
3213
3214 for (i = 0; i < cnt; i++) {
3215 struct dp_netdev_flow *netdev_flow;
3216 struct ofpbuf *add_actions;
3217 struct match match;
3218 int error;
3219
3220 if (OVS_LIKELY(rules[i])) {
3221 continue;
3222 }
3223
3224 /* It's possible that an earlier slow path execution installed
3225 * a rule covering this flow. In this case, it's a lot cheaper
3226 * to catch it here than execute a miss. */
3227 netdev_flow = dp_netdev_pmd_lookup_flow(pmd, &keys[i]);
3228 if (netdev_flow) {
3229 rules[i] = &netdev_flow->cr;
3230 continue;
3231 }
3232
3233 miss_cnt++;
3234
3235 miniflow_expand(&keys[i].mf, &match.flow);
3236
3237 ofpbuf_clear(&actions);
3238 ofpbuf_clear(&put_actions);
3239
3240 dpif_flow_hash(dp->dpif, &match.flow, sizeof match.flow, &ufid);
3241 error = dp_netdev_upcall(pmd, packets[i], &match.flow, &match.wc,
3242 &ufid, DPIF_UC_MISS, NULL, &actions,
3243 &put_actions);
3244 if (OVS_UNLIKELY(error && error != ENOSPC)) {
3245 dp_packet_delete(packets[i]);
3246 lost_cnt++;
3247 continue;
3248 }
3249
3250 /* We can't allow the packet batching in the next loop to execute
3251 * the actions. Otherwise, if there are any slow path actions,
3252 * we'll send the packet up twice. */
3253 dp_netdev_execute_actions(pmd, &packets[i], 1, true,
3254 actions.data, actions.size);
3255
3256 add_actions = put_actions.size ? &put_actions : &actions;
3257 if (OVS_LIKELY(error != ENOSPC)) {
3258 /* XXX: There's a race window where a flow covering this packet
3259 * could have already been installed since we last did the flow
3260 * lookup before upcall. This could be solved by moving the
3261 * mutex lock outside the loop, but that's an awful long time
3262 * to be locking everyone out of making flow installs. If we
3263 * move to a per-core classifier, it would be reasonable. */
3264 ovs_mutex_lock(&pmd->flow_mutex);
3265 netdev_flow = dp_netdev_pmd_lookup_flow(pmd, &keys[i]);
3266 if (OVS_LIKELY(!netdev_flow)) {
3267 netdev_flow = dp_netdev_flow_add(pmd, &match, &ufid,
3268 add_actions->data,
3269 add_actions->size);
3270 }
3271 ovs_mutex_unlock(&pmd->flow_mutex);
3272
3273 emc_insert(flow_cache, &keys[i], netdev_flow);
3274 }
3275 }
3276
3277 ofpbuf_uninit(&actions);
3278 ofpbuf_uninit(&put_actions);
3279 fat_rwlock_unlock(&dp->upcall_rwlock);
3280 dp_netdev_count_packet(pmd, DP_STAT_LOST, lost_cnt);
3281 } else if (OVS_UNLIKELY(any_miss)) {
3282 for (i = 0; i < cnt; i++) {
3283 if (OVS_UNLIKELY(!rules[i])) {
3284 dp_packet_delete(packets[i]);
3285 lost_cnt++;
3286 miss_cnt++;
3287 }
3288 }
3289 }
3290
3291 for (i = 0; i < cnt; i++) {
3292 struct dp_packet *packet = packets[i];
3293 struct dp_netdev_flow *flow;
3294
3295 if (OVS_UNLIKELY(!rules[i])) {
3296 continue;
3297 }
3298
3299 flow = dp_netdev_flow_cast(rules[i]);
3300
3301 emc_insert(flow_cache, &keys[i], flow);
3302 dp_netdev_queue_batches(packet, flow, &keys[i].mf, batches, n_batches);
3303 }
3304
3305 dp_netdev_count_packet(pmd, DP_STAT_MASKED_HIT, cnt - miss_cnt);
3306 dp_netdev_count_packet(pmd, DP_STAT_MISS, miss_cnt);
3307 dp_netdev_count_packet(pmd, DP_STAT_LOST, lost_cnt);
3308 }
3309
3310 static void
3311 dp_netdev_input(struct dp_netdev_pmd_thread *pmd,
3312 struct dp_packet **packets, int cnt)
3313 {
3314 #if !defined(__CHECKER__) && !defined(_WIN32)
3315 const size_t PKT_ARRAY_SIZE = cnt;
3316 #else
3317 /* Sparse or MSVC doesn't like variable length array. */
3318 enum { PKT_ARRAY_SIZE = NETDEV_MAX_BURST };
3319 #endif
3320 struct netdev_flow_key keys[PKT_ARRAY_SIZE];
3321 struct packet_batch batches[PKT_ARRAY_SIZE];
3322 long long now = time_msec();
3323 size_t newcnt, n_batches, i;
3324
3325 n_batches = 0;
3326 newcnt = emc_processing(pmd, packets, cnt, keys, batches, &n_batches);
3327 if (OVS_UNLIKELY(newcnt)) {
3328 fast_path_processing(pmd, packets, newcnt, keys, batches, &n_batches);
3329 }
3330
3331 for (i = 0; i < n_batches; i++) {
3332 batches[i].flow->batch = NULL;
3333 }
3334
3335 for (i = 0; i < n_batches; i++) {
3336 packet_batch_execute(&batches[i], pmd, now);
3337 }
3338 }
3339
3340 struct dp_netdev_execute_aux {
3341 struct dp_netdev_pmd_thread *pmd;
3342 };
3343
3344 static void
3345 dpif_netdev_register_upcall_cb(struct dpif *dpif, upcall_callback *cb,
3346 void *aux)
3347 {
3348 struct dp_netdev *dp = get_dp_netdev(dpif);
3349 dp->upcall_aux = aux;
3350 dp->upcall_cb = cb;
3351 }
3352
3353 static void
3354 dp_netdev_drop_packets(struct dp_packet **packets, int cnt, bool may_steal)
3355 {
3356 if (may_steal) {
3357 int i;
3358
3359 for (i = 0; i < cnt; i++) {
3360 dp_packet_delete(packets[i]);
3361 }
3362 }
3363 }
3364
3365 static int
3366 push_tnl_action(const struct dp_netdev *dp,
3367 const struct nlattr *attr,
3368 struct dp_packet **packets, int cnt)
3369 {
3370 struct dp_netdev_port *tun_port;
3371 const struct ovs_action_push_tnl *data;
3372
3373 data = nl_attr_get(attr);
3374
3375 tun_port = dp_netdev_lookup_port(dp, u32_to_odp(data->tnl_port));
3376 if (!tun_port) {
3377 return -EINVAL;
3378 }
3379 netdev_push_header(tun_port->netdev, packets, cnt, data);
3380
3381 return 0;
3382 }
3383
3384 static void
3385 dp_netdev_clone_pkt_batch(struct dp_packet **dst_pkts,
3386 struct dp_packet **src_pkts, int cnt)
3387 {
3388 int i;
3389
3390 for (i = 0; i < cnt; i++) {
3391 dst_pkts[i] = dp_packet_clone(src_pkts[i]);
3392 }
3393 }
3394
3395 static void
3396 dp_execute_cb(void *aux_, struct dp_packet **packets, int cnt,
3397 const struct nlattr *a, bool may_steal)
3398 OVS_NO_THREAD_SAFETY_ANALYSIS
3399 {
3400 struct dp_netdev_execute_aux *aux = aux_;
3401 uint32_t *depth = recirc_depth_get();
3402 struct dp_netdev_pmd_thread *pmd = aux->pmd;
3403 struct dp_netdev *dp = pmd->dp;
3404 int type = nl_attr_type(a);
3405 struct dp_netdev_port *p;
3406 int i;
3407
3408 switch ((enum ovs_action_attr)type) {
3409 case OVS_ACTION_ATTR_OUTPUT:
3410 p = dp_netdev_lookup_port(dp, u32_to_odp(nl_attr_get_u32(a)));
3411 if (OVS_LIKELY(p)) {
3412 netdev_send(p->netdev, pmd->tx_qid, packets, cnt, may_steal);
3413 return;
3414 }
3415 break;
3416
3417 case OVS_ACTION_ATTR_TUNNEL_PUSH:
3418 if (*depth < MAX_RECIRC_DEPTH) {
3419 struct dp_packet *tnl_pkt[NETDEV_MAX_BURST];
3420 int err;
3421
3422 if (!may_steal) {
3423 dp_netdev_clone_pkt_batch(tnl_pkt, packets, cnt);
3424 packets = tnl_pkt;
3425 }
3426
3427 err = push_tnl_action(dp, a, packets, cnt);
3428 if (!err) {
3429 (*depth)++;
3430 dp_netdev_input(pmd, packets, cnt);
3431 (*depth)--;
3432 } else {
3433 dp_netdev_drop_packets(tnl_pkt, cnt, !may_steal);
3434 }
3435 return;
3436 }
3437 break;
3438
3439 case OVS_ACTION_ATTR_TUNNEL_POP:
3440 if (*depth < MAX_RECIRC_DEPTH) {
3441 odp_port_t portno = u32_to_odp(nl_attr_get_u32(a));
3442
3443 p = dp_netdev_lookup_port(dp, portno);
3444 if (p) {
3445 struct dp_packet *tnl_pkt[NETDEV_MAX_BURST];
3446 int err;
3447
3448 if (!may_steal) {
3449 dp_netdev_clone_pkt_batch(tnl_pkt, packets, cnt);
3450 packets = tnl_pkt;
3451 }
3452
3453 err = netdev_pop_header(p->netdev, packets, cnt);
3454 if (!err) {
3455
3456 for (i = 0; i < cnt; i++) {
3457 packets[i]->md.in_port.odp_port = portno;
3458 }
3459
3460 (*depth)++;
3461 dp_netdev_input(pmd, packets, cnt);
3462 (*depth)--;
3463 } else {
3464 dp_netdev_drop_packets(tnl_pkt, cnt, !may_steal);
3465 }
3466 return;
3467 }
3468 }
3469 break;
3470
3471 case OVS_ACTION_ATTR_USERSPACE:
3472 if (!fat_rwlock_tryrdlock(&dp->upcall_rwlock)) {
3473 const struct nlattr *userdata;
3474 struct ofpbuf actions;
3475 struct flow flow;
3476 ovs_u128 ufid;
3477
3478 userdata = nl_attr_find_nested(a, OVS_USERSPACE_ATTR_USERDATA);
3479 ofpbuf_init(&actions, 0);
3480
3481 for (i = 0; i < cnt; i++) {
3482 int error;
3483
3484 ofpbuf_clear(&actions);
3485
3486 flow_extract(packets[i], &flow);
3487 dpif_flow_hash(dp->dpif, &flow, sizeof flow, &ufid);
3488 error = dp_netdev_upcall(pmd, packets[i], &flow, NULL, &ufid,
3489 DPIF_UC_ACTION, userdata,&actions,
3490 NULL);
3491 if (!error || error == ENOSPC) {
3492 dp_netdev_execute_actions(pmd, &packets[i], 1, may_steal,
3493 actions.data, actions.size);
3494 } else if (may_steal) {
3495 dp_packet_delete(packets[i]);
3496 }
3497 }
3498 ofpbuf_uninit(&actions);
3499 fat_rwlock_unlock(&dp->upcall_rwlock);
3500
3501 return;
3502 }
3503 break;
3504
3505 case OVS_ACTION_ATTR_RECIRC:
3506 if (*depth < MAX_RECIRC_DEPTH) {
3507 struct dp_packet *recirc_pkts[NETDEV_MAX_BURST];
3508
3509 if (!may_steal) {
3510 dp_netdev_clone_pkt_batch(recirc_pkts, packets, cnt);
3511 packets = recirc_pkts;
3512 }
3513
3514 for (i = 0; i < cnt; i++) {
3515 packets[i]->md.recirc_id = nl_attr_get_u32(a);
3516 }
3517
3518 (*depth)++;
3519 dp_netdev_input(pmd, packets, cnt);
3520 (*depth)--;
3521
3522 return;
3523 }
3524
3525 VLOG_WARN("Packet dropped. Max recirculation depth exceeded.");
3526 break;
3527
3528 case OVS_ACTION_ATTR_PUSH_VLAN:
3529 case OVS_ACTION_ATTR_POP_VLAN:
3530 case OVS_ACTION_ATTR_PUSH_MPLS:
3531 case OVS_ACTION_ATTR_POP_MPLS:
3532 case OVS_ACTION_ATTR_SET:
3533 case OVS_ACTION_ATTR_SET_MASKED:
3534 case OVS_ACTION_ATTR_SAMPLE:
3535 case OVS_ACTION_ATTR_HASH:
3536 case OVS_ACTION_ATTR_UNSPEC:
3537 case __OVS_ACTION_ATTR_MAX:
3538 OVS_NOT_REACHED();
3539 }
3540
3541 dp_netdev_drop_packets(packets, cnt, may_steal);
3542 }
3543
3544 static void
3545 dp_netdev_execute_actions(struct dp_netdev_pmd_thread *pmd,
3546 struct dp_packet **packets, int cnt,
3547 bool may_steal,
3548 const struct nlattr *actions, size_t actions_len)
3549 {
3550 struct dp_netdev_execute_aux aux = { pmd };
3551
3552 odp_execute_actions(&aux, packets, cnt, may_steal, actions,
3553 actions_len, dp_execute_cb);
3554 }
3555
3556 const struct dpif_class dpif_netdev_class = {
3557 "netdev",
3558 dpif_netdev_init,
3559 dpif_netdev_enumerate,
3560 dpif_netdev_port_open_type,
3561 dpif_netdev_open,
3562 dpif_netdev_close,
3563 dpif_netdev_destroy,
3564 dpif_netdev_run,
3565 dpif_netdev_wait,
3566 dpif_netdev_get_stats,
3567 dpif_netdev_port_add,
3568 dpif_netdev_port_del,
3569 dpif_netdev_port_query_by_number,
3570 dpif_netdev_port_query_by_name,
3571 NULL, /* port_get_pid */
3572 dpif_netdev_port_dump_start,
3573 dpif_netdev_port_dump_next,
3574 dpif_netdev_port_dump_done,
3575 dpif_netdev_port_poll,
3576 dpif_netdev_port_poll_wait,
3577 dpif_netdev_flow_flush,
3578 dpif_netdev_flow_dump_create,
3579 dpif_netdev_flow_dump_destroy,
3580 dpif_netdev_flow_dump_thread_create,
3581 dpif_netdev_flow_dump_thread_destroy,
3582 dpif_netdev_flow_dump_next,
3583 dpif_netdev_operate,
3584 NULL, /* recv_set */
3585 NULL, /* handlers_set */
3586 dpif_netdev_pmd_set,
3587 dpif_netdev_queue_to_priority,
3588 NULL, /* recv */
3589 NULL, /* recv_wait */
3590 NULL, /* recv_purge */
3591 dpif_netdev_register_upcall_cb,
3592 dpif_netdev_enable_upcall,
3593 dpif_netdev_disable_upcall,
3594 dpif_netdev_get_datapath_version,
3595 };
3596
3597 static void
3598 dpif_dummy_change_port_number(struct unixctl_conn *conn, int argc OVS_UNUSED,
3599 const char *argv[], void *aux OVS_UNUSED)
3600 {
3601 struct dp_netdev_port *old_port;
3602 struct dp_netdev_port *new_port;
3603 struct dp_netdev *dp;
3604 odp_port_t port_no;
3605
3606 ovs_mutex_lock(&dp_netdev_mutex);
3607 dp = shash_find_data(&dp_netdevs, argv[1]);
3608 if (!dp || !dpif_netdev_class_is_dummy(dp->class)) {
3609 ovs_mutex_unlock(&dp_netdev_mutex);
3610 unixctl_command_reply_error(conn, "unknown datapath or not a dummy");
3611 return;
3612 }
3613 ovs_refcount_ref(&dp->ref_cnt);
3614 ovs_mutex_unlock(&dp_netdev_mutex);
3615
3616 ovs_mutex_lock(&dp->port_mutex);
3617 if (get_port_by_name(dp, argv[2], &old_port)) {
3618 unixctl_command_reply_error(conn, "unknown port");
3619 goto exit;
3620 }
3621
3622 port_no = u32_to_odp(atoi(argv[3]));
3623 if (!port_no || port_no == ODPP_NONE) {
3624 unixctl_command_reply_error(conn, "bad port number");
3625 goto exit;
3626 }
3627 if (dp_netdev_lookup_port(dp, port_no)) {
3628 unixctl_command_reply_error(conn, "port number already in use");
3629 goto exit;
3630 }
3631
3632 /* Remove old port. */
3633 cmap_remove(&dp->ports, &old_port->node, hash_port_no(old_port->md.in_port.odp_port));
3634 ovsrcu_postpone(free, old_port);
3635
3636 /* Insert new port (cmap semantics mean we cannot re-insert 'old_port'). */
3637 new_port = xmemdup(old_port, sizeof *old_port);
3638 new_port->md.in_port.odp_port = port_no;
3639 cmap_insert(&dp->ports, &new_port->node, hash_port_no(port_no));
3640
3641 seq_change(dp->port_seq);
3642 unixctl_command_reply(conn, NULL);
3643
3644 exit:
3645 ovs_mutex_unlock(&dp->port_mutex);
3646 dp_netdev_unref(dp);
3647 }
3648
3649 static void
3650 dpif_dummy_delete_port(struct unixctl_conn *conn, int argc OVS_UNUSED,
3651 const char *argv[], void *aux OVS_UNUSED)
3652 {
3653 struct dp_netdev_port *port;
3654 struct dp_netdev *dp;
3655
3656 ovs_mutex_lock(&dp_netdev_mutex);
3657 dp = shash_find_data(&dp_netdevs, argv[1]);
3658 if (!dp || !dpif_netdev_class_is_dummy(dp->class)) {
3659 ovs_mutex_unlock(&dp_netdev_mutex);
3660 unixctl_command_reply_error(conn, "unknown datapath or not a dummy");
3661 return;
3662 }
3663 ovs_refcount_ref(&dp->ref_cnt);
3664 ovs_mutex_unlock(&dp_netdev_mutex);
3665
3666 ovs_mutex_lock(&dp->port_mutex);
3667 if (get_port_by_name(dp, argv[2], &port)) {
3668 unixctl_command_reply_error(conn, "unknown port");
3669 } else if (port->md.in_port.odp_port == ODPP_LOCAL) {
3670 unixctl_command_reply_error(conn, "can't delete local port");
3671 } else {
3672 do_del_port(dp, port);
3673 unixctl_command_reply(conn, NULL);
3674 }
3675 ovs_mutex_unlock(&dp->port_mutex);
3676
3677 dp_netdev_unref(dp);
3678 }
3679
3680 static void
3681 dpif_dummy_register__(const char *type)
3682 {
3683 struct dpif_class *class;
3684
3685 class = xmalloc(sizeof *class);
3686 *class = dpif_netdev_class;
3687 class->type = xstrdup(type);
3688 dp_register_provider(class);
3689 }
3690
3691 void
3692 dpif_dummy_register(bool override)
3693 {
3694 if (override) {
3695 struct sset types;
3696 const char *type;
3697
3698 sset_init(&types);
3699 dp_enumerate_types(&types);
3700 SSET_FOR_EACH (type, &types) {
3701 if (!dp_unregister_provider(type)) {
3702 dpif_dummy_register__(type);
3703 }
3704 }
3705 sset_destroy(&types);
3706 }
3707
3708 dpif_dummy_register__("dummy");
3709
3710 unixctl_command_register("dpif-dummy/change-port-number",
3711 "dp port new-number",
3712 3, 3, dpif_dummy_change_port_number, NULL);
3713 unixctl_command_register("dpif-dummy/delete-port", "dp port",
3714 2, 2, dpif_dummy_delete_port, NULL);
3715 }
3716 \f
3717 /* Datapath Classifier. */
3718
3719 /* A set of rules that all have the same fields wildcarded. */
3720 struct dpcls_subtable {
3721 /* The fields are only used by writers. */
3722 struct cmap_node cmap_node OVS_GUARDED; /* Within dpcls 'subtables_map'. */
3723
3724 /* These fields are accessed by readers. */
3725 struct cmap rules; /* Contains "struct dpcls_rule"s. */
3726 struct netdev_flow_key mask; /* Wildcards for fields (const). */
3727 /* 'mask' must be the last field, additional space is allocated here. */
3728 };
3729
3730 /* Initializes 'cls' as a classifier that initially contains no classification
3731 * rules. */
3732 static void
3733 dpcls_init(struct dpcls *cls)
3734 {
3735 cmap_init(&cls->subtables_map);
3736 pvector_init(&cls->subtables);
3737 }
3738
3739 static void
3740 dpcls_destroy_subtable(struct dpcls *cls, struct dpcls_subtable *subtable)
3741 {
3742 pvector_remove(&cls->subtables, subtable);
3743 cmap_remove(&cls->subtables_map, &subtable->cmap_node,
3744 subtable->mask.hash);
3745 cmap_destroy(&subtable->rules);
3746 ovsrcu_postpone(free, subtable);
3747 }
3748
3749 /* Destroys 'cls'. Rules within 'cls', if any, are not freed; this is the
3750 * caller's responsibility.
3751 * May only be called after all the readers have been terminated. */
3752 static void
3753 dpcls_destroy(struct dpcls *cls)
3754 {
3755 if (cls) {
3756 struct dpcls_subtable *subtable;
3757
3758 CMAP_FOR_EACH (subtable, cmap_node, &cls->subtables_map) {
3759 dpcls_destroy_subtable(cls, subtable);
3760 }
3761 cmap_destroy(&cls->subtables_map);
3762 pvector_destroy(&cls->subtables);
3763 }
3764 }
3765
3766 static struct dpcls_subtable *
3767 dpcls_create_subtable(struct dpcls *cls, const struct netdev_flow_key *mask)
3768 {
3769 struct dpcls_subtable *subtable;
3770
3771 /* Need to add one. */
3772 subtable = xmalloc(sizeof *subtable
3773 - sizeof subtable->mask.mf + mask->len);
3774 cmap_init(&subtable->rules);
3775 netdev_flow_key_clone(&subtable->mask, mask);
3776 cmap_insert(&cls->subtables_map, &subtable->cmap_node, mask->hash);
3777 pvector_insert(&cls->subtables, subtable, 0);
3778 pvector_publish(&cls->subtables);
3779
3780 return subtable;
3781 }
3782
3783 static inline struct dpcls_subtable *
3784 dpcls_find_subtable(struct dpcls *cls, const struct netdev_flow_key *mask)
3785 {
3786 struct dpcls_subtable *subtable;
3787
3788 CMAP_FOR_EACH_WITH_HASH (subtable, cmap_node, mask->hash,
3789 &cls->subtables_map) {
3790 if (netdev_flow_key_equal(&subtable->mask, mask)) {
3791 return subtable;
3792 }
3793 }
3794 return dpcls_create_subtable(cls, mask);
3795 }
3796
3797 /* Insert 'rule' into 'cls'. */
3798 static void
3799 dpcls_insert(struct dpcls *cls, struct dpcls_rule *rule,
3800 const struct netdev_flow_key *mask)
3801 {
3802 struct dpcls_subtable *subtable = dpcls_find_subtable(cls, mask);
3803
3804 rule->mask = &subtable->mask;
3805 cmap_insert(&subtable->rules, &rule->cmap_node, rule->flow.hash);
3806 }
3807
3808 /* Removes 'rule' from 'cls', also destructing the 'rule'. */
3809 static void
3810 dpcls_remove(struct dpcls *cls, struct dpcls_rule *rule)
3811 {
3812 struct dpcls_subtable *subtable;
3813
3814 ovs_assert(rule->mask);
3815
3816 INIT_CONTAINER(subtable, rule->mask, mask);
3817
3818 if (cmap_remove(&subtable->rules, &rule->cmap_node, rule->flow.hash)
3819 == 0) {
3820 dpcls_destroy_subtable(cls, subtable);
3821 pvector_publish(&cls->subtables);
3822 }
3823 }
3824
3825 /* Returns true if 'target' satisifies 'key' in 'mask', that is, if each 1-bit
3826 * in 'mask' the values in 'key' and 'target' are the same.
3827 *
3828 * Note: 'key' and 'mask' have the same mask, and 'key' is already masked. */
3829 static inline bool
3830 dpcls_rule_matches_key(const struct dpcls_rule *rule,
3831 const struct netdev_flow_key *target)
3832 {
3833 const uint64_t *keyp = rule->flow.mf.inline_values;
3834 const uint64_t *maskp = rule->mask->mf.inline_values;
3835 uint64_t target_u64;
3836
3837 NETDEV_FLOW_KEY_FOR_EACH_IN_MAP(target_u64, target, rule->flow.mf.map) {
3838 if (OVS_UNLIKELY((target_u64 & *maskp++) != *keyp++)) {
3839 return false;
3840 }
3841 }
3842 return true;
3843 }
3844
3845 /* For each miniflow in 'flows' performs a classifier lookup writing the result
3846 * into the corresponding slot in 'rules'. If a particular entry in 'flows' is
3847 * NULL it is skipped.
3848 *
3849 * This function is optimized for use in the userspace datapath and therefore
3850 * does not implement a lot of features available in the standard
3851 * classifier_lookup() function. Specifically, it does not implement
3852 * priorities, instead returning any rule which matches the flow.
3853 *
3854 * Returns true if all flows found a corresponding rule. */
3855 static bool
3856 dpcls_lookup(const struct dpcls *cls, const struct netdev_flow_key keys[],
3857 struct dpcls_rule **rules, const size_t cnt)
3858 {
3859 /* The batch size 16 was experimentally found faster than 8 or 32. */
3860 typedef uint16_t map_type;
3861 #define MAP_BITS (sizeof(map_type) * CHAR_BIT)
3862
3863 #if !defined(__CHECKER__) && !defined(_WIN32)
3864 const int N_MAPS = DIV_ROUND_UP(cnt, MAP_BITS);
3865 #else
3866 enum { N_MAPS = DIV_ROUND_UP(NETDEV_MAX_BURST, MAP_BITS) };
3867 #endif
3868 map_type maps[N_MAPS];
3869 struct dpcls_subtable *subtable;
3870
3871 memset(maps, 0xff, sizeof maps);
3872 if (cnt % MAP_BITS) {
3873 maps[N_MAPS - 1] >>= MAP_BITS - cnt % MAP_BITS; /* Clear extra bits. */
3874 }
3875 memset(rules, 0, cnt * sizeof *rules);
3876
3877 PVECTOR_FOR_EACH (subtable, &cls->subtables) {
3878 const struct netdev_flow_key *mkeys = keys;
3879 struct dpcls_rule **mrules = rules;
3880 map_type remains = 0;
3881 int m;
3882
3883 BUILD_ASSERT_DECL(sizeof remains == sizeof *maps);
3884
3885 for (m = 0; m < N_MAPS; m++, mkeys += MAP_BITS, mrules += MAP_BITS) {
3886 uint32_t hashes[MAP_BITS];
3887 const struct cmap_node *nodes[MAP_BITS];
3888 unsigned long map = maps[m];
3889 int i;
3890
3891 if (!map) {
3892 continue; /* Skip empty maps. */
3893 }
3894
3895 /* Compute hashes for the remaining keys. */
3896 ULONG_FOR_EACH_1(i, map) {
3897 hashes[i] = netdev_flow_key_hash_in_mask(&mkeys[i],
3898 &subtable->mask);
3899 }
3900 /* Lookup. */
3901 map = cmap_find_batch(&subtable->rules, map, hashes, nodes);
3902 /* Check results. */
3903 ULONG_FOR_EACH_1(i, map) {
3904 struct dpcls_rule *rule;
3905
3906 CMAP_NODE_FOR_EACH (rule, cmap_node, nodes[i]) {
3907 if (OVS_LIKELY(dpcls_rule_matches_key(rule, &mkeys[i]))) {
3908 mrules[i] = rule;
3909 goto next;
3910 }
3911 }
3912 ULONG_SET0(map, i); /* Did not match. */
3913 next:
3914 ; /* Keep Sparse happy. */
3915 }
3916 maps[m] &= ~map; /* Clear the found rules. */
3917 remains |= maps[m];
3918 }
3919 if (!remains) {
3920 return true; /* All found. */
3921 }
3922 }
3923 return false; /* Some misses. */
3924 }