]> git.proxmox.com Git - mirror_ovs.git/blob - lib/dpif-netdev.c
dpctl: Implement dpctl/flow-get for dpif-netdev.
[mirror_ovs.git] / lib / dpif-netdev.c
1 /*
2 * Copyright (c) 2009, 2010, 2011, 2012, 2013, 2014, 2016 Nicira, Inc.
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at:
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <config.h>
18 #include "dpif-netdev.h"
19
20 #include <ctype.h>
21 #include <errno.h>
22 #include <fcntl.h>
23 #include <inttypes.h>
24 #include <net/if.h>
25 #include <netinet/in.h>
26 #include <stdint.h>
27 #include <stdlib.h>
28 #include <string.h>
29 #include <sys/ioctl.h>
30 #include <sys/socket.h>
31 #include <sys/stat.h>
32 #include <unistd.h>
33
34 #include "bitmap.h"
35 #include "cmap.h"
36 #include "coverage.h"
37 #include "csum.h"
38 #include "dp-packet.h"
39 #include "dpif.h"
40 #include "dpif-provider.h"
41 #include "dummy.h"
42 #include "fat-rwlock.h"
43 #include "flow.h"
44 #include "hmapx.h"
45 #include "latch.h"
46 #include "netdev.h"
47 #include "netdev-dpdk.h"
48 #include "netdev-vport.h"
49 #include "netlink.h"
50 #include "odp-execute.h"
51 #include "odp-util.h"
52 #include "openvswitch/dynamic-string.h"
53 #include "openvswitch/list.h"
54 #include "openvswitch/match.h"
55 #include "openvswitch/ofp-print.h"
56 #include "openvswitch/ofpbuf.h"
57 #include "openvswitch/vlog.h"
58 #include "ovs-numa.h"
59 #include "ovs-rcu.h"
60 #include "packets.h"
61 #include "poll-loop.h"
62 #include "pvector.h"
63 #include "random.h"
64 #include "seq.h"
65 #include "shash.h"
66 #include "sset.h"
67 #include "timeval.h"
68 #include "tnl-neigh-cache.h"
69 #include "tnl-ports.h"
70 #include "unixctl.h"
71 #include "util.h"
72
73 VLOG_DEFINE_THIS_MODULE(dpif_netdev);
74
75 #define FLOW_DUMP_MAX_BATCH 50
76 /* Use per thread recirc_depth to prevent recirculation loop. */
77 #define MAX_RECIRC_DEPTH 5
78 DEFINE_STATIC_PER_THREAD_DATA(uint32_t, recirc_depth, 0)
79
80 /* Configuration parameters. */
81 enum { MAX_FLOWS = 65536 }; /* Maximum number of flows in flow table. */
82
83 /* Protects against changes to 'dp_netdevs'. */
84 static struct ovs_mutex dp_netdev_mutex = OVS_MUTEX_INITIALIZER;
85
86 /* Contains all 'struct dp_netdev's. */
87 static struct shash dp_netdevs OVS_GUARDED_BY(dp_netdev_mutex)
88 = SHASH_INITIALIZER(&dp_netdevs);
89
90 static struct vlog_rate_limit upcall_rl = VLOG_RATE_LIMIT_INIT(600, 600);
91
92 static struct odp_support dp_netdev_support = {
93 .max_mpls_depth = SIZE_MAX,
94 .recirc = true,
95 };
96
97 /* Stores a miniflow with inline values */
98
99 struct netdev_flow_key {
100 uint32_t hash; /* Hash function differs for different users. */
101 uint32_t len; /* Length of the following miniflow (incl. map). */
102 struct miniflow mf;
103 uint64_t buf[FLOW_MAX_PACKET_U64S];
104 };
105
106 /* Exact match cache for frequently used flows
107 *
108 * The cache uses a 32-bit hash of the packet (which can be the RSS hash) to
109 * search its entries for a miniflow that matches exactly the miniflow of the
110 * packet. It stores the 'dpcls_rule' (rule) that matches the miniflow.
111 *
112 * A cache entry holds a reference to its 'dp_netdev_flow'.
113 *
114 * A miniflow with a given hash can be in one of EM_FLOW_HASH_SEGS different
115 * entries. The 32-bit hash is split into EM_FLOW_HASH_SEGS values (each of
116 * them is EM_FLOW_HASH_SHIFT bits wide and the remainder is thrown away). Each
117 * value is the index of a cache entry where the miniflow could be.
118 *
119 *
120 * Thread-safety
121 * =============
122 *
123 * Each pmd_thread has its own private exact match cache.
124 * If dp_netdev_input is not called from a pmd thread, a mutex is used.
125 */
126
127 #define EM_FLOW_HASH_SHIFT 13
128 #define EM_FLOW_HASH_ENTRIES (1u << EM_FLOW_HASH_SHIFT)
129 #define EM_FLOW_HASH_MASK (EM_FLOW_HASH_ENTRIES - 1)
130 #define EM_FLOW_HASH_SEGS 2
131
132 struct emc_entry {
133 struct dp_netdev_flow *flow;
134 struct netdev_flow_key key; /* key.hash used for emc hash value. */
135 };
136
137 struct emc_cache {
138 struct emc_entry entries[EM_FLOW_HASH_ENTRIES];
139 int sweep_idx; /* For emc_cache_slow_sweep(). */
140 };
141
142 /* Iterate in the exact match cache through every entry that might contain a
143 * miniflow with hash 'HASH'. */
144 #define EMC_FOR_EACH_POS_WITH_HASH(EMC, CURRENT_ENTRY, HASH) \
145 for (uint32_t i__ = 0, srch_hash__ = (HASH); \
146 (CURRENT_ENTRY) = &(EMC)->entries[srch_hash__ & EM_FLOW_HASH_MASK], \
147 i__ < EM_FLOW_HASH_SEGS; \
148 i__++, srch_hash__ >>= EM_FLOW_HASH_SHIFT)
149 \f
150 /* Simple non-wildcarding single-priority classifier. */
151
152 struct dpcls {
153 struct cmap subtables_map;
154 struct pvector subtables;
155 };
156
157 /* A rule to be inserted to the classifier. */
158 struct dpcls_rule {
159 struct cmap_node cmap_node; /* Within struct dpcls_subtable 'rules'. */
160 struct netdev_flow_key *mask; /* Subtable's mask. */
161 struct netdev_flow_key flow; /* Matching key. */
162 /* 'flow' must be the last field, additional space is allocated here. */
163 };
164
165 static void dpcls_init(struct dpcls *);
166 static void dpcls_destroy(struct dpcls *);
167 static void dpcls_insert(struct dpcls *, struct dpcls_rule *,
168 const struct netdev_flow_key *mask);
169 static void dpcls_remove(struct dpcls *, struct dpcls_rule *);
170 static bool dpcls_lookup(const struct dpcls *cls,
171 const struct netdev_flow_key keys[],
172 struct dpcls_rule **rules, size_t cnt);
173 \f
174 /* Datapath based on the network device interface from netdev.h.
175 *
176 *
177 * Thread-safety
178 * =============
179 *
180 * Some members, marked 'const', are immutable. Accessing other members
181 * requires synchronization, as noted in more detail below.
182 *
183 * Acquisition order is, from outermost to innermost:
184 *
185 * dp_netdev_mutex (global)
186 * port_mutex
187 * non_pmd_mutex
188 */
189 struct dp_netdev {
190 const struct dpif_class *const class;
191 const char *const name;
192 struct dpif *dpif;
193 struct ovs_refcount ref_cnt;
194 atomic_flag destroyed;
195
196 /* Ports.
197 *
198 * Any lookup into 'ports' or any access to the dp_netdev_ports found
199 * through 'ports' requires taking 'port_mutex'. */
200 struct ovs_mutex port_mutex;
201 struct hmap ports;
202 struct seq *port_seq; /* Incremented whenever a port changes. */
203
204 /* Protects access to ofproto-dpif-upcall interface during revalidator
205 * thread synchronization. */
206 struct fat_rwlock upcall_rwlock;
207 upcall_callback *upcall_cb; /* Callback function for executing upcalls. */
208 void *upcall_aux;
209
210 /* Callback function for notifying the purging of dp flows (during
211 * reseting pmd deletion). */
212 dp_purge_callback *dp_purge_cb;
213 void *dp_purge_aux;
214
215 /* Stores all 'struct dp_netdev_pmd_thread's. */
216 struct cmap poll_threads;
217
218 /* Protects the access of the 'struct dp_netdev_pmd_thread'
219 * instance for non-pmd thread. */
220 struct ovs_mutex non_pmd_mutex;
221
222 /* Each pmd thread will store its pointer to
223 * 'struct dp_netdev_pmd_thread' in 'per_pmd_key'. */
224 ovsthread_key_t per_pmd_key;
225
226 /* Cpu mask for pin of pmd threads. */
227 char *requested_pmd_cmask;
228 char *pmd_cmask;
229
230 uint64_t last_tnl_conf_seq;
231 };
232
233 static struct dp_netdev_port *dp_netdev_lookup_port(const struct dp_netdev *dp,
234 odp_port_t)
235 OVS_REQUIRES(dp->port_mutex);
236
237 enum dp_stat_type {
238 DP_STAT_EXACT_HIT, /* Packets that had an exact match (emc). */
239 DP_STAT_MASKED_HIT, /* Packets that matched in the flow table. */
240 DP_STAT_MISS, /* Packets that did not match. */
241 DP_STAT_LOST, /* Packets not passed up to the client. */
242 DP_N_STATS
243 };
244
245 enum pmd_cycles_counter_type {
246 PMD_CYCLES_POLLING, /* Cycles spent polling NICs. */
247 PMD_CYCLES_PROCESSING, /* Cycles spent processing packets */
248 PMD_N_CYCLES
249 };
250
251 /* A port in a netdev-based datapath. */
252 struct dp_netdev_port {
253 odp_port_t port_no;
254 struct netdev *netdev;
255 struct hmap_node node; /* Node in dp_netdev's 'ports'. */
256 struct netdev_saved_flags *sf;
257 unsigned n_rxq; /* Number of elements in 'rxq' */
258 struct netdev_rxq **rxq;
259 char *type; /* Port type as requested by user. */
260 };
261
262 /* Contained by struct dp_netdev_flow's 'stats' member. */
263 struct dp_netdev_flow_stats {
264 atomic_llong used; /* Last used time, in monotonic msecs. */
265 atomic_ullong packet_count; /* Number of packets matched. */
266 atomic_ullong byte_count; /* Number of bytes matched. */
267 atomic_uint16_t tcp_flags; /* Bitwise-OR of seen tcp_flags values. */
268 };
269
270 /* A flow in 'dp_netdev_pmd_thread's 'flow_table'.
271 *
272 *
273 * Thread-safety
274 * =============
275 *
276 * Except near the beginning or ending of its lifespan, rule 'rule' belongs to
277 * its pmd thread's classifier. The text below calls this classifier 'cls'.
278 *
279 * Motivation
280 * ----------
281 *
282 * The thread safety rules described here for "struct dp_netdev_flow" are
283 * motivated by two goals:
284 *
285 * - Prevent threads that read members of "struct dp_netdev_flow" from
286 * reading bad data due to changes by some thread concurrently modifying
287 * those members.
288 *
289 * - Prevent two threads making changes to members of a given "struct
290 * dp_netdev_flow" from interfering with each other.
291 *
292 *
293 * Rules
294 * -----
295 *
296 * A flow 'flow' may be accessed without a risk of being freed during an RCU
297 * grace period. Code that needs to hold onto a flow for a while
298 * should try incrementing 'flow->ref_cnt' with dp_netdev_flow_ref().
299 *
300 * 'flow->ref_cnt' protects 'flow' from being freed. It doesn't protect the
301 * flow from being deleted from 'cls' and it doesn't protect members of 'flow'
302 * from modification.
303 *
304 * Some members, marked 'const', are immutable. Accessing other members
305 * requires synchronization, as noted in more detail below.
306 */
307 struct dp_netdev_flow {
308 const struct flow flow; /* Unmasked flow that created this entry. */
309 /* Hash table index by unmasked flow. */
310 const struct cmap_node node; /* In owning dp_netdev_pmd_thread's */
311 /* 'flow_table'. */
312 const ovs_u128 ufid; /* Unique flow identifier. */
313 const unsigned pmd_id; /* The 'core_id' of pmd thread owning this */
314 /* flow. */
315
316 /* Number of references.
317 * The classifier owns one reference.
318 * Any thread trying to keep a rule from being freed should hold its own
319 * reference. */
320 struct ovs_refcount ref_cnt;
321
322 bool dead;
323
324 /* Statistics. */
325 struct dp_netdev_flow_stats stats;
326
327 /* Actions. */
328 OVSRCU_TYPE(struct dp_netdev_actions *) actions;
329
330 /* While processing a group of input packets, the datapath uses the next
331 * member to store a pointer to the output batch for the flow. It is
332 * reset after the batch has been sent out (See dp_netdev_queue_batches(),
333 * packet_batch_per_flow_init() and packet_batch_per_flow_execute()). */
334 struct packet_batch_per_flow *batch;
335
336 /* Packet classification. */
337 struct dpcls_rule cr; /* In owning dp_netdev's 'cls'. */
338 /* 'cr' must be the last member. */
339 };
340
341 static void dp_netdev_flow_unref(struct dp_netdev_flow *);
342 static bool dp_netdev_flow_ref(struct dp_netdev_flow *);
343 static int dpif_netdev_flow_from_nlattrs(const struct nlattr *, uint32_t,
344 struct flow *);
345
346 /* A set of datapath actions within a "struct dp_netdev_flow".
347 *
348 *
349 * Thread-safety
350 * =============
351 *
352 * A struct dp_netdev_actions 'actions' is protected with RCU. */
353 struct dp_netdev_actions {
354 /* These members are immutable: they do not change during the struct's
355 * lifetime. */
356 unsigned int size; /* Size of 'actions', in bytes. */
357 struct nlattr actions[]; /* Sequence of OVS_ACTION_ATTR_* attributes. */
358 };
359
360 struct dp_netdev_actions *dp_netdev_actions_create(const struct nlattr *,
361 size_t);
362 struct dp_netdev_actions *dp_netdev_flow_get_actions(
363 const struct dp_netdev_flow *);
364 static void dp_netdev_actions_free(struct dp_netdev_actions *);
365
366 /* Contained by struct dp_netdev_pmd_thread's 'stats' member. */
367 struct dp_netdev_pmd_stats {
368 /* Indexed by DP_STAT_*. */
369 atomic_ullong n[DP_N_STATS];
370 };
371
372 /* Contained by struct dp_netdev_pmd_thread's 'cycle' member. */
373 struct dp_netdev_pmd_cycles {
374 /* Indexed by PMD_CYCLES_*. */
375 atomic_ullong n[PMD_N_CYCLES];
376 };
377
378 /* Contained by struct dp_netdev_pmd_thread's 'poll_list' member. */
379 struct rxq_poll {
380 struct dp_netdev_port *port;
381 struct netdev_rxq *rx;
382 struct ovs_list node;
383 };
384
385 /* Contained by struct dp_netdev_pmd_thread's 'port_cache' or 'tx_ports'. */
386 struct tx_port {
387 odp_port_t port_no;
388 struct netdev *netdev;
389 struct hmap_node node;
390 };
391
392 /* PMD: Poll modes drivers. PMD accesses devices via polling to eliminate
393 * the performance overhead of interrupt processing. Therefore netdev can
394 * not implement rx-wait for these devices. dpif-netdev needs to poll
395 * these device to check for recv buffer. pmd-thread does polling for
396 * devices assigned to itself.
397 *
398 * DPDK used PMD for accessing NIC.
399 *
400 * Note, instance with cpu core id NON_PMD_CORE_ID will be reserved for
401 * I/O of all non-pmd threads. There will be no actual thread created
402 * for the instance.
403 *
404 * Each struct has its own flow table and classifier. Packets received
405 * from managed ports are looked up in the corresponding pmd thread's
406 * flow table, and are executed with the found actions.
407 * */
408 struct dp_netdev_pmd_thread {
409 struct dp_netdev *dp;
410 struct ovs_refcount ref_cnt; /* Every reference must be refcount'ed. */
411 struct cmap_node node; /* In 'dp->poll_threads'. */
412
413 pthread_cond_t cond; /* For synchronizing pmd thread reload. */
414 struct ovs_mutex cond_mutex; /* Mutex for condition variable. */
415
416 /* Per thread exact-match cache. Note, the instance for cpu core
417 * NON_PMD_CORE_ID can be accessed by multiple threads, and thusly
418 * need to be protected by 'non_pmd_mutex'. Every other instance
419 * will only be accessed by its own pmd thread. */
420 struct emc_cache flow_cache;
421
422 /* Classifier and Flow-Table.
423 *
424 * Writers of 'flow_table' must take the 'flow_mutex'. Corresponding
425 * changes to 'cls' must be made while still holding the 'flow_mutex'.
426 */
427 struct ovs_mutex flow_mutex;
428 struct dpcls cls;
429 struct cmap flow_table OVS_GUARDED; /* Flow table. */
430
431 /* Statistics. */
432 struct dp_netdev_pmd_stats stats;
433
434 /* Cycles counters */
435 struct dp_netdev_pmd_cycles cycles;
436
437 /* Used to count cicles. See 'cycles_counter_end()' */
438 unsigned long long last_cycles;
439
440 struct latch exit_latch; /* For terminating the pmd thread. */
441 atomic_uint change_seq; /* For reloading pmd ports. */
442 pthread_t thread;
443 unsigned core_id; /* CPU core id of this pmd thread. */
444 int numa_id; /* numa node id of this pmd thread. */
445 atomic_int tx_qid; /* Queue id used by this pmd thread to
446 * send packets on all netdevs */
447
448 struct ovs_mutex port_mutex; /* Mutex for 'poll_list' and 'tx_ports'. */
449 /* List of rx queues to poll. */
450 struct ovs_list poll_list OVS_GUARDED;
451 /* Number of elements in 'poll_list' */
452 int poll_cnt;
453 /* Map of 'tx_port's used for transmission. Written by the main thread,
454 * read by the pmd thread. */
455 struct hmap tx_ports OVS_GUARDED;
456
457 /* Map of 'tx_port' used in the fast path. This is a thread-local copy of
458 * 'tx_ports'. The instance for cpu core NON_PMD_CORE_ID can be accessed
459 * by multiple threads, and thusly need to be protected by 'non_pmd_mutex'.
460 * Every other instance will only be accessed by its own pmd thread. */
461 struct hmap port_cache;
462
463 /* Only a pmd thread can write on its own 'cycles' and 'stats'.
464 * The main thread keeps 'stats_zero' and 'cycles_zero' as base
465 * values and subtracts them from 'stats' and 'cycles' before
466 * reporting to the user */
467 unsigned long long stats_zero[DP_N_STATS];
468 uint64_t cycles_zero[PMD_N_CYCLES];
469 };
470
471 #define PMD_INITIAL_SEQ 1
472
473 /* Interface to netdev-based datapath. */
474 struct dpif_netdev {
475 struct dpif dpif;
476 struct dp_netdev *dp;
477 uint64_t last_port_seq;
478 };
479
480 static int get_port_by_number(struct dp_netdev *dp, odp_port_t port_no,
481 struct dp_netdev_port **portp)
482 OVS_REQUIRES(dp->port_mutex);
483 static int get_port_by_name(struct dp_netdev *dp, const char *devname,
484 struct dp_netdev_port **portp)
485 OVS_REQUIRES(dp->port_mutex);
486 static void dp_netdev_free(struct dp_netdev *)
487 OVS_REQUIRES(dp_netdev_mutex);
488 static int do_add_port(struct dp_netdev *dp, const char *devname,
489 const char *type, odp_port_t port_no)
490 OVS_REQUIRES(dp->port_mutex);
491 static void do_del_port(struct dp_netdev *dp, struct dp_netdev_port *)
492 OVS_REQUIRES(dp->port_mutex);
493 static int dpif_netdev_open(const struct dpif_class *, const char *name,
494 bool create, struct dpif **);
495 static void dp_netdev_execute_actions(struct dp_netdev_pmd_thread *pmd,
496 struct dp_packet_batch *,
497 bool may_steal,
498 const struct nlattr *actions,
499 size_t actions_len);
500 static void dp_netdev_input(struct dp_netdev_pmd_thread *,
501 struct dp_packet_batch *, odp_port_t port_no);
502 static void dp_netdev_recirculate(struct dp_netdev_pmd_thread *,
503 struct dp_packet_batch *);
504
505 static void dp_netdev_disable_upcall(struct dp_netdev *);
506 static void dp_netdev_pmd_reload_done(struct dp_netdev_pmd_thread *pmd);
507 static void dp_netdev_configure_pmd(struct dp_netdev_pmd_thread *pmd,
508 struct dp_netdev *dp, unsigned core_id,
509 int numa_id);
510 static void dp_netdev_destroy_pmd(struct dp_netdev_pmd_thread *pmd);
511 static void dp_netdev_set_nonpmd(struct dp_netdev *dp)
512 OVS_REQUIRES(dp->port_mutex);
513
514 static struct dp_netdev_pmd_thread *dp_netdev_get_pmd(struct dp_netdev *dp,
515 unsigned core_id);
516 static struct dp_netdev_pmd_thread *
517 dp_netdev_pmd_get_next(struct dp_netdev *dp, struct cmap_position *pos);
518 static void dp_netdev_destroy_all_pmds(struct dp_netdev *dp);
519 static void dp_netdev_del_pmds_on_numa(struct dp_netdev *dp, int numa_id);
520 static void dp_netdev_set_pmds_on_numa(struct dp_netdev *dp, int numa_id)
521 OVS_REQUIRES(dp->port_mutex);
522 static void dp_netdev_pmd_clear_ports(struct dp_netdev_pmd_thread *pmd);
523 static void dp_netdev_del_port_from_all_pmds(struct dp_netdev *dp,
524 struct dp_netdev_port *port);
525 static void dp_netdev_add_port_to_pmds(struct dp_netdev *dp,
526 struct dp_netdev_port *port);
527 static void dp_netdev_add_port_tx_to_pmd(struct dp_netdev_pmd_thread *pmd,
528 struct dp_netdev_port *port);
529 static void dp_netdev_add_rxq_to_pmd(struct dp_netdev_pmd_thread *pmd,
530 struct dp_netdev_port *port,
531 struct netdev_rxq *rx);
532 static struct dp_netdev_pmd_thread *
533 dp_netdev_less_loaded_pmd_on_numa(struct dp_netdev *dp, int numa_id);
534 static void dp_netdev_reset_pmd_threads(struct dp_netdev *dp)
535 OVS_REQUIRES(dp->port_mutex);
536 static bool dp_netdev_pmd_try_ref(struct dp_netdev_pmd_thread *pmd);
537 static void dp_netdev_pmd_unref(struct dp_netdev_pmd_thread *pmd);
538 static void dp_netdev_pmd_flow_flush(struct dp_netdev_pmd_thread *pmd);
539 static void pmd_load_cached_ports(struct dp_netdev_pmd_thread *pmd)
540 OVS_REQUIRES(pmd->port_mutex);
541
542 static inline bool emc_entry_alive(struct emc_entry *ce);
543 static void emc_clear_entry(struct emc_entry *ce);
544
545 static void
546 emc_cache_init(struct emc_cache *flow_cache)
547 {
548 int i;
549
550 flow_cache->sweep_idx = 0;
551 for (i = 0; i < ARRAY_SIZE(flow_cache->entries); i++) {
552 flow_cache->entries[i].flow = NULL;
553 flow_cache->entries[i].key.hash = 0;
554 flow_cache->entries[i].key.len = sizeof(struct miniflow);
555 flowmap_init(&flow_cache->entries[i].key.mf.map);
556 }
557 }
558
559 static void
560 emc_cache_uninit(struct emc_cache *flow_cache)
561 {
562 int i;
563
564 for (i = 0; i < ARRAY_SIZE(flow_cache->entries); i++) {
565 emc_clear_entry(&flow_cache->entries[i]);
566 }
567 }
568
569 /* Check and clear dead flow references slowly (one entry at each
570 * invocation). */
571 static void
572 emc_cache_slow_sweep(struct emc_cache *flow_cache)
573 {
574 struct emc_entry *entry = &flow_cache->entries[flow_cache->sweep_idx];
575
576 if (!emc_entry_alive(entry)) {
577 emc_clear_entry(entry);
578 }
579 flow_cache->sweep_idx = (flow_cache->sweep_idx + 1) & EM_FLOW_HASH_MASK;
580 }
581
582 /* Returns true if 'dpif' is a netdev or dummy dpif, false otherwise. */
583 bool
584 dpif_is_netdev(const struct dpif *dpif)
585 {
586 return dpif->dpif_class->open == dpif_netdev_open;
587 }
588
589 static struct dpif_netdev *
590 dpif_netdev_cast(const struct dpif *dpif)
591 {
592 ovs_assert(dpif_is_netdev(dpif));
593 return CONTAINER_OF(dpif, struct dpif_netdev, dpif);
594 }
595
596 static struct dp_netdev *
597 get_dp_netdev(const struct dpif *dpif)
598 {
599 return dpif_netdev_cast(dpif)->dp;
600 }
601 \f
602 enum pmd_info_type {
603 PMD_INFO_SHOW_STATS, /* Show how cpu cycles are spent. */
604 PMD_INFO_CLEAR_STATS, /* Set the cycles count to 0. */
605 PMD_INFO_SHOW_RXQ /* Show poll-lists of pmd threads. */
606 };
607
608 static void
609 pmd_info_show_stats(struct ds *reply,
610 struct dp_netdev_pmd_thread *pmd,
611 unsigned long long stats[DP_N_STATS],
612 uint64_t cycles[PMD_N_CYCLES])
613 {
614 unsigned long long total_packets = 0;
615 uint64_t total_cycles = 0;
616 int i;
617
618 /* These loops subtracts reference values ('*_zero') from the counters.
619 * Since loads and stores are relaxed, it might be possible for a '*_zero'
620 * value to be more recent than the current value we're reading from the
621 * counter. This is not a big problem, since these numbers are not
622 * supposed to be too accurate, but we should at least make sure that
623 * the result is not negative. */
624 for (i = 0; i < DP_N_STATS; i++) {
625 if (stats[i] > pmd->stats_zero[i]) {
626 stats[i] -= pmd->stats_zero[i];
627 } else {
628 stats[i] = 0;
629 }
630
631 if (i != DP_STAT_LOST) {
632 /* Lost packets are already included in DP_STAT_MISS */
633 total_packets += stats[i];
634 }
635 }
636
637 for (i = 0; i < PMD_N_CYCLES; i++) {
638 if (cycles[i] > pmd->cycles_zero[i]) {
639 cycles[i] -= pmd->cycles_zero[i];
640 } else {
641 cycles[i] = 0;
642 }
643
644 total_cycles += cycles[i];
645 }
646
647 ds_put_cstr(reply, (pmd->core_id == NON_PMD_CORE_ID)
648 ? "main thread" : "pmd thread");
649
650 if (pmd->numa_id != OVS_NUMA_UNSPEC) {
651 ds_put_format(reply, " numa_id %d", pmd->numa_id);
652 }
653 if (pmd->core_id != OVS_CORE_UNSPEC && pmd->core_id != NON_PMD_CORE_ID) {
654 ds_put_format(reply, " core_id %u", pmd->core_id);
655 }
656 ds_put_cstr(reply, ":\n");
657
658 ds_put_format(reply,
659 "\temc hits:%llu\n\tmegaflow hits:%llu\n"
660 "\tmiss:%llu\n\tlost:%llu\n",
661 stats[DP_STAT_EXACT_HIT], stats[DP_STAT_MASKED_HIT],
662 stats[DP_STAT_MISS], stats[DP_STAT_LOST]);
663
664 if (total_cycles == 0) {
665 return;
666 }
667
668 ds_put_format(reply,
669 "\tpolling cycles:%"PRIu64" (%.02f%%)\n"
670 "\tprocessing cycles:%"PRIu64" (%.02f%%)\n",
671 cycles[PMD_CYCLES_POLLING],
672 cycles[PMD_CYCLES_POLLING] / (double)total_cycles * 100,
673 cycles[PMD_CYCLES_PROCESSING],
674 cycles[PMD_CYCLES_PROCESSING] / (double)total_cycles * 100);
675
676 if (total_packets == 0) {
677 return;
678 }
679
680 ds_put_format(reply,
681 "\tavg cycles per packet: %.02f (%"PRIu64"/%llu)\n",
682 total_cycles / (double)total_packets,
683 total_cycles, total_packets);
684
685 ds_put_format(reply,
686 "\tavg processing cycles per packet: "
687 "%.02f (%"PRIu64"/%llu)\n",
688 cycles[PMD_CYCLES_PROCESSING] / (double)total_packets,
689 cycles[PMD_CYCLES_PROCESSING], total_packets);
690 }
691
692 static void
693 pmd_info_clear_stats(struct ds *reply OVS_UNUSED,
694 struct dp_netdev_pmd_thread *pmd,
695 unsigned long long stats[DP_N_STATS],
696 uint64_t cycles[PMD_N_CYCLES])
697 {
698 int i;
699
700 /* We cannot write 'stats' and 'cycles' (because they're written by other
701 * threads) and we shouldn't change 'stats' (because they're used to count
702 * datapath stats, which must not be cleared here). Instead, we save the
703 * current values and subtract them from the values to be displayed in the
704 * future */
705 for (i = 0; i < DP_N_STATS; i++) {
706 pmd->stats_zero[i] = stats[i];
707 }
708 for (i = 0; i < PMD_N_CYCLES; i++) {
709 pmd->cycles_zero[i] = cycles[i];
710 }
711 }
712
713 static void
714 pmd_info_show_rxq(struct ds *reply, struct dp_netdev_pmd_thread *pmd)
715 {
716 if (pmd->core_id != NON_PMD_CORE_ID) {
717 struct rxq_poll *poll;
718 const char *prev_name = NULL;
719
720 ds_put_format(reply, "pmd thread numa_id %d core_id %u:\n",
721 pmd->numa_id, pmd->core_id);
722
723 ovs_mutex_lock(&pmd->port_mutex);
724 LIST_FOR_EACH (poll, node, &pmd->poll_list) {
725 const char *name = netdev_get_name(poll->port->netdev);
726
727 if (!prev_name || strcmp(name, prev_name)) {
728 if (prev_name) {
729 ds_put_cstr(reply, "\n");
730 }
731 ds_put_format(reply, "\tport: %s\tqueue-id:",
732 netdev_get_name(poll->port->netdev));
733 }
734 ds_put_format(reply, " %d", netdev_rxq_get_queue_id(poll->rx));
735 prev_name = name;
736 }
737 ovs_mutex_unlock(&pmd->port_mutex);
738 ds_put_cstr(reply, "\n");
739 }
740 }
741
742 static void
743 dpif_netdev_pmd_info(struct unixctl_conn *conn, int argc, const char *argv[],
744 void *aux)
745 {
746 struct ds reply = DS_EMPTY_INITIALIZER;
747 struct dp_netdev_pmd_thread *pmd;
748 struct dp_netdev *dp = NULL;
749 enum pmd_info_type type = *(enum pmd_info_type *) aux;
750
751 ovs_mutex_lock(&dp_netdev_mutex);
752
753 if (argc == 2) {
754 dp = shash_find_data(&dp_netdevs, argv[1]);
755 } else if (shash_count(&dp_netdevs) == 1) {
756 /* There's only one datapath */
757 dp = shash_first(&dp_netdevs)->data;
758 }
759
760 if (!dp) {
761 ovs_mutex_unlock(&dp_netdev_mutex);
762 unixctl_command_reply_error(conn,
763 "please specify an existing datapath");
764 return;
765 }
766
767 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
768 if (type == PMD_INFO_SHOW_RXQ) {
769 pmd_info_show_rxq(&reply, pmd);
770 } else {
771 unsigned long long stats[DP_N_STATS];
772 uint64_t cycles[PMD_N_CYCLES];
773 int i;
774
775 /* Read current stats and cycle counters */
776 for (i = 0; i < ARRAY_SIZE(stats); i++) {
777 atomic_read_relaxed(&pmd->stats.n[i], &stats[i]);
778 }
779 for (i = 0; i < ARRAY_SIZE(cycles); i++) {
780 atomic_read_relaxed(&pmd->cycles.n[i], &cycles[i]);
781 }
782
783 if (type == PMD_INFO_CLEAR_STATS) {
784 pmd_info_clear_stats(&reply, pmd, stats, cycles);
785 } else if (type == PMD_INFO_SHOW_STATS) {
786 pmd_info_show_stats(&reply, pmd, stats, cycles);
787 }
788 }
789 }
790
791 ovs_mutex_unlock(&dp_netdev_mutex);
792
793 unixctl_command_reply(conn, ds_cstr(&reply));
794 ds_destroy(&reply);
795 }
796 \f
797 static int
798 dpif_netdev_init(void)
799 {
800 static enum pmd_info_type show_aux = PMD_INFO_SHOW_STATS,
801 clear_aux = PMD_INFO_CLEAR_STATS,
802 poll_aux = PMD_INFO_SHOW_RXQ;
803
804 unixctl_command_register("dpif-netdev/pmd-stats-show", "[dp]",
805 0, 1, dpif_netdev_pmd_info,
806 (void *)&show_aux);
807 unixctl_command_register("dpif-netdev/pmd-stats-clear", "[dp]",
808 0, 1, dpif_netdev_pmd_info,
809 (void *)&clear_aux);
810 unixctl_command_register("dpif-netdev/pmd-rxq-show", "[dp]",
811 0, 1, dpif_netdev_pmd_info,
812 (void *)&poll_aux);
813 return 0;
814 }
815
816 static int
817 dpif_netdev_enumerate(struct sset *all_dps,
818 const struct dpif_class *dpif_class)
819 {
820 struct shash_node *node;
821
822 ovs_mutex_lock(&dp_netdev_mutex);
823 SHASH_FOR_EACH(node, &dp_netdevs) {
824 struct dp_netdev *dp = node->data;
825 if (dpif_class != dp->class) {
826 /* 'dp_netdevs' contains both "netdev" and "dummy" dpifs.
827 * If the class doesn't match, skip this dpif. */
828 continue;
829 }
830 sset_add(all_dps, node->name);
831 }
832 ovs_mutex_unlock(&dp_netdev_mutex);
833
834 return 0;
835 }
836
837 static bool
838 dpif_netdev_class_is_dummy(const struct dpif_class *class)
839 {
840 return class != &dpif_netdev_class;
841 }
842
843 static const char *
844 dpif_netdev_port_open_type(const struct dpif_class *class, const char *type)
845 {
846 return strcmp(type, "internal") ? type
847 : dpif_netdev_class_is_dummy(class) ? "dummy"
848 : "tap";
849 }
850
851 static struct dpif *
852 create_dpif_netdev(struct dp_netdev *dp)
853 {
854 uint16_t netflow_id = hash_string(dp->name, 0);
855 struct dpif_netdev *dpif;
856
857 ovs_refcount_ref(&dp->ref_cnt);
858
859 dpif = xmalloc(sizeof *dpif);
860 dpif_init(&dpif->dpif, dp->class, dp->name, netflow_id >> 8, netflow_id);
861 dpif->dp = dp;
862 dpif->last_port_seq = seq_read(dp->port_seq);
863
864 return &dpif->dpif;
865 }
866
867 /* Choose an unused, non-zero port number and return it on success.
868 * Return ODPP_NONE on failure. */
869 static odp_port_t
870 choose_port(struct dp_netdev *dp, const char *name)
871 OVS_REQUIRES(dp->port_mutex)
872 {
873 uint32_t port_no;
874
875 if (dp->class != &dpif_netdev_class) {
876 const char *p;
877 int start_no = 0;
878
879 /* If the port name begins with "br", start the number search at
880 * 100 to make writing tests easier. */
881 if (!strncmp(name, "br", 2)) {
882 start_no = 100;
883 }
884
885 /* If the port name contains a number, try to assign that port number.
886 * This can make writing unit tests easier because port numbers are
887 * predictable. */
888 for (p = name; *p != '\0'; p++) {
889 if (isdigit((unsigned char) *p)) {
890 port_no = start_no + strtol(p, NULL, 10);
891 if (port_no > 0 && port_no != odp_to_u32(ODPP_NONE)
892 && !dp_netdev_lookup_port(dp, u32_to_odp(port_no))) {
893 return u32_to_odp(port_no);
894 }
895 break;
896 }
897 }
898 }
899
900 for (port_no = 1; port_no <= UINT16_MAX; port_no++) {
901 if (!dp_netdev_lookup_port(dp, u32_to_odp(port_no))) {
902 return u32_to_odp(port_no);
903 }
904 }
905
906 return ODPP_NONE;
907 }
908
909 static int
910 create_dp_netdev(const char *name, const struct dpif_class *class,
911 struct dp_netdev **dpp)
912 OVS_REQUIRES(dp_netdev_mutex)
913 {
914 struct dp_netdev *dp;
915 int error;
916
917 dp = xzalloc(sizeof *dp);
918 shash_add(&dp_netdevs, name, dp);
919
920 *CONST_CAST(const struct dpif_class **, &dp->class) = class;
921 *CONST_CAST(const char **, &dp->name) = xstrdup(name);
922 ovs_refcount_init(&dp->ref_cnt);
923 atomic_flag_clear(&dp->destroyed);
924
925 ovs_mutex_init(&dp->port_mutex);
926 hmap_init(&dp->ports);
927 dp->port_seq = seq_create();
928 fat_rwlock_init(&dp->upcall_rwlock);
929
930 /* Disable upcalls by default. */
931 dp_netdev_disable_upcall(dp);
932 dp->upcall_aux = NULL;
933 dp->upcall_cb = NULL;
934
935 cmap_init(&dp->poll_threads);
936 ovs_mutex_init_recursive(&dp->non_pmd_mutex);
937 ovsthread_key_create(&dp->per_pmd_key, NULL);
938
939 ovs_mutex_lock(&dp->port_mutex);
940 dp_netdev_set_nonpmd(dp);
941
942 error = do_add_port(dp, name, "internal", ODPP_LOCAL);
943 ovs_mutex_unlock(&dp->port_mutex);
944 if (error) {
945 dp_netdev_free(dp);
946 return error;
947 }
948
949 dp->last_tnl_conf_seq = seq_read(tnl_conf_seq);
950 *dpp = dp;
951 return 0;
952 }
953
954 static int
955 dpif_netdev_open(const struct dpif_class *class, const char *name,
956 bool create, struct dpif **dpifp)
957 {
958 struct dp_netdev *dp;
959 int error;
960
961 ovs_mutex_lock(&dp_netdev_mutex);
962 dp = shash_find_data(&dp_netdevs, name);
963 if (!dp) {
964 error = create ? create_dp_netdev(name, class, &dp) : ENODEV;
965 } else {
966 error = (dp->class != class ? EINVAL
967 : create ? EEXIST
968 : 0);
969 }
970 if (!error) {
971 *dpifp = create_dpif_netdev(dp);
972 dp->dpif = *dpifp;
973 }
974 ovs_mutex_unlock(&dp_netdev_mutex);
975
976 return error;
977 }
978
979 static void
980 dp_netdev_destroy_upcall_lock(struct dp_netdev *dp)
981 OVS_NO_THREAD_SAFETY_ANALYSIS
982 {
983 /* Check that upcalls are disabled, i.e. that the rwlock is taken */
984 ovs_assert(fat_rwlock_tryrdlock(&dp->upcall_rwlock));
985
986 /* Before freeing a lock we should release it */
987 fat_rwlock_unlock(&dp->upcall_rwlock);
988 fat_rwlock_destroy(&dp->upcall_rwlock);
989 }
990
991 /* Requires dp_netdev_mutex so that we can't get a new reference to 'dp'
992 * through the 'dp_netdevs' shash while freeing 'dp'. */
993 static void
994 dp_netdev_free(struct dp_netdev *dp)
995 OVS_REQUIRES(dp_netdev_mutex)
996 {
997 struct dp_netdev_port *port, *next;
998
999 shash_find_and_delete(&dp_netdevs, dp->name);
1000
1001 dp_netdev_destroy_all_pmds(dp);
1002 ovs_mutex_destroy(&dp->non_pmd_mutex);
1003 ovsthread_key_delete(dp->per_pmd_key);
1004
1005 ovs_mutex_lock(&dp->port_mutex);
1006 HMAP_FOR_EACH_SAFE (port, next, node, &dp->ports) {
1007 do_del_port(dp, port);
1008 }
1009 ovs_mutex_unlock(&dp->port_mutex);
1010 cmap_destroy(&dp->poll_threads);
1011
1012 seq_destroy(dp->port_seq);
1013 hmap_destroy(&dp->ports);
1014 ovs_mutex_destroy(&dp->port_mutex);
1015
1016 /* Upcalls must be disabled at this point */
1017 dp_netdev_destroy_upcall_lock(dp);
1018
1019 free(dp->pmd_cmask);
1020 free(CONST_CAST(char *, dp->name));
1021 free(dp);
1022 }
1023
1024 static void
1025 dp_netdev_unref(struct dp_netdev *dp)
1026 {
1027 if (dp) {
1028 /* Take dp_netdev_mutex so that, if dp->ref_cnt falls to zero, we can't
1029 * get a new reference to 'dp' through the 'dp_netdevs' shash. */
1030 ovs_mutex_lock(&dp_netdev_mutex);
1031 if (ovs_refcount_unref_relaxed(&dp->ref_cnt) == 1) {
1032 dp_netdev_free(dp);
1033 }
1034 ovs_mutex_unlock(&dp_netdev_mutex);
1035 }
1036 }
1037
1038 static void
1039 dpif_netdev_close(struct dpif *dpif)
1040 {
1041 struct dp_netdev *dp = get_dp_netdev(dpif);
1042
1043 dp_netdev_unref(dp);
1044 free(dpif);
1045 }
1046
1047 static int
1048 dpif_netdev_destroy(struct dpif *dpif)
1049 {
1050 struct dp_netdev *dp = get_dp_netdev(dpif);
1051
1052 if (!atomic_flag_test_and_set(&dp->destroyed)) {
1053 if (ovs_refcount_unref_relaxed(&dp->ref_cnt) == 1) {
1054 /* Can't happen: 'dpif' still owns a reference to 'dp'. */
1055 OVS_NOT_REACHED();
1056 }
1057 }
1058
1059 return 0;
1060 }
1061
1062 /* Add 'n' to the atomic variable 'var' non-atomically and using relaxed
1063 * load/store semantics. While the increment is not atomic, the load and
1064 * store operations are, making it impossible to read inconsistent values.
1065 *
1066 * This is used to update thread local stats counters. */
1067 static void
1068 non_atomic_ullong_add(atomic_ullong *var, unsigned long long n)
1069 {
1070 unsigned long long tmp;
1071
1072 atomic_read_relaxed(var, &tmp);
1073 tmp += n;
1074 atomic_store_relaxed(var, tmp);
1075 }
1076
1077 static int
1078 dpif_netdev_get_stats(const struct dpif *dpif, struct dpif_dp_stats *stats)
1079 {
1080 struct dp_netdev *dp = get_dp_netdev(dpif);
1081 struct dp_netdev_pmd_thread *pmd;
1082
1083 stats->n_flows = stats->n_hit = stats->n_missed = stats->n_lost = 0;
1084 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
1085 unsigned long long n;
1086 stats->n_flows += cmap_count(&pmd->flow_table);
1087
1088 atomic_read_relaxed(&pmd->stats.n[DP_STAT_MASKED_HIT], &n);
1089 stats->n_hit += n;
1090 atomic_read_relaxed(&pmd->stats.n[DP_STAT_EXACT_HIT], &n);
1091 stats->n_hit += n;
1092 atomic_read_relaxed(&pmd->stats.n[DP_STAT_MISS], &n);
1093 stats->n_missed += n;
1094 atomic_read_relaxed(&pmd->stats.n[DP_STAT_LOST], &n);
1095 stats->n_lost += n;
1096 }
1097 stats->n_masks = UINT32_MAX;
1098 stats->n_mask_hit = UINT64_MAX;
1099
1100 return 0;
1101 }
1102
1103 static void
1104 dp_netdev_reload_pmd__(struct dp_netdev_pmd_thread *pmd)
1105 {
1106 int old_seq;
1107
1108 if (pmd->core_id == NON_PMD_CORE_ID) {
1109 ovs_mutex_lock(&pmd->dp->non_pmd_mutex);
1110 ovs_mutex_lock(&pmd->port_mutex);
1111 pmd_load_cached_ports(pmd);
1112 ovs_mutex_unlock(&pmd->port_mutex);
1113 ovs_mutex_unlock(&pmd->dp->non_pmd_mutex);
1114 return;
1115 }
1116
1117 ovs_mutex_lock(&pmd->cond_mutex);
1118 atomic_add_relaxed(&pmd->change_seq, 1, &old_seq);
1119 ovs_mutex_cond_wait(&pmd->cond, &pmd->cond_mutex);
1120 ovs_mutex_unlock(&pmd->cond_mutex);
1121 }
1122
1123 static uint32_t
1124 hash_port_no(odp_port_t port_no)
1125 {
1126 return hash_int(odp_to_u32(port_no), 0);
1127 }
1128
1129 static int
1130 port_create(const char *devname, const char *open_type, const char *type,
1131 odp_port_t port_no, struct dp_netdev_port **portp)
1132 {
1133 struct netdev_saved_flags *sf;
1134 struct dp_netdev_port *port;
1135 enum netdev_flags flags;
1136 struct netdev *netdev;
1137 int n_open_rxqs = 0;
1138 int i, error;
1139
1140 *portp = NULL;
1141
1142 /* Open and validate network device. */
1143 error = netdev_open(devname, open_type, &netdev);
1144 if (error) {
1145 return error;
1146 }
1147 /* XXX reject non-Ethernet devices */
1148
1149 netdev_get_flags(netdev, &flags);
1150 if (flags & NETDEV_LOOPBACK) {
1151 VLOG_ERR("%s: cannot add a loopback device", devname);
1152 error = EINVAL;
1153 goto out;
1154 }
1155
1156 if (netdev_is_pmd(netdev)) {
1157 int n_cores = ovs_numa_get_n_cores();
1158
1159 if (n_cores == OVS_CORE_UNSPEC) {
1160 VLOG_ERR("%s, cannot get cpu core info", devname);
1161 error = ENOENT;
1162 goto out;
1163 }
1164 /* There can only be ovs_numa_get_n_cores() pmd threads,
1165 * so creates a txq for each, and one extra for the non
1166 * pmd threads. */
1167 error = netdev_set_tx_multiq(netdev, n_cores + 1);
1168 if (error && (error != EOPNOTSUPP)) {
1169 VLOG_ERR("%s, cannot set multiq", devname);
1170 goto out;
1171 }
1172 }
1173
1174 if (netdev_is_reconf_required(netdev)) {
1175 error = netdev_reconfigure(netdev);
1176 if (error) {
1177 goto out;
1178 }
1179 }
1180
1181 port = xzalloc(sizeof *port);
1182 port->port_no = port_no;
1183 port->netdev = netdev;
1184 port->n_rxq = netdev_n_rxq(netdev);
1185 port->rxq = xcalloc(port->n_rxq, sizeof *port->rxq);
1186 port->type = xstrdup(type);
1187
1188 for (i = 0; i < port->n_rxq; i++) {
1189 error = netdev_rxq_open(netdev, &port->rxq[i], i);
1190 if (error) {
1191 VLOG_ERR("%s: cannot receive packets on this network device (%s)",
1192 devname, ovs_strerror(errno));
1193 goto out_rxq_close;
1194 }
1195 n_open_rxqs++;
1196 }
1197
1198 error = netdev_turn_flags_on(netdev, NETDEV_PROMISC, &sf);
1199 if (error) {
1200 goto out_rxq_close;
1201 }
1202 port->sf = sf;
1203
1204 *portp = port;
1205
1206 return 0;
1207
1208 out_rxq_close:
1209 for (i = 0; i < n_open_rxqs; i++) {
1210 netdev_rxq_close(port->rxq[i]);
1211 }
1212 free(port->type);
1213 free(port->rxq);
1214 free(port);
1215
1216 out:
1217 netdev_close(netdev);
1218 return error;
1219 }
1220
1221 static int
1222 do_add_port(struct dp_netdev *dp, const char *devname, const char *type,
1223 odp_port_t port_no)
1224 OVS_REQUIRES(dp->port_mutex)
1225 {
1226 struct dp_netdev_port *port;
1227 int error;
1228
1229 /* Reject devices already in 'dp'. */
1230 if (!get_port_by_name(dp, devname, &port)) {
1231 return EEXIST;
1232 }
1233
1234 error = port_create(devname, dpif_netdev_port_open_type(dp->class, type),
1235 type, port_no, &port);
1236 if (error) {
1237 return error;
1238 }
1239
1240 if (netdev_is_pmd(port->netdev)) {
1241 int numa_id = netdev_get_numa_id(port->netdev);
1242
1243 ovs_assert(ovs_numa_numa_id_is_valid(numa_id));
1244 dp_netdev_set_pmds_on_numa(dp, numa_id);
1245 }
1246
1247 dp_netdev_add_port_to_pmds(dp, port);
1248
1249 hmap_insert(&dp->ports, &port->node, hash_port_no(port_no));
1250 seq_change(dp->port_seq);
1251
1252 return 0;
1253 }
1254
1255 static int
1256 dpif_netdev_port_add(struct dpif *dpif, struct netdev *netdev,
1257 odp_port_t *port_nop)
1258 {
1259 struct dp_netdev *dp = get_dp_netdev(dpif);
1260 char namebuf[NETDEV_VPORT_NAME_BUFSIZE];
1261 const char *dpif_port;
1262 odp_port_t port_no;
1263 int error;
1264
1265 ovs_mutex_lock(&dp->port_mutex);
1266 dpif_port = netdev_vport_get_dpif_port(netdev, namebuf, sizeof namebuf);
1267 if (*port_nop != ODPP_NONE) {
1268 port_no = *port_nop;
1269 error = dp_netdev_lookup_port(dp, *port_nop) ? EBUSY : 0;
1270 } else {
1271 port_no = choose_port(dp, dpif_port);
1272 error = port_no == ODPP_NONE ? EFBIG : 0;
1273 }
1274 if (!error) {
1275 *port_nop = port_no;
1276 error = do_add_port(dp, dpif_port, netdev_get_type(netdev), port_no);
1277 }
1278 ovs_mutex_unlock(&dp->port_mutex);
1279
1280 return error;
1281 }
1282
1283 static int
1284 dpif_netdev_port_del(struct dpif *dpif, odp_port_t port_no)
1285 {
1286 struct dp_netdev *dp = get_dp_netdev(dpif);
1287 int error;
1288
1289 ovs_mutex_lock(&dp->port_mutex);
1290 if (port_no == ODPP_LOCAL) {
1291 error = EINVAL;
1292 } else {
1293 struct dp_netdev_port *port;
1294
1295 error = get_port_by_number(dp, port_no, &port);
1296 if (!error) {
1297 do_del_port(dp, port);
1298 }
1299 }
1300 ovs_mutex_unlock(&dp->port_mutex);
1301
1302 return error;
1303 }
1304
1305 static bool
1306 is_valid_port_number(odp_port_t port_no)
1307 {
1308 return port_no != ODPP_NONE;
1309 }
1310
1311 static struct dp_netdev_port *
1312 dp_netdev_lookup_port(const struct dp_netdev *dp, odp_port_t port_no)
1313 OVS_REQUIRES(dp->port_mutex)
1314 {
1315 struct dp_netdev_port *port;
1316
1317 HMAP_FOR_EACH_WITH_HASH (port, node, hash_port_no(port_no), &dp->ports) {
1318 if (port->port_no == port_no) {
1319 return port;
1320 }
1321 }
1322 return NULL;
1323 }
1324
1325 static int
1326 get_port_by_number(struct dp_netdev *dp,
1327 odp_port_t port_no, struct dp_netdev_port **portp)
1328 OVS_REQUIRES(dp->port_mutex)
1329 {
1330 if (!is_valid_port_number(port_no)) {
1331 *portp = NULL;
1332 return EINVAL;
1333 } else {
1334 *portp = dp_netdev_lookup_port(dp, port_no);
1335 return *portp ? 0 : ENOENT;
1336 }
1337 }
1338
1339 static void
1340 port_destroy(struct dp_netdev_port *port)
1341 {
1342 if (!port) {
1343 return;
1344 }
1345
1346 netdev_close(port->netdev);
1347 netdev_restore_flags(port->sf);
1348
1349 for (unsigned i = 0; i < port->n_rxq; i++) {
1350 netdev_rxq_close(port->rxq[i]);
1351 }
1352
1353 free(port->rxq);
1354 free(port->type);
1355 free(port);
1356 }
1357
1358 static int
1359 get_port_by_name(struct dp_netdev *dp,
1360 const char *devname, struct dp_netdev_port **portp)
1361 OVS_REQUIRES(dp->port_mutex)
1362 {
1363 struct dp_netdev_port *port;
1364
1365 HMAP_FOR_EACH (port, node, &dp->ports) {
1366 if (!strcmp(netdev_get_name(port->netdev), devname)) {
1367 *portp = port;
1368 return 0;
1369 }
1370 }
1371 return ENOENT;
1372 }
1373
1374 static int
1375 get_n_pmd_threads(struct dp_netdev *dp)
1376 {
1377 /* There is one non pmd thread in dp->poll_threads */
1378 return cmap_count(&dp->poll_threads) - 1;
1379 }
1380
1381 static int
1382 get_n_pmd_threads_on_numa(struct dp_netdev *dp, int numa_id)
1383 {
1384 struct dp_netdev_pmd_thread *pmd;
1385 int n_pmds = 0;
1386
1387 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
1388 if (pmd->numa_id == numa_id) {
1389 n_pmds++;
1390 }
1391 }
1392
1393 return n_pmds;
1394 }
1395
1396 /* Returns 'true' if there is a port with pmd netdev and the netdev
1397 * is on numa node 'numa_id'. */
1398 static bool
1399 has_pmd_port_for_numa(struct dp_netdev *dp, int numa_id)
1400 OVS_REQUIRES(dp->port_mutex)
1401 {
1402 struct dp_netdev_port *port;
1403
1404 HMAP_FOR_EACH (port, node, &dp->ports) {
1405 if (netdev_is_pmd(port->netdev)
1406 && netdev_get_numa_id(port->netdev) == numa_id) {
1407 return true;
1408 }
1409 }
1410
1411 return false;
1412 }
1413
1414
1415 static void
1416 do_del_port(struct dp_netdev *dp, struct dp_netdev_port *port)
1417 OVS_REQUIRES(dp->port_mutex)
1418 {
1419 hmap_remove(&dp->ports, &port->node);
1420 seq_change(dp->port_seq);
1421
1422 dp_netdev_del_port_from_all_pmds(dp, port);
1423
1424 if (netdev_is_pmd(port->netdev)) {
1425 int numa_id = netdev_get_numa_id(port->netdev);
1426
1427 /* PMD threads can not be on invalid numa node. */
1428 ovs_assert(ovs_numa_numa_id_is_valid(numa_id));
1429 /* If there is no netdev on the numa node, deletes the pmd threads
1430 * for that numa. */
1431 if (!has_pmd_port_for_numa(dp, numa_id)) {
1432 dp_netdev_del_pmds_on_numa(dp, numa_id);
1433 }
1434 }
1435
1436 port_destroy(port);
1437 }
1438
1439 static void
1440 answer_port_query(const struct dp_netdev_port *port,
1441 struct dpif_port *dpif_port)
1442 {
1443 dpif_port->name = xstrdup(netdev_get_name(port->netdev));
1444 dpif_port->type = xstrdup(port->type);
1445 dpif_port->port_no = port->port_no;
1446 }
1447
1448 static int
1449 dpif_netdev_port_query_by_number(const struct dpif *dpif, odp_port_t port_no,
1450 struct dpif_port *dpif_port)
1451 {
1452 struct dp_netdev *dp = get_dp_netdev(dpif);
1453 struct dp_netdev_port *port;
1454 int error;
1455
1456 ovs_mutex_lock(&dp->port_mutex);
1457 error = get_port_by_number(dp, port_no, &port);
1458 if (!error && dpif_port) {
1459 answer_port_query(port, dpif_port);
1460 }
1461 ovs_mutex_unlock(&dp->port_mutex);
1462
1463 return error;
1464 }
1465
1466 static int
1467 dpif_netdev_port_query_by_name(const struct dpif *dpif, const char *devname,
1468 struct dpif_port *dpif_port)
1469 {
1470 struct dp_netdev *dp = get_dp_netdev(dpif);
1471 struct dp_netdev_port *port;
1472 int error;
1473
1474 ovs_mutex_lock(&dp->port_mutex);
1475 error = get_port_by_name(dp, devname, &port);
1476 if (!error && dpif_port) {
1477 answer_port_query(port, dpif_port);
1478 }
1479 ovs_mutex_unlock(&dp->port_mutex);
1480
1481 return error;
1482 }
1483
1484 static void
1485 dp_netdev_flow_free(struct dp_netdev_flow *flow)
1486 {
1487 dp_netdev_actions_free(dp_netdev_flow_get_actions(flow));
1488 free(flow);
1489 }
1490
1491 static void dp_netdev_flow_unref(struct dp_netdev_flow *flow)
1492 {
1493 if (ovs_refcount_unref_relaxed(&flow->ref_cnt) == 1) {
1494 ovsrcu_postpone(dp_netdev_flow_free, flow);
1495 }
1496 }
1497
1498 static uint32_t
1499 dp_netdev_flow_hash(const ovs_u128 *ufid)
1500 {
1501 return ufid->u32[0];
1502 }
1503
1504 static void
1505 dp_netdev_pmd_remove_flow(struct dp_netdev_pmd_thread *pmd,
1506 struct dp_netdev_flow *flow)
1507 OVS_REQUIRES(pmd->flow_mutex)
1508 {
1509 struct cmap_node *node = CONST_CAST(struct cmap_node *, &flow->node);
1510
1511 dpcls_remove(&pmd->cls, &flow->cr);
1512 cmap_remove(&pmd->flow_table, node, dp_netdev_flow_hash(&flow->ufid));
1513 flow->dead = true;
1514
1515 dp_netdev_flow_unref(flow);
1516 }
1517
1518 static void
1519 dp_netdev_pmd_flow_flush(struct dp_netdev_pmd_thread *pmd)
1520 {
1521 struct dp_netdev_flow *netdev_flow;
1522
1523 ovs_mutex_lock(&pmd->flow_mutex);
1524 CMAP_FOR_EACH (netdev_flow, node, &pmd->flow_table) {
1525 dp_netdev_pmd_remove_flow(pmd, netdev_flow);
1526 }
1527 ovs_mutex_unlock(&pmd->flow_mutex);
1528 }
1529
1530 static int
1531 dpif_netdev_flow_flush(struct dpif *dpif)
1532 {
1533 struct dp_netdev *dp = get_dp_netdev(dpif);
1534 struct dp_netdev_pmd_thread *pmd;
1535
1536 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
1537 dp_netdev_pmd_flow_flush(pmd);
1538 }
1539
1540 return 0;
1541 }
1542
1543 struct dp_netdev_port_state {
1544 struct hmap_position position;
1545 char *name;
1546 };
1547
1548 static int
1549 dpif_netdev_port_dump_start(const struct dpif *dpif OVS_UNUSED, void **statep)
1550 {
1551 *statep = xzalloc(sizeof(struct dp_netdev_port_state));
1552 return 0;
1553 }
1554
1555 static int
1556 dpif_netdev_port_dump_next(const struct dpif *dpif, void *state_,
1557 struct dpif_port *dpif_port)
1558 {
1559 struct dp_netdev_port_state *state = state_;
1560 struct dp_netdev *dp = get_dp_netdev(dpif);
1561 struct hmap_node *node;
1562 int retval;
1563
1564 ovs_mutex_lock(&dp->port_mutex);
1565 node = hmap_at_position(&dp->ports, &state->position);
1566 if (node) {
1567 struct dp_netdev_port *port;
1568
1569 port = CONTAINER_OF(node, struct dp_netdev_port, node);
1570
1571 free(state->name);
1572 state->name = xstrdup(netdev_get_name(port->netdev));
1573 dpif_port->name = state->name;
1574 dpif_port->type = port->type;
1575 dpif_port->port_no = port->port_no;
1576
1577 retval = 0;
1578 } else {
1579 retval = EOF;
1580 }
1581 ovs_mutex_unlock(&dp->port_mutex);
1582
1583 return retval;
1584 }
1585
1586 static int
1587 dpif_netdev_port_dump_done(const struct dpif *dpif OVS_UNUSED, void *state_)
1588 {
1589 struct dp_netdev_port_state *state = state_;
1590 free(state->name);
1591 free(state);
1592 return 0;
1593 }
1594
1595 static int
1596 dpif_netdev_port_poll(const struct dpif *dpif_, char **devnamep OVS_UNUSED)
1597 {
1598 struct dpif_netdev *dpif = dpif_netdev_cast(dpif_);
1599 uint64_t new_port_seq;
1600 int error;
1601
1602 new_port_seq = seq_read(dpif->dp->port_seq);
1603 if (dpif->last_port_seq != new_port_seq) {
1604 dpif->last_port_seq = new_port_seq;
1605 error = ENOBUFS;
1606 } else {
1607 error = EAGAIN;
1608 }
1609
1610 return error;
1611 }
1612
1613 static void
1614 dpif_netdev_port_poll_wait(const struct dpif *dpif_)
1615 {
1616 struct dpif_netdev *dpif = dpif_netdev_cast(dpif_);
1617
1618 seq_wait(dpif->dp->port_seq, dpif->last_port_seq);
1619 }
1620
1621 static struct dp_netdev_flow *
1622 dp_netdev_flow_cast(const struct dpcls_rule *cr)
1623 {
1624 return cr ? CONTAINER_OF(cr, struct dp_netdev_flow, cr) : NULL;
1625 }
1626
1627 static bool dp_netdev_flow_ref(struct dp_netdev_flow *flow)
1628 {
1629 return ovs_refcount_try_ref_rcu(&flow->ref_cnt);
1630 }
1631
1632 /* netdev_flow_key utilities.
1633 *
1634 * netdev_flow_key is basically a miniflow. We use these functions
1635 * (netdev_flow_key_clone, netdev_flow_key_equal, ...) instead of the miniflow
1636 * functions (miniflow_clone_inline, miniflow_equal, ...), because:
1637 *
1638 * - Since we are dealing exclusively with miniflows created by
1639 * miniflow_extract(), if the map is different the miniflow is different.
1640 * Therefore we can be faster by comparing the map and the miniflow in a
1641 * single memcmp().
1642 * - These functions can be inlined by the compiler. */
1643
1644 /* Given the number of bits set in miniflow's maps, returns the size of the
1645 * 'netdev_flow_key.mf' */
1646 static inline size_t
1647 netdev_flow_key_size(size_t flow_u64s)
1648 {
1649 return sizeof(struct miniflow) + MINIFLOW_VALUES_SIZE(flow_u64s);
1650 }
1651
1652 static inline bool
1653 netdev_flow_key_equal(const struct netdev_flow_key *a,
1654 const struct netdev_flow_key *b)
1655 {
1656 /* 'b->len' may be not set yet. */
1657 return a->hash == b->hash && !memcmp(&a->mf, &b->mf, a->len);
1658 }
1659
1660 /* Used to compare 'netdev_flow_key' in the exact match cache to a miniflow.
1661 * The maps are compared bitwise, so both 'key->mf' and 'mf' must have been
1662 * generated by miniflow_extract. */
1663 static inline bool
1664 netdev_flow_key_equal_mf(const struct netdev_flow_key *key,
1665 const struct miniflow *mf)
1666 {
1667 return !memcmp(&key->mf, mf, key->len);
1668 }
1669
1670 static inline void
1671 netdev_flow_key_clone(struct netdev_flow_key *dst,
1672 const struct netdev_flow_key *src)
1673 {
1674 memcpy(dst, src,
1675 offsetof(struct netdev_flow_key, mf) + src->len);
1676 }
1677
1678 /* Slow. */
1679 static void
1680 netdev_flow_key_from_flow(struct netdev_flow_key *dst,
1681 const struct flow *src)
1682 {
1683 struct dp_packet packet;
1684 uint64_t buf_stub[512 / 8];
1685
1686 dp_packet_use_stub(&packet, buf_stub, sizeof buf_stub);
1687 pkt_metadata_from_flow(&packet.md, src);
1688 flow_compose(&packet, src);
1689 miniflow_extract(&packet, &dst->mf);
1690 dp_packet_uninit(&packet);
1691
1692 dst->len = netdev_flow_key_size(miniflow_n_values(&dst->mf));
1693 dst->hash = 0; /* Not computed yet. */
1694 }
1695
1696 /* Initialize a netdev_flow_key 'mask' from 'match'. */
1697 static inline void
1698 netdev_flow_mask_init(struct netdev_flow_key *mask,
1699 const struct match *match)
1700 {
1701 uint64_t *dst = miniflow_values(&mask->mf);
1702 struct flowmap fmap;
1703 uint32_t hash = 0;
1704 size_t idx;
1705
1706 /* Only check masks that make sense for the flow. */
1707 flow_wc_map(&match->flow, &fmap);
1708 flowmap_init(&mask->mf.map);
1709
1710 FLOWMAP_FOR_EACH_INDEX(idx, fmap) {
1711 uint64_t mask_u64 = flow_u64_value(&match->wc.masks, idx);
1712
1713 if (mask_u64) {
1714 flowmap_set(&mask->mf.map, idx, 1);
1715 *dst++ = mask_u64;
1716 hash = hash_add64(hash, mask_u64);
1717 }
1718 }
1719
1720 map_t map;
1721
1722 FLOWMAP_FOR_EACH_MAP (map, mask->mf.map) {
1723 hash = hash_add64(hash, map);
1724 }
1725
1726 size_t n = dst - miniflow_get_values(&mask->mf);
1727
1728 mask->hash = hash_finish(hash, n * 8);
1729 mask->len = netdev_flow_key_size(n);
1730 }
1731
1732 /* Initializes 'dst' as a copy of 'flow' masked with 'mask'. */
1733 static inline void
1734 netdev_flow_key_init_masked(struct netdev_flow_key *dst,
1735 const struct flow *flow,
1736 const struct netdev_flow_key *mask)
1737 {
1738 uint64_t *dst_u64 = miniflow_values(&dst->mf);
1739 const uint64_t *mask_u64 = miniflow_get_values(&mask->mf);
1740 uint32_t hash = 0;
1741 uint64_t value;
1742
1743 dst->len = mask->len;
1744 dst->mf = mask->mf; /* Copy maps. */
1745
1746 FLOW_FOR_EACH_IN_MAPS(value, flow, mask->mf.map) {
1747 *dst_u64 = value & *mask_u64++;
1748 hash = hash_add64(hash, *dst_u64++);
1749 }
1750 dst->hash = hash_finish(hash,
1751 (dst_u64 - miniflow_get_values(&dst->mf)) * 8);
1752 }
1753
1754 /* Iterate through netdev_flow_key TNL u64 values specified by 'FLOWMAP'. */
1755 #define NETDEV_FLOW_KEY_FOR_EACH_IN_FLOWMAP(VALUE, KEY, FLOWMAP) \
1756 MINIFLOW_FOR_EACH_IN_FLOWMAP(VALUE, &(KEY)->mf, FLOWMAP)
1757
1758 /* Returns a hash value for the bits of 'key' where there are 1-bits in
1759 * 'mask'. */
1760 static inline uint32_t
1761 netdev_flow_key_hash_in_mask(const struct netdev_flow_key *key,
1762 const struct netdev_flow_key *mask)
1763 {
1764 const uint64_t *p = miniflow_get_values(&mask->mf);
1765 uint32_t hash = 0;
1766 uint64_t value;
1767
1768 NETDEV_FLOW_KEY_FOR_EACH_IN_FLOWMAP(value, key, mask->mf.map) {
1769 hash = hash_add64(hash, value & *p++);
1770 }
1771
1772 return hash_finish(hash, (p - miniflow_get_values(&mask->mf)) * 8);
1773 }
1774
1775 static inline bool
1776 emc_entry_alive(struct emc_entry *ce)
1777 {
1778 return ce->flow && !ce->flow->dead;
1779 }
1780
1781 static void
1782 emc_clear_entry(struct emc_entry *ce)
1783 {
1784 if (ce->flow) {
1785 dp_netdev_flow_unref(ce->flow);
1786 ce->flow = NULL;
1787 }
1788 }
1789
1790 static inline void
1791 emc_change_entry(struct emc_entry *ce, struct dp_netdev_flow *flow,
1792 const struct netdev_flow_key *key)
1793 {
1794 if (ce->flow != flow) {
1795 if (ce->flow) {
1796 dp_netdev_flow_unref(ce->flow);
1797 }
1798
1799 if (dp_netdev_flow_ref(flow)) {
1800 ce->flow = flow;
1801 } else {
1802 ce->flow = NULL;
1803 }
1804 }
1805 if (key) {
1806 netdev_flow_key_clone(&ce->key, key);
1807 }
1808 }
1809
1810 static inline void
1811 emc_insert(struct emc_cache *cache, const struct netdev_flow_key *key,
1812 struct dp_netdev_flow *flow)
1813 {
1814 struct emc_entry *to_be_replaced = NULL;
1815 struct emc_entry *current_entry;
1816
1817 EMC_FOR_EACH_POS_WITH_HASH(cache, current_entry, key->hash) {
1818 if (netdev_flow_key_equal(&current_entry->key, key)) {
1819 /* We found the entry with the 'mf' miniflow */
1820 emc_change_entry(current_entry, flow, NULL);
1821 return;
1822 }
1823
1824 /* Replacement policy: put the flow in an empty (not alive) entry, or
1825 * in the first entry where it can be */
1826 if (!to_be_replaced
1827 || (emc_entry_alive(to_be_replaced)
1828 && !emc_entry_alive(current_entry))
1829 || current_entry->key.hash < to_be_replaced->key.hash) {
1830 to_be_replaced = current_entry;
1831 }
1832 }
1833 /* We didn't find the miniflow in the cache.
1834 * The 'to_be_replaced' entry is where the new flow will be stored */
1835
1836 emc_change_entry(to_be_replaced, flow, key);
1837 }
1838
1839 static inline struct dp_netdev_flow *
1840 emc_lookup(struct emc_cache *cache, const struct netdev_flow_key *key)
1841 {
1842 struct emc_entry *current_entry;
1843
1844 EMC_FOR_EACH_POS_WITH_HASH(cache, current_entry, key->hash) {
1845 if (current_entry->key.hash == key->hash
1846 && emc_entry_alive(current_entry)
1847 && netdev_flow_key_equal_mf(&current_entry->key, &key->mf)) {
1848
1849 /* We found the entry with the 'key->mf' miniflow */
1850 return current_entry->flow;
1851 }
1852 }
1853
1854 return NULL;
1855 }
1856
1857 static struct dp_netdev_flow *
1858 dp_netdev_pmd_lookup_flow(const struct dp_netdev_pmd_thread *pmd,
1859 const struct netdev_flow_key *key)
1860 {
1861 struct dp_netdev_flow *netdev_flow;
1862 struct dpcls_rule *rule;
1863
1864 dpcls_lookup(&pmd->cls, key, &rule, 1);
1865 netdev_flow = dp_netdev_flow_cast(rule);
1866
1867 return netdev_flow;
1868 }
1869
1870 static struct dp_netdev_flow *
1871 dp_netdev_pmd_find_flow(const struct dp_netdev_pmd_thread *pmd,
1872 const ovs_u128 *ufidp, const struct nlattr *key,
1873 size_t key_len)
1874 {
1875 struct dp_netdev_flow *netdev_flow;
1876 struct flow flow;
1877 ovs_u128 ufid;
1878
1879 /* If a UFID is not provided, determine one based on the key. */
1880 if (!ufidp && key && key_len
1881 && !dpif_netdev_flow_from_nlattrs(key, key_len, &flow)) {
1882 dpif_flow_hash(pmd->dp->dpif, &flow, sizeof flow, &ufid);
1883 ufidp = &ufid;
1884 }
1885
1886 if (ufidp) {
1887 CMAP_FOR_EACH_WITH_HASH (netdev_flow, node, dp_netdev_flow_hash(ufidp),
1888 &pmd->flow_table) {
1889 if (ovs_u128_equals(netdev_flow->ufid, *ufidp)) {
1890 return netdev_flow;
1891 }
1892 }
1893 }
1894
1895 return NULL;
1896 }
1897
1898 static void
1899 get_dpif_flow_stats(const struct dp_netdev_flow *netdev_flow_,
1900 struct dpif_flow_stats *stats)
1901 {
1902 struct dp_netdev_flow *netdev_flow;
1903 unsigned long long n;
1904 long long used;
1905 uint16_t flags;
1906
1907 netdev_flow = CONST_CAST(struct dp_netdev_flow *, netdev_flow_);
1908
1909 atomic_read_relaxed(&netdev_flow->stats.packet_count, &n);
1910 stats->n_packets = n;
1911 atomic_read_relaxed(&netdev_flow->stats.byte_count, &n);
1912 stats->n_bytes = n;
1913 atomic_read_relaxed(&netdev_flow->stats.used, &used);
1914 stats->used = used;
1915 atomic_read_relaxed(&netdev_flow->stats.tcp_flags, &flags);
1916 stats->tcp_flags = flags;
1917 }
1918
1919 /* Converts to the dpif_flow format, using 'key_buf' and 'mask_buf' for
1920 * storing the netlink-formatted key/mask. 'key_buf' may be the same as
1921 * 'mask_buf'. Actions will be returned without copying, by relying on RCU to
1922 * protect them. */
1923 static void
1924 dp_netdev_flow_to_dpif_flow(const struct dp_netdev_flow *netdev_flow,
1925 struct ofpbuf *key_buf, struct ofpbuf *mask_buf,
1926 struct dpif_flow *flow, bool terse)
1927 {
1928 if (terse) {
1929 memset(flow, 0, sizeof *flow);
1930 } else {
1931 struct flow_wildcards wc;
1932 struct dp_netdev_actions *actions;
1933 size_t offset;
1934 struct odp_flow_key_parms odp_parms = {
1935 .flow = &netdev_flow->flow,
1936 .mask = &wc.masks,
1937 .support = dp_netdev_support,
1938 };
1939
1940 miniflow_expand(&netdev_flow->cr.mask->mf, &wc.masks);
1941
1942 /* Key */
1943 offset = key_buf->size;
1944 flow->key = ofpbuf_tail(key_buf);
1945 odp_parms.odp_in_port = netdev_flow->flow.in_port.odp_port;
1946 odp_flow_key_from_flow(&odp_parms, key_buf);
1947 flow->key_len = key_buf->size - offset;
1948
1949 /* Mask */
1950 offset = mask_buf->size;
1951 flow->mask = ofpbuf_tail(mask_buf);
1952 odp_parms.odp_in_port = wc.masks.in_port.odp_port;
1953 odp_parms.key_buf = key_buf;
1954 odp_flow_key_from_mask(&odp_parms, mask_buf);
1955 flow->mask_len = mask_buf->size - offset;
1956
1957 /* Actions */
1958 actions = dp_netdev_flow_get_actions(netdev_flow);
1959 flow->actions = actions->actions;
1960 flow->actions_len = actions->size;
1961 }
1962
1963 flow->ufid = netdev_flow->ufid;
1964 flow->ufid_present = true;
1965 flow->pmd_id = netdev_flow->pmd_id;
1966 get_dpif_flow_stats(netdev_flow, &flow->stats);
1967 }
1968
1969 static int
1970 dpif_netdev_mask_from_nlattrs(const struct nlattr *key, uint32_t key_len,
1971 const struct nlattr *mask_key,
1972 uint32_t mask_key_len, const struct flow *flow,
1973 struct flow_wildcards *wc)
1974 {
1975 enum odp_key_fitness fitness;
1976
1977 fitness = odp_flow_key_to_mask_udpif(mask_key, mask_key_len, key,
1978 key_len, wc, flow);
1979 if (fitness) {
1980 /* This should not happen: it indicates that
1981 * odp_flow_key_from_mask() and odp_flow_key_to_mask()
1982 * disagree on the acceptable form of a mask. Log the problem
1983 * as an error, with enough details to enable debugging. */
1984 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
1985
1986 if (!VLOG_DROP_ERR(&rl)) {
1987 struct ds s;
1988
1989 ds_init(&s);
1990 odp_flow_format(key, key_len, mask_key, mask_key_len, NULL, &s,
1991 true);
1992 VLOG_ERR("internal error parsing flow mask %s (%s)",
1993 ds_cstr(&s), odp_key_fitness_to_string(fitness));
1994 ds_destroy(&s);
1995 }
1996
1997 return EINVAL;
1998 }
1999
2000 return 0;
2001 }
2002
2003 static int
2004 dpif_netdev_flow_from_nlattrs(const struct nlattr *key, uint32_t key_len,
2005 struct flow *flow)
2006 {
2007 odp_port_t in_port;
2008
2009 if (odp_flow_key_to_flow_udpif(key, key_len, flow)) {
2010 /* This should not happen: it indicates that odp_flow_key_from_flow()
2011 * and odp_flow_key_to_flow() disagree on the acceptable form of a
2012 * flow. Log the problem as an error, with enough details to enable
2013 * debugging. */
2014 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
2015
2016 if (!VLOG_DROP_ERR(&rl)) {
2017 struct ds s;
2018
2019 ds_init(&s);
2020 odp_flow_format(key, key_len, NULL, 0, NULL, &s, true);
2021 VLOG_ERR("internal error parsing flow key %s", ds_cstr(&s));
2022 ds_destroy(&s);
2023 }
2024
2025 return EINVAL;
2026 }
2027
2028 in_port = flow->in_port.odp_port;
2029 if (!is_valid_port_number(in_port) && in_port != ODPP_NONE) {
2030 return EINVAL;
2031 }
2032
2033 /* Userspace datapath doesn't support conntrack. */
2034 if (flow->ct_state || flow->ct_zone || flow->ct_mark
2035 || !ovs_u128_is_zero(flow->ct_label)) {
2036 return EINVAL;
2037 }
2038
2039 return 0;
2040 }
2041
2042 static int
2043 dpif_netdev_flow_get(const struct dpif *dpif, const struct dpif_flow_get *get)
2044 {
2045 struct dp_netdev *dp = get_dp_netdev(dpif);
2046 struct dp_netdev_flow *netdev_flow;
2047 struct dp_netdev_pmd_thread *pmd;
2048 struct hmapx to_find = HMAPX_INITIALIZER(&to_find);
2049 struct hmapx_node *node;
2050 int error = EINVAL;
2051
2052 if (get->pmd_id == PMD_ID_NULL) {
2053 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
2054 if (dp_netdev_pmd_try_ref(pmd) && !hmapx_add(&to_find, pmd)) {
2055 dp_netdev_pmd_unref(pmd);
2056 }
2057 }
2058 } else {
2059 pmd = dp_netdev_get_pmd(dp, get->pmd_id);
2060 if (!pmd) {
2061 goto out;
2062 }
2063 hmapx_add(&to_find, pmd);
2064 }
2065
2066 if (!hmapx_count(&to_find)) {
2067 goto out;
2068 }
2069
2070 HMAPX_FOR_EACH (node, &to_find) {
2071 pmd = (struct dp_netdev_pmd_thread *) node->data;
2072 netdev_flow = dp_netdev_pmd_find_flow(pmd, get->ufid, get->key,
2073 get->key_len);
2074 if (netdev_flow) {
2075 dp_netdev_flow_to_dpif_flow(netdev_flow, get->buffer, get->buffer,
2076 get->flow, false);
2077 error = 0;
2078 break;
2079 } else {
2080 error = ENOENT;
2081 }
2082 }
2083
2084 HMAPX_FOR_EACH (node, &to_find) {
2085 pmd = (struct dp_netdev_pmd_thread *) node->data;
2086 dp_netdev_pmd_unref(pmd);
2087 }
2088 out:
2089 hmapx_destroy(&to_find);
2090 return error;
2091 }
2092
2093 static struct dp_netdev_flow *
2094 dp_netdev_flow_add(struct dp_netdev_pmd_thread *pmd,
2095 struct match *match, const ovs_u128 *ufid,
2096 const struct nlattr *actions, size_t actions_len)
2097 OVS_REQUIRES(pmd->flow_mutex)
2098 {
2099 struct dp_netdev_flow *flow;
2100 struct netdev_flow_key mask;
2101
2102 netdev_flow_mask_init(&mask, match);
2103 /* Make sure wc does not have metadata. */
2104 ovs_assert(!FLOWMAP_HAS_FIELD(&mask.mf.map, metadata)
2105 && !FLOWMAP_HAS_FIELD(&mask.mf.map, regs));
2106
2107 /* Do not allocate extra space. */
2108 flow = xmalloc(sizeof *flow - sizeof flow->cr.flow.mf + mask.len);
2109 memset(&flow->stats, 0, sizeof flow->stats);
2110 flow->dead = false;
2111 flow->batch = NULL;
2112 *CONST_CAST(unsigned *, &flow->pmd_id) = pmd->core_id;
2113 *CONST_CAST(struct flow *, &flow->flow) = match->flow;
2114 *CONST_CAST(ovs_u128 *, &flow->ufid) = *ufid;
2115 ovs_refcount_init(&flow->ref_cnt);
2116 ovsrcu_set(&flow->actions, dp_netdev_actions_create(actions, actions_len));
2117
2118 netdev_flow_key_init_masked(&flow->cr.flow, &match->flow, &mask);
2119 dpcls_insert(&pmd->cls, &flow->cr, &mask);
2120
2121 cmap_insert(&pmd->flow_table, CONST_CAST(struct cmap_node *, &flow->node),
2122 dp_netdev_flow_hash(&flow->ufid));
2123
2124 if (OVS_UNLIKELY(VLOG_IS_DBG_ENABLED())) {
2125 struct match match;
2126 struct ds ds = DS_EMPTY_INITIALIZER;
2127
2128 match.tun_md.valid = false;
2129 match.flow = flow->flow;
2130 miniflow_expand(&flow->cr.mask->mf, &match.wc.masks);
2131
2132 ds_put_cstr(&ds, "flow_add: ");
2133 odp_format_ufid(ufid, &ds);
2134 ds_put_cstr(&ds, " ");
2135 match_format(&match, &ds, OFP_DEFAULT_PRIORITY);
2136 ds_put_cstr(&ds, ", actions:");
2137 format_odp_actions(&ds, actions, actions_len);
2138
2139 VLOG_DBG_RL(&upcall_rl, "%s", ds_cstr(&ds));
2140
2141 ds_destroy(&ds);
2142 }
2143
2144 return flow;
2145 }
2146
2147 static int
2148 dpif_netdev_flow_put(struct dpif *dpif, const struct dpif_flow_put *put)
2149 {
2150 struct dp_netdev *dp = get_dp_netdev(dpif);
2151 struct dp_netdev_flow *netdev_flow;
2152 struct netdev_flow_key key;
2153 struct dp_netdev_pmd_thread *pmd;
2154 struct match match;
2155 ovs_u128 ufid;
2156 unsigned pmd_id = put->pmd_id == PMD_ID_NULL
2157 ? NON_PMD_CORE_ID : put->pmd_id;
2158 int error;
2159
2160 error = dpif_netdev_flow_from_nlattrs(put->key, put->key_len, &match.flow);
2161 if (error) {
2162 return error;
2163 }
2164 error = dpif_netdev_mask_from_nlattrs(put->key, put->key_len,
2165 put->mask, put->mask_len,
2166 &match.flow, &match.wc);
2167 if (error) {
2168 return error;
2169 }
2170
2171 pmd = dp_netdev_get_pmd(dp, pmd_id);
2172 if (!pmd) {
2173 return EINVAL;
2174 }
2175
2176 /* Must produce a netdev_flow_key for lookup.
2177 * This interface is no longer performance critical, since it is not used
2178 * for upcall processing any more. */
2179 netdev_flow_key_from_flow(&key, &match.flow);
2180
2181 if (put->ufid) {
2182 ufid = *put->ufid;
2183 } else {
2184 dpif_flow_hash(dpif, &match.flow, sizeof match.flow, &ufid);
2185 }
2186
2187 ovs_mutex_lock(&pmd->flow_mutex);
2188 netdev_flow = dp_netdev_pmd_lookup_flow(pmd, &key);
2189 if (!netdev_flow) {
2190 if (put->flags & DPIF_FP_CREATE) {
2191 if (cmap_count(&pmd->flow_table) < MAX_FLOWS) {
2192 if (put->stats) {
2193 memset(put->stats, 0, sizeof *put->stats);
2194 }
2195 dp_netdev_flow_add(pmd, &match, &ufid, put->actions,
2196 put->actions_len);
2197 error = 0;
2198 } else {
2199 error = EFBIG;
2200 }
2201 } else {
2202 error = ENOENT;
2203 }
2204 } else {
2205 if (put->flags & DPIF_FP_MODIFY
2206 && flow_equal(&match.flow, &netdev_flow->flow)) {
2207 struct dp_netdev_actions *new_actions;
2208 struct dp_netdev_actions *old_actions;
2209
2210 new_actions = dp_netdev_actions_create(put->actions,
2211 put->actions_len);
2212
2213 old_actions = dp_netdev_flow_get_actions(netdev_flow);
2214 ovsrcu_set(&netdev_flow->actions, new_actions);
2215
2216 if (put->stats) {
2217 get_dpif_flow_stats(netdev_flow, put->stats);
2218 }
2219 if (put->flags & DPIF_FP_ZERO_STATS) {
2220 /* XXX: The userspace datapath uses thread local statistics
2221 * (for flows), which should be updated only by the owning
2222 * thread. Since we cannot write on stats memory here,
2223 * we choose not to support this flag. Please note:
2224 * - This feature is currently used only by dpctl commands with
2225 * option --clear.
2226 * - Should the need arise, this operation can be implemented
2227 * by keeping a base value (to be update here) for each
2228 * counter, and subtracting it before outputting the stats */
2229 error = EOPNOTSUPP;
2230 }
2231
2232 ovsrcu_postpone(dp_netdev_actions_free, old_actions);
2233 } else if (put->flags & DPIF_FP_CREATE) {
2234 error = EEXIST;
2235 } else {
2236 /* Overlapping flow. */
2237 error = EINVAL;
2238 }
2239 }
2240 ovs_mutex_unlock(&pmd->flow_mutex);
2241 dp_netdev_pmd_unref(pmd);
2242
2243 return error;
2244 }
2245
2246 static int
2247 dpif_netdev_flow_del(struct dpif *dpif, const struct dpif_flow_del *del)
2248 {
2249 struct dp_netdev *dp = get_dp_netdev(dpif);
2250 struct dp_netdev_flow *netdev_flow;
2251 struct dp_netdev_pmd_thread *pmd;
2252 unsigned pmd_id = del->pmd_id == PMD_ID_NULL
2253 ? NON_PMD_CORE_ID : del->pmd_id;
2254 int error = 0;
2255
2256 pmd = dp_netdev_get_pmd(dp, pmd_id);
2257 if (!pmd) {
2258 return EINVAL;
2259 }
2260
2261 ovs_mutex_lock(&pmd->flow_mutex);
2262 netdev_flow = dp_netdev_pmd_find_flow(pmd, del->ufid, del->key,
2263 del->key_len);
2264 if (netdev_flow) {
2265 if (del->stats) {
2266 get_dpif_flow_stats(netdev_flow, del->stats);
2267 }
2268 dp_netdev_pmd_remove_flow(pmd, netdev_flow);
2269 } else {
2270 error = ENOENT;
2271 }
2272 ovs_mutex_unlock(&pmd->flow_mutex);
2273 dp_netdev_pmd_unref(pmd);
2274
2275 return error;
2276 }
2277
2278 struct dpif_netdev_flow_dump {
2279 struct dpif_flow_dump up;
2280 struct cmap_position poll_thread_pos;
2281 struct cmap_position flow_pos;
2282 struct dp_netdev_pmd_thread *cur_pmd;
2283 int status;
2284 struct ovs_mutex mutex;
2285 };
2286
2287 static struct dpif_netdev_flow_dump *
2288 dpif_netdev_flow_dump_cast(struct dpif_flow_dump *dump)
2289 {
2290 return CONTAINER_OF(dump, struct dpif_netdev_flow_dump, up);
2291 }
2292
2293 static struct dpif_flow_dump *
2294 dpif_netdev_flow_dump_create(const struct dpif *dpif_, bool terse)
2295 {
2296 struct dpif_netdev_flow_dump *dump;
2297
2298 dump = xzalloc(sizeof *dump);
2299 dpif_flow_dump_init(&dump->up, dpif_);
2300 dump->up.terse = terse;
2301 ovs_mutex_init(&dump->mutex);
2302
2303 return &dump->up;
2304 }
2305
2306 static int
2307 dpif_netdev_flow_dump_destroy(struct dpif_flow_dump *dump_)
2308 {
2309 struct dpif_netdev_flow_dump *dump = dpif_netdev_flow_dump_cast(dump_);
2310
2311 ovs_mutex_destroy(&dump->mutex);
2312 free(dump);
2313 return 0;
2314 }
2315
2316 struct dpif_netdev_flow_dump_thread {
2317 struct dpif_flow_dump_thread up;
2318 struct dpif_netdev_flow_dump *dump;
2319 struct odputil_keybuf keybuf[FLOW_DUMP_MAX_BATCH];
2320 struct odputil_keybuf maskbuf[FLOW_DUMP_MAX_BATCH];
2321 };
2322
2323 static struct dpif_netdev_flow_dump_thread *
2324 dpif_netdev_flow_dump_thread_cast(struct dpif_flow_dump_thread *thread)
2325 {
2326 return CONTAINER_OF(thread, struct dpif_netdev_flow_dump_thread, up);
2327 }
2328
2329 static struct dpif_flow_dump_thread *
2330 dpif_netdev_flow_dump_thread_create(struct dpif_flow_dump *dump_)
2331 {
2332 struct dpif_netdev_flow_dump *dump = dpif_netdev_flow_dump_cast(dump_);
2333 struct dpif_netdev_flow_dump_thread *thread;
2334
2335 thread = xmalloc(sizeof *thread);
2336 dpif_flow_dump_thread_init(&thread->up, &dump->up);
2337 thread->dump = dump;
2338 return &thread->up;
2339 }
2340
2341 static void
2342 dpif_netdev_flow_dump_thread_destroy(struct dpif_flow_dump_thread *thread_)
2343 {
2344 struct dpif_netdev_flow_dump_thread *thread
2345 = dpif_netdev_flow_dump_thread_cast(thread_);
2346
2347 free(thread);
2348 }
2349
2350 static int
2351 dpif_netdev_flow_dump_next(struct dpif_flow_dump_thread *thread_,
2352 struct dpif_flow *flows, int max_flows)
2353 {
2354 struct dpif_netdev_flow_dump_thread *thread
2355 = dpif_netdev_flow_dump_thread_cast(thread_);
2356 struct dpif_netdev_flow_dump *dump = thread->dump;
2357 struct dp_netdev_flow *netdev_flows[FLOW_DUMP_MAX_BATCH];
2358 int n_flows = 0;
2359 int i;
2360
2361 ovs_mutex_lock(&dump->mutex);
2362 if (!dump->status) {
2363 struct dpif_netdev *dpif = dpif_netdev_cast(thread->up.dpif);
2364 struct dp_netdev *dp = get_dp_netdev(&dpif->dpif);
2365 struct dp_netdev_pmd_thread *pmd = dump->cur_pmd;
2366 int flow_limit = MIN(max_flows, FLOW_DUMP_MAX_BATCH);
2367
2368 /* First call to dump_next(), extracts the first pmd thread.
2369 * If there is no pmd thread, returns immediately. */
2370 if (!pmd) {
2371 pmd = dp_netdev_pmd_get_next(dp, &dump->poll_thread_pos);
2372 if (!pmd) {
2373 ovs_mutex_unlock(&dump->mutex);
2374 return n_flows;
2375
2376 }
2377 }
2378
2379 do {
2380 for (n_flows = 0; n_flows < flow_limit; n_flows++) {
2381 struct cmap_node *node;
2382
2383 node = cmap_next_position(&pmd->flow_table, &dump->flow_pos);
2384 if (!node) {
2385 break;
2386 }
2387 netdev_flows[n_flows] = CONTAINER_OF(node,
2388 struct dp_netdev_flow,
2389 node);
2390 }
2391 /* When finishing dumping the current pmd thread, moves to
2392 * the next. */
2393 if (n_flows < flow_limit) {
2394 memset(&dump->flow_pos, 0, sizeof dump->flow_pos);
2395 dp_netdev_pmd_unref(pmd);
2396 pmd = dp_netdev_pmd_get_next(dp, &dump->poll_thread_pos);
2397 if (!pmd) {
2398 dump->status = EOF;
2399 break;
2400 }
2401 }
2402 /* Keeps the reference to next caller. */
2403 dump->cur_pmd = pmd;
2404
2405 /* If the current dump is empty, do not exit the loop, since the
2406 * remaining pmds could have flows to be dumped. Just dumps again
2407 * on the new 'pmd'. */
2408 } while (!n_flows);
2409 }
2410 ovs_mutex_unlock(&dump->mutex);
2411
2412 for (i = 0; i < n_flows; i++) {
2413 struct odputil_keybuf *maskbuf = &thread->maskbuf[i];
2414 struct odputil_keybuf *keybuf = &thread->keybuf[i];
2415 struct dp_netdev_flow *netdev_flow = netdev_flows[i];
2416 struct dpif_flow *f = &flows[i];
2417 struct ofpbuf key, mask;
2418
2419 ofpbuf_use_stack(&key, keybuf, sizeof *keybuf);
2420 ofpbuf_use_stack(&mask, maskbuf, sizeof *maskbuf);
2421 dp_netdev_flow_to_dpif_flow(netdev_flow, &key, &mask, f,
2422 dump->up.terse);
2423 }
2424
2425 return n_flows;
2426 }
2427
2428 static int
2429 dpif_netdev_execute(struct dpif *dpif, struct dpif_execute *execute)
2430 OVS_NO_THREAD_SAFETY_ANALYSIS
2431 {
2432 struct dp_netdev *dp = get_dp_netdev(dpif);
2433 struct dp_netdev_pmd_thread *pmd;
2434 struct dp_packet_batch pp;
2435
2436 if (dp_packet_size(execute->packet) < ETH_HEADER_LEN ||
2437 dp_packet_size(execute->packet) > UINT16_MAX) {
2438 return EINVAL;
2439 }
2440
2441 /* Tries finding the 'pmd'. If NULL is returned, that means
2442 * the current thread is a non-pmd thread and should use
2443 * dp_netdev_get_pmd(dp, NON_PMD_CORE_ID). */
2444 pmd = ovsthread_getspecific(dp->per_pmd_key);
2445 if (!pmd) {
2446 pmd = dp_netdev_get_pmd(dp, NON_PMD_CORE_ID);
2447 }
2448
2449 /* If the current thread is non-pmd thread, acquires
2450 * the 'non_pmd_mutex'. */
2451 if (pmd->core_id == NON_PMD_CORE_ID) {
2452 ovs_mutex_lock(&dp->non_pmd_mutex);
2453 }
2454
2455 /* The action processing expects the RSS hash to be valid, because
2456 * it's always initialized at the beginning of datapath processing.
2457 * In this case, though, 'execute->packet' may not have gone through
2458 * the datapath at all, it may have been generated by the upper layer
2459 * (OpenFlow packet-out, BFD frame, ...). */
2460 if (!dp_packet_rss_valid(execute->packet)) {
2461 dp_packet_set_rss_hash(execute->packet,
2462 flow_hash_5tuple(execute->flow, 0));
2463 }
2464
2465 packet_batch_init_packet(&pp, execute->packet);
2466 dp_netdev_execute_actions(pmd, &pp, false, execute->actions,
2467 execute->actions_len);
2468
2469 if (pmd->core_id == NON_PMD_CORE_ID) {
2470 ovs_mutex_unlock(&dp->non_pmd_mutex);
2471 dp_netdev_pmd_unref(pmd);
2472 }
2473
2474 return 0;
2475 }
2476
2477 static void
2478 dpif_netdev_operate(struct dpif *dpif, struct dpif_op **ops, size_t n_ops)
2479 {
2480 size_t i;
2481
2482 for (i = 0; i < n_ops; i++) {
2483 struct dpif_op *op = ops[i];
2484
2485 switch (op->type) {
2486 case DPIF_OP_FLOW_PUT:
2487 op->error = dpif_netdev_flow_put(dpif, &op->u.flow_put);
2488 break;
2489
2490 case DPIF_OP_FLOW_DEL:
2491 op->error = dpif_netdev_flow_del(dpif, &op->u.flow_del);
2492 break;
2493
2494 case DPIF_OP_EXECUTE:
2495 op->error = dpif_netdev_execute(dpif, &op->u.execute);
2496 break;
2497
2498 case DPIF_OP_FLOW_GET:
2499 op->error = dpif_netdev_flow_get(dpif, &op->u.flow_get);
2500 break;
2501 }
2502 }
2503 }
2504
2505 static bool
2506 cmask_equals(const char *a, const char *b)
2507 {
2508 if (a && b) {
2509 return !strcmp(a, b);
2510 }
2511
2512 return a == NULL && b == NULL;
2513 }
2514
2515 /* Changes the number or the affinity of pmd threads. The changes are actually
2516 * applied in dpif_netdev_run(). */
2517 static int
2518 dpif_netdev_pmd_set(struct dpif *dpif, const char *cmask)
2519 {
2520 struct dp_netdev *dp = get_dp_netdev(dpif);
2521
2522 if (!cmask_equals(dp->requested_pmd_cmask, cmask)) {
2523 free(dp->requested_pmd_cmask);
2524 dp->requested_pmd_cmask = cmask ? xstrdup(cmask) : NULL;
2525 }
2526
2527 return 0;
2528 }
2529
2530 static int
2531 dpif_netdev_queue_to_priority(const struct dpif *dpif OVS_UNUSED,
2532 uint32_t queue_id, uint32_t *priority)
2533 {
2534 *priority = queue_id;
2535 return 0;
2536 }
2537
2538 \f
2539 /* Creates and returns a new 'struct dp_netdev_actions', whose actions are
2540 * a copy of the 'ofpacts_len' bytes of 'ofpacts'. */
2541 struct dp_netdev_actions *
2542 dp_netdev_actions_create(const struct nlattr *actions, size_t size)
2543 {
2544 struct dp_netdev_actions *netdev_actions;
2545
2546 netdev_actions = xmalloc(sizeof *netdev_actions + size);
2547 memcpy(netdev_actions->actions, actions, size);
2548 netdev_actions->size = size;
2549
2550 return netdev_actions;
2551 }
2552
2553 struct dp_netdev_actions *
2554 dp_netdev_flow_get_actions(const struct dp_netdev_flow *flow)
2555 {
2556 return ovsrcu_get(struct dp_netdev_actions *, &flow->actions);
2557 }
2558
2559 static void
2560 dp_netdev_actions_free(struct dp_netdev_actions *actions)
2561 {
2562 free(actions);
2563 }
2564 \f
2565 static inline unsigned long long
2566 cycles_counter(void)
2567 {
2568 #ifdef DPDK_NETDEV
2569 return rte_get_tsc_cycles();
2570 #else
2571 return 0;
2572 #endif
2573 }
2574
2575 /* Fake mutex to make sure that the calls to cycles_count_* are balanced */
2576 extern struct ovs_mutex cycles_counter_fake_mutex;
2577
2578 /* Start counting cycles. Must be followed by 'cycles_count_end()' */
2579 static inline void
2580 cycles_count_start(struct dp_netdev_pmd_thread *pmd)
2581 OVS_ACQUIRES(&cycles_counter_fake_mutex)
2582 OVS_NO_THREAD_SAFETY_ANALYSIS
2583 {
2584 pmd->last_cycles = cycles_counter();
2585 }
2586
2587 /* Stop counting cycles and add them to the counter 'type' */
2588 static inline void
2589 cycles_count_end(struct dp_netdev_pmd_thread *pmd,
2590 enum pmd_cycles_counter_type type)
2591 OVS_RELEASES(&cycles_counter_fake_mutex)
2592 OVS_NO_THREAD_SAFETY_ANALYSIS
2593 {
2594 unsigned long long interval = cycles_counter() - pmd->last_cycles;
2595
2596 non_atomic_ullong_add(&pmd->cycles.n[type], interval);
2597 }
2598
2599 static void
2600 dp_netdev_process_rxq_port(struct dp_netdev_pmd_thread *pmd,
2601 struct dp_netdev_port *port,
2602 struct netdev_rxq *rxq)
2603 {
2604 struct dp_packet_batch batch;
2605 int error;
2606
2607 dp_packet_batch_init(&batch);
2608 cycles_count_start(pmd);
2609 error = netdev_rxq_recv(rxq, &batch);
2610 cycles_count_end(pmd, PMD_CYCLES_POLLING);
2611 if (!error) {
2612 *recirc_depth_get() = 0;
2613
2614 cycles_count_start(pmd);
2615 dp_netdev_input(pmd, &batch, port->port_no);
2616 cycles_count_end(pmd, PMD_CYCLES_PROCESSING);
2617 } else if (error != EAGAIN && error != EOPNOTSUPP) {
2618 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
2619
2620 VLOG_ERR_RL(&rl, "error receiving data from %s: %s",
2621 netdev_get_name(port->netdev), ovs_strerror(error));
2622 }
2623 }
2624
2625 static int
2626 port_reconfigure(struct dp_netdev_port *port)
2627 {
2628 struct netdev *netdev = port->netdev;
2629 int i, err;
2630
2631 if (!netdev_is_reconf_required(netdev)) {
2632 return 0;
2633 }
2634
2635 /* Closes the existing 'rxq's. */
2636 for (i = 0; i < port->n_rxq; i++) {
2637 netdev_rxq_close(port->rxq[i]);
2638 port->rxq[i] = NULL;
2639 }
2640 port->n_rxq = 0;
2641
2642 /* Allows 'netdev' to apply the pending configuration changes. */
2643 err = netdev_reconfigure(netdev);
2644 if (err && (err != EOPNOTSUPP)) {
2645 VLOG_ERR("Failed to set interface %s new configuration",
2646 netdev_get_name(netdev));
2647 return err;
2648 }
2649 /* If the netdev_reconfigure() above succeeds, reopens the 'rxq's. */
2650 port->rxq = xrealloc(port->rxq, sizeof *port->rxq * netdev_n_rxq(netdev));
2651 for (i = 0; i < netdev_n_rxq(netdev); i++) {
2652 err = netdev_rxq_open(netdev, &port->rxq[i], i);
2653 if (err) {
2654 return err;
2655 }
2656 port->n_rxq++;
2657 }
2658
2659 return 0;
2660 }
2661
2662 static void
2663 reconfigure_pmd_threads(struct dp_netdev *dp)
2664 OVS_REQUIRES(dp->port_mutex)
2665 {
2666 struct dp_netdev_port *port, *next;
2667
2668 dp_netdev_destroy_all_pmds(dp);
2669
2670 HMAP_FOR_EACH_SAFE (port, next, node, &dp->ports) {
2671 int err;
2672
2673 err = port_reconfigure(port);
2674 if (err) {
2675 hmap_remove(&dp->ports, &port->node);
2676 seq_change(dp->port_seq);
2677 port_destroy(port);
2678 }
2679 }
2680 /* Reconfigures the cpu mask. */
2681 ovs_numa_set_cpu_mask(dp->requested_pmd_cmask);
2682 free(dp->pmd_cmask);
2683 dp->pmd_cmask = dp->requested_pmd_cmask
2684 ? xstrdup(dp->requested_pmd_cmask)
2685 : NULL;
2686
2687 /* Restores the non-pmd. */
2688 dp_netdev_set_nonpmd(dp);
2689 /* Restores all pmd threads. */
2690 dp_netdev_reset_pmd_threads(dp);
2691 }
2692
2693 /* Returns true if one of the netdevs in 'dp' requires a reconfiguration */
2694 static bool
2695 ports_require_restart(const struct dp_netdev *dp)
2696 OVS_REQUIRES(dp->port_mutex)
2697 {
2698 struct dp_netdev_port *port;
2699
2700 HMAP_FOR_EACH (port, node, &dp->ports) {
2701 if (netdev_is_reconf_required(port->netdev)) {
2702 return true;
2703 }
2704 }
2705
2706 return false;
2707 }
2708
2709 /* Return true if needs to revalidate datapath flows. */
2710 static bool
2711 dpif_netdev_run(struct dpif *dpif)
2712 {
2713 struct dp_netdev_port *port;
2714 struct dp_netdev *dp = get_dp_netdev(dpif);
2715 struct dp_netdev_pmd_thread *non_pmd = dp_netdev_get_pmd(dp,
2716 NON_PMD_CORE_ID);
2717 uint64_t new_tnl_seq;
2718
2719 ovs_mutex_lock(&dp->port_mutex);
2720 ovs_mutex_lock(&dp->non_pmd_mutex);
2721 HMAP_FOR_EACH (port, node, &dp->ports) {
2722 if (!netdev_is_pmd(port->netdev)) {
2723 int i;
2724
2725 for (i = 0; i < port->n_rxq; i++) {
2726 dp_netdev_process_rxq_port(non_pmd, port, port->rxq[i]);
2727 }
2728 }
2729 }
2730 ovs_mutex_unlock(&dp->non_pmd_mutex);
2731
2732 dp_netdev_pmd_unref(non_pmd);
2733
2734 if (!cmask_equals(dp->pmd_cmask, dp->requested_pmd_cmask)
2735 || ports_require_restart(dp)) {
2736 reconfigure_pmd_threads(dp);
2737 }
2738 ovs_mutex_unlock(&dp->port_mutex);
2739
2740 tnl_neigh_cache_run();
2741 tnl_port_map_run();
2742 new_tnl_seq = seq_read(tnl_conf_seq);
2743
2744 if (dp->last_tnl_conf_seq != new_tnl_seq) {
2745 dp->last_tnl_conf_seq = new_tnl_seq;
2746 return true;
2747 }
2748 return false;
2749 }
2750
2751 static void
2752 dpif_netdev_wait(struct dpif *dpif)
2753 {
2754 struct dp_netdev_port *port;
2755 struct dp_netdev *dp = get_dp_netdev(dpif);
2756
2757 ovs_mutex_lock(&dp_netdev_mutex);
2758 ovs_mutex_lock(&dp->port_mutex);
2759 HMAP_FOR_EACH (port, node, &dp->ports) {
2760 netdev_wait_reconf_required(port->netdev);
2761 if (!netdev_is_pmd(port->netdev)) {
2762 int i;
2763
2764 for (i = 0; i < port->n_rxq; i++) {
2765 netdev_rxq_wait(port->rxq[i]);
2766 }
2767 }
2768 }
2769 ovs_mutex_unlock(&dp->port_mutex);
2770 ovs_mutex_unlock(&dp_netdev_mutex);
2771 seq_wait(tnl_conf_seq, dp->last_tnl_conf_seq);
2772 }
2773
2774 static void
2775 pmd_free_cached_ports(struct dp_netdev_pmd_thread *pmd)
2776 {
2777 struct tx_port *tx_port_cached;
2778
2779 HMAP_FOR_EACH_POP (tx_port_cached, node, &pmd->port_cache) {
2780 free(tx_port_cached);
2781 }
2782 }
2783
2784 /* Copies ports from 'pmd->tx_ports' (shared with the main thread) to
2785 * 'pmd->port_cache' (thread local) */
2786 static void
2787 pmd_load_cached_ports(struct dp_netdev_pmd_thread *pmd)
2788 OVS_REQUIRES(pmd->port_mutex)
2789 {
2790 struct tx_port *tx_port, *tx_port_cached;
2791
2792 pmd_free_cached_ports(pmd);
2793 hmap_shrink(&pmd->port_cache);
2794
2795 HMAP_FOR_EACH (tx_port, node, &pmd->tx_ports) {
2796 tx_port_cached = xmemdup(tx_port, sizeof *tx_port_cached);
2797 hmap_insert(&pmd->port_cache, &tx_port_cached->node,
2798 hash_port_no(tx_port_cached->port_no));
2799 }
2800 }
2801
2802 static int
2803 pmd_load_queues_and_ports(struct dp_netdev_pmd_thread *pmd,
2804 struct rxq_poll **ppoll_list)
2805 {
2806 struct rxq_poll *poll_list = *ppoll_list;
2807 struct rxq_poll *poll;
2808 int i;
2809
2810 ovs_mutex_lock(&pmd->port_mutex);
2811 poll_list = xrealloc(poll_list, pmd->poll_cnt * sizeof *poll_list);
2812
2813 i = 0;
2814 LIST_FOR_EACH (poll, node, &pmd->poll_list) {
2815 poll_list[i++] = *poll;
2816 }
2817
2818 pmd_load_cached_ports(pmd);
2819
2820 ovs_mutex_unlock(&pmd->port_mutex);
2821
2822 *ppoll_list = poll_list;
2823 return i;
2824 }
2825
2826 static void *
2827 pmd_thread_main(void *f_)
2828 {
2829 struct dp_netdev_pmd_thread *pmd = f_;
2830 unsigned int lc = 0;
2831 struct rxq_poll *poll_list;
2832 unsigned int port_seq = PMD_INITIAL_SEQ;
2833 bool exiting;
2834 int poll_cnt;
2835 int i;
2836
2837 poll_cnt = 0;
2838 poll_list = NULL;
2839
2840 /* Stores the pmd thread's 'pmd' to 'per_pmd_key'. */
2841 ovsthread_setspecific(pmd->dp->per_pmd_key, pmd);
2842 pmd_thread_setaffinity_cpu(pmd->core_id);
2843 poll_cnt = pmd_load_queues_and_ports(pmd, &poll_list);
2844 reload:
2845 emc_cache_init(&pmd->flow_cache);
2846
2847 /* List port/core affinity */
2848 for (i = 0; i < poll_cnt; i++) {
2849 VLOG_DBG("Core %d processing port \'%s\' with queue-id %d\n",
2850 pmd->core_id, netdev_get_name(poll_list[i].port->netdev),
2851 netdev_rxq_get_queue_id(poll_list[i].rx));
2852 }
2853
2854 for (;;) {
2855 for (i = 0; i < poll_cnt; i++) {
2856 dp_netdev_process_rxq_port(pmd, poll_list[i].port, poll_list[i].rx);
2857 }
2858
2859 if (lc++ > 1024) {
2860 unsigned int seq;
2861
2862 lc = 0;
2863
2864 emc_cache_slow_sweep(&pmd->flow_cache);
2865 coverage_try_clear();
2866 ovsrcu_quiesce();
2867
2868 atomic_read_relaxed(&pmd->change_seq, &seq);
2869 if (seq != port_seq) {
2870 port_seq = seq;
2871 break;
2872 }
2873 }
2874 }
2875
2876 poll_cnt = pmd_load_queues_and_ports(pmd, &poll_list);
2877 exiting = latch_is_set(&pmd->exit_latch);
2878 /* Signal here to make sure the pmd finishes
2879 * reloading the updated configuration. */
2880 dp_netdev_pmd_reload_done(pmd);
2881
2882 emc_cache_uninit(&pmd->flow_cache);
2883
2884 if (!exiting) {
2885 goto reload;
2886 }
2887
2888 free(poll_list);
2889 pmd_free_cached_ports(pmd);
2890 return NULL;
2891 }
2892
2893 static void
2894 dp_netdev_disable_upcall(struct dp_netdev *dp)
2895 OVS_ACQUIRES(dp->upcall_rwlock)
2896 {
2897 fat_rwlock_wrlock(&dp->upcall_rwlock);
2898 }
2899
2900 static void
2901 dpif_netdev_disable_upcall(struct dpif *dpif)
2902 OVS_NO_THREAD_SAFETY_ANALYSIS
2903 {
2904 struct dp_netdev *dp = get_dp_netdev(dpif);
2905 dp_netdev_disable_upcall(dp);
2906 }
2907
2908 static void
2909 dp_netdev_enable_upcall(struct dp_netdev *dp)
2910 OVS_RELEASES(dp->upcall_rwlock)
2911 {
2912 fat_rwlock_unlock(&dp->upcall_rwlock);
2913 }
2914
2915 static void
2916 dpif_netdev_enable_upcall(struct dpif *dpif)
2917 OVS_NO_THREAD_SAFETY_ANALYSIS
2918 {
2919 struct dp_netdev *dp = get_dp_netdev(dpif);
2920 dp_netdev_enable_upcall(dp);
2921 }
2922
2923 static void
2924 dp_netdev_pmd_reload_done(struct dp_netdev_pmd_thread *pmd)
2925 {
2926 ovs_mutex_lock(&pmd->cond_mutex);
2927 xpthread_cond_signal(&pmd->cond);
2928 ovs_mutex_unlock(&pmd->cond_mutex);
2929 }
2930
2931 /* Finds and refs the dp_netdev_pmd_thread on core 'core_id'. Returns
2932 * the pointer if succeeds, otherwise, NULL.
2933 *
2934 * Caller must unrefs the returned reference. */
2935 static struct dp_netdev_pmd_thread *
2936 dp_netdev_get_pmd(struct dp_netdev *dp, unsigned core_id)
2937 {
2938 struct dp_netdev_pmd_thread *pmd;
2939 const struct cmap_node *pnode;
2940
2941 pnode = cmap_find(&dp->poll_threads, hash_int(core_id, 0));
2942 if (!pnode) {
2943 return NULL;
2944 }
2945 pmd = CONTAINER_OF(pnode, struct dp_netdev_pmd_thread, node);
2946
2947 return dp_netdev_pmd_try_ref(pmd) ? pmd : NULL;
2948 }
2949
2950 /* Sets the 'struct dp_netdev_pmd_thread' for non-pmd threads. */
2951 static void
2952 dp_netdev_set_nonpmd(struct dp_netdev *dp)
2953 OVS_REQUIRES(dp->port_mutex)
2954 {
2955 struct dp_netdev_pmd_thread *non_pmd;
2956 struct dp_netdev_port *port;
2957
2958 non_pmd = xzalloc(sizeof *non_pmd);
2959 dp_netdev_configure_pmd(non_pmd, dp, NON_PMD_CORE_ID, OVS_NUMA_UNSPEC);
2960
2961 HMAP_FOR_EACH (port, node, &dp->ports) {
2962 dp_netdev_add_port_tx_to_pmd(non_pmd, port);
2963 }
2964
2965 dp_netdev_reload_pmd__(non_pmd);
2966 }
2967
2968 /* Caller must have valid pointer to 'pmd'. */
2969 static bool
2970 dp_netdev_pmd_try_ref(struct dp_netdev_pmd_thread *pmd)
2971 {
2972 return ovs_refcount_try_ref_rcu(&pmd->ref_cnt);
2973 }
2974
2975 static void
2976 dp_netdev_pmd_unref(struct dp_netdev_pmd_thread *pmd)
2977 {
2978 if (pmd && ovs_refcount_unref(&pmd->ref_cnt) == 1) {
2979 ovsrcu_postpone(dp_netdev_destroy_pmd, pmd);
2980 }
2981 }
2982
2983 /* Given cmap position 'pos', tries to ref the next node. If try_ref()
2984 * fails, keeps checking for next node until reaching the end of cmap.
2985 *
2986 * Caller must unrefs the returned reference. */
2987 static struct dp_netdev_pmd_thread *
2988 dp_netdev_pmd_get_next(struct dp_netdev *dp, struct cmap_position *pos)
2989 {
2990 struct dp_netdev_pmd_thread *next;
2991
2992 do {
2993 struct cmap_node *node;
2994
2995 node = cmap_next_position(&dp->poll_threads, pos);
2996 next = node ? CONTAINER_OF(node, struct dp_netdev_pmd_thread, node)
2997 : NULL;
2998 } while (next && !dp_netdev_pmd_try_ref(next));
2999
3000 return next;
3001 }
3002
3003 /* Configures the 'pmd' based on the input argument. */
3004 static void
3005 dp_netdev_configure_pmd(struct dp_netdev_pmd_thread *pmd, struct dp_netdev *dp,
3006 unsigned core_id, int numa_id)
3007 {
3008 pmd->dp = dp;
3009 pmd->core_id = core_id;
3010 pmd->numa_id = numa_id;
3011 pmd->poll_cnt = 0;
3012
3013 atomic_init(&pmd->tx_qid,
3014 (core_id == NON_PMD_CORE_ID)
3015 ? ovs_numa_get_n_cores()
3016 : get_n_pmd_threads(dp));
3017
3018 ovs_refcount_init(&pmd->ref_cnt);
3019 latch_init(&pmd->exit_latch);
3020 atomic_init(&pmd->change_seq, PMD_INITIAL_SEQ);
3021 xpthread_cond_init(&pmd->cond, NULL);
3022 ovs_mutex_init(&pmd->cond_mutex);
3023 ovs_mutex_init(&pmd->flow_mutex);
3024 ovs_mutex_init(&pmd->port_mutex);
3025 dpcls_init(&pmd->cls);
3026 cmap_init(&pmd->flow_table);
3027 ovs_list_init(&pmd->poll_list);
3028 hmap_init(&pmd->tx_ports);
3029 hmap_init(&pmd->port_cache);
3030 /* init the 'flow_cache' since there is no
3031 * actual thread created for NON_PMD_CORE_ID. */
3032 if (core_id == NON_PMD_CORE_ID) {
3033 emc_cache_init(&pmd->flow_cache);
3034 }
3035 cmap_insert(&dp->poll_threads, CONST_CAST(struct cmap_node *, &pmd->node),
3036 hash_int(core_id, 0));
3037 }
3038
3039 static void
3040 dp_netdev_destroy_pmd(struct dp_netdev_pmd_thread *pmd)
3041 {
3042 dp_netdev_pmd_flow_flush(pmd);
3043 dpcls_destroy(&pmd->cls);
3044 hmap_destroy(&pmd->port_cache);
3045 hmap_destroy(&pmd->tx_ports);
3046 cmap_destroy(&pmd->flow_table);
3047 ovs_mutex_destroy(&pmd->flow_mutex);
3048 latch_destroy(&pmd->exit_latch);
3049 xpthread_cond_destroy(&pmd->cond);
3050 ovs_mutex_destroy(&pmd->cond_mutex);
3051 ovs_mutex_destroy(&pmd->port_mutex);
3052 free(pmd);
3053 }
3054
3055 /* Stops the pmd thread, removes it from the 'dp->poll_threads',
3056 * and unrefs the struct. */
3057 static void
3058 dp_netdev_del_pmd(struct dp_netdev *dp, struct dp_netdev_pmd_thread *pmd)
3059 {
3060 /* NON_PMD_CORE_ID doesn't have a thread, so we don't have to synchronize,
3061 * but extra cleanup is necessary */
3062 if (pmd->core_id == NON_PMD_CORE_ID) {
3063 emc_cache_uninit(&pmd->flow_cache);
3064 pmd_free_cached_ports(pmd);
3065 } else {
3066 latch_set(&pmd->exit_latch);
3067 dp_netdev_reload_pmd__(pmd);
3068 ovs_numa_unpin_core(pmd->core_id);
3069 xpthread_join(pmd->thread, NULL);
3070 }
3071
3072 dp_netdev_pmd_clear_ports(pmd);
3073
3074 /* Purges the 'pmd''s flows after stopping the thread, but before
3075 * destroying the flows, so that the flow stats can be collected. */
3076 if (dp->dp_purge_cb) {
3077 dp->dp_purge_cb(dp->dp_purge_aux, pmd->core_id);
3078 }
3079 cmap_remove(&pmd->dp->poll_threads, &pmd->node, hash_int(pmd->core_id, 0));
3080 dp_netdev_pmd_unref(pmd);
3081 }
3082
3083 /* Destroys all pmd threads. */
3084 static void
3085 dp_netdev_destroy_all_pmds(struct dp_netdev *dp)
3086 {
3087 struct dp_netdev_pmd_thread *pmd;
3088 struct dp_netdev_pmd_thread **pmd_list;
3089 size_t k = 0, n_pmds;
3090
3091 n_pmds = cmap_count(&dp->poll_threads);
3092 pmd_list = xcalloc(n_pmds, sizeof *pmd_list);
3093
3094 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
3095 /* We cannot call dp_netdev_del_pmd(), since it alters
3096 * 'dp->poll_threads' (while we're iterating it) and it
3097 * might quiesce. */
3098 ovs_assert(k < n_pmds);
3099 pmd_list[k++] = pmd;
3100 }
3101
3102 for (size_t i = 0; i < k; i++) {
3103 dp_netdev_del_pmd(dp, pmd_list[i]);
3104 }
3105 free(pmd_list);
3106 }
3107
3108 /* Deletes all pmd threads on numa node 'numa_id' and
3109 * fixes tx_qids of other threads to keep them sequential. */
3110 static void
3111 dp_netdev_del_pmds_on_numa(struct dp_netdev *dp, int numa_id)
3112 {
3113 struct dp_netdev_pmd_thread *pmd;
3114 int n_pmds_on_numa, n_pmds;
3115 int *free_idx, k = 0;
3116 struct dp_netdev_pmd_thread **pmd_list;
3117
3118 n_pmds_on_numa = get_n_pmd_threads_on_numa(dp, numa_id);
3119 free_idx = xcalloc(n_pmds_on_numa, sizeof *free_idx);
3120 pmd_list = xcalloc(n_pmds_on_numa, sizeof *pmd_list);
3121
3122 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
3123 /* We cannot call dp_netdev_del_pmd(), since it alters
3124 * 'dp->poll_threads' (while we're iterating it) and it
3125 * might quiesce. */
3126 if (pmd->numa_id == numa_id) {
3127 atomic_read_relaxed(&pmd->tx_qid, &free_idx[k]);
3128 pmd_list[k] = pmd;
3129 ovs_assert(k < n_pmds_on_numa);
3130 k++;
3131 }
3132 }
3133
3134 for (int i = 0; i < k; i++) {
3135 dp_netdev_del_pmd(dp, pmd_list[i]);
3136 }
3137
3138 n_pmds = get_n_pmd_threads(dp);
3139 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
3140 int old_tx_qid;
3141
3142 atomic_read_relaxed(&pmd->tx_qid, &old_tx_qid);
3143
3144 if (old_tx_qid >= n_pmds) {
3145 int new_tx_qid = free_idx[--k];
3146
3147 atomic_store_relaxed(&pmd->tx_qid, new_tx_qid);
3148 }
3149 }
3150
3151 free(pmd_list);
3152 free(free_idx);
3153 }
3154
3155 /* Deletes all rx queues from pmd->poll_list and all the ports from
3156 * pmd->tx_ports. */
3157 static void
3158 dp_netdev_pmd_clear_ports(struct dp_netdev_pmd_thread *pmd)
3159 {
3160 struct rxq_poll *poll;
3161 struct tx_port *port;
3162
3163 ovs_mutex_lock(&pmd->port_mutex);
3164 LIST_FOR_EACH_POP (poll, node, &pmd->poll_list) {
3165 free(poll);
3166 }
3167 pmd->poll_cnt = 0;
3168 HMAP_FOR_EACH_POP (port, node, &pmd->tx_ports) {
3169 free(port);
3170 }
3171 ovs_mutex_unlock(&pmd->port_mutex);
3172 }
3173
3174 static struct tx_port *
3175 tx_port_lookup(const struct hmap *hmap, odp_port_t port_no)
3176 {
3177 struct tx_port *tx;
3178
3179 HMAP_FOR_EACH_IN_BUCKET (tx, node, hash_port_no(port_no), hmap) {
3180 if (tx->port_no == port_no) {
3181 return tx;
3182 }
3183 }
3184
3185 return NULL;
3186 }
3187
3188 /* Deletes all rx queues of 'port' from 'poll_list', and the 'port' from
3189 * 'tx_ports' of 'pmd' thread. Returns true if 'port' was found in 'pmd'
3190 * (therefore a restart is required). */
3191 static bool
3192 dp_netdev_del_port_from_pmd__(struct dp_netdev_port *port,
3193 struct dp_netdev_pmd_thread *pmd)
3194 {
3195 struct rxq_poll *poll, *next;
3196 struct tx_port *tx;
3197 bool found = false;
3198
3199 ovs_mutex_lock(&pmd->port_mutex);
3200 LIST_FOR_EACH_SAFE (poll, next, node, &pmd->poll_list) {
3201 if (poll->port == port) {
3202 found = true;
3203 ovs_list_remove(&poll->node);
3204 pmd->poll_cnt--;
3205 free(poll);
3206 }
3207 }
3208
3209 tx = tx_port_lookup(&pmd->tx_ports, port->port_no);
3210 if (tx) {
3211 hmap_remove(&pmd->tx_ports, &tx->node);
3212 free(tx);
3213 found = true;
3214 }
3215 ovs_mutex_unlock(&pmd->port_mutex);
3216
3217 return found;
3218 }
3219
3220 /* Deletes 'port' from the 'poll_list' and from the 'tx_ports' of all the pmd
3221 * threads. The pmd threads that need to be restarted are inserted in
3222 * 'to_reload'. */
3223 static void
3224 dp_netdev_del_port_from_all_pmds__(struct dp_netdev *dp,
3225 struct dp_netdev_port *port,
3226 struct hmapx *to_reload)
3227 {
3228 struct dp_netdev_pmd_thread *pmd;
3229
3230 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
3231 bool found;
3232
3233 found = dp_netdev_del_port_from_pmd__(port, pmd);
3234
3235 if (found) {
3236 hmapx_add(to_reload, pmd);
3237 }
3238 }
3239 }
3240
3241 /* Deletes 'port' from the 'poll_list' and from the 'tx_ports' of all the pmd
3242 * threads. Reloads the threads if needed. */
3243 static void
3244 dp_netdev_del_port_from_all_pmds(struct dp_netdev *dp,
3245 struct dp_netdev_port *port)
3246 {
3247 struct dp_netdev_pmd_thread *pmd;
3248 struct hmapx to_reload = HMAPX_INITIALIZER(&to_reload);
3249 struct hmapx_node *node;
3250
3251 dp_netdev_del_port_from_all_pmds__(dp, port, &to_reload);
3252
3253 HMAPX_FOR_EACH (node, &to_reload) {
3254 pmd = (struct dp_netdev_pmd_thread *) node->data;
3255 dp_netdev_reload_pmd__(pmd);
3256 }
3257
3258 hmapx_destroy(&to_reload);
3259 }
3260
3261
3262 /* Returns PMD thread from this numa node with fewer rx queues to poll.
3263 * Returns NULL if there is no PMD threads on this numa node.
3264 * Can be called safely only by main thread. */
3265 static struct dp_netdev_pmd_thread *
3266 dp_netdev_less_loaded_pmd_on_numa(struct dp_netdev *dp, int numa_id)
3267 {
3268 int min_cnt = -1;
3269 struct dp_netdev_pmd_thread *pmd, *res = NULL;
3270
3271 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
3272 if (pmd->numa_id == numa_id
3273 && (min_cnt > pmd->poll_cnt || res == NULL)) {
3274 min_cnt = pmd->poll_cnt;
3275 res = pmd;
3276 }
3277 }
3278
3279 return res;
3280 }
3281
3282 /* Adds rx queue to poll_list of PMD thread. */
3283 static void
3284 dp_netdev_add_rxq_to_pmd(struct dp_netdev_pmd_thread *pmd,
3285 struct dp_netdev_port *port, struct netdev_rxq *rx)
3286 OVS_REQUIRES(pmd->port_mutex)
3287 {
3288 struct rxq_poll *poll = xmalloc(sizeof *poll);
3289
3290 poll->port = port;
3291 poll->rx = rx;
3292
3293 ovs_list_push_back(&pmd->poll_list, &poll->node);
3294 pmd->poll_cnt++;
3295 }
3296
3297 /* Add 'port' to the tx port cache of 'pmd', which must be reloaded for the
3298 * changes to take effect. */
3299 static void
3300 dp_netdev_add_port_tx_to_pmd(struct dp_netdev_pmd_thread *pmd,
3301 struct dp_netdev_port *port)
3302 {
3303 struct tx_port *tx = xzalloc(sizeof *tx);
3304
3305 tx->netdev = port->netdev;
3306 tx->port_no = port->port_no;
3307
3308 ovs_mutex_lock(&pmd->port_mutex);
3309 hmap_insert(&pmd->tx_ports, &tx->node, hash_port_no(tx->port_no));
3310 ovs_mutex_unlock(&pmd->port_mutex);
3311 }
3312
3313 /* Distribute all rx queues of 'port' between PMD threads in 'dp'. The pmd
3314 * threads that need to be restarted are inserted in 'to_reload'. */
3315 static void
3316 dp_netdev_add_port_rx_to_pmds(struct dp_netdev *dp,
3317 struct dp_netdev_port *port,
3318 struct hmapx *to_reload)
3319 {
3320 int numa_id = netdev_get_numa_id(port->netdev);
3321 int i;
3322
3323 if (!netdev_is_pmd(port->netdev)) {
3324 return;
3325 }
3326
3327 for (i = 0; i < port->n_rxq; i++) {
3328 struct dp_netdev_pmd_thread *pmd;
3329
3330 pmd = dp_netdev_less_loaded_pmd_on_numa(dp, numa_id);
3331 if (!pmd) {
3332 VLOG_WARN("There's no pmd thread on numa node %d", numa_id);
3333 break;
3334 }
3335
3336 ovs_mutex_lock(&pmd->port_mutex);
3337 dp_netdev_add_rxq_to_pmd(pmd, port, port->rxq[i]);
3338 ovs_mutex_unlock(&pmd->port_mutex);
3339
3340 hmapx_add(to_reload, pmd);
3341 }
3342 }
3343
3344 /* Distributes all rx queues of 'port' between all PMD threads in 'dp' and
3345 * inserts 'port' in the PMD threads 'tx_ports'. The pmd threads that need to
3346 * be restarted are inserted in 'to_reload'. */
3347 static void
3348 dp_netdev_add_port_to_pmds__(struct dp_netdev *dp, struct dp_netdev_port *port,
3349 struct hmapx *to_reload)
3350 {
3351 struct dp_netdev_pmd_thread *pmd;
3352
3353 dp_netdev_add_port_rx_to_pmds(dp, port, to_reload);
3354
3355 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
3356 dp_netdev_add_port_tx_to_pmd(pmd, port);
3357 hmapx_add(to_reload, pmd);
3358 }
3359 }
3360
3361 /* Distributes all rx queues of 'port' between all PMD threads in 'dp', inserts
3362 * 'port' in the PMD threads 'tx_ports' and reloads them, if needed. */
3363 static void
3364 dp_netdev_add_port_to_pmds(struct dp_netdev *dp, struct dp_netdev_port *port)
3365 {
3366 struct dp_netdev_pmd_thread *pmd;
3367 struct hmapx to_reload = HMAPX_INITIALIZER(&to_reload);
3368 struct hmapx_node *node;
3369
3370 dp_netdev_add_port_to_pmds__(dp, port, &to_reload);
3371
3372 HMAPX_FOR_EACH (node, &to_reload) {
3373 pmd = (struct dp_netdev_pmd_thread *) node->data;
3374 dp_netdev_reload_pmd__(pmd);
3375 }
3376
3377 hmapx_destroy(&to_reload);
3378 }
3379
3380 /* Starts pmd threads for the numa node 'numa_id', if not already started.
3381 * The function takes care of filling the threads tx port cache. */
3382 static void
3383 dp_netdev_set_pmds_on_numa(struct dp_netdev *dp, int numa_id)
3384 OVS_REQUIRES(dp->port_mutex)
3385 {
3386 int n_pmds;
3387
3388 if (!ovs_numa_numa_id_is_valid(numa_id)) {
3389 VLOG_WARN("Cannot create pmd threads due to numa id (%d) invalid",
3390 numa_id);
3391 return;
3392 }
3393
3394 n_pmds = get_n_pmd_threads_on_numa(dp, numa_id);
3395
3396 /* If there are already pmd threads created for the numa node
3397 * in which 'netdev' is on, do nothing. Else, creates the
3398 * pmd threads for the numa node. */
3399 if (!n_pmds) {
3400 int can_have, n_unpinned, i;
3401
3402 n_unpinned = ovs_numa_get_n_unpinned_cores_on_numa(numa_id);
3403 if (!n_unpinned) {
3404 VLOG_WARN("Cannot create pmd threads due to out of unpinned "
3405 "cores on numa node %d", numa_id);
3406 return;
3407 }
3408
3409 /* If cpu mask is specified, uses all unpinned cores, otherwise
3410 * tries creating NR_PMD_THREADS pmd threads. */
3411 can_have = dp->pmd_cmask ? n_unpinned : MIN(n_unpinned, NR_PMD_THREADS);
3412 for (i = 0; i < can_have; i++) {
3413 unsigned core_id = ovs_numa_get_unpinned_core_on_numa(numa_id);
3414 struct dp_netdev_pmd_thread *pmd = xzalloc(sizeof *pmd);
3415 struct dp_netdev_port *port;
3416
3417 dp_netdev_configure_pmd(pmd, dp, core_id, numa_id);
3418
3419 HMAP_FOR_EACH (port, node, &dp->ports) {
3420 dp_netdev_add_port_tx_to_pmd(pmd, port);
3421 }
3422
3423 pmd->thread = ovs_thread_create("pmd", pmd_thread_main, pmd);
3424 }
3425 VLOG_INFO("Created %d pmd threads on numa node %d", can_have, numa_id);
3426 }
3427 }
3428
3429 \f
3430 /* Called after pmd threads config change. Restarts pmd threads with
3431 * new configuration. */
3432 static void
3433 dp_netdev_reset_pmd_threads(struct dp_netdev *dp)
3434 OVS_REQUIRES(dp->port_mutex)
3435 {
3436 struct hmapx to_reload = HMAPX_INITIALIZER(&to_reload);
3437 struct dp_netdev_pmd_thread *pmd;
3438 struct dp_netdev_port *port;
3439 struct hmapx_node *node;
3440
3441 HMAP_FOR_EACH (port, node, &dp->ports) {
3442 if (netdev_is_pmd(port->netdev)) {
3443 int numa_id = netdev_get_numa_id(port->netdev);
3444
3445 dp_netdev_set_pmds_on_numa(dp, numa_id);
3446 }
3447 dp_netdev_add_port_rx_to_pmds(dp, port, &to_reload);
3448 }
3449
3450 HMAPX_FOR_EACH (node, &to_reload) {
3451 pmd = (struct dp_netdev_pmd_thread *) node->data;
3452 dp_netdev_reload_pmd__(pmd);
3453 }
3454
3455 hmapx_destroy(&to_reload);
3456 }
3457
3458 static char *
3459 dpif_netdev_get_datapath_version(void)
3460 {
3461 return xstrdup("<built-in>");
3462 }
3463
3464 static void
3465 dp_netdev_flow_used(struct dp_netdev_flow *netdev_flow, int cnt, int size,
3466 uint16_t tcp_flags, long long now)
3467 {
3468 uint16_t flags;
3469
3470 atomic_store_relaxed(&netdev_flow->stats.used, now);
3471 non_atomic_ullong_add(&netdev_flow->stats.packet_count, cnt);
3472 non_atomic_ullong_add(&netdev_flow->stats.byte_count, size);
3473 atomic_read_relaxed(&netdev_flow->stats.tcp_flags, &flags);
3474 flags |= tcp_flags;
3475 atomic_store_relaxed(&netdev_flow->stats.tcp_flags, flags);
3476 }
3477
3478 static void
3479 dp_netdev_count_packet(struct dp_netdev_pmd_thread *pmd,
3480 enum dp_stat_type type, int cnt)
3481 {
3482 non_atomic_ullong_add(&pmd->stats.n[type], cnt);
3483 }
3484
3485 static int
3486 dp_netdev_upcall(struct dp_netdev_pmd_thread *pmd, struct dp_packet *packet_,
3487 struct flow *flow, struct flow_wildcards *wc, ovs_u128 *ufid,
3488 enum dpif_upcall_type type, const struct nlattr *userdata,
3489 struct ofpbuf *actions, struct ofpbuf *put_actions)
3490 {
3491 struct dp_netdev *dp = pmd->dp;
3492 struct flow_tnl orig_tunnel;
3493 int err;
3494
3495 if (OVS_UNLIKELY(!dp->upcall_cb)) {
3496 return ENODEV;
3497 }
3498
3499 /* Upcall processing expects the Geneve options to be in the translated
3500 * format but we need to retain the raw format for datapath use. */
3501 orig_tunnel.flags = flow->tunnel.flags;
3502 if (flow->tunnel.flags & FLOW_TNL_F_UDPIF) {
3503 orig_tunnel.metadata.present.len = flow->tunnel.metadata.present.len;
3504 memcpy(orig_tunnel.metadata.opts.gnv, flow->tunnel.metadata.opts.gnv,
3505 flow->tunnel.metadata.present.len);
3506 err = tun_metadata_from_geneve_udpif(&orig_tunnel, &orig_tunnel,
3507 &flow->tunnel);
3508 if (err) {
3509 return err;
3510 }
3511 }
3512
3513 if (OVS_UNLIKELY(!VLOG_DROP_DBG(&upcall_rl))) {
3514 struct ds ds = DS_EMPTY_INITIALIZER;
3515 char *packet_str;
3516 struct ofpbuf key;
3517 struct odp_flow_key_parms odp_parms = {
3518 .flow = flow,
3519 .mask = &wc->masks,
3520 .odp_in_port = flow->in_port.odp_port,
3521 .support = dp_netdev_support,
3522 };
3523
3524 ofpbuf_init(&key, 0);
3525 odp_flow_key_from_flow(&odp_parms, &key);
3526 packet_str = ofp_packet_to_string(dp_packet_data(packet_),
3527 dp_packet_size(packet_));
3528
3529 odp_flow_key_format(key.data, key.size, &ds);
3530
3531 VLOG_DBG("%s: %s upcall:\n%s\n%s", dp->name,
3532 dpif_upcall_type_to_string(type), ds_cstr(&ds), packet_str);
3533
3534 ofpbuf_uninit(&key);
3535 free(packet_str);
3536
3537 ds_destroy(&ds);
3538 }
3539
3540 err = dp->upcall_cb(packet_, flow, ufid, pmd->core_id, type, userdata,
3541 actions, wc, put_actions, dp->upcall_aux);
3542 if (err && err != ENOSPC) {
3543 return err;
3544 }
3545
3546 /* Translate tunnel metadata masks to datapath format. */
3547 if (wc) {
3548 if (wc->masks.tunnel.metadata.present.map) {
3549 struct geneve_opt opts[TLV_TOT_OPT_SIZE /
3550 sizeof(struct geneve_opt)];
3551
3552 if (orig_tunnel.flags & FLOW_TNL_F_UDPIF) {
3553 tun_metadata_to_geneve_udpif_mask(&flow->tunnel,
3554 &wc->masks.tunnel,
3555 orig_tunnel.metadata.opts.gnv,
3556 orig_tunnel.metadata.present.len,
3557 opts);
3558 } else {
3559 orig_tunnel.metadata.present.len = 0;
3560 }
3561
3562 memset(&wc->masks.tunnel.metadata, 0,
3563 sizeof wc->masks.tunnel.metadata);
3564 memcpy(&wc->masks.tunnel.metadata.opts.gnv, opts,
3565 orig_tunnel.metadata.present.len);
3566 }
3567 wc->masks.tunnel.metadata.present.len = 0xff;
3568 }
3569
3570 /* Restore tunnel metadata. We need to use the saved options to ensure
3571 * that any unknown options are not lost. The generated mask will have
3572 * the same structure, matching on types and lengths but wildcarding
3573 * option data we don't care about. */
3574 if (orig_tunnel.flags & FLOW_TNL_F_UDPIF) {
3575 memcpy(&flow->tunnel.metadata.opts.gnv, orig_tunnel.metadata.opts.gnv,
3576 orig_tunnel.metadata.present.len);
3577 flow->tunnel.metadata.present.len = orig_tunnel.metadata.present.len;
3578 flow->tunnel.flags |= FLOW_TNL_F_UDPIF;
3579 }
3580
3581 return err;
3582 }
3583
3584 static inline uint32_t
3585 dpif_netdev_packet_get_rss_hash(struct dp_packet *packet,
3586 const struct miniflow *mf)
3587 {
3588 uint32_t hash, recirc_depth;
3589
3590 if (OVS_LIKELY(dp_packet_rss_valid(packet))) {
3591 hash = dp_packet_get_rss_hash(packet);
3592 } else {
3593 hash = miniflow_hash_5tuple(mf, 0);
3594 dp_packet_set_rss_hash(packet, hash);
3595 }
3596
3597 /* The RSS hash must account for the recirculation depth to avoid
3598 * collisions in the exact match cache */
3599 recirc_depth = *recirc_depth_get_unsafe();
3600 if (OVS_UNLIKELY(recirc_depth)) {
3601 hash = hash_finish(hash, recirc_depth);
3602 dp_packet_set_rss_hash(packet, hash);
3603 }
3604 return hash;
3605 }
3606
3607 struct packet_batch_per_flow {
3608 unsigned int byte_count;
3609 uint16_t tcp_flags;
3610 struct dp_netdev_flow *flow;
3611
3612 struct dp_packet_batch array;
3613 };
3614
3615 static inline void
3616 packet_batch_per_flow_update(struct packet_batch_per_flow *batch,
3617 struct dp_packet *packet,
3618 const struct miniflow *mf)
3619 {
3620 batch->byte_count += dp_packet_size(packet);
3621 batch->tcp_flags |= miniflow_get_tcp_flags(mf);
3622 batch->array.packets[batch->array.count++] = packet;
3623 }
3624
3625 static inline void
3626 packet_batch_per_flow_init(struct packet_batch_per_flow *batch,
3627 struct dp_netdev_flow *flow)
3628 {
3629 flow->batch = batch;
3630
3631 batch->flow = flow;
3632 dp_packet_batch_init(&batch->array);
3633 batch->byte_count = 0;
3634 batch->tcp_flags = 0;
3635 }
3636
3637 static inline void
3638 packet_batch_per_flow_execute(struct packet_batch_per_flow *batch,
3639 struct dp_netdev_pmd_thread *pmd,
3640 long long now)
3641 {
3642 struct dp_netdev_actions *actions;
3643 struct dp_netdev_flow *flow = batch->flow;
3644
3645 dp_netdev_flow_used(flow, batch->array.count, batch->byte_count,
3646 batch->tcp_flags, now);
3647
3648 actions = dp_netdev_flow_get_actions(flow);
3649
3650 dp_netdev_execute_actions(pmd, &batch->array, true,
3651 actions->actions, actions->size);
3652 }
3653
3654 static inline void
3655 dp_netdev_queue_batches(struct dp_packet *pkt,
3656 struct dp_netdev_flow *flow, const struct miniflow *mf,
3657 struct packet_batch_per_flow *batches, size_t *n_batches)
3658 {
3659 struct packet_batch_per_flow *batch = flow->batch;
3660
3661 if (OVS_UNLIKELY(!batch)) {
3662 batch = &batches[(*n_batches)++];
3663 packet_batch_per_flow_init(batch, flow);
3664 }
3665
3666 packet_batch_per_flow_update(batch, pkt, mf);
3667 }
3668
3669 /* Try to process all ('cnt') the 'packets' using only the exact match cache
3670 * 'pmd->flow_cache'. If a flow is not found for a packet 'packets[i]', the
3671 * miniflow is copied into 'keys' and the packet pointer is moved at the
3672 * beginning of the 'packets' array.
3673 *
3674 * The function returns the number of packets that needs to be processed in the
3675 * 'packets' array (they have been moved to the beginning of the vector).
3676 *
3677 * If 'md_is_valid' is false, the metadata in 'packets' is not valid and must be
3678 * initialized by this function using 'port_no'.
3679 */
3680 static inline size_t
3681 emc_processing(struct dp_netdev_pmd_thread *pmd, struct dp_packet_batch *packets_,
3682 struct netdev_flow_key *keys,
3683 struct packet_batch_per_flow batches[], size_t *n_batches,
3684 bool md_is_valid, odp_port_t port_no)
3685 {
3686 struct emc_cache *flow_cache = &pmd->flow_cache;
3687 struct netdev_flow_key *key = &keys[0];
3688 size_t i, n_missed = 0, n_dropped = 0;
3689 struct dp_packet **packets = packets_->packets;
3690 int cnt = packets_->count;
3691
3692 for (i = 0; i < cnt; i++) {
3693 struct dp_netdev_flow *flow;
3694 struct dp_packet *packet = packets[i];
3695
3696 if (OVS_UNLIKELY(dp_packet_size(packet) < ETH_HEADER_LEN)) {
3697 dp_packet_delete(packet);
3698 n_dropped++;
3699 continue;
3700 }
3701
3702 if (i != cnt - 1) {
3703 /* Prefetch next packet data and metadata. */
3704 OVS_PREFETCH(dp_packet_data(packets[i+1]));
3705 pkt_metadata_prefetch_init(&packets[i+1]->md);
3706 }
3707
3708 if (!md_is_valid) {
3709 pkt_metadata_init(&packet->md, port_no);
3710 }
3711 miniflow_extract(packet, &key->mf);
3712 key->len = 0; /* Not computed yet. */
3713 key->hash = dpif_netdev_packet_get_rss_hash(packet, &key->mf);
3714
3715 flow = emc_lookup(flow_cache, key);
3716 if (OVS_LIKELY(flow)) {
3717 dp_netdev_queue_batches(packet, flow, &key->mf, batches,
3718 n_batches);
3719 } else {
3720 /* Exact match cache missed. Group missed packets together at
3721 * the beginning of the 'packets' array. */
3722 packets[n_missed] = packet;
3723 /* 'key[n_missed]' contains the key of the current packet and it
3724 * must be returned to the caller. The next key should be extracted
3725 * to 'keys[n_missed + 1]'. */
3726 key = &keys[++n_missed];
3727 }
3728 }
3729
3730 dp_netdev_count_packet(pmd, DP_STAT_EXACT_HIT, cnt - n_dropped - n_missed);
3731
3732 return n_missed;
3733 }
3734
3735 static inline void
3736 handle_packet_upcall(struct dp_netdev_pmd_thread *pmd, struct dp_packet *packet,
3737 const struct netdev_flow_key *key,
3738 struct ofpbuf *actions, struct ofpbuf *put_actions,
3739 int *lost_cnt)
3740 {
3741 struct ofpbuf *add_actions;
3742 struct dp_packet_batch b;
3743 struct match match;
3744 ovs_u128 ufid;
3745 int error;
3746
3747 match.tun_md.valid = false;
3748 miniflow_expand(&key->mf, &match.flow);
3749
3750 ofpbuf_clear(actions);
3751 ofpbuf_clear(put_actions);
3752
3753 dpif_flow_hash(pmd->dp->dpif, &match.flow, sizeof match.flow, &ufid);
3754 error = dp_netdev_upcall(pmd, packet, &match.flow, &match.wc,
3755 &ufid, DPIF_UC_MISS, NULL, actions,
3756 put_actions);
3757 if (OVS_UNLIKELY(error && error != ENOSPC)) {
3758 dp_packet_delete(packet);
3759 (*lost_cnt)++;
3760 return;
3761 }
3762
3763 /* The Netlink encoding of datapath flow keys cannot express
3764 * wildcarding the presence of a VLAN tag. Instead, a missing VLAN
3765 * tag is interpreted as exact match on the fact that there is no
3766 * VLAN. Unless we refactor a lot of code that translates between
3767 * Netlink and struct flow representations, we have to do the same
3768 * here. */
3769 if (!match.wc.masks.vlan_tci) {
3770 match.wc.masks.vlan_tci = htons(0xffff);
3771 }
3772
3773 /* We can't allow the packet batching in the next loop to execute
3774 * the actions. Otherwise, if there are any slow path actions,
3775 * we'll send the packet up twice. */
3776 packet_batch_init_packet(&b, packet);
3777 dp_netdev_execute_actions(pmd, &b, true,
3778 actions->data, actions->size);
3779
3780 add_actions = put_actions->size ? put_actions : actions;
3781 if (OVS_LIKELY(error != ENOSPC)) {
3782 struct dp_netdev_flow *netdev_flow;
3783
3784 /* XXX: There's a race window where a flow covering this packet
3785 * could have already been installed since we last did the flow
3786 * lookup before upcall. This could be solved by moving the
3787 * mutex lock outside the loop, but that's an awful long time
3788 * to be locking everyone out of making flow installs. If we
3789 * move to a per-core classifier, it would be reasonable. */
3790 ovs_mutex_lock(&pmd->flow_mutex);
3791 netdev_flow = dp_netdev_pmd_lookup_flow(pmd, key);
3792 if (OVS_LIKELY(!netdev_flow)) {
3793 netdev_flow = dp_netdev_flow_add(pmd, &match, &ufid,
3794 add_actions->data,
3795 add_actions->size);
3796 }
3797 ovs_mutex_unlock(&pmd->flow_mutex);
3798
3799 emc_insert(&pmd->flow_cache, key, netdev_flow);
3800 }
3801 }
3802
3803 static inline void
3804 fast_path_processing(struct dp_netdev_pmd_thread *pmd,
3805 struct dp_packet_batch *packets_,
3806 struct netdev_flow_key *keys,
3807 struct packet_batch_per_flow batches[], size_t *n_batches)
3808 {
3809 int cnt = packets_->count;
3810 #if !defined(__CHECKER__) && !defined(_WIN32)
3811 const size_t PKT_ARRAY_SIZE = cnt;
3812 #else
3813 /* Sparse or MSVC doesn't like variable length array. */
3814 enum { PKT_ARRAY_SIZE = NETDEV_MAX_BURST };
3815 #endif
3816 struct dp_packet **packets = packets_->packets;
3817 struct dpcls_rule *rules[PKT_ARRAY_SIZE];
3818 struct dp_netdev *dp = pmd->dp;
3819 struct emc_cache *flow_cache = &pmd->flow_cache;
3820 int miss_cnt = 0, lost_cnt = 0;
3821 bool any_miss;
3822 size_t i;
3823
3824 for (i = 0; i < cnt; i++) {
3825 /* Key length is needed in all the cases, hash computed on demand. */
3826 keys[i].len = netdev_flow_key_size(miniflow_n_values(&keys[i].mf));
3827 }
3828 any_miss = !dpcls_lookup(&pmd->cls, keys, rules, cnt);
3829 if (OVS_UNLIKELY(any_miss) && !fat_rwlock_tryrdlock(&dp->upcall_rwlock)) {
3830 uint64_t actions_stub[512 / 8], slow_stub[512 / 8];
3831 struct ofpbuf actions, put_actions;
3832
3833 ofpbuf_use_stub(&actions, actions_stub, sizeof actions_stub);
3834 ofpbuf_use_stub(&put_actions, slow_stub, sizeof slow_stub);
3835
3836 for (i = 0; i < cnt; i++) {
3837 struct dp_netdev_flow *netdev_flow;
3838
3839 if (OVS_LIKELY(rules[i])) {
3840 continue;
3841 }
3842
3843 /* It's possible that an earlier slow path execution installed
3844 * a rule covering this flow. In this case, it's a lot cheaper
3845 * to catch it here than execute a miss. */
3846 netdev_flow = dp_netdev_pmd_lookup_flow(pmd, &keys[i]);
3847 if (netdev_flow) {
3848 rules[i] = &netdev_flow->cr;
3849 continue;
3850 }
3851
3852 miss_cnt++;
3853 handle_packet_upcall(pmd, packets[i], &keys[i], &actions, &put_actions,
3854 &lost_cnt);
3855 }
3856
3857 ofpbuf_uninit(&actions);
3858 ofpbuf_uninit(&put_actions);
3859 fat_rwlock_unlock(&dp->upcall_rwlock);
3860 dp_netdev_count_packet(pmd, DP_STAT_LOST, lost_cnt);
3861 } else if (OVS_UNLIKELY(any_miss)) {
3862 for (i = 0; i < cnt; i++) {
3863 if (OVS_UNLIKELY(!rules[i])) {
3864 dp_packet_delete(packets[i]);
3865 lost_cnt++;
3866 miss_cnt++;
3867 }
3868 }
3869 }
3870
3871 for (i = 0; i < cnt; i++) {
3872 struct dp_packet *packet = packets[i];
3873 struct dp_netdev_flow *flow;
3874
3875 if (OVS_UNLIKELY(!rules[i])) {
3876 continue;
3877 }
3878
3879 flow = dp_netdev_flow_cast(rules[i]);
3880
3881 emc_insert(flow_cache, &keys[i], flow);
3882 dp_netdev_queue_batches(packet, flow, &keys[i].mf, batches, n_batches);
3883 }
3884
3885 dp_netdev_count_packet(pmd, DP_STAT_MASKED_HIT, cnt - miss_cnt);
3886 dp_netdev_count_packet(pmd, DP_STAT_MISS, miss_cnt);
3887 dp_netdev_count_packet(pmd, DP_STAT_LOST, lost_cnt);
3888 }
3889
3890 /* Packets enter the datapath from a port (or from recirculation) here.
3891 *
3892 * For performance reasons a caller may choose not to initialize the metadata
3893 * in 'packets': in this case 'mdinit' is false and this function needs to
3894 * initialize it using 'port_no'. If the metadata in 'packets' is already
3895 * valid, 'md_is_valid' must be true and 'port_no' will be ignored. */
3896 static void
3897 dp_netdev_input__(struct dp_netdev_pmd_thread *pmd,
3898 struct dp_packet_batch *packets,
3899 bool md_is_valid, odp_port_t port_no)
3900 {
3901 int cnt = packets->count;
3902 #if !defined(__CHECKER__) && !defined(_WIN32)
3903 const size_t PKT_ARRAY_SIZE = cnt;
3904 #else
3905 /* Sparse or MSVC doesn't like variable length array. */
3906 enum { PKT_ARRAY_SIZE = NETDEV_MAX_BURST };
3907 #endif
3908 struct netdev_flow_key keys[PKT_ARRAY_SIZE];
3909 struct packet_batch_per_flow batches[PKT_ARRAY_SIZE];
3910 long long now = time_msec();
3911 size_t newcnt, n_batches, i;
3912
3913 n_batches = 0;
3914 newcnt = emc_processing(pmd, packets, keys, batches, &n_batches,
3915 md_is_valid, port_no);
3916 if (OVS_UNLIKELY(newcnt)) {
3917 packets->count = newcnt;
3918 fast_path_processing(pmd, packets, keys, batches, &n_batches);
3919 }
3920
3921 for (i = 0; i < n_batches; i++) {
3922 batches[i].flow->batch = NULL;
3923 }
3924
3925 for (i = 0; i < n_batches; i++) {
3926 packet_batch_per_flow_execute(&batches[i], pmd, now);
3927 }
3928 }
3929
3930 static void
3931 dp_netdev_input(struct dp_netdev_pmd_thread *pmd,
3932 struct dp_packet_batch *packets,
3933 odp_port_t port_no)
3934 {
3935 dp_netdev_input__(pmd, packets, false, port_no);
3936 }
3937
3938 static void
3939 dp_netdev_recirculate(struct dp_netdev_pmd_thread *pmd,
3940 struct dp_packet_batch *packets)
3941 {
3942 dp_netdev_input__(pmd, packets, true, 0);
3943 }
3944
3945 struct dp_netdev_execute_aux {
3946 struct dp_netdev_pmd_thread *pmd;
3947 };
3948
3949 static void
3950 dpif_netdev_register_dp_purge_cb(struct dpif *dpif, dp_purge_callback *cb,
3951 void *aux)
3952 {
3953 struct dp_netdev *dp = get_dp_netdev(dpif);
3954 dp->dp_purge_aux = aux;
3955 dp->dp_purge_cb = cb;
3956 }
3957
3958 static void
3959 dpif_netdev_register_upcall_cb(struct dpif *dpif, upcall_callback *cb,
3960 void *aux)
3961 {
3962 struct dp_netdev *dp = get_dp_netdev(dpif);
3963 dp->upcall_aux = aux;
3964 dp->upcall_cb = cb;
3965 }
3966
3967 static struct tx_port *
3968 pmd_tx_port_cache_lookup(const struct dp_netdev_pmd_thread *pmd,
3969 odp_port_t port_no)
3970 {
3971 return tx_port_lookup(&pmd->port_cache, port_no);
3972 }
3973
3974 static int
3975 push_tnl_action(const struct dp_netdev_pmd_thread *pmd,
3976 const struct nlattr *attr,
3977 struct dp_packet_batch *batch)
3978 {
3979 struct tx_port *tun_port;
3980 const struct ovs_action_push_tnl *data;
3981 int err;
3982
3983 data = nl_attr_get(attr);
3984
3985 tun_port = pmd_tx_port_cache_lookup(pmd, u32_to_odp(data->tnl_port));
3986 if (!tun_port) {
3987 err = -EINVAL;
3988 goto error;
3989 }
3990 err = netdev_push_header(tun_port->netdev, batch, data);
3991 if (!err) {
3992 return 0;
3993 }
3994 error:
3995 dp_packet_delete_batch(batch, true);
3996 return err;
3997 }
3998
3999 static void
4000 dp_execute_userspace_action(struct dp_netdev_pmd_thread *pmd,
4001 struct dp_packet *packet, bool may_steal,
4002 struct flow *flow, ovs_u128 *ufid,
4003 struct ofpbuf *actions,
4004 const struct nlattr *userdata)
4005 {
4006 struct dp_packet_batch b;
4007 int error;
4008
4009 ofpbuf_clear(actions);
4010
4011 error = dp_netdev_upcall(pmd, packet, flow, NULL, ufid,
4012 DPIF_UC_ACTION, userdata, actions,
4013 NULL);
4014 if (!error || error == ENOSPC) {
4015 packet_batch_init_packet(&b, packet);
4016 dp_netdev_execute_actions(pmd, &b, may_steal,
4017 actions->data, actions->size);
4018 } else if (may_steal) {
4019 dp_packet_delete(packet);
4020 }
4021 }
4022
4023 static void
4024 dp_execute_cb(void *aux_, struct dp_packet_batch *packets_,
4025 const struct nlattr *a, bool may_steal)
4026 {
4027 struct dp_netdev_execute_aux *aux = aux_;
4028 uint32_t *depth = recirc_depth_get();
4029 struct dp_netdev_pmd_thread *pmd = aux->pmd;
4030 struct dp_netdev *dp = pmd->dp;
4031 int type = nl_attr_type(a);
4032 struct tx_port *p;
4033
4034 switch ((enum ovs_action_attr)type) {
4035 case OVS_ACTION_ATTR_OUTPUT:
4036 p = pmd_tx_port_cache_lookup(pmd, u32_to_odp(nl_attr_get_u32(a)));
4037 if (OVS_LIKELY(p)) {
4038 int tx_qid;
4039
4040 atomic_read_relaxed(&pmd->tx_qid, &tx_qid);
4041
4042 netdev_send(p->netdev, tx_qid, packets_, may_steal);
4043 return;
4044 }
4045 break;
4046
4047 case OVS_ACTION_ATTR_TUNNEL_PUSH:
4048 if (*depth < MAX_RECIRC_DEPTH) {
4049 struct dp_packet_batch tnl_pkt;
4050 int err;
4051
4052 if (!may_steal) {
4053 dp_packet_batch_clone(&tnl_pkt, packets_);
4054 packets_ = &tnl_pkt;
4055 }
4056
4057 err = push_tnl_action(pmd, a, packets_);
4058 if (!err) {
4059 (*depth)++;
4060 dp_netdev_recirculate(pmd, packets_);
4061 (*depth)--;
4062 }
4063 return;
4064 }
4065 break;
4066
4067 case OVS_ACTION_ATTR_TUNNEL_POP:
4068 if (*depth < MAX_RECIRC_DEPTH) {
4069 odp_port_t portno = u32_to_odp(nl_attr_get_u32(a));
4070
4071 p = pmd_tx_port_cache_lookup(pmd, portno);
4072 if (p) {
4073 struct dp_packet_batch tnl_pkt;
4074 int i;
4075
4076 if (!may_steal) {
4077 dp_packet_batch_clone(&tnl_pkt, packets_);
4078 packets_ = &tnl_pkt;
4079 }
4080
4081 netdev_pop_header(p->netdev, packets_);
4082 if (!packets_->count) {
4083 return;
4084 }
4085
4086 for (i = 0; i < packets_->count; i++) {
4087 packets_->packets[i]->md.in_port.odp_port = portno;
4088 }
4089
4090 (*depth)++;
4091 dp_netdev_recirculate(pmd, packets_);
4092 (*depth)--;
4093 return;
4094 }
4095 }
4096 break;
4097
4098 case OVS_ACTION_ATTR_USERSPACE:
4099 if (!fat_rwlock_tryrdlock(&dp->upcall_rwlock)) {
4100 struct dp_packet **packets = packets_->packets;
4101 const struct nlattr *userdata;
4102 struct ofpbuf actions;
4103 struct flow flow;
4104 ovs_u128 ufid;
4105 int i;
4106
4107 userdata = nl_attr_find_nested(a, OVS_USERSPACE_ATTR_USERDATA);
4108 ofpbuf_init(&actions, 0);
4109
4110 for (i = 0; i < packets_->count; i++) {
4111 flow_extract(packets[i], &flow);
4112 dpif_flow_hash(dp->dpif, &flow, sizeof flow, &ufid);
4113 dp_execute_userspace_action(pmd, packets[i], may_steal, &flow,
4114 &ufid, &actions, userdata);
4115 }
4116 ofpbuf_uninit(&actions);
4117 fat_rwlock_unlock(&dp->upcall_rwlock);
4118
4119 return;
4120 }
4121 break;
4122
4123 case OVS_ACTION_ATTR_RECIRC:
4124 if (*depth < MAX_RECIRC_DEPTH) {
4125 struct dp_packet_batch recirc_pkts;
4126 int i;
4127
4128 if (!may_steal) {
4129 dp_packet_batch_clone(&recirc_pkts, packets_);
4130 packets_ = &recirc_pkts;
4131 }
4132
4133 for (i = 0; i < packets_->count; i++) {
4134 packets_->packets[i]->md.recirc_id = nl_attr_get_u32(a);
4135 }
4136
4137 (*depth)++;
4138 dp_netdev_recirculate(pmd, packets_);
4139 (*depth)--;
4140
4141 return;
4142 }
4143
4144 VLOG_WARN("Packet dropped. Max recirculation depth exceeded.");
4145 break;
4146
4147 case OVS_ACTION_ATTR_CT:
4148 /* If a flow with this action is slow-pathed, datapath assistance is
4149 * required to implement it. However, we don't support this action
4150 * in the userspace datapath. */
4151 VLOG_WARN("Cannot execute conntrack action in userspace.");
4152 break;
4153
4154 case OVS_ACTION_ATTR_PUSH_VLAN:
4155 case OVS_ACTION_ATTR_POP_VLAN:
4156 case OVS_ACTION_ATTR_PUSH_MPLS:
4157 case OVS_ACTION_ATTR_POP_MPLS:
4158 case OVS_ACTION_ATTR_SET:
4159 case OVS_ACTION_ATTR_SET_MASKED:
4160 case OVS_ACTION_ATTR_SAMPLE:
4161 case OVS_ACTION_ATTR_HASH:
4162 case OVS_ACTION_ATTR_UNSPEC:
4163 case __OVS_ACTION_ATTR_MAX:
4164 OVS_NOT_REACHED();
4165 }
4166
4167 dp_packet_delete_batch(packets_, may_steal);
4168 }
4169
4170 static void
4171 dp_netdev_execute_actions(struct dp_netdev_pmd_thread *pmd,
4172 struct dp_packet_batch *packets,
4173 bool may_steal,
4174 const struct nlattr *actions, size_t actions_len)
4175 {
4176 struct dp_netdev_execute_aux aux = { pmd };
4177
4178 odp_execute_actions(&aux, packets, may_steal, actions,
4179 actions_len, dp_execute_cb);
4180 }
4181
4182 const struct dpif_class dpif_netdev_class = {
4183 "netdev",
4184 dpif_netdev_init,
4185 dpif_netdev_enumerate,
4186 dpif_netdev_port_open_type,
4187 dpif_netdev_open,
4188 dpif_netdev_close,
4189 dpif_netdev_destroy,
4190 dpif_netdev_run,
4191 dpif_netdev_wait,
4192 dpif_netdev_get_stats,
4193 dpif_netdev_port_add,
4194 dpif_netdev_port_del,
4195 dpif_netdev_port_query_by_number,
4196 dpif_netdev_port_query_by_name,
4197 NULL, /* port_get_pid */
4198 dpif_netdev_port_dump_start,
4199 dpif_netdev_port_dump_next,
4200 dpif_netdev_port_dump_done,
4201 dpif_netdev_port_poll,
4202 dpif_netdev_port_poll_wait,
4203 dpif_netdev_flow_flush,
4204 dpif_netdev_flow_dump_create,
4205 dpif_netdev_flow_dump_destroy,
4206 dpif_netdev_flow_dump_thread_create,
4207 dpif_netdev_flow_dump_thread_destroy,
4208 dpif_netdev_flow_dump_next,
4209 dpif_netdev_operate,
4210 NULL, /* recv_set */
4211 NULL, /* handlers_set */
4212 dpif_netdev_pmd_set,
4213 dpif_netdev_queue_to_priority,
4214 NULL, /* recv */
4215 NULL, /* recv_wait */
4216 NULL, /* recv_purge */
4217 dpif_netdev_register_dp_purge_cb,
4218 dpif_netdev_register_upcall_cb,
4219 dpif_netdev_enable_upcall,
4220 dpif_netdev_disable_upcall,
4221 dpif_netdev_get_datapath_version,
4222 NULL, /* ct_dump_start */
4223 NULL, /* ct_dump_next */
4224 NULL, /* ct_dump_done */
4225 NULL, /* ct_flush */
4226 };
4227
4228 static void
4229 dpif_dummy_change_port_number(struct unixctl_conn *conn, int argc OVS_UNUSED,
4230 const char *argv[], void *aux OVS_UNUSED)
4231 {
4232 struct dp_netdev_port *port;
4233 struct dp_netdev *dp;
4234 odp_port_t port_no;
4235
4236 ovs_mutex_lock(&dp_netdev_mutex);
4237 dp = shash_find_data(&dp_netdevs, argv[1]);
4238 if (!dp || !dpif_netdev_class_is_dummy(dp->class)) {
4239 ovs_mutex_unlock(&dp_netdev_mutex);
4240 unixctl_command_reply_error(conn, "unknown datapath or not a dummy");
4241 return;
4242 }
4243 ovs_refcount_ref(&dp->ref_cnt);
4244 ovs_mutex_unlock(&dp_netdev_mutex);
4245
4246 ovs_mutex_lock(&dp->port_mutex);
4247 if (get_port_by_name(dp, argv[2], &port)) {
4248 unixctl_command_reply_error(conn, "unknown port");
4249 goto exit;
4250 }
4251
4252 port_no = u32_to_odp(atoi(argv[3]));
4253 if (!port_no || port_no == ODPP_NONE) {
4254 unixctl_command_reply_error(conn, "bad port number");
4255 goto exit;
4256 }
4257 if (dp_netdev_lookup_port(dp, port_no)) {
4258 unixctl_command_reply_error(conn, "port number already in use");
4259 goto exit;
4260 }
4261
4262 /* Remove port. */
4263 hmap_remove(&dp->ports, &port->node);
4264 dp_netdev_del_port_from_all_pmds(dp, port);
4265
4266 /* Reinsert with new port number. */
4267 port->port_no = port_no;
4268 hmap_insert(&dp->ports, &port->node, hash_port_no(port_no));
4269 dp_netdev_add_port_to_pmds(dp, port);
4270
4271 seq_change(dp->port_seq);
4272 unixctl_command_reply(conn, NULL);
4273
4274 exit:
4275 ovs_mutex_unlock(&dp->port_mutex);
4276 dp_netdev_unref(dp);
4277 }
4278
4279 static void
4280 dpif_dummy_register__(const char *type)
4281 {
4282 struct dpif_class *class;
4283
4284 class = xmalloc(sizeof *class);
4285 *class = dpif_netdev_class;
4286 class->type = xstrdup(type);
4287 dp_register_provider(class);
4288 }
4289
4290 static void
4291 dpif_dummy_override(const char *type)
4292 {
4293 int error;
4294
4295 /*
4296 * Ignore EAFNOSUPPORT to allow --enable-dummy=system with
4297 * a userland-only build. It's useful for testsuite.
4298 */
4299 error = dp_unregister_provider(type);
4300 if (error == 0 || error == EAFNOSUPPORT) {
4301 dpif_dummy_register__(type);
4302 }
4303 }
4304
4305 void
4306 dpif_dummy_register(enum dummy_level level)
4307 {
4308 if (level == DUMMY_OVERRIDE_ALL) {
4309 struct sset types;
4310 const char *type;
4311
4312 sset_init(&types);
4313 dp_enumerate_types(&types);
4314 SSET_FOR_EACH (type, &types) {
4315 dpif_dummy_override(type);
4316 }
4317 sset_destroy(&types);
4318 } else if (level == DUMMY_OVERRIDE_SYSTEM) {
4319 dpif_dummy_override("system");
4320 }
4321
4322 dpif_dummy_register__("dummy");
4323
4324 unixctl_command_register("dpif-dummy/change-port-number",
4325 "dp port new-number",
4326 3, 3, dpif_dummy_change_port_number, NULL);
4327 }
4328 \f
4329 /* Datapath Classifier. */
4330
4331 /* A set of rules that all have the same fields wildcarded. */
4332 struct dpcls_subtable {
4333 /* The fields are only used by writers. */
4334 struct cmap_node cmap_node OVS_GUARDED; /* Within dpcls 'subtables_map'. */
4335
4336 /* These fields are accessed by readers. */
4337 struct cmap rules; /* Contains "struct dpcls_rule"s. */
4338 struct netdev_flow_key mask; /* Wildcards for fields (const). */
4339 /* 'mask' must be the last field, additional space is allocated here. */
4340 };
4341
4342 /* Initializes 'cls' as a classifier that initially contains no classification
4343 * rules. */
4344 static void
4345 dpcls_init(struct dpcls *cls)
4346 {
4347 cmap_init(&cls->subtables_map);
4348 pvector_init(&cls->subtables);
4349 }
4350
4351 static void
4352 dpcls_destroy_subtable(struct dpcls *cls, struct dpcls_subtable *subtable)
4353 {
4354 pvector_remove(&cls->subtables, subtable);
4355 cmap_remove(&cls->subtables_map, &subtable->cmap_node,
4356 subtable->mask.hash);
4357 cmap_destroy(&subtable->rules);
4358 ovsrcu_postpone(free, subtable);
4359 }
4360
4361 /* Destroys 'cls'. Rules within 'cls', if any, are not freed; this is the
4362 * caller's responsibility.
4363 * May only be called after all the readers have been terminated. */
4364 static void
4365 dpcls_destroy(struct dpcls *cls)
4366 {
4367 if (cls) {
4368 struct dpcls_subtable *subtable;
4369
4370 CMAP_FOR_EACH (subtable, cmap_node, &cls->subtables_map) {
4371 ovs_assert(cmap_count(&subtable->rules) == 0);
4372 dpcls_destroy_subtable(cls, subtable);
4373 }
4374 cmap_destroy(&cls->subtables_map);
4375 pvector_destroy(&cls->subtables);
4376 }
4377 }
4378
4379 static struct dpcls_subtable *
4380 dpcls_create_subtable(struct dpcls *cls, const struct netdev_flow_key *mask)
4381 {
4382 struct dpcls_subtable *subtable;
4383
4384 /* Need to add one. */
4385 subtable = xmalloc(sizeof *subtable
4386 - sizeof subtable->mask.mf + mask->len);
4387 cmap_init(&subtable->rules);
4388 netdev_flow_key_clone(&subtable->mask, mask);
4389 cmap_insert(&cls->subtables_map, &subtable->cmap_node, mask->hash);
4390 pvector_insert(&cls->subtables, subtable, 0);
4391 pvector_publish(&cls->subtables);
4392
4393 return subtable;
4394 }
4395
4396 static inline struct dpcls_subtable *
4397 dpcls_find_subtable(struct dpcls *cls, const struct netdev_flow_key *mask)
4398 {
4399 struct dpcls_subtable *subtable;
4400
4401 CMAP_FOR_EACH_WITH_HASH (subtable, cmap_node, mask->hash,
4402 &cls->subtables_map) {
4403 if (netdev_flow_key_equal(&subtable->mask, mask)) {
4404 return subtable;
4405 }
4406 }
4407 return dpcls_create_subtable(cls, mask);
4408 }
4409
4410 /* Insert 'rule' into 'cls'. */
4411 static void
4412 dpcls_insert(struct dpcls *cls, struct dpcls_rule *rule,
4413 const struct netdev_flow_key *mask)
4414 {
4415 struct dpcls_subtable *subtable = dpcls_find_subtable(cls, mask);
4416
4417 rule->mask = &subtable->mask;
4418 cmap_insert(&subtable->rules, &rule->cmap_node, rule->flow.hash);
4419 }
4420
4421 /* Removes 'rule' from 'cls', also destructing the 'rule'. */
4422 static void
4423 dpcls_remove(struct dpcls *cls, struct dpcls_rule *rule)
4424 {
4425 struct dpcls_subtable *subtable;
4426
4427 ovs_assert(rule->mask);
4428
4429 INIT_CONTAINER(subtable, rule->mask, mask);
4430
4431 if (cmap_remove(&subtable->rules, &rule->cmap_node, rule->flow.hash)
4432 == 0) {
4433 dpcls_destroy_subtable(cls, subtable);
4434 pvector_publish(&cls->subtables);
4435 }
4436 }
4437
4438 /* Returns true if 'target' satisfies 'key' in 'mask', that is, if each 1-bit
4439 * in 'mask' the values in 'key' and 'target' are the same. */
4440 static inline bool
4441 dpcls_rule_matches_key(const struct dpcls_rule *rule,
4442 const struct netdev_flow_key *target)
4443 {
4444 const uint64_t *keyp = miniflow_get_values(&rule->flow.mf);
4445 const uint64_t *maskp = miniflow_get_values(&rule->mask->mf);
4446 uint64_t value;
4447
4448 NETDEV_FLOW_KEY_FOR_EACH_IN_FLOWMAP(value, target, rule->flow.mf.map) {
4449 if (OVS_UNLIKELY((value & *maskp++) != *keyp++)) {
4450 return false;
4451 }
4452 }
4453 return true;
4454 }
4455
4456 /* For each miniflow in 'flows' performs a classifier lookup writing the result
4457 * into the corresponding slot in 'rules'. If a particular entry in 'flows' is
4458 * NULL it is skipped.
4459 *
4460 * This function is optimized for use in the userspace datapath and therefore
4461 * does not implement a lot of features available in the standard
4462 * classifier_lookup() function. Specifically, it does not implement
4463 * priorities, instead returning any rule which matches the flow.
4464 *
4465 * Returns true if all flows found a corresponding rule. */
4466 static bool
4467 dpcls_lookup(const struct dpcls *cls, const struct netdev_flow_key keys[],
4468 struct dpcls_rule **rules, const size_t cnt)
4469 {
4470 /* The batch size 16 was experimentally found faster than 8 or 32. */
4471 typedef uint16_t map_type;
4472 #define MAP_BITS (sizeof(map_type) * CHAR_BIT)
4473
4474 #if !defined(__CHECKER__) && !defined(_WIN32)
4475 const int N_MAPS = DIV_ROUND_UP(cnt, MAP_BITS);
4476 #else
4477 enum { N_MAPS = DIV_ROUND_UP(NETDEV_MAX_BURST, MAP_BITS) };
4478 #endif
4479 map_type maps[N_MAPS];
4480 struct dpcls_subtable *subtable;
4481
4482 memset(maps, 0xff, sizeof maps);
4483 if (cnt % MAP_BITS) {
4484 maps[N_MAPS - 1] >>= MAP_BITS - cnt % MAP_BITS; /* Clear extra bits. */
4485 }
4486 memset(rules, 0, cnt * sizeof *rules);
4487
4488 PVECTOR_FOR_EACH (subtable, &cls->subtables) {
4489 const struct netdev_flow_key *mkeys = keys;
4490 struct dpcls_rule **mrules = rules;
4491 map_type remains = 0;
4492 int m;
4493
4494 BUILD_ASSERT_DECL(sizeof remains == sizeof *maps);
4495
4496 for (m = 0; m < N_MAPS; m++, mkeys += MAP_BITS, mrules += MAP_BITS) {
4497 uint32_t hashes[MAP_BITS];
4498 const struct cmap_node *nodes[MAP_BITS];
4499 unsigned long map = maps[m];
4500 int i;
4501
4502 if (!map) {
4503 continue; /* Skip empty maps. */
4504 }
4505
4506 /* Compute hashes for the remaining keys. */
4507 ULLONG_FOR_EACH_1(i, map) {
4508 hashes[i] = netdev_flow_key_hash_in_mask(&mkeys[i],
4509 &subtable->mask);
4510 }
4511 /* Lookup. */
4512 map = cmap_find_batch(&subtable->rules, map, hashes, nodes);
4513 /* Check results. */
4514 ULLONG_FOR_EACH_1(i, map) {
4515 struct dpcls_rule *rule;
4516
4517 CMAP_NODE_FOR_EACH (rule, cmap_node, nodes[i]) {
4518 if (OVS_LIKELY(dpcls_rule_matches_key(rule, &mkeys[i]))) {
4519 mrules[i] = rule;
4520 goto next;
4521 }
4522 }
4523 ULLONG_SET0(map, i); /* Did not match. */
4524 next:
4525 ; /* Keep Sparse happy. */
4526 }
4527 maps[m] &= ~map; /* Clear the found rules. */
4528 remains |= maps[m];
4529 }
4530 if (!remains) {
4531 return true; /* All found. */
4532 }
4533 }
4534 return false; /* Some misses. */
4535 }