]> git.proxmox.com Git - mirror_ovs.git/blob - lib/dpif-netdev.c
dpif-netdev: Fix race condition in pmd thread initialization.
[mirror_ovs.git] / lib / dpif-netdev.c
1 /*
2 * Copyright (c) 2009, 2010, 2011, 2012, 2013, 2014, 2016 Nicira, Inc.
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at:
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <config.h>
18 #include "dpif-netdev.h"
19
20 #include <ctype.h>
21 #include <errno.h>
22 #include <fcntl.h>
23 #include <inttypes.h>
24 #include <net/if.h>
25 #include <netinet/in.h>
26 #include <stdint.h>
27 #include <stdlib.h>
28 #include <string.h>
29 #include <sys/ioctl.h>
30 #include <sys/socket.h>
31 #include <sys/stat.h>
32 #include <unistd.h>
33
34 #include "bitmap.h"
35 #include "cmap.h"
36 #include "coverage.h"
37 #include "csum.h"
38 #include "dp-packet.h"
39 #include "dpif.h"
40 #include "dpif-provider.h"
41 #include "dummy.h"
42 #include "fat-rwlock.h"
43 #include "flow.h"
44 #include "hmapx.h"
45 #include "latch.h"
46 #include "netdev.h"
47 #include "netdev-dpdk.h"
48 #include "netdev-vport.h"
49 #include "netlink.h"
50 #include "odp-execute.h"
51 #include "odp-util.h"
52 #include "openvswitch/dynamic-string.h"
53 #include "openvswitch/list.h"
54 #include "openvswitch/match.h"
55 #include "openvswitch/ofp-print.h"
56 #include "openvswitch/ofpbuf.h"
57 #include "openvswitch/vlog.h"
58 #include "ovs-numa.h"
59 #include "ovs-rcu.h"
60 #include "packets.h"
61 #include "poll-loop.h"
62 #include "pvector.h"
63 #include "random.h"
64 #include "seq.h"
65 #include "shash.h"
66 #include "sset.h"
67 #include "timeval.h"
68 #include "tnl-neigh-cache.h"
69 #include "tnl-ports.h"
70 #include "unixctl.h"
71 #include "util.h"
72
73 VLOG_DEFINE_THIS_MODULE(dpif_netdev);
74
75 #define FLOW_DUMP_MAX_BATCH 50
76 /* Use per thread recirc_depth to prevent recirculation loop. */
77 #define MAX_RECIRC_DEPTH 5
78 DEFINE_STATIC_PER_THREAD_DATA(uint32_t, recirc_depth, 0)
79
80 /* Configuration parameters. */
81 enum { MAX_FLOWS = 65536 }; /* Maximum number of flows in flow table. */
82
83 /* Protects against changes to 'dp_netdevs'. */
84 static struct ovs_mutex dp_netdev_mutex = OVS_MUTEX_INITIALIZER;
85
86 /* Contains all 'struct dp_netdev's. */
87 static struct shash dp_netdevs OVS_GUARDED_BY(dp_netdev_mutex)
88 = SHASH_INITIALIZER(&dp_netdevs);
89
90 static struct vlog_rate_limit upcall_rl = VLOG_RATE_LIMIT_INIT(600, 600);
91
92 static struct odp_support dp_netdev_support = {
93 .max_mpls_depth = SIZE_MAX,
94 .recirc = true,
95 };
96
97 /* Stores a miniflow with inline values */
98
99 struct netdev_flow_key {
100 uint32_t hash; /* Hash function differs for different users. */
101 uint32_t len; /* Length of the following miniflow (incl. map). */
102 struct miniflow mf;
103 uint64_t buf[FLOW_MAX_PACKET_U64S];
104 };
105
106 /* Exact match cache for frequently used flows
107 *
108 * The cache uses a 32-bit hash of the packet (which can be the RSS hash) to
109 * search its entries for a miniflow that matches exactly the miniflow of the
110 * packet. It stores the 'dpcls_rule' (rule) that matches the miniflow.
111 *
112 * A cache entry holds a reference to its 'dp_netdev_flow'.
113 *
114 * A miniflow with a given hash can be in one of EM_FLOW_HASH_SEGS different
115 * entries. The 32-bit hash is split into EM_FLOW_HASH_SEGS values (each of
116 * them is EM_FLOW_HASH_SHIFT bits wide and the remainder is thrown away). Each
117 * value is the index of a cache entry where the miniflow could be.
118 *
119 *
120 * Thread-safety
121 * =============
122 *
123 * Each pmd_thread has its own private exact match cache.
124 * If dp_netdev_input is not called from a pmd thread, a mutex is used.
125 */
126
127 #define EM_FLOW_HASH_SHIFT 13
128 #define EM_FLOW_HASH_ENTRIES (1u << EM_FLOW_HASH_SHIFT)
129 #define EM_FLOW_HASH_MASK (EM_FLOW_HASH_ENTRIES - 1)
130 #define EM_FLOW_HASH_SEGS 2
131
132 struct emc_entry {
133 struct dp_netdev_flow *flow;
134 struct netdev_flow_key key; /* key.hash used for emc hash value. */
135 };
136
137 struct emc_cache {
138 struct emc_entry entries[EM_FLOW_HASH_ENTRIES];
139 int sweep_idx; /* For emc_cache_slow_sweep(). */
140 };
141
142 /* Iterate in the exact match cache through every entry that might contain a
143 * miniflow with hash 'HASH'. */
144 #define EMC_FOR_EACH_POS_WITH_HASH(EMC, CURRENT_ENTRY, HASH) \
145 for (uint32_t i__ = 0, srch_hash__ = (HASH); \
146 (CURRENT_ENTRY) = &(EMC)->entries[srch_hash__ & EM_FLOW_HASH_MASK], \
147 i__ < EM_FLOW_HASH_SEGS; \
148 i__++, srch_hash__ >>= EM_FLOW_HASH_SHIFT)
149 \f
150 /* Simple non-wildcarding single-priority classifier. */
151
152 struct dpcls {
153 struct cmap subtables_map;
154 struct pvector subtables;
155 };
156
157 /* A rule to be inserted to the classifier. */
158 struct dpcls_rule {
159 struct cmap_node cmap_node; /* Within struct dpcls_subtable 'rules'. */
160 struct netdev_flow_key *mask; /* Subtable's mask. */
161 struct netdev_flow_key flow; /* Matching key. */
162 /* 'flow' must be the last field, additional space is allocated here. */
163 };
164
165 static void dpcls_init(struct dpcls *);
166 static void dpcls_destroy(struct dpcls *);
167 static void dpcls_insert(struct dpcls *, struct dpcls_rule *,
168 const struct netdev_flow_key *mask);
169 static void dpcls_remove(struct dpcls *, struct dpcls_rule *);
170 static bool dpcls_lookup(const struct dpcls *cls,
171 const struct netdev_flow_key keys[],
172 struct dpcls_rule **rules, size_t cnt);
173 \f
174 /* Datapath based on the network device interface from netdev.h.
175 *
176 *
177 * Thread-safety
178 * =============
179 *
180 * Some members, marked 'const', are immutable. Accessing other members
181 * requires synchronization, as noted in more detail below.
182 *
183 * Acquisition order is, from outermost to innermost:
184 *
185 * dp_netdev_mutex (global)
186 * port_mutex
187 */
188 struct dp_netdev {
189 const struct dpif_class *const class;
190 const char *const name;
191 struct dpif *dpif;
192 struct ovs_refcount ref_cnt;
193 atomic_flag destroyed;
194
195 /* Ports.
196 *
197 * Protected by RCU. Take the mutex to add or remove ports. */
198 struct ovs_mutex port_mutex;
199 struct cmap ports;
200 struct seq *port_seq; /* Incremented whenever a port changes. */
201
202 /* Protects access to ofproto-dpif-upcall interface during revalidator
203 * thread synchronization. */
204 struct fat_rwlock upcall_rwlock;
205 upcall_callback *upcall_cb; /* Callback function for executing upcalls. */
206 void *upcall_aux;
207
208 /* Callback function for notifying the purging of dp flows (during
209 * reseting pmd deletion). */
210 dp_purge_callback *dp_purge_cb;
211 void *dp_purge_aux;
212
213 /* Stores all 'struct dp_netdev_pmd_thread's. */
214 struct cmap poll_threads;
215
216 /* Protects the access of the 'struct dp_netdev_pmd_thread'
217 * instance for non-pmd thread. */
218 struct ovs_mutex non_pmd_mutex;
219
220 /* Each pmd thread will store its pointer to
221 * 'struct dp_netdev_pmd_thread' in 'per_pmd_key'. */
222 ovsthread_key_t per_pmd_key;
223
224 /* Cpu mask for pin of pmd threads. */
225 char *pmd_cmask;
226 uint64_t last_tnl_conf_seq;
227 };
228
229 static struct dp_netdev_port *dp_netdev_lookup_port(const struct dp_netdev *dp,
230 odp_port_t);
231
232 enum dp_stat_type {
233 DP_STAT_EXACT_HIT, /* Packets that had an exact match (emc). */
234 DP_STAT_MASKED_HIT, /* Packets that matched in the flow table. */
235 DP_STAT_MISS, /* Packets that did not match. */
236 DP_STAT_LOST, /* Packets not passed up to the client. */
237 DP_N_STATS
238 };
239
240 enum pmd_cycles_counter_type {
241 PMD_CYCLES_POLLING, /* Cycles spent polling NICs. */
242 PMD_CYCLES_PROCESSING, /* Cycles spent processing packets */
243 PMD_N_CYCLES
244 };
245
246 /* A port in a netdev-based datapath. */
247 struct dp_netdev_port {
248 odp_port_t port_no;
249 struct netdev *netdev;
250 struct cmap_node node; /* Node in dp_netdev's 'ports'. */
251 struct netdev_saved_flags *sf;
252 unsigned n_rxq; /* Number of elements in 'rxq' */
253 struct netdev_rxq **rxq;
254 char *type; /* Port type as requested by user. */
255 int latest_requested_n_rxq; /* Latest requested from netdev number
256 of rx queues. */
257 };
258
259 /* Contained by struct dp_netdev_flow's 'stats' member. */
260 struct dp_netdev_flow_stats {
261 atomic_llong used; /* Last used time, in monotonic msecs. */
262 atomic_ullong packet_count; /* Number of packets matched. */
263 atomic_ullong byte_count; /* Number of bytes matched. */
264 atomic_uint16_t tcp_flags; /* Bitwise-OR of seen tcp_flags values. */
265 };
266
267 /* A flow in 'dp_netdev_pmd_thread's 'flow_table'.
268 *
269 *
270 * Thread-safety
271 * =============
272 *
273 * Except near the beginning or ending of its lifespan, rule 'rule' belongs to
274 * its pmd thread's classifier. The text below calls this classifier 'cls'.
275 *
276 * Motivation
277 * ----------
278 *
279 * The thread safety rules described here for "struct dp_netdev_flow" are
280 * motivated by two goals:
281 *
282 * - Prevent threads that read members of "struct dp_netdev_flow" from
283 * reading bad data due to changes by some thread concurrently modifying
284 * those members.
285 *
286 * - Prevent two threads making changes to members of a given "struct
287 * dp_netdev_flow" from interfering with each other.
288 *
289 *
290 * Rules
291 * -----
292 *
293 * A flow 'flow' may be accessed without a risk of being freed during an RCU
294 * grace period. Code that needs to hold onto a flow for a while
295 * should try incrementing 'flow->ref_cnt' with dp_netdev_flow_ref().
296 *
297 * 'flow->ref_cnt' protects 'flow' from being freed. It doesn't protect the
298 * flow from being deleted from 'cls' and it doesn't protect members of 'flow'
299 * from modification.
300 *
301 * Some members, marked 'const', are immutable. Accessing other members
302 * requires synchronization, as noted in more detail below.
303 */
304 struct dp_netdev_flow {
305 const struct flow flow; /* Unmasked flow that created this entry. */
306 /* Hash table index by unmasked flow. */
307 const struct cmap_node node; /* In owning dp_netdev_pmd_thread's */
308 /* 'flow_table'. */
309 const ovs_u128 ufid; /* Unique flow identifier. */
310 const unsigned pmd_id; /* The 'core_id' of pmd thread owning this */
311 /* flow. */
312
313 /* Number of references.
314 * The classifier owns one reference.
315 * Any thread trying to keep a rule from being freed should hold its own
316 * reference. */
317 struct ovs_refcount ref_cnt;
318
319 bool dead;
320
321 /* Statistics. */
322 struct dp_netdev_flow_stats stats;
323
324 /* Actions. */
325 OVSRCU_TYPE(struct dp_netdev_actions *) actions;
326
327 /* While processing a group of input packets, the datapath uses the next
328 * member to store a pointer to the output batch for the flow. It is
329 * reset after the batch has been sent out (See dp_netdev_queue_batches(),
330 * packet_batch_per_flow_init() and packet_batch_per_flow_execute()). */
331 struct packet_batch_per_flow *batch;
332
333 /* Packet classification. */
334 struct dpcls_rule cr; /* In owning dp_netdev's 'cls'. */
335 /* 'cr' must be the last member. */
336 };
337
338 static void dp_netdev_flow_unref(struct dp_netdev_flow *);
339 static bool dp_netdev_flow_ref(struct dp_netdev_flow *);
340 static int dpif_netdev_flow_from_nlattrs(const struct nlattr *, uint32_t,
341 struct flow *);
342
343 /* A set of datapath actions within a "struct dp_netdev_flow".
344 *
345 *
346 * Thread-safety
347 * =============
348 *
349 * A struct dp_netdev_actions 'actions' is protected with RCU. */
350 struct dp_netdev_actions {
351 /* These members are immutable: they do not change during the struct's
352 * lifetime. */
353 unsigned int size; /* Size of 'actions', in bytes. */
354 struct nlattr actions[]; /* Sequence of OVS_ACTION_ATTR_* attributes. */
355 };
356
357 struct dp_netdev_actions *dp_netdev_actions_create(const struct nlattr *,
358 size_t);
359 struct dp_netdev_actions *dp_netdev_flow_get_actions(
360 const struct dp_netdev_flow *);
361 static void dp_netdev_actions_free(struct dp_netdev_actions *);
362
363 /* Contained by struct dp_netdev_pmd_thread's 'stats' member. */
364 struct dp_netdev_pmd_stats {
365 /* Indexed by DP_STAT_*. */
366 atomic_ullong n[DP_N_STATS];
367 };
368
369 /* Contained by struct dp_netdev_pmd_thread's 'cycle' member. */
370 struct dp_netdev_pmd_cycles {
371 /* Indexed by PMD_CYCLES_*. */
372 atomic_ullong n[PMD_N_CYCLES];
373 };
374
375 /* Contained by struct dp_netdev_pmd_thread's 'poll_list' member. */
376 struct rxq_poll {
377 struct dp_netdev_port *port;
378 struct netdev_rxq *rx;
379 struct ovs_list node;
380 };
381
382 /* PMD: Poll modes drivers. PMD accesses devices via polling to eliminate
383 * the performance overhead of interrupt processing. Therefore netdev can
384 * not implement rx-wait for these devices. dpif-netdev needs to poll
385 * these device to check for recv buffer. pmd-thread does polling for
386 * devices assigned to itself.
387 *
388 * DPDK used PMD for accessing NIC.
389 *
390 * Note, instance with cpu core id NON_PMD_CORE_ID will be reserved for
391 * I/O of all non-pmd threads. There will be no actual thread created
392 * for the instance.
393 *
394 * Each struct has its own flow table and classifier. Packets received
395 * from managed ports are looked up in the corresponding pmd thread's
396 * flow table, and are executed with the found actions.
397 * */
398 struct dp_netdev_pmd_thread {
399 struct dp_netdev *dp;
400 struct ovs_refcount ref_cnt; /* Every reference must be refcount'ed. */
401 struct cmap_node node; /* In 'dp->poll_threads'. */
402
403 pthread_cond_t cond; /* For synchronizing pmd thread reload. */
404 struct ovs_mutex cond_mutex; /* Mutex for condition variable. */
405
406 /* Per thread exact-match cache. Note, the instance for cpu core
407 * NON_PMD_CORE_ID can be accessed by multiple threads, and thusly
408 * need to be protected (e.g. by 'dp_netdev_mutex'). All other
409 * instances will only be accessed by its own pmd thread. */
410 struct emc_cache flow_cache;
411
412 /* Classifier and Flow-Table.
413 *
414 * Writers of 'flow_table' must take the 'flow_mutex'. Corresponding
415 * changes to 'cls' must be made while still holding the 'flow_mutex'.
416 */
417 struct ovs_mutex flow_mutex;
418 struct dpcls cls;
419 struct cmap flow_table OVS_GUARDED; /* Flow table. */
420
421 /* Statistics. */
422 struct dp_netdev_pmd_stats stats;
423
424 /* Cycles counters */
425 struct dp_netdev_pmd_cycles cycles;
426
427 /* Used to count cicles. See 'cycles_counter_end()' */
428 unsigned long long last_cycles;
429
430 struct latch exit_latch; /* For terminating the pmd thread. */
431 atomic_uint change_seq; /* For reloading pmd ports. */
432 pthread_t thread;
433 unsigned core_id; /* CPU core id of this pmd thread. */
434 int numa_id; /* numa node id of this pmd thread. */
435 atomic_int tx_qid; /* Queue id used by this pmd thread to
436 * send packets on all netdevs */
437
438 struct ovs_mutex poll_mutex; /* Mutex for poll_list. */
439 /* List of rx queues to poll. */
440 struct ovs_list poll_list OVS_GUARDED;
441 int poll_cnt; /* Number of elemints in poll_list. */
442
443 /* Only a pmd thread can write on its own 'cycles' and 'stats'.
444 * The main thread keeps 'stats_zero' and 'cycles_zero' as base
445 * values and subtracts them from 'stats' and 'cycles' before
446 * reporting to the user */
447 unsigned long long stats_zero[DP_N_STATS];
448 uint64_t cycles_zero[PMD_N_CYCLES];
449 };
450
451 #define PMD_INITIAL_SEQ 1
452
453 /* Interface to netdev-based datapath. */
454 struct dpif_netdev {
455 struct dpif dpif;
456 struct dp_netdev *dp;
457 uint64_t last_port_seq;
458 };
459
460 static int get_port_by_number(struct dp_netdev *dp, odp_port_t port_no,
461 struct dp_netdev_port **portp);
462 static int get_port_by_name(struct dp_netdev *dp, const char *devname,
463 struct dp_netdev_port **portp);
464 static void dp_netdev_free(struct dp_netdev *)
465 OVS_REQUIRES(dp_netdev_mutex);
466 static int do_add_port(struct dp_netdev *dp, const char *devname,
467 const char *type, odp_port_t port_no)
468 OVS_REQUIRES(dp->port_mutex);
469 static void do_del_port(struct dp_netdev *dp, struct dp_netdev_port *)
470 OVS_REQUIRES(dp->port_mutex);
471 static int dpif_netdev_open(const struct dpif_class *, const char *name,
472 bool create, struct dpif **);
473 static void dp_netdev_execute_actions(struct dp_netdev_pmd_thread *pmd,
474 struct dp_packet_batch *,
475 bool may_steal,
476 const struct nlattr *actions,
477 size_t actions_len);
478 static void dp_netdev_input(struct dp_netdev_pmd_thread *,
479 struct dp_packet_batch *, odp_port_t port_no);
480 static void dp_netdev_recirculate(struct dp_netdev_pmd_thread *,
481 struct dp_packet_batch *);
482
483 static void dp_netdev_disable_upcall(struct dp_netdev *);
484 static void dp_netdev_pmd_reload_done(struct dp_netdev_pmd_thread *pmd);
485 static void dp_netdev_configure_pmd(struct dp_netdev_pmd_thread *pmd,
486 struct dp_netdev *dp, unsigned core_id,
487 int numa_id);
488 static void dp_netdev_destroy_pmd(struct dp_netdev_pmd_thread *pmd);
489 static void dp_netdev_set_nonpmd(struct dp_netdev *dp);
490 static struct dp_netdev_pmd_thread *dp_netdev_get_pmd(struct dp_netdev *dp,
491 unsigned core_id);
492 static struct dp_netdev_pmd_thread *
493 dp_netdev_pmd_get_next(struct dp_netdev *dp, struct cmap_position *pos);
494 static void dp_netdev_destroy_all_pmds(struct dp_netdev *dp);
495 static void dp_netdev_del_pmds_on_numa(struct dp_netdev *dp, int numa_id);
496 static void dp_netdev_set_pmds_on_numa(struct dp_netdev *dp, int numa_id);
497 static void dp_netdev_pmd_clear_poll_list(struct dp_netdev_pmd_thread *pmd);
498 static void dp_netdev_del_port_from_all_pmds(struct dp_netdev *dp,
499 struct dp_netdev_port *port);
500 static void
501 dp_netdev_add_port_to_pmds(struct dp_netdev *dp, struct dp_netdev_port *port);
502 static void
503 dp_netdev_add_rxq_to_pmd(struct dp_netdev_pmd_thread *pmd,
504 struct dp_netdev_port *port, struct netdev_rxq *rx);
505 static struct dp_netdev_pmd_thread *
506 dp_netdev_less_loaded_pmd_on_numa(struct dp_netdev *dp, int numa_id);
507 static void dp_netdev_reset_pmd_threads(struct dp_netdev *dp);
508 static bool dp_netdev_pmd_try_ref(struct dp_netdev_pmd_thread *pmd);
509 static void dp_netdev_pmd_unref(struct dp_netdev_pmd_thread *pmd);
510 static void dp_netdev_pmd_flow_flush(struct dp_netdev_pmd_thread *pmd);
511
512 static inline bool emc_entry_alive(struct emc_entry *ce);
513 static void emc_clear_entry(struct emc_entry *ce);
514
515 static void
516 emc_cache_init(struct emc_cache *flow_cache)
517 {
518 int i;
519
520 flow_cache->sweep_idx = 0;
521 for (i = 0; i < ARRAY_SIZE(flow_cache->entries); i++) {
522 flow_cache->entries[i].flow = NULL;
523 flow_cache->entries[i].key.hash = 0;
524 flow_cache->entries[i].key.len = sizeof(struct miniflow);
525 flowmap_init(&flow_cache->entries[i].key.mf.map);
526 }
527 }
528
529 static void
530 emc_cache_uninit(struct emc_cache *flow_cache)
531 {
532 int i;
533
534 for (i = 0; i < ARRAY_SIZE(flow_cache->entries); i++) {
535 emc_clear_entry(&flow_cache->entries[i]);
536 }
537 }
538
539 /* Check and clear dead flow references slowly (one entry at each
540 * invocation). */
541 static void
542 emc_cache_slow_sweep(struct emc_cache *flow_cache)
543 {
544 struct emc_entry *entry = &flow_cache->entries[flow_cache->sweep_idx];
545
546 if (!emc_entry_alive(entry)) {
547 emc_clear_entry(entry);
548 }
549 flow_cache->sweep_idx = (flow_cache->sweep_idx + 1) & EM_FLOW_HASH_MASK;
550 }
551
552 /* Returns true if 'dpif' is a netdev or dummy dpif, false otherwise. */
553 bool
554 dpif_is_netdev(const struct dpif *dpif)
555 {
556 return dpif->dpif_class->open == dpif_netdev_open;
557 }
558
559 static struct dpif_netdev *
560 dpif_netdev_cast(const struct dpif *dpif)
561 {
562 ovs_assert(dpif_is_netdev(dpif));
563 return CONTAINER_OF(dpif, struct dpif_netdev, dpif);
564 }
565
566 static struct dp_netdev *
567 get_dp_netdev(const struct dpif *dpif)
568 {
569 return dpif_netdev_cast(dpif)->dp;
570 }
571 \f
572 enum pmd_info_type {
573 PMD_INFO_SHOW_STATS, /* Show how cpu cycles are spent. */
574 PMD_INFO_CLEAR_STATS, /* Set the cycles count to 0. */
575 PMD_INFO_SHOW_RXQ /* Show poll-lists of pmd threads. */
576 };
577
578 static void
579 pmd_info_show_stats(struct ds *reply,
580 struct dp_netdev_pmd_thread *pmd,
581 unsigned long long stats[DP_N_STATS],
582 uint64_t cycles[PMD_N_CYCLES])
583 {
584 unsigned long long total_packets = 0;
585 uint64_t total_cycles = 0;
586 int i;
587
588 /* These loops subtracts reference values ('*_zero') from the counters.
589 * Since loads and stores are relaxed, it might be possible for a '*_zero'
590 * value to be more recent than the current value we're reading from the
591 * counter. This is not a big problem, since these numbers are not
592 * supposed to be too accurate, but we should at least make sure that
593 * the result is not negative. */
594 for (i = 0; i < DP_N_STATS; i++) {
595 if (stats[i] > pmd->stats_zero[i]) {
596 stats[i] -= pmd->stats_zero[i];
597 } else {
598 stats[i] = 0;
599 }
600
601 if (i != DP_STAT_LOST) {
602 /* Lost packets are already included in DP_STAT_MISS */
603 total_packets += stats[i];
604 }
605 }
606
607 for (i = 0; i < PMD_N_CYCLES; i++) {
608 if (cycles[i] > pmd->cycles_zero[i]) {
609 cycles[i] -= pmd->cycles_zero[i];
610 } else {
611 cycles[i] = 0;
612 }
613
614 total_cycles += cycles[i];
615 }
616
617 ds_put_cstr(reply, (pmd->core_id == NON_PMD_CORE_ID)
618 ? "main thread" : "pmd thread");
619
620 if (pmd->numa_id != OVS_NUMA_UNSPEC) {
621 ds_put_format(reply, " numa_id %d", pmd->numa_id);
622 }
623 if (pmd->core_id != OVS_CORE_UNSPEC && pmd->core_id != NON_PMD_CORE_ID) {
624 ds_put_format(reply, " core_id %u", pmd->core_id);
625 }
626 ds_put_cstr(reply, ":\n");
627
628 ds_put_format(reply,
629 "\temc hits:%llu\n\tmegaflow hits:%llu\n"
630 "\tmiss:%llu\n\tlost:%llu\n",
631 stats[DP_STAT_EXACT_HIT], stats[DP_STAT_MASKED_HIT],
632 stats[DP_STAT_MISS], stats[DP_STAT_LOST]);
633
634 if (total_cycles == 0) {
635 return;
636 }
637
638 ds_put_format(reply,
639 "\tpolling cycles:%"PRIu64" (%.02f%%)\n"
640 "\tprocessing cycles:%"PRIu64" (%.02f%%)\n",
641 cycles[PMD_CYCLES_POLLING],
642 cycles[PMD_CYCLES_POLLING] / (double)total_cycles * 100,
643 cycles[PMD_CYCLES_PROCESSING],
644 cycles[PMD_CYCLES_PROCESSING] / (double)total_cycles * 100);
645
646 if (total_packets == 0) {
647 return;
648 }
649
650 ds_put_format(reply,
651 "\tavg cycles per packet: %.02f (%"PRIu64"/%llu)\n",
652 total_cycles / (double)total_packets,
653 total_cycles, total_packets);
654
655 ds_put_format(reply,
656 "\tavg processing cycles per packet: "
657 "%.02f (%"PRIu64"/%llu)\n",
658 cycles[PMD_CYCLES_PROCESSING] / (double)total_packets,
659 cycles[PMD_CYCLES_PROCESSING], total_packets);
660 }
661
662 static void
663 pmd_info_clear_stats(struct ds *reply OVS_UNUSED,
664 struct dp_netdev_pmd_thread *pmd,
665 unsigned long long stats[DP_N_STATS],
666 uint64_t cycles[PMD_N_CYCLES])
667 {
668 int i;
669
670 /* We cannot write 'stats' and 'cycles' (because they're written by other
671 * threads) and we shouldn't change 'stats' (because they're used to count
672 * datapath stats, which must not be cleared here). Instead, we save the
673 * current values and subtract them from the values to be displayed in the
674 * future */
675 for (i = 0; i < DP_N_STATS; i++) {
676 pmd->stats_zero[i] = stats[i];
677 }
678 for (i = 0; i < PMD_N_CYCLES; i++) {
679 pmd->cycles_zero[i] = cycles[i];
680 }
681 }
682
683 static void
684 pmd_info_show_rxq(struct ds *reply, struct dp_netdev_pmd_thread *pmd)
685 {
686 if (pmd->core_id != NON_PMD_CORE_ID) {
687 struct rxq_poll *poll;
688 const char *prev_name = NULL;
689
690 ds_put_format(reply, "pmd thread numa_id %d core_id %u:\n",
691 pmd->numa_id, pmd->core_id);
692
693 ovs_mutex_lock(&pmd->poll_mutex);
694 LIST_FOR_EACH (poll, node, &pmd->poll_list) {
695 const char *name = netdev_get_name(poll->port->netdev);
696
697 if (!prev_name || strcmp(name, prev_name)) {
698 if (prev_name) {
699 ds_put_cstr(reply, "\n");
700 }
701 ds_put_format(reply, "\tport: %s\tqueue-id:",
702 netdev_get_name(poll->port->netdev));
703 }
704 ds_put_format(reply, " %d", netdev_rxq_get_queue_id(poll->rx));
705 prev_name = name;
706 }
707 ovs_mutex_unlock(&pmd->poll_mutex);
708 ds_put_cstr(reply, "\n");
709 }
710 }
711
712 static void
713 dpif_netdev_pmd_info(struct unixctl_conn *conn, int argc, const char *argv[],
714 void *aux)
715 {
716 struct ds reply = DS_EMPTY_INITIALIZER;
717 struct dp_netdev_pmd_thread *pmd;
718 struct dp_netdev *dp = NULL;
719 enum pmd_info_type type = *(enum pmd_info_type *) aux;
720
721 ovs_mutex_lock(&dp_netdev_mutex);
722
723 if (argc == 2) {
724 dp = shash_find_data(&dp_netdevs, argv[1]);
725 } else if (shash_count(&dp_netdevs) == 1) {
726 /* There's only one datapath */
727 dp = shash_first(&dp_netdevs)->data;
728 }
729
730 if (!dp) {
731 ovs_mutex_unlock(&dp_netdev_mutex);
732 unixctl_command_reply_error(conn,
733 "please specify an existing datapath");
734 return;
735 }
736
737 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
738 if (type == PMD_INFO_SHOW_RXQ) {
739 pmd_info_show_rxq(&reply, pmd);
740 } else {
741 unsigned long long stats[DP_N_STATS];
742 uint64_t cycles[PMD_N_CYCLES];
743 int i;
744
745 /* Read current stats and cycle counters */
746 for (i = 0; i < ARRAY_SIZE(stats); i++) {
747 atomic_read_relaxed(&pmd->stats.n[i], &stats[i]);
748 }
749 for (i = 0; i < ARRAY_SIZE(cycles); i++) {
750 atomic_read_relaxed(&pmd->cycles.n[i], &cycles[i]);
751 }
752
753 if (type == PMD_INFO_CLEAR_STATS) {
754 pmd_info_clear_stats(&reply, pmd, stats, cycles);
755 } else if (type == PMD_INFO_SHOW_STATS) {
756 pmd_info_show_stats(&reply, pmd, stats, cycles);
757 }
758 }
759 }
760
761 ovs_mutex_unlock(&dp_netdev_mutex);
762
763 unixctl_command_reply(conn, ds_cstr(&reply));
764 ds_destroy(&reply);
765 }
766 \f
767 static int
768 dpif_netdev_init(void)
769 {
770 static enum pmd_info_type show_aux = PMD_INFO_SHOW_STATS,
771 clear_aux = PMD_INFO_CLEAR_STATS,
772 poll_aux = PMD_INFO_SHOW_RXQ;
773
774 unixctl_command_register("dpif-netdev/pmd-stats-show", "[dp]",
775 0, 1, dpif_netdev_pmd_info,
776 (void *)&show_aux);
777 unixctl_command_register("dpif-netdev/pmd-stats-clear", "[dp]",
778 0, 1, dpif_netdev_pmd_info,
779 (void *)&clear_aux);
780 unixctl_command_register("dpif-netdev/pmd-rxq-show", "[dp]",
781 0, 1, dpif_netdev_pmd_info,
782 (void *)&poll_aux);
783 return 0;
784 }
785
786 static int
787 dpif_netdev_enumerate(struct sset *all_dps,
788 const struct dpif_class *dpif_class)
789 {
790 struct shash_node *node;
791
792 ovs_mutex_lock(&dp_netdev_mutex);
793 SHASH_FOR_EACH(node, &dp_netdevs) {
794 struct dp_netdev *dp = node->data;
795 if (dpif_class != dp->class) {
796 /* 'dp_netdevs' contains both "netdev" and "dummy" dpifs.
797 * If the class doesn't match, skip this dpif. */
798 continue;
799 }
800 sset_add(all_dps, node->name);
801 }
802 ovs_mutex_unlock(&dp_netdev_mutex);
803
804 return 0;
805 }
806
807 static bool
808 dpif_netdev_class_is_dummy(const struct dpif_class *class)
809 {
810 return class != &dpif_netdev_class;
811 }
812
813 static const char *
814 dpif_netdev_port_open_type(const struct dpif_class *class, const char *type)
815 {
816 return strcmp(type, "internal") ? type
817 : dpif_netdev_class_is_dummy(class) ? "dummy"
818 : "tap";
819 }
820
821 static struct dpif *
822 create_dpif_netdev(struct dp_netdev *dp)
823 {
824 uint16_t netflow_id = hash_string(dp->name, 0);
825 struct dpif_netdev *dpif;
826
827 ovs_refcount_ref(&dp->ref_cnt);
828
829 dpif = xmalloc(sizeof *dpif);
830 dpif_init(&dpif->dpif, dp->class, dp->name, netflow_id >> 8, netflow_id);
831 dpif->dp = dp;
832 dpif->last_port_seq = seq_read(dp->port_seq);
833
834 return &dpif->dpif;
835 }
836
837 /* Choose an unused, non-zero port number and return it on success.
838 * Return ODPP_NONE on failure. */
839 static odp_port_t
840 choose_port(struct dp_netdev *dp, const char *name)
841 OVS_REQUIRES(dp->port_mutex)
842 {
843 uint32_t port_no;
844
845 if (dp->class != &dpif_netdev_class) {
846 const char *p;
847 int start_no = 0;
848
849 /* If the port name begins with "br", start the number search at
850 * 100 to make writing tests easier. */
851 if (!strncmp(name, "br", 2)) {
852 start_no = 100;
853 }
854
855 /* If the port name contains a number, try to assign that port number.
856 * This can make writing unit tests easier because port numbers are
857 * predictable. */
858 for (p = name; *p != '\0'; p++) {
859 if (isdigit((unsigned char) *p)) {
860 port_no = start_no + strtol(p, NULL, 10);
861 if (port_no > 0 && port_no != odp_to_u32(ODPP_NONE)
862 && !dp_netdev_lookup_port(dp, u32_to_odp(port_no))) {
863 return u32_to_odp(port_no);
864 }
865 break;
866 }
867 }
868 }
869
870 for (port_no = 1; port_no <= UINT16_MAX; port_no++) {
871 if (!dp_netdev_lookup_port(dp, u32_to_odp(port_no))) {
872 return u32_to_odp(port_no);
873 }
874 }
875
876 return ODPP_NONE;
877 }
878
879 static int
880 create_dp_netdev(const char *name, const struct dpif_class *class,
881 struct dp_netdev **dpp)
882 OVS_REQUIRES(dp_netdev_mutex)
883 {
884 struct dp_netdev *dp;
885 int error;
886
887 dp = xzalloc(sizeof *dp);
888 shash_add(&dp_netdevs, name, dp);
889
890 *CONST_CAST(const struct dpif_class **, &dp->class) = class;
891 *CONST_CAST(const char **, &dp->name) = xstrdup(name);
892 ovs_refcount_init(&dp->ref_cnt);
893 atomic_flag_clear(&dp->destroyed);
894
895 ovs_mutex_init(&dp->port_mutex);
896 cmap_init(&dp->ports);
897 dp->port_seq = seq_create();
898 fat_rwlock_init(&dp->upcall_rwlock);
899
900 /* Disable upcalls by default. */
901 dp_netdev_disable_upcall(dp);
902 dp->upcall_aux = NULL;
903 dp->upcall_cb = NULL;
904
905 cmap_init(&dp->poll_threads);
906 ovs_mutex_init_recursive(&dp->non_pmd_mutex);
907 ovsthread_key_create(&dp->per_pmd_key, NULL);
908
909 dp_netdev_set_nonpmd(dp);
910
911 ovs_mutex_lock(&dp->port_mutex);
912 error = do_add_port(dp, name, "internal", ODPP_LOCAL);
913 ovs_mutex_unlock(&dp->port_mutex);
914 if (error) {
915 dp_netdev_free(dp);
916 return error;
917 }
918
919 dp->last_tnl_conf_seq = seq_read(tnl_conf_seq);
920 *dpp = dp;
921 return 0;
922 }
923
924 static int
925 dpif_netdev_open(const struct dpif_class *class, const char *name,
926 bool create, struct dpif **dpifp)
927 {
928 struct dp_netdev *dp;
929 int error;
930
931 ovs_mutex_lock(&dp_netdev_mutex);
932 dp = shash_find_data(&dp_netdevs, name);
933 if (!dp) {
934 error = create ? create_dp_netdev(name, class, &dp) : ENODEV;
935 } else {
936 error = (dp->class != class ? EINVAL
937 : create ? EEXIST
938 : 0);
939 }
940 if (!error) {
941 *dpifp = create_dpif_netdev(dp);
942 dp->dpif = *dpifp;
943 }
944 ovs_mutex_unlock(&dp_netdev_mutex);
945
946 return error;
947 }
948
949 static void
950 dp_netdev_destroy_upcall_lock(struct dp_netdev *dp)
951 OVS_NO_THREAD_SAFETY_ANALYSIS
952 {
953 /* Check that upcalls are disabled, i.e. that the rwlock is taken */
954 ovs_assert(fat_rwlock_tryrdlock(&dp->upcall_rwlock));
955
956 /* Before freeing a lock we should release it */
957 fat_rwlock_unlock(&dp->upcall_rwlock);
958 fat_rwlock_destroy(&dp->upcall_rwlock);
959 }
960
961 /* Requires dp_netdev_mutex so that we can't get a new reference to 'dp'
962 * through the 'dp_netdevs' shash while freeing 'dp'. */
963 static void
964 dp_netdev_free(struct dp_netdev *dp)
965 OVS_REQUIRES(dp_netdev_mutex)
966 {
967 struct dp_netdev_port *port;
968
969 shash_find_and_delete(&dp_netdevs, dp->name);
970
971 dp_netdev_destroy_all_pmds(dp);
972 ovs_mutex_destroy(&dp->non_pmd_mutex);
973 ovsthread_key_delete(dp->per_pmd_key);
974
975 ovs_mutex_lock(&dp->port_mutex);
976 CMAP_FOR_EACH (port, node, &dp->ports) {
977 /* PMD threads are destroyed here. do_del_port() cannot quiesce */
978 do_del_port(dp, port);
979 }
980 ovs_mutex_unlock(&dp->port_mutex);
981 cmap_destroy(&dp->poll_threads);
982
983 seq_destroy(dp->port_seq);
984 cmap_destroy(&dp->ports);
985 ovs_mutex_destroy(&dp->port_mutex);
986
987 /* Upcalls must be disabled at this point */
988 dp_netdev_destroy_upcall_lock(dp);
989
990 free(dp->pmd_cmask);
991 free(CONST_CAST(char *, dp->name));
992 free(dp);
993 }
994
995 static void
996 dp_netdev_unref(struct dp_netdev *dp)
997 {
998 if (dp) {
999 /* Take dp_netdev_mutex so that, if dp->ref_cnt falls to zero, we can't
1000 * get a new reference to 'dp' through the 'dp_netdevs' shash. */
1001 ovs_mutex_lock(&dp_netdev_mutex);
1002 if (ovs_refcount_unref_relaxed(&dp->ref_cnt) == 1) {
1003 dp_netdev_free(dp);
1004 }
1005 ovs_mutex_unlock(&dp_netdev_mutex);
1006 }
1007 }
1008
1009 static void
1010 dpif_netdev_close(struct dpif *dpif)
1011 {
1012 struct dp_netdev *dp = get_dp_netdev(dpif);
1013
1014 dp_netdev_unref(dp);
1015 free(dpif);
1016 }
1017
1018 static int
1019 dpif_netdev_destroy(struct dpif *dpif)
1020 {
1021 struct dp_netdev *dp = get_dp_netdev(dpif);
1022
1023 if (!atomic_flag_test_and_set(&dp->destroyed)) {
1024 if (ovs_refcount_unref_relaxed(&dp->ref_cnt) == 1) {
1025 /* Can't happen: 'dpif' still owns a reference to 'dp'. */
1026 OVS_NOT_REACHED();
1027 }
1028 }
1029
1030 return 0;
1031 }
1032
1033 /* Add 'n' to the atomic variable 'var' non-atomically and using relaxed
1034 * load/store semantics. While the increment is not atomic, the load and
1035 * store operations are, making it impossible to read inconsistent values.
1036 *
1037 * This is used to update thread local stats counters. */
1038 static void
1039 non_atomic_ullong_add(atomic_ullong *var, unsigned long long n)
1040 {
1041 unsigned long long tmp;
1042
1043 atomic_read_relaxed(var, &tmp);
1044 tmp += n;
1045 atomic_store_relaxed(var, tmp);
1046 }
1047
1048 static int
1049 dpif_netdev_get_stats(const struct dpif *dpif, struct dpif_dp_stats *stats)
1050 {
1051 struct dp_netdev *dp = get_dp_netdev(dpif);
1052 struct dp_netdev_pmd_thread *pmd;
1053
1054 stats->n_flows = stats->n_hit = stats->n_missed = stats->n_lost = 0;
1055 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
1056 unsigned long long n;
1057 stats->n_flows += cmap_count(&pmd->flow_table);
1058
1059 atomic_read_relaxed(&pmd->stats.n[DP_STAT_MASKED_HIT], &n);
1060 stats->n_hit += n;
1061 atomic_read_relaxed(&pmd->stats.n[DP_STAT_EXACT_HIT], &n);
1062 stats->n_hit += n;
1063 atomic_read_relaxed(&pmd->stats.n[DP_STAT_MISS], &n);
1064 stats->n_missed += n;
1065 atomic_read_relaxed(&pmd->stats.n[DP_STAT_LOST], &n);
1066 stats->n_lost += n;
1067 }
1068 stats->n_masks = UINT32_MAX;
1069 stats->n_mask_hit = UINT64_MAX;
1070
1071 return 0;
1072 }
1073
1074 static void
1075 dp_netdev_reload_pmd__(struct dp_netdev_pmd_thread *pmd)
1076 {
1077 int old_seq;
1078
1079 if (pmd->core_id == NON_PMD_CORE_ID) {
1080 return;
1081 }
1082
1083 ovs_mutex_lock(&pmd->cond_mutex);
1084 atomic_add_relaxed(&pmd->change_seq, 1, &old_seq);
1085 ovs_mutex_cond_wait(&pmd->cond, &pmd->cond_mutex);
1086 ovs_mutex_unlock(&pmd->cond_mutex);
1087 }
1088
1089 static uint32_t
1090 hash_port_no(odp_port_t port_no)
1091 {
1092 return hash_int(odp_to_u32(port_no), 0);
1093 }
1094
1095 static int
1096 port_create(const char *devname, const char *open_type, const char *type,
1097 odp_port_t port_no, struct dp_netdev_port **portp)
1098 {
1099 struct netdev_saved_flags *sf;
1100 struct dp_netdev_port *port;
1101 enum netdev_flags flags;
1102 struct netdev *netdev;
1103 int n_open_rxqs = 0;
1104 int i, error;
1105
1106 *portp = NULL;
1107
1108 /* Open and validate network device. */
1109 error = netdev_open(devname, open_type, &netdev);
1110 if (error) {
1111 return error;
1112 }
1113 /* XXX reject non-Ethernet devices */
1114
1115 netdev_get_flags(netdev, &flags);
1116 if (flags & NETDEV_LOOPBACK) {
1117 VLOG_ERR("%s: cannot add a loopback device", devname);
1118 error = EINVAL;
1119 goto out;
1120 }
1121
1122 if (netdev_is_pmd(netdev)) {
1123 int n_cores = ovs_numa_get_n_cores();
1124
1125 if (n_cores == OVS_CORE_UNSPEC) {
1126 VLOG_ERR("%s, cannot get cpu core info", devname);
1127 error = ENOENT;
1128 goto out;
1129 }
1130 /* There can only be ovs_numa_get_n_cores() pmd threads,
1131 * so creates a txq for each, and one extra for the non
1132 * pmd threads. */
1133 error = netdev_set_multiq(netdev, n_cores + 1,
1134 netdev_requested_n_rxq(netdev));
1135 if (error && (error != EOPNOTSUPP)) {
1136 VLOG_ERR("%s, cannot set multiq", devname);
1137 goto out;
1138 }
1139 }
1140 port = xzalloc(sizeof *port);
1141 port->port_no = port_no;
1142 port->netdev = netdev;
1143 port->n_rxq = netdev_n_rxq(netdev);
1144 port->rxq = xcalloc(port->n_rxq, sizeof *port->rxq);
1145 port->type = xstrdup(type);
1146 port->latest_requested_n_rxq = netdev_requested_n_rxq(netdev);
1147
1148 for (i = 0; i < port->n_rxq; i++) {
1149 error = netdev_rxq_open(netdev, &port->rxq[i], i);
1150 if (error) {
1151 VLOG_ERR("%s: cannot receive packets on this network device (%s)",
1152 devname, ovs_strerror(errno));
1153 goto out_rxq_close;
1154 }
1155 n_open_rxqs++;
1156 }
1157
1158 error = netdev_turn_flags_on(netdev, NETDEV_PROMISC, &sf);
1159 if (error) {
1160 goto out_rxq_close;
1161 }
1162 port->sf = sf;
1163
1164 *portp = port;
1165
1166 return 0;
1167
1168 out_rxq_close:
1169 for (i = 0; i < n_open_rxqs; i++) {
1170 netdev_rxq_close(port->rxq[i]);
1171 }
1172 free(port->type);
1173 free(port->rxq);
1174 free(port);
1175
1176 out:
1177 netdev_close(netdev);
1178 return error;
1179 }
1180
1181 static int
1182 do_add_port(struct dp_netdev *dp, const char *devname, const char *type,
1183 odp_port_t port_no)
1184 OVS_REQUIRES(dp->port_mutex)
1185 {
1186 struct dp_netdev_port *port;
1187 int error;
1188
1189 /* Reject devices already in 'dp'. */
1190 if (!get_port_by_name(dp, devname, &port)) {
1191 return EEXIST;
1192 }
1193
1194 error = port_create(devname, dpif_netdev_port_open_type(dp->class, type),
1195 type, port_no, &port);
1196 if (error) {
1197 return error;
1198 }
1199
1200 cmap_insert(&dp->ports, &port->node, hash_port_no(port_no));
1201
1202 if (netdev_is_pmd(port->netdev)) {
1203 dp_netdev_add_port_to_pmds(dp, port);
1204 }
1205 seq_change(dp->port_seq);
1206
1207 return 0;
1208 }
1209
1210 static int
1211 dpif_netdev_port_add(struct dpif *dpif, struct netdev *netdev,
1212 odp_port_t *port_nop)
1213 {
1214 struct dp_netdev *dp = get_dp_netdev(dpif);
1215 char namebuf[NETDEV_VPORT_NAME_BUFSIZE];
1216 const char *dpif_port;
1217 odp_port_t port_no;
1218 int error;
1219
1220 ovs_mutex_lock(&dp->port_mutex);
1221 dpif_port = netdev_vport_get_dpif_port(netdev, namebuf, sizeof namebuf);
1222 if (*port_nop != ODPP_NONE) {
1223 port_no = *port_nop;
1224 error = dp_netdev_lookup_port(dp, *port_nop) ? EBUSY : 0;
1225 } else {
1226 port_no = choose_port(dp, dpif_port);
1227 error = port_no == ODPP_NONE ? EFBIG : 0;
1228 }
1229 if (!error) {
1230 *port_nop = port_no;
1231 error = do_add_port(dp, dpif_port, netdev_get_type(netdev), port_no);
1232 }
1233 ovs_mutex_unlock(&dp->port_mutex);
1234
1235 return error;
1236 }
1237
1238 static int
1239 dpif_netdev_port_del(struct dpif *dpif, odp_port_t port_no)
1240 {
1241 struct dp_netdev *dp = get_dp_netdev(dpif);
1242 int error;
1243
1244 ovs_mutex_lock(&dp->port_mutex);
1245 if (port_no == ODPP_LOCAL) {
1246 error = EINVAL;
1247 } else {
1248 struct dp_netdev_port *port;
1249
1250 error = get_port_by_number(dp, port_no, &port);
1251 if (!error) {
1252 do_del_port(dp, port);
1253 }
1254 }
1255 ovs_mutex_unlock(&dp->port_mutex);
1256
1257 return error;
1258 }
1259
1260 static bool
1261 is_valid_port_number(odp_port_t port_no)
1262 {
1263 return port_no != ODPP_NONE;
1264 }
1265
1266 static struct dp_netdev_port *
1267 dp_netdev_lookup_port(const struct dp_netdev *dp, odp_port_t port_no)
1268 {
1269 struct dp_netdev_port *port;
1270
1271 CMAP_FOR_EACH_WITH_HASH (port, node, hash_port_no(port_no), &dp->ports) {
1272 if (port->port_no == port_no) {
1273 return port;
1274 }
1275 }
1276 return NULL;
1277 }
1278
1279 static int
1280 get_port_by_number(struct dp_netdev *dp,
1281 odp_port_t port_no, struct dp_netdev_port **portp)
1282 {
1283 if (!is_valid_port_number(port_no)) {
1284 *portp = NULL;
1285 return EINVAL;
1286 } else {
1287 *portp = dp_netdev_lookup_port(dp, port_no);
1288 return *portp ? 0 : ENOENT;
1289 }
1290 }
1291
1292 static void
1293 port_destroy(struct dp_netdev_port *port)
1294 {
1295 if (!port) {
1296 return;
1297 }
1298
1299 netdev_close(port->netdev);
1300 netdev_restore_flags(port->sf);
1301
1302 for (unsigned i = 0; i < port->n_rxq; i++) {
1303 netdev_rxq_close(port->rxq[i]);
1304 }
1305
1306 free(port->rxq);
1307 free(port->type);
1308 free(port);
1309 }
1310
1311 static int
1312 get_port_by_name(struct dp_netdev *dp,
1313 const char *devname, struct dp_netdev_port **portp)
1314 OVS_REQUIRES(dp->port_mutex)
1315 {
1316 struct dp_netdev_port *port;
1317
1318 CMAP_FOR_EACH (port, node, &dp->ports) {
1319 if (!strcmp(netdev_get_name(port->netdev), devname)) {
1320 *portp = port;
1321 return 0;
1322 }
1323 }
1324 return ENOENT;
1325 }
1326
1327 static int
1328 get_n_pmd_threads(struct dp_netdev *dp)
1329 {
1330 /* There is one non pmd thread in dp->poll_threads */
1331 return cmap_count(&dp->poll_threads) - 1;
1332 }
1333
1334 static int
1335 get_n_pmd_threads_on_numa(struct dp_netdev *dp, int numa_id)
1336 {
1337 struct dp_netdev_pmd_thread *pmd;
1338 int n_pmds = 0;
1339
1340 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
1341 if (pmd->numa_id == numa_id) {
1342 n_pmds++;
1343 }
1344 }
1345
1346 return n_pmds;
1347 }
1348
1349 /* Returns 'true' if there is a port with pmd netdev and the netdev
1350 * is on numa node 'numa_id'. */
1351 static bool
1352 has_pmd_port_for_numa(struct dp_netdev *dp, int numa_id)
1353 {
1354 struct dp_netdev_port *port;
1355
1356 CMAP_FOR_EACH (port, node, &dp->ports) {
1357 if (netdev_is_pmd(port->netdev)
1358 && netdev_get_numa_id(port->netdev) == numa_id) {
1359 return true;
1360 }
1361 }
1362
1363 return false;
1364 }
1365
1366
1367 static void
1368 do_del_port(struct dp_netdev *dp, struct dp_netdev_port *port)
1369 OVS_REQUIRES(dp->port_mutex)
1370 {
1371 cmap_remove(&dp->ports, &port->node, hash_odp_port(port->port_no));
1372 seq_change(dp->port_seq);
1373 if (netdev_is_pmd(port->netdev)) {
1374 int numa_id = netdev_get_numa_id(port->netdev);
1375
1376 /* PMD threads can not be on invalid numa node. */
1377 ovs_assert(ovs_numa_numa_id_is_valid(numa_id));
1378 /* If there is no netdev on the numa node, deletes the pmd threads
1379 * for that numa. Else, deletes the queues from polling lists. */
1380 if (!has_pmd_port_for_numa(dp, numa_id)) {
1381 dp_netdev_del_pmds_on_numa(dp, numa_id);
1382 } else {
1383 dp_netdev_del_port_from_all_pmds(dp, port);
1384 }
1385 }
1386
1387 port_destroy(port);
1388 }
1389
1390 static void
1391 answer_port_query(const struct dp_netdev_port *port,
1392 struct dpif_port *dpif_port)
1393 {
1394 dpif_port->name = xstrdup(netdev_get_name(port->netdev));
1395 dpif_port->type = xstrdup(port->type);
1396 dpif_port->port_no = port->port_no;
1397 }
1398
1399 static int
1400 dpif_netdev_port_query_by_number(const struct dpif *dpif, odp_port_t port_no,
1401 struct dpif_port *dpif_port)
1402 {
1403 struct dp_netdev *dp = get_dp_netdev(dpif);
1404 struct dp_netdev_port *port;
1405 int error;
1406
1407 error = get_port_by_number(dp, port_no, &port);
1408 if (!error && dpif_port) {
1409 answer_port_query(port, dpif_port);
1410 }
1411
1412 return error;
1413 }
1414
1415 static int
1416 dpif_netdev_port_query_by_name(const struct dpif *dpif, const char *devname,
1417 struct dpif_port *dpif_port)
1418 {
1419 struct dp_netdev *dp = get_dp_netdev(dpif);
1420 struct dp_netdev_port *port;
1421 int error;
1422
1423 ovs_mutex_lock(&dp->port_mutex);
1424 error = get_port_by_name(dp, devname, &port);
1425 if (!error && dpif_port) {
1426 answer_port_query(port, dpif_port);
1427 }
1428 ovs_mutex_unlock(&dp->port_mutex);
1429
1430 return error;
1431 }
1432
1433 static void
1434 dp_netdev_flow_free(struct dp_netdev_flow *flow)
1435 {
1436 dp_netdev_actions_free(dp_netdev_flow_get_actions(flow));
1437 free(flow);
1438 }
1439
1440 static void dp_netdev_flow_unref(struct dp_netdev_flow *flow)
1441 {
1442 if (ovs_refcount_unref_relaxed(&flow->ref_cnt) == 1) {
1443 ovsrcu_postpone(dp_netdev_flow_free, flow);
1444 }
1445 }
1446
1447 static uint32_t
1448 dp_netdev_flow_hash(const ovs_u128 *ufid)
1449 {
1450 return ufid->u32[0];
1451 }
1452
1453 static void
1454 dp_netdev_pmd_remove_flow(struct dp_netdev_pmd_thread *pmd,
1455 struct dp_netdev_flow *flow)
1456 OVS_REQUIRES(pmd->flow_mutex)
1457 {
1458 struct cmap_node *node = CONST_CAST(struct cmap_node *, &flow->node);
1459
1460 dpcls_remove(&pmd->cls, &flow->cr);
1461 cmap_remove(&pmd->flow_table, node, dp_netdev_flow_hash(&flow->ufid));
1462 flow->dead = true;
1463
1464 dp_netdev_flow_unref(flow);
1465 }
1466
1467 static void
1468 dp_netdev_pmd_flow_flush(struct dp_netdev_pmd_thread *pmd)
1469 {
1470 struct dp_netdev_flow *netdev_flow;
1471
1472 ovs_mutex_lock(&pmd->flow_mutex);
1473 CMAP_FOR_EACH (netdev_flow, node, &pmd->flow_table) {
1474 dp_netdev_pmd_remove_flow(pmd, netdev_flow);
1475 }
1476 ovs_mutex_unlock(&pmd->flow_mutex);
1477 }
1478
1479 static int
1480 dpif_netdev_flow_flush(struct dpif *dpif)
1481 {
1482 struct dp_netdev *dp = get_dp_netdev(dpif);
1483 struct dp_netdev_pmd_thread *pmd;
1484
1485 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
1486 dp_netdev_pmd_flow_flush(pmd);
1487 }
1488
1489 return 0;
1490 }
1491
1492 struct dp_netdev_port_state {
1493 struct cmap_position position;
1494 char *name;
1495 };
1496
1497 static int
1498 dpif_netdev_port_dump_start(const struct dpif *dpif OVS_UNUSED, void **statep)
1499 {
1500 *statep = xzalloc(sizeof(struct dp_netdev_port_state));
1501 return 0;
1502 }
1503
1504 static int
1505 dpif_netdev_port_dump_next(const struct dpif *dpif, void *state_,
1506 struct dpif_port *dpif_port)
1507 {
1508 struct dp_netdev_port_state *state = state_;
1509 struct dp_netdev *dp = get_dp_netdev(dpif);
1510 struct cmap_node *node;
1511 int retval;
1512
1513 node = cmap_next_position(&dp->ports, &state->position);
1514 if (node) {
1515 struct dp_netdev_port *port;
1516
1517 port = CONTAINER_OF(node, struct dp_netdev_port, node);
1518
1519 free(state->name);
1520 state->name = xstrdup(netdev_get_name(port->netdev));
1521 dpif_port->name = state->name;
1522 dpif_port->type = port->type;
1523 dpif_port->port_no = port->port_no;
1524
1525 retval = 0;
1526 } else {
1527 retval = EOF;
1528 }
1529
1530 return retval;
1531 }
1532
1533 static int
1534 dpif_netdev_port_dump_done(const struct dpif *dpif OVS_UNUSED, void *state_)
1535 {
1536 struct dp_netdev_port_state *state = state_;
1537 free(state->name);
1538 free(state);
1539 return 0;
1540 }
1541
1542 static int
1543 dpif_netdev_port_poll(const struct dpif *dpif_, char **devnamep OVS_UNUSED)
1544 {
1545 struct dpif_netdev *dpif = dpif_netdev_cast(dpif_);
1546 uint64_t new_port_seq;
1547 int error;
1548
1549 new_port_seq = seq_read(dpif->dp->port_seq);
1550 if (dpif->last_port_seq != new_port_seq) {
1551 dpif->last_port_seq = new_port_seq;
1552 error = ENOBUFS;
1553 } else {
1554 error = EAGAIN;
1555 }
1556
1557 return error;
1558 }
1559
1560 static void
1561 dpif_netdev_port_poll_wait(const struct dpif *dpif_)
1562 {
1563 struct dpif_netdev *dpif = dpif_netdev_cast(dpif_);
1564
1565 seq_wait(dpif->dp->port_seq, dpif->last_port_seq);
1566 }
1567
1568 static struct dp_netdev_flow *
1569 dp_netdev_flow_cast(const struct dpcls_rule *cr)
1570 {
1571 return cr ? CONTAINER_OF(cr, struct dp_netdev_flow, cr) : NULL;
1572 }
1573
1574 static bool dp_netdev_flow_ref(struct dp_netdev_flow *flow)
1575 {
1576 return ovs_refcount_try_ref_rcu(&flow->ref_cnt);
1577 }
1578
1579 /* netdev_flow_key utilities.
1580 *
1581 * netdev_flow_key is basically a miniflow. We use these functions
1582 * (netdev_flow_key_clone, netdev_flow_key_equal, ...) instead of the miniflow
1583 * functions (miniflow_clone_inline, miniflow_equal, ...), because:
1584 *
1585 * - Since we are dealing exclusively with miniflows created by
1586 * miniflow_extract(), if the map is different the miniflow is different.
1587 * Therefore we can be faster by comparing the map and the miniflow in a
1588 * single memcmp().
1589 * - These functions can be inlined by the compiler. */
1590
1591 /* Given the number of bits set in miniflow's maps, returns the size of the
1592 * 'netdev_flow_key.mf' */
1593 static inline size_t
1594 netdev_flow_key_size(size_t flow_u64s)
1595 {
1596 return sizeof(struct miniflow) + MINIFLOW_VALUES_SIZE(flow_u64s);
1597 }
1598
1599 static inline bool
1600 netdev_flow_key_equal(const struct netdev_flow_key *a,
1601 const struct netdev_flow_key *b)
1602 {
1603 /* 'b->len' may be not set yet. */
1604 return a->hash == b->hash && !memcmp(&a->mf, &b->mf, a->len);
1605 }
1606
1607 /* Used to compare 'netdev_flow_key' in the exact match cache to a miniflow.
1608 * The maps are compared bitwise, so both 'key->mf' and 'mf' must have been
1609 * generated by miniflow_extract. */
1610 static inline bool
1611 netdev_flow_key_equal_mf(const struct netdev_flow_key *key,
1612 const struct miniflow *mf)
1613 {
1614 return !memcmp(&key->mf, mf, key->len);
1615 }
1616
1617 static inline void
1618 netdev_flow_key_clone(struct netdev_flow_key *dst,
1619 const struct netdev_flow_key *src)
1620 {
1621 memcpy(dst, src,
1622 offsetof(struct netdev_flow_key, mf) + src->len);
1623 }
1624
1625 /* Slow. */
1626 static void
1627 netdev_flow_key_from_flow(struct netdev_flow_key *dst,
1628 const struct flow *src)
1629 {
1630 struct dp_packet packet;
1631 uint64_t buf_stub[512 / 8];
1632
1633 dp_packet_use_stub(&packet, buf_stub, sizeof buf_stub);
1634 pkt_metadata_from_flow(&packet.md, src);
1635 flow_compose(&packet, src);
1636 miniflow_extract(&packet, &dst->mf);
1637 dp_packet_uninit(&packet);
1638
1639 dst->len = netdev_flow_key_size(miniflow_n_values(&dst->mf));
1640 dst->hash = 0; /* Not computed yet. */
1641 }
1642
1643 /* Initialize a netdev_flow_key 'mask' from 'match'. */
1644 static inline void
1645 netdev_flow_mask_init(struct netdev_flow_key *mask,
1646 const struct match *match)
1647 {
1648 uint64_t *dst = miniflow_values(&mask->mf);
1649 struct flowmap fmap;
1650 uint32_t hash = 0;
1651 size_t idx;
1652
1653 /* Only check masks that make sense for the flow. */
1654 flow_wc_map(&match->flow, &fmap);
1655 flowmap_init(&mask->mf.map);
1656
1657 FLOWMAP_FOR_EACH_INDEX(idx, fmap) {
1658 uint64_t mask_u64 = flow_u64_value(&match->wc.masks, idx);
1659
1660 if (mask_u64) {
1661 flowmap_set(&mask->mf.map, idx, 1);
1662 *dst++ = mask_u64;
1663 hash = hash_add64(hash, mask_u64);
1664 }
1665 }
1666
1667 map_t map;
1668
1669 FLOWMAP_FOR_EACH_MAP (map, mask->mf.map) {
1670 hash = hash_add64(hash, map);
1671 }
1672
1673 size_t n = dst - miniflow_get_values(&mask->mf);
1674
1675 mask->hash = hash_finish(hash, n * 8);
1676 mask->len = netdev_flow_key_size(n);
1677 }
1678
1679 /* Initializes 'dst' as a copy of 'flow' masked with 'mask'. */
1680 static inline void
1681 netdev_flow_key_init_masked(struct netdev_flow_key *dst,
1682 const struct flow *flow,
1683 const struct netdev_flow_key *mask)
1684 {
1685 uint64_t *dst_u64 = miniflow_values(&dst->mf);
1686 const uint64_t *mask_u64 = miniflow_get_values(&mask->mf);
1687 uint32_t hash = 0;
1688 uint64_t value;
1689
1690 dst->len = mask->len;
1691 dst->mf = mask->mf; /* Copy maps. */
1692
1693 FLOW_FOR_EACH_IN_MAPS(value, flow, mask->mf.map) {
1694 *dst_u64 = value & *mask_u64++;
1695 hash = hash_add64(hash, *dst_u64++);
1696 }
1697 dst->hash = hash_finish(hash,
1698 (dst_u64 - miniflow_get_values(&dst->mf)) * 8);
1699 }
1700
1701 /* Iterate through netdev_flow_key TNL u64 values specified by 'FLOWMAP'. */
1702 #define NETDEV_FLOW_KEY_FOR_EACH_IN_FLOWMAP(VALUE, KEY, FLOWMAP) \
1703 MINIFLOW_FOR_EACH_IN_FLOWMAP(VALUE, &(KEY)->mf, FLOWMAP)
1704
1705 /* Returns a hash value for the bits of 'key' where there are 1-bits in
1706 * 'mask'. */
1707 static inline uint32_t
1708 netdev_flow_key_hash_in_mask(const struct netdev_flow_key *key,
1709 const struct netdev_flow_key *mask)
1710 {
1711 const uint64_t *p = miniflow_get_values(&mask->mf);
1712 uint32_t hash = 0;
1713 uint64_t value;
1714
1715 NETDEV_FLOW_KEY_FOR_EACH_IN_FLOWMAP(value, key, mask->mf.map) {
1716 hash = hash_add64(hash, value & *p++);
1717 }
1718
1719 return hash_finish(hash, (p - miniflow_get_values(&mask->mf)) * 8);
1720 }
1721
1722 static inline bool
1723 emc_entry_alive(struct emc_entry *ce)
1724 {
1725 return ce->flow && !ce->flow->dead;
1726 }
1727
1728 static void
1729 emc_clear_entry(struct emc_entry *ce)
1730 {
1731 if (ce->flow) {
1732 dp_netdev_flow_unref(ce->flow);
1733 ce->flow = NULL;
1734 }
1735 }
1736
1737 static inline void
1738 emc_change_entry(struct emc_entry *ce, struct dp_netdev_flow *flow,
1739 const struct netdev_flow_key *key)
1740 {
1741 if (ce->flow != flow) {
1742 if (ce->flow) {
1743 dp_netdev_flow_unref(ce->flow);
1744 }
1745
1746 if (dp_netdev_flow_ref(flow)) {
1747 ce->flow = flow;
1748 } else {
1749 ce->flow = NULL;
1750 }
1751 }
1752 if (key) {
1753 netdev_flow_key_clone(&ce->key, key);
1754 }
1755 }
1756
1757 static inline void
1758 emc_insert(struct emc_cache *cache, const struct netdev_flow_key *key,
1759 struct dp_netdev_flow *flow)
1760 {
1761 struct emc_entry *to_be_replaced = NULL;
1762 struct emc_entry *current_entry;
1763
1764 EMC_FOR_EACH_POS_WITH_HASH(cache, current_entry, key->hash) {
1765 if (netdev_flow_key_equal(&current_entry->key, key)) {
1766 /* We found the entry with the 'mf' miniflow */
1767 emc_change_entry(current_entry, flow, NULL);
1768 return;
1769 }
1770
1771 /* Replacement policy: put the flow in an empty (not alive) entry, or
1772 * in the first entry where it can be */
1773 if (!to_be_replaced
1774 || (emc_entry_alive(to_be_replaced)
1775 && !emc_entry_alive(current_entry))
1776 || current_entry->key.hash < to_be_replaced->key.hash) {
1777 to_be_replaced = current_entry;
1778 }
1779 }
1780 /* We didn't find the miniflow in the cache.
1781 * The 'to_be_replaced' entry is where the new flow will be stored */
1782
1783 emc_change_entry(to_be_replaced, flow, key);
1784 }
1785
1786 static inline struct dp_netdev_flow *
1787 emc_lookup(struct emc_cache *cache, const struct netdev_flow_key *key)
1788 {
1789 struct emc_entry *current_entry;
1790
1791 EMC_FOR_EACH_POS_WITH_HASH(cache, current_entry, key->hash) {
1792 if (current_entry->key.hash == key->hash
1793 && emc_entry_alive(current_entry)
1794 && netdev_flow_key_equal_mf(&current_entry->key, &key->mf)) {
1795
1796 /* We found the entry with the 'key->mf' miniflow */
1797 return current_entry->flow;
1798 }
1799 }
1800
1801 return NULL;
1802 }
1803
1804 static struct dp_netdev_flow *
1805 dp_netdev_pmd_lookup_flow(const struct dp_netdev_pmd_thread *pmd,
1806 const struct netdev_flow_key *key)
1807 {
1808 struct dp_netdev_flow *netdev_flow;
1809 struct dpcls_rule *rule;
1810
1811 dpcls_lookup(&pmd->cls, key, &rule, 1);
1812 netdev_flow = dp_netdev_flow_cast(rule);
1813
1814 return netdev_flow;
1815 }
1816
1817 static struct dp_netdev_flow *
1818 dp_netdev_pmd_find_flow(const struct dp_netdev_pmd_thread *pmd,
1819 const ovs_u128 *ufidp, const struct nlattr *key,
1820 size_t key_len)
1821 {
1822 struct dp_netdev_flow *netdev_flow;
1823 struct flow flow;
1824 ovs_u128 ufid;
1825
1826 /* If a UFID is not provided, determine one based on the key. */
1827 if (!ufidp && key && key_len
1828 && !dpif_netdev_flow_from_nlattrs(key, key_len, &flow)) {
1829 dpif_flow_hash(pmd->dp->dpif, &flow, sizeof flow, &ufid);
1830 ufidp = &ufid;
1831 }
1832
1833 if (ufidp) {
1834 CMAP_FOR_EACH_WITH_HASH (netdev_flow, node, dp_netdev_flow_hash(ufidp),
1835 &pmd->flow_table) {
1836 if (ovs_u128_equals(netdev_flow->ufid, *ufidp)) {
1837 return netdev_flow;
1838 }
1839 }
1840 }
1841
1842 return NULL;
1843 }
1844
1845 static void
1846 get_dpif_flow_stats(const struct dp_netdev_flow *netdev_flow_,
1847 struct dpif_flow_stats *stats)
1848 {
1849 struct dp_netdev_flow *netdev_flow;
1850 unsigned long long n;
1851 long long used;
1852 uint16_t flags;
1853
1854 netdev_flow = CONST_CAST(struct dp_netdev_flow *, netdev_flow_);
1855
1856 atomic_read_relaxed(&netdev_flow->stats.packet_count, &n);
1857 stats->n_packets = n;
1858 atomic_read_relaxed(&netdev_flow->stats.byte_count, &n);
1859 stats->n_bytes = n;
1860 atomic_read_relaxed(&netdev_flow->stats.used, &used);
1861 stats->used = used;
1862 atomic_read_relaxed(&netdev_flow->stats.tcp_flags, &flags);
1863 stats->tcp_flags = flags;
1864 }
1865
1866 /* Converts to the dpif_flow format, using 'key_buf' and 'mask_buf' for
1867 * storing the netlink-formatted key/mask. 'key_buf' may be the same as
1868 * 'mask_buf'. Actions will be returned without copying, by relying on RCU to
1869 * protect them. */
1870 static void
1871 dp_netdev_flow_to_dpif_flow(const struct dp_netdev_flow *netdev_flow,
1872 struct ofpbuf *key_buf, struct ofpbuf *mask_buf,
1873 struct dpif_flow *flow, bool terse)
1874 {
1875 if (terse) {
1876 memset(flow, 0, sizeof *flow);
1877 } else {
1878 struct flow_wildcards wc;
1879 struct dp_netdev_actions *actions;
1880 size_t offset;
1881 struct odp_flow_key_parms odp_parms = {
1882 .flow = &netdev_flow->flow,
1883 .mask = &wc.masks,
1884 .support = dp_netdev_support,
1885 };
1886
1887 miniflow_expand(&netdev_flow->cr.mask->mf, &wc.masks);
1888
1889 /* Key */
1890 offset = key_buf->size;
1891 flow->key = ofpbuf_tail(key_buf);
1892 odp_parms.odp_in_port = netdev_flow->flow.in_port.odp_port;
1893 odp_flow_key_from_flow(&odp_parms, key_buf);
1894 flow->key_len = key_buf->size - offset;
1895
1896 /* Mask */
1897 offset = mask_buf->size;
1898 flow->mask = ofpbuf_tail(mask_buf);
1899 odp_parms.odp_in_port = wc.masks.in_port.odp_port;
1900 odp_parms.key_buf = key_buf;
1901 odp_flow_key_from_mask(&odp_parms, mask_buf);
1902 flow->mask_len = mask_buf->size - offset;
1903
1904 /* Actions */
1905 actions = dp_netdev_flow_get_actions(netdev_flow);
1906 flow->actions = actions->actions;
1907 flow->actions_len = actions->size;
1908 }
1909
1910 flow->ufid = netdev_flow->ufid;
1911 flow->ufid_present = true;
1912 flow->pmd_id = netdev_flow->pmd_id;
1913 get_dpif_flow_stats(netdev_flow, &flow->stats);
1914 }
1915
1916 static int
1917 dpif_netdev_mask_from_nlattrs(const struct nlattr *key, uint32_t key_len,
1918 const struct nlattr *mask_key,
1919 uint32_t mask_key_len, const struct flow *flow,
1920 struct flow_wildcards *wc)
1921 {
1922 enum odp_key_fitness fitness;
1923
1924 fitness = odp_flow_key_to_mask_udpif(mask_key, mask_key_len, key,
1925 key_len, wc, flow);
1926 if (fitness) {
1927 /* This should not happen: it indicates that
1928 * odp_flow_key_from_mask() and odp_flow_key_to_mask()
1929 * disagree on the acceptable form of a mask. Log the problem
1930 * as an error, with enough details to enable debugging. */
1931 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
1932
1933 if (!VLOG_DROP_ERR(&rl)) {
1934 struct ds s;
1935
1936 ds_init(&s);
1937 odp_flow_format(key, key_len, mask_key, mask_key_len, NULL, &s,
1938 true);
1939 VLOG_ERR("internal error parsing flow mask %s (%s)",
1940 ds_cstr(&s), odp_key_fitness_to_string(fitness));
1941 ds_destroy(&s);
1942 }
1943
1944 return EINVAL;
1945 }
1946
1947 return 0;
1948 }
1949
1950 static int
1951 dpif_netdev_flow_from_nlattrs(const struct nlattr *key, uint32_t key_len,
1952 struct flow *flow)
1953 {
1954 odp_port_t in_port;
1955
1956 if (odp_flow_key_to_flow_udpif(key, key_len, flow)) {
1957 /* This should not happen: it indicates that odp_flow_key_from_flow()
1958 * and odp_flow_key_to_flow() disagree on the acceptable form of a
1959 * flow. Log the problem as an error, with enough details to enable
1960 * debugging. */
1961 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
1962
1963 if (!VLOG_DROP_ERR(&rl)) {
1964 struct ds s;
1965
1966 ds_init(&s);
1967 odp_flow_format(key, key_len, NULL, 0, NULL, &s, true);
1968 VLOG_ERR("internal error parsing flow key %s", ds_cstr(&s));
1969 ds_destroy(&s);
1970 }
1971
1972 return EINVAL;
1973 }
1974
1975 in_port = flow->in_port.odp_port;
1976 if (!is_valid_port_number(in_port) && in_port != ODPP_NONE) {
1977 return EINVAL;
1978 }
1979
1980 /* Userspace datapath doesn't support conntrack. */
1981 if (flow->ct_state || flow->ct_zone || flow->ct_mark
1982 || !ovs_u128_is_zero(flow->ct_label)) {
1983 return EINVAL;
1984 }
1985
1986 return 0;
1987 }
1988
1989 static int
1990 dpif_netdev_flow_get(const struct dpif *dpif, const struct dpif_flow_get *get)
1991 {
1992 struct dp_netdev *dp = get_dp_netdev(dpif);
1993 struct dp_netdev_flow *netdev_flow;
1994 struct dp_netdev_pmd_thread *pmd;
1995 unsigned pmd_id = get->pmd_id == PMD_ID_NULL
1996 ? NON_PMD_CORE_ID : get->pmd_id;
1997 int error = 0;
1998
1999 pmd = dp_netdev_get_pmd(dp, pmd_id);
2000 if (!pmd) {
2001 return EINVAL;
2002 }
2003
2004 netdev_flow = dp_netdev_pmd_find_flow(pmd, get->ufid, get->key,
2005 get->key_len);
2006 if (netdev_flow) {
2007 dp_netdev_flow_to_dpif_flow(netdev_flow, get->buffer, get->buffer,
2008 get->flow, false);
2009 } else {
2010 error = ENOENT;
2011 }
2012 dp_netdev_pmd_unref(pmd);
2013
2014
2015 return error;
2016 }
2017
2018 static struct dp_netdev_flow *
2019 dp_netdev_flow_add(struct dp_netdev_pmd_thread *pmd,
2020 struct match *match, const ovs_u128 *ufid,
2021 const struct nlattr *actions, size_t actions_len)
2022 OVS_REQUIRES(pmd->flow_mutex)
2023 {
2024 struct dp_netdev_flow *flow;
2025 struct netdev_flow_key mask;
2026
2027 netdev_flow_mask_init(&mask, match);
2028 /* Make sure wc does not have metadata. */
2029 ovs_assert(!FLOWMAP_HAS_FIELD(&mask.mf.map, metadata)
2030 && !FLOWMAP_HAS_FIELD(&mask.mf.map, regs));
2031
2032 /* Do not allocate extra space. */
2033 flow = xmalloc(sizeof *flow - sizeof flow->cr.flow.mf + mask.len);
2034 memset(&flow->stats, 0, sizeof flow->stats);
2035 flow->dead = false;
2036 flow->batch = NULL;
2037 *CONST_CAST(unsigned *, &flow->pmd_id) = pmd->core_id;
2038 *CONST_CAST(struct flow *, &flow->flow) = match->flow;
2039 *CONST_CAST(ovs_u128 *, &flow->ufid) = *ufid;
2040 ovs_refcount_init(&flow->ref_cnt);
2041 ovsrcu_set(&flow->actions, dp_netdev_actions_create(actions, actions_len));
2042
2043 netdev_flow_key_init_masked(&flow->cr.flow, &match->flow, &mask);
2044 dpcls_insert(&pmd->cls, &flow->cr, &mask);
2045
2046 cmap_insert(&pmd->flow_table, CONST_CAST(struct cmap_node *, &flow->node),
2047 dp_netdev_flow_hash(&flow->ufid));
2048
2049 if (OVS_UNLIKELY(VLOG_IS_DBG_ENABLED())) {
2050 struct match match;
2051 struct ds ds = DS_EMPTY_INITIALIZER;
2052
2053 match.tun_md.valid = false;
2054 match.flow = flow->flow;
2055 miniflow_expand(&flow->cr.mask->mf, &match.wc.masks);
2056
2057 ds_put_cstr(&ds, "flow_add: ");
2058 odp_format_ufid(ufid, &ds);
2059 ds_put_cstr(&ds, " ");
2060 match_format(&match, &ds, OFP_DEFAULT_PRIORITY);
2061 ds_put_cstr(&ds, ", actions:");
2062 format_odp_actions(&ds, actions, actions_len);
2063
2064 VLOG_DBG_RL(&upcall_rl, "%s", ds_cstr(&ds));
2065
2066 ds_destroy(&ds);
2067 }
2068
2069 return flow;
2070 }
2071
2072 static int
2073 dpif_netdev_flow_put(struct dpif *dpif, const struct dpif_flow_put *put)
2074 {
2075 struct dp_netdev *dp = get_dp_netdev(dpif);
2076 struct dp_netdev_flow *netdev_flow;
2077 struct netdev_flow_key key;
2078 struct dp_netdev_pmd_thread *pmd;
2079 struct match match;
2080 ovs_u128 ufid;
2081 unsigned pmd_id = put->pmd_id == PMD_ID_NULL
2082 ? NON_PMD_CORE_ID : put->pmd_id;
2083 int error;
2084
2085 error = dpif_netdev_flow_from_nlattrs(put->key, put->key_len, &match.flow);
2086 if (error) {
2087 return error;
2088 }
2089 error = dpif_netdev_mask_from_nlattrs(put->key, put->key_len,
2090 put->mask, put->mask_len,
2091 &match.flow, &match.wc);
2092 if (error) {
2093 return error;
2094 }
2095
2096 pmd = dp_netdev_get_pmd(dp, pmd_id);
2097 if (!pmd) {
2098 return EINVAL;
2099 }
2100
2101 /* Must produce a netdev_flow_key for lookup.
2102 * This interface is no longer performance critical, since it is not used
2103 * for upcall processing any more. */
2104 netdev_flow_key_from_flow(&key, &match.flow);
2105
2106 if (put->ufid) {
2107 ufid = *put->ufid;
2108 } else {
2109 dpif_flow_hash(dpif, &match.flow, sizeof match.flow, &ufid);
2110 }
2111
2112 ovs_mutex_lock(&pmd->flow_mutex);
2113 netdev_flow = dp_netdev_pmd_lookup_flow(pmd, &key);
2114 if (!netdev_flow) {
2115 if (put->flags & DPIF_FP_CREATE) {
2116 if (cmap_count(&pmd->flow_table) < MAX_FLOWS) {
2117 if (put->stats) {
2118 memset(put->stats, 0, sizeof *put->stats);
2119 }
2120 dp_netdev_flow_add(pmd, &match, &ufid, put->actions,
2121 put->actions_len);
2122 error = 0;
2123 } else {
2124 error = EFBIG;
2125 }
2126 } else {
2127 error = ENOENT;
2128 }
2129 } else {
2130 if (put->flags & DPIF_FP_MODIFY
2131 && flow_equal(&match.flow, &netdev_flow->flow)) {
2132 struct dp_netdev_actions *new_actions;
2133 struct dp_netdev_actions *old_actions;
2134
2135 new_actions = dp_netdev_actions_create(put->actions,
2136 put->actions_len);
2137
2138 old_actions = dp_netdev_flow_get_actions(netdev_flow);
2139 ovsrcu_set(&netdev_flow->actions, new_actions);
2140
2141 if (put->stats) {
2142 get_dpif_flow_stats(netdev_flow, put->stats);
2143 }
2144 if (put->flags & DPIF_FP_ZERO_STATS) {
2145 /* XXX: The userspace datapath uses thread local statistics
2146 * (for flows), which should be updated only by the owning
2147 * thread. Since we cannot write on stats memory here,
2148 * we choose not to support this flag. Please note:
2149 * - This feature is currently used only by dpctl commands with
2150 * option --clear.
2151 * - Should the need arise, this operation can be implemented
2152 * by keeping a base value (to be update here) for each
2153 * counter, and subtracting it before outputting the stats */
2154 error = EOPNOTSUPP;
2155 }
2156
2157 ovsrcu_postpone(dp_netdev_actions_free, old_actions);
2158 } else if (put->flags & DPIF_FP_CREATE) {
2159 error = EEXIST;
2160 } else {
2161 /* Overlapping flow. */
2162 error = EINVAL;
2163 }
2164 }
2165 ovs_mutex_unlock(&pmd->flow_mutex);
2166 dp_netdev_pmd_unref(pmd);
2167
2168 return error;
2169 }
2170
2171 static int
2172 dpif_netdev_flow_del(struct dpif *dpif, const struct dpif_flow_del *del)
2173 {
2174 struct dp_netdev *dp = get_dp_netdev(dpif);
2175 struct dp_netdev_flow *netdev_flow;
2176 struct dp_netdev_pmd_thread *pmd;
2177 unsigned pmd_id = del->pmd_id == PMD_ID_NULL
2178 ? NON_PMD_CORE_ID : del->pmd_id;
2179 int error = 0;
2180
2181 pmd = dp_netdev_get_pmd(dp, pmd_id);
2182 if (!pmd) {
2183 return EINVAL;
2184 }
2185
2186 ovs_mutex_lock(&pmd->flow_mutex);
2187 netdev_flow = dp_netdev_pmd_find_flow(pmd, del->ufid, del->key,
2188 del->key_len);
2189 if (netdev_flow) {
2190 if (del->stats) {
2191 get_dpif_flow_stats(netdev_flow, del->stats);
2192 }
2193 dp_netdev_pmd_remove_flow(pmd, netdev_flow);
2194 } else {
2195 error = ENOENT;
2196 }
2197 ovs_mutex_unlock(&pmd->flow_mutex);
2198 dp_netdev_pmd_unref(pmd);
2199
2200 return error;
2201 }
2202
2203 struct dpif_netdev_flow_dump {
2204 struct dpif_flow_dump up;
2205 struct cmap_position poll_thread_pos;
2206 struct cmap_position flow_pos;
2207 struct dp_netdev_pmd_thread *cur_pmd;
2208 int status;
2209 struct ovs_mutex mutex;
2210 };
2211
2212 static struct dpif_netdev_flow_dump *
2213 dpif_netdev_flow_dump_cast(struct dpif_flow_dump *dump)
2214 {
2215 return CONTAINER_OF(dump, struct dpif_netdev_flow_dump, up);
2216 }
2217
2218 static struct dpif_flow_dump *
2219 dpif_netdev_flow_dump_create(const struct dpif *dpif_, bool terse)
2220 {
2221 struct dpif_netdev_flow_dump *dump;
2222
2223 dump = xzalloc(sizeof *dump);
2224 dpif_flow_dump_init(&dump->up, dpif_);
2225 dump->up.terse = terse;
2226 ovs_mutex_init(&dump->mutex);
2227
2228 return &dump->up;
2229 }
2230
2231 static int
2232 dpif_netdev_flow_dump_destroy(struct dpif_flow_dump *dump_)
2233 {
2234 struct dpif_netdev_flow_dump *dump = dpif_netdev_flow_dump_cast(dump_);
2235
2236 ovs_mutex_destroy(&dump->mutex);
2237 free(dump);
2238 return 0;
2239 }
2240
2241 struct dpif_netdev_flow_dump_thread {
2242 struct dpif_flow_dump_thread up;
2243 struct dpif_netdev_flow_dump *dump;
2244 struct odputil_keybuf keybuf[FLOW_DUMP_MAX_BATCH];
2245 struct odputil_keybuf maskbuf[FLOW_DUMP_MAX_BATCH];
2246 };
2247
2248 static struct dpif_netdev_flow_dump_thread *
2249 dpif_netdev_flow_dump_thread_cast(struct dpif_flow_dump_thread *thread)
2250 {
2251 return CONTAINER_OF(thread, struct dpif_netdev_flow_dump_thread, up);
2252 }
2253
2254 static struct dpif_flow_dump_thread *
2255 dpif_netdev_flow_dump_thread_create(struct dpif_flow_dump *dump_)
2256 {
2257 struct dpif_netdev_flow_dump *dump = dpif_netdev_flow_dump_cast(dump_);
2258 struct dpif_netdev_flow_dump_thread *thread;
2259
2260 thread = xmalloc(sizeof *thread);
2261 dpif_flow_dump_thread_init(&thread->up, &dump->up);
2262 thread->dump = dump;
2263 return &thread->up;
2264 }
2265
2266 static void
2267 dpif_netdev_flow_dump_thread_destroy(struct dpif_flow_dump_thread *thread_)
2268 {
2269 struct dpif_netdev_flow_dump_thread *thread
2270 = dpif_netdev_flow_dump_thread_cast(thread_);
2271
2272 free(thread);
2273 }
2274
2275 static int
2276 dpif_netdev_flow_dump_next(struct dpif_flow_dump_thread *thread_,
2277 struct dpif_flow *flows, int max_flows)
2278 {
2279 struct dpif_netdev_flow_dump_thread *thread
2280 = dpif_netdev_flow_dump_thread_cast(thread_);
2281 struct dpif_netdev_flow_dump *dump = thread->dump;
2282 struct dp_netdev_flow *netdev_flows[FLOW_DUMP_MAX_BATCH];
2283 int n_flows = 0;
2284 int i;
2285
2286 ovs_mutex_lock(&dump->mutex);
2287 if (!dump->status) {
2288 struct dpif_netdev *dpif = dpif_netdev_cast(thread->up.dpif);
2289 struct dp_netdev *dp = get_dp_netdev(&dpif->dpif);
2290 struct dp_netdev_pmd_thread *pmd = dump->cur_pmd;
2291 int flow_limit = MIN(max_flows, FLOW_DUMP_MAX_BATCH);
2292
2293 /* First call to dump_next(), extracts the first pmd thread.
2294 * If there is no pmd thread, returns immediately. */
2295 if (!pmd) {
2296 pmd = dp_netdev_pmd_get_next(dp, &dump->poll_thread_pos);
2297 if (!pmd) {
2298 ovs_mutex_unlock(&dump->mutex);
2299 return n_flows;
2300
2301 }
2302 }
2303
2304 do {
2305 for (n_flows = 0; n_flows < flow_limit; n_flows++) {
2306 struct cmap_node *node;
2307
2308 node = cmap_next_position(&pmd->flow_table, &dump->flow_pos);
2309 if (!node) {
2310 break;
2311 }
2312 netdev_flows[n_flows] = CONTAINER_OF(node,
2313 struct dp_netdev_flow,
2314 node);
2315 }
2316 /* When finishing dumping the current pmd thread, moves to
2317 * the next. */
2318 if (n_flows < flow_limit) {
2319 memset(&dump->flow_pos, 0, sizeof dump->flow_pos);
2320 dp_netdev_pmd_unref(pmd);
2321 pmd = dp_netdev_pmd_get_next(dp, &dump->poll_thread_pos);
2322 if (!pmd) {
2323 dump->status = EOF;
2324 break;
2325 }
2326 }
2327 /* Keeps the reference to next caller. */
2328 dump->cur_pmd = pmd;
2329
2330 /* If the current dump is empty, do not exit the loop, since the
2331 * remaining pmds could have flows to be dumped. Just dumps again
2332 * on the new 'pmd'. */
2333 } while (!n_flows);
2334 }
2335 ovs_mutex_unlock(&dump->mutex);
2336
2337 for (i = 0; i < n_flows; i++) {
2338 struct odputil_keybuf *maskbuf = &thread->maskbuf[i];
2339 struct odputil_keybuf *keybuf = &thread->keybuf[i];
2340 struct dp_netdev_flow *netdev_flow = netdev_flows[i];
2341 struct dpif_flow *f = &flows[i];
2342 struct ofpbuf key, mask;
2343
2344 ofpbuf_use_stack(&key, keybuf, sizeof *keybuf);
2345 ofpbuf_use_stack(&mask, maskbuf, sizeof *maskbuf);
2346 dp_netdev_flow_to_dpif_flow(netdev_flow, &key, &mask, f,
2347 dump->up.terse);
2348 }
2349
2350 return n_flows;
2351 }
2352
2353 static int
2354 dpif_netdev_execute(struct dpif *dpif, struct dpif_execute *execute)
2355 OVS_NO_THREAD_SAFETY_ANALYSIS
2356 {
2357 struct dp_netdev *dp = get_dp_netdev(dpif);
2358 struct dp_netdev_pmd_thread *pmd;
2359 struct dp_packet_batch pp;
2360
2361 if (dp_packet_size(execute->packet) < ETH_HEADER_LEN ||
2362 dp_packet_size(execute->packet) > UINT16_MAX) {
2363 return EINVAL;
2364 }
2365
2366 /* Tries finding the 'pmd'. If NULL is returned, that means
2367 * the current thread is a non-pmd thread and should use
2368 * dp_netdev_get_pmd(dp, NON_PMD_CORE_ID). */
2369 pmd = ovsthread_getspecific(dp->per_pmd_key);
2370 if (!pmd) {
2371 pmd = dp_netdev_get_pmd(dp, NON_PMD_CORE_ID);
2372 }
2373
2374 /* If the current thread is non-pmd thread, acquires
2375 * the 'non_pmd_mutex'. */
2376 if (pmd->core_id == NON_PMD_CORE_ID) {
2377 ovs_mutex_lock(&dp->non_pmd_mutex);
2378 ovs_mutex_lock(&dp->port_mutex);
2379 }
2380
2381 /* The action processing expects the RSS hash to be valid, because
2382 * it's always initialized at the beginning of datapath processing.
2383 * In this case, though, 'execute->packet' may not have gone through
2384 * the datapath at all, it may have been generated by the upper layer
2385 * (OpenFlow packet-out, BFD frame, ...). */
2386 if (!dp_packet_rss_valid(execute->packet)) {
2387 dp_packet_set_rss_hash(execute->packet,
2388 flow_hash_5tuple(execute->flow, 0));
2389 }
2390
2391 packet_batch_init_packet(&pp, execute->packet);
2392 dp_netdev_execute_actions(pmd, &pp, false, execute->actions,
2393 execute->actions_len);
2394
2395 if (pmd->core_id == NON_PMD_CORE_ID) {
2396 dp_netdev_pmd_unref(pmd);
2397 ovs_mutex_unlock(&dp->port_mutex);
2398 ovs_mutex_unlock(&dp->non_pmd_mutex);
2399 }
2400
2401 return 0;
2402 }
2403
2404 static void
2405 dpif_netdev_operate(struct dpif *dpif, struct dpif_op **ops, size_t n_ops)
2406 {
2407 size_t i;
2408
2409 for (i = 0; i < n_ops; i++) {
2410 struct dpif_op *op = ops[i];
2411
2412 switch (op->type) {
2413 case DPIF_OP_FLOW_PUT:
2414 op->error = dpif_netdev_flow_put(dpif, &op->u.flow_put);
2415 break;
2416
2417 case DPIF_OP_FLOW_DEL:
2418 op->error = dpif_netdev_flow_del(dpif, &op->u.flow_del);
2419 break;
2420
2421 case DPIF_OP_EXECUTE:
2422 op->error = dpif_netdev_execute(dpif, &op->u.execute);
2423 break;
2424
2425 case DPIF_OP_FLOW_GET:
2426 op->error = dpif_netdev_flow_get(dpif, &op->u.flow_get);
2427 break;
2428 }
2429 }
2430 }
2431
2432 /* Returns true if the configuration for rx queues or cpu mask
2433 * is changed. */
2434 static bool
2435 pmd_config_changed(const struct dp_netdev *dp, const char *cmask)
2436 {
2437 struct dp_netdev_port *port;
2438
2439 CMAP_FOR_EACH (port, node, &dp->ports) {
2440 struct netdev *netdev = port->netdev;
2441 int requested_n_rxq = netdev_requested_n_rxq(netdev);
2442 if (netdev_is_pmd(netdev)
2443 && port->latest_requested_n_rxq != requested_n_rxq) {
2444 return true;
2445 }
2446 }
2447
2448 if (dp->pmd_cmask != NULL && cmask != NULL) {
2449 return strcmp(dp->pmd_cmask, cmask);
2450 } else {
2451 return (dp->pmd_cmask != NULL || cmask != NULL);
2452 }
2453 }
2454
2455 /* Resets pmd threads if the configuration for 'rxq's or cpu mask changes. */
2456 static int
2457 dpif_netdev_pmd_set(struct dpif *dpif, const char *cmask)
2458 {
2459 struct dp_netdev *dp = get_dp_netdev(dpif);
2460
2461 if (pmd_config_changed(dp, cmask)) {
2462 struct dp_netdev_port *port;
2463
2464 dp_netdev_destroy_all_pmds(dp);
2465
2466 CMAP_FOR_EACH (port, node, &dp->ports) {
2467 struct netdev *netdev = port->netdev;
2468 int requested_n_rxq = netdev_requested_n_rxq(netdev);
2469 if (netdev_is_pmd(port->netdev)
2470 && port->latest_requested_n_rxq != requested_n_rxq) {
2471 int i, err;
2472
2473 /* Closes the existing 'rxq's. */
2474 for (i = 0; i < netdev_n_rxq(port->netdev); i++) {
2475 netdev_rxq_close(port->rxq[i]);
2476 port->rxq[i] = NULL;
2477 }
2478 port->n_rxq = 0;
2479
2480 /* Sets the new rx queue config. */
2481 err = netdev_set_multiq(port->netdev,
2482 ovs_numa_get_n_cores() + 1,
2483 requested_n_rxq);
2484 if (err && (err != EOPNOTSUPP)) {
2485 VLOG_ERR("Failed to set dpdk interface %s rx_queue to:"
2486 " %u", netdev_get_name(port->netdev),
2487 requested_n_rxq);
2488 return err;
2489 }
2490 port->latest_requested_n_rxq = requested_n_rxq;
2491 /* If the set_multiq() above succeeds, reopens the 'rxq's. */
2492 port->n_rxq = netdev_n_rxq(port->netdev);
2493 port->rxq = xrealloc(port->rxq, sizeof *port->rxq * port->n_rxq);
2494 for (i = 0; i < port->n_rxq; i++) {
2495 netdev_rxq_open(port->netdev, &port->rxq[i], i);
2496 }
2497 }
2498 }
2499 /* Reconfigures the cpu mask. */
2500 ovs_numa_set_cpu_mask(cmask);
2501 free(dp->pmd_cmask);
2502 dp->pmd_cmask = cmask ? xstrdup(cmask) : NULL;
2503
2504 /* Restores the non-pmd. */
2505 dp_netdev_set_nonpmd(dp);
2506 /* Restores all pmd threads. */
2507 dp_netdev_reset_pmd_threads(dp);
2508 }
2509
2510 return 0;
2511 }
2512
2513 static int
2514 dpif_netdev_queue_to_priority(const struct dpif *dpif OVS_UNUSED,
2515 uint32_t queue_id, uint32_t *priority)
2516 {
2517 *priority = queue_id;
2518 return 0;
2519 }
2520
2521 \f
2522 /* Creates and returns a new 'struct dp_netdev_actions', whose actions are
2523 * a copy of the 'ofpacts_len' bytes of 'ofpacts'. */
2524 struct dp_netdev_actions *
2525 dp_netdev_actions_create(const struct nlattr *actions, size_t size)
2526 {
2527 struct dp_netdev_actions *netdev_actions;
2528
2529 netdev_actions = xmalloc(sizeof *netdev_actions + size);
2530 memcpy(netdev_actions->actions, actions, size);
2531 netdev_actions->size = size;
2532
2533 return netdev_actions;
2534 }
2535
2536 struct dp_netdev_actions *
2537 dp_netdev_flow_get_actions(const struct dp_netdev_flow *flow)
2538 {
2539 return ovsrcu_get(struct dp_netdev_actions *, &flow->actions);
2540 }
2541
2542 static void
2543 dp_netdev_actions_free(struct dp_netdev_actions *actions)
2544 {
2545 free(actions);
2546 }
2547 \f
2548 static inline unsigned long long
2549 cycles_counter(void)
2550 {
2551 #ifdef DPDK_NETDEV
2552 return rte_get_tsc_cycles();
2553 #else
2554 return 0;
2555 #endif
2556 }
2557
2558 /* Fake mutex to make sure that the calls to cycles_count_* are balanced */
2559 extern struct ovs_mutex cycles_counter_fake_mutex;
2560
2561 /* Start counting cycles. Must be followed by 'cycles_count_end()' */
2562 static inline void
2563 cycles_count_start(struct dp_netdev_pmd_thread *pmd)
2564 OVS_ACQUIRES(&cycles_counter_fake_mutex)
2565 OVS_NO_THREAD_SAFETY_ANALYSIS
2566 {
2567 pmd->last_cycles = cycles_counter();
2568 }
2569
2570 /* Stop counting cycles and add them to the counter 'type' */
2571 static inline void
2572 cycles_count_end(struct dp_netdev_pmd_thread *pmd,
2573 enum pmd_cycles_counter_type type)
2574 OVS_RELEASES(&cycles_counter_fake_mutex)
2575 OVS_NO_THREAD_SAFETY_ANALYSIS
2576 {
2577 unsigned long long interval = cycles_counter() - pmd->last_cycles;
2578
2579 non_atomic_ullong_add(&pmd->cycles.n[type], interval);
2580 }
2581
2582 static void
2583 dp_netdev_process_rxq_port(struct dp_netdev_pmd_thread *pmd,
2584 struct dp_netdev_port *port,
2585 struct netdev_rxq *rxq)
2586 {
2587 struct dp_packet_batch batch;
2588 int error;
2589
2590 dp_packet_batch_init(&batch);
2591 cycles_count_start(pmd);
2592 error = netdev_rxq_recv(rxq, &batch);
2593 cycles_count_end(pmd, PMD_CYCLES_POLLING);
2594 if (!error) {
2595 *recirc_depth_get() = 0;
2596
2597 cycles_count_start(pmd);
2598 dp_netdev_input(pmd, &batch, port->port_no);
2599 cycles_count_end(pmd, PMD_CYCLES_PROCESSING);
2600 } else if (error != EAGAIN && error != EOPNOTSUPP) {
2601 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
2602
2603 VLOG_ERR_RL(&rl, "error receiving data from %s: %s",
2604 netdev_get_name(port->netdev), ovs_strerror(error));
2605 }
2606 }
2607
2608 /* Return true if needs to revalidate datapath flows. */
2609 static bool
2610 dpif_netdev_run(struct dpif *dpif)
2611 {
2612 struct dp_netdev_port *port;
2613 struct dp_netdev *dp = get_dp_netdev(dpif);
2614 struct dp_netdev_pmd_thread *non_pmd = dp_netdev_get_pmd(dp,
2615 NON_PMD_CORE_ID);
2616 uint64_t new_tnl_seq;
2617
2618 ovs_mutex_lock(&dp->non_pmd_mutex);
2619 CMAP_FOR_EACH (port, node, &dp->ports) {
2620 if (!netdev_is_pmd(port->netdev)) {
2621 int i;
2622
2623 for (i = 0; i < port->n_rxq; i++) {
2624 dp_netdev_process_rxq_port(non_pmd, port, port->rxq[i]);
2625 }
2626 }
2627 }
2628 ovs_mutex_unlock(&dp->non_pmd_mutex);
2629 dp_netdev_pmd_unref(non_pmd);
2630
2631 tnl_neigh_cache_run();
2632 tnl_port_map_run();
2633 new_tnl_seq = seq_read(tnl_conf_seq);
2634
2635 if (dp->last_tnl_conf_seq != new_tnl_seq) {
2636 dp->last_tnl_conf_seq = new_tnl_seq;
2637 return true;
2638 }
2639 return false;
2640 }
2641
2642 static void
2643 dpif_netdev_wait(struct dpif *dpif)
2644 {
2645 struct dp_netdev_port *port;
2646 struct dp_netdev *dp = get_dp_netdev(dpif);
2647
2648 ovs_mutex_lock(&dp_netdev_mutex);
2649 CMAP_FOR_EACH (port, node, &dp->ports) {
2650 if (!netdev_is_pmd(port->netdev)) {
2651 int i;
2652
2653 for (i = 0; i < port->n_rxq; i++) {
2654 netdev_rxq_wait(port->rxq[i]);
2655 }
2656 }
2657 }
2658 ovs_mutex_unlock(&dp_netdev_mutex);
2659 seq_wait(tnl_conf_seq, dp->last_tnl_conf_seq);
2660 }
2661
2662 static int
2663 pmd_load_queues(struct dp_netdev_pmd_thread *pmd, struct rxq_poll **ppoll_list)
2664 {
2665 struct rxq_poll *poll_list = *ppoll_list;
2666 struct rxq_poll *poll;
2667 int i;
2668
2669 ovs_mutex_lock(&pmd->poll_mutex);
2670 poll_list = xrealloc(poll_list, pmd->poll_cnt * sizeof *poll_list);
2671
2672 i = 0;
2673 LIST_FOR_EACH (poll, node, &pmd->poll_list) {
2674 poll_list[i++] = *poll;
2675 }
2676 ovs_mutex_unlock(&pmd->poll_mutex);
2677
2678 *ppoll_list = poll_list;
2679 return i;
2680 }
2681
2682 static void *
2683 pmd_thread_main(void *f_)
2684 {
2685 struct dp_netdev_pmd_thread *pmd = f_;
2686 unsigned int lc = 0;
2687 struct rxq_poll *poll_list;
2688 unsigned int port_seq = PMD_INITIAL_SEQ;
2689 bool exiting;
2690 int poll_cnt;
2691 int i;
2692
2693 poll_cnt = 0;
2694 poll_list = NULL;
2695
2696 /* Stores the pmd thread's 'pmd' to 'per_pmd_key'. */
2697 ovsthread_setspecific(pmd->dp->per_pmd_key, pmd);
2698 pmd_thread_setaffinity_cpu(pmd->core_id);
2699 poll_cnt = pmd_load_queues(pmd, &poll_list);
2700 reload:
2701 emc_cache_init(&pmd->flow_cache);
2702
2703 /* List port/core affinity */
2704 for (i = 0; i < poll_cnt; i++) {
2705 VLOG_DBG("Core %d processing port \'%s\' with queue-id %d\n",
2706 pmd->core_id, netdev_get_name(poll_list[i].port->netdev),
2707 netdev_rxq_get_queue_id(poll_list[i].rx));
2708 }
2709
2710 for (;;) {
2711 for (i = 0; i < poll_cnt; i++) {
2712 dp_netdev_process_rxq_port(pmd, poll_list[i].port, poll_list[i].rx);
2713 }
2714
2715 if (lc++ > 1024) {
2716 unsigned int seq;
2717
2718 lc = 0;
2719
2720 emc_cache_slow_sweep(&pmd->flow_cache);
2721 coverage_try_clear();
2722 ovsrcu_quiesce();
2723
2724 atomic_read_relaxed(&pmd->change_seq, &seq);
2725 if (seq != port_seq) {
2726 port_seq = seq;
2727 break;
2728 }
2729 }
2730 }
2731
2732 poll_cnt = pmd_load_queues(pmd, &poll_list);
2733 exiting = latch_is_set(&pmd->exit_latch);
2734 /* Signal here to make sure the pmd finishes
2735 * reloading the updated configuration. */
2736 dp_netdev_pmd_reload_done(pmd);
2737
2738 emc_cache_uninit(&pmd->flow_cache);
2739
2740 if (!exiting) {
2741 goto reload;
2742 }
2743
2744 free(poll_list);
2745 return NULL;
2746 }
2747
2748 static void
2749 dp_netdev_disable_upcall(struct dp_netdev *dp)
2750 OVS_ACQUIRES(dp->upcall_rwlock)
2751 {
2752 fat_rwlock_wrlock(&dp->upcall_rwlock);
2753 }
2754
2755 static void
2756 dpif_netdev_disable_upcall(struct dpif *dpif)
2757 OVS_NO_THREAD_SAFETY_ANALYSIS
2758 {
2759 struct dp_netdev *dp = get_dp_netdev(dpif);
2760 dp_netdev_disable_upcall(dp);
2761 }
2762
2763 static void
2764 dp_netdev_enable_upcall(struct dp_netdev *dp)
2765 OVS_RELEASES(dp->upcall_rwlock)
2766 {
2767 fat_rwlock_unlock(&dp->upcall_rwlock);
2768 }
2769
2770 static void
2771 dpif_netdev_enable_upcall(struct dpif *dpif)
2772 OVS_NO_THREAD_SAFETY_ANALYSIS
2773 {
2774 struct dp_netdev *dp = get_dp_netdev(dpif);
2775 dp_netdev_enable_upcall(dp);
2776 }
2777
2778 static void
2779 dp_netdev_pmd_reload_done(struct dp_netdev_pmd_thread *pmd)
2780 {
2781 ovs_mutex_lock(&pmd->cond_mutex);
2782 xpthread_cond_signal(&pmd->cond);
2783 ovs_mutex_unlock(&pmd->cond_mutex);
2784 }
2785
2786 /* Finds and refs the dp_netdev_pmd_thread on core 'core_id'. Returns
2787 * the pointer if succeeds, otherwise, NULL.
2788 *
2789 * Caller must unrefs the returned reference. */
2790 static struct dp_netdev_pmd_thread *
2791 dp_netdev_get_pmd(struct dp_netdev *dp, unsigned core_id)
2792 {
2793 struct dp_netdev_pmd_thread *pmd;
2794 const struct cmap_node *pnode;
2795
2796 pnode = cmap_find(&dp->poll_threads, hash_int(core_id, 0));
2797 if (!pnode) {
2798 return NULL;
2799 }
2800 pmd = CONTAINER_OF(pnode, struct dp_netdev_pmd_thread, node);
2801
2802 return dp_netdev_pmd_try_ref(pmd) ? pmd : NULL;
2803 }
2804
2805 /* Sets the 'struct dp_netdev_pmd_thread' for non-pmd threads. */
2806 static void
2807 dp_netdev_set_nonpmd(struct dp_netdev *dp)
2808 {
2809 struct dp_netdev_pmd_thread *non_pmd;
2810
2811 non_pmd = xzalloc(sizeof *non_pmd);
2812 dp_netdev_configure_pmd(non_pmd, dp, NON_PMD_CORE_ID, OVS_NUMA_UNSPEC);
2813 }
2814
2815 /* Caller must have valid pointer to 'pmd'. */
2816 static bool
2817 dp_netdev_pmd_try_ref(struct dp_netdev_pmd_thread *pmd)
2818 {
2819 return ovs_refcount_try_ref_rcu(&pmd->ref_cnt);
2820 }
2821
2822 static void
2823 dp_netdev_pmd_unref(struct dp_netdev_pmd_thread *pmd)
2824 {
2825 if (pmd && ovs_refcount_unref(&pmd->ref_cnt) == 1) {
2826 ovsrcu_postpone(dp_netdev_destroy_pmd, pmd);
2827 }
2828 }
2829
2830 /* Given cmap position 'pos', tries to ref the next node. If try_ref()
2831 * fails, keeps checking for next node until reaching the end of cmap.
2832 *
2833 * Caller must unrefs the returned reference. */
2834 static struct dp_netdev_pmd_thread *
2835 dp_netdev_pmd_get_next(struct dp_netdev *dp, struct cmap_position *pos)
2836 {
2837 struct dp_netdev_pmd_thread *next;
2838
2839 do {
2840 struct cmap_node *node;
2841
2842 node = cmap_next_position(&dp->poll_threads, pos);
2843 next = node ? CONTAINER_OF(node, struct dp_netdev_pmd_thread, node)
2844 : NULL;
2845 } while (next && !dp_netdev_pmd_try_ref(next));
2846
2847 return next;
2848 }
2849
2850 /* Configures the 'pmd' based on the input argument. */
2851 static void
2852 dp_netdev_configure_pmd(struct dp_netdev_pmd_thread *pmd, struct dp_netdev *dp,
2853 unsigned core_id, int numa_id)
2854 {
2855 pmd->dp = dp;
2856 pmd->core_id = core_id;
2857 pmd->numa_id = numa_id;
2858 pmd->poll_cnt = 0;
2859
2860 atomic_init(&pmd->tx_qid,
2861 (core_id == NON_PMD_CORE_ID)
2862 ? ovs_numa_get_n_cores()
2863 : get_n_pmd_threads(dp));
2864
2865 ovs_refcount_init(&pmd->ref_cnt);
2866 latch_init(&pmd->exit_latch);
2867 atomic_init(&pmd->change_seq, PMD_INITIAL_SEQ);
2868 xpthread_cond_init(&pmd->cond, NULL);
2869 ovs_mutex_init(&pmd->cond_mutex);
2870 ovs_mutex_init(&pmd->flow_mutex);
2871 ovs_mutex_init(&pmd->poll_mutex);
2872 dpcls_init(&pmd->cls);
2873 cmap_init(&pmd->flow_table);
2874 ovs_list_init(&pmd->poll_list);
2875 /* init the 'flow_cache' since there is no
2876 * actual thread created for NON_PMD_CORE_ID. */
2877 if (core_id == NON_PMD_CORE_ID) {
2878 emc_cache_init(&pmd->flow_cache);
2879 }
2880 cmap_insert(&dp->poll_threads, CONST_CAST(struct cmap_node *, &pmd->node),
2881 hash_int(core_id, 0));
2882 }
2883
2884 static void
2885 dp_netdev_destroy_pmd(struct dp_netdev_pmd_thread *pmd)
2886 {
2887 dp_netdev_pmd_flow_flush(pmd);
2888 dpcls_destroy(&pmd->cls);
2889 cmap_destroy(&pmd->flow_table);
2890 ovs_mutex_destroy(&pmd->flow_mutex);
2891 latch_destroy(&pmd->exit_latch);
2892 xpthread_cond_destroy(&pmd->cond);
2893 ovs_mutex_destroy(&pmd->cond_mutex);
2894 ovs_mutex_destroy(&pmd->poll_mutex);
2895 free(pmd);
2896 }
2897
2898 /* Stops the pmd thread, removes it from the 'dp->poll_threads',
2899 * and unrefs the struct. */
2900 static void
2901 dp_netdev_del_pmd(struct dp_netdev *dp, struct dp_netdev_pmd_thread *pmd)
2902 {
2903 /* Uninit the 'flow_cache' since there is
2904 * no actual thread uninit it for NON_PMD_CORE_ID. */
2905 if (pmd->core_id == NON_PMD_CORE_ID) {
2906 emc_cache_uninit(&pmd->flow_cache);
2907 } else {
2908 latch_set(&pmd->exit_latch);
2909 dp_netdev_reload_pmd__(pmd);
2910 ovs_numa_unpin_core(pmd->core_id);
2911 xpthread_join(pmd->thread, NULL);
2912 }
2913
2914 /* Unref all ports and free poll_list. */
2915 dp_netdev_pmd_clear_poll_list(pmd);
2916
2917 /* Purges the 'pmd''s flows after stopping the thread, but before
2918 * destroying the flows, so that the flow stats can be collected. */
2919 if (dp->dp_purge_cb) {
2920 dp->dp_purge_cb(dp->dp_purge_aux, pmd->core_id);
2921 }
2922 cmap_remove(&pmd->dp->poll_threads, &pmd->node, hash_int(pmd->core_id, 0));
2923 dp_netdev_pmd_unref(pmd);
2924 }
2925
2926 /* Destroys all pmd threads. */
2927 static void
2928 dp_netdev_destroy_all_pmds(struct dp_netdev *dp)
2929 {
2930 struct dp_netdev_pmd_thread *pmd;
2931 struct dp_netdev_pmd_thread **pmd_list;
2932 size_t k = 0, n_pmds;
2933
2934 n_pmds = cmap_count(&dp->poll_threads);
2935 pmd_list = xcalloc(n_pmds, sizeof *pmd_list);
2936
2937 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
2938 /* We cannot call dp_netdev_del_pmd(), since it alters
2939 * 'dp->poll_threads' (while we're iterating it) and it
2940 * might quiesce. */
2941 ovs_assert(k < n_pmds);
2942 pmd_list[k++] = pmd;
2943 }
2944
2945 for (size_t i = 0; i < k; i++) {
2946 dp_netdev_del_pmd(dp, pmd_list[i]);
2947 }
2948 free(pmd_list);
2949 }
2950
2951 /* Deletes all pmd threads on numa node 'numa_id' and
2952 * fixes tx_qids of other threads to keep them sequential. */
2953 static void
2954 dp_netdev_del_pmds_on_numa(struct dp_netdev *dp, int numa_id)
2955 {
2956 struct dp_netdev_pmd_thread *pmd;
2957 int n_pmds_on_numa, n_pmds;
2958 int *free_idx, k = 0;
2959 struct dp_netdev_pmd_thread **pmd_list;
2960
2961 n_pmds_on_numa = get_n_pmd_threads_on_numa(dp, numa_id);
2962 free_idx = xcalloc(n_pmds_on_numa, sizeof *free_idx);
2963 pmd_list = xcalloc(n_pmds_on_numa, sizeof *pmd_list);
2964
2965 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
2966 /* We cannot call dp_netdev_del_pmd(), since it alters
2967 * 'dp->poll_threads' (while we're iterating it) and it
2968 * might quiesce. */
2969 if (pmd->numa_id == numa_id) {
2970 atomic_read_relaxed(&pmd->tx_qid, &free_idx[k]);
2971 pmd_list[k] = pmd;
2972 ovs_assert(k < n_pmds_on_numa);
2973 k++;
2974 }
2975 }
2976
2977 for (int i = 0; i < k; i++) {
2978 dp_netdev_del_pmd(dp, pmd_list[i]);
2979 }
2980
2981 n_pmds = get_n_pmd_threads(dp);
2982 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
2983 int old_tx_qid;
2984
2985 atomic_read_relaxed(&pmd->tx_qid, &old_tx_qid);
2986
2987 if (old_tx_qid >= n_pmds) {
2988 int new_tx_qid = free_idx[--k];
2989
2990 atomic_store_relaxed(&pmd->tx_qid, new_tx_qid);
2991 }
2992 }
2993
2994 free(pmd_list);
2995 free(free_idx);
2996 }
2997
2998 /* Deletes all rx queues from pmd->poll_list. */
2999 static void
3000 dp_netdev_pmd_clear_poll_list(struct dp_netdev_pmd_thread *pmd)
3001 {
3002 struct rxq_poll *poll;
3003
3004 ovs_mutex_lock(&pmd->poll_mutex);
3005 LIST_FOR_EACH_POP (poll, node, &pmd->poll_list) {
3006 free(poll);
3007 }
3008 pmd->poll_cnt = 0;
3009 ovs_mutex_unlock(&pmd->poll_mutex);
3010 }
3011
3012 /* Deletes all rx queues of 'port' from poll_list of pmd thread. Returns true
3013 * if 'port' was found in 'pmd' (therefore a restart is required). */
3014 static bool
3015 dp_netdev_del_port_from_pmd__(struct dp_netdev_port *port,
3016 struct dp_netdev_pmd_thread *pmd)
3017 {
3018 struct rxq_poll *poll, *next;
3019 bool found = false;
3020
3021 ovs_mutex_lock(&pmd->poll_mutex);
3022 LIST_FOR_EACH_SAFE (poll, next, node, &pmd->poll_list) {
3023 if (poll->port == port) {
3024 found = true;
3025 ovs_list_remove(&poll->node);
3026 pmd->poll_cnt--;
3027 free(poll);
3028 }
3029 }
3030 ovs_mutex_unlock(&pmd->poll_mutex);
3031
3032 return found;
3033 }
3034
3035 /* Deletes all rx queues of 'port' from all pmd threads. The pmd threads that
3036 * need to be restarted are inserted in 'to_reload'. */
3037 static void
3038 dp_netdev_del_port_from_all_pmds__(struct dp_netdev *dp,
3039 struct dp_netdev_port *port,
3040 struct hmapx *to_reload)
3041 {
3042 int numa_id = netdev_get_numa_id(port->netdev);
3043 struct dp_netdev_pmd_thread *pmd;
3044
3045 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
3046 if (pmd->numa_id == numa_id) {
3047 bool found;
3048
3049 found = dp_netdev_del_port_from_pmd__(port, pmd);
3050
3051 if (found) {
3052 hmapx_add(to_reload, pmd);
3053 }
3054 }
3055 }
3056 }
3057
3058 /* Deletes all rx queues of 'port' from all pmd threads of dp and
3059 * reloads them if needed. */
3060 static void
3061 dp_netdev_del_port_from_all_pmds(struct dp_netdev *dp,
3062 struct dp_netdev_port *port)
3063 {
3064 struct dp_netdev_pmd_thread *pmd;
3065 struct hmapx to_reload = HMAPX_INITIALIZER(&to_reload);
3066 struct hmapx_node *node;
3067
3068 dp_netdev_del_port_from_all_pmds__(dp, port, &to_reload);
3069
3070 HMAPX_FOR_EACH (node, &to_reload) {
3071 pmd = (struct dp_netdev_pmd_thread *) node->data;
3072 dp_netdev_reload_pmd__(pmd);
3073 }
3074
3075 hmapx_destroy(&to_reload);
3076 }
3077
3078
3079 /* Returns PMD thread from this numa node with fewer rx queues to poll.
3080 * Returns NULL if there is no PMD threads on this numa node.
3081 * Can be called safely only by main thread. */
3082 static struct dp_netdev_pmd_thread *
3083 dp_netdev_less_loaded_pmd_on_numa(struct dp_netdev *dp, int numa_id)
3084 {
3085 int min_cnt = -1;
3086 struct dp_netdev_pmd_thread *pmd, *res = NULL;
3087
3088 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
3089 if (pmd->numa_id == numa_id
3090 && (min_cnt > pmd->poll_cnt || res == NULL)) {
3091 min_cnt = pmd->poll_cnt;
3092 res = pmd;
3093 }
3094 }
3095
3096 return res;
3097 }
3098
3099 /* Adds rx queue to poll_list of PMD thread. */
3100 static void
3101 dp_netdev_add_rxq_to_pmd(struct dp_netdev_pmd_thread *pmd,
3102 struct dp_netdev_port *port, struct netdev_rxq *rx)
3103 OVS_REQUIRES(pmd->poll_mutex)
3104 {
3105 struct rxq_poll *poll = xmalloc(sizeof *poll);
3106
3107 poll->port = port;
3108 poll->rx = rx;
3109
3110 ovs_list_push_back(&pmd->poll_list, &poll->node);
3111 pmd->poll_cnt++;
3112 }
3113
3114 /* Distributes all rx queues of 'port' between all PMD threads in 'dp'. The
3115 * pmd threads that need to be restarted are inserted in 'to_reload'. */
3116 static void
3117 dp_netdev_add_port_to_pmds__(struct dp_netdev *dp, struct dp_netdev_port *port,
3118 struct hmapx *to_reload)
3119 {
3120 int numa_id = netdev_get_numa_id(port->netdev);
3121 struct dp_netdev_pmd_thread *pmd;
3122 int i;
3123
3124 /* Cannot create pmd threads for invalid numa node. */
3125 ovs_assert(ovs_numa_numa_id_is_valid(numa_id));
3126
3127 for (i = 0; i < port->n_rxq; i++) {
3128 pmd = dp_netdev_less_loaded_pmd_on_numa(dp, numa_id);
3129 if (!pmd) {
3130 /* There is no pmd threads on this numa node. */
3131 dp_netdev_set_pmds_on_numa(dp, numa_id);
3132 /* Assigning of rx queues done. */
3133 break;
3134 }
3135
3136 ovs_mutex_lock(&pmd->poll_mutex);
3137 dp_netdev_add_rxq_to_pmd(pmd, port, port->rxq[i]);
3138 ovs_mutex_unlock(&pmd->poll_mutex);
3139
3140 hmapx_add(to_reload, pmd);
3141 }
3142 }
3143
3144 /* Distributes all rx queues of 'port' between all PMD threads in 'dp' and
3145 * reloads them, if needed. */
3146 static void
3147 dp_netdev_add_port_to_pmds(struct dp_netdev *dp, struct dp_netdev_port *port)
3148 {
3149 struct dp_netdev_pmd_thread *pmd;
3150 struct hmapx to_reload = HMAPX_INITIALIZER(&to_reload);
3151 struct hmapx_node *node;
3152
3153 dp_netdev_add_port_to_pmds__(dp, port, &to_reload);
3154
3155 HMAPX_FOR_EACH (node, &to_reload) {
3156 pmd = (struct dp_netdev_pmd_thread *) node->data;
3157 dp_netdev_reload_pmd__(pmd);
3158 }
3159
3160 hmapx_destroy(&to_reload);
3161 }
3162
3163 /* Checks the numa node id of 'netdev' and starts pmd threads for
3164 * the numa node. */
3165 static void
3166 dp_netdev_set_pmds_on_numa(struct dp_netdev *dp, int numa_id)
3167 {
3168 int n_pmds;
3169
3170 if (!ovs_numa_numa_id_is_valid(numa_id)) {
3171 VLOG_ERR("Cannot create pmd threads due to numa id (%d)"
3172 "invalid", numa_id);
3173 return ;
3174 }
3175
3176 n_pmds = get_n_pmd_threads_on_numa(dp, numa_id);
3177
3178 /* If there are already pmd threads created for the numa node
3179 * in which 'netdev' is on, do nothing. Else, creates the
3180 * pmd threads for the numa node. */
3181 if (!n_pmds) {
3182 int can_have, n_unpinned, i, index = 0;
3183 struct dp_netdev_pmd_thread **pmds;
3184 struct dp_netdev_port *port;
3185
3186 n_unpinned = ovs_numa_get_n_unpinned_cores_on_numa(numa_id);
3187 if (!n_unpinned) {
3188 VLOG_ERR("Cannot create pmd threads due to out of unpinned "
3189 "cores on numa node %d", numa_id);
3190 return;
3191 }
3192
3193 /* If cpu mask is specified, uses all unpinned cores, otherwise
3194 * tries creating NR_PMD_THREADS pmd threads. */
3195 can_have = dp->pmd_cmask ? n_unpinned : MIN(n_unpinned, NR_PMD_THREADS);
3196 pmds = xzalloc(can_have * sizeof *pmds);
3197 for (i = 0; i < can_have; i++) {
3198 unsigned core_id = ovs_numa_get_unpinned_core_on_numa(numa_id);
3199 pmds[i] = xzalloc(sizeof **pmds);
3200 dp_netdev_configure_pmd(pmds[i], dp, core_id, numa_id);
3201 }
3202
3203 /* Distributes rx queues of this numa node between new pmd threads. */
3204 CMAP_FOR_EACH (port, node, &dp->ports) {
3205 if (netdev_is_pmd(port->netdev)
3206 && netdev_get_numa_id(port->netdev) == numa_id) {
3207 for (i = 0; i < port->n_rxq; i++) {
3208 /* Make thread-safety analyser happy. */
3209 ovs_mutex_lock(&pmds[index]->poll_mutex);
3210 dp_netdev_add_rxq_to_pmd(pmds[index], port, port->rxq[i]);
3211 ovs_mutex_unlock(&pmds[index]->poll_mutex);
3212 index = (index + 1) % can_have;
3213 }
3214 }
3215 }
3216
3217 /* Actual start of pmd threads. */
3218 for (i = 0; i < can_have; i++) {
3219 pmds[i]->thread = ovs_thread_create("pmd", pmd_thread_main, pmds[i]);
3220 }
3221 free(pmds);
3222 VLOG_INFO("Created %d pmd threads on numa node %d", can_have, numa_id);
3223 }
3224 }
3225
3226 \f
3227 /* Called after pmd threads config change. Restarts pmd threads with
3228 * new configuration. */
3229 static void
3230 dp_netdev_reset_pmd_threads(struct dp_netdev *dp)
3231 {
3232 struct dp_netdev_port *port;
3233
3234 CMAP_FOR_EACH (port, node, &dp->ports) {
3235 if (netdev_is_pmd(port->netdev)) {
3236 int numa_id = netdev_get_numa_id(port->netdev);
3237
3238 dp_netdev_set_pmds_on_numa(dp, numa_id);
3239 }
3240 }
3241 }
3242
3243 static char *
3244 dpif_netdev_get_datapath_version(void)
3245 {
3246 return xstrdup("<built-in>");
3247 }
3248
3249 static void
3250 dp_netdev_flow_used(struct dp_netdev_flow *netdev_flow, int cnt, int size,
3251 uint16_t tcp_flags, long long now)
3252 {
3253 uint16_t flags;
3254
3255 atomic_store_relaxed(&netdev_flow->stats.used, now);
3256 non_atomic_ullong_add(&netdev_flow->stats.packet_count, cnt);
3257 non_atomic_ullong_add(&netdev_flow->stats.byte_count, size);
3258 atomic_read_relaxed(&netdev_flow->stats.tcp_flags, &flags);
3259 flags |= tcp_flags;
3260 atomic_store_relaxed(&netdev_flow->stats.tcp_flags, flags);
3261 }
3262
3263 static void
3264 dp_netdev_count_packet(struct dp_netdev_pmd_thread *pmd,
3265 enum dp_stat_type type, int cnt)
3266 {
3267 non_atomic_ullong_add(&pmd->stats.n[type], cnt);
3268 }
3269
3270 static int
3271 dp_netdev_upcall(struct dp_netdev_pmd_thread *pmd, struct dp_packet *packet_,
3272 struct flow *flow, struct flow_wildcards *wc, ovs_u128 *ufid,
3273 enum dpif_upcall_type type, const struct nlattr *userdata,
3274 struct ofpbuf *actions, struct ofpbuf *put_actions)
3275 {
3276 struct dp_netdev *dp = pmd->dp;
3277 struct flow_tnl orig_tunnel;
3278 int err;
3279
3280 if (OVS_UNLIKELY(!dp->upcall_cb)) {
3281 return ENODEV;
3282 }
3283
3284 /* Upcall processing expects the Geneve options to be in the translated
3285 * format but we need to retain the raw format for datapath use. */
3286 orig_tunnel.flags = flow->tunnel.flags;
3287 if (flow->tunnel.flags & FLOW_TNL_F_UDPIF) {
3288 orig_tunnel.metadata.present.len = flow->tunnel.metadata.present.len;
3289 memcpy(orig_tunnel.metadata.opts.gnv, flow->tunnel.metadata.opts.gnv,
3290 flow->tunnel.metadata.present.len);
3291 err = tun_metadata_from_geneve_udpif(&orig_tunnel, &orig_tunnel,
3292 &flow->tunnel);
3293 if (err) {
3294 return err;
3295 }
3296 }
3297
3298 if (OVS_UNLIKELY(!VLOG_DROP_DBG(&upcall_rl))) {
3299 struct ds ds = DS_EMPTY_INITIALIZER;
3300 char *packet_str;
3301 struct ofpbuf key;
3302 struct odp_flow_key_parms odp_parms = {
3303 .flow = flow,
3304 .mask = &wc->masks,
3305 .odp_in_port = flow->in_port.odp_port,
3306 .support = dp_netdev_support,
3307 };
3308
3309 ofpbuf_init(&key, 0);
3310 odp_flow_key_from_flow(&odp_parms, &key);
3311 packet_str = ofp_packet_to_string(dp_packet_data(packet_),
3312 dp_packet_size(packet_));
3313
3314 odp_flow_key_format(key.data, key.size, &ds);
3315
3316 VLOG_DBG("%s: %s upcall:\n%s\n%s", dp->name,
3317 dpif_upcall_type_to_string(type), ds_cstr(&ds), packet_str);
3318
3319 ofpbuf_uninit(&key);
3320 free(packet_str);
3321
3322 ds_destroy(&ds);
3323 }
3324
3325 err = dp->upcall_cb(packet_, flow, ufid, pmd->core_id, type, userdata,
3326 actions, wc, put_actions, dp->upcall_aux);
3327 if (err && err != ENOSPC) {
3328 return err;
3329 }
3330
3331 /* Translate tunnel metadata masks to datapath format. */
3332 if (wc) {
3333 if (wc->masks.tunnel.metadata.present.map) {
3334 struct geneve_opt opts[TLV_TOT_OPT_SIZE /
3335 sizeof(struct geneve_opt)];
3336
3337 if (orig_tunnel.flags & FLOW_TNL_F_UDPIF) {
3338 tun_metadata_to_geneve_udpif_mask(&flow->tunnel,
3339 &wc->masks.tunnel,
3340 orig_tunnel.metadata.opts.gnv,
3341 orig_tunnel.metadata.present.len,
3342 opts);
3343 } else {
3344 orig_tunnel.metadata.present.len = 0;
3345 }
3346
3347 memset(&wc->masks.tunnel.metadata, 0,
3348 sizeof wc->masks.tunnel.metadata);
3349 memcpy(&wc->masks.tunnel.metadata.opts.gnv, opts,
3350 orig_tunnel.metadata.present.len);
3351 }
3352 wc->masks.tunnel.metadata.present.len = 0xff;
3353 }
3354
3355 /* Restore tunnel metadata. We need to use the saved options to ensure
3356 * that any unknown options are not lost. The generated mask will have
3357 * the same structure, matching on types and lengths but wildcarding
3358 * option data we don't care about. */
3359 if (orig_tunnel.flags & FLOW_TNL_F_UDPIF) {
3360 memcpy(&flow->tunnel.metadata.opts.gnv, orig_tunnel.metadata.opts.gnv,
3361 orig_tunnel.metadata.present.len);
3362 flow->tunnel.metadata.present.len = orig_tunnel.metadata.present.len;
3363 flow->tunnel.flags |= FLOW_TNL_F_UDPIF;
3364 }
3365
3366 return err;
3367 }
3368
3369 static inline uint32_t
3370 dpif_netdev_packet_get_rss_hash(struct dp_packet *packet,
3371 const struct miniflow *mf)
3372 {
3373 uint32_t hash, recirc_depth;
3374
3375 if (OVS_LIKELY(dp_packet_rss_valid(packet))) {
3376 hash = dp_packet_get_rss_hash(packet);
3377 } else {
3378 hash = miniflow_hash_5tuple(mf, 0);
3379 dp_packet_set_rss_hash(packet, hash);
3380 }
3381
3382 /* The RSS hash must account for the recirculation depth to avoid
3383 * collisions in the exact match cache */
3384 recirc_depth = *recirc_depth_get_unsafe();
3385 if (OVS_UNLIKELY(recirc_depth)) {
3386 hash = hash_finish(hash, recirc_depth);
3387 dp_packet_set_rss_hash(packet, hash);
3388 }
3389 return hash;
3390 }
3391
3392 struct packet_batch_per_flow {
3393 unsigned int byte_count;
3394 uint16_t tcp_flags;
3395 struct dp_netdev_flow *flow;
3396
3397 struct dp_packet_batch array;
3398 };
3399
3400 static inline void
3401 packet_batch_per_flow_update(struct packet_batch_per_flow *batch,
3402 struct dp_packet *packet,
3403 const struct miniflow *mf)
3404 {
3405 batch->byte_count += dp_packet_size(packet);
3406 batch->tcp_flags |= miniflow_get_tcp_flags(mf);
3407 batch->array.packets[batch->array.count++] = packet;
3408 }
3409
3410 static inline void
3411 packet_batch_per_flow_init(struct packet_batch_per_flow *batch,
3412 struct dp_netdev_flow *flow)
3413 {
3414 flow->batch = batch;
3415
3416 batch->flow = flow;
3417 dp_packet_batch_init(&batch->array);
3418 batch->byte_count = 0;
3419 batch->tcp_flags = 0;
3420 }
3421
3422 static inline void
3423 packet_batch_per_flow_execute(struct packet_batch_per_flow *batch,
3424 struct dp_netdev_pmd_thread *pmd,
3425 long long now)
3426 {
3427 struct dp_netdev_actions *actions;
3428 struct dp_netdev_flow *flow = batch->flow;
3429
3430 dp_netdev_flow_used(flow, batch->array.count, batch->byte_count,
3431 batch->tcp_flags, now);
3432
3433 actions = dp_netdev_flow_get_actions(flow);
3434
3435 dp_netdev_execute_actions(pmd, &batch->array, true,
3436 actions->actions, actions->size);
3437 }
3438
3439 static inline void
3440 dp_netdev_queue_batches(struct dp_packet *pkt,
3441 struct dp_netdev_flow *flow, const struct miniflow *mf,
3442 struct packet_batch_per_flow *batches, size_t *n_batches)
3443 {
3444 struct packet_batch_per_flow *batch = flow->batch;
3445
3446 if (OVS_UNLIKELY(!batch)) {
3447 batch = &batches[(*n_batches)++];
3448 packet_batch_per_flow_init(batch, flow);
3449 }
3450
3451 packet_batch_per_flow_update(batch, pkt, mf);
3452 }
3453
3454 /* Try to process all ('cnt') the 'packets' using only the exact match cache
3455 * 'pmd->flow_cache'. If a flow is not found for a packet 'packets[i]', the
3456 * miniflow is copied into 'keys' and the packet pointer is moved at the
3457 * beginning of the 'packets' array.
3458 *
3459 * The function returns the number of packets that needs to be processed in the
3460 * 'packets' array (they have been moved to the beginning of the vector).
3461 *
3462 * If 'md_is_valid' is false, the metadata in 'packets' is not valid and must be
3463 * initialized by this function using 'port_no'.
3464 */
3465 static inline size_t
3466 emc_processing(struct dp_netdev_pmd_thread *pmd, struct dp_packet_batch *packets_,
3467 struct netdev_flow_key *keys,
3468 struct packet_batch_per_flow batches[], size_t *n_batches,
3469 bool md_is_valid, odp_port_t port_no)
3470 {
3471 struct emc_cache *flow_cache = &pmd->flow_cache;
3472 struct netdev_flow_key *key = &keys[0];
3473 size_t i, n_missed = 0, n_dropped = 0;
3474 struct dp_packet **packets = packets_->packets;
3475 int cnt = packets_->count;
3476
3477 for (i = 0; i < cnt; i++) {
3478 struct dp_netdev_flow *flow;
3479 struct dp_packet *packet = packets[i];
3480
3481 if (OVS_UNLIKELY(dp_packet_size(packet) < ETH_HEADER_LEN)) {
3482 dp_packet_delete(packet);
3483 n_dropped++;
3484 continue;
3485 }
3486
3487 if (i != cnt - 1) {
3488 /* Prefetch next packet data and metadata. */
3489 OVS_PREFETCH(dp_packet_data(packets[i+1]));
3490 pkt_metadata_prefetch_init(&packets[i+1]->md);
3491 }
3492
3493 if (!md_is_valid) {
3494 pkt_metadata_init(&packet->md, port_no);
3495 }
3496 miniflow_extract(packet, &key->mf);
3497 key->len = 0; /* Not computed yet. */
3498 key->hash = dpif_netdev_packet_get_rss_hash(packet, &key->mf);
3499
3500 flow = emc_lookup(flow_cache, key);
3501 if (OVS_LIKELY(flow)) {
3502 dp_netdev_queue_batches(packet, flow, &key->mf, batches,
3503 n_batches);
3504 } else {
3505 /* Exact match cache missed. Group missed packets together at
3506 * the beginning of the 'packets' array. */
3507 packets[n_missed] = packet;
3508 /* 'key[n_missed]' contains the key of the current packet and it
3509 * must be returned to the caller. The next key should be extracted
3510 * to 'keys[n_missed + 1]'. */
3511 key = &keys[++n_missed];
3512 }
3513 }
3514
3515 dp_netdev_count_packet(pmd, DP_STAT_EXACT_HIT, cnt - n_dropped - n_missed);
3516
3517 return n_missed;
3518 }
3519
3520 static inline void
3521 handle_packet_upcall(struct dp_netdev_pmd_thread *pmd, struct dp_packet *packet,
3522 const struct netdev_flow_key *key,
3523 struct ofpbuf *actions, struct ofpbuf *put_actions,
3524 int *lost_cnt)
3525 {
3526 struct ofpbuf *add_actions;
3527 struct dp_packet_batch b;
3528 struct match match;
3529 ovs_u128 ufid;
3530 int error;
3531
3532 match.tun_md.valid = false;
3533 miniflow_expand(&key->mf, &match.flow);
3534
3535 ofpbuf_clear(actions);
3536 ofpbuf_clear(put_actions);
3537
3538 dpif_flow_hash(pmd->dp->dpif, &match.flow, sizeof match.flow, &ufid);
3539 error = dp_netdev_upcall(pmd, packet, &match.flow, &match.wc,
3540 &ufid, DPIF_UC_MISS, NULL, actions,
3541 put_actions);
3542 if (OVS_UNLIKELY(error && error != ENOSPC)) {
3543 dp_packet_delete(packet);
3544 (*lost_cnt)++;
3545 return;
3546 }
3547
3548 /* The Netlink encoding of datapath flow keys cannot express
3549 * wildcarding the presence of a VLAN tag. Instead, a missing VLAN
3550 * tag is interpreted as exact match on the fact that there is no
3551 * VLAN. Unless we refactor a lot of code that translates between
3552 * Netlink and struct flow representations, we have to do the same
3553 * here. */
3554 if (!match.wc.masks.vlan_tci) {
3555 match.wc.masks.vlan_tci = htons(0xffff);
3556 }
3557
3558 /* We can't allow the packet batching in the next loop to execute
3559 * the actions. Otherwise, if there are any slow path actions,
3560 * we'll send the packet up twice. */
3561 packet_batch_init_packet(&b, packet);
3562 dp_netdev_execute_actions(pmd, &b, true,
3563 actions->data, actions->size);
3564
3565 add_actions = put_actions->size ? put_actions : actions;
3566 if (OVS_LIKELY(error != ENOSPC)) {
3567 struct dp_netdev_flow *netdev_flow;
3568
3569 /* XXX: There's a race window where a flow covering this packet
3570 * could have already been installed since we last did the flow
3571 * lookup before upcall. This could be solved by moving the
3572 * mutex lock outside the loop, but that's an awful long time
3573 * to be locking everyone out of making flow installs. If we
3574 * move to a per-core classifier, it would be reasonable. */
3575 ovs_mutex_lock(&pmd->flow_mutex);
3576 netdev_flow = dp_netdev_pmd_lookup_flow(pmd, key);
3577 if (OVS_LIKELY(!netdev_flow)) {
3578 netdev_flow = dp_netdev_flow_add(pmd, &match, &ufid,
3579 add_actions->data,
3580 add_actions->size);
3581 }
3582 ovs_mutex_unlock(&pmd->flow_mutex);
3583
3584 emc_insert(&pmd->flow_cache, key, netdev_flow);
3585 }
3586 }
3587
3588 static inline void
3589 fast_path_processing(struct dp_netdev_pmd_thread *pmd,
3590 struct dp_packet_batch *packets_,
3591 struct netdev_flow_key *keys,
3592 struct packet_batch_per_flow batches[], size_t *n_batches)
3593 {
3594 int cnt = packets_->count;
3595 #if !defined(__CHECKER__) && !defined(_WIN32)
3596 const size_t PKT_ARRAY_SIZE = cnt;
3597 #else
3598 /* Sparse or MSVC doesn't like variable length array. */
3599 enum { PKT_ARRAY_SIZE = NETDEV_MAX_BURST };
3600 #endif
3601 struct dp_packet **packets = packets_->packets;
3602 struct dpcls_rule *rules[PKT_ARRAY_SIZE];
3603 struct dp_netdev *dp = pmd->dp;
3604 struct emc_cache *flow_cache = &pmd->flow_cache;
3605 int miss_cnt = 0, lost_cnt = 0;
3606 bool any_miss;
3607 size_t i;
3608
3609 for (i = 0; i < cnt; i++) {
3610 /* Key length is needed in all the cases, hash computed on demand. */
3611 keys[i].len = netdev_flow_key_size(miniflow_n_values(&keys[i].mf));
3612 }
3613 any_miss = !dpcls_lookup(&pmd->cls, keys, rules, cnt);
3614 if (OVS_UNLIKELY(any_miss) && !fat_rwlock_tryrdlock(&dp->upcall_rwlock)) {
3615 uint64_t actions_stub[512 / 8], slow_stub[512 / 8];
3616 struct ofpbuf actions, put_actions;
3617
3618 ofpbuf_use_stub(&actions, actions_stub, sizeof actions_stub);
3619 ofpbuf_use_stub(&put_actions, slow_stub, sizeof slow_stub);
3620
3621 for (i = 0; i < cnt; i++) {
3622 struct dp_netdev_flow *netdev_flow;
3623
3624 if (OVS_LIKELY(rules[i])) {
3625 continue;
3626 }
3627
3628 /* It's possible that an earlier slow path execution installed
3629 * a rule covering this flow. In this case, it's a lot cheaper
3630 * to catch it here than execute a miss. */
3631 netdev_flow = dp_netdev_pmd_lookup_flow(pmd, &keys[i]);
3632 if (netdev_flow) {
3633 rules[i] = &netdev_flow->cr;
3634 continue;
3635 }
3636
3637 miss_cnt++;
3638 handle_packet_upcall(pmd, packets[i], &keys[i], &actions, &put_actions,
3639 &lost_cnt);
3640 }
3641
3642 ofpbuf_uninit(&actions);
3643 ofpbuf_uninit(&put_actions);
3644 fat_rwlock_unlock(&dp->upcall_rwlock);
3645 dp_netdev_count_packet(pmd, DP_STAT_LOST, lost_cnt);
3646 } else if (OVS_UNLIKELY(any_miss)) {
3647 for (i = 0; i < cnt; i++) {
3648 if (OVS_UNLIKELY(!rules[i])) {
3649 dp_packet_delete(packets[i]);
3650 lost_cnt++;
3651 miss_cnt++;
3652 }
3653 }
3654 }
3655
3656 for (i = 0; i < cnt; i++) {
3657 struct dp_packet *packet = packets[i];
3658 struct dp_netdev_flow *flow;
3659
3660 if (OVS_UNLIKELY(!rules[i])) {
3661 continue;
3662 }
3663
3664 flow = dp_netdev_flow_cast(rules[i]);
3665
3666 emc_insert(flow_cache, &keys[i], flow);
3667 dp_netdev_queue_batches(packet, flow, &keys[i].mf, batches, n_batches);
3668 }
3669
3670 dp_netdev_count_packet(pmd, DP_STAT_MASKED_HIT, cnt - miss_cnt);
3671 dp_netdev_count_packet(pmd, DP_STAT_MISS, miss_cnt);
3672 dp_netdev_count_packet(pmd, DP_STAT_LOST, lost_cnt);
3673 }
3674
3675 /* Packets enter the datapath from a port (or from recirculation) here.
3676 *
3677 * For performance reasons a caller may choose not to initialize the metadata
3678 * in 'packets': in this case 'mdinit' is false and this function needs to
3679 * initialize it using 'port_no'. If the metadata in 'packets' is already
3680 * valid, 'md_is_valid' must be true and 'port_no' will be ignored. */
3681 static void
3682 dp_netdev_input__(struct dp_netdev_pmd_thread *pmd,
3683 struct dp_packet_batch *packets,
3684 bool md_is_valid, odp_port_t port_no)
3685 {
3686 int cnt = packets->count;
3687 #if !defined(__CHECKER__) && !defined(_WIN32)
3688 const size_t PKT_ARRAY_SIZE = cnt;
3689 #else
3690 /* Sparse or MSVC doesn't like variable length array. */
3691 enum { PKT_ARRAY_SIZE = NETDEV_MAX_BURST };
3692 #endif
3693 struct netdev_flow_key keys[PKT_ARRAY_SIZE];
3694 struct packet_batch_per_flow batches[PKT_ARRAY_SIZE];
3695 long long now = time_msec();
3696 size_t newcnt, n_batches, i;
3697
3698 n_batches = 0;
3699 newcnt = emc_processing(pmd, packets, keys, batches, &n_batches,
3700 md_is_valid, port_no);
3701 if (OVS_UNLIKELY(newcnt)) {
3702 packets->count = newcnt;
3703 fast_path_processing(pmd, packets, keys, batches, &n_batches);
3704 }
3705
3706 for (i = 0; i < n_batches; i++) {
3707 batches[i].flow->batch = NULL;
3708 }
3709
3710 for (i = 0; i < n_batches; i++) {
3711 packet_batch_per_flow_execute(&batches[i], pmd, now);
3712 }
3713 }
3714
3715 static void
3716 dp_netdev_input(struct dp_netdev_pmd_thread *pmd,
3717 struct dp_packet_batch *packets,
3718 odp_port_t port_no)
3719 {
3720 dp_netdev_input__(pmd, packets, false, port_no);
3721 }
3722
3723 static void
3724 dp_netdev_recirculate(struct dp_netdev_pmd_thread *pmd,
3725 struct dp_packet_batch *packets)
3726 {
3727 dp_netdev_input__(pmd, packets, true, 0);
3728 }
3729
3730 struct dp_netdev_execute_aux {
3731 struct dp_netdev_pmd_thread *pmd;
3732 };
3733
3734 static void
3735 dpif_netdev_register_dp_purge_cb(struct dpif *dpif, dp_purge_callback *cb,
3736 void *aux)
3737 {
3738 struct dp_netdev *dp = get_dp_netdev(dpif);
3739 dp->dp_purge_aux = aux;
3740 dp->dp_purge_cb = cb;
3741 }
3742
3743 static void
3744 dpif_netdev_register_upcall_cb(struct dpif *dpif, upcall_callback *cb,
3745 void *aux)
3746 {
3747 struct dp_netdev *dp = get_dp_netdev(dpif);
3748 dp->upcall_aux = aux;
3749 dp->upcall_cb = cb;
3750 }
3751
3752 static int
3753 push_tnl_action(const struct dp_netdev *dp,
3754 const struct nlattr *attr,
3755 struct dp_packet_batch *batch)
3756 {
3757 struct dp_netdev_port *tun_port;
3758 const struct ovs_action_push_tnl *data;
3759 int err;
3760
3761 data = nl_attr_get(attr);
3762
3763 tun_port = dp_netdev_lookup_port(dp, u32_to_odp(data->tnl_port));
3764 if (!tun_port) {
3765 err = -EINVAL;
3766 goto error;
3767 }
3768 err = netdev_push_header(tun_port->netdev, batch, data);
3769 if (!err) {
3770 return 0;
3771 }
3772 error:
3773 dp_packet_delete_batch(batch, true);
3774 return err;
3775 }
3776
3777 static void
3778 dp_execute_userspace_action(struct dp_netdev_pmd_thread *pmd,
3779 struct dp_packet *packet, bool may_steal,
3780 struct flow *flow, ovs_u128 *ufid,
3781 struct ofpbuf *actions,
3782 const struct nlattr *userdata)
3783 {
3784 struct dp_packet_batch b;
3785 int error;
3786
3787 ofpbuf_clear(actions);
3788
3789 error = dp_netdev_upcall(pmd, packet, flow, NULL, ufid,
3790 DPIF_UC_ACTION, userdata, actions,
3791 NULL);
3792 if (!error || error == ENOSPC) {
3793 packet_batch_init_packet(&b, packet);
3794 dp_netdev_execute_actions(pmd, &b, may_steal,
3795 actions->data, actions->size);
3796 } else if (may_steal) {
3797 dp_packet_delete(packet);
3798 }
3799 }
3800
3801 static void
3802 dp_execute_cb(void *aux_, struct dp_packet_batch *packets_,
3803 const struct nlattr *a, bool may_steal)
3804 OVS_NO_THREAD_SAFETY_ANALYSIS
3805 {
3806 struct dp_netdev_execute_aux *aux = aux_;
3807 uint32_t *depth = recirc_depth_get();
3808 struct dp_netdev_pmd_thread *pmd = aux->pmd;
3809 struct dp_netdev *dp = pmd->dp;
3810 int type = nl_attr_type(a);
3811 struct dp_netdev_port *p;
3812
3813 switch ((enum ovs_action_attr)type) {
3814 case OVS_ACTION_ATTR_OUTPUT:
3815 p = dp_netdev_lookup_port(dp, u32_to_odp(nl_attr_get_u32(a)));
3816 if (OVS_LIKELY(p)) {
3817 int tx_qid;
3818
3819 atomic_read_relaxed(&pmd->tx_qid, &tx_qid);
3820
3821 netdev_send(p->netdev, tx_qid, packets_, may_steal);
3822 return;
3823 }
3824 break;
3825
3826 case OVS_ACTION_ATTR_TUNNEL_PUSH:
3827 if (*depth < MAX_RECIRC_DEPTH) {
3828 struct dp_packet_batch tnl_pkt;
3829 int err;
3830
3831 if (!may_steal) {
3832 dp_packet_batch_clone(&tnl_pkt, packets_);
3833 packets_ = &tnl_pkt;
3834 }
3835
3836 err = push_tnl_action(dp, a, packets_);
3837 if (!err) {
3838 (*depth)++;
3839 dp_netdev_recirculate(pmd, packets_);
3840 (*depth)--;
3841 }
3842 return;
3843 }
3844 break;
3845
3846 case OVS_ACTION_ATTR_TUNNEL_POP:
3847 if (*depth < MAX_RECIRC_DEPTH) {
3848 odp_port_t portno = u32_to_odp(nl_attr_get_u32(a));
3849
3850 p = dp_netdev_lookup_port(dp, portno);
3851 if (p) {
3852 struct dp_packet_batch tnl_pkt;
3853 int i;
3854
3855 if (!may_steal) {
3856 dp_packet_batch_clone(&tnl_pkt, packets_);
3857 packets_ = &tnl_pkt;
3858 }
3859
3860 netdev_pop_header(p->netdev, packets_);
3861 if (!packets_->count) {
3862 return;
3863 }
3864
3865 for (i = 0; i < packets_->count; i++) {
3866 packets_->packets[i]->md.in_port.odp_port = portno;
3867 }
3868
3869 (*depth)++;
3870 dp_netdev_recirculate(pmd, packets_);
3871 (*depth)--;
3872 return;
3873 }
3874 }
3875 break;
3876
3877 case OVS_ACTION_ATTR_USERSPACE:
3878 if (!fat_rwlock_tryrdlock(&dp->upcall_rwlock)) {
3879 struct dp_packet **packets = packets_->packets;
3880 const struct nlattr *userdata;
3881 struct ofpbuf actions;
3882 struct flow flow;
3883 ovs_u128 ufid;
3884 int i;
3885
3886 userdata = nl_attr_find_nested(a, OVS_USERSPACE_ATTR_USERDATA);
3887 ofpbuf_init(&actions, 0);
3888
3889 for (i = 0; i < packets_->count; i++) {
3890 flow_extract(packets[i], &flow);
3891 dpif_flow_hash(dp->dpif, &flow, sizeof flow, &ufid);
3892 dp_execute_userspace_action(pmd, packets[i], may_steal, &flow,
3893 &ufid, &actions, userdata);
3894 }
3895 ofpbuf_uninit(&actions);
3896 fat_rwlock_unlock(&dp->upcall_rwlock);
3897
3898 return;
3899 }
3900 break;
3901
3902 case OVS_ACTION_ATTR_RECIRC:
3903 if (*depth < MAX_RECIRC_DEPTH) {
3904 struct dp_packet_batch recirc_pkts;
3905 int i;
3906
3907 if (!may_steal) {
3908 dp_packet_batch_clone(&recirc_pkts, packets_);
3909 packets_ = &recirc_pkts;
3910 }
3911
3912 for (i = 0; i < packets_->count; i++) {
3913 packets_->packets[i]->md.recirc_id = nl_attr_get_u32(a);
3914 }
3915
3916 (*depth)++;
3917 dp_netdev_recirculate(pmd, packets_);
3918 (*depth)--;
3919
3920 return;
3921 }
3922
3923 VLOG_WARN("Packet dropped. Max recirculation depth exceeded.");
3924 break;
3925
3926 case OVS_ACTION_ATTR_CT:
3927 /* If a flow with this action is slow-pathed, datapath assistance is
3928 * required to implement it. However, we don't support this action
3929 * in the userspace datapath. */
3930 VLOG_WARN("Cannot execute conntrack action in userspace.");
3931 break;
3932
3933 case OVS_ACTION_ATTR_PUSH_VLAN:
3934 case OVS_ACTION_ATTR_POP_VLAN:
3935 case OVS_ACTION_ATTR_PUSH_MPLS:
3936 case OVS_ACTION_ATTR_POP_MPLS:
3937 case OVS_ACTION_ATTR_SET:
3938 case OVS_ACTION_ATTR_SET_MASKED:
3939 case OVS_ACTION_ATTR_SAMPLE:
3940 case OVS_ACTION_ATTR_HASH:
3941 case OVS_ACTION_ATTR_UNSPEC:
3942 case __OVS_ACTION_ATTR_MAX:
3943 OVS_NOT_REACHED();
3944 }
3945
3946 dp_packet_delete_batch(packets_, may_steal);
3947 }
3948
3949 static void
3950 dp_netdev_execute_actions(struct dp_netdev_pmd_thread *pmd,
3951 struct dp_packet_batch *packets,
3952 bool may_steal,
3953 const struct nlattr *actions, size_t actions_len)
3954 {
3955 struct dp_netdev_execute_aux aux = { pmd };
3956
3957 odp_execute_actions(&aux, packets, may_steal, actions,
3958 actions_len, dp_execute_cb);
3959 }
3960
3961 const struct dpif_class dpif_netdev_class = {
3962 "netdev",
3963 dpif_netdev_init,
3964 dpif_netdev_enumerate,
3965 dpif_netdev_port_open_type,
3966 dpif_netdev_open,
3967 dpif_netdev_close,
3968 dpif_netdev_destroy,
3969 dpif_netdev_run,
3970 dpif_netdev_wait,
3971 dpif_netdev_get_stats,
3972 dpif_netdev_port_add,
3973 dpif_netdev_port_del,
3974 dpif_netdev_port_query_by_number,
3975 dpif_netdev_port_query_by_name,
3976 NULL, /* port_get_pid */
3977 dpif_netdev_port_dump_start,
3978 dpif_netdev_port_dump_next,
3979 dpif_netdev_port_dump_done,
3980 dpif_netdev_port_poll,
3981 dpif_netdev_port_poll_wait,
3982 dpif_netdev_flow_flush,
3983 dpif_netdev_flow_dump_create,
3984 dpif_netdev_flow_dump_destroy,
3985 dpif_netdev_flow_dump_thread_create,
3986 dpif_netdev_flow_dump_thread_destroy,
3987 dpif_netdev_flow_dump_next,
3988 dpif_netdev_operate,
3989 NULL, /* recv_set */
3990 NULL, /* handlers_set */
3991 dpif_netdev_pmd_set,
3992 dpif_netdev_queue_to_priority,
3993 NULL, /* recv */
3994 NULL, /* recv_wait */
3995 NULL, /* recv_purge */
3996 dpif_netdev_register_dp_purge_cb,
3997 dpif_netdev_register_upcall_cb,
3998 dpif_netdev_enable_upcall,
3999 dpif_netdev_disable_upcall,
4000 dpif_netdev_get_datapath_version,
4001 NULL, /* ct_dump_start */
4002 NULL, /* ct_dump_next */
4003 NULL, /* ct_dump_done */
4004 NULL, /* ct_flush */
4005 };
4006
4007 static void
4008 dpif_dummy_change_port_number(struct unixctl_conn *conn, int argc OVS_UNUSED,
4009 const char *argv[], void *aux OVS_UNUSED)
4010 {
4011 struct dp_netdev_port *old_port;
4012 struct dp_netdev_port *new_port;
4013 struct dp_netdev *dp;
4014 odp_port_t port_no;
4015
4016 ovs_mutex_lock(&dp_netdev_mutex);
4017 dp = shash_find_data(&dp_netdevs, argv[1]);
4018 if (!dp || !dpif_netdev_class_is_dummy(dp->class)) {
4019 ovs_mutex_unlock(&dp_netdev_mutex);
4020 unixctl_command_reply_error(conn, "unknown datapath or not a dummy");
4021 return;
4022 }
4023 ovs_refcount_ref(&dp->ref_cnt);
4024 ovs_mutex_unlock(&dp_netdev_mutex);
4025
4026 ovs_mutex_lock(&dp->port_mutex);
4027 if (get_port_by_name(dp, argv[2], &old_port)) {
4028 unixctl_command_reply_error(conn, "unknown port");
4029 goto exit;
4030 }
4031
4032 port_no = u32_to_odp(atoi(argv[3]));
4033 if (!port_no || port_no == ODPP_NONE) {
4034 unixctl_command_reply_error(conn, "bad port number");
4035 goto exit;
4036 }
4037 if (dp_netdev_lookup_port(dp, port_no)) {
4038 unixctl_command_reply_error(conn, "port number already in use");
4039 goto exit;
4040 }
4041
4042 /* Remove old port. */
4043 cmap_remove(&dp->ports, &old_port->node, hash_port_no(old_port->port_no));
4044 ovsrcu_postpone(free, old_port);
4045
4046 /* Insert new port (cmap semantics mean we cannot re-insert 'old_port'). */
4047 new_port = xmemdup(old_port, sizeof *old_port);
4048 new_port->port_no = port_no;
4049 cmap_insert(&dp->ports, &new_port->node, hash_port_no(port_no));
4050
4051 seq_change(dp->port_seq);
4052 unixctl_command_reply(conn, NULL);
4053
4054 exit:
4055 ovs_mutex_unlock(&dp->port_mutex);
4056 dp_netdev_unref(dp);
4057 }
4058
4059 static void
4060 dpif_dummy_register__(const char *type)
4061 {
4062 struct dpif_class *class;
4063
4064 class = xmalloc(sizeof *class);
4065 *class = dpif_netdev_class;
4066 class->type = xstrdup(type);
4067 dp_register_provider(class);
4068 }
4069
4070 static void
4071 dpif_dummy_override(const char *type)
4072 {
4073 int error;
4074
4075 /*
4076 * Ignore EAFNOSUPPORT to allow --enable-dummy=system with
4077 * a userland-only build. It's useful for testsuite.
4078 */
4079 error = dp_unregister_provider(type);
4080 if (error == 0 || error == EAFNOSUPPORT) {
4081 dpif_dummy_register__(type);
4082 }
4083 }
4084
4085 void
4086 dpif_dummy_register(enum dummy_level level)
4087 {
4088 if (level == DUMMY_OVERRIDE_ALL) {
4089 struct sset types;
4090 const char *type;
4091
4092 sset_init(&types);
4093 dp_enumerate_types(&types);
4094 SSET_FOR_EACH (type, &types) {
4095 dpif_dummy_override(type);
4096 }
4097 sset_destroy(&types);
4098 } else if (level == DUMMY_OVERRIDE_SYSTEM) {
4099 dpif_dummy_override("system");
4100 }
4101
4102 dpif_dummy_register__("dummy");
4103
4104 unixctl_command_register("dpif-dummy/change-port-number",
4105 "dp port new-number",
4106 3, 3, dpif_dummy_change_port_number, NULL);
4107 }
4108 \f
4109 /* Datapath Classifier. */
4110
4111 /* A set of rules that all have the same fields wildcarded. */
4112 struct dpcls_subtable {
4113 /* The fields are only used by writers. */
4114 struct cmap_node cmap_node OVS_GUARDED; /* Within dpcls 'subtables_map'. */
4115
4116 /* These fields are accessed by readers. */
4117 struct cmap rules; /* Contains "struct dpcls_rule"s. */
4118 struct netdev_flow_key mask; /* Wildcards for fields (const). */
4119 /* 'mask' must be the last field, additional space is allocated here. */
4120 };
4121
4122 /* Initializes 'cls' as a classifier that initially contains no classification
4123 * rules. */
4124 static void
4125 dpcls_init(struct dpcls *cls)
4126 {
4127 cmap_init(&cls->subtables_map);
4128 pvector_init(&cls->subtables);
4129 }
4130
4131 static void
4132 dpcls_destroy_subtable(struct dpcls *cls, struct dpcls_subtable *subtable)
4133 {
4134 pvector_remove(&cls->subtables, subtable);
4135 cmap_remove(&cls->subtables_map, &subtable->cmap_node,
4136 subtable->mask.hash);
4137 cmap_destroy(&subtable->rules);
4138 ovsrcu_postpone(free, subtable);
4139 }
4140
4141 /* Destroys 'cls'. Rules within 'cls', if any, are not freed; this is the
4142 * caller's responsibility.
4143 * May only be called after all the readers have been terminated. */
4144 static void
4145 dpcls_destroy(struct dpcls *cls)
4146 {
4147 if (cls) {
4148 struct dpcls_subtable *subtable;
4149
4150 CMAP_FOR_EACH (subtable, cmap_node, &cls->subtables_map) {
4151 ovs_assert(cmap_count(&subtable->rules) == 0);
4152 dpcls_destroy_subtable(cls, subtable);
4153 }
4154 cmap_destroy(&cls->subtables_map);
4155 pvector_destroy(&cls->subtables);
4156 }
4157 }
4158
4159 static struct dpcls_subtable *
4160 dpcls_create_subtable(struct dpcls *cls, const struct netdev_flow_key *mask)
4161 {
4162 struct dpcls_subtable *subtable;
4163
4164 /* Need to add one. */
4165 subtable = xmalloc(sizeof *subtable
4166 - sizeof subtable->mask.mf + mask->len);
4167 cmap_init(&subtable->rules);
4168 netdev_flow_key_clone(&subtable->mask, mask);
4169 cmap_insert(&cls->subtables_map, &subtable->cmap_node, mask->hash);
4170 pvector_insert(&cls->subtables, subtable, 0);
4171 pvector_publish(&cls->subtables);
4172
4173 return subtable;
4174 }
4175
4176 static inline struct dpcls_subtable *
4177 dpcls_find_subtable(struct dpcls *cls, const struct netdev_flow_key *mask)
4178 {
4179 struct dpcls_subtable *subtable;
4180
4181 CMAP_FOR_EACH_WITH_HASH (subtable, cmap_node, mask->hash,
4182 &cls->subtables_map) {
4183 if (netdev_flow_key_equal(&subtable->mask, mask)) {
4184 return subtable;
4185 }
4186 }
4187 return dpcls_create_subtable(cls, mask);
4188 }
4189
4190 /* Insert 'rule' into 'cls'. */
4191 static void
4192 dpcls_insert(struct dpcls *cls, struct dpcls_rule *rule,
4193 const struct netdev_flow_key *mask)
4194 {
4195 struct dpcls_subtable *subtable = dpcls_find_subtable(cls, mask);
4196
4197 rule->mask = &subtable->mask;
4198 cmap_insert(&subtable->rules, &rule->cmap_node, rule->flow.hash);
4199 }
4200
4201 /* Removes 'rule' from 'cls', also destructing the 'rule'. */
4202 static void
4203 dpcls_remove(struct dpcls *cls, struct dpcls_rule *rule)
4204 {
4205 struct dpcls_subtable *subtable;
4206
4207 ovs_assert(rule->mask);
4208
4209 INIT_CONTAINER(subtable, rule->mask, mask);
4210
4211 if (cmap_remove(&subtable->rules, &rule->cmap_node, rule->flow.hash)
4212 == 0) {
4213 dpcls_destroy_subtable(cls, subtable);
4214 pvector_publish(&cls->subtables);
4215 }
4216 }
4217
4218 /* Returns true if 'target' satisfies 'key' in 'mask', that is, if each 1-bit
4219 * in 'mask' the values in 'key' and 'target' are the same. */
4220 static inline bool
4221 dpcls_rule_matches_key(const struct dpcls_rule *rule,
4222 const struct netdev_flow_key *target)
4223 {
4224 const uint64_t *keyp = miniflow_get_values(&rule->flow.mf);
4225 const uint64_t *maskp = miniflow_get_values(&rule->mask->mf);
4226 uint64_t value;
4227
4228 NETDEV_FLOW_KEY_FOR_EACH_IN_FLOWMAP(value, target, rule->flow.mf.map) {
4229 if (OVS_UNLIKELY((value & *maskp++) != *keyp++)) {
4230 return false;
4231 }
4232 }
4233 return true;
4234 }
4235
4236 /* For each miniflow in 'flows' performs a classifier lookup writing the result
4237 * into the corresponding slot in 'rules'. If a particular entry in 'flows' is
4238 * NULL it is skipped.
4239 *
4240 * This function is optimized for use in the userspace datapath and therefore
4241 * does not implement a lot of features available in the standard
4242 * classifier_lookup() function. Specifically, it does not implement
4243 * priorities, instead returning any rule which matches the flow.
4244 *
4245 * Returns true if all flows found a corresponding rule. */
4246 static bool
4247 dpcls_lookup(const struct dpcls *cls, const struct netdev_flow_key keys[],
4248 struct dpcls_rule **rules, const size_t cnt)
4249 {
4250 /* The batch size 16 was experimentally found faster than 8 or 32. */
4251 typedef uint16_t map_type;
4252 #define MAP_BITS (sizeof(map_type) * CHAR_BIT)
4253
4254 #if !defined(__CHECKER__) && !defined(_WIN32)
4255 const int N_MAPS = DIV_ROUND_UP(cnt, MAP_BITS);
4256 #else
4257 enum { N_MAPS = DIV_ROUND_UP(NETDEV_MAX_BURST, MAP_BITS) };
4258 #endif
4259 map_type maps[N_MAPS];
4260 struct dpcls_subtable *subtable;
4261
4262 memset(maps, 0xff, sizeof maps);
4263 if (cnt % MAP_BITS) {
4264 maps[N_MAPS - 1] >>= MAP_BITS - cnt % MAP_BITS; /* Clear extra bits. */
4265 }
4266 memset(rules, 0, cnt * sizeof *rules);
4267
4268 PVECTOR_FOR_EACH (subtable, &cls->subtables) {
4269 const struct netdev_flow_key *mkeys = keys;
4270 struct dpcls_rule **mrules = rules;
4271 map_type remains = 0;
4272 int m;
4273
4274 BUILD_ASSERT_DECL(sizeof remains == sizeof *maps);
4275
4276 for (m = 0; m < N_MAPS; m++, mkeys += MAP_BITS, mrules += MAP_BITS) {
4277 uint32_t hashes[MAP_BITS];
4278 const struct cmap_node *nodes[MAP_BITS];
4279 unsigned long map = maps[m];
4280 int i;
4281
4282 if (!map) {
4283 continue; /* Skip empty maps. */
4284 }
4285
4286 /* Compute hashes for the remaining keys. */
4287 ULLONG_FOR_EACH_1(i, map) {
4288 hashes[i] = netdev_flow_key_hash_in_mask(&mkeys[i],
4289 &subtable->mask);
4290 }
4291 /* Lookup. */
4292 map = cmap_find_batch(&subtable->rules, map, hashes, nodes);
4293 /* Check results. */
4294 ULLONG_FOR_EACH_1(i, map) {
4295 struct dpcls_rule *rule;
4296
4297 CMAP_NODE_FOR_EACH (rule, cmap_node, nodes[i]) {
4298 if (OVS_LIKELY(dpcls_rule_matches_key(rule, &mkeys[i]))) {
4299 mrules[i] = rule;
4300 goto next;
4301 }
4302 }
4303 ULLONG_SET0(map, i); /* Did not match. */
4304 next:
4305 ; /* Keep Sparse happy. */
4306 }
4307 maps[m] &= ~map; /* Clear the found rules. */
4308 remains |= maps[m];
4309 }
4310 if (!remains) {
4311 return true; /* All found. */
4312 }
4313 }
4314 return false; /* Some misses. */
4315 }