]> git.proxmox.com Git - ovs.git/blob - lib/dpif-netdev.c
dpif-netdev: Reduce code duplication
[ovs.git] / lib / dpif-netdev.c
1 /*
2 * Copyright (c) 2009, 2010, 2011, 2012, 2013, 2014 Nicira, Inc.
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at:
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <config.h>
18 #include "dpif-netdev.h"
19
20 #include <ctype.h>
21 #include <errno.h>
22 #include <fcntl.h>
23 #include <inttypes.h>
24 #include <netinet/in.h>
25 #include <sys/socket.h>
26 #include <net/if.h>
27 #include <stdint.h>
28 #include <stdlib.h>
29 #include <string.h>
30 #include <sys/ioctl.h>
31 #include <sys/stat.h>
32 #include <unistd.h>
33
34 #include "bitmap.h"
35 #include "cmap.h"
36 #include "csum.h"
37 #include "dp-packet.h"
38 #include "dpif.h"
39 #include "dpif-provider.h"
40 #include "dummy.h"
41 #include "dynamic-string.h"
42 #include "fat-rwlock.h"
43 #include "flow.h"
44 #include "cmap.h"
45 #include "coverage.h"
46 #include "latch.h"
47 #include "list.h"
48 #include "match.h"
49 #include "netdev.h"
50 #include "netdev-dpdk.h"
51 #include "netdev-vport.h"
52 #include "netlink.h"
53 #include "odp-execute.h"
54 #include "odp-util.h"
55 #include "ofp-print.h"
56 #include "ofpbuf.h"
57 #include "ovs-numa.h"
58 #include "ovs-rcu.h"
59 #include "packets.h"
60 #include "poll-loop.h"
61 #include "pvector.h"
62 #include "random.h"
63 #include "seq.h"
64 #include "shash.h"
65 #include "sset.h"
66 #include "timeval.h"
67 #include "tnl-neigh-cache.h"
68 #include "tnl-ports.h"
69 #include "unixctl.h"
70 #include "util.h"
71 #include "openvswitch/vlog.h"
72
73 VLOG_DEFINE_THIS_MODULE(dpif_netdev);
74
75 #define FLOW_DUMP_MAX_BATCH 50
76 /* Use per thread recirc_depth to prevent recirculation loop. */
77 #define MAX_RECIRC_DEPTH 5
78 DEFINE_STATIC_PER_THREAD_DATA(uint32_t, recirc_depth, 0)
79
80 /* Configuration parameters. */
81 enum { MAX_FLOWS = 65536 }; /* Maximum number of flows in flow table. */
82
83 /* Protects against changes to 'dp_netdevs'. */
84 static struct ovs_mutex dp_netdev_mutex = OVS_MUTEX_INITIALIZER;
85
86 /* Contains all 'struct dp_netdev's. */
87 static struct shash dp_netdevs OVS_GUARDED_BY(dp_netdev_mutex)
88 = SHASH_INITIALIZER(&dp_netdevs);
89
90 static struct vlog_rate_limit upcall_rl = VLOG_RATE_LIMIT_INIT(600, 600);
91
92 static struct odp_support dp_netdev_support = {
93 .max_mpls_depth = SIZE_MAX,
94 .recirc = true,
95 };
96
97 /* Stores a miniflow with inline values */
98
99 struct netdev_flow_key {
100 uint32_t hash; /* Hash function differs for different users. */
101 uint32_t len; /* Length of the following miniflow (incl. map). */
102 struct miniflow mf;
103 uint64_t buf[FLOW_MAX_PACKET_U64S];
104 };
105
106 /* Exact match cache for frequently used flows
107 *
108 * The cache uses a 32-bit hash of the packet (which can be the RSS hash) to
109 * search its entries for a miniflow that matches exactly the miniflow of the
110 * packet. It stores the 'dpcls_rule' (rule) that matches the miniflow.
111 *
112 * A cache entry holds a reference to its 'dp_netdev_flow'.
113 *
114 * A miniflow with a given hash can be in one of EM_FLOW_HASH_SEGS different
115 * entries. The 32-bit hash is split into EM_FLOW_HASH_SEGS values (each of
116 * them is EM_FLOW_HASH_SHIFT bits wide and the remainder is thrown away). Each
117 * value is the index of a cache entry where the miniflow could be.
118 *
119 *
120 * Thread-safety
121 * =============
122 *
123 * Each pmd_thread has its own private exact match cache.
124 * If dp_netdev_input is not called from a pmd thread, a mutex is used.
125 */
126
127 #define EM_FLOW_HASH_SHIFT 13
128 #define EM_FLOW_HASH_ENTRIES (1u << EM_FLOW_HASH_SHIFT)
129 #define EM_FLOW_HASH_MASK (EM_FLOW_HASH_ENTRIES - 1)
130 #define EM_FLOW_HASH_SEGS 2
131
132 struct emc_entry {
133 struct dp_netdev_flow *flow;
134 struct netdev_flow_key key; /* key.hash used for emc hash value. */
135 };
136
137 struct emc_cache {
138 struct emc_entry entries[EM_FLOW_HASH_ENTRIES];
139 int sweep_idx; /* For emc_cache_slow_sweep(). */
140 };
141
142 /* Iterate in the exact match cache through every entry that might contain a
143 * miniflow with hash 'HASH'. */
144 #define EMC_FOR_EACH_POS_WITH_HASH(EMC, CURRENT_ENTRY, HASH) \
145 for (uint32_t i__ = 0, srch_hash__ = (HASH); \
146 (CURRENT_ENTRY) = &(EMC)->entries[srch_hash__ & EM_FLOW_HASH_MASK], \
147 i__ < EM_FLOW_HASH_SEGS; \
148 i__++, srch_hash__ >>= EM_FLOW_HASH_SHIFT)
149 \f
150 /* Simple non-wildcarding single-priority classifier. */
151
152 struct dpcls {
153 struct cmap subtables_map;
154 struct pvector subtables;
155 };
156
157 /* A rule to be inserted to the classifier. */
158 struct dpcls_rule {
159 struct cmap_node cmap_node; /* Within struct dpcls_subtable 'rules'. */
160 struct netdev_flow_key *mask; /* Subtable's mask. */
161 struct netdev_flow_key flow; /* Matching key. */
162 /* 'flow' must be the last field, additional space is allocated here. */
163 };
164
165 static void dpcls_init(struct dpcls *);
166 static void dpcls_destroy(struct dpcls *);
167 static void dpcls_insert(struct dpcls *, struct dpcls_rule *,
168 const struct netdev_flow_key *mask);
169 static void dpcls_remove(struct dpcls *, struct dpcls_rule *);
170 static bool dpcls_lookup(const struct dpcls *cls,
171 const struct netdev_flow_key keys[],
172 struct dpcls_rule **rules, size_t cnt);
173 \f
174 /* Datapath based on the network device interface from netdev.h.
175 *
176 *
177 * Thread-safety
178 * =============
179 *
180 * Some members, marked 'const', are immutable. Accessing other members
181 * requires synchronization, as noted in more detail below.
182 *
183 * Acquisition order is, from outermost to innermost:
184 *
185 * dp_netdev_mutex (global)
186 * port_mutex
187 */
188 struct dp_netdev {
189 const struct dpif_class *const class;
190 const char *const name;
191 struct dpif *dpif;
192 struct ovs_refcount ref_cnt;
193 atomic_flag destroyed;
194
195 /* Ports.
196 *
197 * Protected by RCU. Take the mutex to add or remove ports. */
198 struct ovs_mutex port_mutex;
199 struct cmap ports;
200 struct seq *port_seq; /* Incremented whenever a port changes. */
201
202 /* Protects access to ofproto-dpif-upcall interface during revalidator
203 * thread synchronization. */
204 struct fat_rwlock upcall_rwlock;
205 upcall_callback *upcall_cb; /* Callback function for executing upcalls. */
206 void *upcall_aux;
207
208 /* Callback function for notifying the purging of dp flows (during
209 * reseting pmd deletion). */
210 dp_purge_callback *dp_purge_cb;
211 void *dp_purge_aux;
212
213 /* Stores all 'struct dp_netdev_pmd_thread's. */
214 struct cmap poll_threads;
215
216 /* Protects the access of the 'struct dp_netdev_pmd_thread'
217 * instance for non-pmd thread. */
218 struct ovs_mutex non_pmd_mutex;
219
220 /* Each pmd thread will store its pointer to
221 * 'struct dp_netdev_pmd_thread' in 'per_pmd_key'. */
222 ovsthread_key_t per_pmd_key;
223
224 /* Number of rx queues for each dpdk interface and the cpu mask
225 * for pin of pmd threads. */
226 size_t n_dpdk_rxqs;
227 char *pmd_cmask;
228 uint64_t last_tnl_conf_seq;
229 };
230
231 static struct dp_netdev_port *dp_netdev_lookup_port(const struct dp_netdev *dp,
232 odp_port_t);
233
234 enum dp_stat_type {
235 DP_STAT_EXACT_HIT, /* Packets that had an exact match (emc). */
236 DP_STAT_MASKED_HIT, /* Packets that matched in the flow table. */
237 DP_STAT_MISS, /* Packets that did not match. */
238 DP_STAT_LOST, /* Packets not passed up to the client. */
239 DP_N_STATS
240 };
241
242 enum pmd_cycles_counter_type {
243 PMD_CYCLES_POLLING, /* Cycles spent polling NICs. */
244 PMD_CYCLES_PROCESSING, /* Cycles spent processing packets */
245 PMD_N_CYCLES
246 };
247
248 /* A port in a netdev-based datapath. */
249 struct dp_netdev_port {
250 odp_port_t port_no;
251 struct netdev *netdev;
252 struct cmap_node node; /* Node in dp_netdev's 'ports'. */
253 struct netdev_saved_flags *sf;
254 struct netdev_rxq **rxq;
255 struct ovs_refcount ref_cnt;
256 char *type; /* Port type as requested by user. */
257 };
258
259 /* Contained by struct dp_netdev_flow's 'stats' member. */
260 struct dp_netdev_flow_stats {
261 atomic_llong used; /* Last used time, in monotonic msecs. */
262 atomic_ullong packet_count; /* Number of packets matched. */
263 atomic_ullong byte_count; /* Number of bytes matched. */
264 atomic_uint16_t tcp_flags; /* Bitwise-OR of seen tcp_flags values. */
265 };
266
267 /* A flow in 'dp_netdev_pmd_thread's 'flow_table'.
268 *
269 *
270 * Thread-safety
271 * =============
272 *
273 * Except near the beginning or ending of its lifespan, rule 'rule' belongs to
274 * its pmd thread's classifier. The text below calls this classifier 'cls'.
275 *
276 * Motivation
277 * ----------
278 *
279 * The thread safety rules described here for "struct dp_netdev_flow" are
280 * motivated by two goals:
281 *
282 * - Prevent threads that read members of "struct dp_netdev_flow" from
283 * reading bad data due to changes by some thread concurrently modifying
284 * those members.
285 *
286 * - Prevent two threads making changes to members of a given "struct
287 * dp_netdev_flow" from interfering with each other.
288 *
289 *
290 * Rules
291 * -----
292 *
293 * A flow 'flow' may be accessed without a risk of being freed during an RCU
294 * grace period. Code that needs to hold onto a flow for a while
295 * should try incrementing 'flow->ref_cnt' with dp_netdev_flow_ref().
296 *
297 * 'flow->ref_cnt' protects 'flow' from being freed. It doesn't protect the
298 * flow from being deleted from 'cls' and it doesn't protect members of 'flow'
299 * from modification.
300 *
301 * Some members, marked 'const', are immutable. Accessing other members
302 * requires synchronization, as noted in more detail below.
303 */
304 struct dp_netdev_flow {
305 const struct flow flow; /* Unmasked flow that created this entry. */
306 /* Hash table index by unmasked flow. */
307 const struct cmap_node node; /* In owning dp_netdev_pmd_thread's */
308 /* 'flow_table'. */
309 const ovs_u128 ufid; /* Unique flow identifier. */
310 const unsigned pmd_id; /* The 'core_id' of pmd thread owning this */
311 /* flow. */
312
313 /* Number of references.
314 * The classifier owns one reference.
315 * Any thread trying to keep a rule from being freed should hold its own
316 * reference. */
317 struct ovs_refcount ref_cnt;
318
319 bool dead;
320
321 /* Statistics. */
322 struct dp_netdev_flow_stats stats;
323
324 /* Actions. */
325 OVSRCU_TYPE(struct dp_netdev_actions *) actions;
326
327 /* While processing a group of input packets, the datapath uses the next
328 * member to store a pointer to the output batch for the flow. It is
329 * reset after the batch has been sent out (See dp_netdev_queue_batches(),
330 * packet_batch_init() and packet_batch_execute()). */
331 struct packet_batch *batch;
332
333 /* Packet classification. */
334 struct dpcls_rule cr; /* In owning dp_netdev's 'cls'. */
335 /* 'cr' must be the last member. */
336 };
337
338 static void dp_netdev_flow_unref(struct dp_netdev_flow *);
339 static bool dp_netdev_flow_ref(struct dp_netdev_flow *);
340 static int dpif_netdev_flow_from_nlattrs(const struct nlattr *, uint32_t,
341 struct flow *);
342
343 /* A set of datapath actions within a "struct dp_netdev_flow".
344 *
345 *
346 * Thread-safety
347 * =============
348 *
349 * A struct dp_netdev_actions 'actions' is protected with RCU. */
350 struct dp_netdev_actions {
351 /* These members are immutable: they do not change during the struct's
352 * lifetime. */
353 unsigned int size; /* Size of 'actions', in bytes. */
354 struct nlattr actions[]; /* Sequence of OVS_ACTION_ATTR_* attributes. */
355 };
356
357 struct dp_netdev_actions *dp_netdev_actions_create(const struct nlattr *,
358 size_t);
359 struct dp_netdev_actions *dp_netdev_flow_get_actions(
360 const struct dp_netdev_flow *);
361 static void dp_netdev_actions_free(struct dp_netdev_actions *);
362
363 /* Contained by struct dp_netdev_pmd_thread's 'stats' member. */
364 struct dp_netdev_pmd_stats {
365 /* Indexed by DP_STAT_*. */
366 atomic_ullong n[DP_N_STATS];
367 };
368
369 /* Contained by struct dp_netdev_pmd_thread's 'cycle' member. */
370 struct dp_netdev_pmd_cycles {
371 /* Indexed by PMD_CYCLES_*. */
372 atomic_ullong n[PMD_N_CYCLES];
373 };
374
375 /* Contained by struct dp_netdev_pmd_thread's 'poll_list' member. */
376 struct rxq_poll {
377 struct dp_netdev_port *port;
378 struct netdev_rxq *rx;
379 struct ovs_list node;
380 };
381
382 /* PMD: Poll modes drivers. PMD accesses devices via polling to eliminate
383 * the performance overhead of interrupt processing. Therefore netdev can
384 * not implement rx-wait for these devices. dpif-netdev needs to poll
385 * these device to check for recv buffer. pmd-thread does polling for
386 * devices assigned to itself.
387 *
388 * DPDK used PMD for accessing NIC.
389 *
390 * Note, instance with cpu core id NON_PMD_CORE_ID will be reserved for
391 * I/O of all non-pmd threads. There will be no actual thread created
392 * for the instance.
393 *
394 * Each struct has its own flow table and classifier. Packets received
395 * from managed ports are looked up in the corresponding pmd thread's
396 * flow table, and are executed with the found actions.
397 * */
398 struct dp_netdev_pmd_thread {
399 struct dp_netdev *dp;
400 struct ovs_refcount ref_cnt; /* Every reference must be refcount'ed. */
401 struct cmap_node node; /* In 'dp->poll_threads'. */
402
403 pthread_cond_t cond; /* For synchronizing pmd thread reload. */
404 struct ovs_mutex cond_mutex; /* Mutex for condition variable. */
405
406 /* Per thread exact-match cache. Note, the instance for cpu core
407 * NON_PMD_CORE_ID can be accessed by multiple threads, and thusly
408 * need to be protected (e.g. by 'dp_netdev_mutex'). All other
409 * instances will only be accessed by its own pmd thread. */
410 struct emc_cache flow_cache;
411
412 /* Classifier and Flow-Table.
413 *
414 * Writers of 'flow_table' must take the 'flow_mutex'. Corresponding
415 * changes to 'cls' must be made while still holding the 'flow_mutex'.
416 */
417 struct ovs_mutex flow_mutex;
418 struct dpcls cls;
419 struct cmap flow_table OVS_GUARDED; /* Flow table. */
420
421 /* Statistics. */
422 struct dp_netdev_pmd_stats stats;
423
424 /* Cycles counters */
425 struct dp_netdev_pmd_cycles cycles;
426
427 /* Used to count cicles. See 'cycles_counter_end()' */
428 unsigned long long last_cycles;
429
430 struct latch exit_latch; /* For terminating the pmd thread. */
431 atomic_uint change_seq; /* For reloading pmd ports. */
432 pthread_t thread;
433 int index; /* Idx of this pmd thread among pmd*/
434 /* threads on same numa node. */
435 unsigned core_id; /* CPU core id of this pmd thread. */
436 int numa_id; /* numa node id of this pmd thread. */
437 atomic_int tx_qid; /* Queue id used by this pmd thread to
438 * send packets on all netdevs */
439
440 struct ovs_mutex poll_mutex; /* Mutex for poll_list. */
441 /* List of rx queues to poll. */
442 struct ovs_list poll_list OVS_GUARDED;
443 int poll_cnt; /* Number of elemints in poll_list. */
444
445 /* Only a pmd thread can write on its own 'cycles' and 'stats'.
446 * The main thread keeps 'stats_zero' and 'cycles_zero' as base
447 * values and subtracts them from 'stats' and 'cycles' before
448 * reporting to the user */
449 unsigned long long stats_zero[DP_N_STATS];
450 uint64_t cycles_zero[PMD_N_CYCLES];
451 };
452
453 #define PMD_INITIAL_SEQ 1
454
455 /* Interface to netdev-based datapath. */
456 struct dpif_netdev {
457 struct dpif dpif;
458 struct dp_netdev *dp;
459 uint64_t last_port_seq;
460 };
461
462 static int get_port_by_number(struct dp_netdev *dp, odp_port_t port_no,
463 struct dp_netdev_port **portp);
464 static int get_port_by_name(struct dp_netdev *dp, const char *devname,
465 struct dp_netdev_port **portp);
466 static void dp_netdev_free(struct dp_netdev *)
467 OVS_REQUIRES(dp_netdev_mutex);
468 static int do_add_port(struct dp_netdev *dp, const char *devname,
469 const char *type, odp_port_t port_no)
470 OVS_REQUIRES(dp->port_mutex);
471 static void do_del_port(struct dp_netdev *dp, struct dp_netdev_port *)
472 OVS_REQUIRES(dp->port_mutex);
473 static int dpif_netdev_open(const struct dpif_class *, const char *name,
474 bool create, struct dpif **);
475 static void dp_netdev_execute_actions(struct dp_netdev_pmd_thread *pmd,
476 struct dp_packet **, int c,
477 bool may_steal,
478 const struct nlattr *actions,
479 size_t actions_len);
480 static void dp_netdev_input(struct dp_netdev_pmd_thread *,
481 struct dp_packet **, int cnt);
482
483 static void dp_netdev_disable_upcall(struct dp_netdev *);
484 static void dp_netdev_pmd_reload_done(struct dp_netdev_pmd_thread *pmd);
485 static void dp_netdev_configure_pmd(struct dp_netdev_pmd_thread *pmd,
486 struct dp_netdev *dp, int index,
487 unsigned core_id, int numa_id);
488 static void dp_netdev_destroy_pmd(struct dp_netdev_pmd_thread *pmd);
489 static void dp_netdev_set_nonpmd(struct dp_netdev *dp);
490 static struct dp_netdev_pmd_thread *dp_netdev_get_pmd(struct dp_netdev *dp,
491 unsigned core_id);
492 static struct dp_netdev_pmd_thread *
493 dp_netdev_pmd_get_next(struct dp_netdev *dp, struct cmap_position *pos);
494 static void dp_netdev_destroy_all_pmds(struct dp_netdev *dp);
495 static void dp_netdev_del_pmds_on_numa(struct dp_netdev *dp, int numa_id);
496 static void dp_netdev_set_pmds_on_numa(struct dp_netdev *dp, int numa_id);
497 static void
498 dp_netdev_add_rxq_to_pmd(struct dp_netdev_pmd_thread *pmd,
499 struct dp_netdev_port *port, struct netdev_rxq *rx);
500 static struct dp_netdev_pmd_thread *
501 dp_netdev_less_loaded_pmd_on_numa(struct dp_netdev *dp, int numa_id);
502 static void dp_netdev_reset_pmd_threads(struct dp_netdev *dp);
503 static bool dp_netdev_pmd_try_ref(struct dp_netdev_pmd_thread *pmd);
504 static void dp_netdev_pmd_unref(struct dp_netdev_pmd_thread *pmd);
505 static void dp_netdev_pmd_flow_flush(struct dp_netdev_pmd_thread *pmd);
506
507 static inline bool emc_entry_alive(struct emc_entry *ce);
508 static void emc_clear_entry(struct emc_entry *ce);
509
510 static void
511 emc_cache_init(struct emc_cache *flow_cache)
512 {
513 int i;
514
515 flow_cache->sweep_idx = 0;
516 for (i = 0; i < ARRAY_SIZE(flow_cache->entries); i++) {
517 flow_cache->entries[i].flow = NULL;
518 flow_cache->entries[i].key.hash = 0;
519 flow_cache->entries[i].key.len = sizeof(struct miniflow);
520 flowmap_init(&flow_cache->entries[i].key.mf.map);
521 }
522 }
523
524 static void
525 emc_cache_uninit(struct emc_cache *flow_cache)
526 {
527 int i;
528
529 for (i = 0; i < ARRAY_SIZE(flow_cache->entries); i++) {
530 emc_clear_entry(&flow_cache->entries[i]);
531 }
532 }
533
534 /* Check and clear dead flow references slowly (one entry at each
535 * invocation). */
536 static void
537 emc_cache_slow_sweep(struct emc_cache *flow_cache)
538 {
539 struct emc_entry *entry = &flow_cache->entries[flow_cache->sweep_idx];
540
541 if (!emc_entry_alive(entry)) {
542 emc_clear_entry(entry);
543 }
544 flow_cache->sweep_idx = (flow_cache->sweep_idx + 1) & EM_FLOW_HASH_MASK;
545 }
546
547 /* Returns true if 'dpif' is a netdev or dummy dpif, false otherwise. */
548 bool
549 dpif_is_netdev(const struct dpif *dpif)
550 {
551 return dpif->dpif_class->open == dpif_netdev_open;
552 }
553
554 static struct dpif_netdev *
555 dpif_netdev_cast(const struct dpif *dpif)
556 {
557 ovs_assert(dpif_is_netdev(dpif));
558 return CONTAINER_OF(dpif, struct dpif_netdev, dpif);
559 }
560
561 static struct dp_netdev *
562 get_dp_netdev(const struct dpif *dpif)
563 {
564 return dpif_netdev_cast(dpif)->dp;
565 }
566 \f
567 enum pmd_info_type {
568 PMD_INFO_SHOW_STATS, /* show how cpu cycles are spent */
569 PMD_INFO_CLEAR_STATS /* set the cycles count to 0 */
570 };
571
572 static void
573 pmd_info_show_stats(struct ds *reply,
574 struct dp_netdev_pmd_thread *pmd,
575 unsigned long long stats[DP_N_STATS],
576 uint64_t cycles[PMD_N_CYCLES])
577 {
578 unsigned long long total_packets = 0;
579 uint64_t total_cycles = 0;
580 int i;
581
582 /* These loops subtracts reference values ('*_zero') from the counters.
583 * Since loads and stores are relaxed, it might be possible for a '*_zero'
584 * value to be more recent than the current value we're reading from the
585 * counter. This is not a big problem, since these numbers are not
586 * supposed to be too accurate, but we should at least make sure that
587 * the result is not negative. */
588 for (i = 0; i < DP_N_STATS; i++) {
589 if (stats[i] > pmd->stats_zero[i]) {
590 stats[i] -= pmd->stats_zero[i];
591 } else {
592 stats[i] = 0;
593 }
594
595 if (i != DP_STAT_LOST) {
596 /* Lost packets are already included in DP_STAT_MISS */
597 total_packets += stats[i];
598 }
599 }
600
601 for (i = 0; i < PMD_N_CYCLES; i++) {
602 if (cycles[i] > pmd->cycles_zero[i]) {
603 cycles[i] -= pmd->cycles_zero[i];
604 } else {
605 cycles[i] = 0;
606 }
607
608 total_cycles += cycles[i];
609 }
610
611 ds_put_cstr(reply, (pmd->core_id == NON_PMD_CORE_ID)
612 ? "main thread" : "pmd thread");
613
614 if (pmd->numa_id != OVS_NUMA_UNSPEC) {
615 ds_put_format(reply, " numa_id %d", pmd->numa_id);
616 }
617 if (pmd->core_id != OVS_CORE_UNSPEC && pmd->core_id != NON_PMD_CORE_ID) {
618 ds_put_format(reply, " core_id %u", pmd->core_id);
619 }
620 ds_put_cstr(reply, ":\n");
621
622 ds_put_format(reply,
623 "\temc hits:%llu\n\tmegaflow hits:%llu\n"
624 "\tmiss:%llu\n\tlost:%llu\n",
625 stats[DP_STAT_EXACT_HIT], stats[DP_STAT_MASKED_HIT],
626 stats[DP_STAT_MISS], stats[DP_STAT_LOST]);
627
628 if (total_cycles == 0) {
629 return;
630 }
631
632 ds_put_format(reply,
633 "\tpolling cycles:%"PRIu64" (%.02f%%)\n"
634 "\tprocessing cycles:%"PRIu64" (%.02f%%)\n",
635 cycles[PMD_CYCLES_POLLING],
636 cycles[PMD_CYCLES_POLLING] / (double)total_cycles * 100,
637 cycles[PMD_CYCLES_PROCESSING],
638 cycles[PMD_CYCLES_PROCESSING] / (double)total_cycles * 100);
639
640 if (total_packets == 0) {
641 return;
642 }
643
644 ds_put_format(reply,
645 "\tavg cycles per packet: %.02f (%"PRIu64"/%llu)\n",
646 total_cycles / (double)total_packets,
647 total_cycles, total_packets);
648
649 ds_put_format(reply,
650 "\tavg processing cycles per packet: "
651 "%.02f (%"PRIu64"/%llu)\n",
652 cycles[PMD_CYCLES_PROCESSING] / (double)total_packets,
653 cycles[PMD_CYCLES_PROCESSING], total_packets);
654 }
655
656 static void
657 pmd_info_clear_stats(struct ds *reply OVS_UNUSED,
658 struct dp_netdev_pmd_thread *pmd,
659 unsigned long long stats[DP_N_STATS],
660 uint64_t cycles[PMD_N_CYCLES])
661 {
662 int i;
663
664 /* We cannot write 'stats' and 'cycles' (because they're written by other
665 * threads) and we shouldn't change 'stats' (because they're used to count
666 * datapath stats, which must not be cleared here). Instead, we save the
667 * current values and subtract them from the values to be displayed in the
668 * future */
669 for (i = 0; i < DP_N_STATS; i++) {
670 pmd->stats_zero[i] = stats[i];
671 }
672 for (i = 0; i < PMD_N_CYCLES; i++) {
673 pmd->cycles_zero[i] = cycles[i];
674 }
675 }
676
677 static void
678 dpif_netdev_pmd_info(struct unixctl_conn *conn, int argc, const char *argv[],
679 void *aux)
680 {
681 struct ds reply = DS_EMPTY_INITIALIZER;
682 struct dp_netdev_pmd_thread *pmd;
683 struct dp_netdev *dp = NULL;
684 enum pmd_info_type type = *(enum pmd_info_type *) aux;
685
686 ovs_mutex_lock(&dp_netdev_mutex);
687
688 if (argc == 2) {
689 dp = shash_find_data(&dp_netdevs, argv[1]);
690 } else if (shash_count(&dp_netdevs) == 1) {
691 /* There's only one datapath */
692 dp = shash_first(&dp_netdevs)->data;
693 }
694
695 if (!dp) {
696 ovs_mutex_unlock(&dp_netdev_mutex);
697 unixctl_command_reply_error(conn,
698 "please specify an existing datapath");
699 return;
700 }
701
702 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
703 unsigned long long stats[DP_N_STATS];
704 uint64_t cycles[PMD_N_CYCLES];
705 int i;
706
707 /* Read current stats and cycle counters */
708 for (i = 0; i < ARRAY_SIZE(stats); i++) {
709 atomic_read_relaxed(&pmd->stats.n[i], &stats[i]);
710 }
711 for (i = 0; i < ARRAY_SIZE(cycles); i++) {
712 atomic_read_relaxed(&pmd->cycles.n[i], &cycles[i]);
713 }
714
715 if (type == PMD_INFO_CLEAR_STATS) {
716 pmd_info_clear_stats(&reply, pmd, stats, cycles);
717 } else if (type == PMD_INFO_SHOW_STATS) {
718 pmd_info_show_stats(&reply, pmd, stats, cycles);
719 }
720 }
721
722 ovs_mutex_unlock(&dp_netdev_mutex);
723
724 unixctl_command_reply(conn, ds_cstr(&reply));
725 ds_destroy(&reply);
726 }
727 \f
728 static int
729 dpif_netdev_init(void)
730 {
731 static enum pmd_info_type show_aux = PMD_INFO_SHOW_STATS,
732 clear_aux = PMD_INFO_CLEAR_STATS;
733
734 unixctl_command_register("dpif-netdev/pmd-stats-show", "[dp]",
735 0, 1, dpif_netdev_pmd_info,
736 (void *)&show_aux);
737 unixctl_command_register("dpif-netdev/pmd-stats-clear", "[dp]",
738 0, 1, dpif_netdev_pmd_info,
739 (void *)&clear_aux);
740 return 0;
741 }
742
743 static int
744 dpif_netdev_enumerate(struct sset *all_dps,
745 const struct dpif_class *dpif_class)
746 {
747 struct shash_node *node;
748
749 ovs_mutex_lock(&dp_netdev_mutex);
750 SHASH_FOR_EACH(node, &dp_netdevs) {
751 struct dp_netdev *dp = node->data;
752 if (dpif_class != dp->class) {
753 /* 'dp_netdevs' contains both "netdev" and "dummy" dpifs.
754 * If the class doesn't match, skip this dpif. */
755 continue;
756 }
757 sset_add(all_dps, node->name);
758 }
759 ovs_mutex_unlock(&dp_netdev_mutex);
760
761 return 0;
762 }
763
764 static bool
765 dpif_netdev_class_is_dummy(const struct dpif_class *class)
766 {
767 return class != &dpif_netdev_class;
768 }
769
770 static const char *
771 dpif_netdev_port_open_type(const struct dpif_class *class, const char *type)
772 {
773 return strcmp(type, "internal") ? type
774 : dpif_netdev_class_is_dummy(class) ? "dummy"
775 : "tap";
776 }
777
778 static struct dpif *
779 create_dpif_netdev(struct dp_netdev *dp)
780 {
781 uint16_t netflow_id = hash_string(dp->name, 0);
782 struct dpif_netdev *dpif;
783
784 ovs_refcount_ref(&dp->ref_cnt);
785
786 dpif = xmalloc(sizeof *dpif);
787 dpif_init(&dpif->dpif, dp->class, dp->name, netflow_id >> 8, netflow_id);
788 dpif->dp = dp;
789 dpif->last_port_seq = seq_read(dp->port_seq);
790
791 return &dpif->dpif;
792 }
793
794 /* Choose an unused, non-zero port number and return it on success.
795 * Return ODPP_NONE on failure. */
796 static odp_port_t
797 choose_port(struct dp_netdev *dp, const char *name)
798 OVS_REQUIRES(dp->port_mutex)
799 {
800 uint32_t port_no;
801
802 if (dp->class != &dpif_netdev_class) {
803 const char *p;
804 int start_no = 0;
805
806 /* If the port name begins with "br", start the number search at
807 * 100 to make writing tests easier. */
808 if (!strncmp(name, "br", 2)) {
809 start_no = 100;
810 }
811
812 /* If the port name contains a number, try to assign that port number.
813 * This can make writing unit tests easier because port numbers are
814 * predictable. */
815 for (p = name; *p != '\0'; p++) {
816 if (isdigit((unsigned char) *p)) {
817 port_no = start_no + strtol(p, NULL, 10);
818 if (port_no > 0 && port_no != odp_to_u32(ODPP_NONE)
819 && !dp_netdev_lookup_port(dp, u32_to_odp(port_no))) {
820 return u32_to_odp(port_no);
821 }
822 break;
823 }
824 }
825 }
826
827 for (port_no = 1; port_no <= UINT16_MAX; port_no++) {
828 if (!dp_netdev_lookup_port(dp, u32_to_odp(port_no))) {
829 return u32_to_odp(port_no);
830 }
831 }
832
833 return ODPP_NONE;
834 }
835
836 static int
837 create_dp_netdev(const char *name, const struct dpif_class *class,
838 struct dp_netdev **dpp)
839 OVS_REQUIRES(dp_netdev_mutex)
840 {
841 struct dp_netdev *dp;
842 int error;
843
844 dp = xzalloc(sizeof *dp);
845 shash_add(&dp_netdevs, name, dp);
846
847 *CONST_CAST(const struct dpif_class **, &dp->class) = class;
848 *CONST_CAST(const char **, &dp->name) = xstrdup(name);
849 ovs_refcount_init(&dp->ref_cnt);
850 atomic_flag_clear(&dp->destroyed);
851
852 ovs_mutex_init(&dp->port_mutex);
853 cmap_init(&dp->ports);
854 dp->port_seq = seq_create();
855 fat_rwlock_init(&dp->upcall_rwlock);
856
857 /* Disable upcalls by default. */
858 dp_netdev_disable_upcall(dp);
859 dp->upcall_aux = NULL;
860 dp->upcall_cb = NULL;
861
862 cmap_init(&dp->poll_threads);
863 ovs_mutex_init_recursive(&dp->non_pmd_mutex);
864 ovsthread_key_create(&dp->per_pmd_key, NULL);
865
866 dp_netdev_set_nonpmd(dp);
867 dp->n_dpdk_rxqs = NR_QUEUE;
868
869 ovs_mutex_lock(&dp->port_mutex);
870 error = do_add_port(dp, name, "internal", ODPP_LOCAL);
871 ovs_mutex_unlock(&dp->port_mutex);
872 if (error) {
873 dp_netdev_free(dp);
874 return error;
875 }
876
877 dp->last_tnl_conf_seq = seq_read(tnl_conf_seq);
878 *dpp = dp;
879 return 0;
880 }
881
882 static int
883 dpif_netdev_open(const struct dpif_class *class, const char *name,
884 bool create, struct dpif **dpifp)
885 {
886 struct dp_netdev *dp;
887 int error;
888
889 ovs_mutex_lock(&dp_netdev_mutex);
890 dp = shash_find_data(&dp_netdevs, name);
891 if (!dp) {
892 error = create ? create_dp_netdev(name, class, &dp) : ENODEV;
893 } else {
894 error = (dp->class != class ? EINVAL
895 : create ? EEXIST
896 : 0);
897 }
898 if (!error) {
899 *dpifp = create_dpif_netdev(dp);
900 dp->dpif = *dpifp;
901 }
902 ovs_mutex_unlock(&dp_netdev_mutex);
903
904 return error;
905 }
906
907 static void
908 dp_netdev_destroy_upcall_lock(struct dp_netdev *dp)
909 OVS_NO_THREAD_SAFETY_ANALYSIS
910 {
911 /* Check that upcalls are disabled, i.e. that the rwlock is taken */
912 ovs_assert(fat_rwlock_tryrdlock(&dp->upcall_rwlock));
913
914 /* Before freeing a lock we should release it */
915 fat_rwlock_unlock(&dp->upcall_rwlock);
916 fat_rwlock_destroy(&dp->upcall_rwlock);
917 }
918
919 /* Requires dp_netdev_mutex so that we can't get a new reference to 'dp'
920 * through the 'dp_netdevs' shash while freeing 'dp'. */
921 static void
922 dp_netdev_free(struct dp_netdev *dp)
923 OVS_REQUIRES(dp_netdev_mutex)
924 {
925 struct dp_netdev_port *port;
926
927 shash_find_and_delete(&dp_netdevs, dp->name);
928
929 dp_netdev_destroy_all_pmds(dp);
930 cmap_destroy(&dp->poll_threads);
931 ovs_mutex_destroy(&dp->non_pmd_mutex);
932 ovsthread_key_delete(dp->per_pmd_key);
933
934 ovs_mutex_lock(&dp->port_mutex);
935 CMAP_FOR_EACH (port, node, &dp->ports) {
936 do_del_port(dp, port);
937 }
938 ovs_mutex_unlock(&dp->port_mutex);
939
940 seq_destroy(dp->port_seq);
941 cmap_destroy(&dp->ports);
942
943 /* Upcalls must be disabled at this point */
944 dp_netdev_destroy_upcall_lock(dp);
945
946 free(dp->pmd_cmask);
947 free(CONST_CAST(char *, dp->name));
948 free(dp);
949 }
950
951 static void
952 dp_netdev_unref(struct dp_netdev *dp)
953 {
954 if (dp) {
955 /* Take dp_netdev_mutex so that, if dp->ref_cnt falls to zero, we can't
956 * get a new reference to 'dp' through the 'dp_netdevs' shash. */
957 ovs_mutex_lock(&dp_netdev_mutex);
958 if (ovs_refcount_unref_relaxed(&dp->ref_cnt) == 1) {
959 dp_netdev_free(dp);
960 }
961 ovs_mutex_unlock(&dp_netdev_mutex);
962 }
963 }
964
965 static void
966 dpif_netdev_close(struct dpif *dpif)
967 {
968 struct dp_netdev *dp = get_dp_netdev(dpif);
969
970 dp_netdev_unref(dp);
971 free(dpif);
972 }
973
974 static int
975 dpif_netdev_destroy(struct dpif *dpif)
976 {
977 struct dp_netdev *dp = get_dp_netdev(dpif);
978
979 if (!atomic_flag_test_and_set(&dp->destroyed)) {
980 if (ovs_refcount_unref_relaxed(&dp->ref_cnt) == 1) {
981 /* Can't happen: 'dpif' still owns a reference to 'dp'. */
982 OVS_NOT_REACHED();
983 }
984 }
985
986 return 0;
987 }
988
989 /* Add 'n' to the atomic variable 'var' non-atomically and using relaxed
990 * load/store semantics. While the increment is not atomic, the load and
991 * store operations are, making it impossible to read inconsistent values.
992 *
993 * This is used to update thread local stats counters. */
994 static void
995 non_atomic_ullong_add(atomic_ullong *var, unsigned long long n)
996 {
997 unsigned long long tmp;
998
999 atomic_read_relaxed(var, &tmp);
1000 tmp += n;
1001 atomic_store_relaxed(var, tmp);
1002 }
1003
1004 static int
1005 dpif_netdev_get_stats(const struct dpif *dpif, struct dpif_dp_stats *stats)
1006 {
1007 struct dp_netdev *dp = get_dp_netdev(dpif);
1008 struct dp_netdev_pmd_thread *pmd;
1009
1010 stats->n_flows = stats->n_hit = stats->n_missed = stats->n_lost = 0;
1011 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
1012 unsigned long long n;
1013 stats->n_flows += cmap_count(&pmd->flow_table);
1014
1015 atomic_read_relaxed(&pmd->stats.n[DP_STAT_MASKED_HIT], &n);
1016 stats->n_hit += n;
1017 atomic_read_relaxed(&pmd->stats.n[DP_STAT_EXACT_HIT], &n);
1018 stats->n_hit += n;
1019 atomic_read_relaxed(&pmd->stats.n[DP_STAT_MISS], &n);
1020 stats->n_missed += n;
1021 atomic_read_relaxed(&pmd->stats.n[DP_STAT_LOST], &n);
1022 stats->n_lost += n;
1023 }
1024 stats->n_masks = UINT32_MAX;
1025 stats->n_mask_hit = UINT64_MAX;
1026
1027 return 0;
1028 }
1029
1030 static void
1031 dp_netdev_reload_pmd__(struct dp_netdev_pmd_thread *pmd)
1032 {
1033 int old_seq;
1034
1035 if (pmd->core_id == NON_PMD_CORE_ID) {
1036 return;
1037 }
1038
1039 ovs_mutex_lock(&pmd->cond_mutex);
1040 atomic_add_relaxed(&pmd->change_seq, 1, &old_seq);
1041 ovs_mutex_cond_wait(&pmd->cond, &pmd->cond_mutex);
1042 ovs_mutex_unlock(&pmd->cond_mutex);
1043 }
1044
1045 static uint32_t
1046 hash_port_no(odp_port_t port_no)
1047 {
1048 return hash_int(odp_to_u32(port_no), 0);
1049 }
1050
1051 static int
1052 do_add_port(struct dp_netdev *dp, const char *devname, const char *type,
1053 odp_port_t port_no)
1054 OVS_REQUIRES(dp->port_mutex)
1055 {
1056 struct netdev_saved_flags *sf;
1057 struct dp_netdev_port *port;
1058 struct netdev *netdev;
1059 enum netdev_flags flags;
1060 const char *open_type;
1061 int error;
1062 int i;
1063
1064 /* Reject devices already in 'dp'. */
1065 if (!get_port_by_name(dp, devname, &port)) {
1066 return EEXIST;
1067 }
1068
1069 /* Open and validate network device. */
1070 open_type = dpif_netdev_port_open_type(dp->class, type);
1071 error = netdev_open(devname, open_type, &netdev);
1072 if (error) {
1073 return error;
1074 }
1075 /* XXX reject non-Ethernet devices */
1076
1077 netdev_get_flags(netdev, &flags);
1078 if (flags & NETDEV_LOOPBACK) {
1079 VLOG_ERR("%s: cannot add a loopback device", devname);
1080 netdev_close(netdev);
1081 return EINVAL;
1082 }
1083
1084 if (netdev_is_pmd(netdev)) {
1085 int n_cores = ovs_numa_get_n_cores();
1086
1087 if (n_cores == OVS_CORE_UNSPEC) {
1088 VLOG_ERR("%s, cannot get cpu core info", devname);
1089 return ENOENT;
1090 }
1091 /* There can only be ovs_numa_get_n_cores() pmd threads,
1092 * so creates a txq for each, and one extra for the non
1093 * pmd threads. */
1094 error = netdev_set_multiq(netdev, n_cores + 1, dp->n_dpdk_rxqs);
1095 if (error && (error != EOPNOTSUPP)) {
1096 VLOG_ERR("%s, cannot set multiq", devname);
1097 return errno;
1098 }
1099 }
1100 port = xzalloc(sizeof *port);
1101 port->port_no = port_no;
1102 port->netdev = netdev;
1103 port->rxq = xmalloc(sizeof *port->rxq * netdev_n_rxq(netdev));
1104 port->type = xstrdup(type);
1105 for (i = 0; i < netdev_n_rxq(netdev); i++) {
1106 error = netdev_rxq_open(netdev, &port->rxq[i], i);
1107 if (error
1108 && !(error == EOPNOTSUPP && dpif_netdev_class_is_dummy(dp->class))) {
1109 VLOG_ERR("%s: cannot receive packets on this network device (%s)",
1110 devname, ovs_strerror(errno));
1111 netdev_close(netdev);
1112 free(port->type);
1113 free(port->rxq);
1114 free(port);
1115 return error;
1116 }
1117 }
1118
1119 error = netdev_turn_flags_on(netdev, NETDEV_PROMISC, &sf);
1120 if (error) {
1121 for (i = 0; i < netdev_n_rxq(netdev); i++) {
1122 netdev_rxq_close(port->rxq[i]);
1123 }
1124 netdev_close(netdev);
1125 free(port->type);
1126 free(port->rxq);
1127 free(port);
1128 return error;
1129 }
1130 port->sf = sf;
1131
1132 ovs_refcount_init(&port->ref_cnt);
1133 cmap_insert(&dp->ports, &port->node, hash_port_no(port_no));
1134
1135 if (netdev_is_pmd(netdev)) {
1136 int numa_id = netdev_get_numa_id(netdev);
1137 struct dp_netdev_pmd_thread *pmd;
1138
1139 /* Cannot create pmd threads for invalid numa node. */
1140 ovs_assert(ovs_numa_numa_id_is_valid(numa_id));
1141
1142 for (i = 0; i < netdev_n_rxq(netdev); i++) {
1143 pmd = dp_netdev_less_loaded_pmd_on_numa(dp, numa_id);
1144 if (!pmd) {
1145 /* There is no pmd threads on this numa node. */
1146 dp_netdev_set_pmds_on_numa(dp, numa_id);
1147 /* Assigning of rx queues done. */
1148 break;
1149 }
1150
1151 ovs_mutex_lock(&pmd->poll_mutex);
1152 dp_netdev_add_rxq_to_pmd(pmd, port, port->rxq[i]);
1153 ovs_mutex_unlock(&pmd->poll_mutex);
1154 dp_netdev_reload_pmd__(pmd);
1155 }
1156 }
1157 seq_change(dp->port_seq);
1158
1159 return 0;
1160 }
1161
1162 static int
1163 dpif_netdev_port_add(struct dpif *dpif, struct netdev *netdev,
1164 odp_port_t *port_nop)
1165 {
1166 struct dp_netdev *dp = get_dp_netdev(dpif);
1167 char namebuf[NETDEV_VPORT_NAME_BUFSIZE];
1168 const char *dpif_port;
1169 odp_port_t port_no;
1170 int error;
1171
1172 ovs_mutex_lock(&dp->port_mutex);
1173 dpif_port = netdev_vport_get_dpif_port(netdev, namebuf, sizeof namebuf);
1174 if (*port_nop != ODPP_NONE) {
1175 port_no = *port_nop;
1176 error = dp_netdev_lookup_port(dp, *port_nop) ? EBUSY : 0;
1177 } else {
1178 port_no = choose_port(dp, dpif_port);
1179 error = port_no == ODPP_NONE ? EFBIG : 0;
1180 }
1181 if (!error) {
1182 *port_nop = port_no;
1183 error = do_add_port(dp, dpif_port, netdev_get_type(netdev), port_no);
1184 }
1185 ovs_mutex_unlock(&dp->port_mutex);
1186
1187 return error;
1188 }
1189
1190 static int
1191 dpif_netdev_port_del(struct dpif *dpif, odp_port_t port_no)
1192 {
1193 struct dp_netdev *dp = get_dp_netdev(dpif);
1194 int error;
1195
1196 ovs_mutex_lock(&dp->port_mutex);
1197 if (port_no == ODPP_LOCAL) {
1198 error = EINVAL;
1199 } else {
1200 struct dp_netdev_port *port;
1201
1202 error = get_port_by_number(dp, port_no, &port);
1203 if (!error) {
1204 do_del_port(dp, port);
1205 }
1206 }
1207 ovs_mutex_unlock(&dp->port_mutex);
1208
1209 return error;
1210 }
1211
1212 static bool
1213 is_valid_port_number(odp_port_t port_no)
1214 {
1215 return port_no != ODPP_NONE;
1216 }
1217
1218 static struct dp_netdev_port *
1219 dp_netdev_lookup_port(const struct dp_netdev *dp, odp_port_t port_no)
1220 {
1221 struct dp_netdev_port *port;
1222
1223 CMAP_FOR_EACH_WITH_HASH (port, node, hash_port_no(port_no), &dp->ports) {
1224 if (port->port_no == port_no) {
1225 return port;
1226 }
1227 }
1228 return NULL;
1229 }
1230
1231 static int
1232 get_port_by_number(struct dp_netdev *dp,
1233 odp_port_t port_no, struct dp_netdev_port **portp)
1234 {
1235 if (!is_valid_port_number(port_no)) {
1236 *portp = NULL;
1237 return EINVAL;
1238 } else {
1239 *portp = dp_netdev_lookup_port(dp, port_no);
1240 return *portp ? 0 : ENOENT;
1241 }
1242 }
1243
1244 static void
1245 port_ref(struct dp_netdev_port *port)
1246 {
1247 if (port) {
1248 ovs_refcount_ref(&port->ref_cnt);
1249 }
1250 }
1251
1252 static void
1253 port_unref(struct dp_netdev_port *port)
1254 {
1255 if (port && ovs_refcount_unref_relaxed(&port->ref_cnt) == 1) {
1256 int n_rxq = netdev_n_rxq(port->netdev);
1257 int i;
1258
1259 netdev_close(port->netdev);
1260 netdev_restore_flags(port->sf);
1261
1262 for (i = 0; i < n_rxq; i++) {
1263 netdev_rxq_close(port->rxq[i]);
1264 }
1265 free(port->rxq);
1266 free(port->type);
1267 free(port);
1268 }
1269 }
1270
1271 static int
1272 get_port_by_name(struct dp_netdev *dp,
1273 const char *devname, struct dp_netdev_port **portp)
1274 OVS_REQUIRES(dp->port_mutex)
1275 {
1276 struct dp_netdev_port *port;
1277
1278 CMAP_FOR_EACH (port, node, &dp->ports) {
1279 if (!strcmp(netdev_get_name(port->netdev), devname)) {
1280 *portp = port;
1281 return 0;
1282 }
1283 }
1284 return ENOENT;
1285 }
1286
1287 static int
1288 get_n_pmd_threads(struct dp_netdev *dp)
1289 {
1290 /* There is one non pmd thread in dp->poll_threads */
1291 return cmap_count(&dp->poll_threads) - 1;
1292 }
1293
1294 static int
1295 get_n_pmd_threads_on_numa(struct dp_netdev *dp, int numa_id)
1296 {
1297 struct dp_netdev_pmd_thread *pmd;
1298 int n_pmds = 0;
1299
1300 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
1301 if (pmd->numa_id == numa_id) {
1302 n_pmds++;
1303 }
1304 }
1305
1306 return n_pmds;
1307 }
1308
1309 /* Returns 'true' if there is a port with pmd netdev and the netdev
1310 * is on numa node 'numa_id'. */
1311 static bool
1312 has_pmd_port_for_numa(struct dp_netdev *dp, int numa_id)
1313 {
1314 struct dp_netdev_port *port;
1315
1316 CMAP_FOR_EACH (port, node, &dp->ports) {
1317 if (netdev_is_pmd(port->netdev)
1318 && netdev_get_numa_id(port->netdev) == numa_id) {
1319 return true;
1320 }
1321 }
1322
1323 return false;
1324 }
1325
1326
1327 static void
1328 do_del_port(struct dp_netdev *dp, struct dp_netdev_port *port)
1329 OVS_REQUIRES(dp->port_mutex)
1330 {
1331 cmap_remove(&dp->ports, &port->node, hash_odp_port(port->port_no));
1332 seq_change(dp->port_seq);
1333 if (netdev_is_pmd(port->netdev)) {
1334 int numa_id = netdev_get_numa_id(port->netdev);
1335
1336 /* PMD threads can not be on invalid numa node. */
1337 ovs_assert(ovs_numa_numa_id_is_valid(numa_id));
1338 /* If there is no netdev on the numa node, deletes the pmd threads
1339 * for that numa. Else, deletes the queues from polling lists. */
1340 if (!has_pmd_port_for_numa(dp, numa_id)) {
1341 dp_netdev_del_pmds_on_numa(dp, numa_id);
1342 } else {
1343 struct dp_netdev_pmd_thread *pmd;
1344 struct rxq_poll *poll, *next;
1345
1346 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
1347 if (pmd->numa_id == numa_id) {
1348 bool found = false;
1349
1350 ovs_mutex_lock(&pmd->poll_mutex);
1351 LIST_FOR_EACH_SAFE (poll, next, node, &pmd->poll_list) {
1352 if (poll->port == port) {
1353 found = true;
1354 port_unref(poll->port);
1355 list_remove(&poll->node);
1356 pmd->poll_cnt--;
1357 free(poll);
1358 }
1359 }
1360 ovs_mutex_unlock(&pmd->poll_mutex);
1361 if (found) {
1362 dp_netdev_reload_pmd__(pmd);
1363 }
1364 }
1365 }
1366 }
1367 }
1368
1369 port_unref(port);
1370 }
1371
1372 static void
1373 answer_port_query(const struct dp_netdev_port *port,
1374 struct dpif_port *dpif_port)
1375 {
1376 dpif_port->name = xstrdup(netdev_get_name(port->netdev));
1377 dpif_port->type = xstrdup(port->type);
1378 dpif_port->port_no = port->port_no;
1379 }
1380
1381 static int
1382 dpif_netdev_port_query_by_number(const struct dpif *dpif, odp_port_t port_no,
1383 struct dpif_port *dpif_port)
1384 {
1385 struct dp_netdev *dp = get_dp_netdev(dpif);
1386 struct dp_netdev_port *port;
1387 int error;
1388
1389 error = get_port_by_number(dp, port_no, &port);
1390 if (!error && dpif_port) {
1391 answer_port_query(port, dpif_port);
1392 }
1393
1394 return error;
1395 }
1396
1397 static int
1398 dpif_netdev_port_query_by_name(const struct dpif *dpif, const char *devname,
1399 struct dpif_port *dpif_port)
1400 {
1401 struct dp_netdev *dp = get_dp_netdev(dpif);
1402 struct dp_netdev_port *port;
1403 int error;
1404
1405 ovs_mutex_lock(&dp->port_mutex);
1406 error = get_port_by_name(dp, devname, &port);
1407 if (!error && dpif_port) {
1408 answer_port_query(port, dpif_port);
1409 }
1410 ovs_mutex_unlock(&dp->port_mutex);
1411
1412 return error;
1413 }
1414
1415 static void
1416 dp_netdev_flow_free(struct dp_netdev_flow *flow)
1417 {
1418 dp_netdev_actions_free(dp_netdev_flow_get_actions(flow));
1419 free(flow);
1420 }
1421
1422 static void dp_netdev_flow_unref(struct dp_netdev_flow *flow)
1423 {
1424 if (ovs_refcount_unref_relaxed(&flow->ref_cnt) == 1) {
1425 ovsrcu_postpone(dp_netdev_flow_free, flow);
1426 }
1427 }
1428
1429 static uint32_t
1430 dp_netdev_flow_hash(const ovs_u128 *ufid)
1431 {
1432 return ufid->u32[0];
1433 }
1434
1435 static void
1436 dp_netdev_pmd_remove_flow(struct dp_netdev_pmd_thread *pmd,
1437 struct dp_netdev_flow *flow)
1438 OVS_REQUIRES(pmd->flow_mutex)
1439 {
1440 struct cmap_node *node = CONST_CAST(struct cmap_node *, &flow->node);
1441
1442 dpcls_remove(&pmd->cls, &flow->cr);
1443 flow->cr.mask = NULL; /* Accessing rule's mask after this is not safe. */
1444
1445 cmap_remove(&pmd->flow_table, node, dp_netdev_flow_hash(&flow->ufid));
1446 flow->dead = true;
1447
1448 dp_netdev_flow_unref(flow);
1449 }
1450
1451 static void
1452 dp_netdev_pmd_flow_flush(struct dp_netdev_pmd_thread *pmd)
1453 {
1454 struct dp_netdev_flow *netdev_flow;
1455
1456 ovs_mutex_lock(&pmd->flow_mutex);
1457 CMAP_FOR_EACH (netdev_flow, node, &pmd->flow_table) {
1458 dp_netdev_pmd_remove_flow(pmd, netdev_flow);
1459 }
1460 ovs_mutex_unlock(&pmd->flow_mutex);
1461 }
1462
1463 static int
1464 dpif_netdev_flow_flush(struct dpif *dpif)
1465 {
1466 struct dp_netdev *dp = get_dp_netdev(dpif);
1467 struct dp_netdev_pmd_thread *pmd;
1468
1469 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
1470 dp_netdev_pmd_flow_flush(pmd);
1471 }
1472
1473 return 0;
1474 }
1475
1476 struct dp_netdev_port_state {
1477 struct cmap_position position;
1478 char *name;
1479 };
1480
1481 static int
1482 dpif_netdev_port_dump_start(const struct dpif *dpif OVS_UNUSED, void **statep)
1483 {
1484 *statep = xzalloc(sizeof(struct dp_netdev_port_state));
1485 return 0;
1486 }
1487
1488 static int
1489 dpif_netdev_port_dump_next(const struct dpif *dpif, void *state_,
1490 struct dpif_port *dpif_port)
1491 {
1492 struct dp_netdev_port_state *state = state_;
1493 struct dp_netdev *dp = get_dp_netdev(dpif);
1494 struct cmap_node *node;
1495 int retval;
1496
1497 node = cmap_next_position(&dp->ports, &state->position);
1498 if (node) {
1499 struct dp_netdev_port *port;
1500
1501 port = CONTAINER_OF(node, struct dp_netdev_port, node);
1502
1503 free(state->name);
1504 state->name = xstrdup(netdev_get_name(port->netdev));
1505 dpif_port->name = state->name;
1506 dpif_port->type = port->type;
1507 dpif_port->port_no = port->port_no;
1508
1509 retval = 0;
1510 } else {
1511 retval = EOF;
1512 }
1513
1514 return retval;
1515 }
1516
1517 static int
1518 dpif_netdev_port_dump_done(const struct dpif *dpif OVS_UNUSED, void *state_)
1519 {
1520 struct dp_netdev_port_state *state = state_;
1521 free(state->name);
1522 free(state);
1523 return 0;
1524 }
1525
1526 static int
1527 dpif_netdev_port_poll(const struct dpif *dpif_, char **devnamep OVS_UNUSED)
1528 {
1529 struct dpif_netdev *dpif = dpif_netdev_cast(dpif_);
1530 uint64_t new_port_seq;
1531 int error;
1532
1533 new_port_seq = seq_read(dpif->dp->port_seq);
1534 if (dpif->last_port_seq != new_port_seq) {
1535 dpif->last_port_seq = new_port_seq;
1536 error = ENOBUFS;
1537 } else {
1538 error = EAGAIN;
1539 }
1540
1541 return error;
1542 }
1543
1544 static void
1545 dpif_netdev_port_poll_wait(const struct dpif *dpif_)
1546 {
1547 struct dpif_netdev *dpif = dpif_netdev_cast(dpif_);
1548
1549 seq_wait(dpif->dp->port_seq, dpif->last_port_seq);
1550 }
1551
1552 static struct dp_netdev_flow *
1553 dp_netdev_flow_cast(const struct dpcls_rule *cr)
1554 {
1555 return cr ? CONTAINER_OF(cr, struct dp_netdev_flow, cr) : NULL;
1556 }
1557
1558 static bool dp_netdev_flow_ref(struct dp_netdev_flow *flow)
1559 {
1560 return ovs_refcount_try_ref_rcu(&flow->ref_cnt);
1561 }
1562
1563 /* netdev_flow_key utilities.
1564 *
1565 * netdev_flow_key is basically a miniflow. We use these functions
1566 * (netdev_flow_key_clone, netdev_flow_key_equal, ...) instead of the miniflow
1567 * functions (miniflow_clone_inline, miniflow_equal, ...), because:
1568 *
1569 * - Since we are dealing exclusively with miniflows created by
1570 * miniflow_extract(), if the map is different the miniflow is different.
1571 * Therefore we can be faster by comparing the map and the miniflow in a
1572 * single memcmp().
1573 * - These functions can be inlined by the compiler. */
1574
1575 /* Given the number of bits set in miniflow's maps, returns the size of the
1576 * 'netdev_flow_key.mf' */
1577 static inline size_t
1578 netdev_flow_key_size(size_t flow_u64s)
1579 {
1580 return sizeof(struct miniflow) + MINIFLOW_VALUES_SIZE(flow_u64s);
1581 }
1582
1583 static inline bool
1584 netdev_flow_key_equal(const struct netdev_flow_key *a,
1585 const struct netdev_flow_key *b)
1586 {
1587 /* 'b->len' may be not set yet. */
1588 return a->hash == b->hash && !memcmp(&a->mf, &b->mf, a->len);
1589 }
1590
1591 /* Used to compare 'netdev_flow_key' in the exact match cache to a miniflow.
1592 * The maps are compared bitwise, so both 'key->mf' 'mf' must have been
1593 * generated by miniflow_extract. */
1594 static inline bool
1595 netdev_flow_key_equal_mf(const struct netdev_flow_key *key,
1596 const struct miniflow *mf)
1597 {
1598 return !memcmp(&key->mf, mf, key->len);
1599 }
1600
1601 static inline void
1602 netdev_flow_key_clone(struct netdev_flow_key *dst,
1603 const struct netdev_flow_key *src)
1604 {
1605 memcpy(dst, src,
1606 offsetof(struct netdev_flow_key, mf) + src->len);
1607 }
1608
1609 /* Slow. */
1610 static void
1611 netdev_flow_key_from_flow(struct netdev_flow_key *dst,
1612 const struct flow *src)
1613 {
1614 struct dp_packet packet;
1615 uint64_t buf_stub[512 / 8];
1616
1617 dp_packet_use_stub(&packet, buf_stub, sizeof buf_stub);
1618 pkt_metadata_from_flow(&packet.md, src);
1619 flow_compose(&packet, src);
1620 miniflow_extract(&packet, &dst->mf);
1621 dp_packet_uninit(&packet);
1622
1623 dst->len = netdev_flow_key_size(miniflow_n_values(&dst->mf));
1624 dst->hash = 0; /* Not computed yet. */
1625 }
1626
1627 /* Initialize a netdev_flow_key 'mask' from 'match'. */
1628 static inline void
1629 netdev_flow_mask_init(struct netdev_flow_key *mask,
1630 const struct match *match)
1631 {
1632 uint64_t *dst = miniflow_values(&mask->mf);
1633 struct flowmap fmap;
1634 uint32_t hash = 0;
1635 size_t idx;
1636
1637 /* Only check masks that make sense for the flow. */
1638 flow_wc_map(&match->flow, &fmap);
1639 flowmap_init(&mask->mf.map);
1640
1641 FLOWMAP_FOR_EACH_INDEX(idx, fmap) {
1642 uint64_t mask_u64 = flow_u64_value(&match->wc.masks, idx);
1643
1644 if (mask_u64) {
1645 flowmap_set(&mask->mf.map, idx, 1);
1646 *dst++ = mask_u64;
1647 hash = hash_add64(hash, mask_u64);
1648 }
1649 }
1650
1651 map_t map;
1652
1653 FLOWMAP_FOR_EACH_MAP (map, mask->mf.map) {
1654 hash = hash_add64(hash, map);
1655 }
1656
1657 size_t n = dst - miniflow_get_values(&mask->mf);
1658
1659 mask->hash = hash_finish(hash, n * 8);
1660 mask->len = netdev_flow_key_size(n);
1661 }
1662
1663 /* Initializes 'dst' as a copy of 'flow' masked with 'mask'. */
1664 static inline void
1665 netdev_flow_key_init_masked(struct netdev_flow_key *dst,
1666 const struct flow *flow,
1667 const struct netdev_flow_key *mask)
1668 {
1669 uint64_t *dst_u64 = miniflow_values(&dst->mf);
1670 const uint64_t *mask_u64 = miniflow_get_values(&mask->mf);
1671 uint32_t hash = 0;
1672 uint64_t value;
1673
1674 dst->len = mask->len;
1675 dst->mf = mask->mf; /* Copy maps. */
1676
1677 FLOW_FOR_EACH_IN_MAPS(value, flow, mask->mf.map) {
1678 *dst_u64 = value & *mask_u64++;
1679 hash = hash_add64(hash, *dst_u64++);
1680 }
1681 dst->hash = hash_finish(hash,
1682 (dst_u64 - miniflow_get_values(&dst->mf)) * 8);
1683 }
1684
1685 /* Iterate through netdev_flow_key TNL u64 values specified by 'FLOWMAP'. */
1686 #define NETDEV_FLOW_KEY_FOR_EACH_IN_FLOWMAP(VALUE, KEY, FLOWMAP) \
1687 MINIFLOW_FOR_EACH_IN_FLOWMAP(VALUE, &(KEY)->mf, FLOWMAP)
1688
1689 /* Returns a hash value for the bits of 'key' where there are 1-bits in
1690 * 'mask'. */
1691 static inline uint32_t
1692 netdev_flow_key_hash_in_mask(const struct netdev_flow_key *key,
1693 const struct netdev_flow_key *mask)
1694 {
1695 const uint64_t *p = miniflow_get_values(&mask->mf);
1696 uint32_t hash = 0;
1697 uint64_t value;
1698
1699 NETDEV_FLOW_KEY_FOR_EACH_IN_FLOWMAP(value, key, mask->mf.map) {
1700 hash = hash_add64(hash, value & *p++);
1701 }
1702
1703 return hash_finish(hash, (p - miniflow_get_values(&mask->mf)) * 8);
1704 }
1705
1706 static inline bool
1707 emc_entry_alive(struct emc_entry *ce)
1708 {
1709 return ce->flow && !ce->flow->dead;
1710 }
1711
1712 static void
1713 emc_clear_entry(struct emc_entry *ce)
1714 {
1715 if (ce->flow) {
1716 dp_netdev_flow_unref(ce->flow);
1717 ce->flow = NULL;
1718 }
1719 }
1720
1721 static inline void
1722 emc_change_entry(struct emc_entry *ce, struct dp_netdev_flow *flow,
1723 const struct netdev_flow_key *key)
1724 {
1725 if (ce->flow != flow) {
1726 if (ce->flow) {
1727 dp_netdev_flow_unref(ce->flow);
1728 }
1729
1730 if (dp_netdev_flow_ref(flow)) {
1731 ce->flow = flow;
1732 } else {
1733 ce->flow = NULL;
1734 }
1735 }
1736 if (key) {
1737 netdev_flow_key_clone(&ce->key, key);
1738 }
1739 }
1740
1741 static inline void
1742 emc_insert(struct emc_cache *cache, const struct netdev_flow_key *key,
1743 struct dp_netdev_flow *flow)
1744 {
1745 struct emc_entry *to_be_replaced = NULL;
1746 struct emc_entry *current_entry;
1747
1748 EMC_FOR_EACH_POS_WITH_HASH(cache, current_entry, key->hash) {
1749 if (netdev_flow_key_equal(&current_entry->key, key)) {
1750 /* We found the entry with the 'mf' miniflow */
1751 emc_change_entry(current_entry, flow, NULL);
1752 return;
1753 }
1754
1755 /* Replacement policy: put the flow in an empty (not alive) entry, or
1756 * in the first entry where it can be */
1757 if (!to_be_replaced
1758 || (emc_entry_alive(to_be_replaced)
1759 && !emc_entry_alive(current_entry))
1760 || current_entry->key.hash < to_be_replaced->key.hash) {
1761 to_be_replaced = current_entry;
1762 }
1763 }
1764 /* We didn't find the miniflow in the cache.
1765 * The 'to_be_replaced' entry is where the new flow will be stored */
1766
1767 emc_change_entry(to_be_replaced, flow, key);
1768 }
1769
1770 static inline struct dp_netdev_flow *
1771 emc_lookup(struct emc_cache *cache, const struct netdev_flow_key *key)
1772 {
1773 struct emc_entry *current_entry;
1774
1775 EMC_FOR_EACH_POS_WITH_HASH(cache, current_entry, key->hash) {
1776 if (current_entry->key.hash == key->hash
1777 && emc_entry_alive(current_entry)
1778 && netdev_flow_key_equal_mf(&current_entry->key, &key->mf)) {
1779
1780 /* We found the entry with the 'key->mf' miniflow */
1781 return current_entry->flow;
1782 }
1783 }
1784
1785 return NULL;
1786 }
1787
1788 static struct dp_netdev_flow *
1789 dp_netdev_pmd_lookup_flow(const struct dp_netdev_pmd_thread *pmd,
1790 const struct netdev_flow_key *key)
1791 {
1792 struct dp_netdev_flow *netdev_flow;
1793 struct dpcls_rule *rule;
1794
1795 dpcls_lookup(&pmd->cls, key, &rule, 1);
1796 netdev_flow = dp_netdev_flow_cast(rule);
1797
1798 return netdev_flow;
1799 }
1800
1801 static struct dp_netdev_flow *
1802 dp_netdev_pmd_find_flow(const struct dp_netdev_pmd_thread *pmd,
1803 const ovs_u128 *ufidp, const struct nlattr *key,
1804 size_t key_len)
1805 {
1806 struct dp_netdev_flow *netdev_flow;
1807 struct flow flow;
1808 ovs_u128 ufid;
1809
1810 /* If a UFID is not provided, determine one based on the key. */
1811 if (!ufidp && key && key_len
1812 && !dpif_netdev_flow_from_nlattrs(key, key_len, &flow)) {
1813 dpif_flow_hash(pmd->dp->dpif, &flow, sizeof flow, &ufid);
1814 ufidp = &ufid;
1815 }
1816
1817 if (ufidp) {
1818 CMAP_FOR_EACH_WITH_HASH (netdev_flow, node, dp_netdev_flow_hash(ufidp),
1819 &pmd->flow_table) {
1820 if (ovs_u128_equals(&netdev_flow->ufid, ufidp)) {
1821 return netdev_flow;
1822 }
1823 }
1824 }
1825
1826 return NULL;
1827 }
1828
1829 static void
1830 get_dpif_flow_stats(const struct dp_netdev_flow *netdev_flow_,
1831 struct dpif_flow_stats *stats)
1832 {
1833 struct dp_netdev_flow *netdev_flow;
1834 unsigned long long n;
1835 long long used;
1836 uint16_t flags;
1837
1838 netdev_flow = CONST_CAST(struct dp_netdev_flow *, netdev_flow_);
1839
1840 atomic_read_relaxed(&netdev_flow->stats.packet_count, &n);
1841 stats->n_packets = n;
1842 atomic_read_relaxed(&netdev_flow->stats.byte_count, &n);
1843 stats->n_bytes = n;
1844 atomic_read_relaxed(&netdev_flow->stats.used, &used);
1845 stats->used = used;
1846 atomic_read_relaxed(&netdev_flow->stats.tcp_flags, &flags);
1847 stats->tcp_flags = flags;
1848 }
1849
1850 /* Converts to the dpif_flow format, using 'key_buf' and 'mask_buf' for
1851 * storing the netlink-formatted key/mask. 'key_buf' may be the same as
1852 * 'mask_buf'. Actions will be returned without copying, by relying on RCU to
1853 * protect them. */
1854 static void
1855 dp_netdev_flow_to_dpif_flow(const struct dp_netdev_flow *netdev_flow,
1856 struct ofpbuf *key_buf, struct ofpbuf *mask_buf,
1857 struct dpif_flow *flow, bool terse)
1858 {
1859 if (terse) {
1860 memset(flow, 0, sizeof *flow);
1861 } else {
1862 struct flow_wildcards wc;
1863 struct dp_netdev_actions *actions;
1864 size_t offset;
1865 struct odp_flow_key_parms odp_parms = {
1866 .flow = &netdev_flow->flow,
1867 .mask = &wc.masks,
1868 .support = dp_netdev_support,
1869 };
1870
1871 miniflow_expand(&netdev_flow->cr.mask->mf, &wc.masks);
1872
1873 /* Key */
1874 offset = key_buf->size;
1875 flow->key = ofpbuf_tail(key_buf);
1876 odp_parms.odp_in_port = netdev_flow->flow.in_port.odp_port;
1877 odp_flow_key_from_flow(&odp_parms, key_buf);
1878 flow->key_len = key_buf->size - offset;
1879
1880 /* Mask */
1881 offset = mask_buf->size;
1882 flow->mask = ofpbuf_tail(mask_buf);
1883 odp_parms.odp_in_port = wc.masks.in_port.odp_port;
1884 odp_parms.key_buf = key_buf;
1885 odp_flow_key_from_mask(&odp_parms, mask_buf);
1886 flow->mask_len = mask_buf->size - offset;
1887
1888 /* Actions */
1889 actions = dp_netdev_flow_get_actions(netdev_flow);
1890 flow->actions = actions->actions;
1891 flow->actions_len = actions->size;
1892 }
1893
1894 flow->ufid = netdev_flow->ufid;
1895 flow->ufid_present = true;
1896 flow->pmd_id = netdev_flow->pmd_id;
1897 get_dpif_flow_stats(netdev_flow, &flow->stats);
1898 }
1899
1900 static int
1901 dpif_netdev_mask_from_nlattrs(const struct nlattr *key, uint32_t key_len,
1902 const struct nlattr *mask_key,
1903 uint32_t mask_key_len, const struct flow *flow,
1904 struct flow_wildcards *wc)
1905 {
1906 enum odp_key_fitness fitness;
1907
1908 fitness = odp_flow_key_to_mask_udpif(mask_key, mask_key_len, key,
1909 key_len, wc, flow);
1910 if (fitness) {
1911 /* This should not happen: it indicates that
1912 * odp_flow_key_from_mask() and odp_flow_key_to_mask()
1913 * disagree on the acceptable form of a mask. Log the problem
1914 * as an error, with enough details to enable debugging. */
1915 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
1916
1917 if (!VLOG_DROP_ERR(&rl)) {
1918 struct ds s;
1919
1920 ds_init(&s);
1921 odp_flow_format(key, key_len, mask_key, mask_key_len, NULL, &s,
1922 true);
1923 VLOG_ERR("internal error parsing flow mask %s (%s)",
1924 ds_cstr(&s), odp_key_fitness_to_string(fitness));
1925 ds_destroy(&s);
1926 }
1927
1928 return EINVAL;
1929 }
1930
1931 return 0;
1932 }
1933
1934 static int
1935 dpif_netdev_flow_from_nlattrs(const struct nlattr *key, uint32_t key_len,
1936 struct flow *flow)
1937 {
1938 odp_port_t in_port;
1939
1940 if (odp_flow_key_to_flow_udpif(key, key_len, flow)) {
1941 /* This should not happen: it indicates that odp_flow_key_from_flow()
1942 * and odp_flow_key_to_flow() disagree on the acceptable form of a
1943 * flow. Log the problem as an error, with enough details to enable
1944 * debugging. */
1945 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
1946
1947 if (!VLOG_DROP_ERR(&rl)) {
1948 struct ds s;
1949
1950 ds_init(&s);
1951 odp_flow_format(key, key_len, NULL, 0, NULL, &s, true);
1952 VLOG_ERR("internal error parsing flow key %s", ds_cstr(&s));
1953 ds_destroy(&s);
1954 }
1955
1956 return EINVAL;
1957 }
1958
1959 in_port = flow->in_port.odp_port;
1960 if (!is_valid_port_number(in_port) && in_port != ODPP_NONE) {
1961 return EINVAL;
1962 }
1963
1964 /* Userspace datapath doesn't support conntrack. */
1965 if (flow->ct_state || flow->ct_zone || flow->ct_mark
1966 || !ovs_u128_is_zero(&flow->ct_label)) {
1967 return EINVAL;
1968 }
1969
1970 return 0;
1971 }
1972
1973 static int
1974 dpif_netdev_flow_get(const struct dpif *dpif, const struct dpif_flow_get *get)
1975 {
1976 struct dp_netdev *dp = get_dp_netdev(dpif);
1977 struct dp_netdev_flow *netdev_flow;
1978 struct dp_netdev_pmd_thread *pmd;
1979 unsigned pmd_id = get->pmd_id == PMD_ID_NULL
1980 ? NON_PMD_CORE_ID : get->pmd_id;
1981 int error = 0;
1982
1983 pmd = dp_netdev_get_pmd(dp, pmd_id);
1984 if (!pmd) {
1985 return EINVAL;
1986 }
1987
1988 netdev_flow = dp_netdev_pmd_find_flow(pmd, get->ufid, get->key,
1989 get->key_len);
1990 if (netdev_flow) {
1991 dp_netdev_flow_to_dpif_flow(netdev_flow, get->buffer, get->buffer,
1992 get->flow, false);
1993 } else {
1994 error = ENOENT;
1995 }
1996 dp_netdev_pmd_unref(pmd);
1997
1998
1999 return error;
2000 }
2001
2002 static struct dp_netdev_flow *
2003 dp_netdev_flow_add(struct dp_netdev_pmd_thread *pmd,
2004 struct match *match, const ovs_u128 *ufid,
2005 const struct nlattr *actions, size_t actions_len)
2006 OVS_REQUIRES(pmd->flow_mutex)
2007 {
2008 struct dp_netdev_flow *flow;
2009 struct netdev_flow_key mask;
2010
2011 netdev_flow_mask_init(&mask, match);
2012 /* Make sure wc does not have metadata. */
2013 ovs_assert(!FLOWMAP_HAS_FIELD(&mask.mf.map, metadata)
2014 && !FLOWMAP_HAS_FIELD(&mask.mf.map, regs));
2015
2016 /* Do not allocate extra space. */
2017 flow = xmalloc(sizeof *flow - sizeof flow->cr.flow.mf + mask.len);
2018 memset(&flow->stats, 0, sizeof flow->stats);
2019 flow->dead = false;
2020 flow->batch = NULL;
2021 *CONST_CAST(unsigned *, &flow->pmd_id) = pmd->core_id;
2022 *CONST_CAST(struct flow *, &flow->flow) = match->flow;
2023 *CONST_CAST(ovs_u128 *, &flow->ufid) = *ufid;
2024 ovs_refcount_init(&flow->ref_cnt);
2025 ovsrcu_set(&flow->actions, dp_netdev_actions_create(actions, actions_len));
2026
2027 netdev_flow_key_init_masked(&flow->cr.flow, &match->flow, &mask);
2028 dpcls_insert(&pmd->cls, &flow->cr, &mask);
2029
2030 cmap_insert(&pmd->flow_table, CONST_CAST(struct cmap_node *, &flow->node),
2031 dp_netdev_flow_hash(&flow->ufid));
2032
2033 if (OVS_UNLIKELY(VLOG_IS_DBG_ENABLED())) {
2034 struct match match;
2035 struct ds ds = DS_EMPTY_INITIALIZER;
2036
2037 match.tun_md.valid = false;
2038 match.flow = flow->flow;
2039 miniflow_expand(&flow->cr.mask->mf, &match.wc.masks);
2040
2041 ds_put_cstr(&ds, "flow_add: ");
2042 odp_format_ufid(ufid, &ds);
2043 ds_put_cstr(&ds, " ");
2044 match_format(&match, &ds, OFP_DEFAULT_PRIORITY);
2045 ds_put_cstr(&ds, ", actions:");
2046 format_odp_actions(&ds, actions, actions_len);
2047
2048 VLOG_DBG_RL(&upcall_rl, "%s", ds_cstr(&ds));
2049
2050 ds_destroy(&ds);
2051 }
2052
2053 return flow;
2054 }
2055
2056 static int
2057 dpif_netdev_flow_put(struct dpif *dpif, const struct dpif_flow_put *put)
2058 {
2059 struct dp_netdev *dp = get_dp_netdev(dpif);
2060 struct dp_netdev_flow *netdev_flow;
2061 struct netdev_flow_key key;
2062 struct dp_netdev_pmd_thread *pmd;
2063 struct match match;
2064 ovs_u128 ufid;
2065 unsigned pmd_id = put->pmd_id == PMD_ID_NULL
2066 ? NON_PMD_CORE_ID : put->pmd_id;
2067 int error;
2068
2069 error = dpif_netdev_flow_from_nlattrs(put->key, put->key_len, &match.flow);
2070 if (error) {
2071 return error;
2072 }
2073 error = dpif_netdev_mask_from_nlattrs(put->key, put->key_len,
2074 put->mask, put->mask_len,
2075 &match.flow, &match.wc);
2076 if (error) {
2077 return error;
2078 }
2079
2080 pmd = dp_netdev_get_pmd(dp, pmd_id);
2081 if (!pmd) {
2082 return EINVAL;
2083 }
2084
2085 /* Must produce a netdev_flow_key for lookup.
2086 * This interface is no longer performance critical, since it is not used
2087 * for upcall processing any more. */
2088 netdev_flow_key_from_flow(&key, &match.flow);
2089
2090 if (put->ufid) {
2091 ufid = *put->ufid;
2092 } else {
2093 dpif_flow_hash(dpif, &match.flow, sizeof match.flow, &ufid);
2094 }
2095
2096 ovs_mutex_lock(&pmd->flow_mutex);
2097 netdev_flow = dp_netdev_pmd_lookup_flow(pmd, &key);
2098 if (!netdev_flow) {
2099 if (put->flags & DPIF_FP_CREATE) {
2100 if (cmap_count(&pmd->flow_table) < MAX_FLOWS) {
2101 if (put->stats) {
2102 memset(put->stats, 0, sizeof *put->stats);
2103 }
2104 dp_netdev_flow_add(pmd, &match, &ufid, put->actions,
2105 put->actions_len);
2106 error = 0;
2107 } else {
2108 error = EFBIG;
2109 }
2110 } else {
2111 error = ENOENT;
2112 }
2113 } else {
2114 if (put->flags & DPIF_FP_MODIFY
2115 && flow_equal(&match.flow, &netdev_flow->flow)) {
2116 struct dp_netdev_actions *new_actions;
2117 struct dp_netdev_actions *old_actions;
2118
2119 new_actions = dp_netdev_actions_create(put->actions,
2120 put->actions_len);
2121
2122 old_actions = dp_netdev_flow_get_actions(netdev_flow);
2123 ovsrcu_set(&netdev_flow->actions, new_actions);
2124
2125 if (put->stats) {
2126 get_dpif_flow_stats(netdev_flow, put->stats);
2127 }
2128 if (put->flags & DPIF_FP_ZERO_STATS) {
2129 /* XXX: The userspace datapath uses thread local statistics
2130 * (for flows), which should be updated only by the owning
2131 * thread. Since we cannot write on stats memory here,
2132 * we choose not to support this flag. Please note:
2133 * - This feature is currently used only by dpctl commands with
2134 * option --clear.
2135 * - Should the need arise, this operation can be implemented
2136 * by keeping a base value (to be update here) for each
2137 * counter, and subtracting it before outputting the stats */
2138 error = EOPNOTSUPP;
2139 }
2140
2141 ovsrcu_postpone(dp_netdev_actions_free, old_actions);
2142 } else if (put->flags & DPIF_FP_CREATE) {
2143 error = EEXIST;
2144 } else {
2145 /* Overlapping flow. */
2146 error = EINVAL;
2147 }
2148 }
2149 ovs_mutex_unlock(&pmd->flow_mutex);
2150 dp_netdev_pmd_unref(pmd);
2151
2152 return error;
2153 }
2154
2155 static int
2156 dpif_netdev_flow_del(struct dpif *dpif, const struct dpif_flow_del *del)
2157 {
2158 struct dp_netdev *dp = get_dp_netdev(dpif);
2159 struct dp_netdev_flow *netdev_flow;
2160 struct dp_netdev_pmd_thread *pmd;
2161 unsigned pmd_id = del->pmd_id == PMD_ID_NULL
2162 ? NON_PMD_CORE_ID : del->pmd_id;
2163 int error = 0;
2164
2165 pmd = dp_netdev_get_pmd(dp, pmd_id);
2166 if (!pmd) {
2167 return EINVAL;
2168 }
2169
2170 ovs_mutex_lock(&pmd->flow_mutex);
2171 netdev_flow = dp_netdev_pmd_find_flow(pmd, del->ufid, del->key,
2172 del->key_len);
2173 if (netdev_flow) {
2174 if (del->stats) {
2175 get_dpif_flow_stats(netdev_flow, del->stats);
2176 }
2177 dp_netdev_pmd_remove_flow(pmd, netdev_flow);
2178 } else {
2179 error = ENOENT;
2180 }
2181 ovs_mutex_unlock(&pmd->flow_mutex);
2182 dp_netdev_pmd_unref(pmd);
2183
2184 return error;
2185 }
2186
2187 struct dpif_netdev_flow_dump {
2188 struct dpif_flow_dump up;
2189 struct cmap_position poll_thread_pos;
2190 struct cmap_position flow_pos;
2191 struct dp_netdev_pmd_thread *cur_pmd;
2192 int status;
2193 struct ovs_mutex mutex;
2194 };
2195
2196 static struct dpif_netdev_flow_dump *
2197 dpif_netdev_flow_dump_cast(struct dpif_flow_dump *dump)
2198 {
2199 return CONTAINER_OF(dump, struct dpif_netdev_flow_dump, up);
2200 }
2201
2202 static struct dpif_flow_dump *
2203 dpif_netdev_flow_dump_create(const struct dpif *dpif_, bool terse)
2204 {
2205 struct dpif_netdev_flow_dump *dump;
2206
2207 dump = xzalloc(sizeof *dump);
2208 dpif_flow_dump_init(&dump->up, dpif_);
2209 dump->up.terse = terse;
2210 ovs_mutex_init(&dump->mutex);
2211
2212 return &dump->up;
2213 }
2214
2215 static int
2216 dpif_netdev_flow_dump_destroy(struct dpif_flow_dump *dump_)
2217 {
2218 struct dpif_netdev_flow_dump *dump = dpif_netdev_flow_dump_cast(dump_);
2219
2220 ovs_mutex_destroy(&dump->mutex);
2221 free(dump);
2222 return 0;
2223 }
2224
2225 struct dpif_netdev_flow_dump_thread {
2226 struct dpif_flow_dump_thread up;
2227 struct dpif_netdev_flow_dump *dump;
2228 struct odputil_keybuf keybuf[FLOW_DUMP_MAX_BATCH];
2229 struct odputil_keybuf maskbuf[FLOW_DUMP_MAX_BATCH];
2230 };
2231
2232 static struct dpif_netdev_flow_dump_thread *
2233 dpif_netdev_flow_dump_thread_cast(struct dpif_flow_dump_thread *thread)
2234 {
2235 return CONTAINER_OF(thread, struct dpif_netdev_flow_dump_thread, up);
2236 }
2237
2238 static struct dpif_flow_dump_thread *
2239 dpif_netdev_flow_dump_thread_create(struct dpif_flow_dump *dump_)
2240 {
2241 struct dpif_netdev_flow_dump *dump = dpif_netdev_flow_dump_cast(dump_);
2242 struct dpif_netdev_flow_dump_thread *thread;
2243
2244 thread = xmalloc(sizeof *thread);
2245 dpif_flow_dump_thread_init(&thread->up, &dump->up);
2246 thread->dump = dump;
2247 return &thread->up;
2248 }
2249
2250 static void
2251 dpif_netdev_flow_dump_thread_destroy(struct dpif_flow_dump_thread *thread_)
2252 {
2253 struct dpif_netdev_flow_dump_thread *thread
2254 = dpif_netdev_flow_dump_thread_cast(thread_);
2255
2256 free(thread);
2257 }
2258
2259 static int
2260 dpif_netdev_flow_dump_next(struct dpif_flow_dump_thread *thread_,
2261 struct dpif_flow *flows, int max_flows)
2262 {
2263 struct dpif_netdev_flow_dump_thread *thread
2264 = dpif_netdev_flow_dump_thread_cast(thread_);
2265 struct dpif_netdev_flow_dump *dump = thread->dump;
2266 struct dp_netdev_flow *netdev_flows[FLOW_DUMP_MAX_BATCH];
2267 int n_flows = 0;
2268 int i;
2269
2270 ovs_mutex_lock(&dump->mutex);
2271 if (!dump->status) {
2272 struct dpif_netdev *dpif = dpif_netdev_cast(thread->up.dpif);
2273 struct dp_netdev *dp = get_dp_netdev(&dpif->dpif);
2274 struct dp_netdev_pmd_thread *pmd = dump->cur_pmd;
2275 int flow_limit = MIN(max_flows, FLOW_DUMP_MAX_BATCH);
2276
2277 /* First call to dump_next(), extracts the first pmd thread.
2278 * If there is no pmd thread, returns immediately. */
2279 if (!pmd) {
2280 pmd = dp_netdev_pmd_get_next(dp, &dump->poll_thread_pos);
2281 if (!pmd) {
2282 ovs_mutex_unlock(&dump->mutex);
2283 return n_flows;
2284
2285 }
2286 }
2287
2288 do {
2289 for (n_flows = 0; n_flows < flow_limit; n_flows++) {
2290 struct cmap_node *node;
2291
2292 node = cmap_next_position(&pmd->flow_table, &dump->flow_pos);
2293 if (!node) {
2294 break;
2295 }
2296 netdev_flows[n_flows] = CONTAINER_OF(node,
2297 struct dp_netdev_flow,
2298 node);
2299 }
2300 /* When finishing dumping the current pmd thread, moves to
2301 * the next. */
2302 if (n_flows < flow_limit) {
2303 memset(&dump->flow_pos, 0, sizeof dump->flow_pos);
2304 dp_netdev_pmd_unref(pmd);
2305 pmd = dp_netdev_pmd_get_next(dp, &dump->poll_thread_pos);
2306 if (!pmd) {
2307 dump->status = EOF;
2308 break;
2309 }
2310 }
2311 /* Keeps the reference to next caller. */
2312 dump->cur_pmd = pmd;
2313
2314 /* If the current dump is empty, do not exit the loop, since the
2315 * remaining pmds could have flows to be dumped. Just dumps again
2316 * on the new 'pmd'. */
2317 } while (!n_flows);
2318 }
2319 ovs_mutex_unlock(&dump->mutex);
2320
2321 for (i = 0; i < n_flows; i++) {
2322 struct odputil_keybuf *maskbuf = &thread->maskbuf[i];
2323 struct odputil_keybuf *keybuf = &thread->keybuf[i];
2324 struct dp_netdev_flow *netdev_flow = netdev_flows[i];
2325 struct dpif_flow *f = &flows[i];
2326 struct ofpbuf key, mask;
2327
2328 ofpbuf_use_stack(&key, keybuf, sizeof *keybuf);
2329 ofpbuf_use_stack(&mask, maskbuf, sizeof *maskbuf);
2330 dp_netdev_flow_to_dpif_flow(netdev_flow, &key, &mask, f,
2331 dump->up.terse);
2332 }
2333
2334 return n_flows;
2335 }
2336
2337 static int
2338 dpif_netdev_execute(struct dpif *dpif, struct dpif_execute *execute)
2339 OVS_NO_THREAD_SAFETY_ANALYSIS
2340 {
2341 struct dp_netdev *dp = get_dp_netdev(dpif);
2342 struct dp_netdev_pmd_thread *pmd;
2343 struct dp_packet *pp;
2344
2345 if (dp_packet_size(execute->packet) < ETH_HEADER_LEN ||
2346 dp_packet_size(execute->packet) > UINT16_MAX) {
2347 return EINVAL;
2348 }
2349
2350 /* Tries finding the 'pmd'. If NULL is returned, that means
2351 * the current thread is a non-pmd thread and should use
2352 * dp_netdev_get_pmd(dp, NON_PMD_CORE_ID). */
2353 pmd = ovsthread_getspecific(dp->per_pmd_key);
2354 if (!pmd) {
2355 pmd = dp_netdev_get_pmd(dp, NON_PMD_CORE_ID);
2356 }
2357
2358 /* If the current thread is non-pmd thread, acquires
2359 * the 'non_pmd_mutex'. */
2360 if (pmd->core_id == NON_PMD_CORE_ID) {
2361 ovs_mutex_lock(&dp->non_pmd_mutex);
2362 ovs_mutex_lock(&dp->port_mutex);
2363 }
2364
2365 pp = execute->packet;
2366 dp_netdev_execute_actions(pmd, &pp, 1, false, execute->actions,
2367 execute->actions_len);
2368 if (pmd->core_id == NON_PMD_CORE_ID) {
2369 dp_netdev_pmd_unref(pmd);
2370 ovs_mutex_unlock(&dp->port_mutex);
2371 ovs_mutex_unlock(&dp->non_pmd_mutex);
2372 }
2373
2374 return 0;
2375 }
2376
2377 static void
2378 dpif_netdev_operate(struct dpif *dpif, struct dpif_op **ops, size_t n_ops)
2379 {
2380 size_t i;
2381
2382 for (i = 0; i < n_ops; i++) {
2383 struct dpif_op *op = ops[i];
2384
2385 switch (op->type) {
2386 case DPIF_OP_FLOW_PUT:
2387 op->error = dpif_netdev_flow_put(dpif, &op->u.flow_put);
2388 break;
2389
2390 case DPIF_OP_FLOW_DEL:
2391 op->error = dpif_netdev_flow_del(dpif, &op->u.flow_del);
2392 break;
2393
2394 case DPIF_OP_EXECUTE:
2395 op->error = dpif_netdev_execute(dpif, &op->u.execute);
2396 break;
2397
2398 case DPIF_OP_FLOW_GET:
2399 op->error = dpif_netdev_flow_get(dpif, &op->u.flow_get);
2400 break;
2401 }
2402 }
2403 }
2404
2405 /* Returns true if the configuration for rx queues or cpu mask
2406 * is changed. */
2407 static bool
2408 pmd_config_changed(const struct dp_netdev *dp, size_t rxqs, const char *cmask)
2409 {
2410 if (dp->n_dpdk_rxqs != rxqs) {
2411 return true;
2412 } else {
2413 if (dp->pmd_cmask != NULL && cmask != NULL) {
2414 return strcmp(dp->pmd_cmask, cmask);
2415 } else {
2416 return (dp->pmd_cmask != NULL || cmask != NULL);
2417 }
2418 }
2419 }
2420
2421 /* Resets pmd threads if the configuration for 'rxq's or cpu mask changes. */
2422 static int
2423 dpif_netdev_pmd_set(struct dpif *dpif, unsigned int n_rxqs, const char *cmask)
2424 {
2425 struct dp_netdev *dp = get_dp_netdev(dpif);
2426
2427 if (pmd_config_changed(dp, n_rxqs, cmask)) {
2428 struct dp_netdev_port *port;
2429
2430 dp_netdev_destroy_all_pmds(dp);
2431
2432 CMAP_FOR_EACH (port, node, &dp->ports) {
2433 if (netdev_is_pmd(port->netdev)) {
2434 int i, err;
2435
2436 /* Closes the existing 'rxq's. */
2437 for (i = 0; i < netdev_n_rxq(port->netdev); i++) {
2438 netdev_rxq_close(port->rxq[i]);
2439 port->rxq[i] = NULL;
2440 }
2441
2442 /* Sets the new rx queue config. */
2443 err = netdev_set_multiq(port->netdev,
2444 ovs_numa_get_n_cores() + 1,
2445 n_rxqs);
2446 if (err && (err != EOPNOTSUPP)) {
2447 VLOG_ERR("Failed to set dpdk interface %s rx_queue to:"
2448 " %u", netdev_get_name(port->netdev),
2449 n_rxqs);
2450 return err;
2451 }
2452
2453 /* If the set_multiq() above succeeds, reopens the 'rxq's. */
2454 port->rxq = xrealloc(port->rxq, sizeof *port->rxq
2455 * netdev_n_rxq(port->netdev));
2456 for (i = 0; i < netdev_n_rxq(port->netdev); i++) {
2457 netdev_rxq_open(port->netdev, &port->rxq[i], i);
2458 }
2459 }
2460 }
2461 dp->n_dpdk_rxqs = n_rxqs;
2462
2463 /* Reconfigures the cpu mask. */
2464 ovs_numa_set_cpu_mask(cmask);
2465 free(dp->pmd_cmask);
2466 dp->pmd_cmask = cmask ? xstrdup(cmask) : NULL;
2467
2468 /* Restores the non-pmd. */
2469 dp_netdev_set_nonpmd(dp);
2470 /* Restores all pmd threads. */
2471 dp_netdev_reset_pmd_threads(dp);
2472 }
2473
2474 return 0;
2475 }
2476
2477 static int
2478 dpif_netdev_queue_to_priority(const struct dpif *dpif OVS_UNUSED,
2479 uint32_t queue_id, uint32_t *priority)
2480 {
2481 *priority = queue_id;
2482 return 0;
2483 }
2484
2485 \f
2486 /* Creates and returns a new 'struct dp_netdev_actions', whose actions are
2487 * a copy of the 'ofpacts_len' bytes of 'ofpacts'. */
2488 struct dp_netdev_actions *
2489 dp_netdev_actions_create(const struct nlattr *actions, size_t size)
2490 {
2491 struct dp_netdev_actions *netdev_actions;
2492
2493 netdev_actions = xmalloc(sizeof *netdev_actions + size);
2494 memcpy(netdev_actions->actions, actions, size);
2495 netdev_actions->size = size;
2496
2497 return netdev_actions;
2498 }
2499
2500 struct dp_netdev_actions *
2501 dp_netdev_flow_get_actions(const struct dp_netdev_flow *flow)
2502 {
2503 return ovsrcu_get(struct dp_netdev_actions *, &flow->actions);
2504 }
2505
2506 static void
2507 dp_netdev_actions_free(struct dp_netdev_actions *actions)
2508 {
2509 free(actions);
2510 }
2511 \f
2512 static inline unsigned long long
2513 cycles_counter(void)
2514 {
2515 #ifdef DPDK_NETDEV
2516 return rte_get_tsc_cycles();
2517 #else
2518 return 0;
2519 #endif
2520 }
2521
2522 /* Fake mutex to make sure that the calls to cycles_count_* are balanced */
2523 extern struct ovs_mutex cycles_counter_fake_mutex;
2524
2525 /* Start counting cycles. Must be followed by 'cycles_count_end()' */
2526 static inline void
2527 cycles_count_start(struct dp_netdev_pmd_thread *pmd)
2528 OVS_ACQUIRES(&cycles_counter_fake_mutex)
2529 OVS_NO_THREAD_SAFETY_ANALYSIS
2530 {
2531 pmd->last_cycles = cycles_counter();
2532 }
2533
2534 /* Stop counting cycles and add them to the counter 'type' */
2535 static inline void
2536 cycles_count_end(struct dp_netdev_pmd_thread *pmd,
2537 enum pmd_cycles_counter_type type)
2538 OVS_RELEASES(&cycles_counter_fake_mutex)
2539 OVS_NO_THREAD_SAFETY_ANALYSIS
2540 {
2541 unsigned long long interval = cycles_counter() - pmd->last_cycles;
2542
2543 non_atomic_ullong_add(&pmd->cycles.n[type], interval);
2544 }
2545
2546 static void
2547 dp_netdev_process_rxq_port(struct dp_netdev_pmd_thread *pmd,
2548 struct dp_netdev_port *port,
2549 struct netdev_rxq *rxq)
2550 {
2551 struct dp_packet *packets[NETDEV_MAX_BURST];
2552 int error, cnt;
2553
2554 cycles_count_start(pmd);
2555 error = netdev_rxq_recv(rxq, packets, &cnt);
2556 cycles_count_end(pmd, PMD_CYCLES_POLLING);
2557 if (!error) {
2558 int i;
2559
2560 *recirc_depth_get() = 0;
2561
2562 /* XXX: initialize md in netdev implementation. */
2563 for (i = 0; i < cnt; i++) {
2564 pkt_metadata_init(&packets[i]->md, port->port_no);
2565 }
2566 cycles_count_start(pmd);
2567 dp_netdev_input(pmd, packets, cnt);
2568 cycles_count_end(pmd, PMD_CYCLES_PROCESSING);
2569 } else if (error != EAGAIN && error != EOPNOTSUPP) {
2570 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
2571
2572 VLOG_ERR_RL(&rl, "error receiving data from %s: %s",
2573 netdev_get_name(port->netdev), ovs_strerror(error));
2574 }
2575 }
2576
2577 /* Return true if needs to revalidate datapath flows. */
2578 static bool
2579 dpif_netdev_run(struct dpif *dpif)
2580 {
2581 struct dp_netdev_port *port;
2582 struct dp_netdev *dp = get_dp_netdev(dpif);
2583 struct dp_netdev_pmd_thread *non_pmd = dp_netdev_get_pmd(dp,
2584 NON_PMD_CORE_ID);
2585 uint64_t new_tnl_seq;
2586
2587 ovs_mutex_lock(&dp->non_pmd_mutex);
2588 CMAP_FOR_EACH (port, node, &dp->ports) {
2589 if (!netdev_is_pmd(port->netdev)) {
2590 int i;
2591
2592 for (i = 0; i < netdev_n_rxq(port->netdev); i++) {
2593 dp_netdev_process_rxq_port(non_pmd, port, port->rxq[i]);
2594 }
2595 }
2596 }
2597 ovs_mutex_unlock(&dp->non_pmd_mutex);
2598 dp_netdev_pmd_unref(non_pmd);
2599
2600 tnl_neigh_cache_run();
2601 tnl_port_map_run();
2602 new_tnl_seq = seq_read(tnl_conf_seq);
2603
2604 if (dp->last_tnl_conf_seq != new_tnl_seq) {
2605 dp->last_tnl_conf_seq = new_tnl_seq;
2606 return true;
2607 }
2608 return false;
2609 }
2610
2611 static void
2612 dpif_netdev_wait(struct dpif *dpif)
2613 {
2614 struct dp_netdev_port *port;
2615 struct dp_netdev *dp = get_dp_netdev(dpif);
2616
2617 ovs_mutex_lock(&dp_netdev_mutex);
2618 CMAP_FOR_EACH (port, node, &dp->ports) {
2619 if (!netdev_is_pmd(port->netdev)) {
2620 int i;
2621
2622 for (i = 0; i < netdev_n_rxq(port->netdev); i++) {
2623 netdev_rxq_wait(port->rxq[i]);
2624 }
2625 }
2626 }
2627 ovs_mutex_unlock(&dp_netdev_mutex);
2628 seq_wait(tnl_conf_seq, dp->last_tnl_conf_seq);
2629 }
2630
2631 static int
2632 pmd_load_queues(struct dp_netdev_pmd_thread *pmd,
2633 struct rxq_poll **ppoll_list, int poll_cnt)
2634 OVS_REQUIRES(pmd->poll_mutex)
2635 {
2636 struct rxq_poll *poll_list = *ppoll_list;
2637 struct rxq_poll *poll;
2638 int i;
2639
2640 for (i = 0; i < poll_cnt; i++) {
2641 port_unref(poll_list[i].port);
2642 }
2643
2644 poll_list = xrealloc(poll_list, pmd->poll_cnt * sizeof *poll_list);
2645
2646 i = 0;
2647 LIST_FOR_EACH (poll, node, &pmd->poll_list) {
2648 port_ref(poll->port);
2649 poll_list[i++] = *poll;
2650 }
2651
2652 *ppoll_list = poll_list;
2653 return pmd->poll_cnt;
2654 }
2655
2656 static void *
2657 pmd_thread_main(void *f_)
2658 {
2659 struct dp_netdev_pmd_thread *pmd = f_;
2660 unsigned int lc = 0;
2661 struct rxq_poll *poll_list;
2662 unsigned int port_seq = PMD_INITIAL_SEQ;
2663 int poll_cnt;
2664 int i;
2665
2666 poll_cnt = 0;
2667 poll_list = NULL;
2668
2669 /* Stores the pmd thread's 'pmd' to 'per_pmd_key'. */
2670 ovsthread_setspecific(pmd->dp->per_pmd_key, pmd);
2671 pmd_thread_setaffinity_cpu(pmd->core_id);
2672 reload:
2673 emc_cache_init(&pmd->flow_cache);
2674
2675 ovs_mutex_lock(&pmd->poll_mutex);
2676 poll_cnt = pmd_load_queues(pmd, &poll_list, poll_cnt);
2677 ovs_mutex_unlock(&pmd->poll_mutex);
2678
2679 /* List port/core affinity */
2680 for (i = 0; i < poll_cnt; i++) {
2681 VLOG_INFO("Core %d processing port \'%s\'\n", pmd->core_id,
2682 netdev_get_name(poll_list[i].port->netdev));
2683 }
2684
2685 /* Signal here to make sure the pmd finishes
2686 * reloading the updated configuration. */
2687 dp_netdev_pmd_reload_done(pmd);
2688
2689 for (;;) {
2690 for (i = 0; i < poll_cnt; i++) {
2691 dp_netdev_process_rxq_port(pmd, poll_list[i].port, poll_list[i].rx);
2692 }
2693
2694 if (lc++ > 1024) {
2695 unsigned int seq;
2696
2697 lc = 0;
2698
2699 emc_cache_slow_sweep(&pmd->flow_cache);
2700 coverage_try_clear();
2701 ovsrcu_quiesce();
2702
2703 atomic_read_relaxed(&pmd->change_seq, &seq);
2704 if (seq != port_seq) {
2705 port_seq = seq;
2706 break;
2707 }
2708 }
2709 }
2710
2711 emc_cache_uninit(&pmd->flow_cache);
2712
2713 if (!latch_is_set(&pmd->exit_latch)){
2714 goto reload;
2715 }
2716
2717 for (i = 0; i < poll_cnt; i++) {
2718 port_unref(poll_list[i].port);
2719 }
2720
2721 dp_netdev_pmd_reload_done(pmd);
2722
2723 free(poll_list);
2724 return NULL;
2725 }
2726
2727 static void
2728 dp_netdev_disable_upcall(struct dp_netdev *dp)
2729 OVS_ACQUIRES(dp->upcall_rwlock)
2730 {
2731 fat_rwlock_wrlock(&dp->upcall_rwlock);
2732 }
2733
2734 static void
2735 dpif_netdev_disable_upcall(struct dpif *dpif)
2736 OVS_NO_THREAD_SAFETY_ANALYSIS
2737 {
2738 struct dp_netdev *dp = get_dp_netdev(dpif);
2739 dp_netdev_disable_upcall(dp);
2740 }
2741
2742 static void
2743 dp_netdev_enable_upcall(struct dp_netdev *dp)
2744 OVS_RELEASES(dp->upcall_rwlock)
2745 {
2746 fat_rwlock_unlock(&dp->upcall_rwlock);
2747 }
2748
2749 static void
2750 dpif_netdev_enable_upcall(struct dpif *dpif)
2751 OVS_NO_THREAD_SAFETY_ANALYSIS
2752 {
2753 struct dp_netdev *dp = get_dp_netdev(dpif);
2754 dp_netdev_enable_upcall(dp);
2755 }
2756
2757 static void
2758 dp_netdev_pmd_reload_done(struct dp_netdev_pmd_thread *pmd)
2759 {
2760 ovs_mutex_lock(&pmd->cond_mutex);
2761 xpthread_cond_signal(&pmd->cond);
2762 ovs_mutex_unlock(&pmd->cond_mutex);
2763 }
2764
2765 /* Finds and refs the dp_netdev_pmd_thread on core 'core_id'. Returns
2766 * the pointer if succeeds, otherwise, NULL.
2767 *
2768 * Caller must unrefs the returned reference. */
2769 static struct dp_netdev_pmd_thread *
2770 dp_netdev_get_pmd(struct dp_netdev *dp, unsigned core_id)
2771 {
2772 struct dp_netdev_pmd_thread *pmd;
2773 const struct cmap_node *pnode;
2774
2775 pnode = cmap_find(&dp->poll_threads, hash_int(core_id, 0));
2776 if (!pnode) {
2777 return NULL;
2778 }
2779 pmd = CONTAINER_OF(pnode, struct dp_netdev_pmd_thread, node);
2780
2781 return dp_netdev_pmd_try_ref(pmd) ? pmd : NULL;
2782 }
2783
2784 /* Sets the 'struct dp_netdev_pmd_thread' for non-pmd threads. */
2785 static void
2786 dp_netdev_set_nonpmd(struct dp_netdev *dp)
2787 {
2788 struct dp_netdev_pmd_thread *non_pmd;
2789
2790 non_pmd = xzalloc(sizeof *non_pmd);
2791 dp_netdev_configure_pmd(non_pmd, dp, 0, NON_PMD_CORE_ID,
2792 OVS_NUMA_UNSPEC);
2793 }
2794
2795 /* Caller must have valid pointer to 'pmd'. */
2796 static bool
2797 dp_netdev_pmd_try_ref(struct dp_netdev_pmd_thread *pmd)
2798 {
2799 return ovs_refcount_try_ref_rcu(&pmd->ref_cnt);
2800 }
2801
2802 static void
2803 dp_netdev_pmd_unref(struct dp_netdev_pmd_thread *pmd)
2804 {
2805 if (pmd && ovs_refcount_unref(&pmd->ref_cnt) == 1) {
2806 ovsrcu_postpone(dp_netdev_destroy_pmd, pmd);
2807 }
2808 }
2809
2810 /* Given cmap position 'pos', tries to ref the next node. If try_ref()
2811 * fails, keeps checking for next node until reaching the end of cmap.
2812 *
2813 * Caller must unrefs the returned reference. */
2814 static struct dp_netdev_pmd_thread *
2815 dp_netdev_pmd_get_next(struct dp_netdev *dp, struct cmap_position *pos)
2816 {
2817 struct dp_netdev_pmd_thread *next;
2818
2819 do {
2820 struct cmap_node *node;
2821
2822 node = cmap_next_position(&dp->poll_threads, pos);
2823 next = node ? CONTAINER_OF(node, struct dp_netdev_pmd_thread, node)
2824 : NULL;
2825 } while (next && !dp_netdev_pmd_try_ref(next));
2826
2827 return next;
2828 }
2829
2830 /* Configures the 'pmd' based on the input argument. */
2831 static void
2832 dp_netdev_configure_pmd(struct dp_netdev_pmd_thread *pmd, struct dp_netdev *dp,
2833 int index, unsigned core_id, int numa_id)
2834 {
2835 pmd->dp = dp;
2836 pmd->index = index;
2837 pmd->core_id = core_id;
2838 pmd->numa_id = numa_id;
2839 pmd->poll_cnt = 0;
2840
2841 atomic_init(&pmd->tx_qid,
2842 (core_id == NON_PMD_CORE_ID)
2843 ? ovs_numa_get_n_cores()
2844 : get_n_pmd_threads(dp));
2845
2846 ovs_refcount_init(&pmd->ref_cnt);
2847 latch_init(&pmd->exit_latch);
2848 atomic_init(&pmd->change_seq, PMD_INITIAL_SEQ);
2849 xpthread_cond_init(&pmd->cond, NULL);
2850 ovs_mutex_init(&pmd->cond_mutex);
2851 ovs_mutex_init(&pmd->flow_mutex);
2852 ovs_mutex_init(&pmd->poll_mutex);
2853 dpcls_init(&pmd->cls);
2854 cmap_init(&pmd->flow_table);
2855 list_init(&pmd->poll_list);
2856 /* init the 'flow_cache' since there is no
2857 * actual thread created for NON_PMD_CORE_ID. */
2858 if (core_id == NON_PMD_CORE_ID) {
2859 emc_cache_init(&pmd->flow_cache);
2860 }
2861 cmap_insert(&dp->poll_threads, CONST_CAST(struct cmap_node *, &pmd->node),
2862 hash_int(core_id, 0));
2863 }
2864
2865 static void
2866 dp_netdev_destroy_pmd(struct dp_netdev_pmd_thread *pmd)
2867 {
2868 dp_netdev_pmd_flow_flush(pmd);
2869 dpcls_destroy(&pmd->cls);
2870 cmap_destroy(&pmd->flow_table);
2871 ovs_mutex_destroy(&pmd->flow_mutex);
2872 latch_destroy(&pmd->exit_latch);
2873 xpthread_cond_destroy(&pmd->cond);
2874 ovs_mutex_destroy(&pmd->cond_mutex);
2875 ovs_mutex_destroy(&pmd->poll_mutex);
2876 free(pmd);
2877 }
2878
2879 /* Stops the pmd thread, removes it from the 'dp->poll_threads',
2880 * and unrefs the struct. */
2881 static void
2882 dp_netdev_del_pmd(struct dp_netdev *dp, struct dp_netdev_pmd_thread *pmd)
2883 {
2884 struct rxq_poll *poll;
2885
2886 /* Uninit the 'flow_cache' since there is
2887 * no actual thread uninit it for NON_PMD_CORE_ID. */
2888 if (pmd->core_id == NON_PMD_CORE_ID) {
2889 emc_cache_uninit(&pmd->flow_cache);
2890 } else {
2891 latch_set(&pmd->exit_latch);
2892 dp_netdev_reload_pmd__(pmd);
2893 ovs_numa_unpin_core(pmd->core_id);
2894 xpthread_join(pmd->thread, NULL);
2895 }
2896
2897 /* Unref all ports and free poll_list. */
2898 LIST_FOR_EACH_POP (poll, node, &pmd->poll_list) {
2899 port_unref(poll->port);
2900 free(poll);
2901 }
2902
2903 /* Purges the 'pmd''s flows after stopping the thread, but before
2904 * destroying the flows, so that the flow stats can be collected. */
2905 if (dp->dp_purge_cb) {
2906 dp->dp_purge_cb(dp->dp_purge_aux, pmd->core_id);
2907 }
2908 cmap_remove(&pmd->dp->poll_threads, &pmd->node, hash_int(pmd->core_id, 0));
2909 dp_netdev_pmd_unref(pmd);
2910 }
2911
2912 /* Destroys all pmd threads. */
2913 static void
2914 dp_netdev_destroy_all_pmds(struct dp_netdev *dp)
2915 {
2916 struct dp_netdev_pmd_thread *pmd;
2917
2918 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
2919 dp_netdev_del_pmd(dp, pmd);
2920 }
2921 }
2922
2923 /* Deletes all pmd threads on numa node 'numa_id' and
2924 * fixes tx_qids of other threads to keep them sequential. */
2925 static void
2926 dp_netdev_del_pmds_on_numa(struct dp_netdev *dp, int numa_id)
2927 {
2928 struct dp_netdev_pmd_thread *pmd;
2929 int n_pmds_on_numa, n_pmds;
2930 int *free_idx, k = 0;
2931
2932 n_pmds_on_numa = get_n_pmd_threads_on_numa(dp, numa_id);
2933 free_idx = xmalloc(n_pmds_on_numa * sizeof *free_idx);
2934
2935 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
2936 if (pmd->numa_id == numa_id) {
2937 atomic_read_relaxed(&pmd->tx_qid, &free_idx[k]);
2938 k++;
2939 dp_netdev_del_pmd(dp, pmd);
2940 }
2941 }
2942
2943 n_pmds = get_n_pmd_threads(dp);
2944 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
2945 int old_tx_qid;
2946
2947 atomic_read_relaxed(&pmd->tx_qid, &old_tx_qid);
2948
2949 if (old_tx_qid >= n_pmds) {
2950 int new_tx_qid = free_idx[--k];
2951
2952 atomic_store_relaxed(&pmd->tx_qid, new_tx_qid);
2953 }
2954 }
2955
2956 free(free_idx);
2957 }
2958
2959 /* Returns PMD thread from this numa node with fewer rx queues to poll.
2960 * Returns NULL if there is no PMD threads on this numa node.
2961 * Can be called safely only by main thread. */
2962 static struct dp_netdev_pmd_thread *
2963 dp_netdev_less_loaded_pmd_on_numa(struct dp_netdev *dp, int numa_id)
2964 {
2965 int min_cnt = -1;
2966 struct dp_netdev_pmd_thread *pmd, *res = NULL;
2967
2968 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
2969 if (pmd->numa_id == numa_id
2970 && (min_cnt > pmd->poll_cnt || res == NULL)) {
2971 min_cnt = pmd->poll_cnt;
2972 res = pmd;
2973 }
2974 }
2975
2976 return res;
2977 }
2978
2979 /* Adds rx queue to poll_list of PMD thread. */
2980 static void
2981 dp_netdev_add_rxq_to_pmd(struct dp_netdev_pmd_thread *pmd,
2982 struct dp_netdev_port *port, struct netdev_rxq *rx)
2983 OVS_REQUIRES(pmd->poll_mutex)
2984 {
2985 struct rxq_poll *poll = xmalloc(sizeof *poll);
2986
2987 port_ref(port);
2988 poll->port = port;
2989 poll->rx = rx;
2990
2991 list_push_back(&pmd->poll_list, &poll->node);
2992 pmd->poll_cnt++;
2993 }
2994
2995 /* Checks the numa node id of 'netdev' and starts pmd threads for
2996 * the numa node. */
2997 static void
2998 dp_netdev_set_pmds_on_numa(struct dp_netdev *dp, int numa_id)
2999 {
3000 int n_pmds;
3001
3002 if (!ovs_numa_numa_id_is_valid(numa_id)) {
3003 VLOG_ERR("Cannot create pmd threads due to numa id (%d)"
3004 "invalid", numa_id);
3005 return ;
3006 }
3007
3008 n_pmds = get_n_pmd_threads_on_numa(dp, numa_id);
3009
3010 /* If there are already pmd threads created for the numa node
3011 * in which 'netdev' is on, do nothing. Else, creates the
3012 * pmd threads for the numa node. */
3013 if (!n_pmds) {
3014 int can_have, n_unpinned, i, index = 0;
3015 struct dp_netdev_pmd_thread **pmds;
3016 struct dp_netdev_port *port;
3017
3018 n_unpinned = ovs_numa_get_n_unpinned_cores_on_numa(numa_id);
3019 if (!n_unpinned) {
3020 VLOG_ERR("Cannot create pmd threads due to out of unpinned "
3021 "cores on numa node");
3022 return;
3023 }
3024
3025 /* If cpu mask is specified, uses all unpinned cores, otherwise
3026 * tries creating NR_PMD_THREADS pmd threads. */
3027 can_have = dp->pmd_cmask ? n_unpinned : MIN(n_unpinned, NR_PMD_THREADS);
3028 pmds = xzalloc(can_have * sizeof *pmds);
3029 for (i = 0; i < can_have; i++) {
3030 unsigned core_id = ovs_numa_get_unpinned_core_on_numa(numa_id);
3031 pmds[i] = xzalloc(sizeof **pmds);
3032 dp_netdev_configure_pmd(pmds[i], dp, i, core_id, numa_id);
3033 }
3034
3035 /* Distributes rx queues of this numa node between new pmd threads. */
3036 CMAP_FOR_EACH (port, node, &dp->ports) {
3037 if (netdev_is_pmd(port->netdev)
3038 && netdev_get_numa_id(port->netdev) == numa_id) {
3039 for (i = 0; i < netdev_n_rxq(port->netdev); i++) {
3040 /* Make thread-safety analyser happy. */
3041 ovs_mutex_lock(&pmds[index]->poll_mutex);
3042 dp_netdev_add_rxq_to_pmd(pmds[index], port, port->rxq[i]);
3043 ovs_mutex_unlock(&pmds[index]->poll_mutex);
3044 index = (index + 1) % can_have;
3045 }
3046 }
3047 }
3048
3049 /* Actual start of pmd threads. */
3050 for (i = 0; i < can_have; i++) {
3051 pmds[i]->thread = ovs_thread_create("pmd", pmd_thread_main, pmds[i]);
3052 }
3053 free(pmds);
3054 VLOG_INFO("Created %d pmd threads on numa node %d", can_have, numa_id);
3055 }
3056 }
3057
3058 \f
3059 /* Called after pmd threads config change. Restarts pmd threads with
3060 * new configuration. */
3061 static void
3062 dp_netdev_reset_pmd_threads(struct dp_netdev *dp)
3063 {
3064 struct dp_netdev_port *port;
3065
3066 CMAP_FOR_EACH (port, node, &dp->ports) {
3067 if (netdev_is_pmd(port->netdev)) {
3068 int numa_id = netdev_get_numa_id(port->netdev);
3069
3070 dp_netdev_set_pmds_on_numa(dp, numa_id);
3071 }
3072 }
3073 }
3074
3075 static char *
3076 dpif_netdev_get_datapath_version(void)
3077 {
3078 return xstrdup("<built-in>");
3079 }
3080
3081 static void
3082 dp_netdev_flow_used(struct dp_netdev_flow *netdev_flow, int cnt, int size,
3083 uint16_t tcp_flags, long long now)
3084 {
3085 uint16_t flags;
3086
3087 atomic_store_relaxed(&netdev_flow->stats.used, now);
3088 non_atomic_ullong_add(&netdev_flow->stats.packet_count, cnt);
3089 non_atomic_ullong_add(&netdev_flow->stats.byte_count, size);
3090 atomic_read_relaxed(&netdev_flow->stats.tcp_flags, &flags);
3091 flags |= tcp_flags;
3092 atomic_store_relaxed(&netdev_flow->stats.tcp_flags, flags);
3093 }
3094
3095 static void
3096 dp_netdev_count_packet(struct dp_netdev_pmd_thread *pmd,
3097 enum dp_stat_type type, int cnt)
3098 {
3099 non_atomic_ullong_add(&pmd->stats.n[type], cnt);
3100 }
3101
3102 static int
3103 dp_netdev_upcall(struct dp_netdev_pmd_thread *pmd, struct dp_packet *packet_,
3104 struct flow *flow, struct flow_wildcards *wc, ovs_u128 *ufid,
3105 enum dpif_upcall_type type, const struct nlattr *userdata,
3106 struct ofpbuf *actions, struct ofpbuf *put_actions)
3107 {
3108 struct dp_netdev *dp = pmd->dp;
3109 struct flow_tnl orig_tunnel;
3110 int err;
3111
3112 if (OVS_UNLIKELY(!dp->upcall_cb)) {
3113 return ENODEV;
3114 }
3115
3116 /* Upcall processing expects the Geneve options to be in the translated
3117 * format but we need to retain the raw format for datapath use. */
3118 orig_tunnel.flags = flow->tunnel.flags;
3119 if (flow->tunnel.flags & FLOW_TNL_F_UDPIF) {
3120 orig_tunnel.metadata.present.len = flow->tunnel.metadata.present.len;
3121 memcpy(orig_tunnel.metadata.opts.gnv, flow->tunnel.metadata.opts.gnv,
3122 flow->tunnel.metadata.present.len);
3123 err = tun_metadata_from_geneve_udpif(&orig_tunnel, &orig_tunnel,
3124 &flow->tunnel);
3125 if (err) {
3126 return err;
3127 }
3128 }
3129
3130 if (OVS_UNLIKELY(!VLOG_DROP_DBG(&upcall_rl))) {
3131 struct ds ds = DS_EMPTY_INITIALIZER;
3132 char *packet_str;
3133 struct ofpbuf key;
3134 struct odp_flow_key_parms odp_parms = {
3135 .flow = flow,
3136 .mask = &wc->masks,
3137 .odp_in_port = flow->in_port.odp_port,
3138 .support = dp_netdev_support,
3139 };
3140
3141 ofpbuf_init(&key, 0);
3142 odp_flow_key_from_flow(&odp_parms, &key);
3143 packet_str = ofp_packet_to_string(dp_packet_data(packet_),
3144 dp_packet_size(packet_));
3145
3146 odp_flow_key_format(key.data, key.size, &ds);
3147
3148 VLOG_DBG("%s: %s upcall:\n%s\n%s", dp->name,
3149 dpif_upcall_type_to_string(type), ds_cstr(&ds), packet_str);
3150
3151 ofpbuf_uninit(&key);
3152 free(packet_str);
3153
3154 ds_destroy(&ds);
3155 }
3156
3157 err = dp->upcall_cb(packet_, flow, ufid, pmd->core_id, type, userdata,
3158 actions, wc, put_actions, dp->upcall_aux);
3159 if (err && err != ENOSPC) {
3160 return err;
3161 }
3162
3163 /* Translate tunnel metadata masks to datapath format. */
3164 if (wc) {
3165 if (wc->masks.tunnel.metadata.present.map) {
3166 struct geneve_opt opts[TLV_TOT_OPT_SIZE /
3167 sizeof(struct geneve_opt)];
3168
3169 if (orig_tunnel.flags & FLOW_TNL_F_UDPIF) {
3170 tun_metadata_to_geneve_udpif_mask(&flow->tunnel,
3171 &wc->masks.tunnel,
3172 orig_tunnel.metadata.opts.gnv,
3173 orig_tunnel.metadata.present.len,
3174 opts);
3175 } else {
3176 orig_tunnel.metadata.present.len = 0;
3177 }
3178
3179 memset(&wc->masks.tunnel.metadata, 0,
3180 sizeof wc->masks.tunnel.metadata);
3181 memcpy(&wc->masks.tunnel.metadata.opts.gnv, opts,
3182 orig_tunnel.metadata.present.len);
3183 }
3184 wc->masks.tunnel.metadata.present.len = 0xff;
3185 }
3186
3187 /* Restore tunnel metadata. We need to use the saved options to ensure
3188 * that any unknown options are not lost. The generated mask will have
3189 * the same structure, matching on types and lengths but wildcarding
3190 * option data we don't care about. */
3191 if (orig_tunnel.flags & FLOW_TNL_F_UDPIF) {
3192 memcpy(&flow->tunnel.metadata.opts.gnv, orig_tunnel.metadata.opts.gnv,
3193 orig_tunnel.metadata.present.len);
3194 flow->tunnel.metadata.present.len = orig_tunnel.metadata.present.len;
3195 flow->tunnel.flags |= FLOW_TNL_F_UDPIF;
3196 }
3197
3198 return err;
3199 }
3200
3201 static inline uint32_t
3202 dpif_netdev_packet_get_rss_hash(struct dp_packet *packet,
3203 const struct miniflow *mf)
3204 {
3205 uint32_t hash, recirc_depth;
3206
3207 if (OVS_LIKELY(dp_packet_rss_valid(packet))) {
3208 hash = dp_packet_get_rss_hash(packet);
3209 } else {
3210 hash = miniflow_hash_5tuple(mf, 0);
3211 dp_packet_set_rss_hash(packet, hash);
3212 }
3213
3214 /* The RSS hash must account for the recirculation depth to avoid
3215 * collisions in the exact match cache */
3216 recirc_depth = *recirc_depth_get_unsafe();
3217 if (OVS_UNLIKELY(recirc_depth)) {
3218 hash = hash_finish(hash, recirc_depth);
3219 dp_packet_set_rss_hash(packet, hash);
3220 }
3221 return hash;
3222 }
3223
3224 struct packet_batch {
3225 unsigned int packet_count;
3226 unsigned int byte_count;
3227 uint16_t tcp_flags;
3228
3229 struct dp_netdev_flow *flow;
3230
3231 struct dp_packet *packets[NETDEV_MAX_BURST];
3232 };
3233
3234 static inline void
3235 packet_batch_update(struct packet_batch *batch, struct dp_packet *packet,
3236 const struct miniflow *mf)
3237 {
3238 batch->tcp_flags |= miniflow_get_tcp_flags(mf);
3239 batch->packets[batch->packet_count++] = packet;
3240 batch->byte_count += dp_packet_size(packet);
3241 }
3242
3243 static inline void
3244 packet_batch_init(struct packet_batch *batch, struct dp_netdev_flow *flow)
3245 {
3246 flow->batch = batch;
3247
3248 batch->flow = flow;
3249 batch->packet_count = 0;
3250 batch->byte_count = 0;
3251 batch->tcp_flags = 0;
3252 }
3253
3254 static inline void
3255 packet_batch_execute(struct packet_batch *batch,
3256 struct dp_netdev_pmd_thread *pmd,
3257 long long now)
3258 {
3259 struct dp_netdev_actions *actions;
3260 struct dp_netdev_flow *flow = batch->flow;
3261
3262 dp_netdev_flow_used(flow, batch->packet_count, batch->byte_count,
3263 batch->tcp_flags, now);
3264
3265 actions = dp_netdev_flow_get_actions(flow);
3266
3267 dp_netdev_execute_actions(pmd, batch->packets, batch->packet_count, true,
3268 actions->actions, actions->size);
3269 }
3270
3271 static inline void
3272 dp_netdev_queue_batches(struct dp_packet *pkt,
3273 struct dp_netdev_flow *flow, const struct miniflow *mf,
3274 struct packet_batch *batches, size_t *n_batches)
3275 {
3276 struct packet_batch *batch = flow->batch;
3277
3278 if (OVS_UNLIKELY(!batch)) {
3279 batch = &batches[(*n_batches)++];
3280 packet_batch_init(batch, flow);
3281 }
3282
3283 packet_batch_update(batch, pkt, mf);
3284 }
3285
3286 /* Try to process all ('cnt') the 'packets' using only the exact match cache
3287 * 'flow_cache'. If a flow is not found for a packet 'packets[i]', the
3288 * miniflow is copied into 'keys' and the packet pointer is moved at the
3289 * beginning of the 'packets' array.
3290 *
3291 * The function returns the number of packets that needs to be processed in the
3292 * 'packets' array (they have been moved to the beginning of the vector).
3293 */
3294 static inline size_t
3295 emc_processing(struct dp_netdev_pmd_thread *pmd, struct dp_packet **packets,
3296 size_t cnt, struct netdev_flow_key *keys,
3297 struct packet_batch batches[], size_t *n_batches)
3298 {
3299 struct emc_cache *flow_cache = &pmd->flow_cache;
3300 struct netdev_flow_key key;
3301 size_t i, n_missed = 0, n_dropped = 0;
3302
3303 for (i = 0; i < cnt; i++) {
3304 struct dp_netdev_flow *flow;
3305
3306 if (OVS_UNLIKELY(dp_packet_size(packets[i]) < ETH_HEADER_LEN)) {
3307 dp_packet_delete(packets[i]);
3308 n_dropped++;
3309 continue;
3310 }
3311
3312 if (i != cnt - 1) {
3313 /* Prefetch next packet data */
3314 OVS_PREFETCH(dp_packet_data(packets[i+1]));
3315 }
3316
3317 miniflow_extract(packets[i], &key.mf);
3318 key.len = 0; /* Not computed yet. */
3319 key.hash = dpif_netdev_packet_get_rss_hash(packets[i], &key.mf);
3320
3321 flow = emc_lookup(flow_cache, &key);
3322 if (OVS_LIKELY(flow)) {
3323 dp_netdev_queue_batches(packets[i], flow, &key.mf, batches,
3324 n_batches);
3325 } else {
3326 /* Exact match cache missed. Group missed packets together at
3327 * the beginning of the 'packets' array. */
3328 packets[n_missed] = packets[i];
3329 keys[n_missed++] = key;
3330 }
3331 }
3332
3333 dp_netdev_count_packet(pmd, DP_STAT_EXACT_HIT, cnt - n_dropped - n_missed);
3334
3335 return n_missed;
3336 }
3337
3338 static inline void
3339 fast_path_processing(struct dp_netdev_pmd_thread *pmd,
3340 struct dp_packet **packets, size_t cnt,
3341 struct netdev_flow_key *keys,
3342 struct packet_batch batches[], size_t *n_batches)
3343 {
3344 #if !defined(__CHECKER__) && !defined(_WIN32)
3345 const size_t PKT_ARRAY_SIZE = cnt;
3346 #else
3347 /* Sparse or MSVC doesn't like variable length array. */
3348 enum { PKT_ARRAY_SIZE = NETDEV_MAX_BURST };
3349 #endif
3350 struct dpcls_rule *rules[PKT_ARRAY_SIZE];
3351 struct dp_netdev *dp = pmd->dp;
3352 struct emc_cache *flow_cache = &pmd->flow_cache;
3353 int miss_cnt = 0, lost_cnt = 0;
3354 bool any_miss;
3355 size_t i;
3356
3357 for (i = 0; i < cnt; i++) {
3358 /* Key length is needed in all the cases, hash computed on demand. */
3359 keys[i].len = netdev_flow_key_size(miniflow_n_values(&keys[i].mf));
3360 }
3361 any_miss = !dpcls_lookup(&pmd->cls, keys, rules, cnt);
3362 if (OVS_UNLIKELY(any_miss) && !fat_rwlock_tryrdlock(&dp->upcall_rwlock)) {
3363 uint64_t actions_stub[512 / 8], slow_stub[512 / 8];
3364 struct ofpbuf actions, put_actions;
3365 ovs_u128 ufid;
3366
3367 ofpbuf_use_stub(&actions, actions_stub, sizeof actions_stub);
3368 ofpbuf_use_stub(&put_actions, slow_stub, sizeof slow_stub);
3369
3370 for (i = 0; i < cnt; i++) {
3371 struct dp_netdev_flow *netdev_flow;
3372 struct ofpbuf *add_actions;
3373 struct match match;
3374 int error;
3375
3376 if (OVS_LIKELY(rules[i])) {
3377 continue;
3378 }
3379
3380 /* It's possible that an earlier slow path execution installed
3381 * a rule covering this flow. In this case, it's a lot cheaper
3382 * to catch it here than execute a miss. */
3383 netdev_flow = dp_netdev_pmd_lookup_flow(pmd, &keys[i]);
3384 if (netdev_flow) {
3385 rules[i] = &netdev_flow->cr;
3386 continue;
3387 }
3388
3389 miss_cnt++;
3390
3391 match.tun_md.valid = false;
3392 miniflow_expand(&keys[i].mf, &match.flow);
3393
3394 ofpbuf_clear(&actions);
3395 ofpbuf_clear(&put_actions);
3396
3397 dpif_flow_hash(dp->dpif, &match.flow, sizeof match.flow, &ufid);
3398 error = dp_netdev_upcall(pmd, packets[i], &match.flow, &match.wc,
3399 &ufid, DPIF_UC_MISS, NULL, &actions,
3400 &put_actions);
3401 if (OVS_UNLIKELY(error && error != ENOSPC)) {
3402 dp_packet_delete(packets[i]);
3403 lost_cnt++;
3404 continue;
3405 }
3406
3407 /* The Netlink encoding of datapath flow keys cannot express
3408 * wildcarding the presence of a VLAN tag. Instead, a missing VLAN
3409 * tag is interpreted as exact match on the fact that there is no
3410 * VLAN. Unless we refactor a lot of code that translates between
3411 * Netlink and struct flow representations, we have to do the same
3412 * here. */
3413 if (!match.wc.masks.vlan_tci) {
3414 match.wc.masks.vlan_tci = htons(0xffff);
3415 }
3416
3417 /* We can't allow the packet batching in the next loop to execute
3418 * the actions. Otherwise, if there are any slow path actions,
3419 * we'll send the packet up twice. */
3420 dp_netdev_execute_actions(pmd, &packets[i], 1, true,
3421 actions.data, actions.size);
3422
3423 add_actions = put_actions.size ? &put_actions : &actions;
3424 if (OVS_LIKELY(error != ENOSPC)) {
3425 /* XXX: There's a race window where a flow covering this packet
3426 * could have already been installed since we last did the flow
3427 * lookup before upcall. This could be solved by moving the
3428 * mutex lock outside the loop, but that's an awful long time
3429 * to be locking everyone out of making flow installs. If we
3430 * move to a per-core classifier, it would be reasonable. */
3431 ovs_mutex_lock(&pmd->flow_mutex);
3432 netdev_flow = dp_netdev_pmd_lookup_flow(pmd, &keys[i]);
3433 if (OVS_LIKELY(!netdev_flow)) {
3434 netdev_flow = dp_netdev_flow_add(pmd, &match, &ufid,
3435 add_actions->data,
3436 add_actions->size);
3437 }
3438 ovs_mutex_unlock(&pmd->flow_mutex);
3439
3440 emc_insert(flow_cache, &keys[i], netdev_flow);
3441 }
3442 }
3443
3444 ofpbuf_uninit(&actions);
3445 ofpbuf_uninit(&put_actions);
3446 fat_rwlock_unlock(&dp->upcall_rwlock);
3447 dp_netdev_count_packet(pmd, DP_STAT_LOST, lost_cnt);
3448 } else if (OVS_UNLIKELY(any_miss)) {
3449 for (i = 0; i < cnt; i++) {
3450 if (OVS_UNLIKELY(!rules[i])) {
3451 dp_packet_delete(packets[i]);
3452 lost_cnt++;
3453 miss_cnt++;
3454 }
3455 }
3456 }
3457
3458 for (i = 0; i < cnt; i++) {
3459 struct dp_packet *packet = packets[i];
3460 struct dp_netdev_flow *flow;
3461
3462 if (OVS_UNLIKELY(!rules[i])) {
3463 continue;
3464 }
3465
3466 flow = dp_netdev_flow_cast(rules[i]);
3467
3468 emc_insert(flow_cache, &keys[i], flow);
3469 dp_netdev_queue_batches(packet, flow, &keys[i].mf, batches, n_batches);
3470 }
3471
3472 dp_netdev_count_packet(pmd, DP_STAT_MASKED_HIT, cnt - miss_cnt);
3473 dp_netdev_count_packet(pmd, DP_STAT_MISS, miss_cnt);
3474 dp_netdev_count_packet(pmd, DP_STAT_LOST, lost_cnt);
3475 }
3476
3477 static void
3478 dp_netdev_input(struct dp_netdev_pmd_thread *pmd,
3479 struct dp_packet **packets, int cnt)
3480 {
3481 #if !defined(__CHECKER__) && !defined(_WIN32)
3482 const size_t PKT_ARRAY_SIZE = cnt;
3483 #else
3484 /* Sparse or MSVC doesn't like variable length array. */
3485 enum { PKT_ARRAY_SIZE = NETDEV_MAX_BURST };
3486 #endif
3487 struct netdev_flow_key keys[PKT_ARRAY_SIZE];
3488 struct packet_batch batches[PKT_ARRAY_SIZE];
3489 long long now = time_msec();
3490 size_t newcnt, n_batches, i;
3491
3492 n_batches = 0;
3493 newcnt = emc_processing(pmd, packets, cnt, keys, batches, &n_batches);
3494 if (OVS_UNLIKELY(newcnt)) {
3495 fast_path_processing(pmd, packets, newcnt, keys, batches, &n_batches);
3496 }
3497
3498 for (i = 0; i < n_batches; i++) {
3499 batches[i].flow->batch = NULL;
3500 }
3501
3502 for (i = 0; i < n_batches; i++) {
3503 packet_batch_execute(&batches[i], pmd, now);
3504 }
3505 }
3506
3507 struct dp_netdev_execute_aux {
3508 struct dp_netdev_pmd_thread *pmd;
3509 };
3510
3511 static void
3512 dpif_netdev_register_dp_purge_cb(struct dpif *dpif, dp_purge_callback *cb,
3513 void *aux)
3514 {
3515 struct dp_netdev *dp = get_dp_netdev(dpif);
3516 dp->dp_purge_aux = aux;
3517 dp->dp_purge_cb = cb;
3518 }
3519
3520 static void
3521 dpif_netdev_register_upcall_cb(struct dpif *dpif, upcall_callback *cb,
3522 void *aux)
3523 {
3524 struct dp_netdev *dp = get_dp_netdev(dpif);
3525 dp->upcall_aux = aux;
3526 dp->upcall_cb = cb;
3527 }
3528
3529 static void
3530 dp_netdev_drop_packets(struct dp_packet **packets, int cnt, bool may_steal)
3531 {
3532 if (may_steal) {
3533 int i;
3534
3535 for (i = 0; i < cnt; i++) {
3536 dp_packet_delete(packets[i]);
3537 }
3538 }
3539 }
3540
3541 static int
3542 push_tnl_action(const struct dp_netdev *dp,
3543 const struct nlattr *attr,
3544 struct dp_packet **packets, int cnt)
3545 {
3546 struct dp_netdev_port *tun_port;
3547 const struct ovs_action_push_tnl *data;
3548
3549 data = nl_attr_get(attr);
3550
3551 tun_port = dp_netdev_lookup_port(dp, u32_to_odp(data->tnl_port));
3552 if (!tun_port) {
3553 return -EINVAL;
3554 }
3555 netdev_push_header(tun_port->netdev, packets, cnt, data);
3556
3557 return 0;
3558 }
3559
3560 static void
3561 dp_netdev_clone_pkt_batch(struct dp_packet **dst_pkts,
3562 struct dp_packet **src_pkts, int cnt)
3563 {
3564 int i;
3565
3566 for (i = 0; i < cnt; i++) {
3567 dst_pkts[i] = dp_packet_clone(src_pkts[i]);
3568 }
3569 }
3570
3571 static void
3572 dp_execute_cb(void *aux_, struct dp_packet **packets, int cnt,
3573 const struct nlattr *a, bool may_steal)
3574 OVS_NO_THREAD_SAFETY_ANALYSIS
3575 {
3576 struct dp_netdev_execute_aux *aux = aux_;
3577 uint32_t *depth = recirc_depth_get();
3578 struct dp_netdev_pmd_thread *pmd = aux->pmd;
3579 struct dp_netdev *dp = pmd->dp;
3580 int type = nl_attr_type(a);
3581 struct dp_netdev_port *p;
3582 int i;
3583
3584 switch ((enum ovs_action_attr)type) {
3585 case OVS_ACTION_ATTR_OUTPUT:
3586 p = dp_netdev_lookup_port(dp, u32_to_odp(nl_attr_get_u32(a)));
3587 if (OVS_LIKELY(p)) {
3588 int tx_qid;
3589
3590 atomic_read_relaxed(&pmd->tx_qid, &tx_qid);
3591
3592 netdev_send(p->netdev, tx_qid, packets, cnt, may_steal);
3593 return;
3594 }
3595 break;
3596
3597 case OVS_ACTION_ATTR_TUNNEL_PUSH:
3598 if (*depth < MAX_RECIRC_DEPTH) {
3599 struct dp_packet *tnl_pkt[NETDEV_MAX_BURST];
3600 int err;
3601
3602 if (!may_steal) {
3603 dp_netdev_clone_pkt_batch(tnl_pkt, packets, cnt);
3604 packets = tnl_pkt;
3605 }
3606
3607 err = push_tnl_action(dp, a, packets, cnt);
3608 if (!err) {
3609 (*depth)++;
3610 dp_netdev_input(pmd, packets, cnt);
3611 (*depth)--;
3612 } else {
3613 dp_netdev_drop_packets(tnl_pkt, cnt, !may_steal);
3614 }
3615 return;
3616 }
3617 break;
3618
3619 case OVS_ACTION_ATTR_TUNNEL_POP:
3620 if (*depth < MAX_RECIRC_DEPTH) {
3621 odp_port_t portno = u32_to_odp(nl_attr_get_u32(a));
3622
3623 p = dp_netdev_lookup_port(dp, portno);
3624 if (p) {
3625 struct dp_packet *tnl_pkt[NETDEV_MAX_BURST];
3626 int err;
3627
3628 if (!may_steal) {
3629 dp_netdev_clone_pkt_batch(tnl_pkt, packets, cnt);
3630 packets = tnl_pkt;
3631 }
3632
3633 err = netdev_pop_header(p->netdev, packets, cnt);
3634 if (!err) {
3635
3636 for (i = 0; i < cnt; i++) {
3637 packets[i]->md.in_port.odp_port = portno;
3638 }
3639
3640 (*depth)++;
3641 dp_netdev_input(pmd, packets, cnt);
3642 (*depth)--;
3643 } else {
3644 dp_netdev_drop_packets(tnl_pkt, cnt, !may_steal);
3645 }
3646 return;
3647 }
3648 }
3649 break;
3650
3651 case OVS_ACTION_ATTR_USERSPACE:
3652 if (!fat_rwlock_tryrdlock(&dp->upcall_rwlock)) {
3653 const struct nlattr *userdata;
3654 struct ofpbuf actions;
3655 struct flow flow;
3656 ovs_u128 ufid;
3657
3658 userdata = nl_attr_find_nested(a, OVS_USERSPACE_ATTR_USERDATA);
3659 ofpbuf_init(&actions, 0);
3660
3661 for (i = 0; i < cnt; i++) {
3662 int error;
3663
3664 ofpbuf_clear(&actions);
3665
3666 flow_extract(packets[i], &flow);
3667 dpif_flow_hash(dp->dpif, &flow, sizeof flow, &ufid);
3668 error = dp_netdev_upcall(pmd, packets[i], &flow, NULL, &ufid,
3669 DPIF_UC_ACTION, userdata,&actions,
3670 NULL);
3671 if (!error || error == ENOSPC) {
3672 dp_netdev_execute_actions(pmd, &packets[i], 1, may_steal,
3673 actions.data, actions.size);
3674 } else if (may_steal) {
3675 dp_packet_delete(packets[i]);
3676 }
3677 }
3678 ofpbuf_uninit(&actions);
3679 fat_rwlock_unlock(&dp->upcall_rwlock);
3680
3681 return;
3682 }
3683 break;
3684
3685 case OVS_ACTION_ATTR_RECIRC:
3686 if (*depth < MAX_RECIRC_DEPTH) {
3687 struct dp_packet *recirc_pkts[NETDEV_MAX_BURST];
3688
3689 if (!may_steal) {
3690 dp_netdev_clone_pkt_batch(recirc_pkts, packets, cnt);
3691 packets = recirc_pkts;
3692 }
3693
3694 for (i = 0; i < cnt; i++) {
3695 packets[i]->md.recirc_id = nl_attr_get_u32(a);
3696 }
3697
3698 (*depth)++;
3699 dp_netdev_input(pmd, packets, cnt);
3700 (*depth)--;
3701
3702 return;
3703 }
3704
3705 VLOG_WARN("Packet dropped. Max recirculation depth exceeded.");
3706 break;
3707
3708 case OVS_ACTION_ATTR_CT:
3709 /* If a flow with this action is slow-pathed, datapath assistance is
3710 * required to implement it. However, we don't support this action
3711 * in the userspace datapath. */
3712 VLOG_WARN("Cannot execute conntrack action in userspace.");
3713 break;
3714
3715 case OVS_ACTION_ATTR_PUSH_VLAN:
3716 case OVS_ACTION_ATTR_POP_VLAN:
3717 case OVS_ACTION_ATTR_PUSH_MPLS:
3718 case OVS_ACTION_ATTR_POP_MPLS:
3719 case OVS_ACTION_ATTR_SET:
3720 case OVS_ACTION_ATTR_SET_MASKED:
3721 case OVS_ACTION_ATTR_SAMPLE:
3722 case OVS_ACTION_ATTR_HASH:
3723 case OVS_ACTION_ATTR_UNSPEC:
3724 case __OVS_ACTION_ATTR_MAX:
3725 OVS_NOT_REACHED();
3726 }
3727
3728 dp_netdev_drop_packets(packets, cnt, may_steal);
3729 }
3730
3731 static void
3732 dp_netdev_execute_actions(struct dp_netdev_pmd_thread *pmd,
3733 struct dp_packet **packets, int cnt,
3734 bool may_steal,
3735 const struct nlattr *actions, size_t actions_len)
3736 {
3737 struct dp_netdev_execute_aux aux = { pmd };
3738
3739 odp_execute_actions(&aux, packets, cnt, may_steal, actions,
3740 actions_len, dp_execute_cb);
3741 }
3742
3743 const struct dpif_class dpif_netdev_class = {
3744 "netdev",
3745 dpif_netdev_init,
3746 dpif_netdev_enumerate,
3747 dpif_netdev_port_open_type,
3748 dpif_netdev_open,
3749 dpif_netdev_close,
3750 dpif_netdev_destroy,
3751 dpif_netdev_run,
3752 dpif_netdev_wait,
3753 dpif_netdev_get_stats,
3754 dpif_netdev_port_add,
3755 dpif_netdev_port_del,
3756 dpif_netdev_port_query_by_number,
3757 dpif_netdev_port_query_by_name,
3758 NULL, /* port_get_pid */
3759 dpif_netdev_port_dump_start,
3760 dpif_netdev_port_dump_next,
3761 dpif_netdev_port_dump_done,
3762 dpif_netdev_port_poll,
3763 dpif_netdev_port_poll_wait,
3764 dpif_netdev_flow_flush,
3765 dpif_netdev_flow_dump_create,
3766 dpif_netdev_flow_dump_destroy,
3767 dpif_netdev_flow_dump_thread_create,
3768 dpif_netdev_flow_dump_thread_destroy,
3769 dpif_netdev_flow_dump_next,
3770 dpif_netdev_operate,
3771 NULL, /* recv_set */
3772 NULL, /* handlers_set */
3773 dpif_netdev_pmd_set,
3774 dpif_netdev_queue_to_priority,
3775 NULL, /* recv */
3776 NULL, /* recv_wait */
3777 NULL, /* recv_purge */
3778 dpif_netdev_register_dp_purge_cb,
3779 dpif_netdev_register_upcall_cb,
3780 dpif_netdev_enable_upcall,
3781 dpif_netdev_disable_upcall,
3782 dpif_netdev_get_datapath_version,
3783 NULL, /* ct_dump_start */
3784 NULL, /* ct_dump_next */
3785 NULL, /* ct_dump_done */
3786 NULL, /* ct_flush */
3787 };
3788
3789 static void
3790 dpif_dummy_change_port_number(struct unixctl_conn *conn, int argc OVS_UNUSED,
3791 const char *argv[], void *aux OVS_UNUSED)
3792 {
3793 struct dp_netdev_port *old_port;
3794 struct dp_netdev_port *new_port;
3795 struct dp_netdev *dp;
3796 odp_port_t port_no;
3797
3798 ovs_mutex_lock(&dp_netdev_mutex);
3799 dp = shash_find_data(&dp_netdevs, argv[1]);
3800 if (!dp || !dpif_netdev_class_is_dummy(dp->class)) {
3801 ovs_mutex_unlock(&dp_netdev_mutex);
3802 unixctl_command_reply_error(conn, "unknown datapath or not a dummy");
3803 return;
3804 }
3805 ovs_refcount_ref(&dp->ref_cnt);
3806 ovs_mutex_unlock(&dp_netdev_mutex);
3807
3808 ovs_mutex_lock(&dp->port_mutex);
3809 if (get_port_by_name(dp, argv[2], &old_port)) {
3810 unixctl_command_reply_error(conn, "unknown port");
3811 goto exit;
3812 }
3813
3814 port_no = u32_to_odp(atoi(argv[3]));
3815 if (!port_no || port_no == ODPP_NONE) {
3816 unixctl_command_reply_error(conn, "bad port number");
3817 goto exit;
3818 }
3819 if (dp_netdev_lookup_port(dp, port_no)) {
3820 unixctl_command_reply_error(conn, "port number already in use");
3821 goto exit;
3822 }
3823
3824 /* Remove old port. */
3825 cmap_remove(&dp->ports, &old_port->node, hash_port_no(old_port->port_no));
3826 ovsrcu_postpone(free, old_port);
3827
3828 /* Insert new port (cmap semantics mean we cannot re-insert 'old_port'). */
3829 new_port = xmemdup(old_port, sizeof *old_port);
3830 new_port->port_no = port_no;
3831 cmap_insert(&dp->ports, &new_port->node, hash_port_no(port_no));
3832
3833 seq_change(dp->port_seq);
3834 unixctl_command_reply(conn, NULL);
3835
3836 exit:
3837 ovs_mutex_unlock(&dp->port_mutex);
3838 dp_netdev_unref(dp);
3839 }
3840
3841 static void
3842 dpif_dummy_delete_port(struct unixctl_conn *conn, int argc OVS_UNUSED,
3843 const char *argv[], void *aux OVS_UNUSED)
3844 {
3845 struct dp_netdev_port *port;
3846 struct dp_netdev *dp;
3847
3848 ovs_mutex_lock(&dp_netdev_mutex);
3849 dp = shash_find_data(&dp_netdevs, argv[1]);
3850 if (!dp || !dpif_netdev_class_is_dummy(dp->class)) {
3851 ovs_mutex_unlock(&dp_netdev_mutex);
3852 unixctl_command_reply_error(conn, "unknown datapath or not a dummy");
3853 return;
3854 }
3855 ovs_refcount_ref(&dp->ref_cnt);
3856 ovs_mutex_unlock(&dp_netdev_mutex);
3857
3858 ovs_mutex_lock(&dp->port_mutex);
3859 if (get_port_by_name(dp, argv[2], &port)) {
3860 unixctl_command_reply_error(conn, "unknown port");
3861 } else if (port->port_no == ODPP_LOCAL) {
3862 unixctl_command_reply_error(conn, "can't delete local port");
3863 } else {
3864 do_del_port(dp, port);
3865 unixctl_command_reply(conn, NULL);
3866 }
3867 ovs_mutex_unlock(&dp->port_mutex);
3868
3869 dp_netdev_unref(dp);
3870 }
3871
3872 static void
3873 dpif_dummy_register__(const char *type)
3874 {
3875 struct dpif_class *class;
3876
3877 class = xmalloc(sizeof *class);
3878 *class = dpif_netdev_class;
3879 class->type = xstrdup(type);
3880 dp_register_provider(class);
3881 }
3882
3883 static void
3884 dpif_dummy_override(const char *type)
3885 {
3886 int error;
3887
3888 /*
3889 * Ignore EAFNOSUPPORT to allow --enable-dummy=system with
3890 * a userland-only build. It's useful for testsuite.
3891 */
3892 error = dp_unregister_provider(type);
3893 if (error == 0 || error == EAFNOSUPPORT) {
3894 dpif_dummy_register__(type);
3895 }
3896 }
3897
3898 void
3899 dpif_dummy_register(enum dummy_level level)
3900 {
3901 if (level == DUMMY_OVERRIDE_ALL) {
3902 struct sset types;
3903 const char *type;
3904
3905 sset_init(&types);
3906 dp_enumerate_types(&types);
3907 SSET_FOR_EACH (type, &types) {
3908 dpif_dummy_override(type);
3909 }
3910 sset_destroy(&types);
3911 } else if (level == DUMMY_OVERRIDE_SYSTEM) {
3912 dpif_dummy_override("system");
3913 }
3914
3915 dpif_dummy_register__("dummy");
3916
3917 unixctl_command_register("dpif-dummy/change-port-number",
3918 "dp port new-number",
3919 3, 3, dpif_dummy_change_port_number, NULL);
3920 unixctl_command_register("dpif-dummy/delete-port", "dp port",
3921 2, 2, dpif_dummy_delete_port, NULL);
3922 }
3923 \f
3924 /* Datapath Classifier. */
3925
3926 /* A set of rules that all have the same fields wildcarded. */
3927 struct dpcls_subtable {
3928 /* The fields are only used by writers. */
3929 struct cmap_node cmap_node OVS_GUARDED; /* Within dpcls 'subtables_map'. */
3930
3931 /* These fields are accessed by readers. */
3932 struct cmap rules; /* Contains "struct dpcls_rule"s. */
3933 struct netdev_flow_key mask; /* Wildcards for fields (const). */
3934 /* 'mask' must be the last field, additional space is allocated here. */
3935 };
3936
3937 /* Initializes 'cls' as a classifier that initially contains no classification
3938 * rules. */
3939 static void
3940 dpcls_init(struct dpcls *cls)
3941 {
3942 cmap_init(&cls->subtables_map);
3943 pvector_init(&cls->subtables);
3944 }
3945
3946 static void
3947 dpcls_destroy_subtable(struct dpcls *cls, struct dpcls_subtable *subtable)
3948 {
3949 pvector_remove(&cls->subtables, subtable);
3950 cmap_remove(&cls->subtables_map, &subtable->cmap_node,
3951 subtable->mask.hash);
3952 cmap_destroy(&subtable->rules);
3953 ovsrcu_postpone(free, subtable);
3954 }
3955
3956 /* Destroys 'cls'. Rules within 'cls', if any, are not freed; this is the
3957 * caller's responsibility.
3958 * May only be called after all the readers have been terminated. */
3959 static void
3960 dpcls_destroy(struct dpcls *cls)
3961 {
3962 if (cls) {
3963 struct dpcls_subtable *subtable;
3964
3965 CMAP_FOR_EACH (subtable, cmap_node, &cls->subtables_map) {
3966 ovs_assert(cmap_count(&subtable->rules) == 0);
3967 dpcls_destroy_subtable(cls, subtable);
3968 }
3969 cmap_destroy(&cls->subtables_map);
3970 pvector_destroy(&cls->subtables);
3971 }
3972 }
3973
3974 static struct dpcls_subtable *
3975 dpcls_create_subtable(struct dpcls *cls, const struct netdev_flow_key *mask)
3976 {
3977 struct dpcls_subtable *subtable;
3978
3979 /* Need to add one. */
3980 subtable = xmalloc(sizeof *subtable
3981 - sizeof subtable->mask.mf + mask->len);
3982 cmap_init(&subtable->rules);
3983 netdev_flow_key_clone(&subtable->mask, mask);
3984 cmap_insert(&cls->subtables_map, &subtable->cmap_node, mask->hash);
3985 pvector_insert(&cls->subtables, subtable, 0);
3986 pvector_publish(&cls->subtables);
3987
3988 return subtable;
3989 }
3990
3991 static inline struct dpcls_subtable *
3992 dpcls_find_subtable(struct dpcls *cls, const struct netdev_flow_key *mask)
3993 {
3994 struct dpcls_subtable *subtable;
3995
3996 CMAP_FOR_EACH_WITH_HASH (subtable, cmap_node, mask->hash,
3997 &cls->subtables_map) {
3998 if (netdev_flow_key_equal(&subtable->mask, mask)) {
3999 return subtable;
4000 }
4001 }
4002 return dpcls_create_subtable(cls, mask);
4003 }
4004
4005 /* Insert 'rule' into 'cls'. */
4006 static void
4007 dpcls_insert(struct dpcls *cls, struct dpcls_rule *rule,
4008 const struct netdev_flow_key *mask)
4009 {
4010 struct dpcls_subtable *subtable = dpcls_find_subtable(cls, mask);
4011
4012 rule->mask = &subtable->mask;
4013 cmap_insert(&subtable->rules, &rule->cmap_node, rule->flow.hash);
4014 }
4015
4016 /* Removes 'rule' from 'cls', also destructing the 'rule'. */
4017 static void
4018 dpcls_remove(struct dpcls *cls, struct dpcls_rule *rule)
4019 {
4020 struct dpcls_subtable *subtable;
4021
4022 ovs_assert(rule->mask);
4023
4024 INIT_CONTAINER(subtable, rule->mask, mask);
4025
4026 if (cmap_remove(&subtable->rules, &rule->cmap_node, rule->flow.hash)
4027 == 0) {
4028 dpcls_destroy_subtable(cls, subtable);
4029 pvector_publish(&cls->subtables);
4030 }
4031 }
4032
4033 /* Returns true if 'target' satisfies 'key' in 'mask', that is, if each 1-bit
4034 * in 'mask' the values in 'key' and 'target' are the same. */
4035 static inline bool
4036 dpcls_rule_matches_key(const struct dpcls_rule *rule,
4037 const struct netdev_flow_key *target)
4038 {
4039 const uint64_t *keyp = miniflow_get_values(&rule->flow.mf);
4040 const uint64_t *maskp = miniflow_get_values(&rule->mask->mf);
4041 uint64_t value;
4042
4043 NETDEV_FLOW_KEY_FOR_EACH_IN_FLOWMAP(value, target, rule->flow.mf.map) {
4044 if (OVS_UNLIKELY((value & *maskp++) != *keyp++)) {
4045 return false;
4046 }
4047 }
4048 return true;
4049 }
4050
4051 /* For each miniflow in 'flows' performs a classifier lookup writing the result
4052 * into the corresponding slot in 'rules'. If a particular entry in 'flows' is
4053 * NULL it is skipped.
4054 *
4055 * This function is optimized for use in the userspace datapath and therefore
4056 * does not implement a lot of features available in the standard
4057 * classifier_lookup() function. Specifically, it does not implement
4058 * priorities, instead returning any rule which matches the flow.
4059 *
4060 * Returns true if all flows found a corresponding rule. */
4061 static bool
4062 dpcls_lookup(const struct dpcls *cls, const struct netdev_flow_key keys[],
4063 struct dpcls_rule **rules, const size_t cnt)
4064 {
4065 /* The batch size 16 was experimentally found faster than 8 or 32. */
4066 typedef uint16_t map_type;
4067 #define MAP_BITS (sizeof(map_type) * CHAR_BIT)
4068
4069 #if !defined(__CHECKER__) && !defined(_WIN32)
4070 const int N_MAPS = DIV_ROUND_UP(cnt, MAP_BITS);
4071 #else
4072 enum { N_MAPS = DIV_ROUND_UP(NETDEV_MAX_BURST, MAP_BITS) };
4073 #endif
4074 map_type maps[N_MAPS];
4075 struct dpcls_subtable *subtable;
4076
4077 memset(maps, 0xff, sizeof maps);
4078 if (cnt % MAP_BITS) {
4079 maps[N_MAPS - 1] >>= MAP_BITS - cnt % MAP_BITS; /* Clear extra bits. */
4080 }
4081 memset(rules, 0, cnt * sizeof *rules);
4082
4083 PVECTOR_FOR_EACH (subtable, &cls->subtables) {
4084 const struct netdev_flow_key *mkeys = keys;
4085 struct dpcls_rule **mrules = rules;
4086 map_type remains = 0;
4087 int m;
4088
4089 BUILD_ASSERT_DECL(sizeof remains == sizeof *maps);
4090
4091 for (m = 0; m < N_MAPS; m++, mkeys += MAP_BITS, mrules += MAP_BITS) {
4092 uint32_t hashes[MAP_BITS];
4093 const struct cmap_node *nodes[MAP_BITS];
4094 unsigned long map = maps[m];
4095 int i;
4096
4097 if (!map) {
4098 continue; /* Skip empty maps. */
4099 }
4100
4101 /* Compute hashes for the remaining keys. */
4102 ULLONG_FOR_EACH_1(i, map) {
4103 hashes[i] = netdev_flow_key_hash_in_mask(&mkeys[i],
4104 &subtable->mask);
4105 }
4106 /* Lookup. */
4107 map = cmap_find_batch(&subtable->rules, map, hashes, nodes);
4108 /* Check results. */
4109 ULLONG_FOR_EACH_1(i, map) {
4110 struct dpcls_rule *rule;
4111
4112 CMAP_NODE_FOR_EACH (rule, cmap_node, nodes[i]) {
4113 if (OVS_LIKELY(dpcls_rule_matches_key(rule, &mkeys[i]))) {
4114 mrules[i] = rule;
4115 goto next;
4116 }
4117 }
4118 ULLONG_SET0(map, i); /* Did not match. */
4119 next:
4120 ; /* Keep Sparse happy. */
4121 }
4122 maps[m] &= ~map; /* Clear the found rules. */
4123 remains |= maps[m];
4124 }
4125 if (!remains) {
4126 return true; /* All found. */
4127 }
4128 }
4129 return false; /* Some misses. */
4130 }