]> git.proxmox.com Git - ovs.git/blob - lib/dpif-netdev.c
dpif-netdev: Take non_pmd_mutex to access tx cached ports.
[ovs.git] / lib / dpif-netdev.c
1 /*
2 * Copyright (c) 2009, 2010, 2011, 2012, 2013, 2014, 2016 Nicira, Inc.
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at:
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <config.h>
18 #include "dpif-netdev.h"
19
20 #include <ctype.h>
21 #include <errno.h>
22 #include <fcntl.h>
23 #include <inttypes.h>
24 #include <net/if.h>
25 #include <netinet/in.h>
26 #include <stdint.h>
27 #include <stdlib.h>
28 #include <string.h>
29 #include <sys/ioctl.h>
30 #include <sys/socket.h>
31 #include <sys/stat.h>
32 #include <unistd.h>
33
34 #ifdef DPDK_NETDEV
35 #include <rte_cycles.h>
36 #endif
37
38 #include "bitmap.h"
39 #include "cmap.h"
40 #include "conntrack.h"
41 #include "coverage.h"
42 #include "ct-dpif.h"
43 #include "csum.h"
44 #include "dp-packet.h"
45 #include "dpif.h"
46 #include "dpif-provider.h"
47 #include "dummy.h"
48 #include "fat-rwlock.h"
49 #include "flow.h"
50 #include "hmapx.h"
51 #include "latch.h"
52 #include "netdev.h"
53 #include "netdev-vport.h"
54 #include "netlink.h"
55 #include "odp-execute.h"
56 #include "odp-util.h"
57 #include "openvswitch/dynamic-string.h"
58 #include "openvswitch/list.h"
59 #include "openvswitch/match.h"
60 #include "openvswitch/ofp-print.h"
61 #include "openvswitch/ofp-util.h"
62 #include "openvswitch/ofpbuf.h"
63 #include "openvswitch/shash.h"
64 #include "openvswitch/vlog.h"
65 #include "ovs-numa.h"
66 #include "ovs-rcu.h"
67 #include "packets.h"
68 #include "poll-loop.h"
69 #include "pvector.h"
70 #include "random.h"
71 #include "seq.h"
72 #include "smap.h"
73 #include "sset.h"
74 #include "timeval.h"
75 #include "tnl-neigh-cache.h"
76 #include "tnl-ports.h"
77 #include "unixctl.h"
78 #include "util.h"
79
80 VLOG_DEFINE_THIS_MODULE(dpif_netdev);
81
82 #define FLOW_DUMP_MAX_BATCH 50
83 /* Use per thread recirc_depth to prevent recirculation loop. */
84 #define MAX_RECIRC_DEPTH 5
85 DEFINE_STATIC_PER_THREAD_DATA(uint32_t, recirc_depth, 0)
86
87 /* Configuration parameters. */
88 enum { MAX_FLOWS = 65536 }; /* Maximum number of flows in flow table. */
89
90 /* Protects against changes to 'dp_netdevs'. */
91 static struct ovs_mutex dp_netdev_mutex = OVS_MUTEX_INITIALIZER;
92
93 /* Contains all 'struct dp_netdev's. */
94 static struct shash dp_netdevs OVS_GUARDED_BY(dp_netdev_mutex)
95 = SHASH_INITIALIZER(&dp_netdevs);
96
97 static struct vlog_rate_limit upcall_rl = VLOG_RATE_LIMIT_INIT(600, 600);
98
99 #define DP_NETDEV_CS_SUPPORTED_MASK (CS_NEW | CS_ESTABLISHED | CS_RELATED \
100 | CS_INVALID | CS_REPLY_DIR | CS_TRACKED)
101 #define DP_NETDEV_CS_UNSUPPORTED_MASK (~(uint32_t)DP_NETDEV_CS_SUPPORTED_MASK)
102
103 static struct odp_support dp_netdev_support = {
104 .max_mpls_depth = SIZE_MAX,
105 .recirc = true,
106 .ct_state = true,
107 .ct_zone = true,
108 .ct_mark = true,
109 .ct_label = true,
110 };
111
112 /* Stores a miniflow with inline values */
113
114 struct netdev_flow_key {
115 uint32_t hash; /* Hash function differs for different users. */
116 uint32_t len; /* Length of the following miniflow (incl. map). */
117 struct miniflow mf;
118 uint64_t buf[FLOW_MAX_PACKET_U64S];
119 };
120
121 /* Exact match cache for frequently used flows
122 *
123 * The cache uses a 32-bit hash of the packet (which can be the RSS hash) to
124 * search its entries for a miniflow that matches exactly the miniflow of the
125 * packet. It stores the 'dpcls_rule' (rule) that matches the miniflow.
126 *
127 * A cache entry holds a reference to its 'dp_netdev_flow'.
128 *
129 * A miniflow with a given hash can be in one of EM_FLOW_HASH_SEGS different
130 * entries. The 32-bit hash is split into EM_FLOW_HASH_SEGS values (each of
131 * them is EM_FLOW_HASH_SHIFT bits wide and the remainder is thrown away). Each
132 * value is the index of a cache entry where the miniflow could be.
133 *
134 *
135 * Thread-safety
136 * =============
137 *
138 * Each pmd_thread has its own private exact match cache.
139 * If dp_netdev_input is not called from a pmd thread, a mutex is used.
140 */
141
142 #define EM_FLOW_HASH_SHIFT 13
143 #define EM_FLOW_HASH_ENTRIES (1u << EM_FLOW_HASH_SHIFT)
144 #define EM_FLOW_HASH_MASK (EM_FLOW_HASH_ENTRIES - 1)
145 #define EM_FLOW_HASH_SEGS 2
146
147 struct emc_entry {
148 struct dp_netdev_flow *flow;
149 struct netdev_flow_key key; /* key.hash used for emc hash value. */
150 };
151
152 struct emc_cache {
153 struct emc_entry entries[EM_FLOW_HASH_ENTRIES];
154 int sweep_idx; /* For emc_cache_slow_sweep(). */
155 };
156
157 /* Iterate in the exact match cache through every entry that might contain a
158 * miniflow with hash 'HASH'. */
159 #define EMC_FOR_EACH_POS_WITH_HASH(EMC, CURRENT_ENTRY, HASH) \
160 for (uint32_t i__ = 0, srch_hash__ = (HASH); \
161 (CURRENT_ENTRY) = &(EMC)->entries[srch_hash__ & EM_FLOW_HASH_MASK], \
162 i__ < EM_FLOW_HASH_SEGS; \
163 i__++, srch_hash__ >>= EM_FLOW_HASH_SHIFT)
164 \f
165 /* Simple non-wildcarding single-priority classifier. */
166
167 /* Time in ms between successive optimizations of the dpcls subtable vector */
168 #define DPCLS_OPTIMIZATION_INTERVAL 1000
169
170 struct dpcls {
171 struct cmap_node node; /* Within dp_netdev_pmd_thread.classifiers */
172 odp_port_t in_port;
173 struct cmap subtables_map;
174 struct pvector subtables;
175 };
176
177 /* A rule to be inserted to the classifier. */
178 struct dpcls_rule {
179 struct cmap_node cmap_node; /* Within struct dpcls_subtable 'rules'. */
180 struct netdev_flow_key *mask; /* Subtable's mask. */
181 struct netdev_flow_key flow; /* Matching key. */
182 /* 'flow' must be the last field, additional space is allocated here. */
183 };
184
185 static void dpcls_init(struct dpcls *);
186 static void dpcls_destroy(struct dpcls *);
187 static void dpcls_sort_subtable_vector(struct dpcls *);
188 static void dpcls_insert(struct dpcls *, struct dpcls_rule *,
189 const struct netdev_flow_key *mask);
190 static void dpcls_remove(struct dpcls *, struct dpcls_rule *);
191 static bool dpcls_lookup(struct dpcls *cls,
192 const struct netdev_flow_key keys[],
193 struct dpcls_rule **rules, size_t cnt,
194 int *num_lookups_p);
195 \f
196 /* Datapath based on the network device interface from netdev.h.
197 *
198 *
199 * Thread-safety
200 * =============
201 *
202 * Some members, marked 'const', are immutable. Accessing other members
203 * requires synchronization, as noted in more detail below.
204 *
205 * Acquisition order is, from outermost to innermost:
206 *
207 * dp_netdev_mutex (global)
208 * port_mutex
209 * non_pmd_mutex
210 */
211 struct dp_netdev {
212 const struct dpif_class *const class;
213 const char *const name;
214 struct dpif *dpif;
215 struct ovs_refcount ref_cnt;
216 atomic_flag destroyed;
217
218 /* Ports.
219 *
220 * Any lookup into 'ports' or any access to the dp_netdev_ports found
221 * through 'ports' requires taking 'port_mutex'. */
222 struct ovs_mutex port_mutex;
223 struct hmap ports;
224 struct seq *port_seq; /* Incremented whenever a port changes. */
225
226 /* Protects access to ofproto-dpif-upcall interface during revalidator
227 * thread synchronization. */
228 struct fat_rwlock upcall_rwlock;
229 upcall_callback *upcall_cb; /* Callback function for executing upcalls. */
230 void *upcall_aux;
231
232 /* Callback function for notifying the purging of dp flows (during
233 * reseting pmd deletion). */
234 dp_purge_callback *dp_purge_cb;
235 void *dp_purge_aux;
236
237 /* Stores all 'struct dp_netdev_pmd_thread's. */
238 struct cmap poll_threads;
239
240 /* Protects the access of the 'struct dp_netdev_pmd_thread'
241 * instance for non-pmd thread. */
242 struct ovs_mutex non_pmd_mutex;
243
244 /* Each pmd thread will store its pointer to
245 * 'struct dp_netdev_pmd_thread' in 'per_pmd_key'. */
246 ovsthread_key_t per_pmd_key;
247
248 struct seq *reconfigure_seq;
249 uint64_t last_reconfigure_seq;
250
251 /* Cpu mask for pin of pmd threads. */
252 char *pmd_cmask;
253
254 uint64_t last_tnl_conf_seq;
255
256 struct conntrack conntrack;
257 };
258
259 static struct dp_netdev_port *dp_netdev_lookup_port(const struct dp_netdev *dp,
260 odp_port_t)
261 OVS_REQUIRES(dp->port_mutex);
262
263 enum dp_stat_type {
264 DP_STAT_EXACT_HIT, /* Packets that had an exact match (emc). */
265 DP_STAT_MASKED_HIT, /* Packets that matched in the flow table. */
266 DP_STAT_MISS, /* Packets that did not match. */
267 DP_STAT_LOST, /* Packets not passed up to the client. */
268 DP_STAT_LOOKUP_HIT, /* Number of subtable lookups for flow table
269 hits */
270 DP_N_STATS
271 };
272
273 enum pmd_cycles_counter_type {
274 PMD_CYCLES_POLLING, /* Cycles spent polling NICs. */
275 PMD_CYCLES_PROCESSING, /* Cycles spent processing packets */
276 PMD_N_CYCLES
277 };
278
279 #define XPS_TIMEOUT_MS 500LL
280
281 /* Contained by struct dp_netdev_port's 'rxqs' member. */
282 struct dp_netdev_rxq {
283 struct netdev_rxq *rxq;
284 unsigned core_id; /* Сore to which this queue is pinned. */
285 };
286
287 /* A port in a netdev-based datapath. */
288 struct dp_netdev_port {
289 odp_port_t port_no;
290 struct netdev *netdev;
291 struct hmap_node node; /* Node in dp_netdev's 'ports'. */
292 struct netdev_saved_flags *sf;
293 struct dp_netdev_rxq *rxqs;
294 unsigned n_rxq; /* Number of elements in 'rxq' */
295 bool dynamic_txqs; /* If true XPS will be used. */
296 unsigned *txq_used; /* Number of threads that uses each tx queue. */
297 struct ovs_mutex txq_used_mutex;
298 char *type; /* Port type as requested by user. */
299 char *rxq_affinity_list; /* Requested affinity of rx queues. */
300 };
301
302 /* Contained by struct dp_netdev_flow's 'stats' member. */
303 struct dp_netdev_flow_stats {
304 atomic_llong used; /* Last used time, in monotonic msecs. */
305 atomic_ullong packet_count; /* Number of packets matched. */
306 atomic_ullong byte_count; /* Number of bytes matched. */
307 atomic_uint16_t tcp_flags; /* Bitwise-OR of seen tcp_flags values. */
308 };
309
310 /* A flow in 'dp_netdev_pmd_thread's 'flow_table'.
311 *
312 *
313 * Thread-safety
314 * =============
315 *
316 * Except near the beginning or ending of its lifespan, rule 'rule' belongs to
317 * its pmd thread's classifier. The text below calls this classifier 'cls'.
318 *
319 * Motivation
320 * ----------
321 *
322 * The thread safety rules described here for "struct dp_netdev_flow" are
323 * motivated by two goals:
324 *
325 * - Prevent threads that read members of "struct dp_netdev_flow" from
326 * reading bad data due to changes by some thread concurrently modifying
327 * those members.
328 *
329 * - Prevent two threads making changes to members of a given "struct
330 * dp_netdev_flow" from interfering with each other.
331 *
332 *
333 * Rules
334 * -----
335 *
336 * A flow 'flow' may be accessed without a risk of being freed during an RCU
337 * grace period. Code that needs to hold onto a flow for a while
338 * should try incrementing 'flow->ref_cnt' with dp_netdev_flow_ref().
339 *
340 * 'flow->ref_cnt' protects 'flow' from being freed. It doesn't protect the
341 * flow from being deleted from 'cls' and it doesn't protect members of 'flow'
342 * from modification.
343 *
344 * Some members, marked 'const', are immutable. Accessing other members
345 * requires synchronization, as noted in more detail below.
346 */
347 struct dp_netdev_flow {
348 const struct flow flow; /* Unmasked flow that created this entry. */
349 /* Hash table index by unmasked flow. */
350 const struct cmap_node node; /* In owning dp_netdev_pmd_thread's */
351 /* 'flow_table'. */
352 const ovs_u128 ufid; /* Unique flow identifier. */
353 const unsigned pmd_id; /* The 'core_id' of pmd thread owning this */
354 /* flow. */
355
356 /* Number of references.
357 * The classifier owns one reference.
358 * Any thread trying to keep a rule from being freed should hold its own
359 * reference. */
360 struct ovs_refcount ref_cnt;
361
362 bool dead;
363
364 /* Statistics. */
365 struct dp_netdev_flow_stats stats;
366
367 /* Actions. */
368 OVSRCU_TYPE(struct dp_netdev_actions *) actions;
369
370 /* While processing a group of input packets, the datapath uses the next
371 * member to store a pointer to the output batch for the flow. It is
372 * reset after the batch has been sent out (See dp_netdev_queue_batches(),
373 * packet_batch_per_flow_init() and packet_batch_per_flow_execute()). */
374 struct packet_batch_per_flow *batch;
375
376 /* Packet classification. */
377 struct dpcls_rule cr; /* In owning dp_netdev's 'cls'. */
378 /* 'cr' must be the last member. */
379 };
380
381 static void dp_netdev_flow_unref(struct dp_netdev_flow *);
382 static bool dp_netdev_flow_ref(struct dp_netdev_flow *);
383 static int dpif_netdev_flow_from_nlattrs(const struct nlattr *, uint32_t,
384 struct flow *);
385
386 /* A set of datapath actions within a "struct dp_netdev_flow".
387 *
388 *
389 * Thread-safety
390 * =============
391 *
392 * A struct dp_netdev_actions 'actions' is protected with RCU. */
393 struct dp_netdev_actions {
394 /* These members are immutable: they do not change during the struct's
395 * lifetime. */
396 unsigned int size; /* Size of 'actions', in bytes. */
397 struct nlattr actions[]; /* Sequence of OVS_ACTION_ATTR_* attributes. */
398 };
399
400 struct dp_netdev_actions *dp_netdev_actions_create(const struct nlattr *,
401 size_t);
402 struct dp_netdev_actions *dp_netdev_flow_get_actions(
403 const struct dp_netdev_flow *);
404 static void dp_netdev_actions_free(struct dp_netdev_actions *);
405
406 /* Contained by struct dp_netdev_pmd_thread's 'stats' member. */
407 struct dp_netdev_pmd_stats {
408 /* Indexed by DP_STAT_*. */
409 atomic_ullong n[DP_N_STATS];
410 };
411
412 /* Contained by struct dp_netdev_pmd_thread's 'cycle' member. */
413 struct dp_netdev_pmd_cycles {
414 /* Indexed by PMD_CYCLES_*. */
415 atomic_ullong n[PMD_N_CYCLES];
416 };
417
418 /* Contained by struct dp_netdev_pmd_thread's 'poll_list' member. */
419 struct rxq_poll {
420 struct dp_netdev_port *port;
421 struct netdev_rxq *rx;
422 struct ovs_list node;
423 };
424
425 /* Contained by struct dp_netdev_pmd_thread's 'port_cache' or 'tx_ports'. */
426 struct tx_port {
427 struct dp_netdev_port *port;
428 int qid;
429 long long last_used;
430 struct hmap_node node;
431 };
432
433 /* PMD: Poll modes drivers. PMD accesses devices via polling to eliminate
434 * the performance overhead of interrupt processing. Therefore netdev can
435 * not implement rx-wait for these devices. dpif-netdev needs to poll
436 * these device to check for recv buffer. pmd-thread does polling for
437 * devices assigned to itself.
438 *
439 * DPDK used PMD for accessing NIC.
440 *
441 * Note, instance with cpu core id NON_PMD_CORE_ID will be reserved for
442 * I/O of all non-pmd threads. There will be no actual thread created
443 * for the instance.
444 *
445 * Each struct has its own flow table and classifier. Packets received
446 * from managed ports are looked up in the corresponding pmd thread's
447 * flow table, and are executed with the found actions.
448 * */
449 struct dp_netdev_pmd_thread {
450 struct dp_netdev *dp;
451 struct ovs_refcount ref_cnt; /* Every reference must be refcount'ed. */
452 struct cmap_node node; /* In 'dp->poll_threads'. */
453
454 pthread_cond_t cond; /* For synchronizing pmd thread reload. */
455 struct ovs_mutex cond_mutex; /* Mutex for condition variable. */
456
457 /* Per thread exact-match cache. Note, the instance for cpu core
458 * NON_PMD_CORE_ID can be accessed by multiple threads, and thusly
459 * need to be protected by 'non_pmd_mutex'. Every other instance
460 * will only be accessed by its own pmd thread. */
461 struct emc_cache flow_cache;
462
463 /* Flow-Table and classifiers
464 *
465 * Writers of 'flow_table' must take the 'flow_mutex'. Corresponding
466 * changes to 'classifiers' must be made while still holding the
467 * 'flow_mutex'.
468 */
469 struct ovs_mutex flow_mutex;
470 struct cmap flow_table OVS_GUARDED; /* Flow table. */
471
472 /* One classifier per in_port polled by the pmd */
473 struct cmap classifiers;
474 /* Periodically sort subtable vectors according to hit frequencies */
475 long long int next_optimization;
476
477 /* Statistics. */
478 struct dp_netdev_pmd_stats stats;
479
480 /* Cycles counters */
481 struct dp_netdev_pmd_cycles cycles;
482
483 /* Used to count cicles. See 'cycles_counter_end()' */
484 unsigned long long last_cycles;
485
486 struct latch exit_latch; /* For terminating the pmd thread. */
487 atomic_uint change_seq; /* For reloading pmd ports. */
488 pthread_t thread;
489 unsigned core_id; /* CPU core id of this pmd thread. */
490 int numa_id; /* numa node id of this pmd thread. */
491 bool isolated;
492
493 /* Queue id used by this pmd thread to send packets on all netdevs if
494 * XPS disabled for this netdev. All static_tx_qid's are unique and less
495 * than 'ovs_numa_get_n_cores() + 1'. */
496 atomic_int static_tx_qid;
497
498 struct ovs_mutex port_mutex; /* Mutex for 'poll_list' and 'tx_ports'. */
499 /* List of rx queues to poll. */
500 struct ovs_list poll_list OVS_GUARDED;
501 /* Number of elements in 'poll_list' */
502 int poll_cnt;
503 /* Map of 'tx_port's used for transmission. Written by the main thread,
504 * read by the pmd thread. */
505 struct hmap tx_ports OVS_GUARDED;
506
507 /* Map of 'tx_port' used in the fast path. This is a thread-local copy of
508 * 'tx_ports'. The instance for cpu core NON_PMD_CORE_ID can be accessed
509 * by multiple threads, and thusly need to be protected by 'non_pmd_mutex'.
510 * Every other instance will only be accessed by its own pmd thread. */
511 struct hmap port_cache;
512
513 /* Only a pmd thread can write on its own 'cycles' and 'stats'.
514 * The main thread keeps 'stats_zero' and 'cycles_zero' as base
515 * values and subtracts them from 'stats' and 'cycles' before
516 * reporting to the user */
517 unsigned long long stats_zero[DP_N_STATS];
518 uint64_t cycles_zero[PMD_N_CYCLES];
519 };
520
521 #define PMD_INITIAL_SEQ 1
522
523 /* Interface to netdev-based datapath. */
524 struct dpif_netdev {
525 struct dpif dpif;
526 struct dp_netdev *dp;
527 uint64_t last_port_seq;
528 };
529
530 static int get_port_by_number(struct dp_netdev *dp, odp_port_t port_no,
531 struct dp_netdev_port **portp)
532 OVS_REQUIRES(dp->port_mutex);
533 static int get_port_by_name(struct dp_netdev *dp, const char *devname,
534 struct dp_netdev_port **portp)
535 OVS_REQUIRES(dp->port_mutex);
536 static void dp_netdev_free(struct dp_netdev *)
537 OVS_REQUIRES(dp_netdev_mutex);
538 static int do_add_port(struct dp_netdev *dp, const char *devname,
539 const char *type, odp_port_t port_no)
540 OVS_REQUIRES(dp->port_mutex);
541 static void do_del_port(struct dp_netdev *dp, struct dp_netdev_port *)
542 OVS_REQUIRES(dp->port_mutex);
543 static int dpif_netdev_open(const struct dpif_class *, const char *name,
544 bool create, struct dpif **);
545 static void dp_netdev_execute_actions(struct dp_netdev_pmd_thread *pmd,
546 struct dp_packet_batch *,
547 bool may_steal, const struct flow *flow,
548 const struct nlattr *actions,
549 size_t actions_len,
550 long long now);
551 static void dp_netdev_input(struct dp_netdev_pmd_thread *,
552 struct dp_packet_batch *, odp_port_t port_no);
553 static void dp_netdev_recirculate(struct dp_netdev_pmd_thread *,
554 struct dp_packet_batch *);
555
556 static void dp_netdev_disable_upcall(struct dp_netdev *);
557 static void dp_netdev_pmd_reload_done(struct dp_netdev_pmd_thread *pmd);
558 static void dp_netdev_configure_pmd(struct dp_netdev_pmd_thread *pmd,
559 struct dp_netdev *dp, unsigned core_id,
560 int numa_id);
561 static void dp_netdev_destroy_pmd(struct dp_netdev_pmd_thread *pmd);
562 static void dp_netdev_set_nonpmd(struct dp_netdev *dp)
563 OVS_REQUIRES(dp->port_mutex);
564
565 static struct dp_netdev_pmd_thread *dp_netdev_get_pmd(struct dp_netdev *dp,
566 unsigned core_id);
567 static struct dp_netdev_pmd_thread *
568 dp_netdev_pmd_get_next(struct dp_netdev *dp, struct cmap_position *pos);
569 static void dp_netdev_destroy_all_pmds(struct dp_netdev *dp);
570 static void dp_netdev_del_pmds_on_numa(struct dp_netdev *dp, int numa_id);
571 static void dp_netdev_set_pmds_on_numa(struct dp_netdev *dp, int numa_id)
572 OVS_REQUIRES(dp->port_mutex);
573 static void dp_netdev_pmd_clear_ports(struct dp_netdev_pmd_thread *pmd);
574 static void dp_netdev_del_port_from_all_pmds(struct dp_netdev *dp,
575 struct dp_netdev_port *port);
576 static void dp_netdev_add_port_to_pmds(struct dp_netdev *dp,
577 struct dp_netdev_port *port);
578 static void dp_netdev_add_port_tx_to_pmd(struct dp_netdev_pmd_thread *pmd,
579 struct dp_netdev_port *port);
580 static void dp_netdev_add_rxq_to_pmd(struct dp_netdev_pmd_thread *pmd,
581 struct dp_netdev_port *port,
582 struct netdev_rxq *rx);
583 static struct dp_netdev_pmd_thread *
584 dp_netdev_less_loaded_pmd_on_numa(struct dp_netdev *dp, int numa_id);
585 static void dp_netdev_reset_pmd_threads(struct dp_netdev *dp)
586 OVS_REQUIRES(dp->port_mutex);
587 static void reconfigure_pmd_threads(struct dp_netdev *dp)
588 OVS_REQUIRES(dp->port_mutex);
589 static bool dp_netdev_pmd_try_ref(struct dp_netdev_pmd_thread *pmd);
590 static void dp_netdev_pmd_unref(struct dp_netdev_pmd_thread *pmd);
591 static void dp_netdev_pmd_flow_flush(struct dp_netdev_pmd_thread *pmd);
592 static void pmd_load_cached_ports(struct dp_netdev_pmd_thread *pmd)
593 OVS_REQUIRES(pmd->port_mutex);
594 static inline void
595 dp_netdev_pmd_try_optimize(struct dp_netdev_pmd_thread *pmd);
596
597 static void
598 dpif_netdev_xps_revalidate_pmd(const struct dp_netdev_pmd_thread *pmd,
599 long long now, bool purge);
600 static int dpif_netdev_xps_get_tx_qid(const struct dp_netdev_pmd_thread *pmd,
601 struct tx_port *tx, long long now);
602
603 static inline bool emc_entry_alive(struct emc_entry *ce);
604 static void emc_clear_entry(struct emc_entry *ce);
605
606 static void
607 emc_cache_init(struct emc_cache *flow_cache)
608 {
609 int i;
610
611 flow_cache->sweep_idx = 0;
612 for (i = 0; i < ARRAY_SIZE(flow_cache->entries); i++) {
613 flow_cache->entries[i].flow = NULL;
614 flow_cache->entries[i].key.hash = 0;
615 flow_cache->entries[i].key.len = sizeof(struct miniflow);
616 flowmap_init(&flow_cache->entries[i].key.mf.map);
617 }
618 }
619
620 static void
621 emc_cache_uninit(struct emc_cache *flow_cache)
622 {
623 int i;
624
625 for (i = 0; i < ARRAY_SIZE(flow_cache->entries); i++) {
626 emc_clear_entry(&flow_cache->entries[i]);
627 }
628 }
629
630 /* Check and clear dead flow references slowly (one entry at each
631 * invocation). */
632 static void
633 emc_cache_slow_sweep(struct emc_cache *flow_cache)
634 {
635 struct emc_entry *entry = &flow_cache->entries[flow_cache->sweep_idx];
636
637 if (!emc_entry_alive(entry)) {
638 emc_clear_entry(entry);
639 }
640 flow_cache->sweep_idx = (flow_cache->sweep_idx + 1) & EM_FLOW_HASH_MASK;
641 }
642
643 /* Returns true if 'dpif' is a netdev or dummy dpif, false otherwise. */
644 bool
645 dpif_is_netdev(const struct dpif *dpif)
646 {
647 return dpif->dpif_class->open == dpif_netdev_open;
648 }
649
650 static struct dpif_netdev *
651 dpif_netdev_cast(const struct dpif *dpif)
652 {
653 ovs_assert(dpif_is_netdev(dpif));
654 return CONTAINER_OF(dpif, struct dpif_netdev, dpif);
655 }
656
657 static struct dp_netdev *
658 get_dp_netdev(const struct dpif *dpif)
659 {
660 return dpif_netdev_cast(dpif)->dp;
661 }
662 \f
663 enum pmd_info_type {
664 PMD_INFO_SHOW_STATS, /* Show how cpu cycles are spent. */
665 PMD_INFO_CLEAR_STATS, /* Set the cycles count to 0. */
666 PMD_INFO_SHOW_RXQ /* Show poll-lists of pmd threads. */
667 };
668
669 static void
670 pmd_info_show_stats(struct ds *reply,
671 struct dp_netdev_pmd_thread *pmd,
672 unsigned long long stats[DP_N_STATS],
673 uint64_t cycles[PMD_N_CYCLES])
674 {
675 unsigned long long total_packets = 0;
676 uint64_t total_cycles = 0;
677 int i;
678
679 /* These loops subtracts reference values ('*_zero') from the counters.
680 * Since loads and stores are relaxed, it might be possible for a '*_zero'
681 * value to be more recent than the current value we're reading from the
682 * counter. This is not a big problem, since these numbers are not
683 * supposed to be too accurate, but we should at least make sure that
684 * the result is not negative. */
685 for (i = 0; i < DP_N_STATS; i++) {
686 if (stats[i] > pmd->stats_zero[i]) {
687 stats[i] -= pmd->stats_zero[i];
688 } else {
689 stats[i] = 0;
690 }
691
692 if (i != DP_STAT_LOST) {
693 /* Lost packets are already included in DP_STAT_MISS */
694 total_packets += stats[i];
695 }
696 }
697
698 for (i = 0; i < PMD_N_CYCLES; i++) {
699 if (cycles[i] > pmd->cycles_zero[i]) {
700 cycles[i] -= pmd->cycles_zero[i];
701 } else {
702 cycles[i] = 0;
703 }
704
705 total_cycles += cycles[i];
706 }
707
708 ds_put_cstr(reply, (pmd->core_id == NON_PMD_CORE_ID)
709 ? "main thread" : "pmd thread");
710
711 if (pmd->numa_id != OVS_NUMA_UNSPEC) {
712 ds_put_format(reply, " numa_id %d", pmd->numa_id);
713 }
714 if (pmd->core_id != OVS_CORE_UNSPEC && pmd->core_id != NON_PMD_CORE_ID) {
715 ds_put_format(reply, " core_id %u", pmd->core_id);
716 }
717 ds_put_cstr(reply, ":\n");
718
719 ds_put_format(reply,
720 "\temc hits:%llu\n\tmegaflow hits:%llu\n"
721 "\tavg. subtable lookups per hit:%.2f\n"
722 "\tmiss:%llu\n\tlost:%llu\n",
723 stats[DP_STAT_EXACT_HIT], stats[DP_STAT_MASKED_HIT],
724 stats[DP_STAT_MASKED_HIT] > 0
725 ? (1.0*stats[DP_STAT_LOOKUP_HIT])/stats[DP_STAT_MASKED_HIT]
726 : 0,
727 stats[DP_STAT_MISS], stats[DP_STAT_LOST]);
728
729 if (total_cycles == 0) {
730 return;
731 }
732
733 ds_put_format(reply,
734 "\tpolling cycles:%"PRIu64" (%.02f%%)\n"
735 "\tprocessing cycles:%"PRIu64" (%.02f%%)\n",
736 cycles[PMD_CYCLES_POLLING],
737 cycles[PMD_CYCLES_POLLING] / (double)total_cycles * 100,
738 cycles[PMD_CYCLES_PROCESSING],
739 cycles[PMD_CYCLES_PROCESSING] / (double)total_cycles * 100);
740
741 if (total_packets == 0) {
742 return;
743 }
744
745 ds_put_format(reply,
746 "\tavg cycles per packet: %.02f (%"PRIu64"/%llu)\n",
747 total_cycles / (double)total_packets,
748 total_cycles, total_packets);
749
750 ds_put_format(reply,
751 "\tavg processing cycles per packet: "
752 "%.02f (%"PRIu64"/%llu)\n",
753 cycles[PMD_CYCLES_PROCESSING] / (double)total_packets,
754 cycles[PMD_CYCLES_PROCESSING], total_packets);
755 }
756
757 static void
758 pmd_info_clear_stats(struct ds *reply OVS_UNUSED,
759 struct dp_netdev_pmd_thread *pmd,
760 unsigned long long stats[DP_N_STATS],
761 uint64_t cycles[PMD_N_CYCLES])
762 {
763 int i;
764
765 /* We cannot write 'stats' and 'cycles' (because they're written by other
766 * threads) and we shouldn't change 'stats' (because they're used to count
767 * datapath stats, which must not be cleared here). Instead, we save the
768 * current values and subtract them from the values to be displayed in the
769 * future */
770 for (i = 0; i < DP_N_STATS; i++) {
771 pmd->stats_zero[i] = stats[i];
772 }
773 for (i = 0; i < PMD_N_CYCLES; i++) {
774 pmd->cycles_zero[i] = cycles[i];
775 }
776 }
777
778 static void
779 pmd_info_show_rxq(struct ds *reply, struct dp_netdev_pmd_thread *pmd)
780 {
781 if (pmd->core_id != NON_PMD_CORE_ID) {
782 struct rxq_poll *poll;
783 const char *prev_name = NULL;
784
785 ds_put_format(reply,
786 "pmd thread numa_id %d core_id %u:\n\tisolated : %s\n",
787 pmd->numa_id, pmd->core_id, (pmd->isolated)
788 ? "true" : "false");
789
790 ovs_mutex_lock(&pmd->port_mutex);
791 LIST_FOR_EACH (poll, node, &pmd->poll_list) {
792 const char *name = netdev_get_name(poll->port->netdev);
793
794 if (!prev_name || strcmp(name, prev_name)) {
795 if (prev_name) {
796 ds_put_cstr(reply, "\n");
797 }
798 ds_put_format(reply, "\tport: %s\tqueue-id:",
799 netdev_get_name(poll->port->netdev));
800 }
801 ds_put_format(reply, " %d", netdev_rxq_get_queue_id(poll->rx));
802 prev_name = name;
803 }
804 ovs_mutex_unlock(&pmd->port_mutex);
805 ds_put_cstr(reply, "\n");
806 }
807 }
808
809 static void
810 dpif_netdev_pmd_info(struct unixctl_conn *conn, int argc, const char *argv[],
811 void *aux)
812 {
813 struct ds reply = DS_EMPTY_INITIALIZER;
814 struct dp_netdev_pmd_thread *pmd;
815 struct dp_netdev *dp = NULL;
816 enum pmd_info_type type = *(enum pmd_info_type *) aux;
817
818 ovs_mutex_lock(&dp_netdev_mutex);
819
820 if (argc == 2) {
821 dp = shash_find_data(&dp_netdevs, argv[1]);
822 } else if (shash_count(&dp_netdevs) == 1) {
823 /* There's only one datapath */
824 dp = shash_first(&dp_netdevs)->data;
825 }
826
827 if (!dp) {
828 ovs_mutex_unlock(&dp_netdev_mutex);
829 unixctl_command_reply_error(conn,
830 "please specify an existing datapath");
831 return;
832 }
833
834 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
835 if (type == PMD_INFO_SHOW_RXQ) {
836 pmd_info_show_rxq(&reply, pmd);
837 } else {
838 unsigned long long stats[DP_N_STATS];
839 uint64_t cycles[PMD_N_CYCLES];
840 int i;
841
842 /* Read current stats and cycle counters */
843 for (i = 0; i < ARRAY_SIZE(stats); i++) {
844 atomic_read_relaxed(&pmd->stats.n[i], &stats[i]);
845 }
846 for (i = 0; i < ARRAY_SIZE(cycles); i++) {
847 atomic_read_relaxed(&pmd->cycles.n[i], &cycles[i]);
848 }
849
850 if (type == PMD_INFO_CLEAR_STATS) {
851 pmd_info_clear_stats(&reply, pmd, stats, cycles);
852 } else if (type == PMD_INFO_SHOW_STATS) {
853 pmd_info_show_stats(&reply, pmd, stats, cycles);
854 }
855 }
856 }
857
858 ovs_mutex_unlock(&dp_netdev_mutex);
859
860 unixctl_command_reply(conn, ds_cstr(&reply));
861 ds_destroy(&reply);
862 }
863 \f
864 static int
865 dpif_netdev_init(void)
866 {
867 static enum pmd_info_type show_aux = PMD_INFO_SHOW_STATS,
868 clear_aux = PMD_INFO_CLEAR_STATS,
869 poll_aux = PMD_INFO_SHOW_RXQ;
870
871 unixctl_command_register("dpif-netdev/pmd-stats-show", "[dp]",
872 0, 1, dpif_netdev_pmd_info,
873 (void *)&show_aux);
874 unixctl_command_register("dpif-netdev/pmd-stats-clear", "[dp]",
875 0, 1, dpif_netdev_pmd_info,
876 (void *)&clear_aux);
877 unixctl_command_register("dpif-netdev/pmd-rxq-show", "[dp]",
878 0, 1, dpif_netdev_pmd_info,
879 (void *)&poll_aux);
880 return 0;
881 }
882
883 static int
884 dpif_netdev_enumerate(struct sset *all_dps,
885 const struct dpif_class *dpif_class)
886 {
887 struct shash_node *node;
888
889 ovs_mutex_lock(&dp_netdev_mutex);
890 SHASH_FOR_EACH(node, &dp_netdevs) {
891 struct dp_netdev *dp = node->data;
892 if (dpif_class != dp->class) {
893 /* 'dp_netdevs' contains both "netdev" and "dummy" dpifs.
894 * If the class doesn't match, skip this dpif. */
895 continue;
896 }
897 sset_add(all_dps, node->name);
898 }
899 ovs_mutex_unlock(&dp_netdev_mutex);
900
901 return 0;
902 }
903
904 static bool
905 dpif_netdev_class_is_dummy(const struct dpif_class *class)
906 {
907 return class != &dpif_netdev_class;
908 }
909
910 static const char *
911 dpif_netdev_port_open_type(const struct dpif_class *class, const char *type)
912 {
913 return strcmp(type, "internal") ? type
914 : dpif_netdev_class_is_dummy(class) ? "dummy-internal"
915 : "tap";
916 }
917
918 static struct dpif *
919 create_dpif_netdev(struct dp_netdev *dp)
920 {
921 uint16_t netflow_id = hash_string(dp->name, 0);
922 struct dpif_netdev *dpif;
923
924 ovs_refcount_ref(&dp->ref_cnt);
925
926 dpif = xmalloc(sizeof *dpif);
927 dpif_init(&dpif->dpif, dp->class, dp->name, netflow_id >> 8, netflow_id);
928 dpif->dp = dp;
929 dpif->last_port_seq = seq_read(dp->port_seq);
930
931 return &dpif->dpif;
932 }
933
934 /* Choose an unused, non-zero port number and return it on success.
935 * Return ODPP_NONE on failure. */
936 static odp_port_t
937 choose_port(struct dp_netdev *dp, const char *name)
938 OVS_REQUIRES(dp->port_mutex)
939 {
940 uint32_t port_no;
941
942 if (dp->class != &dpif_netdev_class) {
943 const char *p;
944 int start_no = 0;
945
946 /* If the port name begins with "br", start the number search at
947 * 100 to make writing tests easier. */
948 if (!strncmp(name, "br", 2)) {
949 start_no = 100;
950 }
951
952 /* If the port name contains a number, try to assign that port number.
953 * This can make writing unit tests easier because port numbers are
954 * predictable. */
955 for (p = name; *p != '\0'; p++) {
956 if (isdigit((unsigned char) *p)) {
957 port_no = start_no + strtol(p, NULL, 10);
958 if (port_no > 0 && port_no != odp_to_u32(ODPP_NONE)
959 && !dp_netdev_lookup_port(dp, u32_to_odp(port_no))) {
960 return u32_to_odp(port_no);
961 }
962 break;
963 }
964 }
965 }
966
967 for (port_no = 1; port_no <= UINT16_MAX; port_no++) {
968 if (!dp_netdev_lookup_port(dp, u32_to_odp(port_no))) {
969 return u32_to_odp(port_no);
970 }
971 }
972
973 return ODPP_NONE;
974 }
975
976 static int
977 create_dp_netdev(const char *name, const struct dpif_class *class,
978 struct dp_netdev **dpp)
979 OVS_REQUIRES(dp_netdev_mutex)
980 {
981 struct dp_netdev *dp;
982 int error;
983
984 dp = xzalloc(sizeof *dp);
985 shash_add(&dp_netdevs, name, dp);
986
987 *CONST_CAST(const struct dpif_class **, &dp->class) = class;
988 *CONST_CAST(const char **, &dp->name) = xstrdup(name);
989 ovs_refcount_init(&dp->ref_cnt);
990 atomic_flag_clear(&dp->destroyed);
991
992 ovs_mutex_init(&dp->port_mutex);
993 hmap_init(&dp->ports);
994 dp->port_seq = seq_create();
995 fat_rwlock_init(&dp->upcall_rwlock);
996
997 dp->reconfigure_seq = seq_create();
998 dp->last_reconfigure_seq = seq_read(dp->reconfigure_seq);
999
1000 /* Disable upcalls by default. */
1001 dp_netdev_disable_upcall(dp);
1002 dp->upcall_aux = NULL;
1003 dp->upcall_cb = NULL;
1004
1005 conntrack_init(&dp->conntrack);
1006
1007 cmap_init(&dp->poll_threads);
1008 ovs_mutex_init_recursive(&dp->non_pmd_mutex);
1009 ovsthread_key_create(&dp->per_pmd_key, NULL);
1010
1011 ovs_mutex_lock(&dp->port_mutex);
1012 dp_netdev_set_nonpmd(dp);
1013
1014 error = do_add_port(dp, name, dpif_netdev_port_open_type(dp->class,
1015 "internal"),
1016 ODPP_LOCAL);
1017 ovs_mutex_unlock(&dp->port_mutex);
1018 if (error) {
1019 dp_netdev_free(dp);
1020 return error;
1021 }
1022
1023 dp->last_tnl_conf_seq = seq_read(tnl_conf_seq);
1024 *dpp = dp;
1025 return 0;
1026 }
1027
1028 static void
1029 dp_netdev_request_reconfigure(struct dp_netdev *dp)
1030 {
1031 seq_change(dp->reconfigure_seq);
1032 }
1033
1034 static bool
1035 dp_netdev_is_reconf_required(struct dp_netdev *dp)
1036 {
1037 return seq_read(dp->reconfigure_seq) != dp->last_reconfigure_seq;
1038 }
1039
1040 static int
1041 dpif_netdev_open(const struct dpif_class *class, const char *name,
1042 bool create, struct dpif **dpifp)
1043 {
1044 struct dp_netdev *dp;
1045 int error;
1046
1047 ovs_mutex_lock(&dp_netdev_mutex);
1048 dp = shash_find_data(&dp_netdevs, name);
1049 if (!dp) {
1050 error = create ? create_dp_netdev(name, class, &dp) : ENODEV;
1051 } else {
1052 error = (dp->class != class ? EINVAL
1053 : create ? EEXIST
1054 : 0);
1055 }
1056 if (!error) {
1057 *dpifp = create_dpif_netdev(dp);
1058 dp->dpif = *dpifp;
1059 }
1060 ovs_mutex_unlock(&dp_netdev_mutex);
1061
1062 return error;
1063 }
1064
1065 static void
1066 dp_netdev_destroy_upcall_lock(struct dp_netdev *dp)
1067 OVS_NO_THREAD_SAFETY_ANALYSIS
1068 {
1069 /* Check that upcalls are disabled, i.e. that the rwlock is taken */
1070 ovs_assert(fat_rwlock_tryrdlock(&dp->upcall_rwlock));
1071
1072 /* Before freeing a lock we should release it */
1073 fat_rwlock_unlock(&dp->upcall_rwlock);
1074 fat_rwlock_destroy(&dp->upcall_rwlock);
1075 }
1076
1077 /* Requires dp_netdev_mutex so that we can't get a new reference to 'dp'
1078 * through the 'dp_netdevs' shash while freeing 'dp'. */
1079 static void
1080 dp_netdev_free(struct dp_netdev *dp)
1081 OVS_REQUIRES(dp_netdev_mutex)
1082 {
1083 struct dp_netdev_port *port, *next;
1084
1085 shash_find_and_delete(&dp_netdevs, dp->name);
1086
1087 dp_netdev_destroy_all_pmds(dp);
1088 ovs_mutex_destroy(&dp->non_pmd_mutex);
1089 ovsthread_key_delete(dp->per_pmd_key);
1090
1091 conntrack_destroy(&dp->conntrack);
1092
1093 ovs_mutex_lock(&dp->port_mutex);
1094 HMAP_FOR_EACH_SAFE (port, next, node, &dp->ports) {
1095 do_del_port(dp, port);
1096 }
1097 ovs_mutex_unlock(&dp->port_mutex);
1098 cmap_destroy(&dp->poll_threads);
1099
1100 seq_destroy(dp->reconfigure_seq);
1101
1102 seq_destroy(dp->port_seq);
1103 hmap_destroy(&dp->ports);
1104 ovs_mutex_destroy(&dp->port_mutex);
1105
1106 /* Upcalls must be disabled at this point */
1107 dp_netdev_destroy_upcall_lock(dp);
1108
1109 free(dp->pmd_cmask);
1110 free(CONST_CAST(char *, dp->name));
1111 free(dp);
1112 }
1113
1114 static void
1115 dp_netdev_unref(struct dp_netdev *dp)
1116 {
1117 if (dp) {
1118 /* Take dp_netdev_mutex so that, if dp->ref_cnt falls to zero, we can't
1119 * get a new reference to 'dp' through the 'dp_netdevs' shash. */
1120 ovs_mutex_lock(&dp_netdev_mutex);
1121 if (ovs_refcount_unref_relaxed(&dp->ref_cnt) == 1) {
1122 dp_netdev_free(dp);
1123 }
1124 ovs_mutex_unlock(&dp_netdev_mutex);
1125 }
1126 }
1127
1128 static void
1129 dpif_netdev_close(struct dpif *dpif)
1130 {
1131 struct dp_netdev *dp = get_dp_netdev(dpif);
1132
1133 dp_netdev_unref(dp);
1134 free(dpif);
1135 }
1136
1137 static int
1138 dpif_netdev_destroy(struct dpif *dpif)
1139 {
1140 struct dp_netdev *dp = get_dp_netdev(dpif);
1141
1142 if (!atomic_flag_test_and_set(&dp->destroyed)) {
1143 if (ovs_refcount_unref_relaxed(&dp->ref_cnt) == 1) {
1144 /* Can't happen: 'dpif' still owns a reference to 'dp'. */
1145 OVS_NOT_REACHED();
1146 }
1147 }
1148
1149 return 0;
1150 }
1151
1152 /* Add 'n' to the atomic variable 'var' non-atomically and using relaxed
1153 * load/store semantics. While the increment is not atomic, the load and
1154 * store operations are, making it impossible to read inconsistent values.
1155 *
1156 * This is used to update thread local stats counters. */
1157 static void
1158 non_atomic_ullong_add(atomic_ullong *var, unsigned long long n)
1159 {
1160 unsigned long long tmp;
1161
1162 atomic_read_relaxed(var, &tmp);
1163 tmp += n;
1164 atomic_store_relaxed(var, tmp);
1165 }
1166
1167 static int
1168 dpif_netdev_get_stats(const struct dpif *dpif, struct dpif_dp_stats *stats)
1169 {
1170 struct dp_netdev *dp = get_dp_netdev(dpif);
1171 struct dp_netdev_pmd_thread *pmd;
1172
1173 stats->n_flows = stats->n_hit = stats->n_missed = stats->n_lost = 0;
1174 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
1175 unsigned long long n;
1176 stats->n_flows += cmap_count(&pmd->flow_table);
1177
1178 atomic_read_relaxed(&pmd->stats.n[DP_STAT_MASKED_HIT], &n);
1179 stats->n_hit += n;
1180 atomic_read_relaxed(&pmd->stats.n[DP_STAT_EXACT_HIT], &n);
1181 stats->n_hit += n;
1182 atomic_read_relaxed(&pmd->stats.n[DP_STAT_MISS], &n);
1183 stats->n_missed += n;
1184 atomic_read_relaxed(&pmd->stats.n[DP_STAT_LOST], &n);
1185 stats->n_lost += n;
1186 }
1187 stats->n_masks = UINT32_MAX;
1188 stats->n_mask_hit = UINT64_MAX;
1189
1190 return 0;
1191 }
1192
1193 static void
1194 dp_netdev_reload_pmd__(struct dp_netdev_pmd_thread *pmd)
1195 {
1196 int old_seq;
1197
1198 if (pmd->core_id == NON_PMD_CORE_ID) {
1199 ovs_mutex_lock(&pmd->dp->non_pmd_mutex);
1200 ovs_mutex_lock(&pmd->port_mutex);
1201 pmd_load_cached_ports(pmd);
1202 ovs_mutex_unlock(&pmd->port_mutex);
1203 ovs_mutex_unlock(&pmd->dp->non_pmd_mutex);
1204 return;
1205 }
1206
1207 ovs_mutex_lock(&pmd->cond_mutex);
1208 atomic_add_relaxed(&pmd->change_seq, 1, &old_seq);
1209 ovs_mutex_cond_wait(&pmd->cond, &pmd->cond_mutex);
1210 ovs_mutex_unlock(&pmd->cond_mutex);
1211 }
1212
1213 static uint32_t
1214 hash_port_no(odp_port_t port_no)
1215 {
1216 return hash_int(odp_to_u32(port_no), 0);
1217 }
1218
1219 static int
1220 port_create(const char *devname, const char *type,
1221 odp_port_t port_no, struct dp_netdev_port **portp)
1222 {
1223 struct netdev_saved_flags *sf;
1224 struct dp_netdev_port *port;
1225 enum netdev_flags flags;
1226 struct netdev *netdev;
1227 int n_open_rxqs = 0;
1228 int n_cores = 0;
1229 int i, error;
1230 bool dynamic_txqs = false;
1231
1232 *portp = NULL;
1233
1234 /* Open and validate network device. */
1235 error = netdev_open(devname, type, &netdev);
1236 if (error) {
1237 return error;
1238 }
1239 /* XXX reject non-Ethernet devices */
1240
1241 netdev_get_flags(netdev, &flags);
1242 if (flags & NETDEV_LOOPBACK) {
1243 VLOG_ERR("%s: cannot add a loopback device", devname);
1244 error = EINVAL;
1245 goto out;
1246 }
1247
1248 if (netdev_is_pmd(netdev)) {
1249 n_cores = ovs_numa_get_n_cores();
1250
1251 if (n_cores == OVS_CORE_UNSPEC) {
1252 VLOG_ERR("%s, cannot get cpu core info", devname);
1253 error = ENOENT;
1254 goto out;
1255 }
1256 /* There can only be ovs_numa_get_n_cores() pmd threads,
1257 * so creates a txq for each, and one extra for the non
1258 * pmd threads. */
1259 error = netdev_set_tx_multiq(netdev, n_cores + 1);
1260 if (error && (error != EOPNOTSUPP)) {
1261 VLOG_ERR("%s, cannot set multiq", devname);
1262 goto out;
1263 }
1264 }
1265
1266 if (netdev_is_reconf_required(netdev)) {
1267 error = netdev_reconfigure(netdev);
1268 if (error) {
1269 goto out;
1270 }
1271 }
1272
1273 if (netdev_is_pmd(netdev)) {
1274 if (netdev_n_txq(netdev) < n_cores + 1) {
1275 dynamic_txqs = true;
1276 }
1277 }
1278
1279 port = xzalloc(sizeof *port);
1280 port->port_no = port_no;
1281 port->netdev = netdev;
1282 port->n_rxq = netdev_n_rxq(netdev);
1283 port->rxqs = xcalloc(port->n_rxq, sizeof *port->rxqs);
1284 port->txq_used = xcalloc(netdev_n_txq(netdev), sizeof *port->txq_used);
1285 port->type = xstrdup(type);
1286 ovs_mutex_init(&port->txq_used_mutex);
1287 port->dynamic_txqs = dynamic_txqs;
1288
1289 for (i = 0; i < port->n_rxq; i++) {
1290 error = netdev_rxq_open(netdev, &port->rxqs[i].rxq, i);
1291 if (error) {
1292 VLOG_ERR("%s: cannot receive packets on this network device (%s)",
1293 devname, ovs_strerror(errno));
1294 goto out_rxq_close;
1295 }
1296 port->rxqs[i].core_id = OVS_CORE_UNSPEC;
1297 n_open_rxqs++;
1298 }
1299
1300 error = netdev_turn_flags_on(netdev, NETDEV_PROMISC, &sf);
1301 if (error) {
1302 goto out_rxq_close;
1303 }
1304 port->sf = sf;
1305
1306 *portp = port;
1307
1308 return 0;
1309
1310 out_rxq_close:
1311 for (i = 0; i < n_open_rxqs; i++) {
1312 netdev_rxq_close(port->rxqs[i].rxq);
1313 }
1314 ovs_mutex_destroy(&port->txq_used_mutex);
1315 free(port->type);
1316 free(port->txq_used);
1317 free(port->rxqs);
1318 free(port);
1319
1320 out:
1321 netdev_close(netdev);
1322 return error;
1323 }
1324
1325 static int
1326 do_add_port(struct dp_netdev *dp, const char *devname, const char *type,
1327 odp_port_t port_no)
1328 OVS_REQUIRES(dp->port_mutex)
1329 {
1330 struct dp_netdev_port *port;
1331 int error;
1332
1333 /* Reject devices already in 'dp'. */
1334 if (!get_port_by_name(dp, devname, &port)) {
1335 return EEXIST;
1336 }
1337
1338 error = port_create(devname, type, port_no, &port);
1339 if (error) {
1340 return error;
1341 }
1342
1343 if (netdev_is_pmd(port->netdev)) {
1344 int numa_id = netdev_get_numa_id(port->netdev);
1345
1346 ovs_assert(ovs_numa_numa_id_is_valid(numa_id));
1347 dp_netdev_set_pmds_on_numa(dp, numa_id);
1348 }
1349
1350 dp_netdev_add_port_to_pmds(dp, port);
1351
1352 hmap_insert(&dp->ports, &port->node, hash_port_no(port_no));
1353 seq_change(dp->port_seq);
1354
1355 return 0;
1356 }
1357
1358 static int
1359 dpif_netdev_port_add(struct dpif *dpif, struct netdev *netdev,
1360 odp_port_t *port_nop)
1361 {
1362 struct dp_netdev *dp = get_dp_netdev(dpif);
1363 char namebuf[NETDEV_VPORT_NAME_BUFSIZE];
1364 const char *dpif_port;
1365 odp_port_t port_no;
1366 int error;
1367
1368 ovs_mutex_lock(&dp->port_mutex);
1369 dpif_port = netdev_vport_get_dpif_port(netdev, namebuf, sizeof namebuf);
1370 if (*port_nop != ODPP_NONE) {
1371 port_no = *port_nop;
1372 error = dp_netdev_lookup_port(dp, *port_nop) ? EBUSY : 0;
1373 } else {
1374 port_no = choose_port(dp, dpif_port);
1375 error = port_no == ODPP_NONE ? EFBIG : 0;
1376 }
1377 if (!error) {
1378 *port_nop = port_no;
1379 error = do_add_port(dp, dpif_port, netdev_get_type(netdev), port_no);
1380 }
1381 ovs_mutex_unlock(&dp->port_mutex);
1382
1383 return error;
1384 }
1385
1386 static int
1387 dpif_netdev_port_del(struct dpif *dpif, odp_port_t port_no)
1388 {
1389 struct dp_netdev *dp = get_dp_netdev(dpif);
1390 int error;
1391
1392 ovs_mutex_lock(&dp->port_mutex);
1393 if (port_no == ODPP_LOCAL) {
1394 error = EINVAL;
1395 } else {
1396 struct dp_netdev_port *port;
1397
1398 error = get_port_by_number(dp, port_no, &port);
1399 if (!error) {
1400 do_del_port(dp, port);
1401 }
1402 }
1403 ovs_mutex_unlock(&dp->port_mutex);
1404
1405 return error;
1406 }
1407
1408 static bool
1409 is_valid_port_number(odp_port_t port_no)
1410 {
1411 return port_no != ODPP_NONE;
1412 }
1413
1414 static struct dp_netdev_port *
1415 dp_netdev_lookup_port(const struct dp_netdev *dp, odp_port_t port_no)
1416 OVS_REQUIRES(dp->port_mutex)
1417 {
1418 struct dp_netdev_port *port;
1419
1420 HMAP_FOR_EACH_WITH_HASH (port, node, hash_port_no(port_no), &dp->ports) {
1421 if (port->port_no == port_no) {
1422 return port;
1423 }
1424 }
1425 return NULL;
1426 }
1427
1428 static int
1429 get_port_by_number(struct dp_netdev *dp,
1430 odp_port_t port_no, struct dp_netdev_port **portp)
1431 OVS_REQUIRES(dp->port_mutex)
1432 {
1433 if (!is_valid_port_number(port_no)) {
1434 *portp = NULL;
1435 return EINVAL;
1436 } else {
1437 *portp = dp_netdev_lookup_port(dp, port_no);
1438 return *portp ? 0 : ENODEV;
1439 }
1440 }
1441
1442 static void
1443 port_destroy(struct dp_netdev_port *port)
1444 {
1445 if (!port) {
1446 return;
1447 }
1448
1449 netdev_close(port->netdev);
1450 netdev_restore_flags(port->sf);
1451
1452 for (unsigned i = 0; i < port->n_rxq; i++) {
1453 netdev_rxq_close(port->rxqs[i].rxq);
1454 }
1455 ovs_mutex_destroy(&port->txq_used_mutex);
1456 free(port->rxq_affinity_list);
1457 free(port->txq_used);
1458 free(port->rxqs);
1459 free(port->type);
1460 free(port);
1461 }
1462
1463 static int
1464 get_port_by_name(struct dp_netdev *dp,
1465 const char *devname, struct dp_netdev_port **portp)
1466 OVS_REQUIRES(dp->port_mutex)
1467 {
1468 struct dp_netdev_port *port;
1469
1470 HMAP_FOR_EACH (port, node, &dp->ports) {
1471 if (!strcmp(netdev_get_name(port->netdev), devname)) {
1472 *portp = port;
1473 return 0;
1474 }
1475 }
1476
1477 /* Callers of dpif_netdev_port_query_by_name() expect ENODEV for a non
1478 * existing port. */
1479 return ENODEV;
1480 }
1481
1482 static int
1483 get_n_pmd_threads(struct dp_netdev *dp)
1484 {
1485 /* There is one non pmd thread in dp->poll_threads */
1486 return cmap_count(&dp->poll_threads) - 1;
1487 }
1488
1489 static int
1490 get_n_pmd_threads_on_numa(struct dp_netdev *dp, int numa_id)
1491 {
1492 struct dp_netdev_pmd_thread *pmd;
1493 int n_pmds = 0;
1494
1495 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
1496 if (pmd->numa_id == numa_id) {
1497 n_pmds++;
1498 }
1499 }
1500
1501 return n_pmds;
1502 }
1503
1504 /* Returns 'true' if there is a port with pmd netdev and the netdev is on
1505 * numa node 'numa_id' or its rx queue assigned to core on that numa node . */
1506 static bool
1507 has_pmd_rxq_for_numa(struct dp_netdev *dp, int numa_id)
1508 OVS_REQUIRES(dp->port_mutex)
1509 {
1510 struct dp_netdev_port *port;
1511
1512 HMAP_FOR_EACH (port, node, &dp->ports) {
1513 if (netdev_is_pmd(port->netdev)) {
1514 int i;
1515
1516 if (netdev_get_numa_id(port->netdev) == numa_id) {
1517 return true;
1518 }
1519
1520 for (i = 0; i < port->n_rxq; i++) {
1521 unsigned core_id = port->rxqs[i].core_id;
1522
1523 if (core_id != OVS_CORE_UNSPEC
1524 && ovs_numa_get_numa_id(core_id) == numa_id) {
1525 return true;
1526 }
1527 }
1528 }
1529 }
1530
1531 return false;
1532 }
1533
1534
1535 static void
1536 do_del_port(struct dp_netdev *dp, struct dp_netdev_port *port)
1537 OVS_REQUIRES(dp->port_mutex)
1538 {
1539 hmap_remove(&dp->ports, &port->node);
1540 seq_change(dp->port_seq);
1541
1542 dp_netdev_del_port_from_all_pmds(dp, port);
1543
1544 if (netdev_is_pmd(port->netdev)) {
1545 int numa_id = netdev_get_numa_id(port->netdev);
1546
1547 /* PMD threads can not be on invalid numa node. */
1548 ovs_assert(ovs_numa_numa_id_is_valid(numa_id));
1549 /* If there is no netdev on the numa node, deletes the pmd threads
1550 * for that numa. */
1551 if (!has_pmd_rxq_for_numa(dp, numa_id)) {
1552 dp_netdev_del_pmds_on_numa(dp, numa_id);
1553 }
1554 }
1555
1556 port_destroy(port);
1557 }
1558
1559 static void
1560 answer_port_query(const struct dp_netdev_port *port,
1561 struct dpif_port *dpif_port)
1562 {
1563 dpif_port->name = xstrdup(netdev_get_name(port->netdev));
1564 dpif_port->type = xstrdup(port->type);
1565 dpif_port->port_no = port->port_no;
1566 }
1567
1568 static int
1569 dpif_netdev_port_query_by_number(const struct dpif *dpif, odp_port_t port_no,
1570 struct dpif_port *dpif_port)
1571 {
1572 struct dp_netdev *dp = get_dp_netdev(dpif);
1573 struct dp_netdev_port *port;
1574 int error;
1575
1576 ovs_mutex_lock(&dp->port_mutex);
1577 error = get_port_by_number(dp, port_no, &port);
1578 if (!error && dpif_port) {
1579 answer_port_query(port, dpif_port);
1580 }
1581 ovs_mutex_unlock(&dp->port_mutex);
1582
1583 return error;
1584 }
1585
1586 static int
1587 dpif_netdev_port_query_by_name(const struct dpif *dpif, const char *devname,
1588 struct dpif_port *dpif_port)
1589 {
1590 struct dp_netdev *dp = get_dp_netdev(dpif);
1591 struct dp_netdev_port *port;
1592 int error;
1593
1594 ovs_mutex_lock(&dp->port_mutex);
1595 error = get_port_by_name(dp, devname, &port);
1596 if (!error && dpif_port) {
1597 answer_port_query(port, dpif_port);
1598 }
1599 ovs_mutex_unlock(&dp->port_mutex);
1600
1601 return error;
1602 }
1603
1604 static void
1605 dp_netdev_flow_free(struct dp_netdev_flow *flow)
1606 {
1607 dp_netdev_actions_free(dp_netdev_flow_get_actions(flow));
1608 free(flow);
1609 }
1610
1611 static void dp_netdev_flow_unref(struct dp_netdev_flow *flow)
1612 {
1613 if (ovs_refcount_unref_relaxed(&flow->ref_cnt) == 1) {
1614 ovsrcu_postpone(dp_netdev_flow_free, flow);
1615 }
1616 }
1617
1618 static uint32_t
1619 dp_netdev_flow_hash(const ovs_u128 *ufid)
1620 {
1621 return ufid->u32[0];
1622 }
1623
1624 static inline struct dpcls *
1625 dp_netdev_pmd_lookup_dpcls(struct dp_netdev_pmd_thread *pmd,
1626 odp_port_t in_port)
1627 {
1628 struct dpcls *cls;
1629 uint32_t hash = hash_port_no(in_port);
1630 CMAP_FOR_EACH_WITH_HASH (cls, node, hash, &pmd->classifiers) {
1631 if (cls->in_port == in_port) {
1632 /* Port classifier exists already */
1633 return cls;
1634 }
1635 }
1636 return NULL;
1637 }
1638
1639 static inline struct dpcls *
1640 dp_netdev_pmd_find_dpcls(struct dp_netdev_pmd_thread *pmd,
1641 odp_port_t in_port)
1642 OVS_REQUIRES(pmd->flow_mutex)
1643 {
1644 struct dpcls *cls = dp_netdev_pmd_lookup_dpcls(pmd, in_port);
1645 uint32_t hash = hash_port_no(in_port);
1646
1647 if (!cls) {
1648 /* Create new classifier for in_port */
1649 cls = xmalloc(sizeof(*cls));
1650 dpcls_init(cls);
1651 cls->in_port = in_port;
1652 cmap_insert(&pmd->classifiers, &cls->node, hash);
1653 VLOG_DBG("Creating dpcls %p for in_port %d", cls, in_port);
1654 }
1655 return cls;
1656 }
1657
1658 static void
1659 dp_netdev_pmd_remove_flow(struct dp_netdev_pmd_thread *pmd,
1660 struct dp_netdev_flow *flow)
1661 OVS_REQUIRES(pmd->flow_mutex)
1662 {
1663 struct cmap_node *node = CONST_CAST(struct cmap_node *, &flow->node);
1664 struct dpcls *cls;
1665 odp_port_t in_port = flow->flow.in_port.odp_port;
1666
1667 cls = dp_netdev_pmd_lookup_dpcls(pmd, in_port);
1668 ovs_assert(cls != NULL);
1669 dpcls_remove(cls, &flow->cr);
1670 cmap_remove(&pmd->flow_table, node, dp_netdev_flow_hash(&flow->ufid));
1671 flow->dead = true;
1672
1673 dp_netdev_flow_unref(flow);
1674 }
1675
1676 static void
1677 dp_netdev_pmd_flow_flush(struct dp_netdev_pmd_thread *pmd)
1678 {
1679 struct dp_netdev_flow *netdev_flow;
1680
1681 ovs_mutex_lock(&pmd->flow_mutex);
1682 CMAP_FOR_EACH (netdev_flow, node, &pmd->flow_table) {
1683 dp_netdev_pmd_remove_flow(pmd, netdev_flow);
1684 }
1685 ovs_mutex_unlock(&pmd->flow_mutex);
1686 }
1687
1688 static int
1689 dpif_netdev_flow_flush(struct dpif *dpif)
1690 {
1691 struct dp_netdev *dp = get_dp_netdev(dpif);
1692 struct dp_netdev_pmd_thread *pmd;
1693
1694 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
1695 dp_netdev_pmd_flow_flush(pmd);
1696 }
1697
1698 return 0;
1699 }
1700
1701 struct dp_netdev_port_state {
1702 struct hmap_position position;
1703 char *name;
1704 };
1705
1706 static int
1707 dpif_netdev_port_dump_start(const struct dpif *dpif OVS_UNUSED, void **statep)
1708 {
1709 *statep = xzalloc(sizeof(struct dp_netdev_port_state));
1710 return 0;
1711 }
1712
1713 static int
1714 dpif_netdev_port_dump_next(const struct dpif *dpif, void *state_,
1715 struct dpif_port *dpif_port)
1716 {
1717 struct dp_netdev_port_state *state = state_;
1718 struct dp_netdev *dp = get_dp_netdev(dpif);
1719 struct hmap_node *node;
1720 int retval;
1721
1722 ovs_mutex_lock(&dp->port_mutex);
1723 node = hmap_at_position(&dp->ports, &state->position);
1724 if (node) {
1725 struct dp_netdev_port *port;
1726
1727 port = CONTAINER_OF(node, struct dp_netdev_port, node);
1728
1729 free(state->name);
1730 state->name = xstrdup(netdev_get_name(port->netdev));
1731 dpif_port->name = state->name;
1732 dpif_port->type = port->type;
1733 dpif_port->port_no = port->port_no;
1734
1735 retval = 0;
1736 } else {
1737 retval = EOF;
1738 }
1739 ovs_mutex_unlock(&dp->port_mutex);
1740
1741 return retval;
1742 }
1743
1744 static int
1745 dpif_netdev_port_dump_done(const struct dpif *dpif OVS_UNUSED, void *state_)
1746 {
1747 struct dp_netdev_port_state *state = state_;
1748 free(state->name);
1749 free(state);
1750 return 0;
1751 }
1752
1753 static int
1754 dpif_netdev_port_poll(const struct dpif *dpif_, char **devnamep OVS_UNUSED)
1755 {
1756 struct dpif_netdev *dpif = dpif_netdev_cast(dpif_);
1757 uint64_t new_port_seq;
1758 int error;
1759
1760 new_port_seq = seq_read(dpif->dp->port_seq);
1761 if (dpif->last_port_seq != new_port_seq) {
1762 dpif->last_port_seq = new_port_seq;
1763 error = ENOBUFS;
1764 } else {
1765 error = EAGAIN;
1766 }
1767
1768 return error;
1769 }
1770
1771 static void
1772 dpif_netdev_port_poll_wait(const struct dpif *dpif_)
1773 {
1774 struct dpif_netdev *dpif = dpif_netdev_cast(dpif_);
1775
1776 seq_wait(dpif->dp->port_seq, dpif->last_port_seq);
1777 }
1778
1779 static struct dp_netdev_flow *
1780 dp_netdev_flow_cast(const struct dpcls_rule *cr)
1781 {
1782 return cr ? CONTAINER_OF(cr, struct dp_netdev_flow, cr) : NULL;
1783 }
1784
1785 static bool dp_netdev_flow_ref(struct dp_netdev_flow *flow)
1786 {
1787 return ovs_refcount_try_ref_rcu(&flow->ref_cnt);
1788 }
1789
1790 /* netdev_flow_key utilities.
1791 *
1792 * netdev_flow_key is basically a miniflow. We use these functions
1793 * (netdev_flow_key_clone, netdev_flow_key_equal, ...) instead of the miniflow
1794 * functions (miniflow_clone_inline, miniflow_equal, ...), because:
1795 *
1796 * - Since we are dealing exclusively with miniflows created by
1797 * miniflow_extract(), if the map is different the miniflow is different.
1798 * Therefore we can be faster by comparing the map and the miniflow in a
1799 * single memcmp().
1800 * - These functions can be inlined by the compiler. */
1801
1802 /* Given the number of bits set in miniflow's maps, returns the size of the
1803 * 'netdev_flow_key.mf' */
1804 static inline size_t
1805 netdev_flow_key_size(size_t flow_u64s)
1806 {
1807 return sizeof(struct miniflow) + MINIFLOW_VALUES_SIZE(flow_u64s);
1808 }
1809
1810 static inline bool
1811 netdev_flow_key_equal(const struct netdev_flow_key *a,
1812 const struct netdev_flow_key *b)
1813 {
1814 /* 'b->len' may be not set yet. */
1815 return a->hash == b->hash && !memcmp(&a->mf, &b->mf, a->len);
1816 }
1817
1818 /* Used to compare 'netdev_flow_key' in the exact match cache to a miniflow.
1819 * The maps are compared bitwise, so both 'key->mf' and 'mf' must have been
1820 * generated by miniflow_extract. */
1821 static inline bool
1822 netdev_flow_key_equal_mf(const struct netdev_flow_key *key,
1823 const struct miniflow *mf)
1824 {
1825 return !memcmp(&key->mf, mf, key->len);
1826 }
1827
1828 static inline void
1829 netdev_flow_key_clone(struct netdev_flow_key *dst,
1830 const struct netdev_flow_key *src)
1831 {
1832 memcpy(dst, src,
1833 offsetof(struct netdev_flow_key, mf) + src->len);
1834 }
1835
1836 /* Slow. */
1837 static void
1838 netdev_flow_key_from_flow(struct netdev_flow_key *dst,
1839 const struct flow *src)
1840 {
1841 struct dp_packet packet;
1842 uint64_t buf_stub[512 / 8];
1843
1844 dp_packet_use_stub(&packet, buf_stub, sizeof buf_stub);
1845 pkt_metadata_from_flow(&packet.md, src);
1846 flow_compose(&packet, src);
1847 miniflow_extract(&packet, &dst->mf);
1848 dp_packet_uninit(&packet);
1849
1850 dst->len = netdev_flow_key_size(miniflow_n_values(&dst->mf));
1851 dst->hash = 0; /* Not computed yet. */
1852 }
1853
1854 /* Initialize a netdev_flow_key 'mask' from 'match'. */
1855 static inline void
1856 netdev_flow_mask_init(struct netdev_flow_key *mask,
1857 const struct match *match)
1858 {
1859 uint64_t *dst = miniflow_values(&mask->mf);
1860 struct flowmap fmap;
1861 uint32_t hash = 0;
1862 size_t idx;
1863
1864 /* Only check masks that make sense for the flow. */
1865 flow_wc_map(&match->flow, &fmap);
1866 flowmap_init(&mask->mf.map);
1867
1868 FLOWMAP_FOR_EACH_INDEX(idx, fmap) {
1869 uint64_t mask_u64 = flow_u64_value(&match->wc.masks, idx);
1870
1871 if (mask_u64) {
1872 flowmap_set(&mask->mf.map, idx, 1);
1873 *dst++ = mask_u64;
1874 hash = hash_add64(hash, mask_u64);
1875 }
1876 }
1877
1878 map_t map;
1879
1880 FLOWMAP_FOR_EACH_MAP (map, mask->mf.map) {
1881 hash = hash_add64(hash, map);
1882 }
1883
1884 size_t n = dst - miniflow_get_values(&mask->mf);
1885
1886 mask->hash = hash_finish(hash, n * 8);
1887 mask->len = netdev_flow_key_size(n);
1888 }
1889
1890 /* Initializes 'dst' as a copy of 'flow' masked with 'mask'. */
1891 static inline void
1892 netdev_flow_key_init_masked(struct netdev_flow_key *dst,
1893 const struct flow *flow,
1894 const struct netdev_flow_key *mask)
1895 {
1896 uint64_t *dst_u64 = miniflow_values(&dst->mf);
1897 const uint64_t *mask_u64 = miniflow_get_values(&mask->mf);
1898 uint32_t hash = 0;
1899 uint64_t value;
1900
1901 dst->len = mask->len;
1902 dst->mf = mask->mf; /* Copy maps. */
1903
1904 FLOW_FOR_EACH_IN_MAPS(value, flow, mask->mf.map) {
1905 *dst_u64 = value & *mask_u64++;
1906 hash = hash_add64(hash, *dst_u64++);
1907 }
1908 dst->hash = hash_finish(hash,
1909 (dst_u64 - miniflow_get_values(&dst->mf)) * 8);
1910 }
1911
1912 /* Iterate through netdev_flow_key TNL u64 values specified by 'FLOWMAP'. */
1913 #define NETDEV_FLOW_KEY_FOR_EACH_IN_FLOWMAP(VALUE, KEY, FLOWMAP) \
1914 MINIFLOW_FOR_EACH_IN_FLOWMAP(VALUE, &(KEY)->mf, FLOWMAP)
1915
1916 /* Returns a hash value for the bits of 'key' where there are 1-bits in
1917 * 'mask'. */
1918 static inline uint32_t
1919 netdev_flow_key_hash_in_mask(const struct netdev_flow_key *key,
1920 const struct netdev_flow_key *mask)
1921 {
1922 const uint64_t *p = miniflow_get_values(&mask->mf);
1923 uint32_t hash = 0;
1924 uint64_t value;
1925
1926 NETDEV_FLOW_KEY_FOR_EACH_IN_FLOWMAP(value, key, mask->mf.map) {
1927 hash = hash_add64(hash, value & *p++);
1928 }
1929
1930 return hash_finish(hash, (p - miniflow_get_values(&mask->mf)) * 8);
1931 }
1932
1933 static inline bool
1934 emc_entry_alive(struct emc_entry *ce)
1935 {
1936 return ce->flow && !ce->flow->dead;
1937 }
1938
1939 static void
1940 emc_clear_entry(struct emc_entry *ce)
1941 {
1942 if (ce->flow) {
1943 dp_netdev_flow_unref(ce->flow);
1944 ce->flow = NULL;
1945 }
1946 }
1947
1948 static inline void
1949 emc_change_entry(struct emc_entry *ce, struct dp_netdev_flow *flow,
1950 const struct netdev_flow_key *key)
1951 {
1952 if (ce->flow != flow) {
1953 if (ce->flow) {
1954 dp_netdev_flow_unref(ce->flow);
1955 }
1956
1957 if (dp_netdev_flow_ref(flow)) {
1958 ce->flow = flow;
1959 } else {
1960 ce->flow = NULL;
1961 }
1962 }
1963 if (key) {
1964 netdev_flow_key_clone(&ce->key, key);
1965 }
1966 }
1967
1968 static inline void
1969 emc_insert(struct emc_cache *cache, const struct netdev_flow_key *key,
1970 struct dp_netdev_flow *flow)
1971 {
1972 struct emc_entry *to_be_replaced = NULL;
1973 struct emc_entry *current_entry;
1974
1975 EMC_FOR_EACH_POS_WITH_HASH(cache, current_entry, key->hash) {
1976 if (netdev_flow_key_equal(&current_entry->key, key)) {
1977 /* We found the entry with the 'mf' miniflow */
1978 emc_change_entry(current_entry, flow, NULL);
1979 return;
1980 }
1981
1982 /* Replacement policy: put the flow in an empty (not alive) entry, or
1983 * in the first entry where it can be */
1984 if (!to_be_replaced
1985 || (emc_entry_alive(to_be_replaced)
1986 && !emc_entry_alive(current_entry))
1987 || current_entry->key.hash < to_be_replaced->key.hash) {
1988 to_be_replaced = current_entry;
1989 }
1990 }
1991 /* We didn't find the miniflow in the cache.
1992 * The 'to_be_replaced' entry is where the new flow will be stored */
1993
1994 emc_change_entry(to_be_replaced, flow, key);
1995 }
1996
1997 static inline struct dp_netdev_flow *
1998 emc_lookup(struct emc_cache *cache, const struct netdev_flow_key *key)
1999 {
2000 struct emc_entry *current_entry;
2001
2002 EMC_FOR_EACH_POS_WITH_HASH(cache, current_entry, key->hash) {
2003 if (current_entry->key.hash == key->hash
2004 && emc_entry_alive(current_entry)
2005 && netdev_flow_key_equal_mf(&current_entry->key, &key->mf)) {
2006
2007 /* We found the entry with the 'key->mf' miniflow */
2008 return current_entry->flow;
2009 }
2010 }
2011
2012 return NULL;
2013 }
2014
2015 static struct dp_netdev_flow *
2016 dp_netdev_pmd_lookup_flow(struct dp_netdev_pmd_thread *pmd,
2017 const struct netdev_flow_key *key,
2018 int *lookup_num_p)
2019 {
2020 struct dpcls *cls;
2021 struct dpcls_rule *rule;
2022 odp_port_t in_port = u32_to_odp(MINIFLOW_GET_U32(&key->mf, in_port));
2023 struct dp_netdev_flow *netdev_flow = NULL;
2024
2025 cls = dp_netdev_pmd_lookup_dpcls(pmd, in_port);
2026 if (OVS_LIKELY(cls)) {
2027 dpcls_lookup(cls, key, &rule, 1, lookup_num_p);
2028 netdev_flow = dp_netdev_flow_cast(rule);
2029 }
2030 return netdev_flow;
2031 }
2032
2033 static struct dp_netdev_flow *
2034 dp_netdev_pmd_find_flow(const struct dp_netdev_pmd_thread *pmd,
2035 const ovs_u128 *ufidp, const struct nlattr *key,
2036 size_t key_len)
2037 {
2038 struct dp_netdev_flow *netdev_flow;
2039 struct flow flow;
2040 ovs_u128 ufid;
2041
2042 /* If a UFID is not provided, determine one based on the key. */
2043 if (!ufidp && key && key_len
2044 && !dpif_netdev_flow_from_nlattrs(key, key_len, &flow)) {
2045 dpif_flow_hash(pmd->dp->dpif, &flow, sizeof flow, &ufid);
2046 ufidp = &ufid;
2047 }
2048
2049 if (ufidp) {
2050 CMAP_FOR_EACH_WITH_HASH (netdev_flow, node, dp_netdev_flow_hash(ufidp),
2051 &pmd->flow_table) {
2052 if (ovs_u128_equals(netdev_flow->ufid, *ufidp)) {
2053 return netdev_flow;
2054 }
2055 }
2056 }
2057
2058 return NULL;
2059 }
2060
2061 static void
2062 get_dpif_flow_stats(const struct dp_netdev_flow *netdev_flow_,
2063 struct dpif_flow_stats *stats)
2064 {
2065 struct dp_netdev_flow *netdev_flow;
2066 unsigned long long n;
2067 long long used;
2068 uint16_t flags;
2069
2070 netdev_flow = CONST_CAST(struct dp_netdev_flow *, netdev_flow_);
2071
2072 atomic_read_relaxed(&netdev_flow->stats.packet_count, &n);
2073 stats->n_packets = n;
2074 atomic_read_relaxed(&netdev_flow->stats.byte_count, &n);
2075 stats->n_bytes = n;
2076 atomic_read_relaxed(&netdev_flow->stats.used, &used);
2077 stats->used = used;
2078 atomic_read_relaxed(&netdev_flow->stats.tcp_flags, &flags);
2079 stats->tcp_flags = flags;
2080 }
2081
2082 /* Converts to the dpif_flow format, using 'key_buf' and 'mask_buf' for
2083 * storing the netlink-formatted key/mask. 'key_buf' may be the same as
2084 * 'mask_buf'. Actions will be returned without copying, by relying on RCU to
2085 * protect them. */
2086 static void
2087 dp_netdev_flow_to_dpif_flow(const struct dp_netdev_flow *netdev_flow,
2088 struct ofpbuf *key_buf, struct ofpbuf *mask_buf,
2089 struct dpif_flow *flow, bool terse)
2090 {
2091 if (terse) {
2092 memset(flow, 0, sizeof *flow);
2093 } else {
2094 struct flow_wildcards wc;
2095 struct dp_netdev_actions *actions;
2096 size_t offset;
2097 struct odp_flow_key_parms odp_parms = {
2098 .flow = &netdev_flow->flow,
2099 .mask = &wc.masks,
2100 .support = dp_netdev_support,
2101 };
2102
2103 miniflow_expand(&netdev_flow->cr.mask->mf, &wc.masks);
2104 /* in_port is exact matched, but we have left it out from the mask for
2105 * optimnization reasons. Add in_port back to the mask. */
2106 wc.masks.in_port.odp_port = ODPP_NONE;
2107
2108 /* Key */
2109 offset = key_buf->size;
2110 flow->key = ofpbuf_tail(key_buf);
2111 odp_flow_key_from_flow(&odp_parms, key_buf);
2112 flow->key_len = key_buf->size - offset;
2113
2114 /* Mask */
2115 offset = mask_buf->size;
2116 flow->mask = ofpbuf_tail(mask_buf);
2117 odp_parms.key_buf = key_buf;
2118 odp_flow_key_from_mask(&odp_parms, mask_buf);
2119 flow->mask_len = mask_buf->size - offset;
2120
2121 /* Actions */
2122 actions = dp_netdev_flow_get_actions(netdev_flow);
2123 flow->actions = actions->actions;
2124 flow->actions_len = actions->size;
2125 }
2126
2127 flow->ufid = netdev_flow->ufid;
2128 flow->ufid_present = true;
2129 flow->pmd_id = netdev_flow->pmd_id;
2130 get_dpif_flow_stats(netdev_flow, &flow->stats);
2131 }
2132
2133 static int
2134 dpif_netdev_mask_from_nlattrs(const struct nlattr *key, uint32_t key_len,
2135 const struct nlattr *mask_key,
2136 uint32_t mask_key_len, const struct flow *flow,
2137 struct flow_wildcards *wc)
2138 {
2139 enum odp_key_fitness fitness;
2140
2141 fitness = odp_flow_key_to_mask(mask_key, mask_key_len, wc, flow);
2142 if (fitness) {
2143 /* This should not happen: it indicates that
2144 * odp_flow_key_from_mask() and odp_flow_key_to_mask()
2145 * disagree on the acceptable form of a mask. Log the problem
2146 * as an error, with enough details to enable debugging. */
2147 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
2148
2149 if (!VLOG_DROP_ERR(&rl)) {
2150 struct ds s;
2151
2152 ds_init(&s);
2153 odp_flow_format(key, key_len, mask_key, mask_key_len, NULL, &s,
2154 true);
2155 VLOG_ERR("internal error parsing flow mask %s (%s)",
2156 ds_cstr(&s), odp_key_fitness_to_string(fitness));
2157 ds_destroy(&s);
2158 }
2159
2160 return EINVAL;
2161 }
2162
2163 return 0;
2164 }
2165
2166 static int
2167 dpif_netdev_flow_from_nlattrs(const struct nlattr *key, uint32_t key_len,
2168 struct flow *flow)
2169 {
2170 odp_port_t in_port;
2171
2172 if (odp_flow_key_to_flow(key, key_len, flow)) {
2173 /* This should not happen: it indicates that odp_flow_key_from_flow()
2174 * and odp_flow_key_to_flow() disagree on the acceptable form of a
2175 * flow. Log the problem as an error, with enough details to enable
2176 * debugging. */
2177 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
2178
2179 if (!VLOG_DROP_ERR(&rl)) {
2180 struct ds s;
2181
2182 ds_init(&s);
2183 odp_flow_format(key, key_len, NULL, 0, NULL, &s, true);
2184 VLOG_ERR("internal error parsing flow key %s", ds_cstr(&s));
2185 ds_destroy(&s);
2186 }
2187
2188 return EINVAL;
2189 }
2190
2191 in_port = flow->in_port.odp_port;
2192 if (!is_valid_port_number(in_port) && in_port != ODPP_NONE) {
2193 return EINVAL;
2194 }
2195
2196 if (flow->ct_state & DP_NETDEV_CS_UNSUPPORTED_MASK) {
2197 return EINVAL;
2198 }
2199
2200 return 0;
2201 }
2202
2203 static int
2204 dpif_netdev_flow_get(const struct dpif *dpif, const struct dpif_flow_get *get)
2205 {
2206 struct dp_netdev *dp = get_dp_netdev(dpif);
2207 struct dp_netdev_flow *netdev_flow;
2208 struct dp_netdev_pmd_thread *pmd;
2209 struct hmapx to_find = HMAPX_INITIALIZER(&to_find);
2210 struct hmapx_node *node;
2211 int error = EINVAL;
2212
2213 if (get->pmd_id == PMD_ID_NULL) {
2214 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
2215 if (dp_netdev_pmd_try_ref(pmd) && !hmapx_add(&to_find, pmd)) {
2216 dp_netdev_pmd_unref(pmd);
2217 }
2218 }
2219 } else {
2220 pmd = dp_netdev_get_pmd(dp, get->pmd_id);
2221 if (!pmd) {
2222 goto out;
2223 }
2224 hmapx_add(&to_find, pmd);
2225 }
2226
2227 if (!hmapx_count(&to_find)) {
2228 goto out;
2229 }
2230
2231 HMAPX_FOR_EACH (node, &to_find) {
2232 pmd = (struct dp_netdev_pmd_thread *) node->data;
2233 netdev_flow = dp_netdev_pmd_find_flow(pmd, get->ufid, get->key,
2234 get->key_len);
2235 if (netdev_flow) {
2236 dp_netdev_flow_to_dpif_flow(netdev_flow, get->buffer, get->buffer,
2237 get->flow, false);
2238 error = 0;
2239 break;
2240 } else {
2241 error = ENOENT;
2242 }
2243 }
2244
2245 HMAPX_FOR_EACH (node, &to_find) {
2246 pmd = (struct dp_netdev_pmd_thread *) node->data;
2247 dp_netdev_pmd_unref(pmd);
2248 }
2249 out:
2250 hmapx_destroy(&to_find);
2251 return error;
2252 }
2253
2254 static struct dp_netdev_flow *
2255 dp_netdev_flow_add(struct dp_netdev_pmd_thread *pmd,
2256 struct match *match, const ovs_u128 *ufid,
2257 const struct nlattr *actions, size_t actions_len)
2258 OVS_REQUIRES(pmd->flow_mutex)
2259 {
2260 struct dp_netdev_flow *flow;
2261 struct netdev_flow_key mask;
2262 struct dpcls *cls;
2263
2264 /* Make sure in_port is exact matched before we read it. */
2265 ovs_assert(match->wc.masks.in_port.odp_port == ODPP_NONE);
2266 odp_port_t in_port = match->flow.in_port.odp_port;
2267
2268 /* As we select the dpcls based on the port number, each netdev flow
2269 * belonging to the same dpcls will have the same odp_port value.
2270 * For performance reasons we wildcard odp_port here in the mask. In the
2271 * typical case dp_hash is also wildcarded, and the resulting 8-byte
2272 * chunk {dp_hash, in_port} will be ignored by netdev_flow_mask_init() and
2273 * will not be part of the subtable mask.
2274 * This will speed up the hash computation during dpcls_lookup() because
2275 * there is one less call to hash_add64() in this case. */
2276 match->wc.masks.in_port.odp_port = 0;
2277 netdev_flow_mask_init(&mask, match);
2278 match->wc.masks.in_port.odp_port = ODPP_NONE;
2279
2280 /* Make sure wc does not have metadata. */
2281 ovs_assert(!FLOWMAP_HAS_FIELD(&mask.mf.map, metadata)
2282 && !FLOWMAP_HAS_FIELD(&mask.mf.map, regs));
2283
2284 /* Do not allocate extra space. */
2285 flow = xmalloc(sizeof *flow - sizeof flow->cr.flow.mf + mask.len);
2286 memset(&flow->stats, 0, sizeof flow->stats);
2287 flow->dead = false;
2288 flow->batch = NULL;
2289 *CONST_CAST(unsigned *, &flow->pmd_id) = pmd->core_id;
2290 *CONST_CAST(struct flow *, &flow->flow) = match->flow;
2291 *CONST_CAST(ovs_u128 *, &flow->ufid) = *ufid;
2292 ovs_refcount_init(&flow->ref_cnt);
2293 ovsrcu_set(&flow->actions, dp_netdev_actions_create(actions, actions_len));
2294
2295 netdev_flow_key_init_masked(&flow->cr.flow, &match->flow, &mask);
2296
2297 /* Select dpcls for in_port. Relies on in_port to be exact match. */
2298 cls = dp_netdev_pmd_find_dpcls(pmd, in_port);
2299 dpcls_insert(cls, &flow->cr, &mask);
2300
2301 cmap_insert(&pmd->flow_table, CONST_CAST(struct cmap_node *, &flow->node),
2302 dp_netdev_flow_hash(&flow->ufid));
2303
2304 if (OVS_UNLIKELY(VLOG_IS_DBG_ENABLED())) {
2305 struct ds ds = DS_EMPTY_INITIALIZER;
2306 struct ofpbuf key_buf, mask_buf;
2307 struct odp_flow_key_parms odp_parms = {
2308 .flow = &match->flow,
2309 .mask = &match->wc.masks,
2310 .support = dp_netdev_support,
2311 };
2312
2313 ofpbuf_init(&key_buf, 0);
2314 ofpbuf_init(&mask_buf, 0);
2315
2316 odp_flow_key_from_flow(&odp_parms, &key_buf);
2317 odp_parms.key_buf = &key_buf;
2318 odp_flow_key_from_mask(&odp_parms, &mask_buf);
2319
2320 ds_put_cstr(&ds, "flow_add: ");
2321 odp_format_ufid(ufid, &ds);
2322 ds_put_cstr(&ds, " ");
2323 odp_flow_format(key_buf.data, key_buf.size,
2324 mask_buf.data, mask_buf.size,
2325 NULL, &ds, false);
2326 ds_put_cstr(&ds, ", actions:");
2327 format_odp_actions(&ds, actions, actions_len);
2328
2329 VLOG_DBG_RL(&upcall_rl, "%s", ds_cstr(&ds));
2330
2331 ofpbuf_uninit(&key_buf);
2332 ofpbuf_uninit(&mask_buf);
2333 ds_destroy(&ds);
2334 }
2335
2336 return flow;
2337 }
2338
2339 static int
2340 dpif_netdev_flow_put(struct dpif *dpif, const struct dpif_flow_put *put)
2341 {
2342 struct dp_netdev *dp = get_dp_netdev(dpif);
2343 struct dp_netdev_flow *netdev_flow;
2344 struct netdev_flow_key key;
2345 struct dp_netdev_pmd_thread *pmd;
2346 struct match match;
2347 ovs_u128 ufid;
2348 unsigned pmd_id = put->pmd_id == PMD_ID_NULL
2349 ? NON_PMD_CORE_ID : put->pmd_id;
2350 int error;
2351
2352 error = dpif_netdev_flow_from_nlattrs(put->key, put->key_len, &match.flow);
2353 if (error) {
2354 return error;
2355 }
2356 error = dpif_netdev_mask_from_nlattrs(put->key, put->key_len,
2357 put->mask, put->mask_len,
2358 &match.flow, &match.wc);
2359 if (error) {
2360 return error;
2361 }
2362
2363 pmd = dp_netdev_get_pmd(dp, pmd_id);
2364 if (!pmd) {
2365 return EINVAL;
2366 }
2367
2368 /* Must produce a netdev_flow_key for lookup.
2369 * This interface is no longer performance critical, since it is not used
2370 * for upcall processing any more. */
2371 netdev_flow_key_from_flow(&key, &match.flow);
2372
2373 if (put->ufid) {
2374 ufid = *put->ufid;
2375 } else {
2376 dpif_flow_hash(dpif, &match.flow, sizeof match.flow, &ufid);
2377 }
2378
2379 ovs_mutex_lock(&pmd->flow_mutex);
2380 netdev_flow = dp_netdev_pmd_lookup_flow(pmd, &key, NULL);
2381 if (!netdev_flow) {
2382 if (put->flags & DPIF_FP_CREATE) {
2383 if (cmap_count(&pmd->flow_table) < MAX_FLOWS) {
2384 if (put->stats) {
2385 memset(put->stats, 0, sizeof *put->stats);
2386 }
2387 dp_netdev_flow_add(pmd, &match, &ufid, put->actions,
2388 put->actions_len);
2389 error = 0;
2390 } else {
2391 error = EFBIG;
2392 }
2393 } else {
2394 error = ENOENT;
2395 }
2396 } else {
2397 if (put->flags & DPIF_FP_MODIFY
2398 && flow_equal(&match.flow, &netdev_flow->flow)) {
2399 struct dp_netdev_actions *new_actions;
2400 struct dp_netdev_actions *old_actions;
2401
2402 new_actions = dp_netdev_actions_create(put->actions,
2403 put->actions_len);
2404
2405 old_actions = dp_netdev_flow_get_actions(netdev_flow);
2406 ovsrcu_set(&netdev_flow->actions, new_actions);
2407
2408 if (put->stats) {
2409 get_dpif_flow_stats(netdev_flow, put->stats);
2410 }
2411 if (put->flags & DPIF_FP_ZERO_STATS) {
2412 /* XXX: The userspace datapath uses thread local statistics
2413 * (for flows), which should be updated only by the owning
2414 * thread. Since we cannot write on stats memory here,
2415 * we choose not to support this flag. Please note:
2416 * - This feature is currently used only by dpctl commands with
2417 * option --clear.
2418 * - Should the need arise, this operation can be implemented
2419 * by keeping a base value (to be update here) for each
2420 * counter, and subtracting it before outputting the stats */
2421 error = EOPNOTSUPP;
2422 }
2423
2424 ovsrcu_postpone(dp_netdev_actions_free, old_actions);
2425 } else if (put->flags & DPIF_FP_CREATE) {
2426 error = EEXIST;
2427 } else {
2428 /* Overlapping flow. */
2429 error = EINVAL;
2430 }
2431 }
2432 ovs_mutex_unlock(&pmd->flow_mutex);
2433 dp_netdev_pmd_unref(pmd);
2434
2435 return error;
2436 }
2437
2438 static int
2439 dpif_netdev_flow_del(struct dpif *dpif, const struct dpif_flow_del *del)
2440 {
2441 struct dp_netdev *dp = get_dp_netdev(dpif);
2442 struct dp_netdev_flow *netdev_flow;
2443 struct dp_netdev_pmd_thread *pmd;
2444 unsigned pmd_id = del->pmd_id == PMD_ID_NULL
2445 ? NON_PMD_CORE_ID : del->pmd_id;
2446 int error = 0;
2447
2448 pmd = dp_netdev_get_pmd(dp, pmd_id);
2449 if (!pmd) {
2450 return EINVAL;
2451 }
2452
2453 ovs_mutex_lock(&pmd->flow_mutex);
2454 netdev_flow = dp_netdev_pmd_find_flow(pmd, del->ufid, del->key,
2455 del->key_len);
2456 if (netdev_flow) {
2457 if (del->stats) {
2458 get_dpif_flow_stats(netdev_flow, del->stats);
2459 }
2460 dp_netdev_pmd_remove_flow(pmd, netdev_flow);
2461 } else {
2462 error = ENOENT;
2463 }
2464 ovs_mutex_unlock(&pmd->flow_mutex);
2465 dp_netdev_pmd_unref(pmd);
2466
2467 return error;
2468 }
2469
2470 struct dpif_netdev_flow_dump {
2471 struct dpif_flow_dump up;
2472 struct cmap_position poll_thread_pos;
2473 struct cmap_position flow_pos;
2474 struct dp_netdev_pmd_thread *cur_pmd;
2475 int status;
2476 struct ovs_mutex mutex;
2477 };
2478
2479 static struct dpif_netdev_flow_dump *
2480 dpif_netdev_flow_dump_cast(struct dpif_flow_dump *dump)
2481 {
2482 return CONTAINER_OF(dump, struct dpif_netdev_flow_dump, up);
2483 }
2484
2485 static struct dpif_flow_dump *
2486 dpif_netdev_flow_dump_create(const struct dpif *dpif_, bool terse)
2487 {
2488 struct dpif_netdev_flow_dump *dump;
2489
2490 dump = xzalloc(sizeof *dump);
2491 dpif_flow_dump_init(&dump->up, dpif_);
2492 dump->up.terse = terse;
2493 ovs_mutex_init(&dump->mutex);
2494
2495 return &dump->up;
2496 }
2497
2498 static int
2499 dpif_netdev_flow_dump_destroy(struct dpif_flow_dump *dump_)
2500 {
2501 struct dpif_netdev_flow_dump *dump = dpif_netdev_flow_dump_cast(dump_);
2502
2503 ovs_mutex_destroy(&dump->mutex);
2504 free(dump);
2505 return 0;
2506 }
2507
2508 struct dpif_netdev_flow_dump_thread {
2509 struct dpif_flow_dump_thread up;
2510 struct dpif_netdev_flow_dump *dump;
2511 struct odputil_keybuf keybuf[FLOW_DUMP_MAX_BATCH];
2512 struct odputil_keybuf maskbuf[FLOW_DUMP_MAX_BATCH];
2513 };
2514
2515 static struct dpif_netdev_flow_dump_thread *
2516 dpif_netdev_flow_dump_thread_cast(struct dpif_flow_dump_thread *thread)
2517 {
2518 return CONTAINER_OF(thread, struct dpif_netdev_flow_dump_thread, up);
2519 }
2520
2521 static struct dpif_flow_dump_thread *
2522 dpif_netdev_flow_dump_thread_create(struct dpif_flow_dump *dump_)
2523 {
2524 struct dpif_netdev_flow_dump *dump = dpif_netdev_flow_dump_cast(dump_);
2525 struct dpif_netdev_flow_dump_thread *thread;
2526
2527 thread = xmalloc(sizeof *thread);
2528 dpif_flow_dump_thread_init(&thread->up, &dump->up);
2529 thread->dump = dump;
2530 return &thread->up;
2531 }
2532
2533 static void
2534 dpif_netdev_flow_dump_thread_destroy(struct dpif_flow_dump_thread *thread_)
2535 {
2536 struct dpif_netdev_flow_dump_thread *thread
2537 = dpif_netdev_flow_dump_thread_cast(thread_);
2538
2539 free(thread);
2540 }
2541
2542 static int
2543 dpif_netdev_flow_dump_next(struct dpif_flow_dump_thread *thread_,
2544 struct dpif_flow *flows, int max_flows)
2545 {
2546 struct dpif_netdev_flow_dump_thread *thread
2547 = dpif_netdev_flow_dump_thread_cast(thread_);
2548 struct dpif_netdev_flow_dump *dump = thread->dump;
2549 struct dp_netdev_flow *netdev_flows[FLOW_DUMP_MAX_BATCH];
2550 int n_flows = 0;
2551 int i;
2552
2553 ovs_mutex_lock(&dump->mutex);
2554 if (!dump->status) {
2555 struct dpif_netdev *dpif = dpif_netdev_cast(thread->up.dpif);
2556 struct dp_netdev *dp = get_dp_netdev(&dpif->dpif);
2557 struct dp_netdev_pmd_thread *pmd = dump->cur_pmd;
2558 int flow_limit = MIN(max_flows, FLOW_DUMP_MAX_BATCH);
2559
2560 /* First call to dump_next(), extracts the first pmd thread.
2561 * If there is no pmd thread, returns immediately. */
2562 if (!pmd) {
2563 pmd = dp_netdev_pmd_get_next(dp, &dump->poll_thread_pos);
2564 if (!pmd) {
2565 ovs_mutex_unlock(&dump->mutex);
2566 return n_flows;
2567
2568 }
2569 }
2570
2571 do {
2572 for (n_flows = 0; n_flows < flow_limit; n_flows++) {
2573 struct cmap_node *node;
2574
2575 node = cmap_next_position(&pmd->flow_table, &dump->flow_pos);
2576 if (!node) {
2577 break;
2578 }
2579 netdev_flows[n_flows] = CONTAINER_OF(node,
2580 struct dp_netdev_flow,
2581 node);
2582 }
2583 /* When finishing dumping the current pmd thread, moves to
2584 * the next. */
2585 if (n_flows < flow_limit) {
2586 memset(&dump->flow_pos, 0, sizeof dump->flow_pos);
2587 dp_netdev_pmd_unref(pmd);
2588 pmd = dp_netdev_pmd_get_next(dp, &dump->poll_thread_pos);
2589 if (!pmd) {
2590 dump->status = EOF;
2591 break;
2592 }
2593 }
2594 /* Keeps the reference to next caller. */
2595 dump->cur_pmd = pmd;
2596
2597 /* If the current dump is empty, do not exit the loop, since the
2598 * remaining pmds could have flows to be dumped. Just dumps again
2599 * on the new 'pmd'. */
2600 } while (!n_flows);
2601 }
2602 ovs_mutex_unlock(&dump->mutex);
2603
2604 for (i = 0; i < n_flows; i++) {
2605 struct odputil_keybuf *maskbuf = &thread->maskbuf[i];
2606 struct odputil_keybuf *keybuf = &thread->keybuf[i];
2607 struct dp_netdev_flow *netdev_flow = netdev_flows[i];
2608 struct dpif_flow *f = &flows[i];
2609 struct ofpbuf key, mask;
2610
2611 ofpbuf_use_stack(&key, keybuf, sizeof *keybuf);
2612 ofpbuf_use_stack(&mask, maskbuf, sizeof *maskbuf);
2613 dp_netdev_flow_to_dpif_flow(netdev_flow, &key, &mask, f,
2614 dump->up.terse);
2615 }
2616
2617 return n_flows;
2618 }
2619
2620 static int
2621 dpif_netdev_execute(struct dpif *dpif, struct dpif_execute *execute)
2622 OVS_NO_THREAD_SAFETY_ANALYSIS
2623 {
2624 struct dp_netdev *dp = get_dp_netdev(dpif);
2625 struct dp_netdev_pmd_thread *pmd;
2626 struct dp_packet_batch pp;
2627
2628 if (dp_packet_size(execute->packet) < ETH_HEADER_LEN ||
2629 dp_packet_size(execute->packet) > UINT16_MAX) {
2630 return EINVAL;
2631 }
2632
2633 /* Tries finding the 'pmd'. If NULL is returned, that means
2634 * the current thread is a non-pmd thread and should use
2635 * dp_netdev_get_pmd(dp, NON_PMD_CORE_ID). */
2636 pmd = ovsthread_getspecific(dp->per_pmd_key);
2637 if (!pmd) {
2638 pmd = dp_netdev_get_pmd(dp, NON_PMD_CORE_ID);
2639 if (!pmd) {
2640 return EBUSY;
2641 }
2642 }
2643
2644 /* If the current thread is non-pmd thread, acquires
2645 * the 'non_pmd_mutex'. */
2646 if (pmd->core_id == NON_PMD_CORE_ID) {
2647 ovs_mutex_lock(&dp->non_pmd_mutex);
2648 }
2649
2650 /* The action processing expects the RSS hash to be valid, because
2651 * it's always initialized at the beginning of datapath processing.
2652 * In this case, though, 'execute->packet' may not have gone through
2653 * the datapath at all, it may have been generated by the upper layer
2654 * (OpenFlow packet-out, BFD frame, ...). */
2655 if (!dp_packet_rss_valid(execute->packet)) {
2656 dp_packet_set_rss_hash(execute->packet,
2657 flow_hash_5tuple(execute->flow, 0));
2658 }
2659
2660 packet_batch_init_packet(&pp, execute->packet);
2661 dp_netdev_execute_actions(pmd, &pp, false, execute->flow,
2662 execute->actions, execute->actions_len,
2663 time_msec());
2664
2665 if (pmd->core_id == NON_PMD_CORE_ID) {
2666 ovs_mutex_unlock(&dp->non_pmd_mutex);
2667 dp_netdev_pmd_unref(pmd);
2668 }
2669
2670 return 0;
2671 }
2672
2673 static void
2674 dpif_netdev_operate(struct dpif *dpif, struct dpif_op **ops, size_t n_ops)
2675 {
2676 size_t i;
2677
2678 for (i = 0; i < n_ops; i++) {
2679 struct dpif_op *op = ops[i];
2680
2681 switch (op->type) {
2682 case DPIF_OP_FLOW_PUT:
2683 op->error = dpif_netdev_flow_put(dpif, &op->u.flow_put);
2684 break;
2685
2686 case DPIF_OP_FLOW_DEL:
2687 op->error = dpif_netdev_flow_del(dpif, &op->u.flow_del);
2688 break;
2689
2690 case DPIF_OP_EXECUTE:
2691 op->error = dpif_netdev_execute(dpif, &op->u.execute);
2692 break;
2693
2694 case DPIF_OP_FLOW_GET:
2695 op->error = dpif_netdev_flow_get(dpif, &op->u.flow_get);
2696 break;
2697 }
2698 }
2699 }
2700
2701 /* Changes the number or the affinity of pmd threads. The changes are actually
2702 * applied in dpif_netdev_run(). */
2703 static int
2704 dpif_netdev_pmd_set(struct dpif *dpif, const char *cmask)
2705 {
2706 struct dp_netdev *dp = get_dp_netdev(dpif);
2707
2708 if (!nullable_string_is_equal(dp->pmd_cmask, cmask)) {
2709 free(dp->pmd_cmask);
2710 dp->pmd_cmask = nullable_xstrdup(cmask);
2711 dp_netdev_request_reconfigure(dp);
2712 }
2713
2714 return 0;
2715 }
2716
2717 /* Parses affinity list and returns result in 'core_ids'. */
2718 static int
2719 parse_affinity_list(const char *affinity_list, unsigned *core_ids, int n_rxq)
2720 {
2721 unsigned i;
2722 char *list, *copy, *key, *value;
2723 int error = 0;
2724
2725 for (i = 0; i < n_rxq; i++) {
2726 core_ids[i] = OVS_CORE_UNSPEC;
2727 }
2728
2729 if (!affinity_list) {
2730 return 0;
2731 }
2732
2733 list = copy = xstrdup(affinity_list);
2734
2735 while (ofputil_parse_key_value(&list, &key, &value)) {
2736 int rxq_id, core_id;
2737
2738 if (!str_to_int(key, 0, &rxq_id) || rxq_id < 0
2739 || !str_to_int(value, 0, &core_id) || core_id < 0) {
2740 error = EINVAL;
2741 break;
2742 }
2743
2744 if (rxq_id < n_rxq) {
2745 core_ids[rxq_id] = core_id;
2746 }
2747 }
2748
2749 free(copy);
2750 return error;
2751 }
2752
2753 /* Parses 'affinity_list' and applies configuration if it is valid. */
2754 static int
2755 dpif_netdev_port_set_rxq_affinity(struct dp_netdev_port *port,
2756 const char *affinity_list)
2757 {
2758 unsigned *core_ids, i;
2759 int error = 0;
2760
2761 core_ids = xmalloc(port->n_rxq * sizeof *core_ids);
2762 if (parse_affinity_list(affinity_list, core_ids, port->n_rxq)) {
2763 error = EINVAL;
2764 goto exit;
2765 }
2766
2767 for (i = 0; i < port->n_rxq; i++) {
2768 port->rxqs[i].core_id = core_ids[i];
2769 }
2770
2771 exit:
2772 free(core_ids);
2773 return error;
2774 }
2775
2776 /* Changes the affinity of port's rx queues. The changes are actually applied
2777 * in dpif_netdev_run(). */
2778 static int
2779 dpif_netdev_port_set_config(struct dpif *dpif, odp_port_t port_no,
2780 const struct smap *cfg)
2781 {
2782 struct dp_netdev *dp = get_dp_netdev(dpif);
2783 struct dp_netdev_port *port;
2784 int error = 0;
2785 const char *affinity_list = smap_get(cfg, "pmd-rxq-affinity");
2786
2787 ovs_mutex_lock(&dp->port_mutex);
2788 error = get_port_by_number(dp, port_no, &port);
2789 if (error || !netdev_is_pmd(port->netdev)
2790 || nullable_string_is_equal(affinity_list, port->rxq_affinity_list)) {
2791 goto unlock;
2792 }
2793
2794 error = dpif_netdev_port_set_rxq_affinity(port, affinity_list);
2795 if (error) {
2796 goto unlock;
2797 }
2798 free(port->rxq_affinity_list);
2799 port->rxq_affinity_list = nullable_xstrdup(affinity_list);
2800
2801 dp_netdev_request_reconfigure(dp);
2802 unlock:
2803 ovs_mutex_unlock(&dp->port_mutex);
2804 return error;
2805 }
2806
2807 static int
2808 dpif_netdev_queue_to_priority(const struct dpif *dpif OVS_UNUSED,
2809 uint32_t queue_id, uint32_t *priority)
2810 {
2811 *priority = queue_id;
2812 return 0;
2813 }
2814
2815 \f
2816 /* Creates and returns a new 'struct dp_netdev_actions', whose actions are
2817 * a copy of the 'ofpacts_len' bytes of 'ofpacts'. */
2818 struct dp_netdev_actions *
2819 dp_netdev_actions_create(const struct nlattr *actions, size_t size)
2820 {
2821 struct dp_netdev_actions *netdev_actions;
2822
2823 netdev_actions = xmalloc(sizeof *netdev_actions + size);
2824 memcpy(netdev_actions->actions, actions, size);
2825 netdev_actions->size = size;
2826
2827 return netdev_actions;
2828 }
2829
2830 struct dp_netdev_actions *
2831 dp_netdev_flow_get_actions(const struct dp_netdev_flow *flow)
2832 {
2833 return ovsrcu_get(struct dp_netdev_actions *, &flow->actions);
2834 }
2835
2836 static void
2837 dp_netdev_actions_free(struct dp_netdev_actions *actions)
2838 {
2839 free(actions);
2840 }
2841 \f
2842 static inline unsigned long long
2843 cycles_counter(void)
2844 {
2845 #ifdef DPDK_NETDEV
2846 return rte_get_tsc_cycles();
2847 #else
2848 return 0;
2849 #endif
2850 }
2851
2852 /* Fake mutex to make sure that the calls to cycles_count_* are balanced */
2853 extern struct ovs_mutex cycles_counter_fake_mutex;
2854
2855 /* Start counting cycles. Must be followed by 'cycles_count_end()' */
2856 static inline void
2857 cycles_count_start(struct dp_netdev_pmd_thread *pmd)
2858 OVS_ACQUIRES(&cycles_counter_fake_mutex)
2859 OVS_NO_THREAD_SAFETY_ANALYSIS
2860 {
2861 pmd->last_cycles = cycles_counter();
2862 }
2863
2864 /* Stop counting cycles and add them to the counter 'type' */
2865 static inline void
2866 cycles_count_end(struct dp_netdev_pmd_thread *pmd,
2867 enum pmd_cycles_counter_type type)
2868 OVS_RELEASES(&cycles_counter_fake_mutex)
2869 OVS_NO_THREAD_SAFETY_ANALYSIS
2870 {
2871 unsigned long long interval = cycles_counter() - pmd->last_cycles;
2872
2873 non_atomic_ullong_add(&pmd->cycles.n[type], interval);
2874 }
2875
2876 static void
2877 dp_netdev_process_rxq_port(struct dp_netdev_pmd_thread *pmd,
2878 struct dp_netdev_port *port,
2879 struct netdev_rxq *rxq)
2880 {
2881 struct dp_packet_batch batch;
2882 int error;
2883
2884 dp_packet_batch_init(&batch);
2885 cycles_count_start(pmd);
2886 error = netdev_rxq_recv(rxq, &batch);
2887 cycles_count_end(pmd, PMD_CYCLES_POLLING);
2888 if (!error) {
2889 *recirc_depth_get() = 0;
2890
2891 cycles_count_start(pmd);
2892 dp_netdev_input(pmd, &batch, port->port_no);
2893 cycles_count_end(pmd, PMD_CYCLES_PROCESSING);
2894 } else if (error != EAGAIN && error != EOPNOTSUPP) {
2895 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
2896
2897 VLOG_ERR_RL(&rl, "error receiving data from %s: %s",
2898 netdev_get_name(port->netdev), ovs_strerror(error));
2899 }
2900 }
2901
2902 static int
2903 port_reconfigure(struct dp_netdev_port *port)
2904 {
2905 struct netdev *netdev = port->netdev;
2906 int i, err;
2907
2908 if (!netdev_is_reconf_required(netdev)) {
2909 return 0;
2910 }
2911
2912 /* Closes the existing 'rxq's. */
2913 for (i = 0; i < port->n_rxq; i++) {
2914 netdev_rxq_close(port->rxqs[i].rxq);
2915 port->rxqs[i].rxq = NULL;
2916 }
2917 port->n_rxq = 0;
2918
2919 /* Allows 'netdev' to apply the pending configuration changes. */
2920 err = netdev_reconfigure(netdev);
2921 if (err && (err != EOPNOTSUPP)) {
2922 VLOG_ERR("Failed to set interface %s new configuration",
2923 netdev_get_name(netdev));
2924 return err;
2925 }
2926 /* If the netdev_reconfigure() above succeeds, reopens the 'rxq's. */
2927 port->rxqs = xrealloc(port->rxqs,
2928 sizeof *port->rxqs * netdev_n_rxq(netdev));
2929 /* Realloc 'used' counters for tx queues. */
2930 free(port->txq_used);
2931 port->txq_used = xcalloc(netdev_n_txq(netdev), sizeof *port->txq_used);
2932
2933 for (i = 0; i < netdev_n_rxq(netdev); i++) {
2934 err = netdev_rxq_open(netdev, &port->rxqs[i].rxq, i);
2935 if (err) {
2936 return err;
2937 }
2938 port->n_rxq++;
2939 }
2940
2941 /* Parse affinity list to apply configuration for new queues. */
2942 dpif_netdev_port_set_rxq_affinity(port, port->rxq_affinity_list);
2943
2944 return 0;
2945 }
2946
2947 static void
2948 reconfigure_pmd_threads(struct dp_netdev *dp)
2949 OVS_REQUIRES(dp->port_mutex)
2950 {
2951 struct dp_netdev_port *port, *next;
2952 int n_cores;
2953
2954 dp->last_reconfigure_seq = seq_read(dp->reconfigure_seq);
2955
2956 dp_netdev_destroy_all_pmds(dp);
2957
2958 /* Reconfigures the cpu mask. */
2959 ovs_numa_set_cpu_mask(dp->pmd_cmask);
2960
2961 n_cores = ovs_numa_get_n_cores();
2962 if (n_cores == OVS_CORE_UNSPEC) {
2963 VLOG_ERR("Cannot get cpu core info");
2964 return;
2965 }
2966
2967 HMAP_FOR_EACH_SAFE (port, next, node, &dp->ports) {
2968 int err;
2969
2970 err = port_reconfigure(port);
2971 if (err) {
2972 hmap_remove(&dp->ports, &port->node);
2973 seq_change(dp->port_seq);
2974 port_destroy(port);
2975 } else {
2976 port->dynamic_txqs = netdev_n_txq(port->netdev) < n_cores + 1;
2977 }
2978 }
2979 /* Restores the non-pmd. */
2980 dp_netdev_set_nonpmd(dp);
2981 /* Restores all pmd threads. */
2982 dp_netdev_reset_pmd_threads(dp);
2983 }
2984
2985 /* Returns true if one of the netdevs in 'dp' requires a reconfiguration */
2986 static bool
2987 ports_require_restart(const struct dp_netdev *dp)
2988 OVS_REQUIRES(dp->port_mutex)
2989 {
2990 struct dp_netdev_port *port;
2991
2992 HMAP_FOR_EACH (port, node, &dp->ports) {
2993 if (netdev_is_reconf_required(port->netdev)) {
2994 return true;
2995 }
2996 }
2997
2998 return false;
2999 }
3000
3001 /* Return true if needs to revalidate datapath flows. */
3002 static bool
3003 dpif_netdev_run(struct dpif *dpif)
3004 {
3005 struct dp_netdev_port *port;
3006 struct dp_netdev *dp = get_dp_netdev(dpif);
3007 struct dp_netdev_pmd_thread *non_pmd;
3008 uint64_t new_tnl_seq;
3009
3010 ovs_mutex_lock(&dp->port_mutex);
3011 non_pmd = dp_netdev_get_pmd(dp, NON_PMD_CORE_ID);
3012 if (non_pmd) {
3013 ovs_mutex_lock(&dp->non_pmd_mutex);
3014 HMAP_FOR_EACH (port, node, &dp->ports) {
3015 if (!netdev_is_pmd(port->netdev)) {
3016 int i;
3017
3018 for (i = 0; i < port->n_rxq; i++) {
3019 dp_netdev_process_rxq_port(non_pmd, port,
3020 port->rxqs[i].rxq);
3021 }
3022 }
3023 }
3024 dpif_netdev_xps_revalidate_pmd(non_pmd, time_msec(), false);
3025 ovs_mutex_unlock(&dp->non_pmd_mutex);
3026
3027 dp_netdev_pmd_unref(non_pmd);
3028 }
3029
3030 if (dp_netdev_is_reconf_required(dp) || ports_require_restart(dp)) {
3031 reconfigure_pmd_threads(dp);
3032 }
3033 ovs_mutex_unlock(&dp->port_mutex);
3034
3035 tnl_neigh_cache_run();
3036 tnl_port_map_run();
3037 new_tnl_seq = seq_read(tnl_conf_seq);
3038
3039 if (dp->last_tnl_conf_seq != new_tnl_seq) {
3040 dp->last_tnl_conf_seq = new_tnl_seq;
3041 return true;
3042 }
3043 return false;
3044 }
3045
3046 static void
3047 dpif_netdev_wait(struct dpif *dpif)
3048 {
3049 struct dp_netdev_port *port;
3050 struct dp_netdev *dp = get_dp_netdev(dpif);
3051
3052 ovs_mutex_lock(&dp_netdev_mutex);
3053 ovs_mutex_lock(&dp->port_mutex);
3054 HMAP_FOR_EACH (port, node, &dp->ports) {
3055 netdev_wait_reconf_required(port->netdev);
3056 if (!netdev_is_pmd(port->netdev)) {
3057 int i;
3058
3059 for (i = 0; i < port->n_rxq; i++) {
3060 netdev_rxq_wait(port->rxqs[i].rxq);
3061 }
3062 }
3063 }
3064 ovs_mutex_unlock(&dp->port_mutex);
3065 ovs_mutex_unlock(&dp_netdev_mutex);
3066 seq_wait(tnl_conf_seq, dp->last_tnl_conf_seq);
3067 }
3068
3069 static void
3070 pmd_free_cached_ports(struct dp_netdev_pmd_thread *pmd)
3071 {
3072 struct tx_port *tx_port_cached;
3073
3074 /* Free all used tx queue ids. */
3075 dpif_netdev_xps_revalidate_pmd(pmd, 0, true);
3076
3077 HMAP_FOR_EACH_POP (tx_port_cached, node, &pmd->port_cache) {
3078 free(tx_port_cached);
3079 }
3080 }
3081
3082 /* Copies ports from 'pmd->tx_ports' (shared with the main thread) to
3083 * 'pmd->port_cache' (thread local) */
3084 static void
3085 pmd_load_cached_ports(struct dp_netdev_pmd_thread *pmd)
3086 OVS_REQUIRES(pmd->port_mutex)
3087 {
3088 struct tx_port *tx_port, *tx_port_cached;
3089
3090 pmd_free_cached_ports(pmd);
3091 hmap_shrink(&pmd->port_cache);
3092
3093 HMAP_FOR_EACH (tx_port, node, &pmd->tx_ports) {
3094 tx_port_cached = xmemdup(tx_port, sizeof *tx_port_cached);
3095 hmap_insert(&pmd->port_cache, &tx_port_cached->node,
3096 hash_port_no(tx_port_cached->port->port_no));
3097 }
3098 }
3099
3100 static int
3101 pmd_load_queues_and_ports(struct dp_netdev_pmd_thread *pmd,
3102 struct rxq_poll **ppoll_list)
3103 {
3104 struct rxq_poll *poll_list = *ppoll_list;
3105 struct rxq_poll *poll;
3106 int i;
3107
3108 ovs_mutex_lock(&pmd->port_mutex);
3109 poll_list = xrealloc(poll_list, pmd->poll_cnt * sizeof *poll_list);
3110
3111 i = 0;
3112 LIST_FOR_EACH (poll, node, &pmd->poll_list) {
3113 poll_list[i++] = *poll;
3114 }
3115
3116 pmd_load_cached_ports(pmd);
3117
3118 ovs_mutex_unlock(&pmd->port_mutex);
3119
3120 *ppoll_list = poll_list;
3121 return i;
3122 }
3123
3124 static void *
3125 pmd_thread_main(void *f_)
3126 {
3127 struct dp_netdev_pmd_thread *pmd = f_;
3128 unsigned int lc = 0;
3129 struct rxq_poll *poll_list;
3130 unsigned int port_seq = PMD_INITIAL_SEQ;
3131 bool exiting;
3132 int poll_cnt;
3133 int i;
3134
3135 poll_list = NULL;
3136
3137 /* Stores the pmd thread's 'pmd' to 'per_pmd_key'. */
3138 ovsthread_setspecific(pmd->dp->per_pmd_key, pmd);
3139 ovs_numa_thread_setaffinity_core(pmd->core_id);
3140 dpdk_set_lcore_id(pmd->core_id);
3141 poll_cnt = pmd_load_queues_and_ports(pmd, &poll_list);
3142 reload:
3143 emc_cache_init(&pmd->flow_cache);
3144
3145 /* List port/core affinity */
3146 for (i = 0; i < poll_cnt; i++) {
3147 VLOG_DBG("Core %d processing port \'%s\' with queue-id %d\n",
3148 pmd->core_id, netdev_get_name(poll_list[i].port->netdev),
3149 netdev_rxq_get_queue_id(poll_list[i].rx));
3150 }
3151
3152 for (;;) {
3153 for (i = 0; i < poll_cnt; i++) {
3154 dp_netdev_process_rxq_port(pmd, poll_list[i].port, poll_list[i].rx);
3155 }
3156
3157 if (lc++ > 1024) {
3158 unsigned int seq;
3159
3160 lc = 0;
3161
3162 coverage_try_clear();
3163 dp_netdev_pmd_try_optimize(pmd);
3164 if (!ovsrcu_try_quiesce()) {
3165 emc_cache_slow_sweep(&pmd->flow_cache);
3166 }
3167
3168 atomic_read_relaxed(&pmd->change_seq, &seq);
3169 if (seq != port_seq) {
3170 port_seq = seq;
3171 break;
3172 }
3173 }
3174 }
3175
3176 poll_cnt = pmd_load_queues_and_ports(pmd, &poll_list);
3177 exiting = latch_is_set(&pmd->exit_latch);
3178 /* Signal here to make sure the pmd finishes
3179 * reloading the updated configuration. */
3180 dp_netdev_pmd_reload_done(pmd);
3181
3182 emc_cache_uninit(&pmd->flow_cache);
3183
3184 if (!exiting) {
3185 goto reload;
3186 }
3187
3188 free(poll_list);
3189 pmd_free_cached_ports(pmd);
3190 return NULL;
3191 }
3192
3193 static void
3194 dp_netdev_disable_upcall(struct dp_netdev *dp)
3195 OVS_ACQUIRES(dp->upcall_rwlock)
3196 {
3197 fat_rwlock_wrlock(&dp->upcall_rwlock);
3198 }
3199
3200 static void
3201 dpif_netdev_disable_upcall(struct dpif *dpif)
3202 OVS_NO_THREAD_SAFETY_ANALYSIS
3203 {
3204 struct dp_netdev *dp = get_dp_netdev(dpif);
3205 dp_netdev_disable_upcall(dp);
3206 }
3207
3208 static void
3209 dp_netdev_enable_upcall(struct dp_netdev *dp)
3210 OVS_RELEASES(dp->upcall_rwlock)
3211 {
3212 fat_rwlock_unlock(&dp->upcall_rwlock);
3213 }
3214
3215 static void
3216 dpif_netdev_enable_upcall(struct dpif *dpif)
3217 OVS_NO_THREAD_SAFETY_ANALYSIS
3218 {
3219 struct dp_netdev *dp = get_dp_netdev(dpif);
3220 dp_netdev_enable_upcall(dp);
3221 }
3222
3223 static void
3224 dp_netdev_pmd_reload_done(struct dp_netdev_pmd_thread *pmd)
3225 {
3226 ovs_mutex_lock(&pmd->cond_mutex);
3227 xpthread_cond_signal(&pmd->cond);
3228 ovs_mutex_unlock(&pmd->cond_mutex);
3229 }
3230
3231 /* Finds and refs the dp_netdev_pmd_thread on core 'core_id'. Returns
3232 * the pointer if succeeds, otherwise, NULL (it can return NULL even if
3233 * 'core_id' is NON_PMD_CORE_ID).
3234 *
3235 * Caller must unrefs the returned reference. */
3236 static struct dp_netdev_pmd_thread *
3237 dp_netdev_get_pmd(struct dp_netdev *dp, unsigned core_id)
3238 {
3239 struct dp_netdev_pmd_thread *pmd;
3240 const struct cmap_node *pnode;
3241
3242 pnode = cmap_find(&dp->poll_threads, hash_int(core_id, 0));
3243 if (!pnode) {
3244 return NULL;
3245 }
3246 pmd = CONTAINER_OF(pnode, struct dp_netdev_pmd_thread, node);
3247
3248 return dp_netdev_pmd_try_ref(pmd) ? pmd : NULL;
3249 }
3250
3251 /* Sets the 'struct dp_netdev_pmd_thread' for non-pmd threads. */
3252 static void
3253 dp_netdev_set_nonpmd(struct dp_netdev *dp)
3254 OVS_REQUIRES(dp->port_mutex)
3255 {
3256 struct dp_netdev_pmd_thread *non_pmd;
3257 struct dp_netdev_port *port;
3258
3259 non_pmd = xzalloc(sizeof *non_pmd);
3260 dp_netdev_configure_pmd(non_pmd, dp, NON_PMD_CORE_ID, OVS_NUMA_UNSPEC);
3261
3262 HMAP_FOR_EACH (port, node, &dp->ports) {
3263 dp_netdev_add_port_tx_to_pmd(non_pmd, port);
3264 }
3265
3266 dp_netdev_reload_pmd__(non_pmd);
3267 }
3268
3269 /* Caller must have valid pointer to 'pmd'. */
3270 static bool
3271 dp_netdev_pmd_try_ref(struct dp_netdev_pmd_thread *pmd)
3272 {
3273 return ovs_refcount_try_ref_rcu(&pmd->ref_cnt);
3274 }
3275
3276 static void
3277 dp_netdev_pmd_unref(struct dp_netdev_pmd_thread *pmd)
3278 {
3279 if (pmd && ovs_refcount_unref(&pmd->ref_cnt) == 1) {
3280 ovsrcu_postpone(dp_netdev_destroy_pmd, pmd);
3281 }
3282 }
3283
3284 /* Given cmap position 'pos', tries to ref the next node. If try_ref()
3285 * fails, keeps checking for next node until reaching the end of cmap.
3286 *
3287 * Caller must unrefs the returned reference. */
3288 static struct dp_netdev_pmd_thread *
3289 dp_netdev_pmd_get_next(struct dp_netdev *dp, struct cmap_position *pos)
3290 {
3291 struct dp_netdev_pmd_thread *next;
3292
3293 do {
3294 struct cmap_node *node;
3295
3296 node = cmap_next_position(&dp->poll_threads, pos);
3297 next = node ? CONTAINER_OF(node, struct dp_netdev_pmd_thread, node)
3298 : NULL;
3299 } while (next && !dp_netdev_pmd_try_ref(next));
3300
3301 return next;
3302 }
3303
3304 /* Configures the 'pmd' based on the input argument. */
3305 static void
3306 dp_netdev_configure_pmd(struct dp_netdev_pmd_thread *pmd, struct dp_netdev *dp,
3307 unsigned core_id, int numa_id)
3308 {
3309 pmd->dp = dp;
3310 pmd->core_id = core_id;
3311 pmd->numa_id = numa_id;
3312 pmd->poll_cnt = 0;
3313
3314 atomic_init(&pmd->static_tx_qid,
3315 (core_id == NON_PMD_CORE_ID)
3316 ? ovs_numa_get_n_cores()
3317 : get_n_pmd_threads(dp));
3318
3319 ovs_refcount_init(&pmd->ref_cnt);
3320 latch_init(&pmd->exit_latch);
3321 atomic_init(&pmd->change_seq, PMD_INITIAL_SEQ);
3322 xpthread_cond_init(&pmd->cond, NULL);
3323 ovs_mutex_init(&pmd->cond_mutex);
3324 ovs_mutex_init(&pmd->flow_mutex);
3325 ovs_mutex_init(&pmd->port_mutex);
3326 cmap_init(&pmd->flow_table);
3327 cmap_init(&pmd->classifiers);
3328 pmd->next_optimization = time_msec() + DPCLS_OPTIMIZATION_INTERVAL;
3329 ovs_list_init(&pmd->poll_list);
3330 hmap_init(&pmd->tx_ports);
3331 hmap_init(&pmd->port_cache);
3332 /* init the 'flow_cache' since there is no
3333 * actual thread created for NON_PMD_CORE_ID. */
3334 if (core_id == NON_PMD_CORE_ID) {
3335 emc_cache_init(&pmd->flow_cache);
3336 }
3337 cmap_insert(&dp->poll_threads, CONST_CAST(struct cmap_node *, &pmd->node),
3338 hash_int(core_id, 0));
3339 }
3340
3341 static void
3342 dp_netdev_destroy_pmd(struct dp_netdev_pmd_thread *pmd)
3343 {
3344 struct dpcls *cls;
3345
3346 dp_netdev_pmd_flow_flush(pmd);
3347 hmap_destroy(&pmd->port_cache);
3348 hmap_destroy(&pmd->tx_ports);
3349 /* All flows (including their dpcls_rules) have been deleted already */
3350 CMAP_FOR_EACH (cls, node, &pmd->classifiers) {
3351 dpcls_destroy(cls);
3352 ovsrcu_postpone(free, cls);
3353 }
3354 cmap_destroy(&pmd->classifiers);
3355 cmap_destroy(&pmd->flow_table);
3356 ovs_mutex_destroy(&pmd->flow_mutex);
3357 latch_destroy(&pmd->exit_latch);
3358 xpthread_cond_destroy(&pmd->cond);
3359 ovs_mutex_destroy(&pmd->cond_mutex);
3360 ovs_mutex_destroy(&pmd->port_mutex);
3361 free(pmd);
3362 }
3363
3364 /* Stops the pmd thread, removes it from the 'dp->poll_threads',
3365 * and unrefs the struct. */
3366 static void
3367 dp_netdev_del_pmd(struct dp_netdev *dp, struct dp_netdev_pmd_thread *pmd)
3368 {
3369 /* NON_PMD_CORE_ID doesn't have a thread, so we don't have to synchronize,
3370 * but extra cleanup is necessary */
3371 if (pmd->core_id == NON_PMD_CORE_ID) {
3372 ovs_mutex_lock(&dp->non_pmd_mutex);
3373 emc_cache_uninit(&pmd->flow_cache);
3374 pmd_free_cached_ports(pmd);
3375 ovs_mutex_unlock(&dp->non_pmd_mutex);
3376 } else {
3377 latch_set(&pmd->exit_latch);
3378 dp_netdev_reload_pmd__(pmd);
3379 ovs_numa_unpin_core(pmd->core_id);
3380 xpthread_join(pmd->thread, NULL);
3381 }
3382
3383 dp_netdev_pmd_clear_ports(pmd);
3384
3385 /* Purges the 'pmd''s flows after stopping the thread, but before
3386 * destroying the flows, so that the flow stats can be collected. */
3387 if (dp->dp_purge_cb) {
3388 dp->dp_purge_cb(dp->dp_purge_aux, pmd->core_id);
3389 }
3390 cmap_remove(&pmd->dp->poll_threads, &pmd->node, hash_int(pmd->core_id, 0));
3391 dp_netdev_pmd_unref(pmd);
3392 }
3393
3394 /* Destroys all pmd threads. */
3395 static void
3396 dp_netdev_destroy_all_pmds(struct dp_netdev *dp)
3397 {
3398 struct dp_netdev_pmd_thread *pmd;
3399 struct dp_netdev_pmd_thread **pmd_list;
3400 size_t k = 0, n_pmds;
3401
3402 n_pmds = cmap_count(&dp->poll_threads);
3403 pmd_list = xcalloc(n_pmds, sizeof *pmd_list);
3404
3405 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
3406 /* We cannot call dp_netdev_del_pmd(), since it alters
3407 * 'dp->poll_threads' (while we're iterating it) and it
3408 * might quiesce. */
3409 ovs_assert(k < n_pmds);
3410 pmd_list[k++] = pmd;
3411 }
3412
3413 for (size_t i = 0; i < k; i++) {
3414 dp_netdev_del_pmd(dp, pmd_list[i]);
3415 }
3416 free(pmd_list);
3417 }
3418
3419 /* Deletes all pmd threads on numa node 'numa_id' and
3420 * fixes static_tx_qids of other threads to keep them sequential. */
3421 static void
3422 dp_netdev_del_pmds_on_numa(struct dp_netdev *dp, int numa_id)
3423 {
3424 struct dp_netdev_pmd_thread *pmd;
3425 int n_pmds_on_numa, n_pmds;
3426 int *free_idx, k = 0;
3427 struct dp_netdev_pmd_thread **pmd_list;
3428
3429 n_pmds_on_numa = get_n_pmd_threads_on_numa(dp, numa_id);
3430 free_idx = xcalloc(n_pmds_on_numa, sizeof *free_idx);
3431 pmd_list = xcalloc(n_pmds_on_numa, sizeof *pmd_list);
3432
3433 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
3434 /* We cannot call dp_netdev_del_pmd(), since it alters
3435 * 'dp->poll_threads' (while we're iterating it) and it
3436 * might quiesce. */
3437 if (pmd->numa_id == numa_id && pmd->core_id != NON_PMD_CORE_ID) {
3438 atomic_read_relaxed(&pmd->static_tx_qid, &free_idx[k]);
3439 pmd_list[k] = pmd;
3440 ovs_assert(k < n_pmds_on_numa);
3441 k++;
3442 }
3443 }
3444
3445 for (int i = 0; i < k; i++) {
3446 dp_netdev_del_pmd(dp, pmd_list[i]);
3447 }
3448
3449 n_pmds = get_n_pmd_threads(dp);
3450 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
3451 int old_tx_qid;
3452
3453 atomic_read_relaxed(&pmd->static_tx_qid, &old_tx_qid);
3454
3455 if (old_tx_qid >= n_pmds && pmd->core_id != NON_PMD_CORE_ID) {
3456 int new_tx_qid = free_idx[--k];
3457
3458 atomic_store_relaxed(&pmd->static_tx_qid, new_tx_qid);
3459 }
3460 }
3461
3462 free(pmd_list);
3463 free(free_idx);
3464 }
3465
3466 /* Deletes all rx queues from pmd->poll_list and all the ports from
3467 * pmd->tx_ports. */
3468 static void
3469 dp_netdev_pmd_clear_ports(struct dp_netdev_pmd_thread *pmd)
3470 {
3471 struct rxq_poll *poll;
3472 struct tx_port *port;
3473
3474 ovs_mutex_lock(&pmd->port_mutex);
3475 LIST_FOR_EACH_POP (poll, node, &pmd->poll_list) {
3476 free(poll);
3477 }
3478 pmd->poll_cnt = 0;
3479 HMAP_FOR_EACH_POP (port, node, &pmd->tx_ports) {
3480 free(port);
3481 }
3482 ovs_mutex_unlock(&pmd->port_mutex);
3483 }
3484
3485 static struct tx_port *
3486 tx_port_lookup(const struct hmap *hmap, odp_port_t port_no)
3487 {
3488 struct tx_port *tx;
3489
3490 HMAP_FOR_EACH_IN_BUCKET (tx, node, hash_port_no(port_no), hmap) {
3491 if (tx->port->port_no == port_no) {
3492 return tx;
3493 }
3494 }
3495
3496 return NULL;
3497 }
3498
3499 /* Deletes all rx queues of 'port' from 'poll_list', and the 'port' from
3500 * 'tx_ports' of 'pmd' thread. Returns true if 'port' was found in 'pmd'
3501 * (therefore a restart is required). */
3502 static bool
3503 dp_netdev_del_port_from_pmd__(struct dp_netdev_port *port,
3504 struct dp_netdev_pmd_thread *pmd)
3505 {
3506 struct rxq_poll *poll, *next;
3507 struct tx_port *tx;
3508 bool found = false;
3509
3510 ovs_mutex_lock(&pmd->port_mutex);
3511 LIST_FOR_EACH_SAFE (poll, next, node, &pmd->poll_list) {
3512 if (poll->port == port) {
3513 found = true;
3514 ovs_list_remove(&poll->node);
3515 pmd->poll_cnt--;
3516 free(poll);
3517 }
3518 }
3519
3520 tx = tx_port_lookup(&pmd->tx_ports, port->port_no);
3521 if (tx) {
3522 hmap_remove(&pmd->tx_ports, &tx->node);
3523 free(tx);
3524 found = true;
3525 }
3526 ovs_mutex_unlock(&pmd->port_mutex);
3527
3528 return found;
3529 }
3530
3531 /* Deletes 'port' from the 'poll_list' and from the 'tx_ports' of all the pmd
3532 * threads. The pmd threads that need to be restarted are inserted in
3533 * 'to_reload'. */
3534 static void
3535 dp_netdev_del_port_from_all_pmds__(struct dp_netdev *dp,
3536 struct dp_netdev_port *port,
3537 struct hmapx *to_reload)
3538 {
3539 struct dp_netdev_pmd_thread *pmd;
3540
3541 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
3542 bool found;
3543
3544 found = dp_netdev_del_port_from_pmd__(port, pmd);
3545
3546 if (found) {
3547 hmapx_add(to_reload, pmd);
3548 }
3549 }
3550 }
3551
3552 /* Deletes 'port' from the 'poll_list' and from the 'tx_ports' of all the pmd
3553 * threads. Reloads the threads if needed. */
3554 static void
3555 dp_netdev_del_port_from_all_pmds(struct dp_netdev *dp,
3556 struct dp_netdev_port *port)
3557 {
3558 struct dp_netdev_pmd_thread *pmd;
3559 struct hmapx to_reload = HMAPX_INITIALIZER(&to_reload);
3560 struct hmapx_node *node;
3561
3562 dp_netdev_del_port_from_all_pmds__(dp, port, &to_reload);
3563
3564 HMAPX_FOR_EACH (node, &to_reload) {
3565 pmd = (struct dp_netdev_pmd_thread *) node->data;
3566 dp_netdev_reload_pmd__(pmd);
3567 }
3568
3569 hmapx_destroy(&to_reload);
3570 }
3571
3572
3573 /* Returns non-isolated PMD thread from this numa node with fewer
3574 * rx queues to poll. Returns NULL if there is no non-isolated PMD threads
3575 * on this numa node. Can be called safely only by main thread. */
3576 static struct dp_netdev_pmd_thread *
3577 dp_netdev_less_loaded_pmd_on_numa(struct dp_netdev *dp, int numa_id)
3578 {
3579 int min_cnt = -1;
3580 struct dp_netdev_pmd_thread *pmd, *res = NULL;
3581
3582 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
3583 if (!pmd->isolated && pmd->numa_id == numa_id
3584 && (min_cnt > pmd->poll_cnt || res == NULL)) {
3585 min_cnt = pmd->poll_cnt;
3586 res = pmd;
3587 }
3588 }
3589
3590 return res;
3591 }
3592
3593 /* Adds rx queue to poll_list of PMD thread. */
3594 static void
3595 dp_netdev_add_rxq_to_pmd(struct dp_netdev_pmd_thread *pmd,
3596 struct dp_netdev_port *port, struct netdev_rxq *rx)
3597 OVS_REQUIRES(pmd->port_mutex)
3598 {
3599 struct rxq_poll *poll = xmalloc(sizeof *poll);
3600
3601 poll->port = port;
3602 poll->rx = rx;
3603
3604 ovs_list_push_back(&pmd->poll_list, &poll->node);
3605 pmd->poll_cnt++;
3606 }
3607
3608 /* Add 'port' to the tx port cache of 'pmd', which must be reloaded for the
3609 * changes to take effect. */
3610 static void
3611 dp_netdev_add_port_tx_to_pmd(struct dp_netdev_pmd_thread *pmd,
3612 struct dp_netdev_port *port)
3613 {
3614 struct tx_port *tx = xzalloc(sizeof *tx);
3615
3616 tx->port = port;
3617 tx->qid = -1;
3618
3619 ovs_mutex_lock(&pmd->port_mutex);
3620 hmap_insert(&pmd->tx_ports, &tx->node, hash_port_no(tx->port->port_no));
3621 ovs_mutex_unlock(&pmd->port_mutex);
3622 }
3623
3624 /* Distribute all {pinned|non-pinned} rx queues of 'port' between PMD
3625 * threads in 'dp'. The pmd threads that need to be restarted are inserted
3626 * in 'to_reload'. PMD threads with pinned queues marked as isolated. */
3627 static void
3628 dp_netdev_add_port_rx_to_pmds(struct dp_netdev *dp,
3629 struct dp_netdev_port *port,
3630 struct hmapx *to_reload, bool pinned)
3631 {
3632 int numa_id = netdev_get_numa_id(port->netdev);
3633 struct dp_netdev_pmd_thread *pmd;
3634 int i;
3635
3636 if (!netdev_is_pmd(port->netdev)) {
3637 return;
3638 }
3639
3640 for (i = 0; i < port->n_rxq; i++) {
3641 if (pinned) {
3642 if (port->rxqs[i].core_id == OVS_CORE_UNSPEC) {
3643 continue;
3644 }
3645 pmd = dp_netdev_get_pmd(dp, port->rxqs[i].core_id);
3646 if (!pmd) {
3647 VLOG_WARN("There is no PMD thread on core %d. "
3648 "Queue %d on port \'%s\' will not be polled.",
3649 port->rxqs[i].core_id, i,
3650 netdev_get_name(port->netdev));
3651 continue;
3652 }
3653 pmd->isolated = true;
3654 dp_netdev_pmd_unref(pmd);
3655 } else {
3656 if (port->rxqs[i].core_id != OVS_CORE_UNSPEC) {
3657 continue;
3658 }
3659 pmd = dp_netdev_less_loaded_pmd_on_numa(dp, numa_id);
3660 if (!pmd) {
3661 VLOG_WARN("There's no available pmd thread on numa node %d",
3662 numa_id);
3663 break;
3664 }
3665 }
3666
3667 ovs_mutex_lock(&pmd->port_mutex);
3668 dp_netdev_add_rxq_to_pmd(pmd, port, port->rxqs[i].rxq);
3669 ovs_mutex_unlock(&pmd->port_mutex);
3670
3671 hmapx_add(to_reload, pmd);
3672 }
3673 }
3674
3675 /* Distributes all non-pinned rx queues of 'port' between all PMD threads
3676 * in 'dp' and inserts 'port' in the PMD threads 'tx_ports'. The pmd threads
3677 * that need to be restarted are inserted in 'to_reload'. */
3678 static void
3679 dp_netdev_add_port_to_pmds__(struct dp_netdev *dp, struct dp_netdev_port *port,
3680 struct hmapx *to_reload)
3681 {
3682 struct dp_netdev_pmd_thread *pmd;
3683
3684 dp_netdev_add_port_rx_to_pmds(dp, port, to_reload, false);
3685
3686 CMAP_FOR_EACH (pmd, node, &dp->poll_threads) {
3687 dp_netdev_add_port_tx_to_pmd(pmd, port);
3688 hmapx_add(to_reload, pmd);
3689 }
3690 }
3691
3692 /* Distributes all non-pinned rx queues of 'port' between all PMD threads
3693 * in 'dp', inserts 'port' in the PMD threads 'tx_ports' and reloads them,
3694 * if needed. */
3695 static void
3696 dp_netdev_add_port_to_pmds(struct dp_netdev *dp, struct dp_netdev_port *port)
3697 {
3698 struct dp_netdev_pmd_thread *pmd;
3699 struct hmapx to_reload = HMAPX_INITIALIZER(&to_reload);
3700 struct hmapx_node *node;
3701
3702 dp_netdev_add_port_to_pmds__(dp, port, &to_reload);
3703
3704 HMAPX_FOR_EACH (node, &to_reload) {
3705 pmd = (struct dp_netdev_pmd_thread *) node->data;
3706 dp_netdev_reload_pmd__(pmd);
3707 }
3708
3709 hmapx_destroy(&to_reload);
3710 }
3711
3712 /* Starts pmd threads for the numa node 'numa_id', if not already started.
3713 * The function takes care of filling the threads tx port cache. */
3714 static void
3715 dp_netdev_set_pmds_on_numa(struct dp_netdev *dp, int numa_id)
3716 OVS_REQUIRES(dp->port_mutex)
3717 {
3718 int n_pmds;
3719
3720 if (!ovs_numa_numa_id_is_valid(numa_id)) {
3721 VLOG_WARN("Cannot create pmd threads due to numa id (%d) invalid",
3722 numa_id);
3723 return;
3724 }
3725
3726 n_pmds = get_n_pmd_threads_on_numa(dp, numa_id);
3727
3728 /* If there are already pmd threads created for the numa node
3729 * in which 'netdev' is on, do nothing. Else, creates the
3730 * pmd threads for the numa node. */
3731 if (!n_pmds) {
3732 int can_have, n_unpinned, i;
3733
3734 n_unpinned = ovs_numa_get_n_unpinned_cores_on_numa(numa_id);
3735 if (!n_unpinned) {
3736 VLOG_WARN("Cannot create pmd threads due to out of unpinned "
3737 "cores on numa node %d", numa_id);
3738 return;
3739 }
3740
3741 /* If cpu mask is specified, uses all unpinned cores, otherwise
3742 * tries creating NR_PMD_THREADS pmd threads. */
3743 can_have = dp->pmd_cmask ? n_unpinned : MIN(n_unpinned, NR_PMD_THREADS);
3744 for (i = 0; i < can_have; i++) {
3745 unsigned core_id = ovs_numa_get_unpinned_core_on_numa(numa_id);
3746 struct dp_netdev_pmd_thread *pmd = xzalloc(sizeof *pmd);
3747 struct dp_netdev_port *port;
3748
3749 dp_netdev_configure_pmd(pmd, dp, core_id, numa_id);
3750
3751 HMAP_FOR_EACH (port, node, &dp->ports) {
3752 dp_netdev_add_port_tx_to_pmd(pmd, port);
3753 }
3754
3755 pmd->thread = ovs_thread_create("pmd", pmd_thread_main, pmd);
3756 }
3757 VLOG_INFO("Created %d pmd threads on numa node %d", can_have, numa_id);
3758 }
3759 }
3760
3761 \f
3762 /* Called after pmd threads config change. Restarts pmd threads with
3763 * new configuration. */
3764 static void
3765 dp_netdev_reset_pmd_threads(struct dp_netdev *dp)
3766 OVS_REQUIRES(dp->port_mutex)
3767 {
3768 struct hmapx to_reload = HMAPX_INITIALIZER(&to_reload);
3769 struct dp_netdev_pmd_thread *pmd;
3770 struct dp_netdev_port *port;
3771 struct hmapx_node *node;
3772
3773 HMAP_FOR_EACH (port, node, &dp->ports) {
3774 if (netdev_is_pmd(port->netdev)) {
3775 struct hmapx numas = HMAPX_INITIALIZER(&numas);
3776 struct hmapx_node *numa_node;
3777 uintptr_t numa_id;
3778 int i;
3779
3780 numa_id = netdev_get_numa_id(port->netdev);
3781 hmapx_add(&numas, (void *) numa_id);
3782 for (i = 0; i < port->n_rxq; i++) {
3783 unsigned core_id = port->rxqs[i].core_id;
3784
3785 if (core_id != OVS_CORE_UNSPEC) {
3786 numa_id = ovs_numa_get_numa_id(core_id);
3787 hmapx_add(&numas, (void *) numa_id);
3788 }
3789 }
3790
3791 HMAPX_FOR_EACH (numa_node, &numas) {
3792 dp_netdev_set_pmds_on_numa(dp, (uintptr_t) numa_node->data);
3793 }
3794
3795 hmapx_destroy(&numas);
3796 }
3797 /* Distribute only pinned rx queues first to mark threads as isolated */
3798 dp_netdev_add_port_rx_to_pmds(dp, port, &to_reload, true);
3799 }
3800
3801 /* Distribute remaining non-pinned rx queues to non-isolated PMD threads. */
3802 HMAP_FOR_EACH (port, node, &dp->ports) {
3803 dp_netdev_add_port_rx_to_pmds(dp, port, &to_reload, false);
3804 }
3805
3806 HMAPX_FOR_EACH (node, &to_reload) {
3807 pmd = (struct dp_netdev_pmd_thread *) node->data;
3808 dp_netdev_reload_pmd__(pmd);
3809 }
3810
3811 hmapx_destroy(&to_reload);
3812 }
3813
3814 static char *
3815 dpif_netdev_get_datapath_version(void)
3816 {
3817 return xstrdup("<built-in>");
3818 }
3819
3820 static void
3821 dp_netdev_flow_used(struct dp_netdev_flow *netdev_flow, int cnt, int size,
3822 uint16_t tcp_flags, long long now)
3823 {
3824 uint16_t flags;
3825
3826 atomic_store_relaxed(&netdev_flow->stats.used, now);
3827 non_atomic_ullong_add(&netdev_flow->stats.packet_count, cnt);
3828 non_atomic_ullong_add(&netdev_flow->stats.byte_count, size);
3829 atomic_read_relaxed(&netdev_flow->stats.tcp_flags, &flags);
3830 flags |= tcp_flags;
3831 atomic_store_relaxed(&netdev_flow->stats.tcp_flags, flags);
3832 }
3833
3834 static void
3835 dp_netdev_count_packet(struct dp_netdev_pmd_thread *pmd,
3836 enum dp_stat_type type, int cnt)
3837 {
3838 non_atomic_ullong_add(&pmd->stats.n[type], cnt);
3839 }
3840
3841 static int
3842 dp_netdev_upcall(struct dp_netdev_pmd_thread *pmd, struct dp_packet *packet_,
3843 struct flow *flow, struct flow_wildcards *wc, ovs_u128 *ufid,
3844 enum dpif_upcall_type type, const struct nlattr *userdata,
3845 struct ofpbuf *actions, struct ofpbuf *put_actions)
3846 {
3847 struct dp_netdev *dp = pmd->dp;
3848
3849 if (OVS_UNLIKELY(!dp->upcall_cb)) {
3850 return ENODEV;
3851 }
3852
3853 if (OVS_UNLIKELY(!VLOG_DROP_DBG(&upcall_rl))) {
3854 struct ds ds = DS_EMPTY_INITIALIZER;
3855 char *packet_str;
3856 struct ofpbuf key;
3857 struct odp_flow_key_parms odp_parms = {
3858 .flow = flow,
3859 .mask = wc ? &wc->masks : NULL,
3860 .support = dp_netdev_support,
3861 };
3862
3863 ofpbuf_init(&key, 0);
3864 odp_flow_key_from_flow(&odp_parms, &key);
3865 packet_str = ofp_packet_to_string(dp_packet_data(packet_),
3866 dp_packet_size(packet_));
3867
3868 odp_flow_key_format(key.data, key.size, &ds);
3869
3870 VLOG_DBG("%s: %s upcall:\n%s\n%s", dp->name,
3871 dpif_upcall_type_to_string(type), ds_cstr(&ds), packet_str);
3872
3873 ofpbuf_uninit(&key);
3874 free(packet_str);
3875
3876 ds_destroy(&ds);
3877 }
3878
3879 return dp->upcall_cb(packet_, flow, ufid, pmd->core_id, type, userdata,
3880 actions, wc, put_actions, dp->upcall_aux);
3881 }
3882
3883 static inline uint32_t
3884 dpif_netdev_packet_get_rss_hash(struct dp_packet *packet,
3885 const struct miniflow *mf)
3886 {
3887 uint32_t hash, recirc_depth;
3888
3889 if (OVS_LIKELY(dp_packet_rss_valid(packet))) {
3890 hash = dp_packet_get_rss_hash(packet);
3891 } else {
3892 hash = miniflow_hash_5tuple(mf, 0);
3893 dp_packet_set_rss_hash(packet, hash);
3894 }
3895
3896 /* The RSS hash must account for the recirculation depth to avoid
3897 * collisions in the exact match cache */
3898 recirc_depth = *recirc_depth_get_unsafe();
3899 if (OVS_UNLIKELY(recirc_depth)) {
3900 hash = hash_finish(hash, recirc_depth);
3901 dp_packet_set_rss_hash(packet, hash);
3902 }
3903 return hash;
3904 }
3905
3906 struct packet_batch_per_flow {
3907 unsigned int byte_count;
3908 uint16_t tcp_flags;
3909 struct dp_netdev_flow *flow;
3910
3911 struct dp_packet_batch array;
3912 };
3913
3914 static inline void
3915 packet_batch_per_flow_update(struct packet_batch_per_flow *batch,
3916 struct dp_packet *packet,
3917 const struct miniflow *mf)
3918 {
3919 batch->byte_count += dp_packet_size(packet);
3920 batch->tcp_flags |= miniflow_get_tcp_flags(mf);
3921 batch->array.packets[batch->array.count++] = packet;
3922 }
3923
3924 static inline void
3925 packet_batch_per_flow_init(struct packet_batch_per_flow *batch,
3926 struct dp_netdev_flow *flow)
3927 {
3928 flow->batch = batch;
3929
3930 batch->flow = flow;
3931 dp_packet_batch_init(&batch->array);
3932 batch->byte_count = 0;
3933 batch->tcp_flags = 0;
3934 }
3935
3936 static inline void
3937 packet_batch_per_flow_execute(struct packet_batch_per_flow *batch,
3938 struct dp_netdev_pmd_thread *pmd,
3939 long long now)
3940 {
3941 struct dp_netdev_actions *actions;
3942 struct dp_netdev_flow *flow = batch->flow;
3943
3944 dp_netdev_flow_used(flow, batch->array.count, batch->byte_count,
3945 batch->tcp_flags, now);
3946
3947 actions = dp_netdev_flow_get_actions(flow);
3948
3949 dp_netdev_execute_actions(pmd, &batch->array, true, &flow->flow,
3950 actions->actions, actions->size, now);
3951 }
3952
3953 static inline void
3954 dp_netdev_queue_batches(struct dp_packet *pkt,
3955 struct dp_netdev_flow *flow, const struct miniflow *mf,
3956 struct packet_batch_per_flow *batches, size_t *n_batches)
3957 {
3958 struct packet_batch_per_flow *batch = flow->batch;
3959
3960 if (OVS_UNLIKELY(!batch)) {
3961 batch = &batches[(*n_batches)++];
3962 packet_batch_per_flow_init(batch, flow);
3963 }
3964
3965 packet_batch_per_flow_update(batch, pkt, mf);
3966 }
3967
3968 /* Try to process all ('cnt') the 'packets' using only the exact match cache
3969 * 'pmd->flow_cache'. If a flow is not found for a packet 'packets[i]', the
3970 * miniflow is copied into 'keys' and the packet pointer is moved at the
3971 * beginning of the 'packets' array.
3972 *
3973 * The function returns the number of packets that needs to be processed in the
3974 * 'packets' array (they have been moved to the beginning of the vector).
3975 *
3976 * If 'md_is_valid' is false, the metadata in 'packets' is not valid and must be
3977 * initialized by this function using 'port_no'.
3978 */
3979 static inline size_t
3980 emc_processing(struct dp_netdev_pmd_thread *pmd, struct dp_packet_batch *packets_,
3981 struct netdev_flow_key *keys,
3982 struct packet_batch_per_flow batches[], size_t *n_batches,
3983 bool md_is_valid, odp_port_t port_no)
3984 {
3985 struct emc_cache *flow_cache = &pmd->flow_cache;
3986 struct netdev_flow_key *key = &keys[0];
3987 size_t i, n_missed = 0, n_dropped = 0;
3988 struct dp_packet **packets = packets_->packets;
3989 int cnt = packets_->count;
3990
3991 for (i = 0; i < cnt; i++) {
3992 struct dp_netdev_flow *flow;
3993 struct dp_packet *packet = packets[i];
3994
3995 if (OVS_UNLIKELY(dp_packet_size(packet) < ETH_HEADER_LEN)) {
3996 dp_packet_delete(packet);
3997 n_dropped++;
3998 continue;
3999 }
4000
4001 if (i != cnt - 1) {
4002 /* Prefetch next packet data and metadata. */
4003 OVS_PREFETCH(dp_packet_data(packets[i+1]));
4004 pkt_metadata_prefetch_init(&packets[i+1]->md);
4005 }
4006
4007 if (!md_is_valid) {
4008 pkt_metadata_init(&packet->md, port_no);
4009 }
4010 miniflow_extract(packet, &key->mf);
4011 key->len = 0; /* Not computed yet. */
4012 key->hash = dpif_netdev_packet_get_rss_hash(packet, &key->mf);
4013
4014 flow = emc_lookup(flow_cache, key);
4015 if (OVS_LIKELY(flow)) {
4016 dp_netdev_queue_batches(packet, flow, &key->mf, batches,
4017 n_batches);
4018 } else {
4019 /* Exact match cache missed. Group missed packets together at
4020 * the beginning of the 'packets' array. */
4021 packets[n_missed] = packet;
4022 /* 'key[n_missed]' contains the key of the current packet and it
4023 * must be returned to the caller. The next key should be extracted
4024 * to 'keys[n_missed + 1]'. */
4025 key = &keys[++n_missed];
4026 }
4027 }
4028
4029 dp_netdev_count_packet(pmd, DP_STAT_EXACT_HIT, cnt - n_dropped - n_missed);
4030
4031 return n_missed;
4032 }
4033
4034 static inline void
4035 handle_packet_upcall(struct dp_netdev_pmd_thread *pmd, struct dp_packet *packet,
4036 const struct netdev_flow_key *key,
4037 struct ofpbuf *actions, struct ofpbuf *put_actions,
4038 int *lost_cnt, long long now)
4039 {
4040 struct ofpbuf *add_actions;
4041 struct dp_packet_batch b;
4042 struct match match;
4043 ovs_u128 ufid;
4044 int error;
4045
4046 match.tun_md.valid = false;
4047 miniflow_expand(&key->mf, &match.flow);
4048
4049 ofpbuf_clear(actions);
4050 ofpbuf_clear(put_actions);
4051
4052 dpif_flow_hash(pmd->dp->dpif, &match.flow, sizeof match.flow, &ufid);
4053 error = dp_netdev_upcall(pmd, packet, &match.flow, &match.wc,
4054 &ufid, DPIF_UC_MISS, NULL, actions,
4055 put_actions);
4056 if (OVS_UNLIKELY(error && error != ENOSPC)) {
4057 dp_packet_delete(packet);
4058 (*lost_cnt)++;
4059 return;
4060 }
4061
4062 /* The Netlink encoding of datapath flow keys cannot express
4063 * wildcarding the presence of a VLAN tag. Instead, a missing VLAN
4064 * tag is interpreted as exact match on the fact that there is no
4065 * VLAN. Unless we refactor a lot of code that translates between
4066 * Netlink and struct flow representations, we have to do the same
4067 * here. */
4068 if (!match.wc.masks.vlan_tci) {
4069 match.wc.masks.vlan_tci = htons(0xffff);
4070 }
4071
4072 /* We can't allow the packet batching in the next loop to execute
4073 * the actions. Otherwise, if there are any slow path actions,
4074 * we'll send the packet up twice. */
4075 packet_batch_init_packet(&b, packet);
4076 dp_netdev_execute_actions(pmd, &b, true, &match.flow,
4077 actions->data, actions->size, now);
4078
4079 add_actions = put_actions->size ? put_actions : actions;
4080 if (OVS_LIKELY(error != ENOSPC)) {
4081 struct dp_netdev_flow *netdev_flow;
4082
4083 /* XXX: There's a race window where a flow covering this packet
4084 * could have already been installed since we last did the flow
4085 * lookup before upcall. This could be solved by moving the
4086 * mutex lock outside the loop, but that's an awful long time
4087 * to be locking everyone out of making flow installs. If we
4088 * move to a per-core classifier, it would be reasonable. */
4089 ovs_mutex_lock(&pmd->flow_mutex);
4090 netdev_flow = dp_netdev_pmd_lookup_flow(pmd, key, NULL);
4091 if (OVS_LIKELY(!netdev_flow)) {
4092 netdev_flow = dp_netdev_flow_add(pmd, &match, &ufid,
4093 add_actions->data,
4094 add_actions->size);
4095 }
4096 ovs_mutex_unlock(&pmd->flow_mutex);
4097
4098 emc_insert(&pmd->flow_cache, key, netdev_flow);
4099 }
4100 }
4101
4102 static inline void
4103 fast_path_processing(struct dp_netdev_pmd_thread *pmd,
4104 struct dp_packet_batch *packets_,
4105 struct netdev_flow_key *keys,
4106 struct packet_batch_per_flow batches[], size_t *n_batches,
4107 odp_port_t in_port,
4108 long long now)
4109 {
4110 int cnt = packets_->count;
4111 #if !defined(__CHECKER__) && !defined(_WIN32)
4112 const size_t PKT_ARRAY_SIZE = cnt;
4113 #else
4114 /* Sparse or MSVC doesn't like variable length array. */
4115 enum { PKT_ARRAY_SIZE = NETDEV_MAX_BURST };
4116 #endif
4117 struct dp_packet **packets = packets_->packets;
4118 struct dpcls *cls;
4119 struct dpcls_rule *rules[PKT_ARRAY_SIZE];
4120 struct dp_netdev *dp = pmd->dp;
4121 struct emc_cache *flow_cache = &pmd->flow_cache;
4122 int miss_cnt = 0, lost_cnt = 0;
4123 int lookup_cnt = 0, add_lookup_cnt;
4124 bool any_miss;
4125 size_t i;
4126
4127 for (i = 0; i < cnt; i++) {
4128 /* Key length is needed in all the cases, hash computed on demand. */
4129 keys[i].len = netdev_flow_key_size(miniflow_n_values(&keys[i].mf));
4130 }
4131 /* Get the classifier for the in_port */
4132 cls = dp_netdev_pmd_lookup_dpcls(pmd, in_port);
4133 if (OVS_LIKELY(cls)) {
4134 any_miss = !dpcls_lookup(cls, keys, rules, cnt, &lookup_cnt);
4135 } else {
4136 any_miss = true;
4137 memset(rules, 0, sizeof(rules));
4138 }
4139 if (OVS_UNLIKELY(any_miss) && !fat_rwlock_tryrdlock(&dp->upcall_rwlock)) {
4140 uint64_t actions_stub[512 / 8], slow_stub[512 / 8];
4141 struct ofpbuf actions, put_actions;
4142
4143 ofpbuf_use_stub(&actions, actions_stub, sizeof actions_stub);
4144 ofpbuf_use_stub(&put_actions, slow_stub, sizeof slow_stub);
4145
4146 for (i = 0; i < cnt; i++) {
4147 struct dp_netdev_flow *netdev_flow;
4148
4149 if (OVS_LIKELY(rules[i])) {
4150 continue;
4151 }
4152
4153 /* It's possible that an earlier slow path execution installed
4154 * a rule covering this flow. In this case, it's a lot cheaper
4155 * to catch it here than execute a miss. */
4156 netdev_flow = dp_netdev_pmd_lookup_flow(pmd, &keys[i],
4157 &add_lookup_cnt);
4158 if (netdev_flow) {
4159 lookup_cnt += add_lookup_cnt;
4160 rules[i] = &netdev_flow->cr;
4161 continue;
4162 }
4163
4164 miss_cnt++;
4165 handle_packet_upcall(pmd, packets[i], &keys[i], &actions,
4166 &put_actions, &lost_cnt, now);
4167 }
4168
4169 ofpbuf_uninit(&actions);
4170 ofpbuf_uninit(&put_actions);
4171 fat_rwlock_unlock(&dp->upcall_rwlock);
4172 dp_netdev_count_packet(pmd, DP_STAT_LOST, lost_cnt);
4173 } else if (OVS_UNLIKELY(any_miss)) {
4174 for (i = 0; i < cnt; i++) {
4175 if (OVS_UNLIKELY(!rules[i])) {
4176 dp_packet_delete(packets[i]);
4177 lost_cnt++;
4178 miss_cnt++;
4179 }
4180 }
4181 }
4182
4183 for (i = 0; i < cnt; i++) {
4184 struct dp_packet *packet = packets[i];
4185 struct dp_netdev_flow *flow;
4186
4187 if (OVS_UNLIKELY(!rules[i])) {
4188 continue;
4189 }
4190
4191 flow = dp_netdev_flow_cast(rules[i]);
4192
4193 emc_insert(flow_cache, &keys[i], flow);
4194 dp_netdev_queue_batches(packet, flow, &keys[i].mf, batches, n_batches);
4195 }
4196
4197 dp_netdev_count_packet(pmd, DP_STAT_MASKED_HIT, cnt - miss_cnt);
4198 dp_netdev_count_packet(pmd, DP_STAT_LOOKUP_HIT, lookup_cnt);
4199 dp_netdev_count_packet(pmd, DP_STAT_MISS, miss_cnt);
4200 dp_netdev_count_packet(pmd, DP_STAT_LOST, lost_cnt);
4201 }
4202
4203 /* Packets enter the datapath from a port (or from recirculation) here.
4204 *
4205 * For performance reasons a caller may choose not to initialize the metadata
4206 * in 'packets': in this case 'mdinit' is false and this function needs to
4207 * initialize it using 'port_no'. If the metadata in 'packets' is already
4208 * valid, 'md_is_valid' must be true and 'port_no' will be ignored. */
4209 static void
4210 dp_netdev_input__(struct dp_netdev_pmd_thread *pmd,
4211 struct dp_packet_batch *packets,
4212 bool md_is_valid, odp_port_t port_no)
4213 {
4214 int cnt = packets->count;
4215 #if !defined(__CHECKER__) && !defined(_WIN32)
4216 const size_t PKT_ARRAY_SIZE = cnt;
4217 #else
4218 /* Sparse or MSVC doesn't like variable length array. */
4219 enum { PKT_ARRAY_SIZE = NETDEV_MAX_BURST };
4220 #endif
4221 OVS_ALIGNED_VAR(CACHE_LINE_SIZE) struct netdev_flow_key keys[PKT_ARRAY_SIZE];
4222 struct packet_batch_per_flow batches[PKT_ARRAY_SIZE];
4223 long long now = time_msec();
4224 size_t newcnt, n_batches, i;
4225 odp_port_t in_port;
4226
4227 n_batches = 0;
4228 newcnt = emc_processing(pmd, packets, keys, batches, &n_batches,
4229 md_is_valid, port_no);
4230 if (OVS_UNLIKELY(newcnt)) {
4231 packets->count = newcnt;
4232 /* Get ingress port from first packet's metadata. */
4233 in_port = packets->packets[0]->md.in_port.odp_port;
4234 fast_path_processing(pmd, packets, keys, batches, &n_batches, in_port, now);
4235 }
4236
4237 /* All the flow batches need to be reset before any call to
4238 * packet_batch_per_flow_execute() as it could potentially trigger
4239 * recirculation. When a packet matching flow ‘j’ happens to be
4240 * recirculated, the nested call to dp_netdev_input__() could potentially
4241 * classify the packet as matching another flow - say 'k'. It could happen
4242 * that in the previous call to dp_netdev_input__() that same flow 'k' had
4243 * already its own batches[k] still waiting to be served. So if its
4244 * ‘batch’ member is not reset, the recirculated packet would be wrongly
4245 * appended to batches[k] of the 1st call to dp_netdev_input__(). */
4246 for (i = 0; i < n_batches; i++) {
4247 batches[i].flow->batch = NULL;
4248 }
4249
4250 for (i = 0; i < n_batches; i++) {
4251 packet_batch_per_flow_execute(&batches[i], pmd, now);
4252 }
4253 }
4254
4255 static void
4256 dp_netdev_input(struct dp_netdev_pmd_thread *pmd,
4257 struct dp_packet_batch *packets,
4258 odp_port_t port_no)
4259 {
4260 dp_netdev_input__(pmd, packets, false, port_no);
4261 }
4262
4263 static void
4264 dp_netdev_recirculate(struct dp_netdev_pmd_thread *pmd,
4265 struct dp_packet_batch *packets)
4266 {
4267 dp_netdev_input__(pmd, packets, true, 0);
4268 }
4269
4270 struct dp_netdev_execute_aux {
4271 struct dp_netdev_pmd_thread *pmd;
4272 long long now;
4273 const struct flow *flow;
4274 };
4275
4276 static void
4277 dpif_netdev_register_dp_purge_cb(struct dpif *dpif, dp_purge_callback *cb,
4278 void *aux)
4279 {
4280 struct dp_netdev *dp = get_dp_netdev(dpif);
4281 dp->dp_purge_aux = aux;
4282 dp->dp_purge_cb = cb;
4283 }
4284
4285 static void
4286 dpif_netdev_register_upcall_cb(struct dpif *dpif, upcall_callback *cb,
4287 void *aux)
4288 {
4289 struct dp_netdev *dp = get_dp_netdev(dpif);
4290 dp->upcall_aux = aux;
4291 dp->upcall_cb = cb;
4292 }
4293
4294 static void
4295 dpif_netdev_xps_revalidate_pmd(const struct dp_netdev_pmd_thread *pmd,
4296 long long now, bool purge)
4297 {
4298 struct tx_port *tx;
4299 struct dp_netdev_port *port;
4300 long long interval;
4301
4302 HMAP_FOR_EACH (tx, node, &pmd->port_cache) {
4303 if (!tx->port->dynamic_txqs) {
4304 continue;
4305 }
4306 interval = now - tx->last_used;
4307 if (tx->qid >= 0 && (purge || interval >= XPS_TIMEOUT_MS)) {
4308 port = tx->port;
4309 ovs_mutex_lock(&port->txq_used_mutex);
4310 port->txq_used[tx->qid]--;
4311 ovs_mutex_unlock(&port->txq_used_mutex);
4312 tx->qid = -1;
4313 }
4314 }
4315 }
4316
4317 static int
4318 dpif_netdev_xps_get_tx_qid(const struct dp_netdev_pmd_thread *pmd,
4319 struct tx_port *tx, long long now)
4320 {
4321 struct dp_netdev_port *port;
4322 long long interval;
4323 int i, min_cnt, min_qid;
4324
4325 if (OVS_UNLIKELY(!now)) {
4326 now = time_msec();
4327 }
4328
4329 interval = now - tx->last_used;
4330 tx->last_used = now;
4331
4332 if (OVS_LIKELY(tx->qid >= 0 && interval < XPS_TIMEOUT_MS)) {
4333 return tx->qid;
4334 }
4335
4336 port = tx->port;
4337
4338 ovs_mutex_lock(&port->txq_used_mutex);
4339 if (tx->qid >= 0) {
4340 port->txq_used[tx->qid]--;
4341 tx->qid = -1;
4342 }
4343
4344 min_cnt = -1;
4345 min_qid = 0;
4346 for (i = 0; i < netdev_n_txq(port->netdev); i++) {
4347 if (port->txq_used[i] < min_cnt || min_cnt == -1) {
4348 min_cnt = port->txq_used[i];
4349 min_qid = i;
4350 }
4351 }
4352
4353 port->txq_used[min_qid]++;
4354 tx->qid = min_qid;
4355
4356 ovs_mutex_unlock(&port->txq_used_mutex);
4357
4358 dpif_netdev_xps_revalidate_pmd(pmd, now, false);
4359
4360 VLOG_DBG("Core %d: New TX queue ID %d for port \'%s\'.",
4361 pmd->core_id, tx->qid, netdev_get_name(tx->port->netdev));
4362 return min_qid;
4363 }
4364
4365 static struct tx_port *
4366 pmd_tx_port_cache_lookup(const struct dp_netdev_pmd_thread *pmd,
4367 odp_port_t port_no)
4368 {
4369 return tx_port_lookup(&pmd->port_cache, port_no);
4370 }
4371
4372 static int
4373 push_tnl_action(const struct dp_netdev_pmd_thread *pmd,
4374 const struct nlattr *attr,
4375 struct dp_packet_batch *batch)
4376 {
4377 struct tx_port *tun_port;
4378 const struct ovs_action_push_tnl *data;
4379 int err;
4380
4381 data = nl_attr_get(attr);
4382
4383 tun_port = pmd_tx_port_cache_lookup(pmd, u32_to_odp(data->tnl_port));
4384 if (!tun_port) {
4385 err = -EINVAL;
4386 goto error;
4387 }
4388 err = netdev_push_header(tun_port->port->netdev, batch, data);
4389 if (!err) {
4390 return 0;
4391 }
4392 error:
4393 dp_packet_delete_batch(batch, true);
4394 return err;
4395 }
4396
4397 static void
4398 dp_execute_userspace_action(struct dp_netdev_pmd_thread *pmd,
4399 struct dp_packet *packet, bool may_steal,
4400 struct flow *flow, ovs_u128 *ufid,
4401 struct ofpbuf *actions,
4402 const struct nlattr *userdata, long long now)
4403 {
4404 struct dp_packet_batch b;
4405 int error;
4406
4407 ofpbuf_clear(actions);
4408
4409 error = dp_netdev_upcall(pmd, packet, flow, NULL, ufid,
4410 DPIF_UC_ACTION, userdata, actions,
4411 NULL);
4412 if (!error || error == ENOSPC) {
4413 packet_batch_init_packet(&b, packet);
4414 dp_netdev_execute_actions(pmd, &b, may_steal, flow,
4415 actions->data, actions->size, now);
4416 } else if (may_steal) {
4417 dp_packet_delete(packet);
4418 }
4419 }
4420
4421 static void
4422 dp_execute_cb(void *aux_, struct dp_packet_batch *packets_,
4423 const struct nlattr *a, bool may_steal)
4424 {
4425 struct dp_netdev_execute_aux *aux = aux_;
4426 uint32_t *depth = recirc_depth_get();
4427 struct dp_netdev_pmd_thread *pmd = aux->pmd;
4428 struct dp_netdev *dp = pmd->dp;
4429 int type = nl_attr_type(a);
4430 long long now = aux->now;
4431 struct tx_port *p;
4432
4433 switch ((enum ovs_action_attr)type) {
4434 case OVS_ACTION_ATTR_OUTPUT:
4435 p = pmd_tx_port_cache_lookup(pmd, nl_attr_get_odp_port(a));
4436 if (OVS_LIKELY(p)) {
4437 int tx_qid;
4438 bool dynamic_txqs;
4439
4440 dynamic_txqs = p->port->dynamic_txqs;
4441 if (dynamic_txqs) {
4442 tx_qid = dpif_netdev_xps_get_tx_qid(pmd, p, now);
4443 } else {
4444 atomic_read_relaxed(&pmd->static_tx_qid, &tx_qid);
4445 }
4446
4447 netdev_send(p->port->netdev, tx_qid, packets_, may_steal,
4448 dynamic_txqs);
4449 return;
4450 }
4451 break;
4452
4453 case OVS_ACTION_ATTR_TUNNEL_PUSH:
4454 if (*depth < MAX_RECIRC_DEPTH) {
4455 struct dp_packet_batch tnl_pkt;
4456 struct dp_packet_batch *orig_packets_ = packets_;
4457 int err;
4458
4459 if (!may_steal) {
4460 dp_packet_batch_clone(&tnl_pkt, packets_);
4461 packets_ = &tnl_pkt;
4462 dp_packet_batch_reset_cutlen(orig_packets_);
4463 }
4464
4465 dp_packet_batch_apply_cutlen(packets_);
4466
4467 err = push_tnl_action(pmd, a, packets_);
4468 if (!err) {
4469 (*depth)++;
4470 dp_netdev_recirculate(pmd, packets_);
4471 (*depth)--;
4472 }
4473 return;
4474 }
4475 break;
4476
4477 case OVS_ACTION_ATTR_TUNNEL_POP:
4478 if (*depth < MAX_RECIRC_DEPTH) {
4479 struct dp_packet_batch *orig_packets_ = packets_;
4480 odp_port_t portno = nl_attr_get_odp_port(a);
4481
4482 p = pmd_tx_port_cache_lookup(pmd, portno);
4483 if (p) {
4484 struct dp_packet_batch tnl_pkt;
4485 int i;
4486
4487 if (!may_steal) {
4488 dp_packet_batch_clone(&tnl_pkt, packets_);
4489 packets_ = &tnl_pkt;
4490 dp_packet_batch_reset_cutlen(orig_packets_);
4491 }
4492
4493 dp_packet_batch_apply_cutlen(packets_);
4494
4495 netdev_pop_header(p->port->netdev, packets_);
4496 if (!packets_->count) {
4497 return;
4498 }
4499
4500 for (i = 0; i < packets_->count; i++) {
4501 packets_->packets[i]->md.in_port.odp_port = portno;
4502 }
4503
4504 (*depth)++;
4505 dp_netdev_recirculate(pmd, packets_);
4506 (*depth)--;
4507 return;
4508 }
4509 }
4510 break;
4511
4512 case OVS_ACTION_ATTR_USERSPACE:
4513 if (!fat_rwlock_tryrdlock(&dp->upcall_rwlock)) {
4514 struct dp_packet_batch *orig_packets_ = packets_;
4515 struct dp_packet **packets = packets_->packets;
4516 const struct nlattr *userdata;
4517 struct dp_packet_batch usr_pkt;
4518 struct ofpbuf actions;
4519 struct flow flow;
4520 ovs_u128 ufid;
4521 bool clone = false;
4522 int i;
4523
4524 userdata = nl_attr_find_nested(a, OVS_USERSPACE_ATTR_USERDATA);
4525 ofpbuf_init(&actions, 0);
4526
4527 if (packets_->trunc) {
4528 if (!may_steal) {
4529 dp_packet_batch_clone(&usr_pkt, packets_);
4530 packets_ = &usr_pkt;
4531 packets = packets_->packets;
4532 clone = true;
4533 dp_packet_batch_reset_cutlen(orig_packets_);
4534 }
4535
4536 dp_packet_batch_apply_cutlen(packets_);
4537 }
4538
4539 for (i = 0; i < packets_->count; i++) {
4540 flow_extract(packets[i], &flow);
4541 dpif_flow_hash(dp->dpif, &flow, sizeof flow, &ufid);
4542 dp_execute_userspace_action(pmd, packets[i], may_steal, &flow,
4543 &ufid, &actions, userdata, now);
4544 }
4545
4546 if (clone) {
4547 dp_packet_delete_batch(packets_, true);
4548 }
4549
4550 ofpbuf_uninit(&actions);
4551 fat_rwlock_unlock(&dp->upcall_rwlock);
4552
4553 return;
4554 }
4555 break;
4556
4557 case OVS_ACTION_ATTR_RECIRC:
4558 if (*depth < MAX_RECIRC_DEPTH) {
4559 struct dp_packet_batch recirc_pkts;
4560 int i;
4561
4562 if (!may_steal) {
4563 dp_packet_batch_clone(&recirc_pkts, packets_);
4564 packets_ = &recirc_pkts;
4565 }
4566
4567 for (i = 0; i < packets_->count; i++) {
4568 packets_->packets[i]->md.recirc_id = nl_attr_get_u32(a);
4569 }
4570
4571 (*depth)++;
4572 dp_netdev_recirculate(pmd, packets_);
4573 (*depth)--;
4574
4575 return;
4576 }
4577
4578 VLOG_WARN("Packet dropped. Max recirculation depth exceeded.");
4579 break;
4580
4581 case OVS_ACTION_ATTR_CT: {
4582 const struct nlattr *b;
4583 bool commit = false;
4584 unsigned int left;
4585 uint16_t zone = 0;
4586 const char *helper = NULL;
4587 const uint32_t *setmark = NULL;
4588 const struct ovs_key_ct_labels *setlabel = NULL;
4589
4590 NL_ATTR_FOR_EACH_UNSAFE (b, left, nl_attr_get(a),
4591 nl_attr_get_size(a)) {
4592 enum ovs_ct_attr sub_type = nl_attr_type(b);
4593
4594 switch(sub_type) {
4595 case OVS_CT_ATTR_COMMIT:
4596 commit = true;
4597 break;
4598 case OVS_CT_ATTR_ZONE:
4599 zone = nl_attr_get_u16(b);
4600 break;
4601 case OVS_CT_ATTR_HELPER:
4602 helper = nl_attr_get_string(b);
4603 break;
4604 case OVS_CT_ATTR_MARK:
4605 setmark = nl_attr_get(b);
4606 break;
4607 case OVS_CT_ATTR_LABELS:
4608 setlabel = nl_attr_get(b);
4609 break;
4610 case OVS_CT_ATTR_NAT:
4611 case OVS_CT_ATTR_UNSPEC:
4612 case __OVS_CT_ATTR_MAX:
4613 OVS_NOT_REACHED();
4614 }
4615 }
4616
4617 conntrack_execute(&dp->conntrack, packets_, aux->flow->dl_type, commit,
4618 zone, setmark, setlabel, helper);
4619 break;
4620 }
4621
4622 case OVS_ACTION_ATTR_PUSH_VLAN:
4623 case OVS_ACTION_ATTR_POP_VLAN:
4624 case OVS_ACTION_ATTR_PUSH_MPLS:
4625 case OVS_ACTION_ATTR_POP_MPLS:
4626 case OVS_ACTION_ATTR_SET:
4627 case OVS_ACTION_ATTR_SET_MASKED:
4628 case OVS_ACTION_ATTR_SAMPLE:
4629 case OVS_ACTION_ATTR_HASH:
4630 case OVS_ACTION_ATTR_UNSPEC:
4631 case OVS_ACTION_ATTR_TRUNC:
4632 case __OVS_ACTION_ATTR_MAX:
4633 OVS_NOT_REACHED();
4634 }
4635
4636 dp_packet_delete_batch(packets_, may_steal);
4637 }
4638
4639 static void
4640 dp_netdev_execute_actions(struct dp_netdev_pmd_thread *pmd,
4641 struct dp_packet_batch *packets,
4642 bool may_steal, const struct flow *flow,
4643 const struct nlattr *actions, size_t actions_len,
4644 long long now)
4645 {
4646 struct dp_netdev_execute_aux aux = { pmd, now, flow };
4647
4648 odp_execute_actions(&aux, packets, may_steal, actions,
4649 actions_len, dp_execute_cb);
4650 }
4651
4652 struct dp_netdev_ct_dump {
4653 struct ct_dpif_dump_state up;
4654 struct conntrack_dump dump;
4655 struct conntrack *ct;
4656 struct dp_netdev *dp;
4657 };
4658
4659 static int
4660 dpif_netdev_ct_dump_start(struct dpif *dpif, struct ct_dpif_dump_state **dump_,
4661 const uint16_t *pzone)
4662 {
4663 struct dp_netdev *dp = get_dp_netdev(dpif);
4664 struct dp_netdev_ct_dump *dump;
4665
4666 dump = xzalloc(sizeof *dump);
4667 dump->dp = dp;
4668 dump->ct = &dp->conntrack;
4669
4670 conntrack_dump_start(&dp->conntrack, &dump->dump, pzone);
4671
4672 *dump_ = &dump->up;
4673
4674 return 0;
4675 }
4676
4677 static int
4678 dpif_netdev_ct_dump_next(struct dpif *dpif OVS_UNUSED,
4679 struct ct_dpif_dump_state *dump_,
4680 struct ct_dpif_entry *entry)
4681 {
4682 struct dp_netdev_ct_dump *dump;
4683
4684 INIT_CONTAINER(dump, dump_, up);
4685
4686 return conntrack_dump_next(&dump->dump, entry);
4687 }
4688
4689 static int
4690 dpif_netdev_ct_dump_done(struct dpif *dpif OVS_UNUSED,
4691 struct ct_dpif_dump_state *dump_)
4692 {
4693 struct dp_netdev_ct_dump *dump;
4694 int err;
4695
4696 INIT_CONTAINER(dump, dump_, up);
4697
4698 err = conntrack_dump_done(&dump->dump);
4699
4700 free(dump);
4701
4702 return err;
4703 }
4704
4705 static int
4706 dpif_netdev_ct_flush(struct dpif *dpif, const uint16_t *zone)
4707 {
4708 struct dp_netdev *dp = get_dp_netdev(dpif);
4709
4710 return conntrack_flush(&dp->conntrack, zone);
4711 }
4712
4713 const struct dpif_class dpif_netdev_class = {
4714 "netdev",
4715 dpif_netdev_init,
4716 dpif_netdev_enumerate,
4717 dpif_netdev_port_open_type,
4718 dpif_netdev_open,
4719 dpif_netdev_close,
4720 dpif_netdev_destroy,
4721 dpif_netdev_run,
4722 dpif_netdev_wait,
4723 dpif_netdev_get_stats,
4724 dpif_netdev_port_add,
4725 dpif_netdev_port_del,
4726 dpif_netdev_port_set_config,
4727 dpif_netdev_port_query_by_number,
4728 dpif_netdev_port_query_by_name,
4729 NULL, /* port_get_pid */
4730 dpif_netdev_port_dump_start,
4731 dpif_netdev_port_dump_next,
4732 dpif_netdev_port_dump_done,
4733 dpif_netdev_port_poll,
4734 dpif_netdev_port_poll_wait,
4735 dpif_netdev_flow_flush,
4736 dpif_netdev_flow_dump_create,
4737 dpif_netdev_flow_dump_destroy,
4738 dpif_netdev_flow_dump_thread_create,
4739 dpif_netdev_flow_dump_thread_destroy,
4740 dpif_netdev_flow_dump_next,
4741 dpif_netdev_operate,
4742 NULL, /* recv_set */
4743 NULL, /* handlers_set */
4744 dpif_netdev_pmd_set,
4745 dpif_netdev_queue_to_priority,
4746 NULL, /* recv */
4747 NULL, /* recv_wait */
4748 NULL, /* recv_purge */
4749 dpif_netdev_register_dp_purge_cb,
4750 dpif_netdev_register_upcall_cb,
4751 dpif_netdev_enable_upcall,
4752 dpif_netdev_disable_upcall,
4753 dpif_netdev_get_datapath_version,
4754 dpif_netdev_ct_dump_start,
4755 dpif_netdev_ct_dump_next,
4756 dpif_netdev_ct_dump_done,
4757 dpif_netdev_ct_flush,
4758 };
4759
4760 static void
4761 dpif_dummy_change_port_number(struct unixctl_conn *conn, int argc OVS_UNUSED,
4762 const char *argv[], void *aux OVS_UNUSED)
4763 {
4764 struct dp_netdev_port *port;
4765 struct dp_netdev *dp;
4766 odp_port_t port_no;
4767
4768 ovs_mutex_lock(&dp_netdev_mutex);
4769 dp = shash_find_data(&dp_netdevs, argv[1]);
4770 if (!dp || !dpif_netdev_class_is_dummy(dp->class)) {
4771 ovs_mutex_unlock(&dp_netdev_mutex);
4772 unixctl_command_reply_error(conn, "unknown datapath or not a dummy");
4773 return;
4774 }
4775 ovs_refcount_ref(&dp->ref_cnt);
4776 ovs_mutex_unlock(&dp_netdev_mutex);
4777
4778 ovs_mutex_lock(&dp->port_mutex);
4779 if (get_port_by_name(dp, argv[2], &port)) {
4780 unixctl_command_reply_error(conn, "unknown port");
4781 goto exit;
4782 }
4783
4784 port_no = u32_to_odp(atoi(argv[3]));
4785 if (!port_no || port_no == ODPP_NONE) {
4786 unixctl_command_reply_error(conn, "bad port number");
4787 goto exit;
4788 }
4789 if (dp_netdev_lookup_port(dp, port_no)) {
4790 unixctl_command_reply_error(conn, "port number already in use");
4791 goto exit;
4792 }
4793
4794 /* Remove port. */
4795 hmap_remove(&dp->ports, &port->node);
4796 dp_netdev_del_port_from_all_pmds(dp, port);
4797
4798 /* Reinsert with new port number. */
4799 port->port_no = port_no;
4800 hmap_insert(&dp->ports, &port->node, hash_port_no(port_no));
4801 dp_netdev_add_port_to_pmds(dp, port);
4802
4803 seq_change(dp->port_seq);
4804 unixctl_command_reply(conn, NULL);
4805
4806 exit:
4807 ovs_mutex_unlock(&dp->port_mutex);
4808 dp_netdev_unref(dp);
4809 }
4810
4811 static void
4812 dpif_dummy_register__(const char *type)
4813 {
4814 struct dpif_class *class;
4815
4816 class = xmalloc(sizeof *class);
4817 *class = dpif_netdev_class;
4818 class->type = xstrdup(type);
4819 dp_register_provider(class);
4820 }
4821
4822 static void
4823 dpif_dummy_override(const char *type)
4824 {
4825 int error;
4826
4827 /*
4828 * Ignore EAFNOSUPPORT to allow --enable-dummy=system with
4829 * a userland-only build. It's useful for testsuite.
4830 */
4831 error = dp_unregister_provider(type);
4832 if (error == 0 || error == EAFNOSUPPORT) {
4833 dpif_dummy_register__(type);
4834 }
4835 }
4836
4837 void
4838 dpif_dummy_register(enum dummy_level level)
4839 {
4840 if (level == DUMMY_OVERRIDE_ALL) {
4841 struct sset types;
4842 const char *type;
4843
4844 sset_init(&types);
4845 dp_enumerate_types(&types);
4846 SSET_FOR_EACH (type, &types) {
4847 dpif_dummy_override(type);
4848 }
4849 sset_destroy(&types);
4850 } else if (level == DUMMY_OVERRIDE_SYSTEM) {
4851 dpif_dummy_override("system");
4852 }
4853
4854 dpif_dummy_register__("dummy");
4855
4856 unixctl_command_register("dpif-dummy/change-port-number",
4857 "dp port new-number",
4858 3, 3, dpif_dummy_change_port_number, NULL);
4859 }
4860 \f
4861 /* Datapath Classifier. */
4862
4863 /* A set of rules that all have the same fields wildcarded. */
4864 struct dpcls_subtable {
4865 /* The fields are only used by writers. */
4866 struct cmap_node cmap_node OVS_GUARDED; /* Within dpcls 'subtables_map'. */
4867
4868 /* These fields are accessed by readers. */
4869 struct cmap rules; /* Contains "struct dpcls_rule"s. */
4870 uint32_t hit_cnt; /* Number of match hits in subtable in current
4871 optimization interval. */
4872 struct netdev_flow_key mask; /* Wildcards for fields (const). */
4873 /* 'mask' must be the last field, additional space is allocated here. */
4874 };
4875
4876 /* Initializes 'cls' as a classifier that initially contains no classification
4877 * rules. */
4878 static void
4879 dpcls_init(struct dpcls *cls)
4880 {
4881 cmap_init(&cls->subtables_map);
4882 pvector_init(&cls->subtables);
4883 }
4884
4885 static void
4886 dpcls_destroy_subtable(struct dpcls *cls, struct dpcls_subtable *subtable)
4887 {
4888 VLOG_DBG("Destroying subtable %p for in_port %d", subtable, cls->in_port);
4889 pvector_remove(&cls->subtables, subtable);
4890 cmap_remove(&cls->subtables_map, &subtable->cmap_node,
4891 subtable->mask.hash);
4892 cmap_destroy(&subtable->rules);
4893 ovsrcu_postpone(free, subtable);
4894 }
4895
4896 /* Destroys 'cls'. Rules within 'cls', if any, are not freed; this is the
4897 * caller's responsibility.
4898 * May only be called after all the readers have been terminated. */
4899 static void
4900 dpcls_destroy(struct dpcls *cls)
4901 {
4902 if (cls) {
4903 struct dpcls_subtable *subtable;
4904
4905 CMAP_FOR_EACH (subtable, cmap_node, &cls->subtables_map) {
4906 ovs_assert(cmap_count(&subtable->rules) == 0);
4907 dpcls_destroy_subtable(cls, subtable);
4908 }
4909 cmap_destroy(&cls->subtables_map);
4910 pvector_destroy(&cls->subtables);
4911 }
4912 }
4913
4914 static struct dpcls_subtable *
4915 dpcls_create_subtable(struct dpcls *cls, const struct netdev_flow_key *mask)
4916 {
4917 struct dpcls_subtable *subtable;
4918
4919 /* Need to add one. */
4920 subtable = xmalloc(sizeof *subtable
4921 - sizeof subtable->mask.mf + mask->len);
4922 cmap_init(&subtable->rules);
4923 subtable->hit_cnt = 0;
4924 netdev_flow_key_clone(&subtable->mask, mask);
4925 cmap_insert(&cls->subtables_map, &subtable->cmap_node, mask->hash);
4926 /* Add the new subtable at the end of the pvector (with no hits yet) */
4927 pvector_insert(&cls->subtables, subtable, 0);
4928 VLOG_DBG("Creating %"PRIuSIZE". subtable %p for in_port %d",
4929 cmap_count(&cls->subtables_map), subtable, cls->in_port);
4930 pvector_publish(&cls->subtables);
4931
4932 return subtable;
4933 }
4934
4935 static inline struct dpcls_subtable *
4936 dpcls_find_subtable(struct dpcls *cls, const struct netdev_flow_key *mask)
4937 {
4938 struct dpcls_subtable *subtable;
4939
4940 CMAP_FOR_EACH_WITH_HASH (subtable, cmap_node, mask->hash,
4941 &cls->subtables_map) {
4942 if (netdev_flow_key_equal(&subtable->mask, mask)) {
4943 return subtable;
4944 }
4945 }
4946 return dpcls_create_subtable(cls, mask);
4947 }
4948
4949
4950 /* Periodically sort the dpcls subtable vectors according to hit counts */
4951 static void
4952 dpcls_sort_subtable_vector(struct dpcls *cls)
4953 {
4954 struct pvector *pvec = &cls->subtables;
4955 struct dpcls_subtable *subtable;
4956
4957 PVECTOR_FOR_EACH (subtable, pvec) {
4958 pvector_change_priority(pvec, subtable, subtable->hit_cnt);
4959 subtable->hit_cnt = 0;
4960 }
4961 pvector_publish(pvec);
4962 }
4963
4964 static inline void
4965 dp_netdev_pmd_try_optimize(struct dp_netdev_pmd_thread *pmd)
4966 {
4967 struct dpcls *cls;
4968 long long int now = time_msec();
4969
4970 if (now > pmd->next_optimization) {
4971 /* Try to obtain the flow lock to block out revalidator threads.
4972 * If not possible, just try next time. */
4973 if (!ovs_mutex_trylock(&pmd->flow_mutex)) {
4974 /* Optimize each classifier */
4975 CMAP_FOR_EACH (cls, node, &pmd->classifiers) {
4976 dpcls_sort_subtable_vector(cls);
4977 }
4978 ovs_mutex_unlock(&pmd->flow_mutex);
4979 /* Start new measuring interval */
4980 pmd->next_optimization = now + DPCLS_OPTIMIZATION_INTERVAL;
4981 }
4982 }
4983 }
4984
4985 /* Insert 'rule' into 'cls'. */
4986 static void
4987 dpcls_insert(struct dpcls *cls, struct dpcls_rule *rule,
4988 const struct netdev_flow_key *mask)
4989 {
4990 struct dpcls_subtable *subtable = dpcls_find_subtable(cls, mask);
4991
4992 /* Refer to subtable's mask, also for later removal. */
4993 rule->mask = &subtable->mask;
4994 cmap_insert(&subtable->rules, &rule->cmap_node, rule->flow.hash);
4995 }
4996
4997 /* Removes 'rule' from 'cls', also destructing the 'rule'. */
4998 static void
4999 dpcls_remove(struct dpcls *cls, struct dpcls_rule *rule)
5000 {
5001 struct dpcls_subtable *subtable;
5002
5003 ovs_assert(rule->mask);
5004
5005 /* Get subtable from reference in rule->mask. */
5006 INIT_CONTAINER(subtable, rule->mask, mask);
5007 if (cmap_remove(&subtable->rules, &rule->cmap_node, rule->flow.hash)
5008 == 0) {
5009 /* Delete empty subtable. */
5010 dpcls_destroy_subtable(cls, subtable);
5011 pvector_publish(&cls->subtables);
5012 }
5013 }
5014
5015 /* Returns true if 'target' satisfies 'key' in 'mask', that is, if each 1-bit
5016 * in 'mask' the values in 'key' and 'target' are the same. */
5017 static inline bool
5018 dpcls_rule_matches_key(const struct dpcls_rule *rule,
5019 const struct netdev_flow_key *target)
5020 {
5021 const uint64_t *keyp = miniflow_get_values(&rule->flow.mf);
5022 const uint64_t *maskp = miniflow_get_values(&rule->mask->mf);
5023 uint64_t value;
5024
5025 NETDEV_FLOW_KEY_FOR_EACH_IN_FLOWMAP(value, target, rule->flow.mf.map) {
5026 if (OVS_UNLIKELY((value & *maskp++) != *keyp++)) {
5027 return false;
5028 }
5029 }
5030 return true;
5031 }
5032
5033 /* For each miniflow in 'keys' performs a classifier lookup writing the result
5034 * into the corresponding slot in 'rules'. If a particular entry in 'keys' is
5035 * NULL it is skipped.
5036 *
5037 * This function is optimized for use in the userspace datapath and therefore
5038 * does not implement a lot of features available in the standard
5039 * classifier_lookup() function. Specifically, it does not implement
5040 * priorities, instead returning any rule which matches the flow.
5041 *
5042 * Returns true if all miniflows found a corresponding rule. */
5043 static bool
5044 dpcls_lookup(struct dpcls *cls, const struct netdev_flow_key keys[],
5045 struct dpcls_rule **rules, const size_t cnt,
5046 int *num_lookups_p)
5047 {
5048 /* The received 'cnt' miniflows are the search-keys that will be processed
5049 * to find a matching entry into the available subtables.
5050 * The number of bits in map_type is equal to NETDEV_MAX_BURST. */
5051 typedef uint32_t map_type;
5052 #define MAP_BITS (sizeof(map_type) * CHAR_BIT)
5053 BUILD_ASSERT_DECL(MAP_BITS >= NETDEV_MAX_BURST);
5054
5055 struct dpcls_subtable *subtable;
5056
5057 map_type keys_map = TYPE_MAXIMUM(map_type); /* Set all bits. */
5058 map_type found_map;
5059 uint32_t hashes[MAP_BITS];
5060 const struct cmap_node *nodes[MAP_BITS];
5061
5062 if (cnt != MAP_BITS) {
5063 keys_map >>= MAP_BITS - cnt; /* Clear extra bits. */
5064 }
5065 memset(rules, 0, cnt * sizeof *rules);
5066
5067 int lookups_match = 0, subtable_pos = 1;
5068
5069 /* The Datapath classifier - aka dpcls - is composed of subtables.
5070 * Subtables are dynamically created as needed when new rules are inserted.
5071 * Each subtable collects rules with matches on a specific subset of packet
5072 * fields as defined by the subtable's mask. We proceed to process every
5073 * search-key against each subtable, but when a match is found for a
5074 * search-key, the search for that key can stop because the rules are
5075 * non-overlapping. */
5076 PVECTOR_FOR_EACH (subtable, &cls->subtables) {
5077 int i;
5078
5079 /* Compute hashes for the remaining keys. Each search-key is
5080 * masked with the subtable's mask to avoid hashing the wildcarded
5081 * bits. */
5082 ULLONG_FOR_EACH_1(i, keys_map) {
5083 hashes[i] = netdev_flow_key_hash_in_mask(&keys[i],
5084 &subtable->mask);
5085 }
5086 /* Lookup. */
5087 found_map = cmap_find_batch(&subtable->rules, keys_map, hashes, nodes);
5088 /* Check results. When the i-th bit of found_map is set, it means
5089 * that a set of nodes with a matching hash value was found for the
5090 * i-th search-key. Due to possible hash collisions we need to check
5091 * which of the found rules, if any, really matches our masked
5092 * search-key. */
5093 ULLONG_FOR_EACH_1(i, found_map) {
5094 struct dpcls_rule *rule;
5095
5096 CMAP_NODE_FOR_EACH (rule, cmap_node, nodes[i]) {
5097 if (OVS_LIKELY(dpcls_rule_matches_key(rule, &keys[i]))) {
5098 rules[i] = rule;
5099 /* Even at 20 Mpps the 32-bit hit_cnt cannot wrap
5100 * within one second optimization interval. */
5101 subtable->hit_cnt++;
5102 lookups_match += subtable_pos;
5103 goto next;
5104 }
5105 }
5106 /* None of the found rules was a match. Reset the i-th bit to
5107 * keep searching this key in the next subtable. */
5108 ULLONG_SET0(found_map, i); /* Did not match. */
5109 next:
5110 ; /* Keep Sparse happy. */
5111 }
5112 keys_map &= ~found_map; /* Clear the found rules. */
5113 if (!keys_map) {
5114 if (num_lookups_p) {
5115 *num_lookups_p = lookups_match;
5116 }
5117 return true; /* All found. */
5118 }
5119 subtable_pos++;
5120 }
5121 if (num_lookups_p) {
5122 *num_lookups_p = lookups_match;
5123 }
5124 return false; /* Some misses. */
5125 }