]> git.proxmox.com Git - mirror_ovs.git/blob - lib/flow.c
netdev: Take responsibility for polling MII registers.
[mirror_ovs.git] / lib / flow.c
1 /*
2 * Copyright (c) 2008, 2009, 2010, 2011 Nicira Networks.
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at:
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16 #include <config.h>
17 #include <sys/types.h>
18 #include "flow.h"
19 #include <errno.h>
20 #include <inttypes.h>
21 #include <netinet/in.h>
22 #include <netinet/icmp6.h>
23 #include <netinet/ip6.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include "byte-order.h"
27 #include "coverage.h"
28 #include "dpif.h"
29 #include "dynamic-string.h"
30 #include "hash.h"
31 #include "ofpbuf.h"
32 #include "openflow/openflow.h"
33 #include "openvswitch/datapath-protocol.h"
34 #include "packets.h"
35 #include "unaligned.h"
36 #include "vlog.h"
37
38 VLOG_DEFINE_THIS_MODULE(flow);
39
40 COVERAGE_DEFINE(flow_extract);
41
42 static struct arp_eth_header *
43 pull_arp(struct ofpbuf *packet)
44 {
45 return ofpbuf_try_pull(packet, ARP_ETH_HEADER_LEN);
46 }
47
48 static struct ip_header *
49 pull_ip(struct ofpbuf *packet)
50 {
51 if (packet->size >= IP_HEADER_LEN) {
52 struct ip_header *ip = packet->data;
53 int ip_len = IP_IHL(ip->ip_ihl_ver) * 4;
54 if (ip_len >= IP_HEADER_LEN && packet->size >= ip_len) {
55 return ofpbuf_pull(packet, ip_len);
56 }
57 }
58 return NULL;
59 }
60
61 static struct tcp_header *
62 pull_tcp(struct ofpbuf *packet)
63 {
64 if (packet->size >= TCP_HEADER_LEN) {
65 struct tcp_header *tcp = packet->data;
66 int tcp_len = TCP_OFFSET(tcp->tcp_ctl) * 4;
67 if (tcp_len >= TCP_HEADER_LEN && packet->size >= tcp_len) {
68 return ofpbuf_pull(packet, tcp_len);
69 }
70 }
71 return NULL;
72 }
73
74 static struct udp_header *
75 pull_udp(struct ofpbuf *packet)
76 {
77 return ofpbuf_try_pull(packet, UDP_HEADER_LEN);
78 }
79
80 static struct icmp_header *
81 pull_icmp(struct ofpbuf *packet)
82 {
83 return ofpbuf_try_pull(packet, ICMP_HEADER_LEN);
84 }
85
86 static struct icmp6_hdr *
87 pull_icmpv6(struct ofpbuf *packet)
88 {
89 return ofpbuf_try_pull(packet, sizeof(struct icmp6_hdr));
90 }
91
92 static void
93 parse_vlan(struct ofpbuf *b, struct flow *flow)
94 {
95 struct qtag_prefix {
96 ovs_be16 eth_type; /* ETH_TYPE_VLAN */
97 ovs_be16 tci;
98 };
99
100 if (b->size >= sizeof(struct qtag_prefix) + sizeof(ovs_be16)) {
101 struct qtag_prefix *qp = ofpbuf_pull(b, sizeof *qp);
102 flow->vlan_tci = qp->tci | htons(VLAN_CFI);
103 }
104 }
105
106 static ovs_be16
107 parse_ethertype(struct ofpbuf *b)
108 {
109 struct llc_snap_header *llc;
110 ovs_be16 proto;
111
112 proto = *(ovs_be16 *) ofpbuf_pull(b, sizeof proto);
113 if (ntohs(proto) >= ETH_TYPE_MIN) {
114 return proto;
115 }
116
117 if (b->size < sizeof *llc) {
118 return htons(FLOW_DL_TYPE_NONE);
119 }
120
121 llc = b->data;
122 if (llc->llc.llc_dsap != LLC_DSAP_SNAP
123 || llc->llc.llc_ssap != LLC_SSAP_SNAP
124 || llc->llc.llc_cntl != LLC_CNTL_SNAP
125 || memcmp(llc->snap.snap_org, SNAP_ORG_ETHERNET,
126 sizeof llc->snap.snap_org)) {
127 return htons(FLOW_DL_TYPE_NONE);
128 }
129
130 ofpbuf_pull(b, sizeof *llc);
131 return llc->snap.snap_type;
132 }
133
134 static int
135 parse_ipv6(struct ofpbuf *packet, struct flow *flow)
136 {
137 const struct ip6_hdr *nh;
138 ovs_be32 tc_flow;
139 int nexthdr;
140
141 nh = ofpbuf_try_pull(packet, sizeof *nh);
142 if (!nh) {
143 return EINVAL;
144 }
145
146 nexthdr = nh->ip6_nxt;
147
148 flow->ipv6_src = nh->ip6_src;
149 flow->ipv6_dst = nh->ip6_dst;
150
151 tc_flow = get_unaligned_be32(&nh->ip6_flow);
152 flow->nw_tos = (ntohl(tc_flow) >> 4) & IP_DSCP_MASK;
153 flow->nw_proto = IPPROTO_NONE;
154
155 while (1) {
156 if ((nexthdr != IPPROTO_HOPOPTS)
157 && (nexthdr != IPPROTO_ROUTING)
158 && (nexthdr != IPPROTO_DSTOPTS)
159 && (nexthdr != IPPROTO_AH)
160 && (nexthdr != IPPROTO_FRAGMENT)) {
161 /* It's either a terminal header (e.g., TCP, UDP) or one we
162 * don't understand. In either case, we're done with the
163 * packet, so use it to fill in 'nw_proto'. */
164 break;
165 }
166
167 /* We only verify that at least 8 bytes of the next header are
168 * available, but many of these headers are longer. Ensure that
169 * accesses within the extension header are within those first 8
170 * bytes. All extension headers are required to be at least 8
171 * bytes. */
172 if (packet->size < 8) {
173 return EINVAL;
174 }
175
176 if ((nexthdr == IPPROTO_HOPOPTS)
177 || (nexthdr == IPPROTO_ROUTING)
178 || (nexthdr == IPPROTO_DSTOPTS)) {
179 /* These headers, while different, have the fields we care about
180 * in the same location and with the same interpretation. */
181 const struct ip6_ext *ext_hdr = (struct ip6_ext *)packet->data;
182 nexthdr = ext_hdr->ip6e_nxt;
183 if (!ofpbuf_try_pull(packet, (ext_hdr->ip6e_len + 1) * 8)) {
184 return EINVAL;
185 }
186 } else if (nexthdr == IPPROTO_AH) {
187 /* A standard AH definition isn't available, but the fields
188 * we care about are in the same location as the generic
189 * option header--only the header length is calculated
190 * differently. */
191 const struct ip6_ext *ext_hdr = (struct ip6_ext *)packet->data;
192 nexthdr = ext_hdr->ip6e_nxt;
193 if (!ofpbuf_try_pull(packet, (ext_hdr->ip6e_len + 2) * 4)) {
194 return EINVAL;
195 }
196 } else if (nexthdr == IPPROTO_FRAGMENT) {
197 const struct ip6_frag *frag_hdr = (struct ip6_frag *)packet->data;
198
199 nexthdr = frag_hdr->ip6f_nxt;
200 if (!ofpbuf_try_pull(packet, sizeof *frag_hdr)) {
201 return EINVAL;
202 }
203
204 /* We only process the first fragment. */
205 if ((frag_hdr->ip6f_offlg & IP6F_OFF_MASK) != htons(0)) {
206 nexthdr = IPPROTO_FRAGMENT;
207 break;
208 }
209 }
210 }
211
212 flow->nw_proto = nexthdr;
213 return 0;
214 }
215
216 static void
217 parse_tcp(struct ofpbuf *packet, struct ofpbuf *b, struct flow *flow)
218 {
219 const struct tcp_header *tcp = pull_tcp(b);
220 if (tcp) {
221 flow->tp_src = tcp->tcp_src;
222 flow->tp_dst = tcp->tcp_dst;
223 packet->l7 = b->data;
224 }
225 }
226
227 static void
228 parse_udp(struct ofpbuf *packet, struct ofpbuf *b, struct flow *flow)
229 {
230 const struct udp_header *udp = pull_udp(b);
231 if (udp) {
232 flow->tp_src = udp->udp_src;
233 flow->tp_dst = udp->udp_dst;
234 packet->l7 = b->data;
235 }
236 }
237
238 static bool
239 parse_icmpv6(struct ofpbuf *b, struct flow *flow)
240 {
241 const struct icmp6_hdr *icmp = pull_icmpv6(b);
242
243 if (!icmp) {
244 return false;
245 }
246
247 /* The ICMPv6 type and code fields use the 16-bit transport port
248 * fields, so we need to store them in 16-bit network byte order. */
249 flow->icmp_type = htons(icmp->icmp6_type);
250 flow->icmp_code = htons(icmp->icmp6_code);
251
252 if (icmp->icmp6_code == 0 &&
253 (icmp->icmp6_type == ND_NEIGHBOR_SOLICIT ||
254 icmp->icmp6_type == ND_NEIGHBOR_ADVERT)) {
255 const struct in6_addr *nd_target;
256
257 nd_target = ofpbuf_try_pull(b, sizeof *nd_target);
258 if (!nd_target) {
259 return false;
260 }
261 flow->nd_target = *nd_target;
262
263 while (b->size >= 8) {
264 /* The minimum size of an option is 8 bytes, which also is
265 * the size of Ethernet link-layer options. */
266 const struct nd_opt_hdr *nd_opt = b->data;
267 int opt_len = nd_opt->nd_opt_len * 8;
268
269 if (!opt_len || opt_len > b->size) {
270 goto invalid;
271 }
272
273 /* Store the link layer address if the appropriate option is
274 * provided. It is considered an error if the same link
275 * layer option is specified twice. */
276 if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LINKADDR
277 && opt_len == 8) {
278 if (eth_addr_is_zero(flow->arp_sha)) {
279 memcpy(flow->arp_sha, nd_opt + 1, ETH_ADDR_LEN);
280 } else {
281 goto invalid;
282 }
283 } else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LINKADDR
284 && opt_len == 8) {
285 if (eth_addr_is_zero(flow->arp_tha)) {
286 memcpy(flow->arp_tha, nd_opt + 1, ETH_ADDR_LEN);
287 } else {
288 goto invalid;
289 }
290 }
291
292 if (!ofpbuf_try_pull(b, opt_len)) {
293 goto invalid;
294 }
295 }
296 }
297
298 return true;
299
300 invalid:
301 memset(&flow->nd_target, 0, sizeof(flow->nd_target));
302 memset(flow->arp_sha, 0, sizeof(flow->arp_sha));
303 memset(flow->arp_tha, 0, sizeof(flow->arp_tha));
304
305 return false;
306
307 }
308
309 /* Initializes 'flow' members from 'packet', 'tun_id', and 'ofp_in_port'.
310 * Initializes 'packet' header pointers as follows:
311 *
312 * - packet->l2 to the start of the Ethernet header.
313 *
314 * - packet->l3 to just past the Ethernet header, or just past the
315 * vlan_header if one is present, to the first byte of the payload of the
316 * Ethernet frame.
317 *
318 * - packet->l4 to just past the IPv4 header, if one is present and has a
319 * correct length, and otherwise NULL.
320 *
321 * - packet->l7 to just past the TCP or UDP or ICMP header, if one is
322 * present and has a correct length, and otherwise NULL.
323 */
324 int
325 flow_extract(struct ofpbuf *packet, ovs_be64 tun_id, uint16_t ofp_in_port,
326 struct flow *flow)
327 {
328 struct ofpbuf b = *packet;
329 struct eth_header *eth;
330 int retval = 0;
331
332 COVERAGE_INC(flow_extract);
333
334 memset(flow, 0, sizeof *flow);
335 flow->tun_id = tun_id;
336 flow->in_port = ofp_in_port;
337
338 packet->l2 = b.data;
339 packet->l3 = NULL;
340 packet->l4 = NULL;
341 packet->l7 = NULL;
342
343 if (b.size < sizeof *eth) {
344 return 0;
345 }
346
347 /* Link layer. */
348 eth = b.data;
349 memcpy(flow->dl_src, eth->eth_src, ETH_ADDR_LEN);
350 memcpy(flow->dl_dst, eth->eth_dst, ETH_ADDR_LEN);
351
352 /* dl_type, vlan_tci. */
353 ofpbuf_pull(&b, ETH_ADDR_LEN * 2);
354 if (eth->eth_type == htons(ETH_TYPE_VLAN)) {
355 parse_vlan(&b, flow);
356 }
357 flow->dl_type = parse_ethertype(&b);
358
359 /* Network layer. */
360 packet->l3 = b.data;
361 if (flow->dl_type == htons(ETH_TYPE_IP)) {
362 const struct ip_header *nh = pull_ip(&b);
363 if (nh) {
364 flow->nw_src = get_unaligned_be32(&nh->ip_src);
365 flow->nw_dst = get_unaligned_be32(&nh->ip_dst);
366 flow->nw_tos = nh->ip_tos & IP_DSCP_MASK;
367 flow->nw_proto = nh->ip_proto;
368 packet->l4 = b.data;
369 if (!IP_IS_FRAGMENT(nh->ip_frag_off)) {
370 if (flow->nw_proto == IPPROTO_TCP) {
371 parse_tcp(packet, &b, flow);
372 } else if (flow->nw_proto == IPPROTO_UDP) {
373 parse_udp(packet, &b, flow);
374 } else if (flow->nw_proto == IPPROTO_ICMP) {
375 const struct icmp_header *icmp = pull_icmp(&b);
376 if (icmp) {
377 flow->icmp_type = htons(icmp->icmp_type);
378 flow->icmp_code = htons(icmp->icmp_code);
379 packet->l7 = b.data;
380 }
381 }
382 } else {
383 retval = 1;
384 }
385 }
386 } else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
387
388 retval = parse_ipv6(&b, flow);
389 if (retval) {
390 return 0;
391 }
392
393 packet->l4 = b.data;
394 if (flow->nw_proto == IPPROTO_TCP) {
395 parse_tcp(packet, &b, flow);
396 } else if (flow->nw_proto == IPPROTO_UDP) {
397 parse_udp(packet, &b, flow);
398 } else if (flow->nw_proto == IPPROTO_ICMPV6) {
399 if (parse_icmpv6(&b, flow)) {
400 packet->l7 = b.data;
401 }
402 }
403 } else if (flow->dl_type == htons(ETH_TYPE_ARP)) {
404 const struct arp_eth_header *arp = pull_arp(&b);
405 if (arp && arp->ar_hrd == htons(1)
406 && arp->ar_pro == htons(ETH_TYPE_IP)
407 && arp->ar_hln == ETH_ADDR_LEN
408 && arp->ar_pln == 4) {
409 /* We only match on the lower 8 bits of the opcode. */
410 if (ntohs(arp->ar_op) <= 0xff) {
411 flow->nw_proto = ntohs(arp->ar_op);
412 }
413
414 if ((flow->nw_proto == ARP_OP_REQUEST)
415 || (flow->nw_proto == ARP_OP_REPLY)) {
416 flow->nw_src = arp->ar_spa;
417 flow->nw_dst = arp->ar_tpa;
418 memcpy(flow->arp_sha, arp->ar_sha, ETH_ADDR_LEN);
419 memcpy(flow->arp_tha, arp->ar_tha, ETH_ADDR_LEN);
420 }
421 }
422 }
423
424 return retval;
425 }
426
427 /* Extracts the flow stats for a packet. The 'flow' and 'packet'
428 * arguments must have been initialized through a call to flow_extract().
429 */
430 void
431 flow_extract_stats(const struct flow *flow, struct ofpbuf *packet,
432 struct dpif_flow_stats *stats)
433 {
434 memset(stats, 0, sizeof(*stats));
435
436 if ((flow->dl_type == htons(ETH_TYPE_IP)) && packet->l4) {
437 if ((flow->nw_proto == IPPROTO_TCP) && packet->l7) {
438 struct tcp_header *tcp = packet->l4;
439 stats->tcp_flags = TCP_FLAGS(tcp->tcp_ctl);
440 }
441 }
442
443 stats->n_bytes = packet->size;
444 stats->n_packets = 1;
445 }
446
447 char *
448 flow_to_string(const struct flow *flow)
449 {
450 struct ds ds = DS_EMPTY_INITIALIZER;
451 flow_format(&ds, flow);
452 return ds_cstr(&ds);
453 }
454
455 void
456 flow_format(struct ds *ds, const struct flow *flow)
457 {
458 ds_put_format(ds, "tunnel%#"PRIx64":in_port%04"PRIx16":tci(",
459 flow->tun_id, flow->in_port);
460 if (flow->vlan_tci) {
461 ds_put_format(ds, "vlan%"PRIu16",pcp%d",
462 vlan_tci_to_vid(flow->vlan_tci),
463 vlan_tci_to_pcp(flow->vlan_tci));
464 } else {
465 ds_put_char(ds, '0');
466 }
467 ds_put_format(ds, ") mac"ETH_ADDR_FMT"->"ETH_ADDR_FMT
468 " type%04"PRIx16,
469 ETH_ADDR_ARGS(flow->dl_src),
470 ETH_ADDR_ARGS(flow->dl_dst),
471 ntohs(flow->dl_type));
472
473 if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
474 ds_put_format(ds, " proto%"PRIu8" tos%"PRIu8" ipv6",
475 flow->nw_proto, flow->nw_tos);
476 print_ipv6_addr(ds, &flow->ipv6_src);
477 ds_put_cstr(ds, "->");
478 print_ipv6_addr(ds, &flow->ipv6_dst);
479
480 } else {
481 ds_put_format(ds, " proto%"PRIu8
482 " tos%"PRIu8
483 " ip"IP_FMT"->"IP_FMT,
484 flow->nw_proto,
485 flow->nw_tos,
486 IP_ARGS(&flow->nw_src),
487 IP_ARGS(&flow->nw_dst));
488 }
489 if (flow->tp_src || flow->tp_dst) {
490 ds_put_format(ds, " port%"PRIu16"->%"PRIu16,
491 ntohs(flow->tp_src), ntohs(flow->tp_dst));
492 }
493 if (!eth_addr_is_zero(flow->arp_sha) || !eth_addr_is_zero(flow->arp_tha)) {
494 ds_put_format(ds, " arp_ha"ETH_ADDR_FMT"->"ETH_ADDR_FMT,
495 ETH_ADDR_ARGS(flow->arp_sha),
496 ETH_ADDR_ARGS(flow->arp_tha));
497 }
498 }
499
500 void
501 flow_print(FILE *stream, const struct flow *flow)
502 {
503 char *s = flow_to_string(flow);
504 fputs(s, stream);
505 free(s);
506 }
507 \f
508 /* flow_wildcards functions. */
509
510 /* Initializes 'wc' as a set of wildcards that matches every packet. */
511 void
512 flow_wildcards_init_catchall(struct flow_wildcards *wc)
513 {
514 wc->wildcards = FWW_ALL;
515 wc->tun_id_mask = htonll(0);
516 wc->nw_src_mask = htonl(0);
517 wc->nw_dst_mask = htonl(0);
518 wc->ipv6_src_mask = in6addr_any;
519 wc->ipv6_dst_mask = in6addr_any;
520 memset(wc->reg_masks, 0, sizeof wc->reg_masks);
521 wc->vlan_tci_mask = htons(0);
522 wc->zero = 0;
523 }
524
525 /* Initializes 'wc' as an exact-match set of wildcards; that is, 'wc' does not
526 * wildcard any bits or fields. */
527 void
528 flow_wildcards_init_exact(struct flow_wildcards *wc)
529 {
530 wc->wildcards = 0;
531 wc->tun_id_mask = htonll(UINT64_MAX);
532 wc->nw_src_mask = htonl(UINT32_MAX);
533 wc->nw_dst_mask = htonl(UINT32_MAX);
534 wc->ipv6_src_mask = in6addr_exact;
535 wc->ipv6_dst_mask = in6addr_exact;
536 memset(wc->reg_masks, 0xff, sizeof wc->reg_masks);
537 wc->vlan_tci_mask = htons(UINT16_MAX);
538 wc->zero = 0;
539 }
540
541 /* Returns true if 'wc' is exact-match, false if 'wc' wildcards any bits or
542 * fields. */
543 bool
544 flow_wildcards_is_exact(const struct flow_wildcards *wc)
545 {
546 int i;
547
548 if (wc->wildcards
549 || wc->tun_id_mask != htonll(UINT64_MAX)
550 || wc->nw_src_mask != htonl(UINT32_MAX)
551 || wc->nw_dst_mask != htonl(UINT32_MAX)
552 || wc->vlan_tci_mask != htons(UINT16_MAX)
553 || !ipv6_mask_is_exact(&wc->ipv6_src_mask)
554 || !ipv6_mask_is_exact(&wc->ipv6_dst_mask)) {
555 return false;
556 }
557
558 for (i = 0; i < FLOW_N_REGS; i++) {
559 if (wc->reg_masks[i] != UINT32_MAX) {
560 return false;
561 }
562 }
563
564 return true;
565 }
566
567 /* Initializes 'dst' as the combination of wildcards in 'src1' and 'src2'.
568 * That is, a bit or a field is wildcarded in 'dst' if it is wildcarded in
569 * 'src1' or 'src2' or both. */
570 void
571 flow_wildcards_combine(struct flow_wildcards *dst,
572 const struct flow_wildcards *src1,
573 const struct flow_wildcards *src2)
574 {
575 int i;
576
577 dst->wildcards = src1->wildcards | src2->wildcards;
578 dst->tun_id_mask = src1->tun_id_mask & src2->tun_id_mask;
579 dst->nw_src_mask = src1->nw_src_mask & src2->nw_src_mask;
580 dst->nw_dst_mask = src1->nw_dst_mask & src2->nw_dst_mask;
581 dst->ipv6_src_mask = ipv6_addr_bitand(&src1->ipv6_src_mask,
582 &src2->ipv6_src_mask);
583 dst->ipv6_dst_mask = ipv6_addr_bitand(&src1->ipv6_dst_mask,
584 &src2->ipv6_dst_mask);
585 for (i = 0; i < FLOW_N_REGS; i++) {
586 dst->reg_masks[i] = src1->reg_masks[i] & src2->reg_masks[i];
587 }
588 dst->vlan_tci_mask = src1->vlan_tci_mask & src2->vlan_tci_mask;
589 }
590
591 /* Returns a hash of the wildcards in 'wc'. */
592 uint32_t
593 flow_wildcards_hash(const struct flow_wildcards *wc)
594 {
595 /* If you change struct flow_wildcards and thereby trigger this
596 * assertion, please check that the new struct flow_wildcards has no holes
597 * in it before you update the assertion. */
598 BUILD_ASSERT_DECL(sizeof *wc == 56 + FLOW_N_REGS * 4);
599 return hash_bytes(wc, sizeof *wc, 0);
600 }
601
602 /* Returns true if 'a' and 'b' represent the same wildcards, false if they are
603 * different. */
604 bool
605 flow_wildcards_equal(const struct flow_wildcards *a,
606 const struct flow_wildcards *b)
607 {
608 int i;
609
610 if (a->wildcards != b->wildcards
611 || a->tun_id_mask != b->tun_id_mask
612 || a->nw_src_mask != b->nw_src_mask
613 || a->nw_dst_mask != b->nw_dst_mask
614 || a->vlan_tci_mask != b->vlan_tci_mask
615 || !ipv6_addr_equals(&a->ipv6_src_mask, &b->ipv6_src_mask)
616 || !ipv6_addr_equals(&a->ipv6_dst_mask, &b->ipv6_dst_mask)) {
617 return false;
618 }
619
620 for (i = 0; i < FLOW_N_REGS; i++) {
621 if (a->reg_masks[i] != b->reg_masks[i]) {
622 return false;
623 }
624 }
625
626 return true;
627 }
628
629 /* Returns true if at least one bit or field is wildcarded in 'a' but not in
630 * 'b', false otherwise. */
631 bool
632 flow_wildcards_has_extra(const struct flow_wildcards *a,
633 const struct flow_wildcards *b)
634 {
635 int i;
636 struct in6_addr ipv6_masked;
637
638 for (i = 0; i < FLOW_N_REGS; i++) {
639 if ((a->reg_masks[i] & b->reg_masks[i]) != b->reg_masks[i]) {
640 return true;
641 }
642 }
643
644 ipv6_masked = ipv6_addr_bitand(&a->ipv6_src_mask, &b->ipv6_src_mask);
645 if (!ipv6_addr_equals(&ipv6_masked, &b->ipv6_src_mask)) {
646 return true;
647 }
648
649 ipv6_masked = ipv6_addr_bitand(&a->ipv6_dst_mask, &b->ipv6_dst_mask);
650 if (!ipv6_addr_equals(&ipv6_masked, &b->ipv6_dst_mask)) {
651 return true;
652 }
653
654 return (a->wildcards & ~b->wildcards
655 || (a->tun_id_mask & b->tun_id_mask) != b->tun_id_mask
656 || (a->nw_src_mask & b->nw_src_mask) != b->nw_src_mask
657 || (a->nw_dst_mask & b->nw_dst_mask) != b->nw_dst_mask
658 || (a->vlan_tci_mask & b->vlan_tci_mask) != b->vlan_tci_mask);
659 }
660
661 static bool
662 set_nw_mask(ovs_be32 *maskp, ovs_be32 mask)
663 {
664 if (ip_is_cidr(mask)) {
665 *maskp = mask;
666 return true;
667 } else {
668 return false;
669 }
670 }
671
672 /* Sets the IP (or ARP) source wildcard mask to CIDR 'mask' (consisting of N
673 * high-order 1-bit and 32-N low-order 0-bits). Returns true if successful,
674 * false if 'mask' is not a CIDR mask. */
675 bool
676 flow_wildcards_set_nw_src_mask(struct flow_wildcards *wc, ovs_be32 mask)
677 {
678 return set_nw_mask(&wc->nw_src_mask, mask);
679 }
680
681 /* Sets the IP (or ARP) destination wildcard mask to CIDR 'mask' (consisting of
682 * N high-order 1-bit and 32-N low-order 0-bits). Returns true if successful,
683 * false if 'mask' is not a CIDR mask. */
684 bool
685 flow_wildcards_set_nw_dst_mask(struct flow_wildcards *wc, ovs_be32 mask)
686 {
687 return set_nw_mask(&wc->nw_dst_mask, mask);
688 }
689
690 static bool
691 set_ipv6_mask(struct in6_addr *maskp, const struct in6_addr *mask)
692 {
693 if (ipv6_is_cidr(mask)) {
694 *maskp = *mask;
695 return true;
696 } else {
697 return false;
698 }
699 }
700
701 /* Sets the IPv6 source wildcard mask to CIDR 'mask' (consisting of N
702 * high-order 1-bit and 128-N low-order 0-bits). Returns true if successful,
703 * false if 'mask' is not a CIDR mask. */
704 bool
705 flow_wildcards_set_ipv6_src_mask(struct flow_wildcards *wc,
706 const struct in6_addr *mask)
707 {
708 return set_ipv6_mask(&wc->ipv6_src_mask, mask);
709 }
710
711 /* Sets the IPv6 destination wildcard mask to CIDR 'mask' (consisting of
712 * N high-order 1-bit and 128-N low-order 0-bits). Returns true if
713 * successful, false if 'mask' is not a CIDR mask. */
714 bool
715 flow_wildcards_set_ipv6_dst_mask(struct flow_wildcards *wc,
716 const struct in6_addr *mask)
717 {
718 return set_ipv6_mask(&wc->ipv6_dst_mask, mask);
719 }
720
721 /* Sets the wildcard mask for register 'idx' in 'wc' to 'mask'.
722 * (A 0-bit indicates a wildcard bit.) */
723 void
724 flow_wildcards_set_reg_mask(struct flow_wildcards *wc, int idx, uint32_t mask)
725 {
726 wc->reg_masks[idx] = mask;
727 }
728
729 /* Hashes 'flow' based on its L2 through L4 protocol information. */
730 uint32_t
731 flow_hash_symmetric_l4(const struct flow *flow, uint32_t basis)
732 {
733 struct {
734 union {
735 ovs_be32 ipv4_addr;
736 struct in6_addr ipv6_addr;
737 };
738 ovs_be16 eth_type;
739 ovs_be16 vlan_tci;
740 ovs_be16 tp_addr;
741 uint8_t eth_addr[ETH_ADDR_LEN];
742 uint8_t ip_proto;
743 } fields;
744
745 int i;
746
747 memset(&fields, 0, sizeof fields);
748 for (i = 0; i < ETH_ADDR_LEN; i++) {
749 fields.eth_addr[i] = flow->dl_src[i] ^ flow->dl_dst[i];
750 }
751 fields.vlan_tci = flow->vlan_tci & htons(VLAN_VID_MASK);
752 fields.eth_type = flow->dl_type;
753 if (fields.eth_type == htons(ETH_TYPE_IP)) {
754 fields.ipv4_addr = flow->nw_src ^ flow->nw_dst;
755 fields.ip_proto = flow->nw_proto;
756 if (fields.ip_proto == IPPROTO_TCP || fields.ip_proto == IPPROTO_UDP) {
757 fields.tp_addr = flow->tp_src ^ flow->tp_dst;
758 }
759 } else if (fields.eth_type == htons(ETH_TYPE_IPV6)) {
760 const uint8_t *a = &flow->ipv6_src.s6_addr[0];
761 const uint8_t *b = &flow->ipv6_dst.s6_addr[0];
762 uint8_t *ipv6_addr = &fields.ipv6_addr.s6_addr[0];
763
764 for (i=0; i<16; i++) {
765 ipv6_addr[i] = a[i] ^ b[i];
766 }
767 fields.ip_proto = flow->nw_proto;
768 if (fields.ip_proto == IPPROTO_TCP || fields.ip_proto == IPPROTO_UDP) {
769 fields.tp_addr = flow->tp_src ^ flow->tp_dst;
770 }
771 }
772 return hash_bytes(&fields, sizeof fields, basis);
773 }