]> git.proxmox.com Git - ovs.git/blob - lib/flow.c
json: Fix error message for corner case in json_string_unescape().
[ovs.git] / lib / flow.c
1 /*
2 * Copyright (c) 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015 Nicira, Inc.
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at:
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16 #include <config.h>
17 #include <sys/types.h>
18 #include "flow.h"
19 #include <errno.h>
20 #include <inttypes.h>
21 #include <limits.h>
22 #include <netinet/in.h>
23 #include <netinet/icmp6.h>
24 #include <netinet/ip6.h>
25 #include <stdint.h>
26 #include <stdlib.h>
27 #include <string.h>
28 #include "byte-order.h"
29 #include "coverage.h"
30 #include "csum.h"
31 #include "dynamic-string.h"
32 #include "hash.h"
33 #include "jhash.h"
34 #include "match.h"
35 #include "dp-packet.h"
36 #include "openflow/openflow.h"
37 #include "packets.h"
38 #include "odp-util.h"
39 #include "random.h"
40 #include "unaligned.h"
41
42 COVERAGE_DEFINE(flow_extract);
43 COVERAGE_DEFINE(miniflow_malloc);
44
45 /* U64 indices for segmented flow classification. */
46 const uint8_t flow_segment_u64s[4] = {
47 FLOW_SEGMENT_1_ENDS_AT / sizeof(uint64_t),
48 FLOW_SEGMENT_2_ENDS_AT / sizeof(uint64_t),
49 FLOW_SEGMENT_3_ENDS_AT / sizeof(uint64_t),
50 FLOW_U64S
51 };
52
53 /* miniflow_extract() assumes the following to be true to optimize the
54 * extraction process. */
55 BUILD_ASSERT_DECL(offsetof(struct flow, dl_type) + 2
56 == offsetof(struct flow, vlan_tci) &&
57 offsetof(struct flow, dl_type) / 4
58 == offsetof(struct flow, vlan_tci) / 4 );
59
60 BUILD_ASSERT_DECL(offsetof(struct flow, nw_frag) + 3
61 == offsetof(struct flow, nw_proto) &&
62 offsetof(struct flow, nw_tos) + 2
63 == offsetof(struct flow, nw_proto) &&
64 offsetof(struct flow, nw_ttl) + 1
65 == offsetof(struct flow, nw_proto) &&
66 offsetof(struct flow, nw_frag) / 4
67 == offsetof(struct flow, nw_tos) / 4 &&
68 offsetof(struct flow, nw_ttl) / 4
69 == offsetof(struct flow, nw_tos) / 4 &&
70 offsetof(struct flow, nw_proto) / 4
71 == offsetof(struct flow, nw_tos) / 4);
72
73 /* TCP flags in the middle of a BE64, zeroes in the other half. */
74 BUILD_ASSERT_DECL(offsetof(struct flow, tcp_flags) % 8 == 4);
75
76 #if WORDS_BIGENDIAN
77 #define TCP_FLAGS_BE32(tcp_ctl) ((OVS_FORCE ovs_be32)TCP_FLAGS_BE16(tcp_ctl) \
78 << 16)
79 #else
80 #define TCP_FLAGS_BE32(tcp_ctl) ((OVS_FORCE ovs_be32)TCP_FLAGS_BE16(tcp_ctl))
81 #endif
82
83 BUILD_ASSERT_DECL(offsetof(struct flow, tp_src) + 2
84 == offsetof(struct flow, tp_dst) &&
85 offsetof(struct flow, tp_src) / 4
86 == offsetof(struct flow, tp_dst) / 4);
87
88 /* Removes 'size' bytes from the head end of '*datap', of size '*sizep', which
89 * must contain at least 'size' bytes of data. Returns the first byte of data
90 * removed. */
91 static inline const void *
92 data_pull(void **datap, size_t *sizep, size_t size)
93 {
94 char *data = (char *)*datap;
95 *datap = data + size;
96 *sizep -= size;
97 return data;
98 }
99
100 /* If '*datap' has at least 'size' bytes of data, removes that many bytes from
101 * the head end of '*datap' and returns the first byte removed. Otherwise,
102 * returns a null pointer without modifying '*datap'. */
103 static inline const void *
104 data_try_pull(void **datap, size_t *sizep, size_t size)
105 {
106 return OVS_LIKELY(*sizep >= size) ? data_pull(datap, sizep, size) : NULL;
107 }
108
109 /* Context for pushing data to a miniflow. */
110 struct mf_ctx {
111 uint64_t map;
112 uint64_t *data;
113 uint64_t * const end;
114 };
115
116 /* miniflow_push_* macros allow filling in a miniflow data values in order.
117 * Assertions are needed only when the layout of the struct flow is modified.
118 * 'ofs' is a compile-time constant, which allows most of the code be optimized
119 * away. Some GCC versions gave warnings on ALWAYS_INLINE, so these are
120 * defined as macros. */
121
122 #if (FLOW_WC_SEQ != 31)
123 #define MINIFLOW_ASSERT(X) ovs_assert(X)
124 BUILD_MESSAGE("FLOW_WC_SEQ changed: miniflow_extract() will have runtime "
125 "assertions enabled. Consider updating FLOW_WC_SEQ after "
126 "testing")
127 #else
128 #define MINIFLOW_ASSERT(X)
129 #endif
130
131 #define miniflow_push_uint64_(MF, OFS, VALUE) \
132 { \
133 MINIFLOW_ASSERT(MF.data < MF.end && (OFS) % 8 == 0 \
134 && !(MF.map & (UINT64_MAX << (OFS) / 8))); \
135 *MF.data++ = VALUE; \
136 MF.map |= UINT64_C(1) << (OFS) / 8; \
137 }
138
139 #define miniflow_push_be64_(MF, OFS, VALUE) \
140 miniflow_push_uint64_(MF, OFS, (OVS_FORCE uint64_t)(VALUE))
141
142 #define miniflow_push_uint32_(MF, OFS, VALUE) \
143 { \
144 MINIFLOW_ASSERT(MF.data < MF.end && \
145 (((OFS) % 8 == 0 && !(MF.map & (UINT64_MAX << (OFS) / 8))) \
146 || ((OFS) % 8 == 4 && MF.map & (UINT64_C(1) << (OFS) / 8) \
147 && !(MF.map & (UINT64_MAX << ((OFS) / 8 + 1)))))); \
148 \
149 if ((OFS) % 8 == 0) { \
150 *(uint32_t *)MF.data = VALUE; \
151 MF.map |= UINT64_C(1) << (OFS) / 8; \
152 } else if ((OFS) % 8 == 4) { \
153 *((uint32_t *)MF.data + 1) = VALUE; \
154 MF.data++; \
155 } \
156 }
157
158 #define miniflow_push_be32_(MF, OFS, VALUE) \
159 miniflow_push_uint32_(MF, OFS, (OVS_FORCE uint32_t)(VALUE))
160
161 #define miniflow_push_uint16_(MF, OFS, VALUE) \
162 { \
163 MINIFLOW_ASSERT(MF.data < MF.end && \
164 (((OFS) % 8 == 0 && !(MF.map & (UINT64_MAX << (OFS) / 8))) \
165 || ((OFS) % 2 == 0 && MF.map & (UINT64_C(1) << (OFS) / 8) \
166 && !(MF.map & (UINT64_MAX << ((OFS) / 8 + 1)))))); \
167 \
168 if ((OFS) % 8 == 0) { \
169 *(uint16_t *)MF.data = VALUE; \
170 MF.map |= UINT64_C(1) << (OFS) / 8; \
171 } else if ((OFS) % 8 == 2) { \
172 *((uint16_t *)MF.data + 1) = VALUE; \
173 } else if ((OFS) % 8 == 4) { \
174 *((uint16_t *)MF.data + 2) = VALUE; \
175 } else if ((OFS) % 8 == 6) { \
176 *((uint16_t *)MF.data + 3) = VALUE; \
177 MF.data++; \
178 } \
179 }
180
181 #define miniflow_pad_to_64_(MF, OFS) \
182 { \
183 MINIFLOW_ASSERT((OFS) % 8 != 0); \
184 MINIFLOW_ASSERT(MF.map & (UINT64_C(1) << (OFS) / 8)); \
185 MINIFLOW_ASSERT(!(MF.map & (UINT64_MAX << ((OFS) / 8 + 1)))); \
186 \
187 memset((uint8_t *)MF.data + (OFS) % 8, 0, 8 - (OFS) % 8); \
188 MF.data++; \
189 }
190
191 #define miniflow_push_be16_(MF, OFS, VALUE) \
192 miniflow_push_uint16_(MF, OFS, (OVS_FORCE uint16_t)VALUE);
193
194 /* Data at 'valuep' may be unaligned. */
195 #define miniflow_push_words_(MF, OFS, VALUEP, N_WORDS) \
196 { \
197 int ofs64 = (OFS) / 8; \
198 \
199 MINIFLOW_ASSERT(MF.data + (N_WORDS) <= MF.end && (OFS) % 8 == 0 \
200 && !(MF.map & (UINT64_MAX << ofs64))); \
201 \
202 memcpy(MF.data, (VALUEP), (N_WORDS) * sizeof *MF.data); \
203 MF.data += (N_WORDS); \
204 MF.map |= ((UINT64_MAX >> (64 - (N_WORDS))) << ofs64); \
205 }
206
207 /* Push 32-bit words padded to 64-bits. */
208 #define miniflow_push_words_32_(MF, OFS, VALUEP, N_WORDS) \
209 { \
210 int ofs64 = (OFS) / 8; \
211 \
212 MINIFLOW_ASSERT(MF.data + DIV_ROUND_UP(N_WORDS, 2) <= MF.end \
213 && (OFS) % 8 == 0 \
214 && !(MF.map & (UINT64_MAX << ofs64))); \
215 \
216 memcpy(MF.data, (VALUEP), (N_WORDS) * sizeof(uint32_t)); \
217 MF.data += DIV_ROUND_UP(N_WORDS, 2); \
218 MF.map |= ((UINT64_MAX >> (64 - DIV_ROUND_UP(N_WORDS, 2))) << ofs64); \
219 if ((N_WORDS) & 1) { \
220 *((uint32_t *)MF.data - 1) = 0; \
221 } \
222 }
223
224 /* Data at 'valuep' may be unaligned. */
225 /* MACs start 64-aligned, and must be followed by other data or padding. */
226 #define miniflow_push_macs_(MF, OFS, VALUEP) \
227 { \
228 int ofs64 = (OFS) / 8; \
229 \
230 MINIFLOW_ASSERT(MF.data + 2 <= MF.end && (OFS) % 8 == 0 \
231 && !(MF.map & (UINT64_MAX << ofs64))); \
232 \
233 memcpy(MF.data, (VALUEP), 2 * ETH_ADDR_LEN); \
234 MF.data += 1; /* First word only. */ \
235 MF.map |= UINT64_C(3) << ofs64; /* Both words. */ \
236 }
237
238 #define miniflow_push_uint32(MF, FIELD, VALUE) \
239 miniflow_push_uint32_(MF, offsetof(struct flow, FIELD), VALUE)
240
241 #define miniflow_push_be32(MF, FIELD, VALUE) \
242 miniflow_push_be32_(MF, offsetof(struct flow, FIELD), VALUE)
243
244 #define miniflow_push_uint16(MF, FIELD, VALUE) \
245 miniflow_push_uint16_(MF, offsetof(struct flow, FIELD), VALUE)
246
247 #define miniflow_push_be16(MF, FIELD, VALUE) \
248 miniflow_push_be16_(MF, offsetof(struct flow, FIELD), VALUE)
249
250 #define miniflow_pad_to_64(MF, FIELD) \
251 miniflow_pad_to_64_(MF, offsetof(struct flow, FIELD))
252
253 #define miniflow_push_words(MF, FIELD, VALUEP, N_WORDS) \
254 miniflow_push_words_(MF, offsetof(struct flow, FIELD), VALUEP, N_WORDS)
255
256 #define miniflow_push_words_32(MF, FIELD, VALUEP, N_WORDS) \
257 miniflow_push_words_32_(MF, offsetof(struct flow, FIELD), VALUEP, N_WORDS)
258
259 #define miniflow_push_macs(MF, FIELD, VALUEP) \
260 miniflow_push_macs_(MF, offsetof(struct flow, FIELD), VALUEP)
261
262 /* Pulls the MPLS headers at '*datap' and returns the count of them. */
263 static inline int
264 parse_mpls(void **datap, size_t *sizep)
265 {
266 const struct mpls_hdr *mh;
267 int count = 0;
268
269 while ((mh = data_try_pull(datap, sizep, sizeof *mh))) {
270 count++;
271 if (mh->mpls_lse.lo & htons(1 << MPLS_BOS_SHIFT)) {
272 break;
273 }
274 }
275 return MIN(count, FLOW_MAX_MPLS_LABELS);
276 }
277
278 static inline ovs_be16
279 parse_vlan(void **datap, size_t *sizep)
280 {
281 const struct eth_header *eth = *datap;
282
283 struct qtag_prefix {
284 ovs_be16 eth_type; /* ETH_TYPE_VLAN */
285 ovs_be16 tci;
286 };
287
288 data_pull(datap, sizep, ETH_ADDR_LEN * 2);
289
290 if (eth->eth_type == htons(ETH_TYPE_VLAN)) {
291 if (OVS_LIKELY(*sizep
292 >= sizeof(struct qtag_prefix) + sizeof(ovs_be16))) {
293 const struct qtag_prefix *qp = data_pull(datap, sizep, sizeof *qp);
294 return qp->tci | htons(VLAN_CFI);
295 }
296 }
297 return 0;
298 }
299
300 static inline ovs_be16
301 parse_ethertype(void **datap, size_t *sizep)
302 {
303 const struct llc_snap_header *llc;
304 ovs_be16 proto;
305
306 proto = *(ovs_be16 *) data_pull(datap, sizep, sizeof proto);
307 if (OVS_LIKELY(ntohs(proto) >= ETH_TYPE_MIN)) {
308 return proto;
309 }
310
311 if (OVS_UNLIKELY(*sizep < sizeof *llc)) {
312 return htons(FLOW_DL_TYPE_NONE);
313 }
314
315 llc = *datap;
316 if (OVS_UNLIKELY(llc->llc.llc_dsap != LLC_DSAP_SNAP
317 || llc->llc.llc_ssap != LLC_SSAP_SNAP
318 || llc->llc.llc_cntl != LLC_CNTL_SNAP
319 || memcmp(llc->snap.snap_org, SNAP_ORG_ETHERNET,
320 sizeof llc->snap.snap_org))) {
321 return htons(FLOW_DL_TYPE_NONE);
322 }
323
324 data_pull(datap, sizep, sizeof *llc);
325
326 if (OVS_LIKELY(ntohs(llc->snap.snap_type) >= ETH_TYPE_MIN)) {
327 return llc->snap.snap_type;
328 }
329
330 return htons(FLOW_DL_TYPE_NONE);
331 }
332
333 static inline bool
334 parse_icmpv6(void **datap, size_t *sizep, const struct icmp6_hdr *icmp,
335 const struct in6_addr **nd_target,
336 uint8_t arp_buf[2][ETH_ADDR_LEN])
337 {
338 if (icmp->icmp6_code == 0 &&
339 (icmp->icmp6_type == ND_NEIGHBOR_SOLICIT ||
340 icmp->icmp6_type == ND_NEIGHBOR_ADVERT)) {
341
342 *nd_target = data_try_pull(datap, sizep, sizeof **nd_target);
343 if (OVS_UNLIKELY(!*nd_target)) {
344 return false;
345 }
346
347 while (*sizep >= 8) {
348 /* The minimum size of an option is 8 bytes, which also is
349 * the size of Ethernet link-layer options. */
350 const struct nd_opt_hdr *nd_opt = *datap;
351 int opt_len = nd_opt->nd_opt_len * 8;
352
353 if (!opt_len || opt_len > *sizep) {
354 goto invalid;
355 }
356
357 /* Store the link layer address if the appropriate option is
358 * provided. It is considered an error if the same link
359 * layer option is specified twice. */
360 if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LINKADDR
361 && opt_len == 8) {
362 if (OVS_LIKELY(eth_addr_is_zero(arp_buf[0]))) {
363 memcpy(arp_buf[0], nd_opt + 1, ETH_ADDR_LEN);
364 } else {
365 goto invalid;
366 }
367 } else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LINKADDR
368 && opt_len == 8) {
369 if (OVS_LIKELY(eth_addr_is_zero(arp_buf[1]))) {
370 memcpy(arp_buf[1], nd_opt + 1, ETH_ADDR_LEN);
371 } else {
372 goto invalid;
373 }
374 }
375
376 if (OVS_UNLIKELY(!data_try_pull(datap, sizep, opt_len))) {
377 goto invalid;
378 }
379 }
380 }
381
382 return true;
383
384 invalid:
385 return false;
386 }
387
388 /* Initializes 'flow' members from 'packet' and 'md'
389 *
390 * Initializes 'packet' header l2 pointer to the start of the Ethernet
391 * header, and the layer offsets as follows:
392 *
393 * - packet->l2_5_ofs to the start of the MPLS shim header, or UINT16_MAX
394 * when there is no MPLS shim header.
395 *
396 * - packet->l3_ofs to just past the Ethernet header, or just past the
397 * vlan_header if one is present, to the first byte of the payload of the
398 * Ethernet frame. UINT16_MAX if the frame is too short to contain an
399 * Ethernet header.
400 *
401 * - packet->l4_ofs to just past the IPv4 header, if one is present and
402 * has at least the content used for the fields of interest for the flow,
403 * otherwise UINT16_MAX.
404 */
405 void
406 flow_extract(struct dp_packet *packet, struct flow *flow)
407 {
408 struct {
409 struct miniflow mf;
410 uint64_t buf[FLOW_U64S];
411 } m;
412
413 COVERAGE_INC(flow_extract);
414
415 miniflow_initialize(&m.mf, m.buf);
416 miniflow_extract(packet, &m.mf);
417 miniflow_expand(&m.mf, flow);
418 }
419
420 /* Caller is responsible for initializing 'dst' with enough storage for
421 * FLOW_U64S * 8 bytes. */
422 void
423 miniflow_extract(struct dp_packet *packet, struct miniflow *dst)
424 {
425 const struct pkt_metadata *md = &packet->md;
426 void *data = dp_packet_data(packet);
427 size_t size = dp_packet_size(packet);
428 uint64_t *values = miniflow_values(dst);
429 struct mf_ctx mf = { 0, values, values + FLOW_U64S };
430 char *l2;
431 ovs_be16 dl_type;
432 uint8_t nw_frag, nw_tos, nw_ttl, nw_proto;
433
434 /* Metadata. */
435 if (md->tunnel.ip_dst) {
436 miniflow_push_words(mf, tunnel, &md->tunnel,
437 sizeof md->tunnel / sizeof(uint64_t));
438 }
439 if (md->skb_priority || md->pkt_mark) {
440 miniflow_push_uint32(mf, skb_priority, md->skb_priority);
441 miniflow_push_uint32(mf, pkt_mark, md->pkt_mark);
442 }
443 miniflow_push_uint32(mf, dp_hash, md->dp_hash);
444 miniflow_push_uint32(mf, in_port, odp_to_u32(md->in_port.odp_port));
445 if (md->recirc_id) {
446 miniflow_push_uint32(mf, recirc_id, md->recirc_id);
447 miniflow_pad_to_64(mf, conj_id);
448 }
449
450 /* Initialize packet's layer pointer and offsets. */
451 l2 = data;
452 dp_packet_reset_offsets(packet);
453
454 /* Must have full Ethernet header to proceed. */
455 if (OVS_UNLIKELY(size < sizeof(struct eth_header))) {
456 goto out;
457 } else {
458 ovs_be16 vlan_tci;
459
460 /* Link layer. */
461 BUILD_ASSERT(offsetof(struct flow, dl_dst) + 6
462 == offsetof(struct flow, dl_src));
463 miniflow_push_macs(mf, dl_dst, data);
464 /* dl_type, vlan_tci. */
465 vlan_tci = parse_vlan(&data, &size);
466 dl_type = parse_ethertype(&data, &size);
467 miniflow_push_be16(mf, dl_type, dl_type);
468 miniflow_push_be16(mf, vlan_tci, vlan_tci);
469 }
470
471 /* Parse mpls. */
472 if (OVS_UNLIKELY(eth_type_mpls(dl_type))) {
473 int count;
474 const void *mpls = data;
475
476 packet->l2_5_ofs = (char *)data - l2;
477 count = parse_mpls(&data, &size);
478 miniflow_push_words_32(mf, mpls_lse, mpls, count);
479 }
480
481 /* Network layer. */
482 packet->l3_ofs = (char *)data - l2;
483
484 nw_frag = 0;
485 if (OVS_LIKELY(dl_type == htons(ETH_TYPE_IP))) {
486 const struct ip_header *nh = data;
487 int ip_len;
488 uint16_t tot_len;
489
490 if (OVS_UNLIKELY(size < IP_HEADER_LEN)) {
491 goto out;
492 }
493 ip_len = IP_IHL(nh->ip_ihl_ver) * 4;
494
495 if (OVS_UNLIKELY(ip_len < IP_HEADER_LEN)) {
496 goto out;
497 }
498 if (OVS_UNLIKELY(size < ip_len)) {
499 goto out;
500 }
501 tot_len = ntohs(nh->ip_tot_len);
502 if (OVS_UNLIKELY(tot_len > size)) {
503 goto out;
504 }
505 if (OVS_UNLIKELY(size - tot_len > UINT8_MAX)) {
506 goto out;
507 }
508 dp_packet_set_l2_pad_size(packet, size - tot_len);
509 size = tot_len; /* Never pull padding. */
510
511 /* Push both source and destination address at once. */
512 miniflow_push_words(mf, nw_src, &nh->ip_src, 1);
513
514 miniflow_push_be32(mf, ipv6_label, 0); /* Padding for IPv4. */
515
516 nw_tos = nh->ip_tos;
517 nw_ttl = nh->ip_ttl;
518 nw_proto = nh->ip_proto;
519 if (OVS_UNLIKELY(IP_IS_FRAGMENT(nh->ip_frag_off))) {
520 nw_frag = FLOW_NW_FRAG_ANY;
521 if (nh->ip_frag_off & htons(IP_FRAG_OFF_MASK)) {
522 nw_frag |= FLOW_NW_FRAG_LATER;
523 }
524 }
525 data_pull(&data, &size, ip_len);
526 } else if (dl_type == htons(ETH_TYPE_IPV6)) {
527 const struct ovs_16aligned_ip6_hdr *nh;
528 ovs_be32 tc_flow;
529 uint16_t plen;
530
531 if (OVS_UNLIKELY(size < sizeof *nh)) {
532 goto out;
533 }
534 nh = data_pull(&data, &size, sizeof *nh);
535
536 plen = ntohs(nh->ip6_plen);
537 if (OVS_UNLIKELY(plen > size)) {
538 goto out;
539 }
540 /* Jumbo Payload option not supported yet. */
541 if (OVS_UNLIKELY(size - plen > UINT8_MAX)) {
542 goto out;
543 }
544 dp_packet_set_l2_pad_size(packet, size - plen);
545 size = plen; /* Never pull padding. */
546
547 miniflow_push_words(mf, ipv6_src, &nh->ip6_src,
548 sizeof nh->ip6_src / 8);
549 miniflow_push_words(mf, ipv6_dst, &nh->ip6_dst,
550 sizeof nh->ip6_dst / 8);
551
552 tc_flow = get_16aligned_be32(&nh->ip6_flow);
553 {
554 ovs_be32 label = tc_flow & htonl(IPV6_LABEL_MASK);
555 miniflow_push_be32(mf, ipv6_label, label);
556 }
557
558 nw_tos = ntohl(tc_flow) >> 20;
559 nw_ttl = nh->ip6_hlim;
560 nw_proto = nh->ip6_nxt;
561
562 while (1) {
563 if (OVS_LIKELY((nw_proto != IPPROTO_HOPOPTS)
564 && (nw_proto != IPPROTO_ROUTING)
565 && (nw_proto != IPPROTO_DSTOPTS)
566 && (nw_proto != IPPROTO_AH)
567 && (nw_proto != IPPROTO_FRAGMENT))) {
568 /* It's either a terminal header (e.g., TCP, UDP) or one we
569 * don't understand. In either case, we're done with the
570 * packet, so use it to fill in 'nw_proto'. */
571 break;
572 }
573
574 /* We only verify that at least 8 bytes of the next header are
575 * available, but many of these headers are longer. Ensure that
576 * accesses within the extension header are within those first 8
577 * bytes. All extension headers are required to be at least 8
578 * bytes. */
579 if (OVS_UNLIKELY(size < 8)) {
580 goto out;
581 }
582
583 if ((nw_proto == IPPROTO_HOPOPTS)
584 || (nw_proto == IPPROTO_ROUTING)
585 || (nw_proto == IPPROTO_DSTOPTS)) {
586 /* These headers, while different, have the fields we care
587 * about in the same location and with the same
588 * interpretation. */
589 const struct ip6_ext *ext_hdr = data;
590 nw_proto = ext_hdr->ip6e_nxt;
591 if (OVS_UNLIKELY(!data_try_pull(&data, &size,
592 (ext_hdr->ip6e_len + 1) * 8))) {
593 goto out;
594 }
595 } else if (nw_proto == IPPROTO_AH) {
596 /* A standard AH definition isn't available, but the fields
597 * we care about are in the same location as the generic
598 * option header--only the header length is calculated
599 * differently. */
600 const struct ip6_ext *ext_hdr = data;
601 nw_proto = ext_hdr->ip6e_nxt;
602 if (OVS_UNLIKELY(!data_try_pull(&data, &size,
603 (ext_hdr->ip6e_len + 2) * 4))) {
604 goto out;
605 }
606 } else if (nw_proto == IPPROTO_FRAGMENT) {
607 const struct ovs_16aligned_ip6_frag *frag_hdr = data;
608
609 nw_proto = frag_hdr->ip6f_nxt;
610 if (!data_try_pull(&data, &size, sizeof *frag_hdr)) {
611 goto out;
612 }
613
614 /* We only process the first fragment. */
615 if (frag_hdr->ip6f_offlg != htons(0)) {
616 nw_frag = FLOW_NW_FRAG_ANY;
617 if ((frag_hdr->ip6f_offlg & IP6F_OFF_MASK) != htons(0)) {
618 nw_frag |= FLOW_NW_FRAG_LATER;
619 nw_proto = IPPROTO_FRAGMENT;
620 break;
621 }
622 }
623 }
624 }
625 } else {
626 if (dl_type == htons(ETH_TYPE_ARP) ||
627 dl_type == htons(ETH_TYPE_RARP)) {
628 uint8_t arp_buf[2][ETH_ADDR_LEN];
629 const struct arp_eth_header *arp = (const struct arp_eth_header *)
630 data_try_pull(&data, &size, ARP_ETH_HEADER_LEN);
631
632 if (OVS_LIKELY(arp) && OVS_LIKELY(arp->ar_hrd == htons(1))
633 && OVS_LIKELY(arp->ar_pro == htons(ETH_TYPE_IP))
634 && OVS_LIKELY(arp->ar_hln == ETH_ADDR_LEN)
635 && OVS_LIKELY(arp->ar_pln == 4)) {
636 miniflow_push_be32(mf, nw_src,
637 get_16aligned_be32(&arp->ar_spa));
638 miniflow_push_be32(mf, nw_dst,
639 get_16aligned_be32(&arp->ar_tpa));
640
641 /* We only match on the lower 8 bits of the opcode. */
642 if (OVS_LIKELY(ntohs(arp->ar_op) <= 0xff)) {
643 miniflow_push_be32(mf, ipv6_label, 0); /* Pad with ARP. */
644 miniflow_push_be32(mf, nw_frag, htonl(ntohs(arp->ar_op)));
645 }
646
647 /* Must be adjacent. */
648 BUILD_ASSERT(offsetof(struct flow, arp_sha) + 6
649 == offsetof(struct flow, arp_tha));
650
651 memcpy(arp_buf[0], arp->ar_sha, ETH_ADDR_LEN);
652 memcpy(arp_buf[1], arp->ar_tha, ETH_ADDR_LEN);
653 miniflow_push_macs(mf, arp_sha, arp_buf);
654 miniflow_pad_to_64(mf, tcp_flags);
655 }
656 }
657 goto out;
658 }
659
660 packet->l4_ofs = (char *)data - l2;
661 miniflow_push_be32(mf, nw_frag,
662 BYTES_TO_BE32(nw_frag, nw_tos, nw_ttl, nw_proto));
663
664 if (OVS_LIKELY(!(nw_frag & FLOW_NW_FRAG_LATER))) {
665 if (OVS_LIKELY(nw_proto == IPPROTO_TCP)) {
666 if (OVS_LIKELY(size >= TCP_HEADER_LEN)) {
667 const struct tcp_header *tcp = data;
668
669 miniflow_push_be32(mf, arp_tha[2], 0);
670 miniflow_push_be32(mf, tcp_flags,
671 TCP_FLAGS_BE32(tcp->tcp_ctl));
672 miniflow_push_be16(mf, tp_src, tcp->tcp_src);
673 miniflow_push_be16(mf, tp_dst, tcp->tcp_dst);
674 miniflow_pad_to_64(mf, igmp_group_ip4);
675 }
676 } else if (OVS_LIKELY(nw_proto == IPPROTO_UDP)) {
677 if (OVS_LIKELY(size >= UDP_HEADER_LEN)) {
678 const struct udp_header *udp = data;
679
680 miniflow_push_be16(mf, tp_src, udp->udp_src);
681 miniflow_push_be16(mf, tp_dst, udp->udp_dst);
682 miniflow_pad_to_64(mf, igmp_group_ip4);
683 }
684 } else if (OVS_LIKELY(nw_proto == IPPROTO_SCTP)) {
685 if (OVS_LIKELY(size >= SCTP_HEADER_LEN)) {
686 const struct sctp_header *sctp = data;
687
688 miniflow_push_be16(mf, tp_src, sctp->sctp_src);
689 miniflow_push_be16(mf, tp_dst, sctp->sctp_dst);
690 miniflow_pad_to_64(mf, igmp_group_ip4);
691 }
692 } else if (OVS_LIKELY(nw_proto == IPPROTO_ICMP)) {
693 if (OVS_LIKELY(size >= ICMP_HEADER_LEN)) {
694 const struct icmp_header *icmp = data;
695
696 miniflow_push_be16(mf, tp_src, htons(icmp->icmp_type));
697 miniflow_push_be16(mf, tp_dst, htons(icmp->icmp_code));
698 miniflow_pad_to_64(mf, igmp_group_ip4);
699 }
700 } else if (OVS_LIKELY(nw_proto == IPPROTO_IGMP)) {
701 if (OVS_LIKELY(size >= IGMP_HEADER_LEN)) {
702 const struct igmp_header *igmp = data;
703
704 miniflow_push_be16(mf, tp_src, htons(igmp->igmp_type));
705 miniflow_push_be16(mf, tp_dst, htons(igmp->igmp_code));
706 miniflow_push_be32(mf, igmp_group_ip4,
707 get_16aligned_be32(&igmp->group));
708 }
709 } else if (OVS_LIKELY(nw_proto == IPPROTO_ICMPV6)) {
710 if (OVS_LIKELY(size >= sizeof(struct icmp6_hdr))) {
711 const struct in6_addr *nd_target = NULL;
712 uint8_t arp_buf[2][ETH_ADDR_LEN];
713 const struct icmp6_hdr *icmp = data_pull(&data, &size,
714 sizeof *icmp);
715 memset(arp_buf, 0, sizeof arp_buf);
716 if (OVS_LIKELY(parse_icmpv6(&data, &size, icmp, &nd_target,
717 arp_buf))) {
718 if (nd_target) {
719 miniflow_push_words(mf, nd_target, nd_target,
720 sizeof *nd_target / 8);
721 }
722 miniflow_push_macs(mf, arp_sha, arp_buf);
723 miniflow_pad_to_64(mf, tcp_flags);
724 miniflow_push_be16(mf, tp_src, htons(icmp->icmp6_type));
725 miniflow_push_be16(mf, tp_dst, htons(icmp->icmp6_code));
726 miniflow_pad_to_64(mf, igmp_group_ip4);
727 }
728 }
729 }
730 }
731 out:
732 dst->map = mf.map;
733 }
734
735 /* For every bit of a field that is wildcarded in 'wildcards', sets the
736 * corresponding bit in 'flow' to zero. */
737 void
738 flow_zero_wildcards(struct flow *flow, const struct flow_wildcards *wildcards)
739 {
740 uint64_t *flow_u64 = (uint64_t *) flow;
741 const uint64_t *wc_u64 = (const uint64_t *) &wildcards->masks;
742 size_t i;
743
744 for (i = 0; i < FLOW_U64S; i++) {
745 flow_u64[i] &= wc_u64[i];
746 }
747 }
748
749 void
750 flow_unwildcard_tp_ports(const struct flow *flow, struct flow_wildcards *wc)
751 {
752 if (flow->nw_proto != IPPROTO_ICMP) {
753 memset(&wc->masks.tp_src, 0xff, sizeof wc->masks.tp_src);
754 memset(&wc->masks.tp_dst, 0xff, sizeof wc->masks.tp_dst);
755 } else {
756 wc->masks.tp_src = htons(0xff);
757 wc->masks.tp_dst = htons(0xff);
758 }
759 }
760
761 /* Initializes 'fmd' with the metadata found in 'flow'. */
762 void
763 flow_get_metadata(const struct flow *flow, struct flow_metadata *fmd)
764 {
765 BUILD_ASSERT_DECL(FLOW_WC_SEQ == 31);
766
767 fmd->dp_hash = flow->dp_hash;
768 fmd->recirc_id = flow->recirc_id;
769 fmd->tun_id = flow->tunnel.tun_id;
770 fmd->tun_src = flow->tunnel.ip_src;
771 fmd->tun_dst = flow->tunnel.ip_dst;
772 fmd->gbp_id = flow->tunnel.gbp_id;
773 fmd->gbp_flags = flow->tunnel.gbp_flags;
774 fmd->metadata = flow->metadata;
775 memcpy(fmd->regs, flow->regs, sizeof fmd->regs);
776 fmd->pkt_mark = flow->pkt_mark;
777 fmd->in_port = flow->in_port.ofp_port;
778 }
779
780 char *
781 flow_to_string(const struct flow *flow)
782 {
783 struct ds ds = DS_EMPTY_INITIALIZER;
784 flow_format(&ds, flow);
785 return ds_cstr(&ds);
786 }
787
788 const char *
789 flow_tun_flag_to_string(uint32_t flags)
790 {
791 switch (flags) {
792 case FLOW_TNL_F_DONT_FRAGMENT:
793 return "df";
794 case FLOW_TNL_F_CSUM:
795 return "csum";
796 case FLOW_TNL_F_KEY:
797 return "key";
798 case FLOW_TNL_F_OAM:
799 return "oam";
800 default:
801 return NULL;
802 }
803 }
804
805 void
806 format_flags(struct ds *ds, const char *(*bit_to_string)(uint32_t),
807 uint32_t flags, char del)
808 {
809 uint32_t bad = 0;
810
811 if (!flags) {
812 return;
813 }
814 while (flags) {
815 uint32_t bit = rightmost_1bit(flags);
816 const char *s;
817
818 s = bit_to_string(bit);
819 if (s) {
820 ds_put_format(ds, "%s%c", s, del);
821 } else {
822 bad |= bit;
823 }
824
825 flags &= ~bit;
826 }
827
828 if (bad) {
829 ds_put_format(ds, "0x%"PRIx32"%c", bad, del);
830 }
831 ds_chomp(ds, del);
832 }
833
834 void
835 format_flags_masked(struct ds *ds, const char *name,
836 const char *(*bit_to_string)(uint32_t), uint32_t flags,
837 uint32_t mask)
838 {
839 if (name) {
840 ds_put_format(ds, "%s=", name);
841 }
842 while (mask) {
843 uint32_t bit = rightmost_1bit(mask);
844 const char *s = bit_to_string(bit);
845
846 ds_put_format(ds, "%s%s", (flags & bit) ? "+" : "-",
847 s ? s : "[Unknown]");
848 mask &= ~bit;
849 }
850 }
851
852 void
853 flow_format(struct ds *ds, const struct flow *flow)
854 {
855 struct match match;
856 struct flow_wildcards *wc = &match.wc;
857
858 match_wc_init(&match, flow);
859
860 /* As this function is most often used for formatting a packet in a
861 * packet-in message, skip formatting the packet context fields that are
862 * all-zeroes to make the print-out easier on the eyes. This means that a
863 * missing context field implies a zero value for that field. This is
864 * similar to OpenFlow encoding of these fields, as the specification
865 * states that all-zeroes context fields should not be encoded in the
866 * packet-in messages. */
867 if (!flow->in_port.ofp_port) {
868 WC_UNMASK_FIELD(wc, in_port);
869 }
870 if (!flow->skb_priority) {
871 WC_UNMASK_FIELD(wc, skb_priority);
872 }
873 if (!flow->pkt_mark) {
874 WC_UNMASK_FIELD(wc, pkt_mark);
875 }
876 if (!flow->recirc_id) {
877 WC_UNMASK_FIELD(wc, recirc_id);
878 }
879 if (!flow->dp_hash) {
880 WC_UNMASK_FIELD(wc, dp_hash);
881 }
882 for (int i = 0; i < FLOW_N_REGS; i++) {
883 if (!flow->regs[i]) {
884 WC_UNMASK_FIELD(wc, regs[i]);
885 }
886 }
887 if (!flow->metadata) {
888 WC_UNMASK_FIELD(wc, metadata);
889 }
890
891 match_format(&match, ds, OFP_DEFAULT_PRIORITY);
892 }
893
894 void
895 flow_print(FILE *stream, const struct flow *flow)
896 {
897 char *s = flow_to_string(flow);
898 fputs(s, stream);
899 free(s);
900 }
901 \f
902 /* flow_wildcards functions. */
903
904 /* Initializes 'wc' as a set of wildcards that matches every packet. */
905 void
906 flow_wildcards_init_catchall(struct flow_wildcards *wc)
907 {
908 memset(&wc->masks, 0, sizeof wc->masks);
909 }
910
911 /* Converts a flow into flow wildcards. It sets the wildcard masks based on
912 * the packet headers extracted to 'flow'. It will not set the mask for fields
913 * that do not make sense for the packet type. OpenFlow-only metadata is
914 * wildcarded, but other metadata is unconditionally exact-matched. */
915 void flow_wildcards_init_for_packet(struct flow_wildcards *wc,
916 const struct flow *flow)
917 {
918 memset(&wc->masks, 0x0, sizeof wc->masks);
919
920 /* Update this function whenever struct flow changes. */
921 BUILD_ASSERT_DECL(FLOW_WC_SEQ == 31);
922
923 if (flow->tunnel.ip_dst) {
924 if (flow->tunnel.flags & FLOW_TNL_F_KEY) {
925 WC_MASK_FIELD(wc, tunnel.tun_id);
926 }
927 WC_MASK_FIELD(wc, tunnel.ip_src);
928 WC_MASK_FIELD(wc, tunnel.ip_dst);
929 WC_MASK_FIELD(wc, tunnel.flags);
930 WC_MASK_FIELD(wc, tunnel.ip_tos);
931 WC_MASK_FIELD(wc, tunnel.ip_ttl);
932 WC_MASK_FIELD(wc, tunnel.tp_src);
933 WC_MASK_FIELD(wc, tunnel.tp_dst);
934 WC_MASK_FIELD(wc, tunnel.gbp_id);
935 WC_MASK_FIELD(wc, tunnel.gbp_flags);
936 } else if (flow->tunnel.tun_id) {
937 WC_MASK_FIELD(wc, tunnel.tun_id);
938 }
939
940 /* metadata, regs, and conj_id wildcarded. */
941
942 WC_MASK_FIELD(wc, skb_priority);
943 WC_MASK_FIELD(wc, pkt_mark);
944 WC_MASK_FIELD(wc, recirc_id);
945 WC_MASK_FIELD(wc, dp_hash);
946 WC_MASK_FIELD(wc, in_port);
947
948 /* actset_output wildcarded. */
949
950 WC_MASK_FIELD(wc, dl_dst);
951 WC_MASK_FIELD(wc, dl_src);
952 WC_MASK_FIELD(wc, dl_type);
953 WC_MASK_FIELD(wc, vlan_tci);
954
955 if (flow->dl_type == htons(ETH_TYPE_IP)) {
956 WC_MASK_FIELD(wc, nw_src);
957 WC_MASK_FIELD(wc, nw_dst);
958 } else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
959 WC_MASK_FIELD(wc, ipv6_src);
960 WC_MASK_FIELD(wc, ipv6_dst);
961 WC_MASK_FIELD(wc, ipv6_label);
962 } else if (flow->dl_type == htons(ETH_TYPE_ARP) ||
963 flow->dl_type == htons(ETH_TYPE_RARP)) {
964 WC_MASK_FIELD(wc, nw_src);
965 WC_MASK_FIELD(wc, nw_dst);
966 WC_MASK_FIELD(wc, nw_proto);
967 WC_MASK_FIELD(wc, arp_sha);
968 WC_MASK_FIELD(wc, arp_tha);
969 return;
970 } else if (eth_type_mpls(flow->dl_type)) {
971 for (int i = 0; i < FLOW_MAX_MPLS_LABELS; i++) {
972 WC_MASK_FIELD(wc, mpls_lse[i]);
973 if (flow->mpls_lse[i] & htonl(MPLS_BOS_MASK)) {
974 break;
975 }
976 }
977 return;
978 } else {
979 return; /* Unknown ethertype. */
980 }
981
982 /* IPv4 or IPv6. */
983 WC_MASK_FIELD(wc, nw_frag);
984 WC_MASK_FIELD(wc, nw_tos);
985 WC_MASK_FIELD(wc, nw_ttl);
986 WC_MASK_FIELD(wc, nw_proto);
987
988 /* No transport layer header in later fragments. */
989 if (!(flow->nw_frag & FLOW_NW_FRAG_LATER) &&
990 (flow->nw_proto == IPPROTO_ICMP ||
991 flow->nw_proto == IPPROTO_ICMPV6 ||
992 flow->nw_proto == IPPROTO_TCP ||
993 flow->nw_proto == IPPROTO_UDP ||
994 flow->nw_proto == IPPROTO_SCTP ||
995 flow->nw_proto == IPPROTO_IGMP)) {
996 WC_MASK_FIELD(wc, tp_src);
997 WC_MASK_FIELD(wc, tp_dst);
998
999 if (flow->nw_proto == IPPROTO_TCP) {
1000 WC_MASK_FIELD(wc, tcp_flags);
1001 } else if (flow->nw_proto == IPPROTO_ICMPV6) {
1002 WC_MASK_FIELD(wc, arp_sha);
1003 WC_MASK_FIELD(wc, arp_tha);
1004 WC_MASK_FIELD(wc, nd_target);
1005 } else if (flow->nw_proto == IPPROTO_IGMP) {
1006 WC_MASK_FIELD(wc, igmp_group_ip4);
1007 }
1008 }
1009 }
1010
1011 /* Return a map of possible fields for a packet of the same type as 'flow'.
1012 * Including extra bits in the returned mask is not wrong, it is just less
1013 * optimal.
1014 *
1015 * This is a less precise version of flow_wildcards_init_for_packet() above. */
1016 uint64_t
1017 flow_wc_map(const struct flow *flow)
1018 {
1019 /* Update this function whenever struct flow changes. */
1020 BUILD_ASSERT_DECL(FLOW_WC_SEQ == 31);
1021
1022 uint64_t map = (flow->tunnel.ip_dst) ? MINIFLOW_MAP(tunnel) : 0;
1023
1024 /* Metadata fields that can appear on packet input. */
1025 map |= MINIFLOW_MAP(skb_priority) | MINIFLOW_MAP(pkt_mark)
1026 | MINIFLOW_MAP(recirc_id) | MINIFLOW_MAP(dp_hash)
1027 | MINIFLOW_MAP(in_port)
1028 | MINIFLOW_MAP(dl_dst) | MINIFLOW_MAP(dl_src)
1029 | MINIFLOW_MAP(dl_type) | MINIFLOW_MAP(vlan_tci);
1030
1031 /* Ethertype-dependent fields. */
1032 if (OVS_LIKELY(flow->dl_type == htons(ETH_TYPE_IP))) {
1033 map |= MINIFLOW_MAP(nw_src) | MINIFLOW_MAP(nw_dst)
1034 | MINIFLOW_MAP(nw_proto) | MINIFLOW_MAP(nw_frag)
1035 | MINIFLOW_MAP(nw_tos) | MINIFLOW_MAP(nw_ttl);
1036 if (OVS_UNLIKELY(flow->nw_proto == IPPROTO_IGMP)) {
1037 map |= MINIFLOW_MAP(igmp_group_ip4);
1038 } else {
1039 map |= MINIFLOW_MAP(tcp_flags)
1040 | MINIFLOW_MAP(tp_src) | MINIFLOW_MAP(tp_dst);
1041 }
1042 } else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
1043 map |= MINIFLOW_MAP(ipv6_src) | MINIFLOW_MAP(ipv6_dst)
1044 | MINIFLOW_MAP(ipv6_label)
1045 | MINIFLOW_MAP(nw_proto) | MINIFLOW_MAP(nw_frag)
1046 | MINIFLOW_MAP(nw_tos) | MINIFLOW_MAP(nw_ttl);
1047 if (OVS_UNLIKELY(flow->nw_proto == IPPROTO_ICMPV6)) {
1048 map |= MINIFLOW_MAP(nd_target)
1049 | MINIFLOW_MAP(arp_sha) | MINIFLOW_MAP(arp_tha);
1050 } else {
1051 map |= MINIFLOW_MAP(tcp_flags)
1052 | MINIFLOW_MAP(tp_src) | MINIFLOW_MAP(tp_dst);
1053 }
1054 } else if (eth_type_mpls(flow->dl_type)) {
1055 map |= MINIFLOW_MAP(mpls_lse);
1056 } else if (flow->dl_type == htons(ETH_TYPE_ARP) ||
1057 flow->dl_type == htons(ETH_TYPE_RARP)) {
1058 map |= MINIFLOW_MAP(nw_src) | MINIFLOW_MAP(nw_dst)
1059 | MINIFLOW_MAP(nw_proto)
1060 | MINIFLOW_MAP(arp_sha) | MINIFLOW_MAP(arp_tha);
1061 }
1062
1063 return map;
1064 }
1065
1066 /* Clear the metadata and register wildcard masks. They are not packet
1067 * header fields. */
1068 void
1069 flow_wildcards_clear_non_packet_fields(struct flow_wildcards *wc)
1070 {
1071 /* Update this function whenever struct flow changes. */
1072 BUILD_ASSERT_DECL(FLOW_WC_SEQ == 31);
1073
1074 memset(&wc->masks.metadata, 0, sizeof wc->masks.metadata);
1075 memset(&wc->masks.regs, 0, sizeof wc->masks.regs);
1076 wc->masks.actset_output = 0;
1077 wc->masks.conj_id = 0;
1078 }
1079
1080 /* Returns true if 'wc' matches every packet, false if 'wc' fixes any bits or
1081 * fields. */
1082 bool
1083 flow_wildcards_is_catchall(const struct flow_wildcards *wc)
1084 {
1085 const uint64_t *wc_u64 = (const uint64_t *) &wc->masks;
1086 size_t i;
1087
1088 for (i = 0; i < FLOW_U64S; i++) {
1089 if (wc_u64[i]) {
1090 return false;
1091 }
1092 }
1093 return true;
1094 }
1095
1096 /* Sets 'dst' as the bitwise AND of wildcards in 'src1' and 'src2'.
1097 * That is, a bit or a field is wildcarded in 'dst' if it is wildcarded
1098 * in 'src1' or 'src2' or both. */
1099 void
1100 flow_wildcards_and(struct flow_wildcards *dst,
1101 const struct flow_wildcards *src1,
1102 const struct flow_wildcards *src2)
1103 {
1104 uint64_t *dst_u64 = (uint64_t *) &dst->masks;
1105 const uint64_t *src1_u64 = (const uint64_t *) &src1->masks;
1106 const uint64_t *src2_u64 = (const uint64_t *) &src2->masks;
1107 size_t i;
1108
1109 for (i = 0; i < FLOW_U64S; i++) {
1110 dst_u64[i] = src1_u64[i] & src2_u64[i];
1111 }
1112 }
1113
1114 /* Sets 'dst' as the bitwise OR of wildcards in 'src1' and 'src2'. That
1115 * is, a bit or a field is wildcarded in 'dst' if it is neither
1116 * wildcarded in 'src1' nor 'src2'. */
1117 void
1118 flow_wildcards_or(struct flow_wildcards *dst,
1119 const struct flow_wildcards *src1,
1120 const struct flow_wildcards *src2)
1121 {
1122 uint64_t *dst_u64 = (uint64_t *) &dst->masks;
1123 const uint64_t *src1_u64 = (const uint64_t *) &src1->masks;
1124 const uint64_t *src2_u64 = (const uint64_t *) &src2->masks;
1125 size_t i;
1126
1127 for (i = 0; i < FLOW_U64S; i++) {
1128 dst_u64[i] = src1_u64[i] | src2_u64[i];
1129 }
1130 }
1131
1132 /* Returns a hash of the wildcards in 'wc'. */
1133 uint32_t
1134 flow_wildcards_hash(const struct flow_wildcards *wc, uint32_t basis)
1135 {
1136 return flow_hash(&wc->masks, basis);
1137 }
1138
1139 /* Returns true if 'a' and 'b' represent the same wildcards, false if they are
1140 * different. */
1141 bool
1142 flow_wildcards_equal(const struct flow_wildcards *a,
1143 const struct flow_wildcards *b)
1144 {
1145 return flow_equal(&a->masks, &b->masks);
1146 }
1147
1148 /* Returns true if at least one bit or field is wildcarded in 'a' but not in
1149 * 'b', false otherwise. */
1150 bool
1151 flow_wildcards_has_extra(const struct flow_wildcards *a,
1152 const struct flow_wildcards *b)
1153 {
1154 const uint64_t *a_u64 = (const uint64_t *) &a->masks;
1155 const uint64_t *b_u64 = (const uint64_t *) &b->masks;
1156 size_t i;
1157
1158 for (i = 0; i < FLOW_U64S; i++) {
1159 if ((a_u64[i] & b_u64[i]) != b_u64[i]) {
1160 return true;
1161 }
1162 }
1163 return false;
1164 }
1165
1166 /* Returns true if 'a' and 'b' are equal, except that 0-bits (wildcarded bits)
1167 * in 'wc' do not need to be equal in 'a' and 'b'. */
1168 bool
1169 flow_equal_except(const struct flow *a, const struct flow *b,
1170 const struct flow_wildcards *wc)
1171 {
1172 const uint64_t *a_u64 = (const uint64_t *) a;
1173 const uint64_t *b_u64 = (const uint64_t *) b;
1174 const uint64_t *wc_u64 = (const uint64_t *) &wc->masks;
1175 size_t i;
1176
1177 for (i = 0; i < FLOW_U64S; i++) {
1178 if ((a_u64[i] ^ b_u64[i]) & wc_u64[i]) {
1179 return false;
1180 }
1181 }
1182 return true;
1183 }
1184
1185 /* Sets the wildcard mask for register 'idx' in 'wc' to 'mask'.
1186 * (A 0-bit indicates a wildcard bit.) */
1187 void
1188 flow_wildcards_set_reg_mask(struct flow_wildcards *wc, int idx, uint32_t mask)
1189 {
1190 wc->masks.regs[idx] = mask;
1191 }
1192
1193 /* Sets the wildcard mask for register 'idx' in 'wc' to 'mask'.
1194 * (A 0-bit indicates a wildcard bit.) */
1195 void
1196 flow_wildcards_set_xreg_mask(struct flow_wildcards *wc, int idx, uint64_t mask)
1197 {
1198 flow_set_xreg(&wc->masks, idx, mask);
1199 }
1200
1201 /* Calculates the 5-tuple hash from the given miniflow.
1202 * This returns the same value as flow_hash_5tuple for the corresponding
1203 * flow. */
1204 uint32_t
1205 miniflow_hash_5tuple(const struct miniflow *flow, uint32_t basis)
1206 {
1207 uint32_t hash = basis;
1208
1209 if (flow) {
1210 ovs_be16 dl_type = MINIFLOW_GET_BE16(flow, dl_type);
1211
1212 hash = hash_add(hash, MINIFLOW_GET_U8(flow, nw_proto));
1213
1214 /* Separate loops for better optimization. */
1215 if (dl_type == htons(ETH_TYPE_IPV6)) {
1216 uint64_t map = MINIFLOW_MAP(ipv6_src) | MINIFLOW_MAP(ipv6_dst);
1217 uint64_t value;
1218
1219 MINIFLOW_FOR_EACH_IN_MAP(value, flow, map) {
1220 hash = hash_add64(hash, value);
1221 }
1222 } else {
1223 hash = hash_add(hash, MINIFLOW_GET_U32(flow, nw_src));
1224 hash = hash_add(hash, MINIFLOW_GET_U32(flow, nw_dst));
1225 }
1226 /* Add both ports at once. */
1227 hash = hash_add(hash, MINIFLOW_GET_U32(flow, tp_src));
1228 hash = hash_finish(hash, 42); /* Arbitrary number. */
1229 }
1230 return hash;
1231 }
1232
1233 BUILD_ASSERT_DECL(offsetof(struct flow, tp_src) + 2
1234 == offsetof(struct flow, tp_dst) &&
1235 offsetof(struct flow, tp_src) / 4
1236 == offsetof(struct flow, tp_dst) / 4);
1237 BUILD_ASSERT_DECL(offsetof(struct flow, ipv6_src) + 16
1238 == offsetof(struct flow, ipv6_dst));
1239
1240 /* Calculates the 5-tuple hash from the given flow. */
1241 uint32_t
1242 flow_hash_5tuple(const struct flow *flow, uint32_t basis)
1243 {
1244 uint32_t hash = basis;
1245
1246 if (flow) {
1247 hash = hash_add(hash, flow->nw_proto);
1248
1249 if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
1250 const uint64_t *flow_u64 = (const uint64_t *)flow;
1251 int ofs = offsetof(struct flow, ipv6_src) / 8;
1252 int end = ofs + 2 * sizeof flow->ipv6_src / 8;
1253
1254 for (;ofs < end; ofs++) {
1255 hash = hash_add64(hash, flow_u64[ofs]);
1256 }
1257 } else {
1258 hash = hash_add(hash, (OVS_FORCE uint32_t) flow->nw_src);
1259 hash = hash_add(hash, (OVS_FORCE uint32_t) flow->nw_dst);
1260 }
1261 /* Add both ports at once. */
1262 hash = hash_add(hash,
1263 ((const uint32_t *)flow)[offsetof(struct flow, tp_src)
1264 / sizeof(uint32_t)]);
1265 hash = hash_finish(hash, 42); /* Arbitrary number. */
1266 }
1267 return hash;
1268 }
1269
1270 /* Hashes 'flow' based on its L2 through L4 protocol information. */
1271 uint32_t
1272 flow_hash_symmetric_l4(const struct flow *flow, uint32_t basis)
1273 {
1274 struct {
1275 union {
1276 ovs_be32 ipv4_addr;
1277 struct in6_addr ipv6_addr;
1278 };
1279 ovs_be16 eth_type;
1280 ovs_be16 vlan_tci;
1281 ovs_be16 tp_port;
1282 uint8_t eth_addr[ETH_ADDR_LEN];
1283 uint8_t ip_proto;
1284 } fields;
1285
1286 int i;
1287
1288 memset(&fields, 0, sizeof fields);
1289 for (i = 0; i < ETH_ADDR_LEN; i++) {
1290 fields.eth_addr[i] = flow->dl_src[i] ^ flow->dl_dst[i];
1291 }
1292 fields.vlan_tci = flow->vlan_tci & htons(VLAN_VID_MASK);
1293 fields.eth_type = flow->dl_type;
1294
1295 /* UDP source and destination port are not taken into account because they
1296 * will not necessarily be symmetric in a bidirectional flow. */
1297 if (fields.eth_type == htons(ETH_TYPE_IP)) {
1298 fields.ipv4_addr = flow->nw_src ^ flow->nw_dst;
1299 fields.ip_proto = flow->nw_proto;
1300 if (fields.ip_proto == IPPROTO_TCP || fields.ip_proto == IPPROTO_SCTP) {
1301 fields.tp_port = flow->tp_src ^ flow->tp_dst;
1302 }
1303 } else if (fields.eth_type == htons(ETH_TYPE_IPV6)) {
1304 const uint8_t *a = &flow->ipv6_src.s6_addr[0];
1305 const uint8_t *b = &flow->ipv6_dst.s6_addr[0];
1306 uint8_t *ipv6_addr = &fields.ipv6_addr.s6_addr[0];
1307
1308 for (i=0; i<16; i++) {
1309 ipv6_addr[i] = a[i] ^ b[i];
1310 }
1311 fields.ip_proto = flow->nw_proto;
1312 if (fields.ip_proto == IPPROTO_TCP || fields.ip_proto == IPPROTO_SCTP) {
1313 fields.tp_port = flow->tp_src ^ flow->tp_dst;
1314 }
1315 }
1316 return jhash_bytes(&fields, sizeof fields, basis);
1317 }
1318
1319 /* Initialize a flow with random fields that matter for nx_hash_fields. */
1320 void
1321 flow_random_hash_fields(struct flow *flow)
1322 {
1323 uint16_t rnd = random_uint16();
1324
1325 /* Initialize to all zeros. */
1326 memset(flow, 0, sizeof *flow);
1327
1328 eth_addr_random(flow->dl_src);
1329 eth_addr_random(flow->dl_dst);
1330
1331 flow->vlan_tci = (OVS_FORCE ovs_be16) (random_uint16() & VLAN_VID_MASK);
1332
1333 /* Make most of the random flows IPv4, some IPv6, and rest random. */
1334 flow->dl_type = rnd < 0x8000 ? htons(ETH_TYPE_IP) :
1335 rnd < 0xc000 ? htons(ETH_TYPE_IPV6) : (OVS_FORCE ovs_be16)rnd;
1336
1337 if (dl_type_is_ip_any(flow->dl_type)) {
1338 if (flow->dl_type == htons(ETH_TYPE_IP)) {
1339 flow->nw_src = (OVS_FORCE ovs_be32)random_uint32();
1340 flow->nw_dst = (OVS_FORCE ovs_be32)random_uint32();
1341 } else {
1342 random_bytes(&flow->ipv6_src, sizeof flow->ipv6_src);
1343 random_bytes(&flow->ipv6_dst, sizeof flow->ipv6_dst);
1344 }
1345 /* Make most of IP flows TCP, some UDP or SCTP, and rest random. */
1346 rnd = random_uint16();
1347 flow->nw_proto = rnd < 0x8000 ? IPPROTO_TCP :
1348 rnd < 0xc000 ? IPPROTO_UDP :
1349 rnd < 0xd000 ? IPPROTO_SCTP : (uint8_t)rnd;
1350 if (flow->nw_proto == IPPROTO_TCP ||
1351 flow->nw_proto == IPPROTO_UDP ||
1352 flow->nw_proto == IPPROTO_SCTP) {
1353 flow->tp_src = (OVS_FORCE ovs_be16)random_uint16();
1354 flow->tp_dst = (OVS_FORCE ovs_be16)random_uint16();
1355 }
1356 }
1357 }
1358
1359 /* Masks the fields in 'wc' that are used by the flow hash 'fields'. */
1360 void
1361 flow_mask_hash_fields(const struct flow *flow, struct flow_wildcards *wc,
1362 enum nx_hash_fields fields)
1363 {
1364 switch (fields) {
1365 case NX_HASH_FIELDS_ETH_SRC:
1366 memset(&wc->masks.dl_src, 0xff, sizeof wc->masks.dl_src);
1367 break;
1368
1369 case NX_HASH_FIELDS_SYMMETRIC_L4:
1370 memset(&wc->masks.dl_src, 0xff, sizeof wc->masks.dl_src);
1371 memset(&wc->masks.dl_dst, 0xff, sizeof wc->masks.dl_dst);
1372 if (flow->dl_type == htons(ETH_TYPE_IP)) {
1373 memset(&wc->masks.nw_src, 0xff, sizeof wc->masks.nw_src);
1374 memset(&wc->masks.nw_dst, 0xff, sizeof wc->masks.nw_dst);
1375 } else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
1376 memset(&wc->masks.ipv6_src, 0xff, sizeof wc->masks.ipv6_src);
1377 memset(&wc->masks.ipv6_dst, 0xff, sizeof wc->masks.ipv6_dst);
1378 }
1379 if (is_ip_any(flow)) {
1380 memset(&wc->masks.nw_proto, 0xff, sizeof wc->masks.nw_proto);
1381 flow_unwildcard_tp_ports(flow, wc);
1382 }
1383 wc->masks.vlan_tci |= htons(VLAN_VID_MASK | VLAN_CFI);
1384 break;
1385
1386 default:
1387 OVS_NOT_REACHED();
1388 }
1389 }
1390
1391 /* Hashes the portions of 'flow' designated by 'fields'. */
1392 uint32_t
1393 flow_hash_fields(const struct flow *flow, enum nx_hash_fields fields,
1394 uint16_t basis)
1395 {
1396 switch (fields) {
1397
1398 case NX_HASH_FIELDS_ETH_SRC:
1399 return jhash_bytes(flow->dl_src, sizeof flow->dl_src, basis);
1400
1401 case NX_HASH_FIELDS_SYMMETRIC_L4:
1402 return flow_hash_symmetric_l4(flow, basis);
1403 }
1404
1405 OVS_NOT_REACHED();
1406 }
1407
1408 /* Returns a string representation of 'fields'. */
1409 const char *
1410 flow_hash_fields_to_str(enum nx_hash_fields fields)
1411 {
1412 switch (fields) {
1413 case NX_HASH_FIELDS_ETH_SRC: return "eth_src";
1414 case NX_HASH_FIELDS_SYMMETRIC_L4: return "symmetric_l4";
1415 default: return "<unknown>";
1416 }
1417 }
1418
1419 /* Returns true if the value of 'fields' is supported. Otherwise false. */
1420 bool
1421 flow_hash_fields_valid(enum nx_hash_fields fields)
1422 {
1423 return fields == NX_HASH_FIELDS_ETH_SRC
1424 || fields == NX_HASH_FIELDS_SYMMETRIC_L4;
1425 }
1426
1427 /* Returns a hash value for the bits of 'flow' that are active based on
1428 * 'wc', given 'basis'. */
1429 uint32_t
1430 flow_hash_in_wildcards(const struct flow *flow,
1431 const struct flow_wildcards *wc, uint32_t basis)
1432 {
1433 const uint64_t *wc_u64 = (const uint64_t *) &wc->masks;
1434 const uint64_t *flow_u64 = (const uint64_t *) flow;
1435 uint32_t hash;
1436 size_t i;
1437
1438 hash = basis;
1439 for (i = 0; i < FLOW_U64S; i++) {
1440 hash = hash_add64(hash, flow_u64[i] & wc_u64[i]);
1441 }
1442 return hash_finish(hash, 8 * FLOW_U64S);
1443 }
1444
1445 /* Sets the VLAN VID that 'flow' matches to 'vid', which is interpreted as an
1446 * OpenFlow 1.0 "dl_vlan" value:
1447 *
1448 * - If it is in the range 0...4095, 'flow->vlan_tci' is set to match
1449 * that VLAN. Any existing PCP match is unchanged (it becomes 0 if
1450 * 'flow' previously matched packets without a VLAN header).
1451 *
1452 * - If it is OFP_VLAN_NONE, 'flow->vlan_tci' is set to match a packet
1453 * without a VLAN tag.
1454 *
1455 * - Other values of 'vid' should not be used. */
1456 void
1457 flow_set_dl_vlan(struct flow *flow, ovs_be16 vid)
1458 {
1459 if (vid == htons(OFP10_VLAN_NONE)) {
1460 flow->vlan_tci = htons(0);
1461 } else {
1462 vid &= htons(VLAN_VID_MASK);
1463 flow->vlan_tci &= ~htons(VLAN_VID_MASK);
1464 flow->vlan_tci |= htons(VLAN_CFI) | vid;
1465 }
1466 }
1467
1468 /* Sets the VLAN VID that 'flow' matches to 'vid', which is interpreted as an
1469 * OpenFlow 1.2 "vlan_vid" value, that is, the low 13 bits of 'vlan_tci' (VID
1470 * plus CFI). */
1471 void
1472 flow_set_vlan_vid(struct flow *flow, ovs_be16 vid)
1473 {
1474 ovs_be16 mask = htons(VLAN_VID_MASK | VLAN_CFI);
1475 flow->vlan_tci &= ~mask;
1476 flow->vlan_tci |= vid & mask;
1477 }
1478
1479 /* Sets the VLAN PCP that 'flow' matches to 'pcp', which should be in the
1480 * range 0...7.
1481 *
1482 * This function has no effect on the VLAN ID that 'flow' matches.
1483 *
1484 * After calling this function, 'flow' will not match packets without a VLAN
1485 * header. */
1486 void
1487 flow_set_vlan_pcp(struct flow *flow, uint8_t pcp)
1488 {
1489 pcp &= 0x07;
1490 flow->vlan_tci &= ~htons(VLAN_PCP_MASK);
1491 flow->vlan_tci |= htons((pcp << VLAN_PCP_SHIFT) | VLAN_CFI);
1492 }
1493
1494 /* Returns the number of MPLS LSEs present in 'flow'
1495 *
1496 * Returns 0 if the 'dl_type' of 'flow' is not an MPLS ethernet type.
1497 * Otherwise traverses 'flow''s MPLS label stack stopping at the
1498 * first entry that has the BoS bit set. If no such entry exists then
1499 * the maximum number of LSEs that can be stored in 'flow' is returned.
1500 */
1501 int
1502 flow_count_mpls_labels(const struct flow *flow, struct flow_wildcards *wc)
1503 {
1504 /* dl_type is always masked. */
1505 if (eth_type_mpls(flow->dl_type)) {
1506 int i;
1507 int cnt;
1508
1509 cnt = 0;
1510 for (i = 0; i < FLOW_MAX_MPLS_LABELS; i++) {
1511 if (wc) {
1512 wc->masks.mpls_lse[i] |= htonl(MPLS_BOS_MASK);
1513 }
1514 if (flow->mpls_lse[i] & htonl(MPLS_BOS_MASK)) {
1515 return i + 1;
1516 }
1517 if (flow->mpls_lse[i]) {
1518 cnt++;
1519 }
1520 }
1521 return cnt;
1522 } else {
1523 return 0;
1524 }
1525 }
1526
1527 /* Returns the number consecutive of MPLS LSEs, starting at the
1528 * innermost LSE, that are common in 'a' and 'b'.
1529 *
1530 * 'an' must be flow_count_mpls_labels(a).
1531 * 'bn' must be flow_count_mpls_labels(b).
1532 */
1533 int
1534 flow_count_common_mpls_labels(const struct flow *a, int an,
1535 const struct flow *b, int bn,
1536 struct flow_wildcards *wc)
1537 {
1538 int min_n = MIN(an, bn);
1539 if (min_n == 0) {
1540 return 0;
1541 } else {
1542 int common_n = 0;
1543 int a_last = an - 1;
1544 int b_last = bn - 1;
1545 int i;
1546
1547 for (i = 0; i < min_n; i++) {
1548 if (wc) {
1549 wc->masks.mpls_lse[a_last - i] = OVS_BE32_MAX;
1550 wc->masks.mpls_lse[b_last - i] = OVS_BE32_MAX;
1551 }
1552 if (a->mpls_lse[a_last - i] != b->mpls_lse[b_last - i]) {
1553 break;
1554 } else {
1555 common_n++;
1556 }
1557 }
1558
1559 return common_n;
1560 }
1561 }
1562
1563 /* Adds a new outermost MPLS label to 'flow' and changes 'flow''s Ethernet type
1564 * to 'mpls_eth_type', which must be an MPLS Ethertype.
1565 *
1566 * If the new label is the first MPLS label in 'flow', it is generated as;
1567 *
1568 * - label: 2, if 'flow' is IPv6, otherwise 0.
1569 *
1570 * - TTL: IPv4 or IPv6 TTL, if present and nonzero, otherwise 64.
1571 *
1572 * - TC: IPv4 or IPv6 TOS, if present, otherwise 0.
1573 *
1574 * - BoS: 1.
1575 *
1576 * If the new label is the second or later label MPLS label in 'flow', it is
1577 * generated as;
1578 *
1579 * - label: Copied from outer label.
1580 *
1581 * - TTL: Copied from outer label.
1582 *
1583 * - TC: Copied from outer label.
1584 *
1585 * - BoS: 0.
1586 *
1587 * 'n' must be flow_count_mpls_labels(flow). 'n' must be less than
1588 * FLOW_MAX_MPLS_LABELS (because otherwise flow->mpls_lse[] would overflow).
1589 */
1590 void
1591 flow_push_mpls(struct flow *flow, int n, ovs_be16 mpls_eth_type,
1592 struct flow_wildcards *wc)
1593 {
1594 ovs_assert(eth_type_mpls(mpls_eth_type));
1595 ovs_assert(n < FLOW_MAX_MPLS_LABELS);
1596
1597 if (n) {
1598 int i;
1599
1600 if (wc) {
1601 memset(&wc->masks.mpls_lse, 0xff, sizeof *wc->masks.mpls_lse * n);
1602 }
1603 for (i = n; i >= 1; i--) {
1604 flow->mpls_lse[i] = flow->mpls_lse[i - 1];
1605 }
1606 flow->mpls_lse[0] = (flow->mpls_lse[1] & htonl(~MPLS_BOS_MASK));
1607 } else {
1608 int label = 0; /* IPv4 Explicit Null. */
1609 int tc = 0;
1610 int ttl = 64;
1611
1612 if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
1613 label = 2;
1614 }
1615
1616 if (is_ip_any(flow)) {
1617 tc = (flow->nw_tos & IP_DSCP_MASK) >> 2;
1618 if (wc) {
1619 wc->masks.nw_tos |= IP_DSCP_MASK;
1620 wc->masks.nw_ttl = 0xff;
1621 }
1622
1623 if (flow->nw_ttl) {
1624 ttl = flow->nw_ttl;
1625 }
1626 }
1627
1628 flow->mpls_lse[0] = set_mpls_lse_values(ttl, tc, 1, htonl(label));
1629
1630 /* Clear all L3 and L4 fields and dp_hash. */
1631 BUILD_ASSERT(FLOW_WC_SEQ == 31);
1632 memset((char *) flow + FLOW_SEGMENT_2_ENDS_AT, 0,
1633 sizeof(struct flow) - FLOW_SEGMENT_2_ENDS_AT);
1634 flow->dp_hash = 0;
1635 }
1636 flow->dl_type = mpls_eth_type;
1637 }
1638
1639 /* Tries to remove the outermost MPLS label from 'flow'. Returns true if
1640 * successful, false otherwise. On success, sets 'flow''s Ethernet type to
1641 * 'eth_type'.
1642 *
1643 * 'n' must be flow_count_mpls_labels(flow). */
1644 bool
1645 flow_pop_mpls(struct flow *flow, int n, ovs_be16 eth_type,
1646 struct flow_wildcards *wc)
1647 {
1648 int i;
1649
1650 if (n == 0) {
1651 /* Nothing to pop. */
1652 return false;
1653 } else if (n == FLOW_MAX_MPLS_LABELS) {
1654 if (wc) {
1655 wc->masks.mpls_lse[n - 1] |= htonl(MPLS_BOS_MASK);
1656 }
1657 if (!(flow->mpls_lse[n - 1] & htonl(MPLS_BOS_MASK))) {
1658 /* Can't pop because don't know what to fill in mpls_lse[n - 1]. */
1659 return false;
1660 }
1661 }
1662
1663 if (wc) {
1664 memset(&wc->masks.mpls_lse[1], 0xff,
1665 sizeof *wc->masks.mpls_lse * (n - 1));
1666 }
1667 for (i = 1; i < n; i++) {
1668 flow->mpls_lse[i - 1] = flow->mpls_lse[i];
1669 }
1670 flow->mpls_lse[n - 1] = 0;
1671 flow->dl_type = eth_type;
1672 return true;
1673 }
1674
1675 /* Sets the MPLS Label that 'flow' matches to 'label', which is interpreted
1676 * as an OpenFlow 1.1 "mpls_label" value. */
1677 void
1678 flow_set_mpls_label(struct flow *flow, int idx, ovs_be32 label)
1679 {
1680 set_mpls_lse_label(&flow->mpls_lse[idx], label);
1681 }
1682
1683 /* Sets the MPLS TTL that 'flow' matches to 'ttl', which should be in the
1684 * range 0...255. */
1685 void
1686 flow_set_mpls_ttl(struct flow *flow, int idx, uint8_t ttl)
1687 {
1688 set_mpls_lse_ttl(&flow->mpls_lse[idx], ttl);
1689 }
1690
1691 /* Sets the MPLS TC that 'flow' matches to 'tc', which should be in the
1692 * range 0...7. */
1693 void
1694 flow_set_mpls_tc(struct flow *flow, int idx, uint8_t tc)
1695 {
1696 set_mpls_lse_tc(&flow->mpls_lse[idx], tc);
1697 }
1698
1699 /* Sets the MPLS BOS bit that 'flow' matches to which should be 0 or 1. */
1700 void
1701 flow_set_mpls_bos(struct flow *flow, int idx, uint8_t bos)
1702 {
1703 set_mpls_lse_bos(&flow->mpls_lse[idx], bos);
1704 }
1705
1706 /* Sets the entire MPLS LSE. */
1707 void
1708 flow_set_mpls_lse(struct flow *flow, int idx, ovs_be32 lse)
1709 {
1710 flow->mpls_lse[idx] = lse;
1711 }
1712
1713 static size_t
1714 flow_compose_l4(struct dp_packet *p, const struct flow *flow)
1715 {
1716 size_t l4_len = 0;
1717
1718 if (!(flow->nw_frag & FLOW_NW_FRAG_ANY)
1719 || !(flow->nw_frag & FLOW_NW_FRAG_LATER)) {
1720 if (flow->nw_proto == IPPROTO_TCP) {
1721 struct tcp_header *tcp;
1722
1723 l4_len = sizeof *tcp;
1724 tcp = dp_packet_put_zeros(p, l4_len);
1725 tcp->tcp_src = flow->tp_src;
1726 tcp->tcp_dst = flow->tp_dst;
1727 tcp->tcp_ctl = TCP_CTL(ntohs(flow->tcp_flags), 5);
1728 } else if (flow->nw_proto == IPPROTO_UDP) {
1729 struct udp_header *udp;
1730
1731 l4_len = sizeof *udp;
1732 udp = dp_packet_put_zeros(p, l4_len);
1733 udp->udp_src = flow->tp_src;
1734 udp->udp_dst = flow->tp_dst;
1735 } else if (flow->nw_proto == IPPROTO_SCTP) {
1736 struct sctp_header *sctp;
1737
1738 l4_len = sizeof *sctp;
1739 sctp = dp_packet_put_zeros(p, l4_len);
1740 sctp->sctp_src = flow->tp_src;
1741 sctp->sctp_dst = flow->tp_dst;
1742 } else if (flow->nw_proto == IPPROTO_ICMP) {
1743 struct icmp_header *icmp;
1744
1745 l4_len = sizeof *icmp;
1746 icmp = dp_packet_put_zeros(p, l4_len);
1747 icmp->icmp_type = ntohs(flow->tp_src);
1748 icmp->icmp_code = ntohs(flow->tp_dst);
1749 icmp->icmp_csum = csum(icmp, ICMP_HEADER_LEN);
1750 } else if (flow->nw_proto == IPPROTO_IGMP) {
1751 struct igmp_header *igmp;
1752
1753 l4_len = sizeof *igmp;
1754 igmp = dp_packet_put_zeros(p, l4_len);
1755 igmp->igmp_type = ntohs(flow->tp_src);
1756 igmp->igmp_code = ntohs(flow->tp_dst);
1757 put_16aligned_be32(&igmp->group, flow->igmp_group_ip4);
1758 igmp->igmp_csum = csum(igmp, IGMP_HEADER_LEN);
1759 } else if (flow->nw_proto == IPPROTO_ICMPV6) {
1760 struct icmp6_hdr *icmp;
1761
1762 l4_len = sizeof *icmp;
1763 icmp = dp_packet_put_zeros(p, l4_len);
1764 icmp->icmp6_type = ntohs(flow->tp_src);
1765 icmp->icmp6_code = ntohs(flow->tp_dst);
1766
1767 if (icmp->icmp6_code == 0 &&
1768 (icmp->icmp6_type == ND_NEIGHBOR_SOLICIT ||
1769 icmp->icmp6_type == ND_NEIGHBOR_ADVERT)) {
1770 struct in6_addr *nd_target;
1771 struct nd_opt_hdr *nd_opt;
1772
1773 l4_len += sizeof *nd_target;
1774 nd_target = dp_packet_put_zeros(p, sizeof *nd_target);
1775 *nd_target = flow->nd_target;
1776
1777 if (!eth_addr_is_zero(flow->arp_sha)) {
1778 l4_len += 8;
1779 nd_opt = dp_packet_put_zeros(p, 8);
1780 nd_opt->nd_opt_len = 1;
1781 nd_opt->nd_opt_type = ND_OPT_SOURCE_LINKADDR;
1782 memcpy(nd_opt + 1, flow->arp_sha, ETH_ADDR_LEN);
1783 }
1784 if (!eth_addr_is_zero(flow->arp_tha)) {
1785 l4_len += 8;
1786 nd_opt = dp_packet_put_zeros(p, 8);
1787 nd_opt->nd_opt_len = 1;
1788 nd_opt->nd_opt_type = ND_OPT_TARGET_LINKADDR;
1789 memcpy(nd_opt + 1, flow->arp_tha, ETH_ADDR_LEN);
1790 }
1791 }
1792 icmp->icmp6_cksum = (OVS_FORCE uint16_t)
1793 csum(icmp, (char *)dp_packet_tail(p) - (char *)icmp);
1794 }
1795 }
1796 return l4_len;
1797 }
1798
1799 /* Puts into 'b' a packet that flow_extract() would parse as having the given
1800 * 'flow'.
1801 *
1802 * (This is useful only for testing, obviously, and the packet isn't really
1803 * valid. It hasn't got some checksums filled in, for one, and lots of fields
1804 * are just zeroed.) */
1805 void
1806 flow_compose(struct dp_packet *p, const struct flow *flow)
1807 {
1808 size_t l4_len;
1809
1810 /* eth_compose() sets l3 pointer and makes sure it is 32-bit aligned. */
1811 eth_compose(p, flow->dl_dst, flow->dl_src, ntohs(flow->dl_type), 0);
1812 if (flow->dl_type == htons(FLOW_DL_TYPE_NONE)) {
1813 struct eth_header *eth = dp_packet_l2(p);
1814 eth->eth_type = htons(dp_packet_size(p));
1815 return;
1816 }
1817
1818 if (flow->vlan_tci & htons(VLAN_CFI)) {
1819 eth_push_vlan(p, htons(ETH_TYPE_VLAN), flow->vlan_tci);
1820 }
1821
1822 if (flow->dl_type == htons(ETH_TYPE_IP)) {
1823 struct ip_header *ip;
1824
1825 ip = dp_packet_put_zeros(p, sizeof *ip);
1826 ip->ip_ihl_ver = IP_IHL_VER(5, 4);
1827 ip->ip_tos = flow->nw_tos;
1828 ip->ip_ttl = flow->nw_ttl;
1829 ip->ip_proto = flow->nw_proto;
1830 put_16aligned_be32(&ip->ip_src, flow->nw_src);
1831 put_16aligned_be32(&ip->ip_dst, flow->nw_dst);
1832
1833 if (flow->nw_frag & FLOW_NW_FRAG_ANY) {
1834 ip->ip_frag_off |= htons(IP_MORE_FRAGMENTS);
1835 if (flow->nw_frag & FLOW_NW_FRAG_LATER) {
1836 ip->ip_frag_off |= htons(100);
1837 }
1838 }
1839
1840 dp_packet_set_l4(p, dp_packet_tail(p));
1841
1842 l4_len = flow_compose_l4(p, flow);
1843
1844 ip = dp_packet_l3(p);
1845 ip->ip_tot_len = htons(p->l4_ofs - p->l3_ofs + l4_len);
1846 ip->ip_csum = csum(ip, sizeof *ip);
1847 } else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
1848 struct ovs_16aligned_ip6_hdr *nh;
1849
1850 nh = dp_packet_put_zeros(p, sizeof *nh);
1851 put_16aligned_be32(&nh->ip6_flow, htonl(6 << 28) |
1852 htonl(flow->nw_tos << 20) | flow->ipv6_label);
1853 nh->ip6_hlim = flow->nw_ttl;
1854 nh->ip6_nxt = flow->nw_proto;
1855
1856 memcpy(&nh->ip6_src, &flow->ipv6_src, sizeof(nh->ip6_src));
1857 memcpy(&nh->ip6_dst, &flow->ipv6_dst, sizeof(nh->ip6_dst));
1858
1859 dp_packet_set_l4(p, dp_packet_tail(p));
1860
1861 l4_len = flow_compose_l4(p, flow);
1862
1863 nh = dp_packet_l3(p);
1864 nh->ip6_plen = htons(l4_len);
1865 } else if (flow->dl_type == htons(ETH_TYPE_ARP) ||
1866 flow->dl_type == htons(ETH_TYPE_RARP)) {
1867 struct arp_eth_header *arp;
1868
1869 arp = dp_packet_put_zeros(p, sizeof *arp);
1870 dp_packet_set_l3(p, arp);
1871 arp->ar_hrd = htons(1);
1872 arp->ar_pro = htons(ETH_TYPE_IP);
1873 arp->ar_hln = ETH_ADDR_LEN;
1874 arp->ar_pln = 4;
1875 arp->ar_op = htons(flow->nw_proto);
1876
1877 if (flow->nw_proto == ARP_OP_REQUEST ||
1878 flow->nw_proto == ARP_OP_REPLY) {
1879 put_16aligned_be32(&arp->ar_spa, flow->nw_src);
1880 put_16aligned_be32(&arp->ar_tpa, flow->nw_dst);
1881 memcpy(arp->ar_sha, flow->arp_sha, ETH_ADDR_LEN);
1882 memcpy(arp->ar_tha, flow->arp_tha, ETH_ADDR_LEN);
1883 }
1884 }
1885
1886 if (eth_type_mpls(flow->dl_type)) {
1887 int n;
1888
1889 p->l2_5_ofs = p->l3_ofs;
1890 for (n = 1; n < FLOW_MAX_MPLS_LABELS; n++) {
1891 if (flow->mpls_lse[n - 1] & htonl(MPLS_BOS_MASK)) {
1892 break;
1893 }
1894 }
1895 while (n > 0) {
1896 push_mpls(p, flow->dl_type, flow->mpls_lse[--n]);
1897 }
1898 }
1899 }
1900 \f
1901 /* Compressed flow. */
1902
1903 static int
1904 miniflow_n_values(const struct miniflow *flow)
1905 {
1906 return count_1bits(flow->map);
1907 }
1908
1909 static uint64_t *
1910 miniflow_alloc_values(struct miniflow *flow, int n)
1911 {
1912 int size = MINIFLOW_VALUES_SIZE(n);
1913
1914 if (size <= sizeof flow->inline_values) {
1915 flow->values_inline = true;
1916 return flow->inline_values;
1917 } else {
1918 COVERAGE_INC(miniflow_malloc);
1919 flow->values_inline = false;
1920 flow->offline_values = xmalloc(size);
1921 return flow->offline_values;
1922 }
1923 }
1924
1925 /* Completes an initialization of 'dst' as a miniflow copy of 'src' begun by
1926 * the caller. The caller must have already initialized 'dst->map' properly
1927 * to indicate the significant uint64_t elements of 'src'. 'n' must be the
1928 * number of 1-bits in 'dst->map'.
1929 *
1930 * Normally the significant elements are the ones that are non-zero. However,
1931 * when a miniflow is initialized from a (mini)mask, the values can be zeroes,
1932 * so that the flow and mask always have the same maps.
1933 *
1934 * This function initializes values (either inline if possible or with
1935 * malloc() otherwise) and copies the uint64_t elements of 'src' indicated by
1936 * 'dst->map' into it. */
1937 static void
1938 miniflow_init__(struct miniflow *dst, const struct flow *src, int n)
1939 {
1940 const uint64_t *src_u64 = (const uint64_t *) src;
1941 uint64_t *dst_u64 = miniflow_alloc_values(dst, n);
1942 int idx;
1943
1944 MAP_FOR_EACH_INDEX(idx, dst->map) {
1945 *dst_u64++ = src_u64[idx];
1946 }
1947 }
1948
1949 /* Initializes 'dst' as a copy of 'src'. The caller must eventually free 'dst'
1950 * with miniflow_destroy().
1951 * Always allocates offline storage. */
1952 void
1953 miniflow_init(struct miniflow *dst, const struct flow *src)
1954 {
1955 const uint64_t *src_u64 = (const uint64_t *) src;
1956 unsigned int i;
1957 int n;
1958
1959 /* Initialize dst->map, counting the number of nonzero elements. */
1960 n = 0;
1961 dst->map = 0;
1962
1963 for (i = 0; i < FLOW_U64S; i++) {
1964 if (src_u64[i]) {
1965 dst->map |= UINT64_C(1) << i;
1966 n++;
1967 }
1968 }
1969
1970 miniflow_init__(dst, src, n);
1971 }
1972
1973 /* Initializes 'dst' as a copy of 'src', using 'mask->map' as 'dst''s map. The
1974 * caller must eventually free 'dst' with miniflow_destroy(). */
1975 void
1976 miniflow_init_with_minimask(struct miniflow *dst, const struct flow *src,
1977 const struct minimask *mask)
1978 {
1979 dst->map = mask->masks.map;
1980 miniflow_init__(dst, src, miniflow_n_values(dst));
1981 }
1982
1983 /* Initializes 'dst' as a copy of 'src'. The caller must eventually free 'dst'
1984 * with miniflow_destroy(). */
1985 void
1986 miniflow_clone(struct miniflow *dst, const struct miniflow *src)
1987 {
1988 int size = MINIFLOW_VALUES_SIZE(miniflow_n_values(src));
1989 uint64_t *values;
1990
1991 dst->map = src->map;
1992 if (size <= sizeof dst->inline_values) {
1993 dst->values_inline = true;
1994 values = dst->inline_values;
1995 } else {
1996 dst->values_inline = false;
1997 COVERAGE_INC(miniflow_malloc);
1998 dst->offline_values = xmalloc(size);
1999 values = dst->offline_values;
2000 }
2001 memcpy(values, miniflow_get_values(src), size);
2002 }
2003
2004 /* Initializes 'dst' as a copy of 'src'. The caller must have allocated
2005 * 'dst' to have inline space all data in 'src'. */
2006 void
2007 miniflow_clone_inline(struct miniflow *dst, const struct miniflow *src,
2008 size_t n_values)
2009 {
2010 dst->values_inline = true;
2011 dst->map = src->map;
2012 memcpy(dst->inline_values, miniflow_get_values(src),
2013 MINIFLOW_VALUES_SIZE(n_values));
2014 }
2015
2016 /* Initializes 'dst' with the data in 'src', destroying 'src'.
2017 * The caller must eventually free 'dst' with miniflow_destroy().
2018 * 'dst' must be regularly sized miniflow, but 'src' can have
2019 * storage for more than the default MINI_N_INLINE inline
2020 * values. */
2021 void
2022 miniflow_move(struct miniflow *dst, struct miniflow *src)
2023 {
2024 int size = MINIFLOW_VALUES_SIZE(miniflow_n_values(src));
2025
2026 dst->map = src->map;
2027 if (size <= sizeof dst->inline_values) {
2028 dst->values_inline = true;
2029 memcpy(dst->inline_values, miniflow_get_values(src), size);
2030 miniflow_destroy(src);
2031 } else if (src->values_inline) {
2032 dst->values_inline = false;
2033 COVERAGE_INC(miniflow_malloc);
2034 dst->offline_values = xmalloc(size);
2035 memcpy(dst->offline_values, src->inline_values, size);
2036 } else {
2037 dst->values_inline = false;
2038 dst->offline_values = src->offline_values;
2039 }
2040 }
2041
2042 /* Frees any memory owned by 'flow'. Does not free the storage in which 'flow'
2043 * itself resides; the caller is responsible for that. */
2044 void
2045 miniflow_destroy(struct miniflow *flow)
2046 {
2047 if (!flow->values_inline) {
2048 free(flow->offline_values);
2049 }
2050 }
2051
2052 /* Initializes 'dst' as a copy of 'src'. */
2053 void
2054 miniflow_expand(const struct miniflow *src, struct flow *dst)
2055 {
2056 memset(dst, 0, sizeof *dst);
2057 flow_union_with_miniflow(dst, src);
2058 }
2059
2060 /* Returns true if 'a' and 'b' are the equal miniflow, false otherwise. */
2061 bool
2062 miniflow_equal(const struct miniflow *a, const struct miniflow *b)
2063 {
2064 const uint64_t *ap = miniflow_get_values(a);
2065 const uint64_t *bp = miniflow_get_values(b);
2066
2067 if (OVS_LIKELY(a->map == b->map)) {
2068 int count = miniflow_n_values(a);
2069
2070 return !memcmp(ap, bp, count * sizeof *ap);
2071 } else {
2072 uint64_t map;
2073
2074 for (map = a->map | b->map; map; map = zero_rightmost_1bit(map)) {
2075 uint64_t bit = rightmost_1bit(map);
2076
2077 if ((a->map & bit ? *ap++ : 0) != (b->map & bit ? *bp++ : 0)) {
2078 return false;
2079 }
2080 }
2081 }
2082
2083 return true;
2084 }
2085
2086 /* Returns false if 'a' and 'b' differ at the places where there are 1-bits
2087 * in 'mask', true otherwise. */
2088 bool
2089 miniflow_equal_in_minimask(const struct miniflow *a, const struct miniflow *b,
2090 const struct minimask *mask)
2091 {
2092 const uint64_t *p = miniflow_get_values(&mask->masks);
2093 int idx;
2094
2095 MAP_FOR_EACH_INDEX(idx, mask->masks.map) {
2096 if ((miniflow_get(a, idx) ^ miniflow_get(b, idx)) & *p++) {
2097 return false;
2098 }
2099 }
2100
2101 return true;
2102 }
2103
2104 /* Returns true if 'a' and 'b' are equal at the places where there are 1-bits
2105 * in 'mask', false if they differ. */
2106 bool
2107 miniflow_equal_flow_in_minimask(const struct miniflow *a, const struct flow *b,
2108 const struct minimask *mask)
2109 {
2110 const uint64_t *b_u64 = (const uint64_t *) b;
2111 const uint64_t *p = miniflow_get_values(&mask->masks);
2112 int idx;
2113
2114 MAP_FOR_EACH_INDEX(idx, mask->masks.map) {
2115 if ((miniflow_get(a, idx) ^ b_u64[idx]) & *p++) {
2116 return false;
2117 }
2118 }
2119
2120 return true;
2121 }
2122
2123 \f
2124 /* Initializes 'dst' as a copy of 'src'. The caller must eventually free 'dst'
2125 * with minimask_destroy(). */
2126 void
2127 minimask_init(struct minimask *mask, const struct flow_wildcards *wc)
2128 {
2129 miniflow_init(&mask->masks, &wc->masks);
2130 }
2131
2132 /* Initializes 'dst' as a copy of 'src'. The caller must eventually free 'dst'
2133 * with minimask_destroy(). */
2134 void
2135 minimask_clone(struct minimask *dst, const struct minimask *src)
2136 {
2137 miniflow_clone(&dst->masks, &src->masks);
2138 }
2139
2140 /* Initializes 'dst' with the data in 'src', destroying 'src'.
2141 * The caller must eventually free 'dst' with minimask_destroy(). */
2142 void
2143 minimask_move(struct minimask *dst, struct minimask *src)
2144 {
2145 miniflow_move(&dst->masks, &src->masks);
2146 }
2147
2148 /* Initializes 'dst_' as the bit-wise "and" of 'a_' and 'b_'.
2149 *
2150 * The caller must provide room for FLOW_U64S "uint64_t"s in 'storage', for use
2151 * by 'dst_'. The caller must *not* free 'dst_' with minimask_destroy(). */
2152 void
2153 minimask_combine(struct minimask *dst_,
2154 const struct minimask *a_, const struct minimask *b_,
2155 uint64_t storage[FLOW_U64S])
2156 {
2157 struct miniflow *dst = &dst_->masks;
2158 uint64_t *dst_values = storage;
2159 const struct miniflow *a = &a_->masks;
2160 const struct miniflow *b = &b_->masks;
2161 int idx;
2162
2163 dst->values_inline = false;
2164 dst->offline_values = storage;
2165
2166 dst->map = 0;
2167 MAP_FOR_EACH_INDEX(idx, a->map & b->map) {
2168 /* Both 'a' and 'b' have non-zero data at 'idx'. */
2169 uint64_t mask = miniflow_get__(a, idx) & miniflow_get__(b, idx);
2170
2171 if (mask) {
2172 dst->map |= UINT64_C(1) << idx;
2173 *dst_values++ = mask;
2174 }
2175 }
2176 }
2177
2178 /* Frees any memory owned by 'mask'. Does not free the storage in which 'mask'
2179 * itself resides; the caller is responsible for that. */
2180 void
2181 minimask_destroy(struct minimask *mask)
2182 {
2183 miniflow_destroy(&mask->masks);
2184 }
2185
2186 /* Initializes 'dst' as a copy of 'src'. */
2187 void
2188 minimask_expand(const struct minimask *mask, struct flow_wildcards *wc)
2189 {
2190 miniflow_expand(&mask->masks, &wc->masks);
2191 }
2192
2193 /* Returns true if 'a' and 'b' are the same flow mask, false otherwise.
2194 * Minimasks may not have zero data values, so for the minimasks to be the
2195 * same, they need to have the same map and the same data values. */
2196 bool
2197 minimask_equal(const struct minimask *a, const struct minimask *b)
2198 {
2199 return a->masks.map == b->masks.map &&
2200 !memcmp(miniflow_get_values(&a->masks),
2201 miniflow_get_values(&b->masks),
2202 count_1bits(a->masks.map) * sizeof *a->masks.inline_values);
2203 }
2204
2205 /* Returns true if at least one bit matched by 'b' is wildcarded by 'a',
2206 * false otherwise. */
2207 bool
2208 minimask_has_extra(const struct minimask *a, const struct minimask *b)
2209 {
2210 const uint64_t *ap = miniflow_get_values(&a->masks);
2211 const uint64_t *bp = miniflow_get_values(&b->masks);
2212 int idx;
2213
2214 MAP_FOR_EACH_INDEX(idx, b->masks.map) {
2215 uint64_t b_u64 = *bp++;
2216
2217 /* 'b_u64' is non-zero, check if the data in 'a' is either zero
2218 * or misses some of the bits in 'b_u64'. */
2219 if (!(a->masks.map & (UINT64_C(1) << idx))
2220 || ((miniflow_values_get__(ap, a->masks.map, idx) & b_u64)
2221 != b_u64)) {
2222 return true; /* 'a' wildcards some bits 'b' doesn't. */
2223 }
2224 }
2225
2226 return false;
2227 }