]> git.proxmox.com Git - ovs.git/blob - lib/flow.c
Process RARP packets with ethertype 0x8035 similar to ARP packets.
[ovs.git] / lib / flow.c
1 /*
2 * Copyright (c) 2008, 2009, 2010, 2011, 2012 Nicira, Inc.
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at:
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16 #include <config.h>
17 #include <sys/types.h>
18 #include "flow.h"
19 #include <assert.h>
20 #include <errno.h>
21 #include <inttypes.h>
22 #include <limits.h>
23 #include <netinet/in.h>
24 #include <netinet/icmp6.h>
25 #include <netinet/ip6.h>
26 #include <stdint.h>
27 #include <stdlib.h>
28 #include <string.h>
29 #include "byte-order.h"
30 #include "coverage.h"
31 #include "csum.h"
32 #include "dynamic-string.h"
33 #include "hash.h"
34 #include "match.h"
35 #include "ofpbuf.h"
36 #include "openflow/openflow.h"
37 #include "packets.h"
38 #include "unaligned.h"
39 #include "vlog.h"
40
41 VLOG_DEFINE_THIS_MODULE(flow);
42
43 COVERAGE_DEFINE(flow_extract);
44 COVERAGE_DEFINE(miniflow_malloc);
45
46 static struct arp_eth_header *
47 pull_arp(struct ofpbuf *packet)
48 {
49 return ofpbuf_try_pull(packet, ARP_ETH_HEADER_LEN);
50 }
51
52 static struct ip_header *
53 pull_ip(struct ofpbuf *packet)
54 {
55 if (packet->size >= IP_HEADER_LEN) {
56 struct ip_header *ip = packet->data;
57 int ip_len = IP_IHL(ip->ip_ihl_ver) * 4;
58 if (ip_len >= IP_HEADER_LEN && packet->size >= ip_len) {
59 return ofpbuf_pull(packet, ip_len);
60 }
61 }
62 return NULL;
63 }
64
65 static struct tcp_header *
66 pull_tcp(struct ofpbuf *packet)
67 {
68 if (packet->size >= TCP_HEADER_LEN) {
69 struct tcp_header *tcp = packet->data;
70 int tcp_len = TCP_OFFSET(tcp->tcp_ctl) * 4;
71 if (tcp_len >= TCP_HEADER_LEN && packet->size >= tcp_len) {
72 return ofpbuf_pull(packet, tcp_len);
73 }
74 }
75 return NULL;
76 }
77
78 static struct udp_header *
79 pull_udp(struct ofpbuf *packet)
80 {
81 return ofpbuf_try_pull(packet, UDP_HEADER_LEN);
82 }
83
84 static struct icmp_header *
85 pull_icmp(struct ofpbuf *packet)
86 {
87 return ofpbuf_try_pull(packet, ICMP_HEADER_LEN);
88 }
89
90 static struct icmp6_hdr *
91 pull_icmpv6(struct ofpbuf *packet)
92 {
93 return ofpbuf_try_pull(packet, sizeof(struct icmp6_hdr));
94 }
95
96 static void
97 parse_vlan(struct ofpbuf *b, struct flow *flow)
98 {
99 struct qtag_prefix {
100 ovs_be16 eth_type; /* ETH_TYPE_VLAN */
101 ovs_be16 tci;
102 };
103
104 if (b->size >= sizeof(struct qtag_prefix) + sizeof(ovs_be16)) {
105 struct qtag_prefix *qp = ofpbuf_pull(b, sizeof *qp);
106 flow->vlan_tci = qp->tci | htons(VLAN_CFI);
107 }
108 }
109
110 static ovs_be16
111 parse_ethertype(struct ofpbuf *b)
112 {
113 struct llc_snap_header *llc;
114 ovs_be16 proto;
115
116 proto = *(ovs_be16 *) ofpbuf_pull(b, sizeof proto);
117 if (ntohs(proto) >= ETH_TYPE_MIN) {
118 return proto;
119 }
120
121 if (b->size < sizeof *llc) {
122 return htons(FLOW_DL_TYPE_NONE);
123 }
124
125 llc = b->data;
126 if (llc->llc.llc_dsap != LLC_DSAP_SNAP
127 || llc->llc.llc_ssap != LLC_SSAP_SNAP
128 || llc->llc.llc_cntl != LLC_CNTL_SNAP
129 || memcmp(llc->snap.snap_org, SNAP_ORG_ETHERNET,
130 sizeof llc->snap.snap_org)) {
131 return htons(FLOW_DL_TYPE_NONE);
132 }
133
134 ofpbuf_pull(b, sizeof *llc);
135 return llc->snap.snap_type;
136 }
137
138 static int
139 parse_ipv6(struct ofpbuf *packet, struct flow *flow)
140 {
141 const struct ip6_hdr *nh;
142 ovs_be32 tc_flow;
143 int nexthdr;
144
145 nh = ofpbuf_try_pull(packet, sizeof *nh);
146 if (!nh) {
147 return EINVAL;
148 }
149
150 nexthdr = nh->ip6_nxt;
151
152 flow->ipv6_src = nh->ip6_src;
153 flow->ipv6_dst = nh->ip6_dst;
154
155 tc_flow = get_unaligned_be32(&nh->ip6_flow);
156 flow->nw_tos = ntohl(tc_flow) >> 20;
157 flow->ipv6_label = tc_flow & htonl(IPV6_LABEL_MASK);
158 flow->nw_ttl = nh->ip6_hlim;
159 flow->nw_proto = IPPROTO_NONE;
160
161 while (1) {
162 if ((nexthdr != IPPROTO_HOPOPTS)
163 && (nexthdr != IPPROTO_ROUTING)
164 && (nexthdr != IPPROTO_DSTOPTS)
165 && (nexthdr != IPPROTO_AH)
166 && (nexthdr != IPPROTO_FRAGMENT)) {
167 /* It's either a terminal header (e.g., TCP, UDP) or one we
168 * don't understand. In either case, we're done with the
169 * packet, so use it to fill in 'nw_proto'. */
170 break;
171 }
172
173 /* We only verify that at least 8 bytes of the next header are
174 * available, but many of these headers are longer. Ensure that
175 * accesses within the extension header are within those first 8
176 * bytes. All extension headers are required to be at least 8
177 * bytes. */
178 if (packet->size < 8) {
179 return EINVAL;
180 }
181
182 if ((nexthdr == IPPROTO_HOPOPTS)
183 || (nexthdr == IPPROTO_ROUTING)
184 || (nexthdr == IPPROTO_DSTOPTS)) {
185 /* These headers, while different, have the fields we care about
186 * in the same location and with the same interpretation. */
187 const struct ip6_ext *ext_hdr = packet->data;
188 nexthdr = ext_hdr->ip6e_nxt;
189 if (!ofpbuf_try_pull(packet, (ext_hdr->ip6e_len + 1) * 8)) {
190 return EINVAL;
191 }
192 } else if (nexthdr == IPPROTO_AH) {
193 /* A standard AH definition isn't available, but the fields
194 * we care about are in the same location as the generic
195 * option header--only the header length is calculated
196 * differently. */
197 const struct ip6_ext *ext_hdr = packet->data;
198 nexthdr = ext_hdr->ip6e_nxt;
199 if (!ofpbuf_try_pull(packet, (ext_hdr->ip6e_len + 2) * 4)) {
200 return EINVAL;
201 }
202 } else if (nexthdr == IPPROTO_FRAGMENT) {
203 const struct ip6_frag *frag_hdr = packet->data;
204
205 nexthdr = frag_hdr->ip6f_nxt;
206 if (!ofpbuf_try_pull(packet, sizeof *frag_hdr)) {
207 return EINVAL;
208 }
209
210 /* We only process the first fragment. */
211 if (frag_hdr->ip6f_offlg != htons(0)) {
212 if ((frag_hdr->ip6f_offlg & IP6F_OFF_MASK) == htons(0)) {
213 flow->nw_frag = FLOW_NW_FRAG_ANY;
214 } else {
215 flow->nw_frag |= FLOW_NW_FRAG_LATER;
216 nexthdr = IPPROTO_FRAGMENT;
217 break;
218 }
219 }
220 }
221 }
222
223 flow->nw_proto = nexthdr;
224 return 0;
225 }
226
227 static void
228 parse_tcp(struct ofpbuf *packet, struct ofpbuf *b, struct flow *flow)
229 {
230 const struct tcp_header *tcp = pull_tcp(b);
231 if (tcp) {
232 flow->tp_src = tcp->tcp_src;
233 flow->tp_dst = tcp->tcp_dst;
234 packet->l7 = b->data;
235 }
236 }
237
238 static void
239 parse_udp(struct ofpbuf *packet, struct ofpbuf *b, struct flow *flow)
240 {
241 const struct udp_header *udp = pull_udp(b);
242 if (udp) {
243 flow->tp_src = udp->udp_src;
244 flow->tp_dst = udp->udp_dst;
245 packet->l7 = b->data;
246 }
247 }
248
249 static bool
250 parse_icmpv6(struct ofpbuf *b, struct flow *flow)
251 {
252 const struct icmp6_hdr *icmp = pull_icmpv6(b);
253
254 if (!icmp) {
255 return false;
256 }
257
258 /* The ICMPv6 type and code fields use the 16-bit transport port
259 * fields, so we need to store them in 16-bit network byte order. */
260 flow->tp_src = htons(icmp->icmp6_type);
261 flow->tp_dst = htons(icmp->icmp6_code);
262
263 if (icmp->icmp6_code == 0 &&
264 (icmp->icmp6_type == ND_NEIGHBOR_SOLICIT ||
265 icmp->icmp6_type == ND_NEIGHBOR_ADVERT)) {
266 const struct in6_addr *nd_target;
267
268 nd_target = ofpbuf_try_pull(b, sizeof *nd_target);
269 if (!nd_target) {
270 return false;
271 }
272 flow->nd_target = *nd_target;
273
274 while (b->size >= 8) {
275 /* The minimum size of an option is 8 bytes, which also is
276 * the size of Ethernet link-layer options. */
277 const struct nd_opt_hdr *nd_opt = b->data;
278 int opt_len = nd_opt->nd_opt_len * 8;
279
280 if (!opt_len || opt_len > b->size) {
281 goto invalid;
282 }
283
284 /* Store the link layer address if the appropriate option is
285 * provided. It is considered an error if the same link
286 * layer option is specified twice. */
287 if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LINKADDR
288 && opt_len == 8) {
289 if (eth_addr_is_zero(flow->arp_sha)) {
290 memcpy(flow->arp_sha, nd_opt + 1, ETH_ADDR_LEN);
291 } else {
292 goto invalid;
293 }
294 } else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LINKADDR
295 && opt_len == 8) {
296 if (eth_addr_is_zero(flow->arp_tha)) {
297 memcpy(flow->arp_tha, nd_opt + 1, ETH_ADDR_LEN);
298 } else {
299 goto invalid;
300 }
301 }
302
303 if (!ofpbuf_try_pull(b, opt_len)) {
304 goto invalid;
305 }
306 }
307 }
308
309 return true;
310
311 invalid:
312 memset(&flow->nd_target, 0, sizeof(flow->nd_target));
313 memset(flow->arp_sha, 0, sizeof(flow->arp_sha));
314 memset(flow->arp_tha, 0, sizeof(flow->arp_tha));
315
316 return false;
317
318 }
319
320 /* Initializes 'flow' members from 'packet', 'skb_priority', 'tnl', and
321 * 'ofp_in_port'.
322 *
323 * Initializes 'packet' header pointers as follows:
324 *
325 * - packet->l2 to the start of the Ethernet header.
326 *
327 * - packet->l3 to just past the Ethernet header, or just past the
328 * vlan_header if one is present, to the first byte of the payload of the
329 * Ethernet frame.
330 *
331 * - packet->l4 to just past the IPv4 header, if one is present and has a
332 * correct length, and otherwise NULL.
333 *
334 * - packet->l7 to just past the TCP or UDP or ICMP header, if one is
335 * present and has a correct length, and otherwise NULL.
336 */
337 void
338 flow_extract(struct ofpbuf *packet, uint32_t skb_priority,
339 const struct flow_tnl *tnl, uint16_t ofp_in_port,
340 struct flow *flow)
341 {
342 struct ofpbuf b = *packet;
343 struct eth_header *eth;
344
345 COVERAGE_INC(flow_extract);
346
347 memset(flow, 0, sizeof *flow);
348
349 if (tnl) {
350 assert(tnl != &flow->tunnel);
351 flow->tunnel = *tnl;
352 }
353 flow->in_port = ofp_in_port;
354 flow->skb_priority = skb_priority;
355
356 packet->l2 = b.data;
357 packet->l3 = NULL;
358 packet->l4 = NULL;
359 packet->l7 = NULL;
360
361 if (b.size < sizeof *eth) {
362 return;
363 }
364
365 /* Link layer. */
366 eth = b.data;
367 memcpy(flow->dl_src, eth->eth_src, ETH_ADDR_LEN);
368 memcpy(flow->dl_dst, eth->eth_dst, ETH_ADDR_LEN);
369
370 /* dl_type, vlan_tci. */
371 ofpbuf_pull(&b, ETH_ADDR_LEN * 2);
372 if (eth->eth_type == htons(ETH_TYPE_VLAN)) {
373 parse_vlan(&b, flow);
374 }
375 flow->dl_type = parse_ethertype(&b);
376
377 /* Network layer. */
378 packet->l3 = b.data;
379 if (flow->dl_type == htons(ETH_TYPE_IP)) {
380 const struct ip_header *nh = pull_ip(&b);
381 if (nh) {
382 packet->l4 = b.data;
383
384 flow->nw_src = get_unaligned_be32(&nh->ip_src);
385 flow->nw_dst = get_unaligned_be32(&nh->ip_dst);
386 flow->nw_proto = nh->ip_proto;
387
388 flow->nw_tos = nh->ip_tos;
389 if (IP_IS_FRAGMENT(nh->ip_frag_off)) {
390 flow->nw_frag = FLOW_NW_FRAG_ANY;
391 if (nh->ip_frag_off & htons(IP_FRAG_OFF_MASK)) {
392 flow->nw_frag |= FLOW_NW_FRAG_LATER;
393 }
394 }
395 flow->nw_ttl = nh->ip_ttl;
396
397 if (!(nh->ip_frag_off & htons(IP_FRAG_OFF_MASK))) {
398 if (flow->nw_proto == IPPROTO_TCP) {
399 parse_tcp(packet, &b, flow);
400 } else if (flow->nw_proto == IPPROTO_UDP) {
401 parse_udp(packet, &b, flow);
402 } else if (flow->nw_proto == IPPROTO_ICMP) {
403 const struct icmp_header *icmp = pull_icmp(&b);
404 if (icmp) {
405 flow->tp_src = htons(icmp->icmp_type);
406 flow->tp_dst = htons(icmp->icmp_code);
407 packet->l7 = b.data;
408 }
409 }
410 }
411 }
412 } else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
413 if (parse_ipv6(&b, flow)) {
414 return;
415 }
416
417 packet->l4 = b.data;
418 if (flow->nw_proto == IPPROTO_TCP) {
419 parse_tcp(packet, &b, flow);
420 } else if (flow->nw_proto == IPPROTO_UDP) {
421 parse_udp(packet, &b, flow);
422 } else if (flow->nw_proto == IPPROTO_ICMPV6) {
423 if (parse_icmpv6(&b, flow)) {
424 packet->l7 = b.data;
425 }
426 }
427 } else if (flow->dl_type == htons(ETH_TYPE_ARP) ||
428 flow->dl_type == htons(ETH_TYPE_RARP)) {
429 const struct arp_eth_header *arp = pull_arp(&b);
430 if (arp && arp->ar_hrd == htons(1)
431 && arp->ar_pro == htons(ETH_TYPE_IP)
432 && arp->ar_hln == ETH_ADDR_LEN
433 && arp->ar_pln == 4) {
434 /* We only match on the lower 8 bits of the opcode. */
435 if (ntohs(arp->ar_op) <= 0xff) {
436 flow->nw_proto = ntohs(arp->ar_op);
437 }
438
439 flow->nw_src = arp->ar_spa;
440 flow->nw_dst = arp->ar_tpa;
441 memcpy(flow->arp_sha, arp->ar_sha, ETH_ADDR_LEN);
442 memcpy(flow->arp_tha, arp->ar_tha, ETH_ADDR_LEN);
443 }
444 }
445 }
446
447 /* For every bit of a field that is wildcarded in 'wildcards', sets the
448 * corresponding bit in 'flow' to zero. */
449 void
450 flow_zero_wildcards(struct flow *flow, const struct flow_wildcards *wildcards)
451 {
452 uint32_t *flow_u32 = (uint32_t *) flow;
453 const uint32_t *wc_u32 = (const uint32_t *) &wildcards->masks;
454 size_t i;
455
456 for (i = 0; i < FLOW_U32S; i++) {
457 flow_u32[i] &= wc_u32[i];
458 }
459 }
460
461 /* Initializes 'fmd' with the metadata found in 'flow'. */
462 void
463 flow_get_metadata(const struct flow *flow, struct flow_metadata *fmd)
464 {
465 BUILD_ASSERT_DECL(FLOW_WC_SEQ == 17);
466
467 fmd->tun_id = flow->tunnel.tun_id;
468 fmd->metadata = flow->metadata;
469 memcpy(fmd->regs, flow->regs, sizeof fmd->regs);
470 fmd->in_port = flow->in_port;
471 }
472
473 char *
474 flow_to_string(const struct flow *flow)
475 {
476 struct ds ds = DS_EMPTY_INITIALIZER;
477 flow_format(&ds, flow);
478 return ds_cstr(&ds);
479 }
480
481 void
482 flow_format(struct ds *ds, const struct flow *flow)
483 {
484 struct match match;
485
486 match_wc_init(&match, flow);
487 match_format(&match, ds, flow->skb_priority);
488 }
489
490 void
491 flow_print(FILE *stream, const struct flow *flow)
492 {
493 char *s = flow_to_string(flow);
494 fputs(s, stream);
495 free(s);
496 }
497 \f
498 /* flow_wildcards functions. */
499
500 /* Initializes 'wc' as a set of wildcards that matches every packet. */
501 void
502 flow_wildcards_init_catchall(struct flow_wildcards *wc)
503 {
504 memset(&wc->masks, 0, sizeof wc->masks);
505 }
506
507 /* Initializes 'wc' as an exact-match set of wildcards; that is, 'wc' does not
508 * wildcard any bits or fields. */
509 void
510 flow_wildcards_init_exact(struct flow_wildcards *wc)
511 {
512 memset(&wc->masks, 0xff, sizeof wc->masks);
513 }
514
515 /* Returns true if 'wc' matches every packet, false if 'wc' fixes any bits or
516 * fields. */
517 bool
518 flow_wildcards_is_catchall(const struct flow_wildcards *wc)
519 {
520 const uint32_t *wc_u32 = (const uint32_t *) &wc->masks;
521 size_t i;
522
523 for (i = 0; i < FLOW_U32S; i++) {
524 if (wc_u32[i]) {
525 return false;
526 }
527 }
528 return true;
529 }
530
531 /* Initializes 'dst' as the combination of wildcards in 'src1' and 'src2'.
532 * That is, a bit or a field is wildcarded in 'dst' if it is wildcarded in
533 * 'src1' or 'src2' or both. */
534 void
535 flow_wildcards_combine(struct flow_wildcards *dst,
536 const struct flow_wildcards *src1,
537 const struct flow_wildcards *src2)
538 {
539 uint32_t *dst_u32 = (uint32_t *) &dst->masks;
540 const uint32_t *src1_u32 = (const uint32_t *) &src1->masks;
541 const uint32_t *src2_u32 = (const uint32_t *) &src2->masks;
542 size_t i;
543
544 for (i = 0; i < FLOW_U32S; i++) {
545 dst_u32[i] = src1_u32[i] & src2_u32[i];
546 }
547 }
548
549 /* Returns a hash of the wildcards in 'wc'. */
550 uint32_t
551 flow_wildcards_hash(const struct flow_wildcards *wc, uint32_t basis)
552 {
553 return flow_hash(&wc->masks, basis);;
554 }
555
556 /* Returns true if 'a' and 'b' represent the same wildcards, false if they are
557 * different. */
558 bool
559 flow_wildcards_equal(const struct flow_wildcards *a,
560 const struct flow_wildcards *b)
561 {
562 return flow_equal(&a->masks, &b->masks);
563 }
564
565 /* Returns true if at least one bit or field is wildcarded in 'a' but not in
566 * 'b', false otherwise. */
567 bool
568 flow_wildcards_has_extra(const struct flow_wildcards *a,
569 const struct flow_wildcards *b)
570 {
571 const uint32_t *a_u32 = (const uint32_t *) &a->masks;
572 const uint32_t *b_u32 = (const uint32_t *) &b->masks;
573 size_t i;
574
575 for (i = 0; i < FLOW_U32S; i++) {
576 if ((a_u32[i] & b_u32[i]) != b_u32[i]) {
577 return true;
578 }
579 }
580 return false;
581 }
582
583 /* Returns true if 'a' and 'b' are equal, except that 0-bits (wildcarded bits)
584 * in 'wc' do not need to be equal in 'a' and 'b'. */
585 bool
586 flow_equal_except(const struct flow *a, const struct flow *b,
587 const struct flow_wildcards *wc)
588 {
589 const uint32_t *a_u32 = (const uint32_t *) a;
590 const uint32_t *b_u32 = (const uint32_t *) b;
591 const uint32_t *wc_u32 = (const uint32_t *) &wc->masks;
592 size_t i;
593
594 for (i = 0; i < FLOW_U32S; i++) {
595 if ((a_u32[i] ^ b_u32[i]) & wc_u32[i]) {
596 return false;
597 }
598 }
599 return true;
600 }
601
602 /* Sets the wildcard mask for register 'idx' in 'wc' to 'mask'.
603 * (A 0-bit indicates a wildcard bit.) */
604 void
605 flow_wildcards_set_reg_mask(struct flow_wildcards *wc, int idx, uint32_t mask)
606 {
607 wc->masks.regs[idx] = mask;
608 }
609
610 /* Hashes 'flow' based on its L2 through L4 protocol information. */
611 uint32_t
612 flow_hash_symmetric_l4(const struct flow *flow, uint32_t basis)
613 {
614 struct {
615 union {
616 ovs_be32 ipv4_addr;
617 struct in6_addr ipv6_addr;
618 };
619 ovs_be16 eth_type;
620 ovs_be16 vlan_tci;
621 ovs_be16 tp_port;
622 uint8_t eth_addr[ETH_ADDR_LEN];
623 uint8_t ip_proto;
624 } fields;
625
626 int i;
627
628 memset(&fields, 0, sizeof fields);
629 for (i = 0; i < ETH_ADDR_LEN; i++) {
630 fields.eth_addr[i] = flow->dl_src[i] ^ flow->dl_dst[i];
631 }
632 fields.vlan_tci = flow->vlan_tci & htons(VLAN_VID_MASK);
633 fields.eth_type = flow->dl_type;
634
635 /* UDP source and destination port are not taken into account because they
636 * will not necessarily be symmetric in a bidirectional flow. */
637 if (fields.eth_type == htons(ETH_TYPE_IP)) {
638 fields.ipv4_addr = flow->nw_src ^ flow->nw_dst;
639 fields.ip_proto = flow->nw_proto;
640 if (fields.ip_proto == IPPROTO_TCP) {
641 fields.tp_port = flow->tp_src ^ flow->tp_dst;
642 }
643 } else if (fields.eth_type == htons(ETH_TYPE_IPV6)) {
644 const uint8_t *a = &flow->ipv6_src.s6_addr[0];
645 const uint8_t *b = &flow->ipv6_dst.s6_addr[0];
646 uint8_t *ipv6_addr = &fields.ipv6_addr.s6_addr[0];
647
648 for (i=0; i<16; i++) {
649 ipv6_addr[i] = a[i] ^ b[i];
650 }
651 fields.ip_proto = flow->nw_proto;
652 if (fields.ip_proto == IPPROTO_TCP) {
653 fields.tp_port = flow->tp_src ^ flow->tp_dst;
654 }
655 }
656 return hash_bytes(&fields, sizeof fields, basis);
657 }
658
659 /* Hashes the portions of 'flow' designated by 'fields'. */
660 uint32_t
661 flow_hash_fields(const struct flow *flow, enum nx_hash_fields fields,
662 uint16_t basis)
663 {
664 switch (fields) {
665
666 case NX_HASH_FIELDS_ETH_SRC:
667 return hash_bytes(flow->dl_src, sizeof flow->dl_src, basis);
668
669 case NX_HASH_FIELDS_SYMMETRIC_L4:
670 return flow_hash_symmetric_l4(flow, basis);
671 }
672
673 NOT_REACHED();
674 }
675
676 /* Returns a string representation of 'fields'. */
677 const char *
678 flow_hash_fields_to_str(enum nx_hash_fields fields)
679 {
680 switch (fields) {
681 case NX_HASH_FIELDS_ETH_SRC: return "eth_src";
682 case NX_HASH_FIELDS_SYMMETRIC_L4: return "symmetric_l4";
683 default: return "<unknown>";
684 }
685 }
686
687 /* Returns true if the value of 'fields' is supported. Otherwise false. */
688 bool
689 flow_hash_fields_valid(enum nx_hash_fields fields)
690 {
691 return fields == NX_HASH_FIELDS_ETH_SRC
692 || fields == NX_HASH_FIELDS_SYMMETRIC_L4;
693 }
694
695 /* Sets the VLAN VID that 'flow' matches to 'vid', which is interpreted as an
696 * OpenFlow 1.0 "dl_vlan" value:
697 *
698 * - If it is in the range 0...4095, 'flow->vlan_tci' is set to match
699 * that VLAN. Any existing PCP match is unchanged (it becomes 0 if
700 * 'flow' previously matched packets without a VLAN header).
701 *
702 * - If it is OFP_VLAN_NONE, 'flow->vlan_tci' is set to match a packet
703 * without a VLAN tag.
704 *
705 * - Other values of 'vid' should not be used. */
706 void
707 flow_set_dl_vlan(struct flow *flow, ovs_be16 vid)
708 {
709 if (vid == htons(OFP10_VLAN_NONE)) {
710 flow->vlan_tci = htons(0);
711 } else {
712 vid &= htons(VLAN_VID_MASK);
713 flow->vlan_tci &= ~htons(VLAN_VID_MASK);
714 flow->vlan_tci |= htons(VLAN_CFI) | vid;
715 }
716 }
717
718 /* Sets the VLAN VID that 'flow' matches to 'vid', which is interpreted as an
719 * OpenFlow 1.2 "vlan_vid" value, that is, the low 13 bits of 'vlan_tci' (VID
720 * plus CFI). */
721 void
722 flow_set_vlan_vid(struct flow *flow, ovs_be16 vid)
723 {
724 ovs_be16 mask = htons(VLAN_VID_MASK | VLAN_CFI);
725 flow->vlan_tci &= ~mask;
726 flow->vlan_tci |= vid & mask;
727 }
728
729 /* Sets the VLAN PCP that 'flow' matches to 'pcp', which should be in the
730 * range 0...7.
731 *
732 * This function has no effect on the VLAN ID that 'flow' matches.
733 *
734 * After calling this function, 'flow' will not match packets without a VLAN
735 * header. */
736 void
737 flow_set_vlan_pcp(struct flow *flow, uint8_t pcp)
738 {
739 pcp &= 0x07;
740 flow->vlan_tci &= ~htons(VLAN_PCP_MASK);
741 flow->vlan_tci |= htons((pcp << VLAN_PCP_SHIFT) | VLAN_CFI);
742 }
743
744 /* Puts into 'b' a packet that flow_extract() would parse as having the given
745 * 'flow'.
746 *
747 * (This is useful only for testing, obviously, and the packet isn't really
748 * valid. It hasn't got some checksums filled in, for one, and lots of fields
749 * are just zeroed.) */
750 void
751 flow_compose(struct ofpbuf *b, const struct flow *flow)
752 {
753 eth_compose(b, flow->dl_dst, flow->dl_src, ntohs(flow->dl_type), 0);
754 if (flow->dl_type == htons(FLOW_DL_TYPE_NONE)) {
755 struct eth_header *eth = b->l2;
756 eth->eth_type = htons(b->size);
757 return;
758 }
759
760 if (flow->vlan_tci & htons(VLAN_CFI)) {
761 eth_push_vlan(b, flow->vlan_tci);
762 }
763
764 if (flow->dl_type == htons(ETH_TYPE_IP)) {
765 struct ip_header *ip;
766
767 b->l3 = ip = ofpbuf_put_zeros(b, sizeof *ip);
768 ip->ip_ihl_ver = IP_IHL_VER(5, 4);
769 ip->ip_tos = flow->nw_tos;
770 ip->ip_ttl = flow->nw_ttl;
771 ip->ip_proto = flow->nw_proto;
772 ip->ip_src = flow->nw_src;
773 ip->ip_dst = flow->nw_dst;
774
775 if (flow->nw_frag & FLOW_NW_FRAG_ANY) {
776 ip->ip_frag_off |= htons(IP_MORE_FRAGMENTS);
777 if (flow->nw_frag & FLOW_NW_FRAG_LATER) {
778 ip->ip_frag_off |= htons(100);
779 }
780 }
781 if (!(flow->nw_frag & FLOW_NW_FRAG_ANY)
782 || !(flow->nw_frag & FLOW_NW_FRAG_LATER)) {
783 if (flow->nw_proto == IPPROTO_TCP) {
784 struct tcp_header *tcp;
785
786 b->l4 = tcp = ofpbuf_put_zeros(b, sizeof *tcp);
787 tcp->tcp_src = flow->tp_src;
788 tcp->tcp_dst = flow->tp_dst;
789 tcp->tcp_ctl = TCP_CTL(0, 5);
790 } else if (flow->nw_proto == IPPROTO_UDP) {
791 struct udp_header *udp;
792
793 b->l4 = udp = ofpbuf_put_zeros(b, sizeof *udp);
794 udp->udp_src = flow->tp_src;
795 udp->udp_dst = flow->tp_dst;
796 } else if (flow->nw_proto == IPPROTO_ICMP) {
797 struct icmp_header *icmp;
798
799 b->l4 = icmp = ofpbuf_put_zeros(b, sizeof *icmp);
800 icmp->icmp_type = ntohs(flow->tp_src);
801 icmp->icmp_code = ntohs(flow->tp_dst);
802 icmp->icmp_csum = csum(icmp, ICMP_HEADER_LEN);
803 }
804 }
805
806 ip = b->l3;
807 ip->ip_tot_len = htons((uint8_t *) b->data + b->size
808 - (uint8_t *) b->l3);
809 ip->ip_csum = csum(ip, sizeof *ip);
810 } else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
811 /* XXX */
812 } else if (flow->dl_type == htons(ETH_TYPE_ARP) ||
813 flow->dl_type == htons(ETH_TYPE_RARP)) {
814 struct arp_eth_header *arp;
815
816 b->l3 = arp = ofpbuf_put_zeros(b, sizeof *arp);
817 arp->ar_hrd = htons(1);
818 arp->ar_pro = htons(ETH_TYPE_IP);
819 arp->ar_hln = ETH_ADDR_LEN;
820 arp->ar_pln = 4;
821 arp->ar_op = htons(flow->nw_proto);
822
823 if (flow->nw_proto == ARP_OP_REQUEST ||
824 flow->nw_proto == ARP_OP_REPLY) {
825 arp->ar_spa = flow->nw_src;
826 arp->ar_tpa = flow->nw_dst;
827 memcpy(arp->ar_sha, flow->arp_sha, ETH_ADDR_LEN);
828 memcpy(arp->ar_tha, flow->arp_tha, ETH_ADDR_LEN);
829 }
830 }
831 }
832 \f
833 /* Compressed flow. */
834
835 static int
836 miniflow_n_values(const struct miniflow *flow)
837 {
838 int n, i;
839
840 n = 0;
841 for (i = 0; i < MINI_N_MAPS; i++) {
842 n += popcount(flow->map[i]);
843 }
844 return n;
845 }
846
847 static uint32_t *
848 miniflow_alloc_values(struct miniflow *flow, int n)
849 {
850 if (n <= MINI_N_INLINE) {
851 return flow->inline_values;
852 } else {
853 COVERAGE_INC(miniflow_malloc);
854 return xmalloc(n * sizeof *flow->values);
855 }
856 }
857
858 /* Initializes 'dst' as a copy of 'src'. The caller must eventually free 'dst'
859 * with miniflow_destroy(). */
860 void
861 miniflow_init(struct miniflow *dst, const struct flow *src)
862 {
863 const uint32_t *src_u32 = (const uint32_t *) src;
864 unsigned int ofs;
865 unsigned int i;
866 int n;
867
868 /* Initialize dst->map, counting the number of nonzero elements. */
869 n = 0;
870 memset(dst->map, 0, sizeof dst->map);
871 for (i = 0; i < FLOW_U32S; i++) {
872 if (src_u32[i]) {
873 dst->map[i / 32] |= 1u << (i % 32);
874 n++;
875 }
876 }
877
878 /* Initialize dst->values. */
879 dst->values = miniflow_alloc_values(dst, n);
880 ofs = 0;
881 for (i = 0; i < MINI_N_MAPS; i++) {
882 uint32_t map;
883
884 for (map = dst->map[i]; map; map = zero_rightmost_1bit(map)) {
885 dst->values[ofs++] = src_u32[raw_ctz(map) + i * 32];
886 }
887 }
888 }
889
890 /* Initializes 'dst' as a copy of 'src'. The caller must eventually free 'dst'
891 * with miniflow_destroy(). */
892 void
893 miniflow_clone(struct miniflow *dst, const struct miniflow *src)
894 {
895 int n = miniflow_n_values(src);
896 memcpy(dst->map, src->map, sizeof dst->map);
897 dst->values = miniflow_alloc_values(dst, n);
898 memcpy(dst->values, src->values, n * sizeof *dst->values);
899 }
900
901 /* Frees any memory owned by 'flow'. Does not free the storage in which 'flow'
902 * itself resides; the caller is responsible for that. */
903 void
904 miniflow_destroy(struct miniflow *flow)
905 {
906 if (flow->values != flow->inline_values) {
907 free(flow->values);
908 }
909 }
910
911 /* Initializes 'dst' as a copy of 'src'. */
912 void
913 miniflow_expand(const struct miniflow *src, struct flow *dst)
914 {
915 uint32_t *dst_u32 = (uint32_t *) dst;
916 int ofs;
917 int i;
918
919 memset(dst_u32, 0, sizeof *dst);
920
921 ofs = 0;
922 for (i = 0; i < MINI_N_MAPS; i++) {
923 uint32_t map;
924
925 for (map = src->map[i]; map; map = zero_rightmost_1bit(map)) {
926 dst_u32[raw_ctz(map) + i * 32] = src->values[ofs++];
927 }
928 }
929 }
930
931 static const uint32_t *
932 miniflow_get__(const struct miniflow *flow, unsigned int u32_ofs)
933 {
934 if (!(flow->map[u32_ofs / 32] & (1u << (u32_ofs % 32)))) {
935 static const uint32_t zero = 0;
936 return &zero;
937 } else {
938 const uint32_t *p = flow->values;
939
940 BUILD_ASSERT(MINI_N_MAPS == 2);
941 if (u32_ofs < 32) {
942 p += popcount(flow->map[0] & ((1u << u32_ofs) - 1));
943 } else {
944 p += popcount(flow->map[0]);
945 p += popcount(flow->map[1] & ((1u << (u32_ofs - 32)) - 1));
946 }
947 return p;
948 }
949 }
950
951 /* Returns the uint32_t that would be at byte offset '4 * u32_ofs' if 'flow'
952 * were expanded into a "struct flow". */
953 uint32_t
954 miniflow_get(const struct miniflow *flow, unsigned int u32_ofs)
955 {
956 return *miniflow_get__(flow, u32_ofs);
957 }
958
959 /* Returns the ovs_be16 that would be at byte offset 'u8_ofs' if 'flow' were
960 * expanded into a "struct flow". */
961 static ovs_be16
962 miniflow_get_be16(const struct miniflow *flow, unsigned int u8_ofs)
963 {
964 const uint32_t *u32p = miniflow_get__(flow, u8_ofs / 4);
965 const ovs_be16 *be16p = (const ovs_be16 *) u32p;
966 return be16p[u8_ofs % 4 != 0];
967 }
968
969 /* Returns the VID within the vlan_tci member of the "struct flow" represented
970 * by 'flow'. */
971 uint16_t
972 miniflow_get_vid(const struct miniflow *flow)
973 {
974 ovs_be16 tci = miniflow_get_be16(flow, offsetof(struct flow, vlan_tci));
975 return vlan_tci_to_vid(tci);
976 }
977
978 /* Returns true if 'a' and 'b' are the same flow, false otherwise. */
979 bool
980 miniflow_equal(const struct miniflow *a, const struct miniflow *b)
981 {
982 int i;
983
984 for (i = 0; i < MINI_N_MAPS; i++) {
985 if (a->map[i] != b->map[i]) {
986 return false;
987 }
988 }
989
990 return !memcmp(a->values, b->values,
991 miniflow_n_values(a) * sizeof *a->values);
992 }
993
994 /* Returns true if 'a' and 'b' are equal at the places where there are 1-bits
995 * in 'mask', false if they differ. */
996 bool
997 miniflow_equal_in_minimask(const struct miniflow *a, const struct miniflow *b,
998 const struct minimask *mask)
999 {
1000 const uint32_t *p;
1001 int i;
1002
1003 p = mask->masks.values;
1004 for (i = 0; i < MINI_N_MAPS; i++) {
1005 uint32_t map;
1006
1007 for (map = mask->masks.map[i]; map; map = zero_rightmost_1bit(map)) {
1008 int ofs = raw_ctz(map) + i * 32;
1009
1010 if ((miniflow_get(a, ofs) ^ miniflow_get(b, ofs)) & *p) {
1011 return false;
1012 }
1013 p++;
1014 }
1015 }
1016
1017 return true;
1018 }
1019
1020 /* Returns true if 'a' and 'b' are equal at the places where there are 1-bits
1021 * in 'mask', false if they differ. */
1022 bool
1023 miniflow_equal_flow_in_minimask(const struct miniflow *a, const struct flow *b,
1024 const struct minimask *mask)
1025 {
1026 const uint32_t *b_u32 = (const uint32_t *) b;
1027 const uint32_t *p;
1028 int i;
1029
1030 p = mask->masks.values;
1031 for (i = 0; i < MINI_N_MAPS; i++) {
1032 uint32_t map;
1033
1034 for (map = mask->masks.map[i]; map; map = zero_rightmost_1bit(map)) {
1035 int ofs = raw_ctz(map) + i * 32;
1036
1037 if ((miniflow_get(a, ofs) ^ b_u32[ofs]) & *p) {
1038 return false;
1039 }
1040 p++;
1041 }
1042 }
1043
1044 return true;
1045 }
1046
1047 /* Returns a hash value for 'flow', given 'basis'. */
1048 uint32_t
1049 miniflow_hash(const struct miniflow *flow, uint32_t basis)
1050 {
1051 BUILD_ASSERT_DECL(MINI_N_MAPS == 2);
1052 return hash_3words(flow->map[0], flow->map[1],
1053 hash_words(flow->values, miniflow_n_values(flow),
1054 basis));
1055 }
1056
1057 /* Returns a hash value for the bits of 'flow' where there are 1-bits in
1058 * 'mask', given 'basis'.
1059 *
1060 * The hash values returned by this function are the same as those returned by
1061 * flow_hash_in_minimask(), only the form of the arguments differ. */
1062 uint32_t
1063 miniflow_hash_in_minimask(const struct miniflow *flow,
1064 const struct minimask *mask, uint32_t basis)
1065 {
1066 const uint32_t *p = mask->masks.values;
1067 uint32_t hash;
1068 int i;
1069
1070 hash = basis;
1071 for (i = 0; i < MINI_N_MAPS; i++) {
1072 uint32_t map;
1073
1074 for (map = mask->masks.map[i]; map; map = zero_rightmost_1bit(map)) {
1075 int ofs = raw_ctz(map) + i * 32;
1076
1077 hash = mhash_add(hash, miniflow_get(flow, ofs) & *p);
1078 p++;
1079 }
1080 }
1081
1082 return mhash_finish(hash, p - mask->masks.values);
1083 }
1084
1085 /* Returns a hash value for the bits of 'flow' where there are 1-bits in
1086 * 'mask', given 'basis'.
1087 *
1088 * The hash values returned by this function are the same as those returned by
1089 * miniflow_hash_in_minimask(), only the form of the arguments differ. */
1090 uint32_t
1091 flow_hash_in_minimask(const struct flow *flow, const struct minimask *mask,
1092 uint32_t basis)
1093 {
1094 const uint32_t *flow_u32 = (const uint32_t *) flow;
1095 const uint32_t *p = mask->masks.values;
1096 uint32_t hash;
1097 int i;
1098
1099 hash = basis;
1100 for (i = 0; i < MINI_N_MAPS; i++) {
1101 uint32_t map;
1102
1103 for (map = mask->masks.map[i]; map; map = zero_rightmost_1bit(map)) {
1104 int ofs = raw_ctz(map) + i * 32;
1105
1106 hash = mhash_add(hash, flow_u32[ofs] & *p);
1107 p++;
1108 }
1109 }
1110
1111 return mhash_finish(hash, p - mask->masks.values);
1112 }
1113 \f
1114 /* Initializes 'dst' as a copy of 'src'. The caller must eventually free 'dst'
1115 * with minimask_destroy(). */
1116 void
1117 minimask_init(struct minimask *mask, const struct flow_wildcards *wc)
1118 {
1119 miniflow_init(&mask->masks, &wc->masks);
1120 }
1121
1122 /* Initializes 'dst' as a copy of 'src'. The caller must eventually free 'dst'
1123 * with minimask_destroy(). */
1124 void
1125 minimask_clone(struct minimask *dst, const struct minimask *src)
1126 {
1127 miniflow_clone(&dst->masks, &src->masks);
1128 }
1129
1130 /* Initializes 'dst_' as the bit-wise "and" of 'a_' and 'b_'.
1131 *
1132 * The caller must provide room for FLOW_U32S "uint32_t"s in 'storage', for use
1133 * by 'dst_'. The caller must *not* free 'dst_' with minimask_destroy(). */
1134 void
1135 minimask_combine(struct minimask *dst_,
1136 const struct minimask *a_, const struct minimask *b_,
1137 uint32_t storage[FLOW_U32S])
1138 {
1139 struct miniflow *dst = &dst_->masks;
1140 const struct miniflow *a = &a_->masks;
1141 const struct miniflow *b = &b_->masks;
1142 int i, n;
1143
1144 n = 0;
1145 dst->values = storage;
1146 for (i = 0; i < MINI_N_MAPS; i++) {
1147 uint32_t map;
1148
1149 dst->map[i] = 0;
1150 for (map = a->map[i] & b->map[i]; map;
1151 map = zero_rightmost_1bit(map)) {
1152 int ofs = raw_ctz(map) + i * 32;
1153 uint32_t mask = miniflow_get(a, ofs) & miniflow_get(b, ofs);
1154
1155 if (mask) {
1156 dst->map[i] |= rightmost_1bit(map);
1157 dst->values[n++] = mask;
1158 }
1159 }
1160 }
1161 }
1162
1163 /* Frees any memory owned by 'mask'. Does not free the storage in which 'mask'
1164 * itself resides; the caller is responsible for that. */
1165 void
1166 minimask_destroy(struct minimask *mask)
1167 {
1168 miniflow_destroy(&mask->masks);
1169 }
1170
1171 /* Initializes 'dst' as a copy of 'src'. */
1172 void
1173 minimask_expand(const struct minimask *mask, struct flow_wildcards *wc)
1174 {
1175 miniflow_expand(&mask->masks, &wc->masks);
1176 }
1177
1178 /* Returns the uint32_t that would be at byte offset '4 * u32_ofs' if 'mask'
1179 * were expanded into a "struct flow_wildcards". */
1180 uint32_t
1181 minimask_get(const struct minimask *mask, unsigned int u32_ofs)
1182 {
1183 return miniflow_get(&mask->masks, u32_ofs);
1184 }
1185
1186 /* Returns the VID mask within the vlan_tci member of the "struct
1187 * flow_wildcards" represented by 'mask'. */
1188 uint16_t
1189 minimask_get_vid_mask(const struct minimask *mask)
1190 {
1191 return miniflow_get_vid(&mask->masks);
1192 }
1193
1194 /* Returns true if 'a' and 'b' are the same flow mask, false otherwise. */
1195 bool
1196 minimask_equal(const struct minimask *a, const struct minimask *b)
1197 {
1198 return miniflow_equal(&a->masks, &b->masks);
1199 }
1200
1201 /* Returns a hash value for 'mask', given 'basis'. */
1202 uint32_t
1203 minimask_hash(const struct minimask *mask, uint32_t basis)
1204 {
1205 return miniflow_hash(&mask->masks, basis);
1206 }
1207
1208 /* Returns true if at least one bit is wildcarded in 'a_' but not in 'b_',
1209 * false otherwise. */
1210 bool
1211 minimask_has_extra(const struct minimask *a_, const struct minimask *b_)
1212 {
1213 const struct miniflow *a = &a_->masks;
1214 const struct miniflow *b = &b_->masks;
1215 int i;
1216
1217 for (i = 0; i < MINI_N_MAPS; i++) {
1218 uint32_t map;
1219
1220 for (map = a->map[i] | b->map[i]; map;
1221 map = zero_rightmost_1bit(map)) {
1222 int ofs = raw_ctz(map) + i * 32;
1223 uint32_t a_u32 = miniflow_get(a, ofs);
1224 uint32_t b_u32 = miniflow_get(b, ofs);
1225
1226 if ((a_u32 & b_u32) != b_u32) {
1227 return true;
1228 }
1229 }
1230 }
1231
1232 return false;
1233 }
1234
1235 /* Returns true if 'mask' matches every packet, false if 'mask' fixes any bits
1236 * or fields. */
1237 bool
1238 minimask_is_catchall(const struct minimask *mask_)
1239 {
1240 const struct miniflow *mask = &mask_->masks;
1241
1242 BUILD_ASSERT(MINI_N_MAPS == 2);
1243 return !(mask->map[0] | mask->map[1]);
1244 }