]> git.proxmox.com Git - mirror_ovs.git/blob - lib/flow.c
a60965e6dbd509afcf7fce080b5d670b4bded1de
[mirror_ovs.git] / lib / flow.c
1 /*
2 * Copyright (c) 2008, 2009, 2010, 2011, 2012, 2013 Nicira, Inc.
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at:
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16 #include <config.h>
17 #include <sys/types.h>
18 #include "flow.h"
19 #include <errno.h>
20 #include <inttypes.h>
21 #include <limits.h>
22 #include <netinet/in.h>
23 #include <netinet/icmp6.h>
24 #include <netinet/ip6.h>
25 #include <stdint.h>
26 #include <stdlib.h>
27 #include <string.h>
28 #include "byte-order.h"
29 #include "coverage.h"
30 #include "csum.h"
31 #include "dynamic-string.h"
32 #include "hash.h"
33 #include "jhash.h"
34 #include "match.h"
35 #include "ofpbuf.h"
36 #include "openflow/openflow.h"
37 #include "packets.h"
38 #include "unaligned.h"
39 #include "vlog.h"
40
41 VLOG_DEFINE_THIS_MODULE(flow);
42
43 COVERAGE_DEFINE(flow_extract);
44 COVERAGE_DEFINE(miniflow_malloc);
45
46 static struct arp_eth_header *
47 pull_arp(struct ofpbuf *packet)
48 {
49 return ofpbuf_try_pull(packet, ARP_ETH_HEADER_LEN);
50 }
51
52 static struct ip_header *
53 pull_ip(struct ofpbuf *packet)
54 {
55 if (packet->size >= IP_HEADER_LEN) {
56 struct ip_header *ip = packet->data;
57 int ip_len = IP_IHL(ip->ip_ihl_ver) * 4;
58 if (ip_len >= IP_HEADER_LEN && packet->size >= ip_len) {
59 return ofpbuf_pull(packet, ip_len);
60 }
61 }
62 return NULL;
63 }
64
65 static struct tcp_header *
66 pull_tcp(struct ofpbuf *packet)
67 {
68 if (packet->size >= TCP_HEADER_LEN) {
69 struct tcp_header *tcp = packet->data;
70 int tcp_len = TCP_OFFSET(tcp->tcp_ctl) * 4;
71 if (tcp_len >= TCP_HEADER_LEN && packet->size >= tcp_len) {
72 return ofpbuf_pull(packet, tcp_len);
73 }
74 }
75 return NULL;
76 }
77
78 static struct udp_header *
79 pull_udp(struct ofpbuf *packet)
80 {
81 return ofpbuf_try_pull(packet, UDP_HEADER_LEN);
82 }
83
84 static struct icmp_header *
85 pull_icmp(struct ofpbuf *packet)
86 {
87 return ofpbuf_try_pull(packet, ICMP_HEADER_LEN);
88 }
89
90 static struct icmp6_hdr *
91 pull_icmpv6(struct ofpbuf *packet)
92 {
93 return ofpbuf_try_pull(packet, sizeof(struct icmp6_hdr));
94 }
95
96 static void
97 parse_mpls(struct ofpbuf *b, struct flow *flow)
98 {
99 struct mpls_hdr *mh;
100
101 while ((mh = ofpbuf_try_pull(b, sizeof *mh))) {
102 if (flow->mpls_depth++ == 0) {
103 flow->mpls_lse = mh->mpls_lse;
104 }
105 if (mh->mpls_lse & htonl(MPLS_BOS_MASK)) {
106 break;
107 }
108 }
109 }
110
111 static void
112 parse_vlan(struct ofpbuf *b, struct flow *flow)
113 {
114 struct qtag_prefix {
115 ovs_be16 eth_type; /* ETH_TYPE_VLAN */
116 ovs_be16 tci;
117 };
118
119 if (b->size >= sizeof(struct qtag_prefix) + sizeof(ovs_be16)) {
120 struct qtag_prefix *qp = ofpbuf_pull(b, sizeof *qp);
121 flow->vlan_tci = qp->tci | htons(VLAN_CFI);
122 }
123 }
124
125 static ovs_be16
126 parse_ethertype(struct ofpbuf *b)
127 {
128 struct llc_snap_header *llc;
129 ovs_be16 proto;
130
131 proto = *(ovs_be16 *) ofpbuf_pull(b, sizeof proto);
132 if (ntohs(proto) >= ETH_TYPE_MIN) {
133 return proto;
134 }
135
136 if (b->size < sizeof *llc) {
137 return htons(FLOW_DL_TYPE_NONE);
138 }
139
140 llc = b->data;
141 if (llc->llc.llc_dsap != LLC_DSAP_SNAP
142 || llc->llc.llc_ssap != LLC_SSAP_SNAP
143 || llc->llc.llc_cntl != LLC_CNTL_SNAP
144 || memcmp(llc->snap.snap_org, SNAP_ORG_ETHERNET,
145 sizeof llc->snap.snap_org)) {
146 return htons(FLOW_DL_TYPE_NONE);
147 }
148
149 ofpbuf_pull(b, sizeof *llc);
150
151 if (ntohs(llc->snap.snap_type) >= ETH_TYPE_MIN) {
152 return llc->snap.snap_type;
153 }
154
155 return htons(FLOW_DL_TYPE_NONE);
156 }
157
158 static int
159 parse_ipv6(struct ofpbuf *packet, struct flow *flow)
160 {
161 const struct ip6_hdr *nh;
162 ovs_be32 tc_flow;
163 int nexthdr;
164
165 nh = ofpbuf_try_pull(packet, sizeof *nh);
166 if (!nh) {
167 return EINVAL;
168 }
169
170 nexthdr = nh->ip6_nxt;
171
172 flow->ipv6_src = nh->ip6_src;
173 flow->ipv6_dst = nh->ip6_dst;
174
175 tc_flow = get_unaligned_be32(&nh->ip6_flow);
176 flow->nw_tos = ntohl(tc_flow) >> 20;
177 flow->ipv6_label = tc_flow & htonl(IPV6_LABEL_MASK);
178 flow->nw_ttl = nh->ip6_hlim;
179 flow->nw_proto = IPPROTO_NONE;
180
181 while (1) {
182 if ((nexthdr != IPPROTO_HOPOPTS)
183 && (nexthdr != IPPROTO_ROUTING)
184 && (nexthdr != IPPROTO_DSTOPTS)
185 && (nexthdr != IPPROTO_AH)
186 && (nexthdr != IPPROTO_FRAGMENT)) {
187 /* It's either a terminal header (e.g., TCP, UDP) or one we
188 * don't understand. In either case, we're done with the
189 * packet, so use it to fill in 'nw_proto'. */
190 break;
191 }
192
193 /* We only verify that at least 8 bytes of the next header are
194 * available, but many of these headers are longer. Ensure that
195 * accesses within the extension header are within those first 8
196 * bytes. All extension headers are required to be at least 8
197 * bytes. */
198 if (packet->size < 8) {
199 return EINVAL;
200 }
201
202 if ((nexthdr == IPPROTO_HOPOPTS)
203 || (nexthdr == IPPROTO_ROUTING)
204 || (nexthdr == IPPROTO_DSTOPTS)) {
205 /* These headers, while different, have the fields we care about
206 * in the same location and with the same interpretation. */
207 const struct ip6_ext *ext_hdr = packet->data;
208 nexthdr = ext_hdr->ip6e_nxt;
209 if (!ofpbuf_try_pull(packet, (ext_hdr->ip6e_len + 1) * 8)) {
210 return EINVAL;
211 }
212 } else if (nexthdr == IPPROTO_AH) {
213 /* A standard AH definition isn't available, but the fields
214 * we care about are in the same location as the generic
215 * option header--only the header length is calculated
216 * differently. */
217 const struct ip6_ext *ext_hdr = packet->data;
218 nexthdr = ext_hdr->ip6e_nxt;
219 if (!ofpbuf_try_pull(packet, (ext_hdr->ip6e_len + 2) * 4)) {
220 return EINVAL;
221 }
222 } else if (nexthdr == IPPROTO_FRAGMENT) {
223 const struct ip6_frag *frag_hdr = packet->data;
224
225 nexthdr = frag_hdr->ip6f_nxt;
226 if (!ofpbuf_try_pull(packet, sizeof *frag_hdr)) {
227 return EINVAL;
228 }
229
230 /* We only process the first fragment. */
231 if (frag_hdr->ip6f_offlg != htons(0)) {
232 flow->nw_frag = FLOW_NW_FRAG_ANY;
233 if ((frag_hdr->ip6f_offlg & IP6F_OFF_MASK) != htons(0)) {
234 flow->nw_frag |= FLOW_NW_FRAG_LATER;
235 nexthdr = IPPROTO_FRAGMENT;
236 break;
237 }
238 }
239 }
240 }
241
242 flow->nw_proto = nexthdr;
243 return 0;
244 }
245
246 static void
247 parse_tcp(struct ofpbuf *packet, struct ofpbuf *b, struct flow *flow)
248 {
249 const struct tcp_header *tcp = pull_tcp(b);
250 if (tcp) {
251 flow->tp_src = tcp->tcp_src;
252 flow->tp_dst = tcp->tcp_dst;
253 packet->l7 = b->data;
254 }
255 }
256
257 static void
258 parse_udp(struct ofpbuf *packet, struct ofpbuf *b, struct flow *flow)
259 {
260 const struct udp_header *udp = pull_udp(b);
261 if (udp) {
262 flow->tp_src = udp->udp_src;
263 flow->tp_dst = udp->udp_dst;
264 packet->l7 = b->data;
265 }
266 }
267
268 static bool
269 parse_icmpv6(struct ofpbuf *b, struct flow *flow)
270 {
271 const struct icmp6_hdr *icmp = pull_icmpv6(b);
272
273 if (!icmp) {
274 return false;
275 }
276
277 /* The ICMPv6 type and code fields use the 16-bit transport port
278 * fields, so we need to store them in 16-bit network byte order. */
279 flow->tp_src = htons(icmp->icmp6_type);
280 flow->tp_dst = htons(icmp->icmp6_code);
281
282 if (icmp->icmp6_code == 0 &&
283 (icmp->icmp6_type == ND_NEIGHBOR_SOLICIT ||
284 icmp->icmp6_type == ND_NEIGHBOR_ADVERT)) {
285 const struct in6_addr *nd_target;
286
287 nd_target = ofpbuf_try_pull(b, sizeof *nd_target);
288 if (!nd_target) {
289 return false;
290 }
291 flow->nd_target = *nd_target;
292
293 while (b->size >= 8) {
294 /* The minimum size of an option is 8 bytes, which also is
295 * the size of Ethernet link-layer options. */
296 const struct nd_opt_hdr *nd_opt = b->data;
297 int opt_len = nd_opt->nd_opt_len * 8;
298
299 if (!opt_len || opt_len > b->size) {
300 goto invalid;
301 }
302
303 /* Store the link layer address if the appropriate option is
304 * provided. It is considered an error if the same link
305 * layer option is specified twice. */
306 if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LINKADDR
307 && opt_len == 8) {
308 if (eth_addr_is_zero(flow->arp_sha)) {
309 memcpy(flow->arp_sha, nd_opt + 1, ETH_ADDR_LEN);
310 } else {
311 goto invalid;
312 }
313 } else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LINKADDR
314 && opt_len == 8) {
315 if (eth_addr_is_zero(flow->arp_tha)) {
316 memcpy(flow->arp_tha, nd_opt + 1, ETH_ADDR_LEN);
317 } else {
318 goto invalid;
319 }
320 }
321
322 if (!ofpbuf_try_pull(b, opt_len)) {
323 goto invalid;
324 }
325 }
326 }
327
328 return true;
329
330 invalid:
331 memset(&flow->nd_target, 0, sizeof(flow->nd_target));
332 memset(flow->arp_sha, 0, sizeof(flow->arp_sha));
333 memset(flow->arp_tha, 0, sizeof(flow->arp_tha));
334
335 return false;
336
337 }
338
339 /* Initializes 'flow' members from 'packet', 'skb_priority', 'tnl', and
340 * 'in_port'.
341 *
342 * Initializes 'packet' header pointers as follows:
343 *
344 * - packet->l2 to the start of the Ethernet header.
345 *
346 * - packet->l2_5 to the start of the MPLS shim header.
347 *
348 * - packet->l3 to just past the Ethernet header, or just past the
349 * vlan_header if one is present, to the first byte of the payload of the
350 * Ethernet frame.
351 *
352 * - packet->l4 to just past the IPv4 header, if one is present and has a
353 * correct length, and otherwise NULL.
354 *
355 * - packet->l7 to just past the TCP or UDP or ICMP header, if one is
356 * present and has a correct length, and otherwise NULL.
357 */
358 void
359 flow_extract(struct ofpbuf *packet, uint32_t skb_priority, uint32_t pkt_mark,
360 const struct flow_tnl *tnl, const union flow_in_port *in_port,
361 struct flow *flow)
362 {
363 struct ofpbuf b = *packet;
364 struct eth_header *eth;
365
366 COVERAGE_INC(flow_extract);
367
368 memset(flow, 0, sizeof *flow);
369
370 if (tnl) {
371 ovs_assert(tnl != &flow->tunnel);
372 flow->tunnel = *tnl;
373 }
374 if (in_port) {
375 flow->in_port = *in_port;
376 }
377 flow->skb_priority = skb_priority;
378 flow->pkt_mark = pkt_mark;
379
380 packet->l2 = b.data;
381 packet->l2_5 = NULL;
382 packet->l3 = NULL;
383 packet->l4 = NULL;
384 packet->l7 = NULL;
385
386 if (b.size < sizeof *eth) {
387 return;
388 }
389
390 /* Link layer. */
391 eth = b.data;
392 memcpy(flow->dl_src, eth->eth_src, ETH_ADDR_LEN);
393 memcpy(flow->dl_dst, eth->eth_dst, ETH_ADDR_LEN);
394
395 /* dl_type, vlan_tci. */
396 ofpbuf_pull(&b, ETH_ADDR_LEN * 2);
397 if (eth->eth_type == htons(ETH_TYPE_VLAN)) {
398 parse_vlan(&b, flow);
399 }
400 flow->dl_type = parse_ethertype(&b);
401
402 /* Parse mpls, copy l3 ttl. */
403 if (eth_type_mpls(flow->dl_type)) {
404 packet->l2_5 = b.data;
405 parse_mpls(&b, flow);
406 }
407
408 /* Network layer. */
409 packet->l3 = b.data;
410 if (flow->dl_type == htons(ETH_TYPE_IP)) {
411 const struct ip_header *nh = pull_ip(&b);
412 if (nh) {
413 packet->l4 = b.data;
414
415 flow->nw_src = get_unaligned_be32(&nh->ip_src);
416 flow->nw_dst = get_unaligned_be32(&nh->ip_dst);
417 flow->nw_proto = nh->ip_proto;
418
419 flow->nw_tos = nh->ip_tos;
420 if (IP_IS_FRAGMENT(nh->ip_frag_off)) {
421 flow->nw_frag = FLOW_NW_FRAG_ANY;
422 if (nh->ip_frag_off & htons(IP_FRAG_OFF_MASK)) {
423 flow->nw_frag |= FLOW_NW_FRAG_LATER;
424 }
425 }
426 flow->nw_ttl = nh->ip_ttl;
427
428 if (!(nh->ip_frag_off & htons(IP_FRAG_OFF_MASK))) {
429 if (flow->nw_proto == IPPROTO_TCP) {
430 parse_tcp(packet, &b, flow);
431 } else if (flow->nw_proto == IPPROTO_UDP) {
432 parse_udp(packet, &b, flow);
433 } else if (flow->nw_proto == IPPROTO_ICMP) {
434 const struct icmp_header *icmp = pull_icmp(&b);
435 if (icmp) {
436 flow->tp_src = htons(icmp->icmp_type);
437 flow->tp_dst = htons(icmp->icmp_code);
438 packet->l7 = b.data;
439 }
440 }
441 }
442 }
443 } else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
444 if (parse_ipv6(&b, flow)) {
445 return;
446 }
447
448 packet->l4 = b.data;
449 if (flow->nw_proto == IPPROTO_TCP) {
450 parse_tcp(packet, &b, flow);
451 } else if (flow->nw_proto == IPPROTO_UDP) {
452 parse_udp(packet, &b, flow);
453 } else if (flow->nw_proto == IPPROTO_ICMPV6) {
454 if (parse_icmpv6(&b, flow)) {
455 packet->l7 = b.data;
456 }
457 }
458 } else if (flow->dl_type == htons(ETH_TYPE_ARP) ||
459 flow->dl_type == htons(ETH_TYPE_RARP)) {
460 const struct arp_eth_header *arp = pull_arp(&b);
461 if (arp && arp->ar_hrd == htons(1)
462 && arp->ar_pro == htons(ETH_TYPE_IP)
463 && arp->ar_hln == ETH_ADDR_LEN
464 && arp->ar_pln == 4) {
465 /* We only match on the lower 8 bits of the opcode. */
466 if (ntohs(arp->ar_op) <= 0xff) {
467 flow->nw_proto = ntohs(arp->ar_op);
468 }
469
470 flow->nw_src = arp->ar_spa;
471 flow->nw_dst = arp->ar_tpa;
472 memcpy(flow->arp_sha, arp->ar_sha, ETH_ADDR_LEN);
473 memcpy(flow->arp_tha, arp->ar_tha, ETH_ADDR_LEN);
474 }
475 }
476 }
477
478 /* For every bit of a field that is wildcarded in 'wildcards', sets the
479 * corresponding bit in 'flow' to zero. */
480 void
481 flow_zero_wildcards(struct flow *flow, const struct flow_wildcards *wildcards)
482 {
483 uint32_t *flow_u32 = (uint32_t *) flow;
484 const uint32_t *wc_u32 = (const uint32_t *) &wildcards->masks;
485 size_t i;
486
487 for (i = 0; i < FLOW_U32S; i++) {
488 flow_u32[i] &= wc_u32[i];
489 }
490 }
491
492 /* Initializes 'fmd' with the metadata found in 'flow'. */
493 void
494 flow_get_metadata(const struct flow *flow, struct flow_metadata *fmd)
495 {
496 BUILD_ASSERT_DECL(FLOW_WC_SEQ == 20);
497
498 fmd->tun_id = flow->tunnel.tun_id;
499 fmd->tun_src = flow->tunnel.ip_src;
500 fmd->tun_dst = flow->tunnel.ip_dst;
501 fmd->metadata = flow->metadata;
502 memcpy(fmd->regs, flow->regs, sizeof fmd->regs);
503 fmd->in_port = flow->in_port.ofp_port;
504 }
505
506 char *
507 flow_to_string(const struct flow *flow)
508 {
509 struct ds ds = DS_EMPTY_INITIALIZER;
510 flow_format(&ds, flow);
511 return ds_cstr(&ds);
512 }
513
514 const char *
515 flow_tun_flag_to_string(uint32_t flags)
516 {
517 switch (flags) {
518 case FLOW_TNL_F_DONT_FRAGMENT:
519 return "df";
520 case FLOW_TNL_F_CSUM:
521 return "csum";
522 case FLOW_TNL_F_KEY:
523 return "key";
524 default:
525 return NULL;
526 }
527 }
528
529 void
530 format_flags(struct ds *ds, const char *(*bit_to_string)(uint32_t),
531 uint32_t flags, char del)
532 {
533 uint32_t bad = 0;
534
535 if (!flags) {
536 return;
537 }
538 while (flags) {
539 uint32_t bit = rightmost_1bit(flags);
540 const char *s;
541
542 s = bit_to_string(bit);
543 if (s) {
544 ds_put_format(ds, "%s%c", s, del);
545 } else {
546 bad |= bit;
547 }
548
549 flags &= ~bit;
550 }
551
552 if (bad) {
553 ds_put_format(ds, "0x%"PRIx32"%c", bad, del);
554 }
555 ds_chomp(ds, del);
556 }
557
558 void
559 flow_format(struct ds *ds, const struct flow *flow)
560 {
561 struct match match;
562
563 match_wc_init(&match, flow);
564 match_format(&match, ds, OFP_DEFAULT_PRIORITY);
565 }
566
567 void
568 flow_print(FILE *stream, const struct flow *flow)
569 {
570 char *s = flow_to_string(flow);
571 fputs(s, stream);
572 free(s);
573 }
574 \f
575 /* flow_wildcards functions. */
576
577 /* Initializes 'wc' as a set of wildcards that matches every packet. */
578 void
579 flow_wildcards_init_catchall(struct flow_wildcards *wc)
580 {
581 memset(&wc->masks, 0, sizeof wc->masks);
582 }
583
584 /* Initializes 'wc' as an exact-match set of wildcards; that is, 'wc' does not
585 * wildcard any bits or fields. */
586 void
587 flow_wildcards_init_exact(struct flow_wildcards *wc)
588 {
589 memset(&wc->masks, 0xff, sizeof wc->masks);
590 memset(wc->masks.zeros, 0, sizeof wc->masks.zeros);
591 }
592
593 /* Returns true if 'wc' matches every packet, false if 'wc' fixes any bits or
594 * fields. */
595 bool
596 flow_wildcards_is_catchall(const struct flow_wildcards *wc)
597 {
598 const uint32_t *wc_u32 = (const uint32_t *) &wc->masks;
599 size_t i;
600
601 for (i = 0; i < FLOW_U32S; i++) {
602 if (wc_u32[i]) {
603 return false;
604 }
605 }
606 return true;
607 }
608
609 /* Sets 'dst' as the bitwise AND of wildcards in 'src1' and 'src2'.
610 * That is, a bit or a field is wildcarded in 'dst' if it is wildcarded
611 * in 'src1' or 'src2' or both. */
612 void
613 flow_wildcards_and(struct flow_wildcards *dst,
614 const struct flow_wildcards *src1,
615 const struct flow_wildcards *src2)
616 {
617 uint32_t *dst_u32 = (uint32_t *) &dst->masks;
618 const uint32_t *src1_u32 = (const uint32_t *) &src1->masks;
619 const uint32_t *src2_u32 = (const uint32_t *) &src2->masks;
620 size_t i;
621
622 for (i = 0; i < FLOW_U32S; i++) {
623 dst_u32[i] = src1_u32[i] & src2_u32[i];
624 }
625 }
626
627 /* Sets 'dst' as the bitwise OR of wildcards in 'src1' and 'src2'. That
628 * is, a bit or a field is wildcarded in 'dst' if it is neither
629 * wildcarded in 'src1' nor 'src2'. */
630 void
631 flow_wildcards_or(struct flow_wildcards *dst,
632 const struct flow_wildcards *src1,
633 const struct flow_wildcards *src2)
634 {
635 uint32_t *dst_u32 = (uint32_t *) &dst->masks;
636 const uint32_t *src1_u32 = (const uint32_t *) &src1->masks;
637 const uint32_t *src2_u32 = (const uint32_t *) &src2->masks;
638 size_t i;
639
640 for (i = 0; i < FLOW_U32S; i++) {
641 dst_u32[i] = src1_u32[i] | src2_u32[i];
642 }
643 }
644
645 /* Perform a bitwise OR of miniflow 'src' flow data with the equivalent
646 * fields in 'dst', storing the result in 'dst'. */
647 static void
648 flow_union_with_miniflow(struct flow *dst, const struct miniflow *src)
649 {
650 uint32_t *dst_u32 = (uint32_t *) dst;
651 int ofs;
652 int i;
653
654 ofs = 0;
655 for (i = 0; i < MINI_N_MAPS; i++) {
656 uint32_t map;
657
658 for (map = src->map[i]; map; map = zero_rightmost_1bit(map)) {
659 dst_u32[raw_ctz(map) + i * 32] |= src->values[ofs++];
660 }
661 }
662 }
663
664 /* Fold minimask 'mask''s wildcard mask into 'wc's wildcard mask. */
665 void
666 flow_wildcards_fold_minimask(struct flow_wildcards *wc,
667 const struct minimask *mask)
668 {
669 flow_union_with_miniflow(&wc->masks, &mask->masks);
670 }
671
672 /* Returns a hash of the wildcards in 'wc'. */
673 uint32_t
674 flow_wildcards_hash(const struct flow_wildcards *wc, uint32_t basis)
675 {
676 return flow_hash(&wc->masks, basis);
677 }
678
679 /* Returns true if 'a' and 'b' represent the same wildcards, false if they are
680 * different. */
681 bool
682 flow_wildcards_equal(const struct flow_wildcards *a,
683 const struct flow_wildcards *b)
684 {
685 return flow_equal(&a->masks, &b->masks);
686 }
687
688 /* Returns true if at least one bit or field is wildcarded in 'a' but not in
689 * 'b', false otherwise. */
690 bool
691 flow_wildcards_has_extra(const struct flow_wildcards *a,
692 const struct flow_wildcards *b)
693 {
694 const uint32_t *a_u32 = (const uint32_t *) &a->masks;
695 const uint32_t *b_u32 = (const uint32_t *) &b->masks;
696 size_t i;
697
698 for (i = 0; i < FLOW_U32S; i++) {
699 if ((a_u32[i] & b_u32[i]) != b_u32[i]) {
700 return true;
701 }
702 }
703 return false;
704 }
705
706 /* Returns true if 'a' and 'b' are equal, except that 0-bits (wildcarded bits)
707 * in 'wc' do not need to be equal in 'a' and 'b'. */
708 bool
709 flow_equal_except(const struct flow *a, const struct flow *b,
710 const struct flow_wildcards *wc)
711 {
712 const uint32_t *a_u32 = (const uint32_t *) a;
713 const uint32_t *b_u32 = (const uint32_t *) b;
714 const uint32_t *wc_u32 = (const uint32_t *) &wc->masks;
715 size_t i;
716
717 for (i = 0; i < FLOW_U32S; i++) {
718 if ((a_u32[i] ^ b_u32[i]) & wc_u32[i]) {
719 return false;
720 }
721 }
722 return true;
723 }
724
725 /* Sets the wildcard mask for register 'idx' in 'wc' to 'mask'.
726 * (A 0-bit indicates a wildcard bit.) */
727 void
728 flow_wildcards_set_reg_mask(struct flow_wildcards *wc, int idx, uint32_t mask)
729 {
730 wc->masks.regs[idx] = mask;
731 }
732
733 /* Hashes 'flow' based on its L2 through L4 protocol information. */
734 uint32_t
735 flow_hash_symmetric_l4(const struct flow *flow, uint32_t basis)
736 {
737 struct {
738 union {
739 ovs_be32 ipv4_addr;
740 struct in6_addr ipv6_addr;
741 };
742 ovs_be16 eth_type;
743 ovs_be16 vlan_tci;
744 ovs_be16 tp_port;
745 uint8_t eth_addr[ETH_ADDR_LEN];
746 uint8_t ip_proto;
747 } fields;
748
749 int i;
750
751 memset(&fields, 0, sizeof fields);
752 for (i = 0; i < ETH_ADDR_LEN; i++) {
753 fields.eth_addr[i] = flow->dl_src[i] ^ flow->dl_dst[i];
754 }
755 fields.vlan_tci = flow->vlan_tci & htons(VLAN_VID_MASK);
756 fields.eth_type = flow->dl_type;
757
758 /* UDP source and destination port are not taken into account because they
759 * will not necessarily be symmetric in a bidirectional flow. */
760 if (fields.eth_type == htons(ETH_TYPE_IP)) {
761 fields.ipv4_addr = flow->nw_src ^ flow->nw_dst;
762 fields.ip_proto = flow->nw_proto;
763 if (fields.ip_proto == IPPROTO_TCP) {
764 fields.tp_port = flow->tp_src ^ flow->tp_dst;
765 }
766 } else if (fields.eth_type == htons(ETH_TYPE_IPV6)) {
767 const uint8_t *a = &flow->ipv6_src.s6_addr[0];
768 const uint8_t *b = &flow->ipv6_dst.s6_addr[0];
769 uint8_t *ipv6_addr = &fields.ipv6_addr.s6_addr[0];
770
771 for (i=0; i<16; i++) {
772 ipv6_addr[i] = a[i] ^ b[i];
773 }
774 fields.ip_proto = flow->nw_proto;
775 if (fields.ip_proto == IPPROTO_TCP) {
776 fields.tp_port = flow->tp_src ^ flow->tp_dst;
777 }
778 }
779 return jhash_bytes(&fields, sizeof fields, basis);
780 }
781
782 /* Masks the fields in 'wc' that are used by the flow hash 'fields'. */
783 void
784 flow_mask_hash_fields(const struct flow *flow, struct flow_wildcards *wc,
785 enum nx_hash_fields fields)
786 {
787 switch (fields) {
788 case NX_HASH_FIELDS_ETH_SRC:
789 memset(&wc->masks.dl_src, 0xff, sizeof wc->masks.dl_src);
790 break;
791
792 case NX_HASH_FIELDS_SYMMETRIC_L4:
793 memset(&wc->masks.dl_src, 0xff, sizeof wc->masks.dl_src);
794 memset(&wc->masks.dl_dst, 0xff, sizeof wc->masks.dl_dst);
795 if (flow->dl_type == htons(ETH_TYPE_IP)) {
796 memset(&wc->masks.nw_src, 0xff, sizeof wc->masks.nw_src);
797 memset(&wc->masks.nw_dst, 0xff, sizeof wc->masks.nw_dst);
798 } else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
799 memset(&wc->masks.ipv6_src, 0xff, sizeof wc->masks.ipv6_src);
800 memset(&wc->masks.ipv6_dst, 0xff, sizeof wc->masks.ipv6_dst);
801 }
802 if (is_ip_any(flow)) {
803 memset(&wc->masks.nw_proto, 0xff, sizeof wc->masks.nw_proto);
804 memset(&wc->masks.tp_src, 0xff, sizeof wc->masks.tp_src);
805 memset(&wc->masks.tp_dst, 0xff, sizeof wc->masks.tp_dst);
806 }
807 wc->masks.vlan_tci |= htons(VLAN_VID_MASK | VLAN_CFI);
808 break;
809
810 default:
811 NOT_REACHED();
812 }
813 }
814
815 /* Hashes the portions of 'flow' designated by 'fields'. */
816 uint32_t
817 flow_hash_fields(const struct flow *flow, enum nx_hash_fields fields,
818 uint16_t basis)
819 {
820 switch (fields) {
821
822 case NX_HASH_FIELDS_ETH_SRC:
823 return jhash_bytes(flow->dl_src, sizeof flow->dl_src, basis);
824
825 case NX_HASH_FIELDS_SYMMETRIC_L4:
826 return flow_hash_symmetric_l4(flow, basis);
827 }
828
829 NOT_REACHED();
830 }
831
832 /* Returns a string representation of 'fields'. */
833 const char *
834 flow_hash_fields_to_str(enum nx_hash_fields fields)
835 {
836 switch (fields) {
837 case NX_HASH_FIELDS_ETH_SRC: return "eth_src";
838 case NX_HASH_FIELDS_SYMMETRIC_L4: return "symmetric_l4";
839 default: return "<unknown>";
840 }
841 }
842
843 /* Returns true if the value of 'fields' is supported. Otherwise false. */
844 bool
845 flow_hash_fields_valid(enum nx_hash_fields fields)
846 {
847 return fields == NX_HASH_FIELDS_ETH_SRC
848 || fields == NX_HASH_FIELDS_SYMMETRIC_L4;
849 }
850
851 /* Returns a hash value for the bits of 'flow' that are active based on
852 * 'wc', given 'basis'. */
853 uint32_t
854 flow_hash_in_wildcards(const struct flow *flow,
855 const struct flow_wildcards *wc, uint32_t basis)
856 {
857 const uint32_t *wc_u32 = (const uint32_t *) &wc->masks;
858 const uint32_t *flow_u32 = (const uint32_t *) flow;
859 uint32_t hash;
860 size_t i;
861
862 hash = basis;
863 for (i = 0; i < FLOW_U32S; i++) {
864 hash = mhash_add(hash, flow_u32[i] & wc_u32[i]);
865 }
866 return mhash_finish(hash, 4 * FLOW_U32S);
867 }
868
869 /* Sets the VLAN VID that 'flow' matches to 'vid', which is interpreted as an
870 * OpenFlow 1.0 "dl_vlan" value:
871 *
872 * - If it is in the range 0...4095, 'flow->vlan_tci' is set to match
873 * that VLAN. Any existing PCP match is unchanged (it becomes 0 if
874 * 'flow' previously matched packets without a VLAN header).
875 *
876 * - If it is OFP_VLAN_NONE, 'flow->vlan_tci' is set to match a packet
877 * without a VLAN tag.
878 *
879 * - Other values of 'vid' should not be used. */
880 void
881 flow_set_dl_vlan(struct flow *flow, ovs_be16 vid)
882 {
883 if (vid == htons(OFP10_VLAN_NONE)) {
884 flow->vlan_tci = htons(0);
885 } else {
886 vid &= htons(VLAN_VID_MASK);
887 flow->vlan_tci &= ~htons(VLAN_VID_MASK);
888 flow->vlan_tci |= htons(VLAN_CFI) | vid;
889 }
890 }
891
892 /* Sets the VLAN VID that 'flow' matches to 'vid', which is interpreted as an
893 * OpenFlow 1.2 "vlan_vid" value, that is, the low 13 bits of 'vlan_tci' (VID
894 * plus CFI). */
895 void
896 flow_set_vlan_vid(struct flow *flow, ovs_be16 vid)
897 {
898 ovs_be16 mask = htons(VLAN_VID_MASK | VLAN_CFI);
899 flow->vlan_tci &= ~mask;
900 flow->vlan_tci |= vid & mask;
901 }
902
903 /* Sets the VLAN PCP that 'flow' matches to 'pcp', which should be in the
904 * range 0...7.
905 *
906 * This function has no effect on the VLAN ID that 'flow' matches.
907 *
908 * After calling this function, 'flow' will not match packets without a VLAN
909 * header. */
910 void
911 flow_set_vlan_pcp(struct flow *flow, uint8_t pcp)
912 {
913 pcp &= 0x07;
914 flow->vlan_tci &= ~htons(VLAN_PCP_MASK);
915 flow->vlan_tci |= htons((pcp << VLAN_PCP_SHIFT) | VLAN_CFI);
916 }
917
918 /* Sets the MPLS Label that 'flow' matches to 'label', which is interpreted
919 * as an OpenFlow 1.1 "mpls_label" value. */
920 void
921 flow_set_mpls_label(struct flow *flow, ovs_be32 label)
922 {
923 set_mpls_lse_label(&flow->mpls_lse, label);
924 }
925
926 /* Sets the MPLS TTL that 'flow' matches to 'ttl', which should be in the
927 * range 0...255. */
928 void
929 flow_set_mpls_ttl(struct flow *flow, uint8_t ttl)
930 {
931 set_mpls_lse_ttl(&flow->mpls_lse, ttl);
932 }
933
934 /* Sets the MPLS TC that 'flow' matches to 'tc', which should be in the
935 * range 0...7. */
936 void
937 flow_set_mpls_tc(struct flow *flow, uint8_t tc)
938 {
939 set_mpls_lse_tc(&flow->mpls_lse, tc);
940 }
941
942 /* Sets the MPLS BOS bit that 'flow' matches to which should be 0 or 1. */
943 void
944 flow_set_mpls_bos(struct flow *flow, uint8_t bos)
945 {
946 set_mpls_lse_bos(&flow->mpls_lse, bos);
947 }
948
949 /* Puts into 'b' a packet that flow_extract() would parse as having the given
950 * 'flow'.
951 *
952 * (This is useful only for testing, obviously, and the packet isn't really
953 * valid. It hasn't got some checksums filled in, for one, and lots of fields
954 * are just zeroed.) */
955 void
956 flow_compose(struct ofpbuf *b, const struct flow *flow)
957 {
958 eth_compose(b, flow->dl_dst, flow->dl_src, ntohs(flow->dl_type), 0);
959 if (flow->dl_type == htons(FLOW_DL_TYPE_NONE)) {
960 struct eth_header *eth = b->l2;
961 eth->eth_type = htons(b->size);
962 return;
963 }
964
965 if (flow->vlan_tci & htons(VLAN_CFI)) {
966 eth_push_vlan(b, flow->vlan_tci);
967 }
968
969 if (flow->dl_type == htons(ETH_TYPE_IP)) {
970 struct ip_header *ip;
971
972 b->l3 = ip = ofpbuf_put_zeros(b, sizeof *ip);
973 ip->ip_ihl_ver = IP_IHL_VER(5, 4);
974 ip->ip_tos = flow->nw_tos;
975 ip->ip_ttl = flow->nw_ttl;
976 ip->ip_proto = flow->nw_proto;
977 ip->ip_src = flow->nw_src;
978 ip->ip_dst = flow->nw_dst;
979
980 if (flow->nw_frag & FLOW_NW_FRAG_ANY) {
981 ip->ip_frag_off |= htons(IP_MORE_FRAGMENTS);
982 if (flow->nw_frag & FLOW_NW_FRAG_LATER) {
983 ip->ip_frag_off |= htons(100);
984 }
985 }
986 if (!(flow->nw_frag & FLOW_NW_FRAG_ANY)
987 || !(flow->nw_frag & FLOW_NW_FRAG_LATER)) {
988 if (flow->nw_proto == IPPROTO_TCP) {
989 struct tcp_header *tcp;
990
991 b->l4 = tcp = ofpbuf_put_zeros(b, sizeof *tcp);
992 tcp->tcp_src = flow->tp_src;
993 tcp->tcp_dst = flow->tp_dst;
994 tcp->tcp_ctl = TCP_CTL(0, 5);
995 } else if (flow->nw_proto == IPPROTO_UDP) {
996 struct udp_header *udp;
997
998 b->l4 = udp = ofpbuf_put_zeros(b, sizeof *udp);
999 udp->udp_src = flow->tp_src;
1000 udp->udp_dst = flow->tp_dst;
1001 } else if (flow->nw_proto == IPPROTO_ICMP) {
1002 struct icmp_header *icmp;
1003
1004 b->l4 = icmp = ofpbuf_put_zeros(b, sizeof *icmp);
1005 icmp->icmp_type = ntohs(flow->tp_src);
1006 icmp->icmp_code = ntohs(flow->tp_dst);
1007 icmp->icmp_csum = csum(icmp, ICMP_HEADER_LEN);
1008 }
1009 }
1010
1011 ip = b->l3;
1012 ip->ip_tot_len = htons((uint8_t *) b->data + b->size
1013 - (uint8_t *) b->l3);
1014 ip->ip_csum = csum(ip, sizeof *ip);
1015 } else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
1016 /* XXX */
1017 } else if (flow->dl_type == htons(ETH_TYPE_ARP) ||
1018 flow->dl_type == htons(ETH_TYPE_RARP)) {
1019 struct arp_eth_header *arp;
1020
1021 b->l3 = arp = ofpbuf_put_zeros(b, sizeof *arp);
1022 arp->ar_hrd = htons(1);
1023 arp->ar_pro = htons(ETH_TYPE_IP);
1024 arp->ar_hln = ETH_ADDR_LEN;
1025 arp->ar_pln = 4;
1026 arp->ar_op = htons(flow->nw_proto);
1027
1028 if (flow->nw_proto == ARP_OP_REQUEST ||
1029 flow->nw_proto == ARP_OP_REPLY) {
1030 arp->ar_spa = flow->nw_src;
1031 arp->ar_tpa = flow->nw_dst;
1032 memcpy(arp->ar_sha, flow->arp_sha, ETH_ADDR_LEN);
1033 memcpy(arp->ar_tha, flow->arp_tha, ETH_ADDR_LEN);
1034 }
1035 }
1036
1037 if (eth_type_mpls(flow->dl_type)) {
1038 b->l2_5 = b->l3;
1039 push_mpls(b, flow->dl_type, flow->mpls_lse);
1040 }
1041 }
1042 \f
1043 /* Compressed flow. */
1044
1045 static int
1046 miniflow_n_values(const struct miniflow *flow)
1047 {
1048 int n, i;
1049
1050 n = 0;
1051 for (i = 0; i < MINI_N_MAPS; i++) {
1052 n += popcount(flow->map[i]);
1053 }
1054 return n;
1055 }
1056
1057 static uint32_t *
1058 miniflow_alloc_values(struct miniflow *flow, int n)
1059 {
1060 if (n <= MINI_N_INLINE) {
1061 return flow->inline_values;
1062 } else {
1063 COVERAGE_INC(miniflow_malloc);
1064 return xmalloc(n * sizeof *flow->values);
1065 }
1066 }
1067
1068 /* Initializes 'dst' as a copy of 'src'. The caller must eventually free 'dst'
1069 * with miniflow_destroy(). */
1070 void
1071 miniflow_init(struct miniflow *dst, const struct flow *src)
1072 {
1073 const uint32_t *src_u32 = (const uint32_t *) src;
1074 unsigned int ofs;
1075 unsigned int i;
1076 int n;
1077
1078 /* Initialize dst->map, counting the number of nonzero elements. */
1079 n = 0;
1080 memset(dst->map, 0, sizeof dst->map);
1081 for (i = 0; i < FLOW_U32S; i++) {
1082 if (src_u32[i]) {
1083 dst->map[i / 32] |= 1u << (i % 32);
1084 n++;
1085 }
1086 }
1087
1088 /* Initialize dst->values. */
1089 dst->values = miniflow_alloc_values(dst, n);
1090 ofs = 0;
1091 for (i = 0; i < MINI_N_MAPS; i++) {
1092 uint32_t map;
1093
1094 for (map = dst->map[i]; map; map = zero_rightmost_1bit(map)) {
1095 dst->values[ofs++] = src_u32[raw_ctz(map) + i * 32];
1096 }
1097 }
1098 }
1099
1100 /* Initializes 'dst' as a copy of 'src'. The caller must eventually free 'dst'
1101 * with miniflow_destroy(). */
1102 void
1103 miniflow_clone(struct miniflow *dst, const struct miniflow *src)
1104 {
1105 int n = miniflow_n_values(src);
1106 memcpy(dst->map, src->map, sizeof dst->map);
1107 dst->values = miniflow_alloc_values(dst, n);
1108 memcpy(dst->values, src->values, n * sizeof *dst->values);
1109 }
1110
1111 /* Frees any memory owned by 'flow'. Does not free the storage in which 'flow'
1112 * itself resides; the caller is responsible for that. */
1113 void
1114 miniflow_destroy(struct miniflow *flow)
1115 {
1116 if (flow->values != flow->inline_values) {
1117 free(flow->values);
1118 }
1119 }
1120
1121 /* Initializes 'dst' as a copy of 'src'. */
1122 void
1123 miniflow_expand(const struct miniflow *src, struct flow *dst)
1124 {
1125 memset(dst, 0, sizeof *dst);
1126 flow_union_with_miniflow(dst, src);
1127 }
1128
1129 static const uint32_t *
1130 miniflow_get__(const struct miniflow *flow, unsigned int u32_ofs)
1131 {
1132 if (!(flow->map[u32_ofs / 32] & (1u << (u32_ofs % 32)))) {
1133 static const uint32_t zero = 0;
1134 return &zero;
1135 } else {
1136 const uint32_t *p = flow->values;
1137
1138 BUILD_ASSERT(MINI_N_MAPS == 2);
1139 if (u32_ofs < 32) {
1140 p += popcount(flow->map[0] & ((1u << u32_ofs) - 1));
1141 } else {
1142 p += popcount(flow->map[0]);
1143 p += popcount(flow->map[1] & ((1u << (u32_ofs - 32)) - 1));
1144 }
1145 return p;
1146 }
1147 }
1148
1149 /* Returns the uint32_t that would be at byte offset '4 * u32_ofs' if 'flow'
1150 * were expanded into a "struct flow". */
1151 uint32_t
1152 miniflow_get(const struct miniflow *flow, unsigned int u32_ofs)
1153 {
1154 return *miniflow_get__(flow, u32_ofs);
1155 }
1156
1157 /* Returns the ovs_be16 that would be at byte offset 'u8_ofs' if 'flow' were
1158 * expanded into a "struct flow". */
1159 static ovs_be16
1160 miniflow_get_be16(const struct miniflow *flow, unsigned int u8_ofs)
1161 {
1162 const uint32_t *u32p = miniflow_get__(flow, u8_ofs / 4);
1163 const ovs_be16 *be16p = (const ovs_be16 *) u32p;
1164 return be16p[u8_ofs % 4 != 0];
1165 }
1166
1167 /* Returns the VID within the vlan_tci member of the "struct flow" represented
1168 * by 'flow'. */
1169 uint16_t
1170 miniflow_get_vid(const struct miniflow *flow)
1171 {
1172 ovs_be16 tci = miniflow_get_be16(flow, offsetof(struct flow, vlan_tci));
1173 return vlan_tci_to_vid(tci);
1174 }
1175
1176 /* Returns true if 'a' and 'b' are the same flow, false otherwise. */
1177 bool
1178 miniflow_equal(const struct miniflow *a, const struct miniflow *b)
1179 {
1180 int i;
1181
1182 for (i = 0; i < MINI_N_MAPS; i++) {
1183 if (a->map[i] != b->map[i]) {
1184 return false;
1185 }
1186 }
1187
1188 return !memcmp(a->values, b->values,
1189 miniflow_n_values(a) * sizeof *a->values);
1190 }
1191
1192 /* Returns true if 'a' and 'b' are equal at the places where there are 1-bits
1193 * in 'mask', false if they differ. */
1194 bool
1195 miniflow_equal_in_minimask(const struct miniflow *a, const struct miniflow *b,
1196 const struct minimask *mask)
1197 {
1198 const uint32_t *p;
1199 int i;
1200
1201 p = mask->masks.values;
1202 for (i = 0; i < MINI_N_MAPS; i++) {
1203 uint32_t map;
1204
1205 for (map = mask->masks.map[i]; map; map = zero_rightmost_1bit(map)) {
1206 int ofs = raw_ctz(map) + i * 32;
1207
1208 if ((miniflow_get(a, ofs) ^ miniflow_get(b, ofs)) & *p) {
1209 return false;
1210 }
1211 p++;
1212 }
1213 }
1214
1215 return true;
1216 }
1217
1218 /* Returns true if 'a' and 'b' are equal at the places where there are 1-bits
1219 * in 'mask', false if they differ. */
1220 bool
1221 miniflow_equal_flow_in_minimask(const struct miniflow *a, const struct flow *b,
1222 const struct minimask *mask)
1223 {
1224 const uint32_t *b_u32 = (const uint32_t *) b;
1225 const uint32_t *p;
1226 int i;
1227
1228 p = mask->masks.values;
1229 for (i = 0; i < MINI_N_MAPS; i++) {
1230 uint32_t map;
1231
1232 for (map = mask->masks.map[i]; map; map = zero_rightmost_1bit(map)) {
1233 int ofs = raw_ctz(map) + i * 32;
1234
1235 if ((miniflow_get(a, ofs) ^ b_u32[ofs]) & *p) {
1236 return false;
1237 }
1238 p++;
1239 }
1240 }
1241
1242 return true;
1243 }
1244
1245 /* Returns a hash value for 'flow', given 'basis'. */
1246 uint32_t
1247 miniflow_hash(const struct miniflow *flow, uint32_t basis)
1248 {
1249 BUILD_ASSERT_DECL(MINI_N_MAPS == 2);
1250 return hash_3words(flow->map[0], flow->map[1],
1251 hash_words(flow->values, miniflow_n_values(flow),
1252 basis));
1253 }
1254
1255 /* Returns a hash value for the bits of 'flow' where there are 1-bits in
1256 * 'mask', given 'basis'.
1257 *
1258 * The hash values returned by this function are the same as those returned by
1259 * flow_hash_in_minimask(), only the form of the arguments differ. */
1260 uint32_t
1261 miniflow_hash_in_minimask(const struct miniflow *flow,
1262 const struct minimask *mask, uint32_t basis)
1263 {
1264 const uint32_t *p = mask->masks.values;
1265 uint32_t hash;
1266 int i;
1267
1268 hash = basis;
1269 for (i = 0; i < MINI_N_MAPS; i++) {
1270 uint32_t map;
1271
1272 for (map = mask->masks.map[i]; map; map = zero_rightmost_1bit(map)) {
1273 int ofs = raw_ctz(map) + i * 32;
1274
1275 hash = mhash_add(hash, miniflow_get(flow, ofs) & *p);
1276 p++;
1277 }
1278 }
1279
1280 return mhash_finish(hash, (p - mask->masks.values) * 4);
1281 }
1282
1283 /* Returns a hash value for the bits of 'flow' where there are 1-bits in
1284 * 'mask', given 'basis'.
1285 *
1286 * The hash values returned by this function are the same as those returned by
1287 * miniflow_hash_in_minimask(), only the form of the arguments differ. */
1288 uint32_t
1289 flow_hash_in_minimask(const struct flow *flow, const struct minimask *mask,
1290 uint32_t basis)
1291 {
1292 const uint32_t *flow_u32 = (const uint32_t *) flow;
1293 const uint32_t *p = mask->masks.values;
1294 uint32_t hash;
1295 int i;
1296
1297 hash = basis;
1298 for (i = 0; i < MINI_N_MAPS; i++) {
1299 uint32_t map;
1300
1301 for (map = mask->masks.map[i]; map; map = zero_rightmost_1bit(map)) {
1302 int ofs = raw_ctz(map) + i * 32;
1303
1304 hash = mhash_add(hash, flow_u32[ofs] & *p);
1305 p++;
1306 }
1307 }
1308
1309 return mhash_finish(hash, (p - mask->masks.values) * 4);
1310 }
1311 \f
1312 /* Initializes 'dst' as a copy of 'src'. The caller must eventually free 'dst'
1313 * with minimask_destroy(). */
1314 void
1315 minimask_init(struct minimask *mask, const struct flow_wildcards *wc)
1316 {
1317 miniflow_init(&mask->masks, &wc->masks);
1318 }
1319
1320 /* Initializes 'dst' as a copy of 'src'. The caller must eventually free 'dst'
1321 * with minimask_destroy(). */
1322 void
1323 minimask_clone(struct minimask *dst, const struct minimask *src)
1324 {
1325 miniflow_clone(&dst->masks, &src->masks);
1326 }
1327
1328 /* Initializes 'dst_' as the bit-wise "and" of 'a_' and 'b_'.
1329 *
1330 * The caller must provide room for FLOW_U32S "uint32_t"s in 'storage', for use
1331 * by 'dst_'. The caller must *not* free 'dst_' with minimask_destroy(). */
1332 void
1333 minimask_combine(struct minimask *dst_,
1334 const struct minimask *a_, const struct minimask *b_,
1335 uint32_t storage[FLOW_U32S])
1336 {
1337 struct miniflow *dst = &dst_->masks;
1338 const struct miniflow *a = &a_->masks;
1339 const struct miniflow *b = &b_->masks;
1340 int i, n;
1341
1342 n = 0;
1343 dst->values = storage;
1344 for (i = 0; i < MINI_N_MAPS; i++) {
1345 uint32_t map;
1346
1347 dst->map[i] = 0;
1348 for (map = a->map[i] & b->map[i]; map;
1349 map = zero_rightmost_1bit(map)) {
1350 int ofs = raw_ctz(map) + i * 32;
1351 uint32_t mask = miniflow_get(a, ofs) & miniflow_get(b, ofs);
1352
1353 if (mask) {
1354 dst->map[i] |= rightmost_1bit(map);
1355 dst->values[n++] = mask;
1356 }
1357 }
1358 }
1359 }
1360
1361 /* Frees any memory owned by 'mask'. Does not free the storage in which 'mask'
1362 * itself resides; the caller is responsible for that. */
1363 void
1364 minimask_destroy(struct minimask *mask)
1365 {
1366 miniflow_destroy(&mask->masks);
1367 }
1368
1369 /* Initializes 'dst' as a copy of 'src'. */
1370 void
1371 minimask_expand(const struct minimask *mask, struct flow_wildcards *wc)
1372 {
1373 miniflow_expand(&mask->masks, &wc->masks);
1374 }
1375
1376 /* Returns the uint32_t that would be at byte offset '4 * u32_ofs' if 'mask'
1377 * were expanded into a "struct flow_wildcards". */
1378 uint32_t
1379 minimask_get(const struct minimask *mask, unsigned int u32_ofs)
1380 {
1381 return miniflow_get(&mask->masks, u32_ofs);
1382 }
1383
1384 /* Returns the VID mask within the vlan_tci member of the "struct
1385 * flow_wildcards" represented by 'mask'. */
1386 uint16_t
1387 minimask_get_vid_mask(const struct minimask *mask)
1388 {
1389 return miniflow_get_vid(&mask->masks);
1390 }
1391
1392 /* Returns true if 'a' and 'b' are the same flow mask, false otherwise. */
1393 bool
1394 minimask_equal(const struct minimask *a, const struct minimask *b)
1395 {
1396 return miniflow_equal(&a->masks, &b->masks);
1397 }
1398
1399 /* Returns a hash value for 'mask', given 'basis'. */
1400 uint32_t
1401 minimask_hash(const struct minimask *mask, uint32_t basis)
1402 {
1403 return miniflow_hash(&mask->masks, basis);
1404 }
1405
1406 /* Returns true if at least one bit is wildcarded in 'a_' but not in 'b_',
1407 * false otherwise. */
1408 bool
1409 minimask_has_extra(const struct minimask *a_, const struct minimask *b_)
1410 {
1411 const struct miniflow *a = &a_->masks;
1412 const struct miniflow *b = &b_->masks;
1413 int i;
1414
1415 for (i = 0; i < MINI_N_MAPS; i++) {
1416 uint32_t map;
1417
1418 for (map = a->map[i] | b->map[i]; map;
1419 map = zero_rightmost_1bit(map)) {
1420 int ofs = raw_ctz(map) + i * 32;
1421 uint32_t a_u32 = miniflow_get(a, ofs);
1422 uint32_t b_u32 = miniflow_get(b, ofs);
1423
1424 if ((a_u32 & b_u32) != b_u32) {
1425 return true;
1426 }
1427 }
1428 }
1429
1430 return false;
1431 }
1432
1433 /* Returns true if 'mask' matches every packet, false if 'mask' fixes any bits
1434 * or fields. */
1435 bool
1436 minimask_is_catchall(const struct minimask *mask_)
1437 {
1438 const struct miniflow *mask = &mask_->masks;
1439
1440 BUILD_ASSERT(MINI_N_MAPS == 2);
1441 return !(mask->map[0] | mask->map[1]);
1442 }