]> git.proxmox.com Git - mirror_ovs.git/blob - lib/flow.c
ofproto-dpif: Store relevant fields for wildcarding in facet.
[mirror_ovs.git] / lib / flow.c
1 /*
2 * Copyright (c) 2008, 2009, 2010, 2011, 2012 Nicira, Inc.
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at:
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16 #include <config.h>
17 #include <sys/types.h>
18 #include "flow.h"
19 #include <errno.h>
20 #include <inttypes.h>
21 #include <limits.h>
22 #include <netinet/in.h>
23 #include <netinet/icmp6.h>
24 #include <netinet/ip6.h>
25 #include <stdint.h>
26 #include <stdlib.h>
27 #include <string.h>
28 #include "byte-order.h"
29 #include "coverage.h"
30 #include "csum.h"
31 #include "dynamic-string.h"
32 #include "hash.h"
33 #include "jhash.h"
34 #include "match.h"
35 #include "ofpbuf.h"
36 #include "openflow/openflow.h"
37 #include "packets.h"
38 #include "unaligned.h"
39 #include "vlog.h"
40
41 VLOG_DEFINE_THIS_MODULE(flow);
42
43 COVERAGE_DEFINE(flow_extract);
44 COVERAGE_DEFINE(miniflow_malloc);
45
46 static struct arp_eth_header *
47 pull_arp(struct ofpbuf *packet)
48 {
49 return ofpbuf_try_pull(packet, ARP_ETH_HEADER_LEN);
50 }
51
52 static struct ip_header *
53 pull_ip(struct ofpbuf *packet)
54 {
55 if (packet->size >= IP_HEADER_LEN) {
56 struct ip_header *ip = packet->data;
57 int ip_len = IP_IHL(ip->ip_ihl_ver) * 4;
58 if (ip_len >= IP_HEADER_LEN && packet->size >= ip_len) {
59 return ofpbuf_pull(packet, ip_len);
60 }
61 }
62 return NULL;
63 }
64
65 static struct tcp_header *
66 pull_tcp(struct ofpbuf *packet)
67 {
68 if (packet->size >= TCP_HEADER_LEN) {
69 struct tcp_header *tcp = packet->data;
70 int tcp_len = TCP_OFFSET(tcp->tcp_ctl) * 4;
71 if (tcp_len >= TCP_HEADER_LEN && packet->size >= tcp_len) {
72 return ofpbuf_pull(packet, tcp_len);
73 }
74 }
75 return NULL;
76 }
77
78 static struct udp_header *
79 pull_udp(struct ofpbuf *packet)
80 {
81 return ofpbuf_try_pull(packet, UDP_HEADER_LEN);
82 }
83
84 static struct icmp_header *
85 pull_icmp(struct ofpbuf *packet)
86 {
87 return ofpbuf_try_pull(packet, ICMP_HEADER_LEN);
88 }
89
90 static struct icmp6_hdr *
91 pull_icmpv6(struct ofpbuf *packet)
92 {
93 return ofpbuf_try_pull(packet, sizeof(struct icmp6_hdr));
94 }
95
96 static void
97 parse_mpls(struct ofpbuf *b, struct flow *flow)
98 {
99 struct mpls_hdr *mh;
100
101 while ((mh = ofpbuf_try_pull(b, sizeof *mh))) {
102 if (flow->mpls_depth++ == 0) {
103 flow->mpls_lse = mh->mpls_lse;
104 }
105 if (mh->mpls_lse & htonl(MPLS_BOS_MASK)) {
106 break;
107 }
108 }
109 }
110
111 static void
112 parse_vlan(struct ofpbuf *b, struct flow *flow)
113 {
114 struct qtag_prefix {
115 ovs_be16 eth_type; /* ETH_TYPE_VLAN */
116 ovs_be16 tci;
117 };
118
119 if (b->size >= sizeof(struct qtag_prefix) + sizeof(ovs_be16)) {
120 struct qtag_prefix *qp = ofpbuf_pull(b, sizeof *qp);
121 flow->vlan_tci = qp->tci | htons(VLAN_CFI);
122 }
123 }
124
125 static ovs_be16
126 parse_ethertype(struct ofpbuf *b)
127 {
128 struct llc_snap_header *llc;
129 ovs_be16 proto;
130
131 proto = *(ovs_be16 *) ofpbuf_pull(b, sizeof proto);
132 if (ntohs(proto) >= ETH_TYPE_MIN) {
133 return proto;
134 }
135
136 if (b->size < sizeof *llc) {
137 return htons(FLOW_DL_TYPE_NONE);
138 }
139
140 llc = b->data;
141 if (llc->llc.llc_dsap != LLC_DSAP_SNAP
142 || llc->llc.llc_ssap != LLC_SSAP_SNAP
143 || llc->llc.llc_cntl != LLC_CNTL_SNAP
144 || memcmp(llc->snap.snap_org, SNAP_ORG_ETHERNET,
145 sizeof llc->snap.snap_org)) {
146 return htons(FLOW_DL_TYPE_NONE);
147 }
148
149 ofpbuf_pull(b, sizeof *llc);
150
151 if (ntohs(llc->snap.snap_type) >= ETH_TYPE_MIN) {
152 return llc->snap.snap_type;
153 }
154
155 return htons(FLOW_DL_TYPE_NONE);
156 }
157
158 static int
159 parse_ipv6(struct ofpbuf *packet, struct flow *flow)
160 {
161 const struct ip6_hdr *nh;
162 ovs_be32 tc_flow;
163 int nexthdr;
164
165 nh = ofpbuf_try_pull(packet, sizeof *nh);
166 if (!nh) {
167 return EINVAL;
168 }
169
170 nexthdr = nh->ip6_nxt;
171
172 flow->ipv6_src = nh->ip6_src;
173 flow->ipv6_dst = nh->ip6_dst;
174
175 tc_flow = get_unaligned_be32(&nh->ip6_flow);
176 flow->nw_tos = ntohl(tc_flow) >> 20;
177 flow->ipv6_label = tc_flow & htonl(IPV6_LABEL_MASK);
178 flow->nw_ttl = nh->ip6_hlim;
179 flow->nw_proto = IPPROTO_NONE;
180
181 while (1) {
182 if ((nexthdr != IPPROTO_HOPOPTS)
183 && (nexthdr != IPPROTO_ROUTING)
184 && (nexthdr != IPPROTO_DSTOPTS)
185 && (nexthdr != IPPROTO_AH)
186 && (nexthdr != IPPROTO_FRAGMENT)) {
187 /* It's either a terminal header (e.g., TCP, UDP) or one we
188 * don't understand. In either case, we're done with the
189 * packet, so use it to fill in 'nw_proto'. */
190 break;
191 }
192
193 /* We only verify that at least 8 bytes of the next header are
194 * available, but many of these headers are longer. Ensure that
195 * accesses within the extension header are within those first 8
196 * bytes. All extension headers are required to be at least 8
197 * bytes. */
198 if (packet->size < 8) {
199 return EINVAL;
200 }
201
202 if ((nexthdr == IPPROTO_HOPOPTS)
203 || (nexthdr == IPPROTO_ROUTING)
204 || (nexthdr == IPPROTO_DSTOPTS)) {
205 /* These headers, while different, have the fields we care about
206 * in the same location and with the same interpretation. */
207 const struct ip6_ext *ext_hdr = packet->data;
208 nexthdr = ext_hdr->ip6e_nxt;
209 if (!ofpbuf_try_pull(packet, (ext_hdr->ip6e_len + 1) * 8)) {
210 return EINVAL;
211 }
212 } else if (nexthdr == IPPROTO_AH) {
213 /* A standard AH definition isn't available, but the fields
214 * we care about are in the same location as the generic
215 * option header--only the header length is calculated
216 * differently. */
217 const struct ip6_ext *ext_hdr = packet->data;
218 nexthdr = ext_hdr->ip6e_nxt;
219 if (!ofpbuf_try_pull(packet, (ext_hdr->ip6e_len + 2) * 4)) {
220 return EINVAL;
221 }
222 } else if (nexthdr == IPPROTO_FRAGMENT) {
223 const struct ip6_frag *frag_hdr = packet->data;
224
225 nexthdr = frag_hdr->ip6f_nxt;
226 if (!ofpbuf_try_pull(packet, sizeof *frag_hdr)) {
227 return EINVAL;
228 }
229
230 /* We only process the first fragment. */
231 if (frag_hdr->ip6f_offlg != htons(0)) {
232 flow->nw_frag = FLOW_NW_FRAG_ANY;
233 if ((frag_hdr->ip6f_offlg & IP6F_OFF_MASK) != htons(0)) {
234 flow->nw_frag |= FLOW_NW_FRAG_LATER;
235 nexthdr = IPPROTO_FRAGMENT;
236 break;
237 }
238 }
239 }
240 }
241
242 flow->nw_proto = nexthdr;
243 return 0;
244 }
245
246 static void
247 parse_tcp(struct ofpbuf *packet, struct ofpbuf *b, struct flow *flow)
248 {
249 const struct tcp_header *tcp = pull_tcp(b);
250 if (tcp) {
251 flow->tp_src = tcp->tcp_src;
252 flow->tp_dst = tcp->tcp_dst;
253 packet->l7 = b->data;
254 }
255 }
256
257 static void
258 parse_udp(struct ofpbuf *packet, struct ofpbuf *b, struct flow *flow)
259 {
260 const struct udp_header *udp = pull_udp(b);
261 if (udp) {
262 flow->tp_src = udp->udp_src;
263 flow->tp_dst = udp->udp_dst;
264 packet->l7 = b->data;
265 }
266 }
267
268 static bool
269 parse_icmpv6(struct ofpbuf *b, struct flow *flow)
270 {
271 const struct icmp6_hdr *icmp = pull_icmpv6(b);
272
273 if (!icmp) {
274 return false;
275 }
276
277 /* The ICMPv6 type and code fields use the 16-bit transport port
278 * fields, so we need to store them in 16-bit network byte order. */
279 flow->tp_src = htons(icmp->icmp6_type);
280 flow->tp_dst = htons(icmp->icmp6_code);
281
282 if (icmp->icmp6_code == 0 &&
283 (icmp->icmp6_type == ND_NEIGHBOR_SOLICIT ||
284 icmp->icmp6_type == ND_NEIGHBOR_ADVERT)) {
285 const struct in6_addr *nd_target;
286
287 nd_target = ofpbuf_try_pull(b, sizeof *nd_target);
288 if (!nd_target) {
289 return false;
290 }
291 flow->nd_target = *nd_target;
292
293 while (b->size >= 8) {
294 /* The minimum size of an option is 8 bytes, which also is
295 * the size of Ethernet link-layer options. */
296 const struct nd_opt_hdr *nd_opt = b->data;
297 int opt_len = nd_opt->nd_opt_len * 8;
298
299 if (!opt_len || opt_len > b->size) {
300 goto invalid;
301 }
302
303 /* Store the link layer address if the appropriate option is
304 * provided. It is considered an error if the same link
305 * layer option is specified twice. */
306 if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LINKADDR
307 && opt_len == 8) {
308 if (eth_addr_is_zero(flow->arp_sha)) {
309 memcpy(flow->arp_sha, nd_opt + 1, ETH_ADDR_LEN);
310 } else {
311 goto invalid;
312 }
313 } else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LINKADDR
314 && opt_len == 8) {
315 if (eth_addr_is_zero(flow->arp_tha)) {
316 memcpy(flow->arp_tha, nd_opt + 1, ETH_ADDR_LEN);
317 } else {
318 goto invalid;
319 }
320 }
321
322 if (!ofpbuf_try_pull(b, opt_len)) {
323 goto invalid;
324 }
325 }
326 }
327
328 return true;
329
330 invalid:
331 memset(&flow->nd_target, 0, sizeof(flow->nd_target));
332 memset(flow->arp_sha, 0, sizeof(flow->arp_sha));
333 memset(flow->arp_tha, 0, sizeof(flow->arp_tha));
334
335 return false;
336
337 }
338
339 /* Initializes 'flow' members from 'packet', 'skb_priority', 'tnl', and
340 * 'ofp_in_port'.
341 *
342 * Initializes 'packet' header pointers as follows:
343 *
344 * - packet->l2 to the start of the Ethernet header.
345 *
346 * - packet->l2_5 to the start of the MPLS shim header.
347 *
348 * - packet->l3 to just past the Ethernet header, or just past the
349 * vlan_header if one is present, to the first byte of the payload of the
350 * Ethernet frame.
351 *
352 * - packet->l4 to just past the IPv4 header, if one is present and has a
353 * correct length, and otherwise NULL.
354 *
355 * - packet->l7 to just past the TCP or UDP or ICMP header, if one is
356 * present and has a correct length, and otherwise NULL.
357 */
358 void
359 flow_extract(struct ofpbuf *packet, uint32_t skb_priority, uint32_t skb_mark,
360 const struct flow_tnl *tnl, uint16_t ofp_in_port,
361 struct flow *flow)
362 {
363 struct ofpbuf b = *packet;
364 struct eth_header *eth;
365
366 COVERAGE_INC(flow_extract);
367
368 memset(flow, 0, sizeof *flow);
369
370 if (tnl) {
371 ovs_assert(tnl != &flow->tunnel);
372 flow->tunnel = *tnl;
373 }
374 flow->in_port = ofp_in_port;
375 flow->skb_priority = skb_priority;
376 flow->skb_mark = skb_mark;
377
378 packet->l2 = b.data;
379 packet->l2_5 = NULL;
380 packet->l3 = NULL;
381 packet->l4 = NULL;
382 packet->l7 = NULL;
383
384 if (b.size < sizeof *eth) {
385 return;
386 }
387
388 /* Link layer. */
389 eth = b.data;
390 memcpy(flow->dl_src, eth->eth_src, ETH_ADDR_LEN);
391 memcpy(flow->dl_dst, eth->eth_dst, ETH_ADDR_LEN);
392
393 /* dl_type, vlan_tci. */
394 ofpbuf_pull(&b, ETH_ADDR_LEN * 2);
395 if (eth->eth_type == htons(ETH_TYPE_VLAN)) {
396 parse_vlan(&b, flow);
397 }
398 flow->dl_type = parse_ethertype(&b);
399
400 /* Parse mpls, copy l3 ttl. */
401 if (eth_type_mpls(flow->dl_type)) {
402 packet->l2_5 = b.data;
403 parse_mpls(&b, flow);
404 }
405
406 /* Network layer. */
407 packet->l3 = b.data;
408 if (flow->dl_type == htons(ETH_TYPE_IP)) {
409 const struct ip_header *nh = pull_ip(&b);
410 if (nh) {
411 packet->l4 = b.data;
412
413 flow->nw_src = get_unaligned_be32(&nh->ip_src);
414 flow->nw_dst = get_unaligned_be32(&nh->ip_dst);
415 flow->nw_proto = nh->ip_proto;
416
417 flow->nw_tos = nh->ip_tos;
418 if (IP_IS_FRAGMENT(nh->ip_frag_off)) {
419 flow->nw_frag = FLOW_NW_FRAG_ANY;
420 if (nh->ip_frag_off & htons(IP_FRAG_OFF_MASK)) {
421 flow->nw_frag |= FLOW_NW_FRAG_LATER;
422 }
423 }
424 flow->nw_ttl = nh->ip_ttl;
425
426 if (!(nh->ip_frag_off & htons(IP_FRAG_OFF_MASK))) {
427 if (flow->nw_proto == IPPROTO_TCP) {
428 parse_tcp(packet, &b, flow);
429 } else if (flow->nw_proto == IPPROTO_UDP) {
430 parse_udp(packet, &b, flow);
431 } else if (flow->nw_proto == IPPROTO_ICMP) {
432 const struct icmp_header *icmp = pull_icmp(&b);
433 if (icmp) {
434 flow->tp_src = htons(icmp->icmp_type);
435 flow->tp_dst = htons(icmp->icmp_code);
436 packet->l7 = b.data;
437 }
438 }
439 }
440 }
441 } else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
442 if (parse_ipv6(&b, flow)) {
443 return;
444 }
445
446 packet->l4 = b.data;
447 if (flow->nw_proto == IPPROTO_TCP) {
448 parse_tcp(packet, &b, flow);
449 } else if (flow->nw_proto == IPPROTO_UDP) {
450 parse_udp(packet, &b, flow);
451 } else if (flow->nw_proto == IPPROTO_ICMPV6) {
452 if (parse_icmpv6(&b, flow)) {
453 packet->l7 = b.data;
454 }
455 }
456 } else if (flow->dl_type == htons(ETH_TYPE_ARP) ||
457 flow->dl_type == htons(ETH_TYPE_RARP)) {
458 const struct arp_eth_header *arp = pull_arp(&b);
459 if (arp && arp->ar_hrd == htons(1)
460 && arp->ar_pro == htons(ETH_TYPE_IP)
461 && arp->ar_hln == ETH_ADDR_LEN
462 && arp->ar_pln == 4) {
463 /* We only match on the lower 8 bits of the opcode. */
464 if (ntohs(arp->ar_op) <= 0xff) {
465 flow->nw_proto = ntohs(arp->ar_op);
466 }
467
468 flow->nw_src = arp->ar_spa;
469 flow->nw_dst = arp->ar_tpa;
470 memcpy(flow->arp_sha, arp->ar_sha, ETH_ADDR_LEN);
471 memcpy(flow->arp_tha, arp->ar_tha, ETH_ADDR_LEN);
472 }
473 }
474 }
475
476 /* For every bit of a field that is wildcarded in 'wildcards', sets the
477 * corresponding bit in 'flow' to zero. */
478 void
479 flow_zero_wildcards(struct flow *flow, const struct flow_wildcards *wildcards)
480 {
481 uint32_t *flow_u32 = (uint32_t *) flow;
482 const uint32_t *wc_u32 = (const uint32_t *) &wildcards->masks;
483 size_t i;
484
485 for (i = 0; i < FLOW_U32S; i++) {
486 flow_u32[i] &= wc_u32[i];
487 }
488 }
489
490 /* Initializes 'fmd' with the metadata found in 'flow'. */
491 void
492 flow_get_metadata(const struct flow *flow, struct flow_metadata *fmd)
493 {
494 BUILD_ASSERT_DECL(FLOW_WC_SEQ == 20);
495
496 fmd->tun_id = flow->tunnel.tun_id;
497 fmd->tun_src = flow->tunnel.ip_src;
498 fmd->tun_dst = flow->tunnel.ip_dst;
499 fmd->metadata = flow->metadata;
500 memcpy(fmd->regs, flow->regs, sizeof fmd->regs);
501 fmd->in_port = flow->in_port;
502 }
503
504 char *
505 flow_to_string(const struct flow *flow)
506 {
507 struct ds ds = DS_EMPTY_INITIALIZER;
508 flow_format(&ds, flow);
509 return ds_cstr(&ds);
510 }
511
512 const char *
513 flow_tun_flag_to_string(uint32_t flags)
514 {
515 switch (flags) {
516 case FLOW_TNL_F_DONT_FRAGMENT:
517 return "df";
518 case FLOW_TNL_F_CSUM:
519 return "csum";
520 case FLOW_TNL_F_KEY:
521 return "key";
522 default:
523 return NULL;
524 }
525 }
526
527 void
528 format_flags(struct ds *ds, const char *(*bit_to_string)(uint32_t),
529 uint32_t flags, char del)
530 {
531 uint32_t bad = 0;
532
533 if (!flags) {
534 return;
535 }
536 while (flags) {
537 uint32_t bit = rightmost_1bit(flags);
538 const char *s;
539
540 s = bit_to_string(bit);
541 if (s) {
542 ds_put_format(ds, "%s%c", s, del);
543 } else {
544 bad |= bit;
545 }
546
547 flags &= ~bit;
548 }
549
550 if (bad) {
551 ds_put_format(ds, "0x%"PRIx32"%c", bad, del);
552 }
553 ds_chomp(ds, del);
554 }
555
556 void
557 flow_format(struct ds *ds, const struct flow *flow)
558 {
559 struct match match;
560
561 match_wc_init(&match, flow);
562 match_format(&match, ds, OFP_DEFAULT_PRIORITY);
563 }
564
565 void
566 flow_print(FILE *stream, const struct flow *flow)
567 {
568 char *s = flow_to_string(flow);
569 fputs(s, stream);
570 free(s);
571 }
572 \f
573 /* flow_wildcards functions. */
574
575 /* Initializes 'wc' as a set of wildcards that matches every packet. */
576 void
577 flow_wildcards_init_catchall(struct flow_wildcards *wc)
578 {
579 memset(&wc->masks, 0, sizeof wc->masks);
580 }
581
582 /* Initializes 'wc' as an exact-match set of wildcards; that is, 'wc' does not
583 * wildcard any bits or fields. */
584 void
585 flow_wildcards_init_exact(struct flow_wildcards *wc)
586 {
587 memset(&wc->masks, 0xff, sizeof wc->masks);
588 memset(wc->masks.zeros, 0, sizeof wc->masks.zeros);
589 }
590
591 /* Returns true if 'wc' matches every packet, false if 'wc' fixes any bits or
592 * fields. */
593 bool
594 flow_wildcards_is_catchall(const struct flow_wildcards *wc)
595 {
596 const uint32_t *wc_u32 = (const uint32_t *) &wc->masks;
597 size_t i;
598
599 for (i = 0; i < FLOW_U32S; i++) {
600 if (wc_u32[i]) {
601 return false;
602 }
603 }
604 return true;
605 }
606
607 /* Sets 'dst' as the bitwise AND of wildcards in 'src1' and 'src2'.
608 * That is, a bit or a field is wildcarded in 'dst' if it is wildcarded
609 * in 'src1' or 'src2' or both. */
610 void
611 flow_wildcards_and(struct flow_wildcards *dst,
612 const struct flow_wildcards *src1,
613 const struct flow_wildcards *src2)
614 {
615 uint32_t *dst_u32 = (uint32_t *) &dst->masks;
616 const uint32_t *src1_u32 = (const uint32_t *) &src1->masks;
617 const uint32_t *src2_u32 = (const uint32_t *) &src2->masks;
618 size_t i;
619
620 for (i = 0; i < FLOW_U32S; i++) {
621 dst_u32[i] = src1_u32[i] & src2_u32[i];
622 }
623 }
624
625 /* Sets 'dst' as the bitwise OR of wildcards in 'src1' and 'src2'. That
626 * is, a bit or a field is wildcarded in 'dst' if it is neither
627 * wildcarded in 'src1' nor 'src2'. */
628 void
629 flow_wildcards_or(struct flow_wildcards *dst,
630 const struct flow_wildcards *src1,
631 const struct flow_wildcards *src2)
632 {
633 uint32_t *dst_u32 = (uint32_t *) &dst->masks;
634 const uint32_t *src1_u32 = (const uint32_t *) &src1->masks;
635 const uint32_t *src2_u32 = (const uint32_t *) &src2->masks;
636 size_t i;
637
638 for (i = 0; i < FLOW_U32S; i++) {
639 dst_u32[i] = src1_u32[i] | src2_u32[i];
640 }
641 }
642
643 /* Perform a bitwise OR of miniflow 'src' flow data with the equivalent
644 * fields in 'dst', storing the result in 'dst'. */
645 static void
646 flow_union_with_miniflow(struct flow *dst, const struct miniflow *src)
647 {
648 uint32_t *dst_u32 = (uint32_t *) dst;
649 int ofs;
650 int i;
651
652 ofs = 0;
653 for (i = 0; i < MINI_N_MAPS; i++) {
654 uint32_t map;
655
656 for (map = src->map[i]; map; map = zero_rightmost_1bit(map)) {
657 dst_u32[raw_ctz(map) + i * 32] |= src->values[ofs++];
658 }
659 }
660 }
661
662 /* Fold minimask 'mask''s wildcard mask into 'wc's wildcard mask. */
663 void
664 flow_wildcards_fold_minimask(struct flow_wildcards *wc,
665 const struct minimask *mask)
666 {
667 flow_union_with_miniflow(&wc->masks, &mask->masks);
668 }
669
670 /* Returns a hash of the wildcards in 'wc'. */
671 uint32_t
672 flow_wildcards_hash(const struct flow_wildcards *wc, uint32_t basis)
673 {
674 return flow_hash(&wc->masks, basis);
675 }
676
677 /* Returns true if 'a' and 'b' represent the same wildcards, false if they are
678 * different. */
679 bool
680 flow_wildcards_equal(const struct flow_wildcards *a,
681 const struct flow_wildcards *b)
682 {
683 return flow_equal(&a->masks, &b->masks);
684 }
685
686 /* Returns true if at least one bit or field is wildcarded in 'a' but not in
687 * 'b', false otherwise. */
688 bool
689 flow_wildcards_has_extra(const struct flow_wildcards *a,
690 const struct flow_wildcards *b)
691 {
692 const uint32_t *a_u32 = (const uint32_t *) &a->masks;
693 const uint32_t *b_u32 = (const uint32_t *) &b->masks;
694 size_t i;
695
696 for (i = 0; i < FLOW_U32S; i++) {
697 if ((a_u32[i] & b_u32[i]) != b_u32[i]) {
698 return true;
699 }
700 }
701 return false;
702 }
703
704 /* Returns true if 'a' and 'b' are equal, except that 0-bits (wildcarded bits)
705 * in 'wc' do not need to be equal in 'a' and 'b'. */
706 bool
707 flow_equal_except(const struct flow *a, const struct flow *b,
708 const struct flow_wildcards *wc)
709 {
710 const uint32_t *a_u32 = (const uint32_t *) a;
711 const uint32_t *b_u32 = (const uint32_t *) b;
712 const uint32_t *wc_u32 = (const uint32_t *) &wc->masks;
713 size_t i;
714
715 for (i = 0; i < FLOW_U32S; i++) {
716 if ((a_u32[i] ^ b_u32[i]) & wc_u32[i]) {
717 return false;
718 }
719 }
720 return true;
721 }
722
723 /* Sets the wildcard mask for register 'idx' in 'wc' to 'mask'.
724 * (A 0-bit indicates a wildcard bit.) */
725 void
726 flow_wildcards_set_reg_mask(struct flow_wildcards *wc, int idx, uint32_t mask)
727 {
728 wc->masks.regs[idx] = mask;
729 }
730
731 /* Hashes 'flow' based on its L2 through L4 protocol information. */
732 uint32_t
733 flow_hash_symmetric_l4(const struct flow *flow, uint32_t basis)
734 {
735 struct {
736 union {
737 ovs_be32 ipv4_addr;
738 struct in6_addr ipv6_addr;
739 };
740 ovs_be16 eth_type;
741 ovs_be16 vlan_tci;
742 ovs_be16 tp_port;
743 uint8_t eth_addr[ETH_ADDR_LEN];
744 uint8_t ip_proto;
745 } fields;
746
747 int i;
748
749 memset(&fields, 0, sizeof fields);
750 for (i = 0; i < ETH_ADDR_LEN; i++) {
751 fields.eth_addr[i] = flow->dl_src[i] ^ flow->dl_dst[i];
752 }
753 fields.vlan_tci = flow->vlan_tci & htons(VLAN_VID_MASK);
754 fields.eth_type = flow->dl_type;
755
756 /* UDP source and destination port are not taken into account because they
757 * will not necessarily be symmetric in a bidirectional flow. */
758 if (fields.eth_type == htons(ETH_TYPE_IP)) {
759 fields.ipv4_addr = flow->nw_src ^ flow->nw_dst;
760 fields.ip_proto = flow->nw_proto;
761 if (fields.ip_proto == IPPROTO_TCP) {
762 fields.tp_port = flow->tp_src ^ flow->tp_dst;
763 }
764 } else if (fields.eth_type == htons(ETH_TYPE_IPV6)) {
765 const uint8_t *a = &flow->ipv6_src.s6_addr[0];
766 const uint8_t *b = &flow->ipv6_dst.s6_addr[0];
767 uint8_t *ipv6_addr = &fields.ipv6_addr.s6_addr[0];
768
769 for (i=0; i<16; i++) {
770 ipv6_addr[i] = a[i] ^ b[i];
771 }
772 fields.ip_proto = flow->nw_proto;
773 if (fields.ip_proto == IPPROTO_TCP) {
774 fields.tp_port = flow->tp_src ^ flow->tp_dst;
775 }
776 }
777 return jhash_bytes(&fields, sizeof fields, basis);
778 }
779
780 /* Masks the fields in 'wc' that are used by the flow hash 'fields'. */
781 void
782 flow_mask_hash_fields(struct flow_wildcards *wc, enum nx_hash_fields fields)
783 {
784 switch (fields) {
785 case NX_HASH_FIELDS_ETH_SRC:
786 memset(&wc->masks.dl_src, 0xff, sizeof wc->masks.dl_src);
787 break;
788
789 case NX_HASH_FIELDS_SYMMETRIC_L4:
790 memset(&wc->masks.dl_src, 0xff, sizeof wc->masks.dl_src);
791 memset(&wc->masks.dl_dst, 0xff, sizeof wc->masks.dl_dst);
792 memset(&wc->masks.dl_type, 0xff, sizeof wc->masks.dl_type);
793 memset(&wc->masks.vlan_tci, 0xff, sizeof wc->masks.vlan_tci);
794 memset(&wc->masks.nw_proto, 0xff, sizeof wc->masks.nw_proto);
795 memset(&wc->masks.nw_src, 0xff, sizeof wc->masks.nw_src);
796 memset(&wc->masks.nw_dst, 0xff, sizeof wc->masks.nw_dst);
797 memset(&wc->masks.tp_src, 0xff, sizeof wc->masks.tp_src);
798 memset(&wc->masks.tp_dst, 0xff, sizeof wc->masks.tp_dst);
799 break;
800
801 default:
802 NOT_REACHED();
803 }
804 }
805
806 /* Hashes the portions of 'flow' designated by 'fields'. */
807 uint32_t
808 flow_hash_fields(const struct flow *flow, enum nx_hash_fields fields,
809 uint16_t basis)
810 {
811 switch (fields) {
812
813 case NX_HASH_FIELDS_ETH_SRC:
814 return jhash_bytes(flow->dl_src, sizeof flow->dl_src, basis);
815
816 case NX_HASH_FIELDS_SYMMETRIC_L4:
817 return flow_hash_symmetric_l4(flow, basis);
818 }
819
820 NOT_REACHED();
821 }
822
823 /* Returns a string representation of 'fields'. */
824 const char *
825 flow_hash_fields_to_str(enum nx_hash_fields fields)
826 {
827 switch (fields) {
828 case NX_HASH_FIELDS_ETH_SRC: return "eth_src";
829 case NX_HASH_FIELDS_SYMMETRIC_L4: return "symmetric_l4";
830 default: return "<unknown>";
831 }
832 }
833
834 /* Returns true if the value of 'fields' is supported. Otherwise false. */
835 bool
836 flow_hash_fields_valid(enum nx_hash_fields fields)
837 {
838 return fields == NX_HASH_FIELDS_ETH_SRC
839 || fields == NX_HASH_FIELDS_SYMMETRIC_L4;
840 }
841
842 /* Returns a hash value for the bits of 'flow' that are active based on
843 * 'wc', given 'basis'. */
844 uint32_t
845 flow_hash_in_wildcards(const struct flow *flow,
846 const struct flow_wildcards *wc, uint32_t basis)
847 {
848 const uint32_t *wc_u32 = (const uint32_t *) &wc->masks;
849 const uint32_t *flow_u32 = (const uint32_t *) flow;
850 uint32_t hash;
851 size_t i;
852
853 hash = basis;
854 for (i = 0; i < FLOW_U32S; i++) {
855 hash = mhash_add(hash, flow_u32[i] & wc_u32[i]);
856 }
857 return mhash_finish(hash, 4 * FLOW_U32S);
858 }
859
860 /* Sets the VLAN VID that 'flow' matches to 'vid', which is interpreted as an
861 * OpenFlow 1.0 "dl_vlan" value:
862 *
863 * - If it is in the range 0...4095, 'flow->vlan_tci' is set to match
864 * that VLAN. Any existing PCP match is unchanged (it becomes 0 if
865 * 'flow' previously matched packets without a VLAN header).
866 *
867 * - If it is OFP_VLAN_NONE, 'flow->vlan_tci' is set to match a packet
868 * without a VLAN tag.
869 *
870 * - Other values of 'vid' should not be used. */
871 void
872 flow_set_dl_vlan(struct flow *flow, ovs_be16 vid)
873 {
874 if (vid == htons(OFP10_VLAN_NONE)) {
875 flow->vlan_tci = htons(0);
876 } else {
877 vid &= htons(VLAN_VID_MASK);
878 flow->vlan_tci &= ~htons(VLAN_VID_MASK);
879 flow->vlan_tci |= htons(VLAN_CFI) | vid;
880 }
881 }
882
883 /* Sets the VLAN VID that 'flow' matches to 'vid', which is interpreted as an
884 * OpenFlow 1.2 "vlan_vid" value, that is, the low 13 bits of 'vlan_tci' (VID
885 * plus CFI). */
886 void
887 flow_set_vlan_vid(struct flow *flow, ovs_be16 vid)
888 {
889 ovs_be16 mask = htons(VLAN_VID_MASK | VLAN_CFI);
890 flow->vlan_tci &= ~mask;
891 flow->vlan_tci |= vid & mask;
892 }
893
894 /* Sets the VLAN PCP that 'flow' matches to 'pcp', which should be in the
895 * range 0...7.
896 *
897 * This function has no effect on the VLAN ID that 'flow' matches.
898 *
899 * After calling this function, 'flow' will not match packets without a VLAN
900 * header. */
901 void
902 flow_set_vlan_pcp(struct flow *flow, uint8_t pcp)
903 {
904 pcp &= 0x07;
905 flow->vlan_tci &= ~htons(VLAN_PCP_MASK);
906 flow->vlan_tci |= htons((pcp << VLAN_PCP_SHIFT) | VLAN_CFI);
907 }
908
909 /* Sets the MPLS Label that 'flow' matches to 'label', which is interpreted
910 * as an OpenFlow 1.1 "mpls_label" value. */
911 void
912 flow_set_mpls_label(struct flow *flow, ovs_be32 label)
913 {
914 set_mpls_lse_label(&flow->mpls_lse, label);
915 }
916
917 /* Sets the MPLS TTL that 'flow' matches to 'ttl', which should be in the
918 * range 0...255. */
919 void
920 flow_set_mpls_ttl(struct flow *flow, uint8_t ttl)
921 {
922 set_mpls_lse_ttl(&flow->mpls_lse, ttl);
923 }
924
925 /* Sets the MPLS TC that 'flow' matches to 'tc', which should be in the
926 * range 0...7. */
927 void
928 flow_set_mpls_tc(struct flow *flow, uint8_t tc)
929 {
930 set_mpls_lse_tc(&flow->mpls_lse, tc);
931 }
932
933 /* Sets the MPLS BOS bit that 'flow' matches to which should be 0 or 1. */
934 void
935 flow_set_mpls_bos(struct flow *flow, uint8_t bos)
936 {
937 set_mpls_lse_bos(&flow->mpls_lse, bos);
938 }
939
940 /* Puts into 'b' a packet that flow_extract() would parse as having the given
941 * 'flow'.
942 *
943 * (This is useful only for testing, obviously, and the packet isn't really
944 * valid. It hasn't got some checksums filled in, for one, and lots of fields
945 * are just zeroed.) */
946 void
947 flow_compose(struct ofpbuf *b, const struct flow *flow)
948 {
949 eth_compose(b, flow->dl_dst, flow->dl_src, ntohs(flow->dl_type), 0);
950 if (flow->dl_type == htons(FLOW_DL_TYPE_NONE)) {
951 struct eth_header *eth = b->l2;
952 eth->eth_type = htons(b->size);
953 return;
954 }
955
956 if (flow->vlan_tci & htons(VLAN_CFI)) {
957 eth_push_vlan(b, flow->vlan_tci);
958 }
959
960 if (flow->dl_type == htons(ETH_TYPE_IP)) {
961 struct ip_header *ip;
962
963 b->l3 = ip = ofpbuf_put_zeros(b, sizeof *ip);
964 ip->ip_ihl_ver = IP_IHL_VER(5, 4);
965 ip->ip_tos = flow->nw_tos;
966 ip->ip_ttl = flow->nw_ttl;
967 ip->ip_proto = flow->nw_proto;
968 ip->ip_src = flow->nw_src;
969 ip->ip_dst = flow->nw_dst;
970
971 if (flow->nw_frag & FLOW_NW_FRAG_ANY) {
972 ip->ip_frag_off |= htons(IP_MORE_FRAGMENTS);
973 if (flow->nw_frag & FLOW_NW_FRAG_LATER) {
974 ip->ip_frag_off |= htons(100);
975 }
976 }
977 if (!(flow->nw_frag & FLOW_NW_FRAG_ANY)
978 || !(flow->nw_frag & FLOW_NW_FRAG_LATER)) {
979 if (flow->nw_proto == IPPROTO_TCP) {
980 struct tcp_header *tcp;
981
982 b->l4 = tcp = ofpbuf_put_zeros(b, sizeof *tcp);
983 tcp->tcp_src = flow->tp_src;
984 tcp->tcp_dst = flow->tp_dst;
985 tcp->tcp_ctl = TCP_CTL(0, 5);
986 } else if (flow->nw_proto == IPPROTO_UDP) {
987 struct udp_header *udp;
988
989 b->l4 = udp = ofpbuf_put_zeros(b, sizeof *udp);
990 udp->udp_src = flow->tp_src;
991 udp->udp_dst = flow->tp_dst;
992 } else if (flow->nw_proto == IPPROTO_ICMP) {
993 struct icmp_header *icmp;
994
995 b->l4 = icmp = ofpbuf_put_zeros(b, sizeof *icmp);
996 icmp->icmp_type = ntohs(flow->tp_src);
997 icmp->icmp_code = ntohs(flow->tp_dst);
998 icmp->icmp_csum = csum(icmp, ICMP_HEADER_LEN);
999 }
1000 }
1001
1002 ip = b->l3;
1003 ip->ip_tot_len = htons((uint8_t *) b->data + b->size
1004 - (uint8_t *) b->l3);
1005 ip->ip_csum = csum(ip, sizeof *ip);
1006 } else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
1007 /* XXX */
1008 } else if (flow->dl_type == htons(ETH_TYPE_ARP) ||
1009 flow->dl_type == htons(ETH_TYPE_RARP)) {
1010 struct arp_eth_header *arp;
1011
1012 b->l3 = arp = ofpbuf_put_zeros(b, sizeof *arp);
1013 arp->ar_hrd = htons(1);
1014 arp->ar_pro = htons(ETH_TYPE_IP);
1015 arp->ar_hln = ETH_ADDR_LEN;
1016 arp->ar_pln = 4;
1017 arp->ar_op = htons(flow->nw_proto);
1018
1019 if (flow->nw_proto == ARP_OP_REQUEST ||
1020 flow->nw_proto == ARP_OP_REPLY) {
1021 arp->ar_spa = flow->nw_src;
1022 arp->ar_tpa = flow->nw_dst;
1023 memcpy(arp->ar_sha, flow->arp_sha, ETH_ADDR_LEN);
1024 memcpy(arp->ar_tha, flow->arp_tha, ETH_ADDR_LEN);
1025 }
1026 }
1027
1028 if (eth_type_mpls(flow->dl_type)) {
1029 b->l2_5 = b->l3;
1030 push_mpls(b, flow->dl_type, flow->mpls_lse);
1031 }
1032 }
1033 \f
1034 /* Compressed flow. */
1035
1036 static int
1037 miniflow_n_values(const struct miniflow *flow)
1038 {
1039 int n, i;
1040
1041 n = 0;
1042 for (i = 0; i < MINI_N_MAPS; i++) {
1043 n += popcount(flow->map[i]);
1044 }
1045 return n;
1046 }
1047
1048 static uint32_t *
1049 miniflow_alloc_values(struct miniflow *flow, int n)
1050 {
1051 if (n <= MINI_N_INLINE) {
1052 return flow->inline_values;
1053 } else {
1054 COVERAGE_INC(miniflow_malloc);
1055 return xmalloc(n * sizeof *flow->values);
1056 }
1057 }
1058
1059 /* Initializes 'dst' as a copy of 'src'. The caller must eventually free 'dst'
1060 * with miniflow_destroy(). */
1061 void
1062 miniflow_init(struct miniflow *dst, const struct flow *src)
1063 {
1064 const uint32_t *src_u32 = (const uint32_t *) src;
1065 unsigned int ofs;
1066 unsigned int i;
1067 int n;
1068
1069 /* Initialize dst->map, counting the number of nonzero elements. */
1070 n = 0;
1071 memset(dst->map, 0, sizeof dst->map);
1072 for (i = 0; i < FLOW_U32S; i++) {
1073 if (src_u32[i]) {
1074 dst->map[i / 32] |= 1u << (i % 32);
1075 n++;
1076 }
1077 }
1078
1079 /* Initialize dst->values. */
1080 dst->values = miniflow_alloc_values(dst, n);
1081 ofs = 0;
1082 for (i = 0; i < MINI_N_MAPS; i++) {
1083 uint32_t map;
1084
1085 for (map = dst->map[i]; map; map = zero_rightmost_1bit(map)) {
1086 dst->values[ofs++] = src_u32[raw_ctz(map) + i * 32];
1087 }
1088 }
1089 }
1090
1091 /* Initializes 'dst' as a copy of 'src'. The caller must eventually free 'dst'
1092 * with miniflow_destroy(). */
1093 void
1094 miniflow_clone(struct miniflow *dst, const struct miniflow *src)
1095 {
1096 int n = miniflow_n_values(src);
1097 memcpy(dst->map, src->map, sizeof dst->map);
1098 dst->values = miniflow_alloc_values(dst, n);
1099 memcpy(dst->values, src->values, n * sizeof *dst->values);
1100 }
1101
1102 /* Frees any memory owned by 'flow'. Does not free the storage in which 'flow'
1103 * itself resides; the caller is responsible for that. */
1104 void
1105 miniflow_destroy(struct miniflow *flow)
1106 {
1107 if (flow->values != flow->inline_values) {
1108 free(flow->values);
1109 }
1110 }
1111
1112 /* Initializes 'dst' as a copy of 'src'. */
1113 void
1114 miniflow_expand(const struct miniflow *src, struct flow *dst)
1115 {
1116 memset(dst, 0, sizeof *dst);
1117 flow_union_with_miniflow(dst, src);
1118 }
1119
1120 static const uint32_t *
1121 miniflow_get__(const struct miniflow *flow, unsigned int u32_ofs)
1122 {
1123 if (!(flow->map[u32_ofs / 32] & (1u << (u32_ofs % 32)))) {
1124 static const uint32_t zero = 0;
1125 return &zero;
1126 } else {
1127 const uint32_t *p = flow->values;
1128
1129 BUILD_ASSERT(MINI_N_MAPS == 2);
1130 if (u32_ofs < 32) {
1131 p += popcount(flow->map[0] & ((1u << u32_ofs) - 1));
1132 } else {
1133 p += popcount(flow->map[0]);
1134 p += popcount(flow->map[1] & ((1u << (u32_ofs - 32)) - 1));
1135 }
1136 return p;
1137 }
1138 }
1139
1140 /* Returns the uint32_t that would be at byte offset '4 * u32_ofs' if 'flow'
1141 * were expanded into a "struct flow". */
1142 uint32_t
1143 miniflow_get(const struct miniflow *flow, unsigned int u32_ofs)
1144 {
1145 return *miniflow_get__(flow, u32_ofs);
1146 }
1147
1148 /* Returns the ovs_be16 that would be at byte offset 'u8_ofs' if 'flow' were
1149 * expanded into a "struct flow". */
1150 static ovs_be16
1151 miniflow_get_be16(const struct miniflow *flow, unsigned int u8_ofs)
1152 {
1153 const uint32_t *u32p = miniflow_get__(flow, u8_ofs / 4);
1154 const ovs_be16 *be16p = (const ovs_be16 *) u32p;
1155 return be16p[u8_ofs % 4 != 0];
1156 }
1157
1158 /* Returns the VID within the vlan_tci member of the "struct flow" represented
1159 * by 'flow'. */
1160 uint16_t
1161 miniflow_get_vid(const struct miniflow *flow)
1162 {
1163 ovs_be16 tci = miniflow_get_be16(flow, offsetof(struct flow, vlan_tci));
1164 return vlan_tci_to_vid(tci);
1165 }
1166
1167 /* Returns true if 'a' and 'b' are the same flow, false otherwise. */
1168 bool
1169 miniflow_equal(const struct miniflow *a, const struct miniflow *b)
1170 {
1171 int i;
1172
1173 for (i = 0; i < MINI_N_MAPS; i++) {
1174 if (a->map[i] != b->map[i]) {
1175 return false;
1176 }
1177 }
1178
1179 return !memcmp(a->values, b->values,
1180 miniflow_n_values(a) * sizeof *a->values);
1181 }
1182
1183 /* Returns true if 'a' and 'b' are equal at the places where there are 1-bits
1184 * in 'mask', false if they differ. */
1185 bool
1186 miniflow_equal_in_minimask(const struct miniflow *a, const struct miniflow *b,
1187 const struct minimask *mask)
1188 {
1189 const uint32_t *p;
1190 int i;
1191
1192 p = mask->masks.values;
1193 for (i = 0; i < MINI_N_MAPS; i++) {
1194 uint32_t map;
1195
1196 for (map = mask->masks.map[i]; map; map = zero_rightmost_1bit(map)) {
1197 int ofs = raw_ctz(map) + i * 32;
1198
1199 if ((miniflow_get(a, ofs) ^ miniflow_get(b, ofs)) & *p) {
1200 return false;
1201 }
1202 p++;
1203 }
1204 }
1205
1206 return true;
1207 }
1208
1209 /* Returns true if 'a' and 'b' are equal at the places where there are 1-bits
1210 * in 'mask', false if they differ. */
1211 bool
1212 miniflow_equal_flow_in_minimask(const struct miniflow *a, const struct flow *b,
1213 const struct minimask *mask)
1214 {
1215 const uint32_t *b_u32 = (const uint32_t *) b;
1216 const uint32_t *p;
1217 int i;
1218
1219 p = mask->masks.values;
1220 for (i = 0; i < MINI_N_MAPS; i++) {
1221 uint32_t map;
1222
1223 for (map = mask->masks.map[i]; map; map = zero_rightmost_1bit(map)) {
1224 int ofs = raw_ctz(map) + i * 32;
1225
1226 if ((miniflow_get(a, ofs) ^ b_u32[ofs]) & *p) {
1227 return false;
1228 }
1229 p++;
1230 }
1231 }
1232
1233 return true;
1234 }
1235
1236 /* Returns a hash value for 'flow', given 'basis'. */
1237 uint32_t
1238 miniflow_hash(const struct miniflow *flow, uint32_t basis)
1239 {
1240 BUILD_ASSERT_DECL(MINI_N_MAPS == 2);
1241 return hash_3words(flow->map[0], flow->map[1],
1242 hash_words(flow->values, miniflow_n_values(flow),
1243 basis));
1244 }
1245
1246 /* Returns a hash value for the bits of 'flow' where there are 1-bits in
1247 * 'mask', given 'basis'.
1248 *
1249 * The hash values returned by this function are the same as those returned by
1250 * flow_hash_in_minimask(), only the form of the arguments differ. */
1251 uint32_t
1252 miniflow_hash_in_minimask(const struct miniflow *flow,
1253 const struct minimask *mask, uint32_t basis)
1254 {
1255 const uint32_t *p = mask->masks.values;
1256 uint32_t hash;
1257 int i;
1258
1259 hash = basis;
1260 for (i = 0; i < MINI_N_MAPS; i++) {
1261 uint32_t map;
1262
1263 for (map = mask->masks.map[i]; map; map = zero_rightmost_1bit(map)) {
1264 int ofs = raw_ctz(map) + i * 32;
1265
1266 hash = mhash_add(hash, miniflow_get(flow, ofs) & *p);
1267 p++;
1268 }
1269 }
1270
1271 return mhash_finish(hash, (p - mask->masks.values) * 4);
1272 }
1273
1274 /* Returns a hash value for the bits of 'flow' where there are 1-bits in
1275 * 'mask', given 'basis'.
1276 *
1277 * The hash values returned by this function are the same as those returned by
1278 * miniflow_hash_in_minimask(), only the form of the arguments differ. */
1279 uint32_t
1280 flow_hash_in_minimask(const struct flow *flow, const struct minimask *mask,
1281 uint32_t basis)
1282 {
1283 const uint32_t *flow_u32 = (const uint32_t *) flow;
1284 const uint32_t *p = mask->masks.values;
1285 uint32_t hash;
1286 int i;
1287
1288 hash = basis;
1289 for (i = 0; i < MINI_N_MAPS; i++) {
1290 uint32_t map;
1291
1292 for (map = mask->masks.map[i]; map; map = zero_rightmost_1bit(map)) {
1293 int ofs = raw_ctz(map) + i * 32;
1294
1295 hash = mhash_add(hash, flow_u32[ofs] & *p);
1296 p++;
1297 }
1298 }
1299
1300 return mhash_finish(hash, (p - mask->masks.values) * 4);
1301 }
1302 \f
1303 /* Initializes 'dst' as a copy of 'src'. The caller must eventually free 'dst'
1304 * with minimask_destroy(). */
1305 void
1306 minimask_init(struct minimask *mask, const struct flow_wildcards *wc)
1307 {
1308 miniflow_init(&mask->masks, &wc->masks);
1309 }
1310
1311 /* Initializes 'dst' as a copy of 'src'. The caller must eventually free 'dst'
1312 * with minimask_destroy(). */
1313 void
1314 minimask_clone(struct minimask *dst, const struct minimask *src)
1315 {
1316 miniflow_clone(&dst->masks, &src->masks);
1317 }
1318
1319 /* Initializes 'dst_' as the bit-wise "and" of 'a_' and 'b_'.
1320 *
1321 * The caller must provide room for FLOW_U32S "uint32_t"s in 'storage', for use
1322 * by 'dst_'. The caller must *not* free 'dst_' with minimask_destroy(). */
1323 void
1324 minimask_combine(struct minimask *dst_,
1325 const struct minimask *a_, const struct minimask *b_,
1326 uint32_t storage[FLOW_U32S])
1327 {
1328 struct miniflow *dst = &dst_->masks;
1329 const struct miniflow *a = &a_->masks;
1330 const struct miniflow *b = &b_->masks;
1331 int i, n;
1332
1333 n = 0;
1334 dst->values = storage;
1335 for (i = 0; i < MINI_N_MAPS; i++) {
1336 uint32_t map;
1337
1338 dst->map[i] = 0;
1339 for (map = a->map[i] & b->map[i]; map;
1340 map = zero_rightmost_1bit(map)) {
1341 int ofs = raw_ctz(map) + i * 32;
1342 uint32_t mask = miniflow_get(a, ofs) & miniflow_get(b, ofs);
1343
1344 if (mask) {
1345 dst->map[i] |= rightmost_1bit(map);
1346 dst->values[n++] = mask;
1347 }
1348 }
1349 }
1350 }
1351
1352 /* Frees any memory owned by 'mask'. Does not free the storage in which 'mask'
1353 * itself resides; the caller is responsible for that. */
1354 void
1355 minimask_destroy(struct minimask *mask)
1356 {
1357 miniflow_destroy(&mask->masks);
1358 }
1359
1360 /* Initializes 'dst' as a copy of 'src'. */
1361 void
1362 minimask_expand(const struct minimask *mask, struct flow_wildcards *wc)
1363 {
1364 miniflow_expand(&mask->masks, &wc->masks);
1365 }
1366
1367 /* Returns the uint32_t that would be at byte offset '4 * u32_ofs' if 'mask'
1368 * were expanded into a "struct flow_wildcards". */
1369 uint32_t
1370 minimask_get(const struct minimask *mask, unsigned int u32_ofs)
1371 {
1372 return miniflow_get(&mask->masks, u32_ofs);
1373 }
1374
1375 /* Returns the VID mask within the vlan_tci member of the "struct
1376 * flow_wildcards" represented by 'mask'. */
1377 uint16_t
1378 minimask_get_vid_mask(const struct minimask *mask)
1379 {
1380 return miniflow_get_vid(&mask->masks);
1381 }
1382
1383 /* Returns true if 'a' and 'b' are the same flow mask, false otherwise. */
1384 bool
1385 minimask_equal(const struct minimask *a, const struct minimask *b)
1386 {
1387 return miniflow_equal(&a->masks, &b->masks);
1388 }
1389
1390 /* Returns a hash value for 'mask', given 'basis'. */
1391 uint32_t
1392 minimask_hash(const struct minimask *mask, uint32_t basis)
1393 {
1394 return miniflow_hash(&mask->masks, basis);
1395 }
1396
1397 /* Returns true if at least one bit is wildcarded in 'a_' but not in 'b_',
1398 * false otherwise. */
1399 bool
1400 minimask_has_extra(const struct minimask *a_, const struct minimask *b_)
1401 {
1402 const struct miniflow *a = &a_->masks;
1403 const struct miniflow *b = &b_->masks;
1404 int i;
1405
1406 for (i = 0; i < MINI_N_MAPS; i++) {
1407 uint32_t map;
1408
1409 for (map = a->map[i] | b->map[i]; map;
1410 map = zero_rightmost_1bit(map)) {
1411 int ofs = raw_ctz(map) + i * 32;
1412 uint32_t a_u32 = miniflow_get(a, ofs);
1413 uint32_t b_u32 = miniflow_get(b, ofs);
1414
1415 if ((a_u32 & b_u32) != b_u32) {
1416 return true;
1417 }
1418 }
1419 }
1420
1421 return false;
1422 }
1423
1424 /* Returns true if 'mask' matches every packet, false if 'mask' fixes any bits
1425 * or fields. */
1426 bool
1427 minimask_is_catchall(const struct minimask *mask_)
1428 {
1429 const struct miniflow *mask = &mask_->masks;
1430
1431 BUILD_ASSERT(MINI_N_MAPS == 2);
1432 return !(mask->map[0] | mask->map[1]);
1433 }