]> git.proxmox.com Git - ovs.git/blob - lib/flow.c
tests: Fix deprecated use of qw.
[ovs.git] / lib / flow.c
1 /*
2 * Copyright (c) 2008, 2009, 2010, 2011 Nicira Networks.
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at:
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16 #include <config.h>
17 #include <sys/types.h>
18 #include "flow.h"
19 #include <assert.h>
20 #include <errno.h>
21 #include <inttypes.h>
22 #include <netinet/in.h>
23 #include <netinet/icmp6.h>
24 #include <netinet/ip6.h>
25 #include <stdlib.h>
26 #include <string.h>
27 #include "byte-order.h"
28 #include "coverage.h"
29 #include "dpif.h"
30 #include "dynamic-string.h"
31 #include "hash.h"
32 #include "ofpbuf.h"
33 #include "openflow/openflow.h"
34 #include "openvswitch/datapath-protocol.h"
35 #include "packets.h"
36 #include "unaligned.h"
37 #include "vlog.h"
38
39 VLOG_DEFINE_THIS_MODULE(flow);
40
41 COVERAGE_DEFINE(flow_extract);
42
43 static struct arp_eth_header *
44 pull_arp(struct ofpbuf *packet)
45 {
46 return ofpbuf_try_pull(packet, ARP_ETH_HEADER_LEN);
47 }
48
49 static struct ip_header *
50 pull_ip(struct ofpbuf *packet)
51 {
52 if (packet->size >= IP_HEADER_LEN) {
53 struct ip_header *ip = packet->data;
54 int ip_len = IP_IHL(ip->ip_ihl_ver) * 4;
55 if (ip_len >= IP_HEADER_LEN && packet->size >= ip_len) {
56 return ofpbuf_pull(packet, ip_len);
57 }
58 }
59 return NULL;
60 }
61
62 static struct tcp_header *
63 pull_tcp(struct ofpbuf *packet)
64 {
65 if (packet->size >= TCP_HEADER_LEN) {
66 struct tcp_header *tcp = packet->data;
67 int tcp_len = TCP_OFFSET(tcp->tcp_ctl) * 4;
68 if (tcp_len >= TCP_HEADER_LEN && packet->size >= tcp_len) {
69 return ofpbuf_pull(packet, tcp_len);
70 }
71 }
72 return NULL;
73 }
74
75 static struct udp_header *
76 pull_udp(struct ofpbuf *packet)
77 {
78 return ofpbuf_try_pull(packet, UDP_HEADER_LEN);
79 }
80
81 static struct icmp_header *
82 pull_icmp(struct ofpbuf *packet)
83 {
84 return ofpbuf_try_pull(packet, ICMP_HEADER_LEN);
85 }
86
87 static struct icmp6_hdr *
88 pull_icmpv6(struct ofpbuf *packet)
89 {
90 return ofpbuf_try_pull(packet, sizeof(struct icmp6_hdr));
91 }
92
93 static void
94 parse_vlan(struct ofpbuf *b, struct flow *flow)
95 {
96 struct qtag_prefix {
97 ovs_be16 eth_type; /* ETH_TYPE_VLAN */
98 ovs_be16 tci;
99 };
100
101 if (b->size >= sizeof(struct qtag_prefix) + sizeof(ovs_be16)) {
102 struct qtag_prefix *qp = ofpbuf_pull(b, sizeof *qp);
103 flow->vlan_tci = qp->tci | htons(VLAN_CFI);
104 }
105 }
106
107 static ovs_be16
108 parse_ethertype(struct ofpbuf *b)
109 {
110 struct llc_snap_header *llc;
111 ovs_be16 proto;
112
113 proto = *(ovs_be16 *) ofpbuf_pull(b, sizeof proto);
114 if (ntohs(proto) >= ETH_TYPE_MIN) {
115 return proto;
116 }
117
118 if (b->size < sizeof *llc) {
119 return htons(FLOW_DL_TYPE_NONE);
120 }
121
122 llc = b->data;
123 if (llc->llc.llc_dsap != LLC_DSAP_SNAP
124 || llc->llc.llc_ssap != LLC_SSAP_SNAP
125 || llc->llc.llc_cntl != LLC_CNTL_SNAP
126 || memcmp(llc->snap.snap_org, SNAP_ORG_ETHERNET,
127 sizeof llc->snap.snap_org)) {
128 return htons(FLOW_DL_TYPE_NONE);
129 }
130
131 ofpbuf_pull(b, sizeof *llc);
132 return llc->snap.snap_type;
133 }
134
135 static int
136 parse_ipv6(struct ofpbuf *packet, struct flow *flow)
137 {
138 const struct ip6_hdr *nh;
139 ovs_be32 tc_flow;
140 int nexthdr;
141
142 nh = ofpbuf_try_pull(packet, sizeof *nh);
143 if (!nh) {
144 return EINVAL;
145 }
146
147 nexthdr = nh->ip6_nxt;
148
149 flow->ipv6_src = nh->ip6_src;
150 flow->ipv6_dst = nh->ip6_dst;
151
152 tc_flow = get_unaligned_be32(&nh->ip6_flow);
153 flow->nw_tos = (ntohl(tc_flow) >> 4) & IP_DSCP_MASK;
154 flow->nw_proto = IPPROTO_NONE;
155
156 while (1) {
157 if ((nexthdr != IPPROTO_HOPOPTS)
158 && (nexthdr != IPPROTO_ROUTING)
159 && (nexthdr != IPPROTO_DSTOPTS)
160 && (nexthdr != IPPROTO_AH)
161 && (nexthdr != IPPROTO_FRAGMENT)) {
162 /* It's either a terminal header (e.g., TCP, UDP) or one we
163 * don't understand. In either case, we're done with the
164 * packet, so use it to fill in 'nw_proto'. */
165 break;
166 }
167
168 /* We only verify that at least 8 bytes of the next header are
169 * available, but many of these headers are longer. Ensure that
170 * accesses within the extension header are within those first 8
171 * bytes. All extension headers are required to be at least 8
172 * bytes. */
173 if (packet->size < 8) {
174 return EINVAL;
175 }
176
177 if ((nexthdr == IPPROTO_HOPOPTS)
178 || (nexthdr == IPPROTO_ROUTING)
179 || (nexthdr == IPPROTO_DSTOPTS)) {
180 /* These headers, while different, have the fields we care about
181 * in the same location and with the same interpretation. */
182 const struct ip6_ext *ext_hdr = (struct ip6_ext *)packet->data;
183 nexthdr = ext_hdr->ip6e_nxt;
184 if (!ofpbuf_try_pull(packet, (ext_hdr->ip6e_len + 1) * 8)) {
185 return EINVAL;
186 }
187 } else if (nexthdr == IPPROTO_AH) {
188 /* A standard AH definition isn't available, but the fields
189 * we care about are in the same location as the generic
190 * option header--only the header length is calculated
191 * differently. */
192 const struct ip6_ext *ext_hdr = (struct ip6_ext *)packet->data;
193 nexthdr = ext_hdr->ip6e_nxt;
194 if (!ofpbuf_try_pull(packet, (ext_hdr->ip6e_len + 2) * 4)) {
195 return EINVAL;
196 }
197 } else if (nexthdr == IPPROTO_FRAGMENT) {
198 const struct ip6_frag *frag_hdr = (struct ip6_frag *)packet->data;
199
200 nexthdr = frag_hdr->ip6f_nxt;
201 if (!ofpbuf_try_pull(packet, sizeof *frag_hdr)) {
202 return EINVAL;
203 }
204
205 /* We only process the first fragment. */
206 if ((frag_hdr->ip6f_offlg & IP6F_OFF_MASK) != htons(0)) {
207 nexthdr = IPPROTO_FRAGMENT;
208 break;
209 }
210 }
211 }
212
213 flow->nw_proto = nexthdr;
214 return 0;
215 }
216
217 static void
218 parse_tcp(struct ofpbuf *packet, struct ofpbuf *b, struct flow *flow)
219 {
220 const struct tcp_header *tcp = pull_tcp(b);
221 if (tcp) {
222 flow->tp_src = tcp->tcp_src;
223 flow->tp_dst = tcp->tcp_dst;
224 packet->l7 = b->data;
225 }
226 }
227
228 static void
229 parse_udp(struct ofpbuf *packet, struct ofpbuf *b, struct flow *flow)
230 {
231 const struct udp_header *udp = pull_udp(b);
232 if (udp) {
233 flow->tp_src = udp->udp_src;
234 flow->tp_dst = udp->udp_dst;
235 packet->l7 = b->data;
236 }
237 }
238
239 static bool
240 parse_icmpv6(struct ofpbuf *b, struct flow *flow)
241 {
242 const struct icmp6_hdr *icmp = pull_icmpv6(b);
243
244 if (!icmp) {
245 return false;
246 }
247
248 /* The ICMPv6 type and code fields use the 16-bit transport port
249 * fields, so we need to store them in 16-bit network byte order. */
250 flow->icmp_type = htons(icmp->icmp6_type);
251 flow->icmp_code = htons(icmp->icmp6_code);
252
253 if (icmp->icmp6_code == 0 &&
254 (icmp->icmp6_type == ND_NEIGHBOR_SOLICIT ||
255 icmp->icmp6_type == ND_NEIGHBOR_ADVERT)) {
256 const struct in6_addr *nd_target;
257
258 nd_target = ofpbuf_try_pull(b, sizeof *nd_target);
259 if (!nd_target) {
260 return false;
261 }
262 flow->nd_target = *nd_target;
263
264 while (b->size >= 8) {
265 /* The minimum size of an option is 8 bytes, which also is
266 * the size of Ethernet link-layer options. */
267 const struct nd_opt_hdr *nd_opt = b->data;
268 int opt_len = nd_opt->nd_opt_len * 8;
269
270 if (!opt_len || opt_len > b->size) {
271 goto invalid;
272 }
273
274 /* Store the link layer address if the appropriate option is
275 * provided. It is considered an error if the same link
276 * layer option is specified twice. */
277 if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LINKADDR
278 && opt_len == 8) {
279 if (eth_addr_is_zero(flow->arp_sha)) {
280 memcpy(flow->arp_sha, nd_opt + 1, ETH_ADDR_LEN);
281 } else {
282 goto invalid;
283 }
284 } else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LINKADDR
285 && opt_len == 8) {
286 if (eth_addr_is_zero(flow->arp_tha)) {
287 memcpy(flow->arp_tha, nd_opt + 1, ETH_ADDR_LEN);
288 } else {
289 goto invalid;
290 }
291 }
292
293 if (!ofpbuf_try_pull(b, opt_len)) {
294 goto invalid;
295 }
296 }
297 }
298
299 return true;
300
301 invalid:
302 memset(&flow->nd_target, 0, sizeof(flow->nd_target));
303 memset(flow->arp_sha, 0, sizeof(flow->arp_sha));
304 memset(flow->arp_tha, 0, sizeof(flow->arp_tha));
305
306 return false;
307
308 }
309
310 /* Initializes 'flow' members from 'packet', 'tun_id', and 'ofp_in_port'.
311 * Initializes 'packet' header pointers as follows:
312 *
313 * - packet->l2 to the start of the Ethernet header.
314 *
315 * - packet->l3 to just past the Ethernet header, or just past the
316 * vlan_header if one is present, to the first byte of the payload of the
317 * Ethernet frame.
318 *
319 * - packet->l4 to just past the IPv4 header, if one is present and has a
320 * correct length, and otherwise NULL.
321 *
322 * - packet->l7 to just past the TCP or UDP or ICMP header, if one is
323 * present and has a correct length, and otherwise NULL.
324 */
325 int
326 flow_extract(struct ofpbuf *packet, ovs_be64 tun_id, uint16_t ofp_in_port,
327 struct flow *flow)
328 {
329 struct ofpbuf b = *packet;
330 struct eth_header *eth;
331 int retval = 0;
332
333 COVERAGE_INC(flow_extract);
334
335 memset(flow, 0, sizeof *flow);
336 flow->tun_id = tun_id;
337 flow->in_port = ofp_in_port;
338
339 packet->l2 = b.data;
340 packet->l3 = NULL;
341 packet->l4 = NULL;
342 packet->l7 = NULL;
343
344 if (b.size < sizeof *eth) {
345 return 0;
346 }
347
348 /* Link layer. */
349 eth = b.data;
350 memcpy(flow->dl_src, eth->eth_src, ETH_ADDR_LEN);
351 memcpy(flow->dl_dst, eth->eth_dst, ETH_ADDR_LEN);
352
353 /* dl_type, vlan_tci. */
354 ofpbuf_pull(&b, ETH_ADDR_LEN * 2);
355 if (eth->eth_type == htons(ETH_TYPE_VLAN)) {
356 parse_vlan(&b, flow);
357 }
358 flow->dl_type = parse_ethertype(&b);
359
360 /* Network layer. */
361 packet->l3 = b.data;
362 if (flow->dl_type == htons(ETH_TYPE_IP)) {
363 const struct ip_header *nh = pull_ip(&b);
364 if (nh) {
365 flow->nw_src = get_unaligned_be32(&nh->ip_src);
366 flow->nw_dst = get_unaligned_be32(&nh->ip_dst);
367 flow->nw_tos = nh->ip_tos & IP_DSCP_MASK;
368 flow->nw_proto = nh->ip_proto;
369 packet->l4 = b.data;
370 if (!IP_IS_FRAGMENT(nh->ip_frag_off)) {
371 if (flow->nw_proto == IPPROTO_TCP) {
372 parse_tcp(packet, &b, flow);
373 } else if (flow->nw_proto == IPPROTO_UDP) {
374 parse_udp(packet, &b, flow);
375 } else if (flow->nw_proto == IPPROTO_ICMP) {
376 const struct icmp_header *icmp = pull_icmp(&b);
377 if (icmp) {
378 flow->icmp_type = htons(icmp->icmp_type);
379 flow->icmp_code = htons(icmp->icmp_code);
380 packet->l7 = b.data;
381 }
382 }
383 } else {
384 retval = 1;
385 }
386 }
387 } else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
388
389 retval = parse_ipv6(&b, flow);
390 if (retval) {
391 return 0;
392 }
393
394 packet->l4 = b.data;
395 if (flow->nw_proto == IPPROTO_TCP) {
396 parse_tcp(packet, &b, flow);
397 } else if (flow->nw_proto == IPPROTO_UDP) {
398 parse_udp(packet, &b, flow);
399 } else if (flow->nw_proto == IPPROTO_ICMPV6) {
400 if (parse_icmpv6(&b, flow)) {
401 packet->l7 = b.data;
402 }
403 }
404 } else if (flow->dl_type == htons(ETH_TYPE_ARP)) {
405 const struct arp_eth_header *arp = pull_arp(&b);
406 if (arp && arp->ar_hrd == htons(1)
407 && arp->ar_pro == htons(ETH_TYPE_IP)
408 && arp->ar_hln == ETH_ADDR_LEN
409 && arp->ar_pln == 4) {
410 /* We only match on the lower 8 bits of the opcode. */
411 if (ntohs(arp->ar_op) <= 0xff) {
412 flow->nw_proto = ntohs(arp->ar_op);
413 }
414
415 if ((flow->nw_proto == ARP_OP_REQUEST)
416 || (flow->nw_proto == ARP_OP_REPLY)) {
417 flow->nw_src = arp->ar_spa;
418 flow->nw_dst = arp->ar_tpa;
419 memcpy(flow->arp_sha, arp->ar_sha, ETH_ADDR_LEN);
420 memcpy(flow->arp_tha, arp->ar_tha, ETH_ADDR_LEN);
421 }
422 }
423 }
424
425 return retval;
426 }
427
428 /* Extracts the flow stats for a packet. The 'flow' and 'packet'
429 * arguments must have been initialized through a call to flow_extract().
430 */
431 void
432 flow_extract_stats(const struct flow *flow, struct ofpbuf *packet,
433 struct dpif_flow_stats *stats)
434 {
435 memset(stats, 0, sizeof(*stats));
436
437 if ((flow->dl_type == htons(ETH_TYPE_IP)) && packet->l4) {
438 if ((flow->nw_proto == IPPROTO_TCP) && packet->l7) {
439 struct tcp_header *tcp = packet->l4;
440 stats->tcp_flags = TCP_FLAGS(tcp->tcp_ctl);
441 }
442 }
443
444 stats->n_bytes = packet->size;
445 stats->n_packets = 1;
446 }
447
448 char *
449 flow_to_string(const struct flow *flow)
450 {
451 struct ds ds = DS_EMPTY_INITIALIZER;
452 flow_format(&ds, flow);
453 return ds_cstr(&ds);
454 }
455
456 void
457 flow_format(struct ds *ds, const struct flow *flow)
458 {
459 ds_put_format(ds, "tunnel%#"PRIx64":in_port%04"PRIx16":tci(",
460 ntohll(flow->tun_id), flow->in_port);
461 if (flow->vlan_tci) {
462 ds_put_format(ds, "vlan%"PRIu16",pcp%d",
463 vlan_tci_to_vid(flow->vlan_tci),
464 vlan_tci_to_pcp(flow->vlan_tci));
465 } else {
466 ds_put_char(ds, '0');
467 }
468 ds_put_format(ds, ") mac"ETH_ADDR_FMT"->"ETH_ADDR_FMT
469 " type%04"PRIx16,
470 ETH_ADDR_ARGS(flow->dl_src),
471 ETH_ADDR_ARGS(flow->dl_dst),
472 ntohs(flow->dl_type));
473
474 if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
475 ds_put_format(ds, " proto%"PRIu8" tos%"PRIu8" ipv6",
476 flow->nw_proto, flow->nw_tos);
477 print_ipv6_addr(ds, &flow->ipv6_src);
478 ds_put_cstr(ds, "->");
479 print_ipv6_addr(ds, &flow->ipv6_dst);
480
481 } else {
482 ds_put_format(ds, " proto%"PRIu8
483 " tos%"PRIu8
484 " ip"IP_FMT"->"IP_FMT,
485 flow->nw_proto,
486 flow->nw_tos,
487 IP_ARGS(&flow->nw_src),
488 IP_ARGS(&flow->nw_dst));
489 }
490 if (flow->tp_src || flow->tp_dst) {
491 ds_put_format(ds, " port%"PRIu16"->%"PRIu16,
492 ntohs(flow->tp_src), ntohs(flow->tp_dst));
493 }
494 if (!eth_addr_is_zero(flow->arp_sha) || !eth_addr_is_zero(flow->arp_tha)) {
495 ds_put_format(ds, " arp_ha"ETH_ADDR_FMT"->"ETH_ADDR_FMT,
496 ETH_ADDR_ARGS(flow->arp_sha),
497 ETH_ADDR_ARGS(flow->arp_tha));
498 }
499 }
500
501 void
502 flow_print(FILE *stream, const struct flow *flow)
503 {
504 char *s = flow_to_string(flow);
505 fputs(s, stream);
506 free(s);
507 }
508 \f
509 /* flow_wildcards functions. */
510
511 /* Initializes 'wc' as a set of wildcards that matches every packet. */
512 void
513 flow_wildcards_init_catchall(struct flow_wildcards *wc)
514 {
515 wc->wildcards = FWW_ALL;
516 wc->tun_id_mask = htonll(0);
517 wc->nw_src_mask = htonl(0);
518 wc->nw_dst_mask = htonl(0);
519 wc->ipv6_src_mask = in6addr_any;
520 wc->ipv6_dst_mask = in6addr_any;
521 memset(wc->reg_masks, 0, sizeof wc->reg_masks);
522 wc->vlan_tci_mask = htons(0);
523 wc->zero = 0;
524 }
525
526 /* Initializes 'wc' as an exact-match set of wildcards; that is, 'wc' does not
527 * wildcard any bits or fields. */
528 void
529 flow_wildcards_init_exact(struct flow_wildcards *wc)
530 {
531 wc->wildcards = 0;
532 wc->tun_id_mask = htonll(UINT64_MAX);
533 wc->nw_src_mask = htonl(UINT32_MAX);
534 wc->nw_dst_mask = htonl(UINT32_MAX);
535 wc->ipv6_src_mask = in6addr_exact;
536 wc->ipv6_dst_mask = in6addr_exact;
537 memset(wc->reg_masks, 0xff, sizeof wc->reg_masks);
538 wc->vlan_tci_mask = htons(UINT16_MAX);
539 wc->zero = 0;
540 }
541
542 /* Returns true if 'wc' is exact-match, false if 'wc' wildcards any bits or
543 * fields. */
544 bool
545 flow_wildcards_is_exact(const struct flow_wildcards *wc)
546 {
547 int i;
548
549 if (wc->wildcards
550 || wc->tun_id_mask != htonll(UINT64_MAX)
551 || wc->nw_src_mask != htonl(UINT32_MAX)
552 || wc->nw_dst_mask != htonl(UINT32_MAX)
553 || wc->vlan_tci_mask != htons(UINT16_MAX)
554 || !ipv6_mask_is_exact(&wc->ipv6_src_mask)
555 || !ipv6_mask_is_exact(&wc->ipv6_dst_mask)) {
556 return false;
557 }
558
559 for (i = 0; i < FLOW_N_REGS; i++) {
560 if (wc->reg_masks[i] != UINT32_MAX) {
561 return false;
562 }
563 }
564
565 return true;
566 }
567
568 /* Initializes 'dst' as the combination of wildcards in 'src1' and 'src2'.
569 * That is, a bit or a field is wildcarded in 'dst' if it is wildcarded in
570 * 'src1' or 'src2' or both. */
571 void
572 flow_wildcards_combine(struct flow_wildcards *dst,
573 const struct flow_wildcards *src1,
574 const struct flow_wildcards *src2)
575 {
576 int i;
577
578 dst->wildcards = src1->wildcards | src2->wildcards;
579 dst->tun_id_mask = src1->tun_id_mask & src2->tun_id_mask;
580 dst->nw_src_mask = src1->nw_src_mask & src2->nw_src_mask;
581 dst->nw_dst_mask = src1->nw_dst_mask & src2->nw_dst_mask;
582 dst->ipv6_src_mask = ipv6_addr_bitand(&src1->ipv6_src_mask,
583 &src2->ipv6_src_mask);
584 dst->ipv6_dst_mask = ipv6_addr_bitand(&src1->ipv6_dst_mask,
585 &src2->ipv6_dst_mask);
586 for (i = 0; i < FLOW_N_REGS; i++) {
587 dst->reg_masks[i] = src1->reg_masks[i] & src2->reg_masks[i];
588 }
589 dst->vlan_tci_mask = src1->vlan_tci_mask & src2->vlan_tci_mask;
590 }
591
592 /* Returns a hash of the wildcards in 'wc'. */
593 uint32_t
594 flow_wildcards_hash(const struct flow_wildcards *wc, uint32_t basis)
595 {
596 /* If you change struct flow_wildcards and thereby trigger this
597 * assertion, please check that the new struct flow_wildcards has no holes
598 * in it before you update the assertion. */
599 BUILD_ASSERT_DECL(sizeof *wc == 56 + FLOW_N_REGS * 4);
600 return hash_bytes(wc, sizeof *wc, basis);
601 }
602
603 /* Returns true if 'a' and 'b' represent the same wildcards, false if they are
604 * different. */
605 bool
606 flow_wildcards_equal(const struct flow_wildcards *a,
607 const struct flow_wildcards *b)
608 {
609 int i;
610
611 if (a->wildcards != b->wildcards
612 || a->tun_id_mask != b->tun_id_mask
613 || a->nw_src_mask != b->nw_src_mask
614 || a->nw_dst_mask != b->nw_dst_mask
615 || a->vlan_tci_mask != b->vlan_tci_mask
616 || !ipv6_addr_equals(&a->ipv6_src_mask, &b->ipv6_src_mask)
617 || !ipv6_addr_equals(&a->ipv6_dst_mask, &b->ipv6_dst_mask)) {
618 return false;
619 }
620
621 for (i = 0; i < FLOW_N_REGS; i++) {
622 if (a->reg_masks[i] != b->reg_masks[i]) {
623 return false;
624 }
625 }
626
627 return true;
628 }
629
630 /* Returns true if at least one bit or field is wildcarded in 'a' but not in
631 * 'b', false otherwise. */
632 bool
633 flow_wildcards_has_extra(const struct flow_wildcards *a,
634 const struct flow_wildcards *b)
635 {
636 int i;
637 struct in6_addr ipv6_masked;
638
639 for (i = 0; i < FLOW_N_REGS; i++) {
640 if ((a->reg_masks[i] & b->reg_masks[i]) != b->reg_masks[i]) {
641 return true;
642 }
643 }
644
645 ipv6_masked = ipv6_addr_bitand(&a->ipv6_src_mask, &b->ipv6_src_mask);
646 if (!ipv6_addr_equals(&ipv6_masked, &b->ipv6_src_mask)) {
647 return true;
648 }
649
650 ipv6_masked = ipv6_addr_bitand(&a->ipv6_dst_mask, &b->ipv6_dst_mask);
651 if (!ipv6_addr_equals(&ipv6_masked, &b->ipv6_dst_mask)) {
652 return true;
653 }
654
655 return (a->wildcards & ~b->wildcards
656 || (a->tun_id_mask & b->tun_id_mask) != b->tun_id_mask
657 || (a->nw_src_mask & b->nw_src_mask) != b->nw_src_mask
658 || (a->nw_dst_mask & b->nw_dst_mask) != b->nw_dst_mask
659 || (a->vlan_tci_mask & b->vlan_tci_mask) != b->vlan_tci_mask);
660 }
661
662 static bool
663 set_nw_mask(ovs_be32 *maskp, ovs_be32 mask)
664 {
665 if (ip_is_cidr(mask)) {
666 *maskp = mask;
667 return true;
668 } else {
669 return false;
670 }
671 }
672
673 /* Sets the IP (or ARP) source wildcard mask to CIDR 'mask' (consisting of N
674 * high-order 1-bit and 32-N low-order 0-bits). Returns true if successful,
675 * false if 'mask' is not a CIDR mask. */
676 bool
677 flow_wildcards_set_nw_src_mask(struct flow_wildcards *wc, ovs_be32 mask)
678 {
679 return set_nw_mask(&wc->nw_src_mask, mask);
680 }
681
682 /* Sets the IP (or ARP) destination wildcard mask to CIDR 'mask' (consisting of
683 * N high-order 1-bit and 32-N low-order 0-bits). Returns true if successful,
684 * false if 'mask' is not a CIDR mask. */
685 bool
686 flow_wildcards_set_nw_dst_mask(struct flow_wildcards *wc, ovs_be32 mask)
687 {
688 return set_nw_mask(&wc->nw_dst_mask, mask);
689 }
690
691 static bool
692 set_ipv6_mask(struct in6_addr *maskp, const struct in6_addr *mask)
693 {
694 if (ipv6_is_cidr(mask)) {
695 *maskp = *mask;
696 return true;
697 } else {
698 return false;
699 }
700 }
701
702 /* Sets the IPv6 source wildcard mask to CIDR 'mask' (consisting of N
703 * high-order 1-bit and 128-N low-order 0-bits). Returns true if successful,
704 * false if 'mask' is not a CIDR mask. */
705 bool
706 flow_wildcards_set_ipv6_src_mask(struct flow_wildcards *wc,
707 const struct in6_addr *mask)
708 {
709 return set_ipv6_mask(&wc->ipv6_src_mask, mask);
710 }
711
712 /* Sets the IPv6 destination wildcard mask to CIDR 'mask' (consisting of
713 * N high-order 1-bit and 128-N low-order 0-bits). Returns true if
714 * successful, false if 'mask' is not a CIDR mask. */
715 bool
716 flow_wildcards_set_ipv6_dst_mask(struct flow_wildcards *wc,
717 const struct in6_addr *mask)
718 {
719 return set_ipv6_mask(&wc->ipv6_dst_mask, mask);
720 }
721
722 /* Sets the wildcard mask for register 'idx' in 'wc' to 'mask'.
723 * (A 0-bit indicates a wildcard bit.) */
724 void
725 flow_wildcards_set_reg_mask(struct flow_wildcards *wc, int idx, uint32_t mask)
726 {
727 wc->reg_masks[idx] = mask;
728 }
729
730 /* Returns the wildcard bitmask for the Ethernet destination address
731 * that 'wc' specifies. The bitmask has a 0 in each bit that is wildcarded
732 * and a 1 in each bit that must match. */
733 const uint8_t *
734 flow_wildcards_to_dl_dst_mask(flow_wildcards_t wc)
735 {
736 static const uint8_t no_wild[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
737 static const uint8_t addr_wild[] = {0x01, 0x00, 0x00, 0x00, 0x00, 0x00};
738 static const uint8_t mcast_wild[] = {0xfe, 0xff, 0xff, 0xff, 0xff, 0xff};
739 static const uint8_t all_wild[] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
740
741 switch (wc & (FWW_DL_DST | FWW_ETH_MCAST)) {
742 case 0: return no_wild;
743 case FWW_DL_DST: return addr_wild;
744 case FWW_ETH_MCAST: return mcast_wild;
745 case FWW_DL_DST | FWW_ETH_MCAST: return all_wild;
746 }
747 NOT_REACHED();
748 }
749
750 /* Returns true if 'mask' is a valid wildcard bitmask for the Ethernet
751 * destination address. Valid bitmasks are either all-bits-0 or all-bits-1,
752 * except that the multicast bit may differ from the rest of the bits. So,
753 * there are four possible valid bitmasks:
754 *
755 * - 00:00:00:00:00:00
756 * - 01:00:00:00:00:00
757 * - fe:ff:ff:ff:ff:ff
758 * - ff:ff:ff:ff:ff:ff
759 *
760 * All other bitmasks are invalid. */
761 bool
762 flow_wildcards_is_dl_dst_mask_valid(const uint8_t mask[ETH_ADDR_LEN])
763 {
764 switch (mask[0]) {
765 case 0x00:
766 case 0x01:
767 return (mask[1] | mask[2] | mask[3] | mask[4] | mask[5]) == 0x00;
768
769 case 0xfe:
770 case 0xff:
771 return (mask[1] & mask[2] & mask[3] & mask[4] & mask[5]) == 0xff;
772
773 default:
774 return false;
775 }
776 }
777
778 /* Returns 'wc' with the FWW_DL_DST and FWW_ETH_MCAST bits modified
779 * appropriately to match 'mask'.
780 *
781 * This function will assert-fail if 'mask' is invalid. Only 'mask' values
782 * accepted by flow_wildcards_is_dl_dst_mask_valid() are allowed. */
783 flow_wildcards_t
784 flow_wildcards_set_dl_dst_mask(flow_wildcards_t wc,
785 const uint8_t mask[ETH_ADDR_LEN])
786 {
787 assert(flow_wildcards_is_dl_dst_mask_valid(mask));
788
789 switch (mask[0]) {
790 case 0x00:
791 return wc | FWW_DL_DST | FWW_ETH_MCAST;
792
793 case 0x01:
794 return (wc | FWW_DL_DST) & ~FWW_ETH_MCAST;
795
796 case 0xfe:
797 return (wc & ~FWW_DL_DST) | FWW_ETH_MCAST;
798
799 case 0xff:
800 return wc & ~(FWW_DL_DST | FWW_ETH_MCAST);
801
802 default:
803 NOT_REACHED();
804 }
805 }
806
807 /* Hashes 'flow' based on its L2 through L4 protocol information. */
808 uint32_t
809 flow_hash_symmetric_l4(const struct flow *flow, uint32_t basis)
810 {
811 struct {
812 union {
813 ovs_be32 ipv4_addr;
814 struct in6_addr ipv6_addr;
815 };
816 ovs_be16 eth_type;
817 ovs_be16 vlan_tci;
818 ovs_be16 tp_addr;
819 uint8_t eth_addr[ETH_ADDR_LEN];
820 uint8_t ip_proto;
821 } fields;
822
823 int i;
824
825 memset(&fields, 0, sizeof fields);
826 for (i = 0; i < ETH_ADDR_LEN; i++) {
827 fields.eth_addr[i] = flow->dl_src[i] ^ flow->dl_dst[i];
828 }
829 fields.vlan_tci = flow->vlan_tci & htons(VLAN_VID_MASK);
830 fields.eth_type = flow->dl_type;
831
832 /* UDP source and destination port are not taken into account because they
833 * will not necessarily be symmetric in a bidirectional flow. */
834 if (fields.eth_type == htons(ETH_TYPE_IP)) {
835 fields.ipv4_addr = flow->nw_src ^ flow->nw_dst;
836 fields.ip_proto = flow->nw_proto;
837 if (fields.ip_proto == IPPROTO_TCP) {
838 fields.tp_addr = flow->tp_src ^ flow->tp_dst;
839 }
840 } else if (fields.eth_type == htons(ETH_TYPE_IPV6)) {
841 const uint8_t *a = &flow->ipv6_src.s6_addr[0];
842 const uint8_t *b = &flow->ipv6_dst.s6_addr[0];
843 uint8_t *ipv6_addr = &fields.ipv6_addr.s6_addr[0];
844
845 for (i=0; i<16; i++) {
846 ipv6_addr[i] = a[i] ^ b[i];
847 }
848 fields.ip_proto = flow->nw_proto;
849 if (fields.ip_proto == IPPROTO_TCP) {
850 fields.tp_addr = flow->tp_src ^ flow->tp_dst;
851 }
852 }
853 return hash_bytes(&fields, sizeof fields, basis);
854 }