]> git.proxmox.com Git - mirror_ovs.git/blob - lib/flow.c
flow: Only show IPv4 flow information for IPv4 flows
[mirror_ovs.git] / lib / flow.c
1 /*
2 * Copyright (c) 2008, 2009, 2010, 2011, 2012 Nicira, Inc.
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at:
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16 #include <config.h>
17 #include <sys/types.h>
18 #include "flow.h"
19 #include <assert.h>
20 #include <errno.h>
21 #include <inttypes.h>
22 #include <limits.h>
23 #include <netinet/in.h>
24 #include <netinet/icmp6.h>
25 #include <netinet/ip6.h>
26 #include <stdint.h>
27 #include <stdlib.h>
28 #include <string.h>
29 #include "byte-order.h"
30 #include "coverage.h"
31 #include "csum.h"
32 #include "dynamic-string.h"
33 #include "hash.h"
34 #include "ofpbuf.h"
35 #include "openflow/openflow.h"
36 #include "packets.h"
37 #include "unaligned.h"
38 #include "vlog.h"
39
40 VLOG_DEFINE_THIS_MODULE(flow);
41
42 COVERAGE_DEFINE(flow_extract);
43 COVERAGE_DEFINE(miniflow_malloc);
44
45 static struct arp_eth_header *
46 pull_arp(struct ofpbuf *packet)
47 {
48 return ofpbuf_try_pull(packet, ARP_ETH_HEADER_LEN);
49 }
50
51 static struct ip_header *
52 pull_ip(struct ofpbuf *packet)
53 {
54 if (packet->size >= IP_HEADER_LEN) {
55 struct ip_header *ip = packet->data;
56 int ip_len = IP_IHL(ip->ip_ihl_ver) * 4;
57 if (ip_len >= IP_HEADER_LEN && packet->size >= ip_len) {
58 return ofpbuf_pull(packet, ip_len);
59 }
60 }
61 return NULL;
62 }
63
64 static struct tcp_header *
65 pull_tcp(struct ofpbuf *packet)
66 {
67 if (packet->size >= TCP_HEADER_LEN) {
68 struct tcp_header *tcp = packet->data;
69 int tcp_len = TCP_OFFSET(tcp->tcp_ctl) * 4;
70 if (tcp_len >= TCP_HEADER_LEN && packet->size >= tcp_len) {
71 return ofpbuf_pull(packet, tcp_len);
72 }
73 }
74 return NULL;
75 }
76
77 static struct udp_header *
78 pull_udp(struct ofpbuf *packet)
79 {
80 return ofpbuf_try_pull(packet, UDP_HEADER_LEN);
81 }
82
83 static struct icmp_header *
84 pull_icmp(struct ofpbuf *packet)
85 {
86 return ofpbuf_try_pull(packet, ICMP_HEADER_LEN);
87 }
88
89 static struct icmp6_hdr *
90 pull_icmpv6(struct ofpbuf *packet)
91 {
92 return ofpbuf_try_pull(packet, sizeof(struct icmp6_hdr));
93 }
94
95 static void
96 parse_vlan(struct ofpbuf *b, struct flow *flow)
97 {
98 struct qtag_prefix {
99 ovs_be16 eth_type; /* ETH_TYPE_VLAN */
100 ovs_be16 tci;
101 };
102
103 if (b->size >= sizeof(struct qtag_prefix) + sizeof(ovs_be16)) {
104 struct qtag_prefix *qp = ofpbuf_pull(b, sizeof *qp);
105 flow->vlan_tci = qp->tci | htons(VLAN_CFI);
106 }
107 }
108
109 static ovs_be16
110 parse_ethertype(struct ofpbuf *b)
111 {
112 struct llc_snap_header *llc;
113 ovs_be16 proto;
114
115 proto = *(ovs_be16 *) ofpbuf_pull(b, sizeof proto);
116 if (ntohs(proto) >= ETH_TYPE_MIN) {
117 return proto;
118 }
119
120 if (b->size < sizeof *llc) {
121 return htons(FLOW_DL_TYPE_NONE);
122 }
123
124 llc = b->data;
125 if (llc->llc.llc_dsap != LLC_DSAP_SNAP
126 || llc->llc.llc_ssap != LLC_SSAP_SNAP
127 || llc->llc.llc_cntl != LLC_CNTL_SNAP
128 || memcmp(llc->snap.snap_org, SNAP_ORG_ETHERNET,
129 sizeof llc->snap.snap_org)) {
130 return htons(FLOW_DL_TYPE_NONE);
131 }
132
133 ofpbuf_pull(b, sizeof *llc);
134 return llc->snap.snap_type;
135 }
136
137 static int
138 parse_ipv6(struct ofpbuf *packet, struct flow *flow)
139 {
140 const struct ip6_hdr *nh;
141 ovs_be32 tc_flow;
142 int nexthdr;
143
144 nh = ofpbuf_try_pull(packet, sizeof *nh);
145 if (!nh) {
146 return EINVAL;
147 }
148
149 nexthdr = nh->ip6_nxt;
150
151 flow->ipv6_src = nh->ip6_src;
152 flow->ipv6_dst = nh->ip6_dst;
153
154 tc_flow = get_unaligned_be32(&nh->ip6_flow);
155 flow->nw_tos = ntohl(tc_flow) >> 20;
156 flow->ipv6_label = tc_flow & htonl(IPV6_LABEL_MASK);
157 flow->nw_ttl = nh->ip6_hlim;
158 flow->nw_proto = IPPROTO_NONE;
159
160 while (1) {
161 if ((nexthdr != IPPROTO_HOPOPTS)
162 && (nexthdr != IPPROTO_ROUTING)
163 && (nexthdr != IPPROTO_DSTOPTS)
164 && (nexthdr != IPPROTO_AH)
165 && (nexthdr != IPPROTO_FRAGMENT)) {
166 /* It's either a terminal header (e.g., TCP, UDP) or one we
167 * don't understand. In either case, we're done with the
168 * packet, so use it to fill in 'nw_proto'. */
169 break;
170 }
171
172 /* We only verify that at least 8 bytes of the next header are
173 * available, but many of these headers are longer. Ensure that
174 * accesses within the extension header are within those first 8
175 * bytes. All extension headers are required to be at least 8
176 * bytes. */
177 if (packet->size < 8) {
178 return EINVAL;
179 }
180
181 if ((nexthdr == IPPROTO_HOPOPTS)
182 || (nexthdr == IPPROTO_ROUTING)
183 || (nexthdr == IPPROTO_DSTOPTS)) {
184 /* These headers, while different, have the fields we care about
185 * in the same location and with the same interpretation. */
186 const struct ip6_ext *ext_hdr = packet->data;
187 nexthdr = ext_hdr->ip6e_nxt;
188 if (!ofpbuf_try_pull(packet, (ext_hdr->ip6e_len + 1) * 8)) {
189 return EINVAL;
190 }
191 } else if (nexthdr == IPPROTO_AH) {
192 /* A standard AH definition isn't available, but the fields
193 * we care about are in the same location as the generic
194 * option header--only the header length is calculated
195 * differently. */
196 const struct ip6_ext *ext_hdr = packet->data;
197 nexthdr = ext_hdr->ip6e_nxt;
198 if (!ofpbuf_try_pull(packet, (ext_hdr->ip6e_len + 2) * 4)) {
199 return EINVAL;
200 }
201 } else if (nexthdr == IPPROTO_FRAGMENT) {
202 const struct ip6_frag *frag_hdr = packet->data;
203
204 nexthdr = frag_hdr->ip6f_nxt;
205 if (!ofpbuf_try_pull(packet, sizeof *frag_hdr)) {
206 return EINVAL;
207 }
208
209 /* We only process the first fragment. */
210 if (frag_hdr->ip6f_offlg != htons(0)) {
211 if ((frag_hdr->ip6f_offlg & IP6F_OFF_MASK) == htons(0)) {
212 flow->nw_frag = FLOW_NW_FRAG_ANY;
213 } else {
214 flow->nw_frag |= FLOW_NW_FRAG_LATER;
215 nexthdr = IPPROTO_FRAGMENT;
216 break;
217 }
218 }
219 }
220 }
221
222 flow->nw_proto = nexthdr;
223 return 0;
224 }
225
226 static void
227 parse_tcp(struct ofpbuf *packet, struct ofpbuf *b, struct flow *flow)
228 {
229 const struct tcp_header *tcp = pull_tcp(b);
230 if (tcp) {
231 flow->tp_src = tcp->tcp_src;
232 flow->tp_dst = tcp->tcp_dst;
233 packet->l7 = b->data;
234 }
235 }
236
237 static void
238 parse_udp(struct ofpbuf *packet, struct ofpbuf *b, struct flow *flow)
239 {
240 const struct udp_header *udp = pull_udp(b);
241 if (udp) {
242 flow->tp_src = udp->udp_src;
243 flow->tp_dst = udp->udp_dst;
244 packet->l7 = b->data;
245 }
246 }
247
248 static bool
249 parse_icmpv6(struct ofpbuf *b, struct flow *flow)
250 {
251 const struct icmp6_hdr *icmp = pull_icmpv6(b);
252
253 if (!icmp) {
254 return false;
255 }
256
257 /* The ICMPv6 type and code fields use the 16-bit transport port
258 * fields, so we need to store them in 16-bit network byte order. */
259 flow->tp_src = htons(icmp->icmp6_type);
260 flow->tp_dst = htons(icmp->icmp6_code);
261
262 if (icmp->icmp6_code == 0 &&
263 (icmp->icmp6_type == ND_NEIGHBOR_SOLICIT ||
264 icmp->icmp6_type == ND_NEIGHBOR_ADVERT)) {
265 const struct in6_addr *nd_target;
266
267 nd_target = ofpbuf_try_pull(b, sizeof *nd_target);
268 if (!nd_target) {
269 return false;
270 }
271 flow->nd_target = *nd_target;
272
273 while (b->size >= 8) {
274 /* The minimum size of an option is 8 bytes, which also is
275 * the size of Ethernet link-layer options. */
276 const struct nd_opt_hdr *nd_opt = b->data;
277 int opt_len = nd_opt->nd_opt_len * 8;
278
279 if (!opt_len || opt_len > b->size) {
280 goto invalid;
281 }
282
283 /* Store the link layer address if the appropriate option is
284 * provided. It is considered an error if the same link
285 * layer option is specified twice. */
286 if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LINKADDR
287 && opt_len == 8) {
288 if (eth_addr_is_zero(flow->arp_sha)) {
289 memcpy(flow->arp_sha, nd_opt + 1, ETH_ADDR_LEN);
290 } else {
291 goto invalid;
292 }
293 } else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LINKADDR
294 && opt_len == 8) {
295 if (eth_addr_is_zero(flow->arp_tha)) {
296 memcpy(flow->arp_tha, nd_opt + 1, ETH_ADDR_LEN);
297 } else {
298 goto invalid;
299 }
300 }
301
302 if (!ofpbuf_try_pull(b, opt_len)) {
303 goto invalid;
304 }
305 }
306 }
307
308 return true;
309
310 invalid:
311 memset(&flow->nd_target, 0, sizeof(flow->nd_target));
312 memset(flow->arp_sha, 0, sizeof(flow->arp_sha));
313 memset(flow->arp_tha, 0, sizeof(flow->arp_tha));
314
315 return false;
316
317 }
318
319 /* Initializes 'flow' members from 'packet', 'skb_priority', 'tun_id', and
320 * 'ofp_in_port'.
321 *
322 * Initializes 'packet' header pointers as follows:
323 *
324 * - packet->l2 to the start of the Ethernet header.
325 *
326 * - packet->l3 to just past the Ethernet header, or just past the
327 * vlan_header if one is present, to the first byte of the payload of the
328 * Ethernet frame.
329 *
330 * - packet->l4 to just past the IPv4 header, if one is present and has a
331 * correct length, and otherwise NULL.
332 *
333 * - packet->l7 to just past the TCP or UDP or ICMP header, if one is
334 * present and has a correct length, and otherwise NULL.
335 */
336 void
337 flow_extract(struct ofpbuf *packet, uint32_t skb_priority, ovs_be64 tun_id,
338 uint16_t ofp_in_port, struct flow *flow)
339 {
340 struct ofpbuf b = *packet;
341 struct eth_header *eth;
342
343 COVERAGE_INC(flow_extract);
344
345 memset(flow, 0, sizeof *flow);
346 flow->tun_id = tun_id;
347 flow->in_port = ofp_in_port;
348 flow->skb_priority = skb_priority;
349
350 packet->l2 = b.data;
351 packet->l3 = NULL;
352 packet->l4 = NULL;
353 packet->l7 = NULL;
354
355 if (b.size < sizeof *eth) {
356 return;
357 }
358
359 /* Link layer. */
360 eth = b.data;
361 memcpy(flow->dl_src, eth->eth_src, ETH_ADDR_LEN);
362 memcpy(flow->dl_dst, eth->eth_dst, ETH_ADDR_LEN);
363
364 /* dl_type, vlan_tci. */
365 ofpbuf_pull(&b, ETH_ADDR_LEN * 2);
366 if (eth->eth_type == htons(ETH_TYPE_VLAN)) {
367 parse_vlan(&b, flow);
368 }
369 flow->dl_type = parse_ethertype(&b);
370
371 /* Network layer. */
372 packet->l3 = b.data;
373 if (flow->dl_type == htons(ETH_TYPE_IP)) {
374 const struct ip_header *nh = pull_ip(&b);
375 if (nh) {
376 packet->l4 = b.data;
377
378 flow->nw_src = get_unaligned_be32(&nh->ip_src);
379 flow->nw_dst = get_unaligned_be32(&nh->ip_dst);
380 flow->nw_proto = nh->ip_proto;
381
382 flow->nw_tos = nh->ip_tos;
383 if (IP_IS_FRAGMENT(nh->ip_frag_off)) {
384 flow->nw_frag = FLOW_NW_FRAG_ANY;
385 if (nh->ip_frag_off & htons(IP_FRAG_OFF_MASK)) {
386 flow->nw_frag |= FLOW_NW_FRAG_LATER;
387 }
388 }
389 flow->nw_ttl = nh->ip_ttl;
390
391 if (!(nh->ip_frag_off & htons(IP_FRAG_OFF_MASK))) {
392 if (flow->nw_proto == IPPROTO_TCP) {
393 parse_tcp(packet, &b, flow);
394 } else if (flow->nw_proto == IPPROTO_UDP) {
395 parse_udp(packet, &b, flow);
396 } else if (flow->nw_proto == IPPROTO_ICMP) {
397 const struct icmp_header *icmp = pull_icmp(&b);
398 if (icmp) {
399 flow->tp_src = htons(icmp->icmp_type);
400 flow->tp_dst = htons(icmp->icmp_code);
401 packet->l7 = b.data;
402 }
403 }
404 }
405 }
406 } else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
407 if (parse_ipv6(&b, flow)) {
408 return;
409 }
410
411 packet->l4 = b.data;
412 if (flow->nw_proto == IPPROTO_TCP) {
413 parse_tcp(packet, &b, flow);
414 } else if (flow->nw_proto == IPPROTO_UDP) {
415 parse_udp(packet, &b, flow);
416 } else if (flow->nw_proto == IPPROTO_ICMPV6) {
417 if (parse_icmpv6(&b, flow)) {
418 packet->l7 = b.data;
419 }
420 }
421 } else if (flow->dl_type == htons(ETH_TYPE_ARP)) {
422 const struct arp_eth_header *arp = pull_arp(&b);
423 if (arp && arp->ar_hrd == htons(1)
424 && arp->ar_pro == htons(ETH_TYPE_IP)
425 && arp->ar_hln == ETH_ADDR_LEN
426 && arp->ar_pln == 4) {
427 /* We only match on the lower 8 bits of the opcode. */
428 if (ntohs(arp->ar_op) <= 0xff) {
429 flow->nw_proto = ntohs(arp->ar_op);
430 }
431
432 if ((flow->nw_proto == ARP_OP_REQUEST)
433 || (flow->nw_proto == ARP_OP_REPLY)) {
434 flow->nw_src = arp->ar_spa;
435 flow->nw_dst = arp->ar_tpa;
436 memcpy(flow->arp_sha, arp->ar_sha, ETH_ADDR_LEN);
437 memcpy(flow->arp_tha, arp->ar_tha, ETH_ADDR_LEN);
438 }
439 }
440 }
441 }
442
443 /* For every bit of a field that is wildcarded in 'wildcards', sets the
444 * corresponding bit in 'flow' to zero. */
445 void
446 flow_zero_wildcards(struct flow *flow, const struct flow_wildcards *wildcards)
447 {
448 uint32_t *flow_u32 = (uint32_t *) flow;
449 const uint32_t *wc_u32 = (const uint32_t *) &wildcards->masks;
450 size_t i;
451
452 for (i = 0; i < FLOW_U32S; i++) {
453 flow_u32[i] &= wc_u32[i];
454 }
455 }
456
457 /* Initializes 'fmd' with the metadata found in 'flow'. */
458 void
459 flow_get_metadata(const struct flow *flow, struct flow_metadata *fmd)
460 {
461 BUILD_ASSERT_DECL(FLOW_WC_SEQ == 17);
462
463 fmd->tun_id = flow->tun_id;
464 fmd->metadata = flow->metadata;
465 memcpy(fmd->regs, flow->regs, sizeof fmd->regs);
466 fmd->in_port = flow->in_port;
467 }
468
469 char *
470 flow_to_string(const struct flow *flow)
471 {
472 struct ds ds = DS_EMPTY_INITIALIZER;
473 flow_format(&ds, flow);
474 return ds_cstr(&ds);
475 }
476
477 void
478 flow_format(struct ds *ds, const struct flow *flow)
479 {
480 ds_put_format(ds, "priority:%"PRIu32
481 ",tunnel:%#"PRIx64
482 ",metadata:%#"PRIx64
483 ",in_port:%04"PRIx16,
484 flow->skb_priority,
485 ntohll(flow->tun_id),
486 ntohll(flow->metadata),
487 flow->in_port);
488
489 ds_put_format(ds, ",tci(");
490 if (flow->vlan_tci) {
491 ds_put_format(ds, "vlan:%"PRIu16",pcp:%d",
492 vlan_tci_to_vid(flow->vlan_tci),
493 vlan_tci_to_pcp(flow->vlan_tci));
494 } else {
495 ds_put_char(ds, '0');
496 }
497 ds_put_format(ds, ") mac("ETH_ADDR_FMT"->"ETH_ADDR_FMT
498 ") type:%04"PRIx16,
499 ETH_ADDR_ARGS(flow->dl_src),
500 ETH_ADDR_ARGS(flow->dl_dst),
501 ntohs(flow->dl_type));
502
503 if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
504 ds_put_format(ds, " label:%#"PRIx32" proto:%"PRIu8" tos:%#"PRIx8
505 " ttl:%"PRIu8" ipv6(",
506 ntohl(flow->ipv6_label), flow->nw_proto,
507 flow->nw_tos, flow->nw_ttl);
508 print_ipv6_addr(ds, &flow->ipv6_src);
509 ds_put_cstr(ds, "->");
510 print_ipv6_addr(ds, &flow->ipv6_dst);
511 ds_put_char(ds, ')');
512 } else if (flow->dl_type == htons(ETH_TYPE_IP) ||
513 flow->dl_type == htons(ETH_TYPE_ARP)) {
514 ds_put_format(ds, " proto:%"PRIu8" tos:%#"PRIx8" ttl:%"PRIu8
515 " ip("IP_FMT"->"IP_FMT")",
516 flow->nw_proto, flow->nw_tos, flow->nw_ttl,
517 IP_ARGS(&flow->nw_src), IP_ARGS(&flow->nw_dst));
518 }
519 if (flow->nw_frag) {
520 ds_put_format(ds, " frag(%s)",
521 flow->nw_frag == FLOW_NW_FRAG_ANY ? "first"
522 : flow->nw_frag == (FLOW_NW_FRAG_ANY | FLOW_NW_FRAG_LATER)
523 ? "later" : "<error>");
524 }
525 if (flow->tp_src || flow->tp_dst) {
526 ds_put_format(ds, " port(%"PRIu16"->%"PRIu16")",
527 ntohs(flow->tp_src), ntohs(flow->tp_dst));
528 }
529 if (!eth_addr_is_zero(flow->arp_sha) || !eth_addr_is_zero(flow->arp_tha)) {
530 ds_put_format(ds, " arp_ha("ETH_ADDR_FMT"->"ETH_ADDR_FMT")",
531 ETH_ADDR_ARGS(flow->arp_sha),
532 ETH_ADDR_ARGS(flow->arp_tha));
533 }
534 }
535
536 void
537 flow_print(FILE *stream, const struct flow *flow)
538 {
539 char *s = flow_to_string(flow);
540 fputs(s, stream);
541 free(s);
542 }
543 \f
544 /* flow_wildcards functions. */
545
546 /* Initializes 'wc' as a set of wildcards that matches every packet. */
547 void
548 flow_wildcards_init_catchall(struct flow_wildcards *wc)
549 {
550 memset(&wc->masks, 0, sizeof wc->masks);
551 }
552
553 /* Initializes 'wc' as an exact-match set of wildcards; that is, 'wc' does not
554 * wildcard any bits or fields. */
555 void
556 flow_wildcards_init_exact(struct flow_wildcards *wc)
557 {
558 memset(&wc->masks, 0xff, sizeof wc->masks);
559 memset(wc->masks.zeros, 0, sizeof wc->masks.zeros);
560 }
561
562 /* Returns true if 'wc' matches every packet, false if 'wc' fixes any bits or
563 * fields. */
564 bool
565 flow_wildcards_is_catchall(const struct flow_wildcards *wc)
566 {
567 const uint32_t *wc_u32 = (const uint32_t *) &wc->masks;
568 size_t i;
569
570 for (i = 0; i < FLOW_U32S; i++) {
571 if (wc_u32[i]) {
572 return false;
573 }
574 }
575 return true;
576 }
577
578 /* Initializes 'dst' as the combination of wildcards in 'src1' and 'src2'.
579 * That is, a bit or a field is wildcarded in 'dst' if it is wildcarded in
580 * 'src1' or 'src2' or both. */
581 void
582 flow_wildcards_combine(struct flow_wildcards *dst,
583 const struct flow_wildcards *src1,
584 const struct flow_wildcards *src2)
585 {
586 uint32_t *dst_u32 = (uint32_t *) &dst->masks;
587 const uint32_t *src1_u32 = (const uint32_t *) &src1->masks;
588 const uint32_t *src2_u32 = (const uint32_t *) &src2->masks;
589 size_t i;
590
591 for (i = 0; i < FLOW_U32S; i++) {
592 dst_u32[i] = src1_u32[i] & src2_u32[i];
593 }
594 }
595
596 /* Returns a hash of the wildcards in 'wc'. */
597 uint32_t
598 flow_wildcards_hash(const struct flow_wildcards *wc, uint32_t basis)
599 {
600 return flow_hash(&wc->masks, basis);;
601 }
602
603 /* Returns true if 'a' and 'b' represent the same wildcards, false if they are
604 * different. */
605 bool
606 flow_wildcards_equal(const struct flow_wildcards *a,
607 const struct flow_wildcards *b)
608 {
609 return flow_equal(&a->masks, &b->masks);
610 }
611
612 /* Returns true if at least one bit or field is wildcarded in 'a' but not in
613 * 'b', false otherwise. */
614 bool
615 flow_wildcards_has_extra(const struct flow_wildcards *a,
616 const struct flow_wildcards *b)
617 {
618 const uint32_t *a_u32 = (const uint32_t *) &a->masks;
619 const uint32_t *b_u32 = (const uint32_t *) &b->masks;
620 size_t i;
621
622 for (i = 0; i < FLOW_U32S; i++) {
623 if ((a_u32[i] & b_u32[i]) != b_u32[i]) {
624 return true;
625 }
626 }
627 return false;
628 }
629
630 /* Returns true if 'a' and 'b' are equal, except that 0-bits (wildcarded bits)
631 * in 'wc' do not need to be equal in 'a' and 'b'. */
632 bool
633 flow_equal_except(const struct flow *a, const struct flow *b,
634 const struct flow_wildcards *wc)
635 {
636 const uint32_t *a_u32 = (const uint32_t *) a;
637 const uint32_t *b_u32 = (const uint32_t *) b;
638 const uint32_t *wc_u32 = (const uint32_t *) &wc->masks;
639 size_t i;
640
641 for (i = 0; i < FLOW_U32S; i++) {
642 if ((a_u32[i] ^ b_u32[i]) & wc_u32[i]) {
643 return false;
644 }
645 }
646 return true;
647 }
648
649 /* Sets the wildcard mask for register 'idx' in 'wc' to 'mask'.
650 * (A 0-bit indicates a wildcard bit.) */
651 void
652 flow_wildcards_set_reg_mask(struct flow_wildcards *wc, int idx, uint32_t mask)
653 {
654 wc->masks.regs[idx] = mask;
655 }
656
657 /* Hashes 'flow' based on its L2 through L4 protocol information. */
658 uint32_t
659 flow_hash_symmetric_l4(const struct flow *flow, uint32_t basis)
660 {
661 struct {
662 union {
663 ovs_be32 ipv4_addr;
664 struct in6_addr ipv6_addr;
665 };
666 ovs_be16 eth_type;
667 ovs_be16 vlan_tci;
668 ovs_be16 tp_port;
669 uint8_t eth_addr[ETH_ADDR_LEN];
670 uint8_t ip_proto;
671 } fields;
672
673 int i;
674
675 memset(&fields, 0, sizeof fields);
676 for (i = 0; i < ETH_ADDR_LEN; i++) {
677 fields.eth_addr[i] = flow->dl_src[i] ^ flow->dl_dst[i];
678 }
679 fields.vlan_tci = flow->vlan_tci & htons(VLAN_VID_MASK);
680 fields.eth_type = flow->dl_type;
681
682 /* UDP source and destination port are not taken into account because they
683 * will not necessarily be symmetric in a bidirectional flow. */
684 if (fields.eth_type == htons(ETH_TYPE_IP)) {
685 fields.ipv4_addr = flow->nw_src ^ flow->nw_dst;
686 fields.ip_proto = flow->nw_proto;
687 if (fields.ip_proto == IPPROTO_TCP) {
688 fields.tp_port = flow->tp_src ^ flow->tp_dst;
689 }
690 } else if (fields.eth_type == htons(ETH_TYPE_IPV6)) {
691 const uint8_t *a = &flow->ipv6_src.s6_addr[0];
692 const uint8_t *b = &flow->ipv6_dst.s6_addr[0];
693 uint8_t *ipv6_addr = &fields.ipv6_addr.s6_addr[0];
694
695 for (i=0; i<16; i++) {
696 ipv6_addr[i] = a[i] ^ b[i];
697 }
698 fields.ip_proto = flow->nw_proto;
699 if (fields.ip_proto == IPPROTO_TCP) {
700 fields.tp_port = flow->tp_src ^ flow->tp_dst;
701 }
702 }
703 return hash_bytes(&fields, sizeof fields, basis);
704 }
705
706 /* Hashes the portions of 'flow' designated by 'fields'. */
707 uint32_t
708 flow_hash_fields(const struct flow *flow, enum nx_hash_fields fields,
709 uint16_t basis)
710 {
711 switch (fields) {
712
713 case NX_HASH_FIELDS_ETH_SRC:
714 return hash_bytes(flow->dl_src, sizeof flow->dl_src, basis);
715
716 case NX_HASH_FIELDS_SYMMETRIC_L4:
717 return flow_hash_symmetric_l4(flow, basis);
718 }
719
720 NOT_REACHED();
721 }
722
723 /* Returns a string representation of 'fields'. */
724 const char *
725 flow_hash_fields_to_str(enum nx_hash_fields fields)
726 {
727 switch (fields) {
728 case NX_HASH_FIELDS_ETH_SRC: return "eth_src";
729 case NX_HASH_FIELDS_SYMMETRIC_L4: return "symmetric_l4";
730 default: return "<unknown>";
731 }
732 }
733
734 /* Returns true if the value of 'fields' is supported. Otherwise false. */
735 bool
736 flow_hash_fields_valid(enum nx_hash_fields fields)
737 {
738 return fields == NX_HASH_FIELDS_ETH_SRC
739 || fields == NX_HASH_FIELDS_SYMMETRIC_L4;
740 }
741
742 /* Sets the VLAN VID that 'flow' matches to 'vid', which is interpreted as an
743 * OpenFlow 1.0 "dl_vlan" value:
744 *
745 * - If it is in the range 0...4095, 'flow->vlan_tci' is set to match
746 * that VLAN. Any existing PCP match is unchanged (it becomes 0 if
747 * 'flow' previously matched packets without a VLAN header).
748 *
749 * - If it is OFP_VLAN_NONE, 'flow->vlan_tci' is set to match a packet
750 * without a VLAN tag.
751 *
752 * - Other values of 'vid' should not be used. */
753 void
754 flow_set_dl_vlan(struct flow *flow, ovs_be16 vid)
755 {
756 if (vid == htons(OFP10_VLAN_NONE)) {
757 flow->vlan_tci = htons(0);
758 } else {
759 vid &= htons(VLAN_VID_MASK);
760 flow->vlan_tci &= ~htons(VLAN_VID_MASK);
761 flow->vlan_tci |= htons(VLAN_CFI) | vid;
762 }
763 }
764
765 /* Sets the VLAN VID that 'flow' matches to 'vid', which is interpreted as an
766 * OpenFlow 1.2 "vlan_vid" value, that is, the low 13 bits of 'vlan_tci' (VID
767 * plus CFI). */
768 void
769 flow_set_vlan_vid(struct flow *flow, ovs_be16 vid)
770 {
771 ovs_be16 mask = htons(VLAN_VID_MASK | VLAN_CFI);
772 flow->vlan_tci &= ~mask;
773 flow->vlan_tci |= vid & mask;
774 }
775
776 /* Sets the VLAN PCP that 'flow' matches to 'pcp', which should be in the
777 * range 0...7.
778 *
779 * This function has no effect on the VLAN ID that 'flow' matches.
780 *
781 * After calling this function, 'flow' will not match packets without a VLAN
782 * header. */
783 void
784 flow_set_vlan_pcp(struct flow *flow, uint8_t pcp)
785 {
786 pcp &= 0x07;
787 flow->vlan_tci &= ~htons(VLAN_PCP_MASK);
788 flow->vlan_tci |= htons((pcp << VLAN_PCP_SHIFT) | VLAN_CFI);
789 }
790
791 /* Puts into 'b' a packet that flow_extract() would parse as having the given
792 * 'flow'.
793 *
794 * (This is useful only for testing, obviously, and the packet isn't really
795 * valid. It hasn't got some checksums filled in, for one, and lots of fields
796 * are just zeroed.) */
797 void
798 flow_compose(struct ofpbuf *b, const struct flow *flow)
799 {
800 eth_compose(b, flow->dl_dst, flow->dl_src, ntohs(flow->dl_type), 0);
801 if (flow->dl_type == htons(FLOW_DL_TYPE_NONE)) {
802 struct eth_header *eth = b->l2;
803 eth->eth_type = htons(b->size);
804 return;
805 }
806
807 if (flow->vlan_tci & htons(VLAN_CFI)) {
808 eth_push_vlan(b, flow->vlan_tci);
809 }
810
811 if (flow->dl_type == htons(ETH_TYPE_IP)) {
812 struct ip_header *ip;
813
814 b->l3 = ip = ofpbuf_put_zeros(b, sizeof *ip);
815 ip->ip_ihl_ver = IP_IHL_VER(5, 4);
816 ip->ip_tos = flow->nw_tos;
817 ip->ip_proto = flow->nw_proto;
818 ip->ip_src = flow->nw_src;
819 ip->ip_dst = flow->nw_dst;
820
821 if (flow->nw_frag & FLOW_NW_FRAG_ANY) {
822 ip->ip_frag_off |= htons(IP_MORE_FRAGMENTS);
823 if (flow->nw_frag & FLOW_NW_FRAG_LATER) {
824 ip->ip_frag_off |= htons(100);
825 }
826 }
827 if (!(flow->nw_frag & FLOW_NW_FRAG_ANY)
828 || !(flow->nw_frag & FLOW_NW_FRAG_LATER)) {
829 if (flow->nw_proto == IPPROTO_TCP) {
830 struct tcp_header *tcp;
831
832 b->l4 = tcp = ofpbuf_put_zeros(b, sizeof *tcp);
833 tcp->tcp_src = flow->tp_src;
834 tcp->tcp_dst = flow->tp_dst;
835 tcp->tcp_ctl = TCP_CTL(0, 5);
836 } else if (flow->nw_proto == IPPROTO_UDP) {
837 struct udp_header *udp;
838
839 b->l4 = udp = ofpbuf_put_zeros(b, sizeof *udp);
840 udp->udp_src = flow->tp_src;
841 udp->udp_dst = flow->tp_dst;
842 } else if (flow->nw_proto == IPPROTO_ICMP) {
843 struct icmp_header *icmp;
844
845 b->l4 = icmp = ofpbuf_put_zeros(b, sizeof *icmp);
846 icmp->icmp_type = ntohs(flow->tp_src);
847 icmp->icmp_code = ntohs(flow->tp_dst);
848 icmp->icmp_csum = csum(icmp, ICMP_HEADER_LEN);
849 }
850 }
851
852 ip = b->l3;
853 ip->ip_tot_len = htons((uint8_t *) b->data + b->size
854 - (uint8_t *) b->l3);
855 ip->ip_csum = csum(ip, sizeof *ip);
856 } else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
857 /* XXX */
858 } else if (flow->dl_type == htons(ETH_TYPE_ARP)) {
859 struct arp_eth_header *arp;
860
861 b->l3 = arp = ofpbuf_put_zeros(b, sizeof *arp);
862 arp->ar_hrd = htons(1);
863 arp->ar_pro = htons(ETH_TYPE_IP);
864 arp->ar_hln = ETH_ADDR_LEN;
865 arp->ar_pln = 4;
866 arp->ar_op = htons(flow->nw_proto);
867
868 if (flow->nw_proto == ARP_OP_REQUEST ||
869 flow->nw_proto == ARP_OP_REPLY) {
870 arp->ar_spa = flow->nw_src;
871 arp->ar_tpa = flow->nw_dst;
872 memcpy(arp->ar_sha, flow->arp_sha, ETH_ADDR_LEN);
873 memcpy(arp->ar_tha, flow->arp_tha, ETH_ADDR_LEN);
874 }
875 }
876 }
877 \f
878 /* Compressed flow. */
879
880 static int
881 miniflow_n_values(const struct miniflow *flow)
882 {
883 int n, i;
884
885 n = 0;
886 for (i = 0; i < MINI_N_MAPS; i++) {
887 n += popcount(flow->map[i]);
888 }
889 return n;
890 }
891
892 static uint32_t *
893 miniflow_alloc_values(struct miniflow *flow, int n)
894 {
895 if (n <= MINI_N_INLINE) {
896 return flow->inline_values;
897 } else {
898 COVERAGE_INC(miniflow_malloc);
899 return xmalloc(n * sizeof *flow->values);
900 }
901 }
902
903 /* Initializes 'dst' as a copy of 'src'. The caller must eventually free 'dst'
904 * with miniflow_destroy(). */
905 void
906 miniflow_init(struct miniflow *dst, const struct flow *src)
907 {
908 const uint32_t *src_u32 = (const uint32_t *) src;
909 unsigned int ofs;
910 unsigned int i;
911 int n;
912
913 /* Initialize dst->map, counting the number of nonzero elements. */
914 n = 0;
915 memset(dst->map, 0, sizeof dst->map);
916 for (i = 0; i < FLOW_U32S; i++) {
917 if (src_u32[i]) {
918 dst->map[i / 32] |= 1u << (i % 32);
919 n++;
920 }
921 }
922
923 /* Initialize dst->values. */
924 dst->values = miniflow_alloc_values(dst, n);
925 ofs = 0;
926 for (i = 0; i < MINI_N_MAPS; i++) {
927 uint32_t map;
928
929 for (map = dst->map[i]; map; map = zero_rightmost_1bit(map)) {
930 dst->values[ofs++] = src_u32[raw_ctz(map) + i * 32];
931 }
932 }
933 }
934
935 /* Initializes 'dst' as a copy of 'src'. The caller must eventually free 'dst'
936 * with miniflow_destroy(). */
937 void
938 miniflow_clone(struct miniflow *dst, const struct miniflow *src)
939 {
940 int n = miniflow_n_values(src);
941 memcpy(dst->map, src->map, sizeof dst->map);
942 dst->values = miniflow_alloc_values(dst, n);
943 memcpy(dst->values, src->values, n * sizeof *dst->values);
944 }
945
946 /* Frees any memory owned by 'flow'. Does not free the storage in which 'flow'
947 * itself resides; the caller is responsible for that. */
948 void
949 miniflow_destroy(struct miniflow *flow)
950 {
951 if (flow->values != flow->inline_values) {
952 free(flow->values);
953 }
954 }
955
956 /* Initializes 'dst' as a copy of 'src'. */
957 void
958 miniflow_expand(const struct miniflow *src, struct flow *dst)
959 {
960 uint32_t *dst_u32 = (uint32_t *) dst;
961 int ofs;
962 int i;
963
964 memset(dst_u32, 0, sizeof *dst);
965
966 ofs = 0;
967 for (i = 0; i < MINI_N_MAPS; i++) {
968 uint32_t map;
969
970 for (map = src->map[i]; map; map = zero_rightmost_1bit(map)) {
971 dst_u32[raw_ctz(map) + i * 32] = src->values[ofs++];
972 }
973 }
974 }
975
976 static const uint32_t *
977 miniflow_get__(const struct miniflow *flow, unsigned int u32_ofs)
978 {
979 if (!(flow->map[u32_ofs / 32] & (1u << (u32_ofs % 32)))) {
980 static const uint32_t zero = 0;
981 return &zero;
982 } else {
983 const uint32_t *p = flow->values;
984
985 BUILD_ASSERT(MINI_N_MAPS == 2);
986 if (u32_ofs < 32) {
987 p += popcount(flow->map[0] & ((1u << u32_ofs) - 1));
988 } else {
989 p += popcount(flow->map[0]);
990 p += popcount(flow->map[1] & ((1u << (u32_ofs - 32)) - 1));
991 }
992 return p;
993 }
994 }
995
996 /* Returns the uint32_t that would be at byte offset '4 * u32_ofs' if 'flow'
997 * were expanded into a "struct flow". */
998 uint32_t
999 miniflow_get(const struct miniflow *flow, unsigned int u32_ofs)
1000 {
1001 return *miniflow_get__(flow, u32_ofs);
1002 }
1003
1004 /* Returns the ovs_be16 that would be at byte offset 'u8_ofs' if 'flow' were
1005 * expanded into a "struct flow". */
1006 static ovs_be16
1007 miniflow_get_be16(const struct miniflow *flow, unsigned int u8_ofs)
1008 {
1009 const uint32_t *u32p = miniflow_get__(flow, u8_ofs / 4);
1010 const ovs_be16 *be16p = (const ovs_be16 *) u32p;
1011 return be16p[u8_ofs % 4 != 0];
1012 }
1013
1014 /* Returns the VID within the vlan_tci member of the "struct flow" represented
1015 * by 'flow'. */
1016 uint16_t
1017 miniflow_get_vid(const struct miniflow *flow)
1018 {
1019 ovs_be16 tci = miniflow_get_be16(flow, offsetof(struct flow, vlan_tci));
1020 return vlan_tci_to_vid(tci);
1021 }
1022
1023 /* Returns true if 'a' and 'b' are the same flow, false otherwise. */
1024 bool
1025 miniflow_equal(const struct miniflow *a, const struct miniflow *b)
1026 {
1027 int i;
1028
1029 for (i = 0; i < MINI_N_MAPS; i++) {
1030 if (a->map[i] != b->map[i]) {
1031 return false;
1032 }
1033 }
1034
1035 return !memcmp(a->values, b->values,
1036 miniflow_n_values(a) * sizeof *a->values);
1037 }
1038
1039 /* Returns true if 'a' and 'b' are equal at the places where there are 1-bits
1040 * in 'mask', false if they differ. */
1041 bool
1042 miniflow_equal_in_minimask(const struct miniflow *a, const struct miniflow *b,
1043 const struct minimask *mask)
1044 {
1045 const uint32_t *p;
1046 int i;
1047
1048 p = mask->masks.values;
1049 for (i = 0; i < MINI_N_MAPS; i++) {
1050 uint32_t map;
1051
1052 for (map = mask->masks.map[i]; map; map = zero_rightmost_1bit(map)) {
1053 int ofs = raw_ctz(map) + i * 32;
1054
1055 if ((miniflow_get(a, ofs) ^ miniflow_get(b, ofs)) & *p) {
1056 return false;
1057 }
1058 p++;
1059 }
1060 }
1061
1062 return true;
1063 }
1064
1065 /* Returns true if 'a' and 'b' are equal at the places where there are 1-bits
1066 * in 'mask', false if they differ. */
1067 bool
1068 miniflow_equal_flow_in_minimask(const struct miniflow *a, const struct flow *b,
1069 const struct minimask *mask)
1070 {
1071 const uint32_t *b_u32 = (const uint32_t *) b;
1072 const uint32_t *p;
1073 int i;
1074
1075 p = mask->masks.values;
1076 for (i = 0; i < MINI_N_MAPS; i++) {
1077 uint32_t map;
1078
1079 for (map = mask->masks.map[i]; map; map = zero_rightmost_1bit(map)) {
1080 int ofs = raw_ctz(map) + i * 32;
1081
1082 if ((miniflow_get(a, ofs) ^ b_u32[ofs]) & *p) {
1083 return false;
1084 }
1085 p++;
1086 }
1087 }
1088
1089 return true;
1090 }
1091
1092 /* Returns a hash value for 'flow', given 'basis'. */
1093 uint32_t
1094 miniflow_hash(const struct miniflow *flow, uint32_t basis)
1095 {
1096 BUILD_ASSERT_DECL(MINI_N_MAPS == 2);
1097 return hash_3words(flow->map[0], flow->map[1],
1098 hash_words(flow->values, miniflow_n_values(flow),
1099 basis));
1100 }
1101
1102 /* Returns a hash value for the bits of 'flow' where there are 1-bits in
1103 * 'mask', given 'basis'.
1104 *
1105 * The hash values returned by this function are the same as those returned by
1106 * flow_hash_in_minimask(), only the form of the arguments differ. */
1107 uint32_t
1108 miniflow_hash_in_minimask(const struct miniflow *flow,
1109 const struct minimask *mask, uint32_t basis)
1110 {
1111 const uint32_t *p = mask->masks.values;
1112 uint32_t hash;
1113 int i;
1114
1115 hash = basis;
1116 for (i = 0; i < MINI_N_MAPS; i++) {
1117 uint32_t map;
1118
1119 for (map = mask->masks.map[i]; map; map = zero_rightmost_1bit(map)) {
1120 int ofs = raw_ctz(map) + i * 32;
1121
1122 hash = mhash_add(hash, miniflow_get(flow, ofs) & *p);
1123 p++;
1124 }
1125 }
1126
1127 return mhash_finish(hash, p - mask->masks.values);
1128 }
1129
1130 /* Returns a hash value for the bits of 'flow' where there are 1-bits in
1131 * 'mask', given 'basis'.
1132 *
1133 * The hash values returned by this function are the same as those returned by
1134 * miniflow_hash_in_minimask(), only the form of the arguments differ. */
1135 uint32_t
1136 flow_hash_in_minimask(const struct flow *flow, const struct minimask *mask,
1137 uint32_t basis)
1138 {
1139 const uint32_t *flow_u32 = (const uint32_t *) flow;
1140 const uint32_t *p = mask->masks.values;
1141 uint32_t hash;
1142 int i;
1143
1144 hash = basis;
1145 for (i = 0; i < MINI_N_MAPS; i++) {
1146 uint32_t map;
1147
1148 for (map = mask->masks.map[i]; map; map = zero_rightmost_1bit(map)) {
1149 int ofs = raw_ctz(map) + i * 32;
1150
1151 hash = mhash_add(hash, flow_u32[ofs] & *p);
1152 p++;
1153 }
1154 }
1155
1156 return mhash_finish(hash, p - mask->masks.values);
1157 }
1158 \f
1159 /* Initializes 'dst' as a copy of 'src'. The caller must eventually free 'dst'
1160 * with minimask_destroy(). */
1161 void
1162 minimask_init(struct minimask *mask, const struct flow_wildcards *wc)
1163 {
1164 miniflow_init(&mask->masks, &wc->masks);
1165 }
1166
1167 /* Initializes 'dst' as a copy of 'src'. The caller must eventually free 'dst'
1168 * with minimask_destroy(). */
1169 void
1170 minimask_clone(struct minimask *dst, const struct minimask *src)
1171 {
1172 miniflow_clone(&dst->masks, &src->masks);
1173 }
1174
1175 /* Initializes 'dst_' as the bit-wise "and" of 'a_' and 'b_'.
1176 *
1177 * The caller must provide room for FLOW_U32S "uint32_t"s in 'storage', for use
1178 * by 'dst_'. The caller must *not* free 'dst_' with minimask_destroy(). */
1179 void
1180 minimask_combine(struct minimask *dst_,
1181 const struct minimask *a_, const struct minimask *b_,
1182 uint32_t storage[FLOW_U32S])
1183 {
1184 struct miniflow *dst = &dst_->masks;
1185 const struct miniflow *a = &a_->masks;
1186 const struct miniflow *b = &b_->masks;
1187 int i, n;
1188
1189 n = 0;
1190 dst->values = storage;
1191 for (i = 0; i < MINI_N_MAPS; i++) {
1192 uint32_t map;
1193
1194 dst->map[i] = 0;
1195 for (map = a->map[i] & b->map[i]; map;
1196 map = zero_rightmost_1bit(map)) {
1197 int ofs = raw_ctz(map) + i * 32;
1198 uint32_t mask = miniflow_get(a, ofs) & miniflow_get(b, ofs);
1199
1200 if (mask) {
1201 dst->map[i] |= rightmost_1bit(map);
1202 dst->values[n++] = mask;
1203 }
1204 }
1205 }
1206 }
1207
1208 /* Frees any memory owned by 'mask'. Does not free the storage in which 'mask'
1209 * itself resides; the caller is responsible for that. */
1210 void
1211 minimask_destroy(struct minimask *mask)
1212 {
1213 miniflow_destroy(&mask->masks);
1214 }
1215
1216 /* Initializes 'dst' as a copy of 'src'. */
1217 void
1218 minimask_expand(const struct minimask *mask, struct flow_wildcards *wc)
1219 {
1220 miniflow_expand(&mask->masks, &wc->masks);
1221 }
1222
1223 /* Returns the uint32_t that would be at byte offset '4 * u32_ofs' if 'mask'
1224 * were expanded into a "struct flow_wildcards". */
1225 uint32_t
1226 minimask_get(const struct minimask *mask, unsigned int u32_ofs)
1227 {
1228 return miniflow_get(&mask->masks, u32_ofs);
1229 }
1230
1231 /* Returns the VID mask within the vlan_tci member of the "struct
1232 * flow_wildcards" represented by 'mask'. */
1233 uint16_t
1234 minimask_get_vid_mask(const struct minimask *mask)
1235 {
1236 return miniflow_get_vid(&mask->masks);
1237 }
1238
1239 /* Returns true if 'a' and 'b' are the same flow mask, false otherwise. */
1240 bool
1241 minimask_equal(const struct minimask *a, const struct minimask *b)
1242 {
1243 return miniflow_equal(&a->masks, &b->masks);
1244 }
1245
1246 /* Returns a hash value for 'mask', given 'basis'. */
1247 uint32_t
1248 minimask_hash(const struct minimask *mask, uint32_t basis)
1249 {
1250 return miniflow_hash(&mask->masks, basis);
1251 }
1252
1253 /* Returns true if at least one bit is wildcarded in 'a_' but not in 'b_',
1254 * false otherwise. */
1255 bool
1256 minimask_has_extra(const struct minimask *a_, const struct minimask *b_)
1257 {
1258 const struct miniflow *a = &a_->masks;
1259 const struct miniflow *b = &b_->masks;
1260 int i;
1261
1262 for (i = 0; i < MINI_N_MAPS; i++) {
1263 uint32_t map;
1264
1265 for (map = a->map[i] | b->map[i]; map;
1266 map = zero_rightmost_1bit(map)) {
1267 int ofs = raw_ctz(map) + i * 32;
1268 uint32_t a_u32 = miniflow_get(a, ofs);
1269 uint32_t b_u32 = miniflow_get(b, ofs);
1270
1271 if ((a_u32 & b_u32) != b_u32) {
1272 return true;
1273 }
1274 }
1275 }
1276
1277 return false;
1278 }
1279
1280 /* Returns true if 'mask' matches every packet, false if 'mask' fixes any bits
1281 * or fields. */
1282 bool
1283 minimask_is_catchall(const struct minimask *mask_)
1284 {
1285 const struct miniflow *mask = &mask_->masks;
1286
1287 BUILD_ASSERT(MINI_N_MAPS == 2);
1288 return !(mask->map[0] | mask->map[1]);
1289 }