]> git.proxmox.com Git - mirror_ovs.git/blob - lib/flow.c
packets: Fix misaligned data accesses for MPLS and SCTP fields.
[mirror_ovs.git] / lib / flow.c
1 /*
2 * Copyright (c) 2008, 2009, 2010, 2011, 2012, 2013, 2014 Nicira, Inc.
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at:
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16 #include <config.h>
17 #include <sys/types.h>
18 #include "flow.h"
19 #include <errno.h>
20 #include <inttypes.h>
21 #include <limits.h>
22 #include <netinet/in.h>
23 #include <netinet/icmp6.h>
24 #include <netinet/ip6.h>
25 #include <stdint.h>
26 #include <stdlib.h>
27 #include <string.h>
28 #include "byte-order.h"
29 #include "coverage.h"
30 #include "csum.h"
31 #include "dynamic-string.h"
32 #include "hash.h"
33 #include "jhash.h"
34 #include "match.h"
35 #include "ofpbuf.h"
36 #include "openflow/openflow.h"
37 #include "packets.h"
38 #include "odp-util.h"
39 #include "random.h"
40 #include "unaligned.h"
41
42 COVERAGE_DEFINE(flow_extract);
43 COVERAGE_DEFINE(miniflow_malloc);
44
45 /* U32 indices for segmented flow classification. */
46 const uint8_t flow_segment_u32s[4] = {
47 FLOW_SEGMENT_1_ENDS_AT / 4,
48 FLOW_SEGMENT_2_ENDS_AT / 4,
49 FLOW_SEGMENT_3_ENDS_AT / 4,
50 FLOW_U32S
51 };
52
53 static struct arp_eth_header *
54 pull_arp(struct ofpbuf *packet)
55 {
56 return ofpbuf_try_pull(packet, ARP_ETH_HEADER_LEN);
57 }
58
59 static struct ip_header *
60 pull_ip(struct ofpbuf *packet)
61 {
62 if (ofpbuf_size(packet) >= IP_HEADER_LEN) {
63 struct ip_header *ip = ofpbuf_data(packet);
64 int ip_len = IP_IHL(ip->ip_ihl_ver) * 4;
65 if (ip_len >= IP_HEADER_LEN && ofpbuf_size(packet) >= ip_len) {
66 return ofpbuf_pull(packet, ip_len);
67 }
68 }
69 return NULL;
70 }
71
72 static struct icmp_header *
73 pull_icmp(struct ofpbuf *packet)
74 {
75 return ofpbuf_try_pull(packet, ICMP_HEADER_LEN);
76 }
77
78 static struct icmp6_hdr *
79 pull_icmpv6(struct ofpbuf *packet)
80 {
81 return ofpbuf_try_pull(packet, sizeof(struct icmp6_hdr));
82 }
83
84 static void
85 parse_mpls(struct ofpbuf *b, struct flow *flow)
86 {
87 struct mpls_hdr *mh;
88 int idx = 0;
89
90 while ((mh = ofpbuf_try_pull(b, sizeof *mh))) {
91 ovs_be32 mpls_lse = get_16aligned_be32(&mh->mpls_lse);
92 if (idx < FLOW_MAX_MPLS_LABELS) {
93 flow->mpls_lse[idx++] = mpls_lse;
94 }
95 if (mpls_lse & htonl(MPLS_BOS_MASK)) {
96 break;
97 }
98 }
99 }
100
101 static void
102 parse_vlan(struct ofpbuf *b, struct flow *flow)
103 {
104 struct qtag_prefix {
105 ovs_be16 eth_type; /* ETH_TYPE_VLAN */
106 ovs_be16 tci;
107 };
108
109 if (ofpbuf_size(b) >= sizeof(struct qtag_prefix) + sizeof(ovs_be16)) {
110 struct qtag_prefix *qp = ofpbuf_pull(b, sizeof *qp);
111 flow->vlan_tci = qp->tci | htons(VLAN_CFI);
112 }
113 }
114
115 static ovs_be16
116 parse_ethertype(struct ofpbuf *b)
117 {
118 struct llc_snap_header *llc;
119 ovs_be16 proto;
120
121 proto = *(ovs_be16 *) ofpbuf_pull(b, sizeof proto);
122 if (ntohs(proto) >= ETH_TYPE_MIN) {
123 return proto;
124 }
125
126 if (ofpbuf_size(b) < sizeof *llc) {
127 return htons(FLOW_DL_TYPE_NONE);
128 }
129
130 llc = ofpbuf_data(b);
131 if (llc->llc.llc_dsap != LLC_DSAP_SNAP
132 || llc->llc.llc_ssap != LLC_SSAP_SNAP
133 || llc->llc.llc_cntl != LLC_CNTL_SNAP
134 || memcmp(llc->snap.snap_org, SNAP_ORG_ETHERNET,
135 sizeof llc->snap.snap_org)) {
136 return htons(FLOW_DL_TYPE_NONE);
137 }
138
139 ofpbuf_pull(b, sizeof *llc);
140
141 if (ntohs(llc->snap.snap_type) >= ETH_TYPE_MIN) {
142 return llc->snap.snap_type;
143 }
144
145 return htons(FLOW_DL_TYPE_NONE);
146 }
147
148 static int
149 parse_ipv6(struct ofpbuf *packet, struct flow *flow)
150 {
151 const struct ovs_16aligned_ip6_hdr *nh;
152 ovs_be32 tc_flow;
153 int nexthdr;
154
155 nh = ofpbuf_try_pull(packet, sizeof *nh);
156 if (!nh) {
157 return EINVAL;
158 }
159
160 nexthdr = nh->ip6_nxt;
161
162 memcpy(&flow->ipv6_src, &nh->ip6_src, sizeof flow->ipv6_src);
163 memcpy(&flow->ipv6_dst, &nh->ip6_dst, sizeof flow->ipv6_dst);
164
165 tc_flow = get_16aligned_be32(&nh->ip6_flow);
166 flow->nw_tos = ntohl(tc_flow) >> 20;
167 flow->ipv6_label = tc_flow & htonl(IPV6_LABEL_MASK);
168 flow->nw_ttl = nh->ip6_hlim;
169 flow->nw_proto = IPPROTO_NONE;
170
171 while (1) {
172 if ((nexthdr != IPPROTO_HOPOPTS)
173 && (nexthdr != IPPROTO_ROUTING)
174 && (nexthdr != IPPROTO_DSTOPTS)
175 && (nexthdr != IPPROTO_AH)
176 && (nexthdr != IPPROTO_FRAGMENT)) {
177 /* It's either a terminal header (e.g., TCP, UDP) or one we
178 * don't understand. In either case, we're done with the
179 * packet, so use it to fill in 'nw_proto'. */
180 break;
181 }
182
183 /* We only verify that at least 8 bytes of the next header are
184 * available, but many of these headers are longer. Ensure that
185 * accesses within the extension header are within those first 8
186 * bytes. All extension headers are required to be at least 8
187 * bytes. */
188 if (ofpbuf_size(packet) < 8) {
189 return EINVAL;
190 }
191
192 if ((nexthdr == IPPROTO_HOPOPTS)
193 || (nexthdr == IPPROTO_ROUTING)
194 || (nexthdr == IPPROTO_DSTOPTS)) {
195 /* These headers, while different, have the fields we care about
196 * in the same location and with the same interpretation. */
197 const struct ip6_ext *ext_hdr = ofpbuf_data(packet);
198 nexthdr = ext_hdr->ip6e_nxt;
199 if (!ofpbuf_try_pull(packet, (ext_hdr->ip6e_len + 1) * 8)) {
200 return EINVAL;
201 }
202 } else if (nexthdr == IPPROTO_AH) {
203 /* A standard AH definition isn't available, but the fields
204 * we care about are in the same location as the generic
205 * option header--only the header length is calculated
206 * differently. */
207 const struct ip6_ext *ext_hdr = ofpbuf_data(packet);
208 nexthdr = ext_hdr->ip6e_nxt;
209 if (!ofpbuf_try_pull(packet, (ext_hdr->ip6e_len + 2) * 4)) {
210 return EINVAL;
211 }
212 } else if (nexthdr == IPPROTO_FRAGMENT) {
213 const struct ovs_16aligned_ip6_frag *frag_hdr = ofpbuf_data(packet);
214
215 nexthdr = frag_hdr->ip6f_nxt;
216 if (!ofpbuf_try_pull(packet, sizeof *frag_hdr)) {
217 return EINVAL;
218 }
219
220 /* We only process the first fragment. */
221 if (frag_hdr->ip6f_offlg != htons(0)) {
222 flow->nw_frag = FLOW_NW_FRAG_ANY;
223 if ((frag_hdr->ip6f_offlg & IP6F_OFF_MASK) != htons(0)) {
224 flow->nw_frag |= FLOW_NW_FRAG_LATER;
225 nexthdr = IPPROTO_FRAGMENT;
226 break;
227 }
228 }
229 }
230 }
231
232 flow->nw_proto = nexthdr;
233 return 0;
234 }
235
236 static void
237 parse_tcp(struct ofpbuf *b, struct flow *flow)
238 {
239 if (ofpbuf_size(b) >= TCP_HEADER_LEN) {
240 const struct tcp_header *tcp = ofpbuf_data(b);
241
242 flow->tp_src = tcp->tcp_src;
243 flow->tp_dst = tcp->tcp_dst;
244 flow->tcp_flags = tcp->tcp_ctl & htons(0x0fff);
245 }
246 }
247
248 static void
249 parse_udp(struct ofpbuf *b, struct flow *flow)
250 {
251 if (ofpbuf_size(b) >= UDP_HEADER_LEN) {
252 const struct udp_header *udp = ofpbuf_data(b);
253
254 flow->tp_src = udp->udp_src;
255 flow->tp_dst = udp->udp_dst;
256 }
257 }
258
259 static void
260 parse_sctp(struct ofpbuf *b, struct flow *flow)
261 {
262 if (ofpbuf_size(b) >= SCTP_HEADER_LEN) {
263 const struct sctp_header *sctp = ofpbuf_data(b);
264
265 flow->tp_src = sctp->sctp_src;
266 flow->tp_dst = sctp->sctp_dst;
267 }
268 }
269
270 static void
271 parse_icmpv6(struct ofpbuf *b, struct flow *flow)
272 {
273 const struct icmp6_hdr *icmp = pull_icmpv6(b);
274
275 if (!icmp) {
276 return;
277 }
278
279 /* The ICMPv6 type and code fields use the 16-bit transport port
280 * fields, so we need to store them in 16-bit network byte order. */
281 flow->tp_src = htons(icmp->icmp6_type);
282 flow->tp_dst = htons(icmp->icmp6_code);
283
284 if (icmp->icmp6_code == 0 &&
285 (icmp->icmp6_type == ND_NEIGHBOR_SOLICIT ||
286 icmp->icmp6_type == ND_NEIGHBOR_ADVERT)) {
287 const struct in6_addr *nd_target;
288
289 nd_target = ofpbuf_try_pull(b, sizeof *nd_target);
290 if (!nd_target) {
291 return;
292 }
293 flow->nd_target = *nd_target;
294
295 while (ofpbuf_size(b) >= 8) {
296 /* The minimum size of an option is 8 bytes, which also is
297 * the size of Ethernet link-layer options. */
298 const struct nd_opt_hdr *nd_opt = ofpbuf_data(b);
299 int opt_len = nd_opt->nd_opt_len * 8;
300
301 if (!opt_len || opt_len > ofpbuf_size(b)) {
302 goto invalid;
303 }
304
305 /* Store the link layer address if the appropriate option is
306 * provided. It is considered an error if the same link
307 * layer option is specified twice. */
308 if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LINKADDR
309 && opt_len == 8) {
310 if (eth_addr_is_zero(flow->arp_sha)) {
311 memcpy(flow->arp_sha, nd_opt + 1, ETH_ADDR_LEN);
312 } else {
313 goto invalid;
314 }
315 } else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LINKADDR
316 && opt_len == 8) {
317 if (eth_addr_is_zero(flow->arp_tha)) {
318 memcpy(flow->arp_tha, nd_opt + 1, ETH_ADDR_LEN);
319 } else {
320 goto invalid;
321 }
322 }
323
324 if (!ofpbuf_try_pull(b, opt_len)) {
325 goto invalid;
326 }
327 }
328 }
329
330 return;
331
332 invalid:
333 memset(&flow->nd_target, 0, sizeof(flow->nd_target));
334 memset(flow->arp_sha, 0, sizeof(flow->arp_sha));
335 memset(flow->arp_tha, 0, sizeof(flow->arp_tha));
336
337 return;
338 }
339
340 /* Initializes 'flow' members from 'packet' and 'md'
341 *
342 * Initializes 'packet' header l2 pointer to the start of the Ethernet
343 * header, and the layer offsets as follows:
344 *
345 * - packet->l2_5_ofs to the start of the MPLS shim header, or UINT16_MAX
346 * when there is no MPLS shim header.
347 *
348 * - packet->l3_ofs to just past the Ethernet header, or just past the
349 * vlan_header if one is present, to the first byte of the payload of the
350 * Ethernet frame. UINT16_MAX if the frame is too short to contain an
351 * Ethernet header.
352 *
353 * - packet->l4_ofs to just past the IPv4 header, if one is present and
354 * has at least the content used for the fields of interest for the flow,
355 * otherwise UINT16_MAX.
356 */
357 void
358 flow_extract(struct ofpbuf *packet, const struct pkt_metadata *md,
359 struct flow *flow)
360 {
361 struct ofpbuf b = *packet;
362 struct eth_header *eth;
363
364 COVERAGE_INC(flow_extract);
365
366 memset(flow, 0, sizeof *flow);
367
368 if (md) {
369 flow->tunnel = md->tunnel;
370 flow->in_port = md->in_port;
371 flow->skb_priority = md->skb_priority;
372 flow->pkt_mark = md->pkt_mark;
373 }
374
375 ofpbuf_set_frame(packet, ofpbuf_data(packet));
376
377 if (ofpbuf_size(&b) < sizeof *eth) {
378 return;
379 }
380
381 /* Link layer. */
382 eth = ofpbuf_data(&b);
383 memcpy(flow->dl_src, eth->eth_src, ETH_ADDR_LEN);
384 memcpy(flow->dl_dst, eth->eth_dst, ETH_ADDR_LEN);
385
386 /* dl_type, vlan_tci. */
387 ofpbuf_pull(&b, ETH_ADDR_LEN * 2);
388 if (eth->eth_type == htons(ETH_TYPE_VLAN)) {
389 parse_vlan(&b, flow);
390 }
391 flow->dl_type = parse_ethertype(&b);
392
393 /* Parse mpls, copy l3 ttl. */
394 if (eth_type_mpls(flow->dl_type)) {
395 ofpbuf_set_l2_5(packet, ofpbuf_data(&b));
396 parse_mpls(&b, flow);
397 }
398
399 /* Network layer. */
400 ofpbuf_set_l3(packet, ofpbuf_data(&b));
401 if (flow->dl_type == htons(ETH_TYPE_IP)) {
402 const struct ip_header *nh = pull_ip(&b);
403 if (nh) {
404 ofpbuf_set_l4(packet, ofpbuf_data(&b));
405
406 flow->nw_src = get_16aligned_be32(&nh->ip_src);
407 flow->nw_dst = get_16aligned_be32(&nh->ip_dst);
408 flow->nw_proto = nh->ip_proto;
409
410 flow->nw_tos = nh->ip_tos;
411 if (IP_IS_FRAGMENT(nh->ip_frag_off)) {
412 flow->nw_frag = FLOW_NW_FRAG_ANY;
413 if (nh->ip_frag_off & htons(IP_FRAG_OFF_MASK)) {
414 flow->nw_frag |= FLOW_NW_FRAG_LATER;
415 }
416 }
417 flow->nw_ttl = nh->ip_ttl;
418
419 if (!(nh->ip_frag_off & htons(IP_FRAG_OFF_MASK))) {
420 if (flow->nw_proto == IPPROTO_TCP) {
421 parse_tcp(&b, flow);
422 } else if (flow->nw_proto == IPPROTO_UDP) {
423 parse_udp(&b, flow);
424 } else if (flow->nw_proto == IPPROTO_SCTP) {
425 parse_sctp(&b, flow);
426 } else if (flow->nw_proto == IPPROTO_ICMP) {
427 const struct icmp_header *icmp = pull_icmp(&b);
428 if (icmp) {
429 flow->tp_src = htons(icmp->icmp_type);
430 flow->tp_dst = htons(icmp->icmp_code);
431 }
432 }
433 }
434 }
435 } else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
436 if (parse_ipv6(&b, flow)) {
437 return;
438 }
439
440 ofpbuf_set_l4(packet, ofpbuf_data(&b));
441 if (flow->nw_proto == IPPROTO_TCP) {
442 parse_tcp(&b, flow);
443 } else if (flow->nw_proto == IPPROTO_UDP) {
444 parse_udp(&b, flow);
445 } else if (flow->nw_proto == IPPROTO_SCTP) {
446 parse_sctp(&b, flow);
447 } else if (flow->nw_proto == IPPROTO_ICMPV6) {
448 parse_icmpv6(&b, flow);
449 }
450 } else if (flow->dl_type == htons(ETH_TYPE_ARP) ||
451 flow->dl_type == htons(ETH_TYPE_RARP)) {
452 const struct arp_eth_header *arp = pull_arp(&b);
453 if (arp && arp->ar_hrd == htons(1)
454 && arp->ar_pro == htons(ETH_TYPE_IP)
455 && arp->ar_hln == ETH_ADDR_LEN
456 && arp->ar_pln == 4) {
457 /* We only match on the lower 8 bits of the opcode. */
458 if (ntohs(arp->ar_op) <= 0xff) {
459 flow->nw_proto = ntohs(arp->ar_op);
460 }
461
462 flow->nw_src = get_16aligned_be32(&arp->ar_spa);
463 flow->nw_dst = get_16aligned_be32(&arp->ar_tpa);
464 memcpy(flow->arp_sha, arp->ar_sha, ETH_ADDR_LEN);
465 memcpy(flow->arp_tha, arp->ar_tha, ETH_ADDR_LEN);
466 }
467 }
468 }
469
470 /* For every bit of a field that is wildcarded in 'wildcards', sets the
471 * corresponding bit in 'flow' to zero. */
472 void
473 flow_zero_wildcards(struct flow *flow, const struct flow_wildcards *wildcards)
474 {
475 uint32_t *flow_u32 = (uint32_t *) flow;
476 const uint32_t *wc_u32 = (const uint32_t *) &wildcards->masks;
477 size_t i;
478
479 for (i = 0; i < FLOW_U32S; i++) {
480 flow_u32[i] &= wc_u32[i];
481 }
482 }
483
484 void
485 flow_unwildcard_tp_ports(const struct flow *flow, struct flow_wildcards *wc)
486 {
487 if (flow->nw_proto != IPPROTO_ICMP) {
488 memset(&wc->masks.tp_src, 0xff, sizeof wc->masks.tp_src);
489 memset(&wc->masks.tp_dst, 0xff, sizeof wc->masks.tp_dst);
490 } else {
491 wc->masks.tp_src = htons(0xff);
492 wc->masks.tp_dst = htons(0xff);
493 }
494 }
495
496 /* Initializes 'fmd' with the metadata found in 'flow'. */
497 void
498 flow_get_metadata(const struct flow *flow, struct flow_metadata *fmd)
499 {
500 BUILD_ASSERT_DECL(FLOW_WC_SEQ == 25);
501
502 fmd->dp_hash = flow->dp_hash;
503 fmd->recirc_id = flow->recirc_id;
504 fmd->tun_id = flow->tunnel.tun_id;
505 fmd->tun_src = flow->tunnel.ip_src;
506 fmd->tun_dst = flow->tunnel.ip_dst;
507 fmd->metadata = flow->metadata;
508 memcpy(fmd->regs, flow->regs, sizeof fmd->regs);
509 fmd->pkt_mark = flow->pkt_mark;
510 fmd->in_port = flow->in_port.ofp_port;
511 }
512
513 char *
514 flow_to_string(const struct flow *flow)
515 {
516 struct ds ds = DS_EMPTY_INITIALIZER;
517 flow_format(&ds, flow);
518 return ds_cstr(&ds);
519 }
520
521 const char *
522 flow_tun_flag_to_string(uint32_t flags)
523 {
524 switch (flags) {
525 case FLOW_TNL_F_DONT_FRAGMENT:
526 return "df";
527 case FLOW_TNL_F_CSUM:
528 return "csum";
529 case FLOW_TNL_F_KEY:
530 return "key";
531 default:
532 return NULL;
533 }
534 }
535
536 void
537 format_flags(struct ds *ds, const char *(*bit_to_string)(uint32_t),
538 uint32_t flags, char del)
539 {
540 uint32_t bad = 0;
541
542 if (!flags) {
543 return;
544 }
545 while (flags) {
546 uint32_t bit = rightmost_1bit(flags);
547 const char *s;
548
549 s = bit_to_string(bit);
550 if (s) {
551 ds_put_format(ds, "%s%c", s, del);
552 } else {
553 bad |= bit;
554 }
555
556 flags &= ~bit;
557 }
558
559 if (bad) {
560 ds_put_format(ds, "0x%"PRIx32"%c", bad, del);
561 }
562 ds_chomp(ds, del);
563 }
564
565 void
566 format_flags_masked(struct ds *ds, const char *name,
567 const char *(*bit_to_string)(uint32_t), uint32_t flags,
568 uint32_t mask)
569 {
570 if (name) {
571 ds_put_format(ds, "%s=", name);
572 }
573 while (mask) {
574 uint32_t bit = rightmost_1bit(mask);
575 const char *s = bit_to_string(bit);
576
577 ds_put_format(ds, "%s%s", (flags & bit) ? "+" : "-",
578 s ? s : "[Unknown]");
579 mask &= ~bit;
580 }
581 }
582
583 void
584 flow_format(struct ds *ds, const struct flow *flow)
585 {
586 struct match match;
587
588 match_wc_init(&match, flow);
589 match_format(&match, ds, OFP_DEFAULT_PRIORITY);
590 }
591
592 void
593 flow_print(FILE *stream, const struct flow *flow)
594 {
595 char *s = flow_to_string(flow);
596 fputs(s, stream);
597 free(s);
598 }
599 \f
600 /* flow_wildcards functions. */
601
602 /* Initializes 'wc' as a set of wildcards that matches every packet. */
603 void
604 flow_wildcards_init_catchall(struct flow_wildcards *wc)
605 {
606 memset(&wc->masks, 0, sizeof wc->masks);
607 }
608
609 /* Clear the metadata and register wildcard masks. They are not packet
610 * header fields. */
611 void
612 flow_wildcards_clear_non_packet_fields(struct flow_wildcards *wc)
613 {
614 memset(&wc->masks.metadata, 0, sizeof wc->masks.metadata);
615 memset(&wc->masks.regs, 0, sizeof wc->masks.regs);
616 }
617
618 /* Returns true if 'wc' matches every packet, false if 'wc' fixes any bits or
619 * fields. */
620 bool
621 flow_wildcards_is_catchall(const struct flow_wildcards *wc)
622 {
623 const uint32_t *wc_u32 = (const uint32_t *) &wc->masks;
624 size_t i;
625
626 for (i = 0; i < FLOW_U32S; i++) {
627 if (wc_u32[i]) {
628 return false;
629 }
630 }
631 return true;
632 }
633
634 /* Sets 'dst' as the bitwise AND of wildcards in 'src1' and 'src2'.
635 * That is, a bit or a field is wildcarded in 'dst' if it is wildcarded
636 * in 'src1' or 'src2' or both. */
637 void
638 flow_wildcards_and(struct flow_wildcards *dst,
639 const struct flow_wildcards *src1,
640 const struct flow_wildcards *src2)
641 {
642 uint32_t *dst_u32 = (uint32_t *) &dst->masks;
643 const uint32_t *src1_u32 = (const uint32_t *) &src1->masks;
644 const uint32_t *src2_u32 = (const uint32_t *) &src2->masks;
645 size_t i;
646
647 for (i = 0; i < FLOW_U32S; i++) {
648 dst_u32[i] = src1_u32[i] & src2_u32[i];
649 }
650 }
651
652 /* Sets 'dst' as the bitwise OR of wildcards in 'src1' and 'src2'. That
653 * is, a bit or a field is wildcarded in 'dst' if it is neither
654 * wildcarded in 'src1' nor 'src2'. */
655 void
656 flow_wildcards_or(struct flow_wildcards *dst,
657 const struct flow_wildcards *src1,
658 const struct flow_wildcards *src2)
659 {
660 uint32_t *dst_u32 = (uint32_t *) &dst->masks;
661 const uint32_t *src1_u32 = (const uint32_t *) &src1->masks;
662 const uint32_t *src2_u32 = (const uint32_t *) &src2->masks;
663 size_t i;
664
665 for (i = 0; i < FLOW_U32S; i++) {
666 dst_u32[i] = src1_u32[i] | src2_u32[i];
667 }
668 }
669
670 /* Perform a bitwise OR of miniflow 'src' flow data with the equivalent
671 * fields in 'dst', storing the result in 'dst'. */
672 static void
673 flow_union_with_miniflow(struct flow *dst, const struct miniflow *src)
674 {
675 uint32_t *dst_u32 = (uint32_t *) dst;
676 const uint32_t *p = src->values;
677 uint64_t map;
678
679 for (map = src->map; map; map = zero_rightmost_1bit(map)) {
680 dst_u32[raw_ctz(map)] |= *p++;
681 }
682 }
683
684 /* Fold minimask 'mask''s wildcard mask into 'wc's wildcard mask. */
685 void
686 flow_wildcards_fold_minimask(struct flow_wildcards *wc,
687 const struct minimask *mask)
688 {
689 flow_union_with_miniflow(&wc->masks, &mask->masks);
690 }
691
692 uint64_t
693 miniflow_get_map_in_range(const struct miniflow *miniflow,
694 uint8_t start, uint8_t end, unsigned int *offset)
695 {
696 uint64_t map = miniflow->map;
697 *offset = 0;
698
699 if (start > 0) {
700 uint64_t msk = (UINT64_C(1) << start) - 1; /* 'start' LSBs set */
701 *offset = count_1bits(map & msk);
702 map &= ~msk;
703 }
704 if (end < FLOW_U32S) {
705 uint64_t msk = (UINT64_C(1) << end) - 1; /* 'end' LSBs set */
706 map &= msk;
707 }
708 return map;
709 }
710
711 /* Fold minimask 'mask''s wildcard mask into 'wc's wildcard mask
712 * in range [start, end). */
713 void
714 flow_wildcards_fold_minimask_range(struct flow_wildcards *wc,
715 const struct minimask *mask,
716 uint8_t start, uint8_t end)
717 {
718 uint32_t *dst_u32 = (uint32_t *)&wc->masks;
719 unsigned int offset;
720 uint64_t map = miniflow_get_map_in_range(&mask->masks, start, end,
721 &offset);
722 const uint32_t *p = mask->masks.values + offset;
723
724 for (; map; map = zero_rightmost_1bit(map)) {
725 dst_u32[raw_ctz(map)] |= *p++;
726 }
727 }
728
729 /* Returns a hash of the wildcards in 'wc'. */
730 uint32_t
731 flow_wildcards_hash(const struct flow_wildcards *wc, uint32_t basis)
732 {
733 return flow_hash(&wc->masks, basis);
734 }
735
736 /* Returns true if 'a' and 'b' represent the same wildcards, false if they are
737 * different. */
738 bool
739 flow_wildcards_equal(const struct flow_wildcards *a,
740 const struct flow_wildcards *b)
741 {
742 return flow_equal(&a->masks, &b->masks);
743 }
744
745 /* Returns true if at least one bit or field is wildcarded in 'a' but not in
746 * 'b', false otherwise. */
747 bool
748 flow_wildcards_has_extra(const struct flow_wildcards *a,
749 const struct flow_wildcards *b)
750 {
751 const uint32_t *a_u32 = (const uint32_t *) &a->masks;
752 const uint32_t *b_u32 = (const uint32_t *) &b->masks;
753 size_t i;
754
755 for (i = 0; i < FLOW_U32S; i++) {
756 if ((a_u32[i] & b_u32[i]) != b_u32[i]) {
757 return true;
758 }
759 }
760 return false;
761 }
762
763 /* Returns true if 'a' and 'b' are equal, except that 0-bits (wildcarded bits)
764 * in 'wc' do not need to be equal in 'a' and 'b'. */
765 bool
766 flow_equal_except(const struct flow *a, const struct flow *b,
767 const struct flow_wildcards *wc)
768 {
769 const uint32_t *a_u32 = (const uint32_t *) a;
770 const uint32_t *b_u32 = (const uint32_t *) b;
771 const uint32_t *wc_u32 = (const uint32_t *) &wc->masks;
772 size_t i;
773
774 for (i = 0; i < FLOW_U32S; i++) {
775 if ((a_u32[i] ^ b_u32[i]) & wc_u32[i]) {
776 return false;
777 }
778 }
779 return true;
780 }
781
782 /* Sets the wildcard mask for register 'idx' in 'wc' to 'mask'.
783 * (A 0-bit indicates a wildcard bit.) */
784 void
785 flow_wildcards_set_reg_mask(struct flow_wildcards *wc, int idx, uint32_t mask)
786 {
787 wc->masks.regs[idx] = mask;
788 }
789
790 /* Calculates the 5-tuple hash from the given flow. */
791 uint32_t
792 flow_hash_5tuple(const struct flow *flow, uint32_t basis)
793 {
794 uint32_t hash = 0;
795
796 if (!flow) {
797 return 0;
798 }
799
800 hash = mhash_add(basis, (OVS_FORCE uint32_t) flow->nw_src);
801 hash = mhash_add(hash, (OVS_FORCE uint32_t) flow->nw_dst);
802 hash = mhash_add(hash, ((OVS_FORCE uint32_t) flow->tp_src << 16)
803 | (OVS_FORCE uint32_t) flow->tp_dst);
804 hash = mhash_add(hash, flow->nw_proto);
805
806 return mhash_finish(hash, 13);
807 }
808
809 /* Hashes 'flow' based on its L2 through L4 protocol information. */
810 uint32_t
811 flow_hash_symmetric_l4(const struct flow *flow, uint32_t basis)
812 {
813 struct {
814 union {
815 ovs_be32 ipv4_addr;
816 struct in6_addr ipv6_addr;
817 };
818 ovs_be16 eth_type;
819 ovs_be16 vlan_tci;
820 ovs_be16 tp_port;
821 uint8_t eth_addr[ETH_ADDR_LEN];
822 uint8_t ip_proto;
823 } fields;
824
825 int i;
826
827 memset(&fields, 0, sizeof fields);
828 for (i = 0; i < ETH_ADDR_LEN; i++) {
829 fields.eth_addr[i] = flow->dl_src[i] ^ flow->dl_dst[i];
830 }
831 fields.vlan_tci = flow->vlan_tci & htons(VLAN_VID_MASK);
832 fields.eth_type = flow->dl_type;
833
834 /* UDP source and destination port are not taken into account because they
835 * will not necessarily be symmetric in a bidirectional flow. */
836 if (fields.eth_type == htons(ETH_TYPE_IP)) {
837 fields.ipv4_addr = flow->nw_src ^ flow->nw_dst;
838 fields.ip_proto = flow->nw_proto;
839 if (fields.ip_proto == IPPROTO_TCP || fields.ip_proto == IPPROTO_SCTP) {
840 fields.tp_port = flow->tp_src ^ flow->tp_dst;
841 }
842 } else if (fields.eth_type == htons(ETH_TYPE_IPV6)) {
843 const uint8_t *a = &flow->ipv6_src.s6_addr[0];
844 const uint8_t *b = &flow->ipv6_dst.s6_addr[0];
845 uint8_t *ipv6_addr = &fields.ipv6_addr.s6_addr[0];
846
847 for (i=0; i<16; i++) {
848 ipv6_addr[i] = a[i] ^ b[i];
849 }
850 fields.ip_proto = flow->nw_proto;
851 if (fields.ip_proto == IPPROTO_TCP || fields.ip_proto == IPPROTO_SCTP) {
852 fields.tp_port = flow->tp_src ^ flow->tp_dst;
853 }
854 }
855 return jhash_bytes(&fields, sizeof fields, basis);
856 }
857
858 /* Initialize a flow with random fields that matter for nx_hash_fields. */
859 void
860 flow_random_hash_fields(struct flow *flow)
861 {
862 uint16_t rnd = random_uint16();
863
864 /* Initialize to all zeros. */
865 memset(flow, 0, sizeof *flow);
866
867 eth_addr_random(flow->dl_src);
868 eth_addr_random(flow->dl_dst);
869
870 flow->vlan_tci = (OVS_FORCE ovs_be16) (random_uint16() & VLAN_VID_MASK);
871
872 /* Make most of the random flows IPv4, some IPv6, and rest random. */
873 flow->dl_type = rnd < 0x8000 ? htons(ETH_TYPE_IP) :
874 rnd < 0xc000 ? htons(ETH_TYPE_IPV6) : (OVS_FORCE ovs_be16)rnd;
875
876 if (dl_type_is_ip_any(flow->dl_type)) {
877 if (flow->dl_type == htons(ETH_TYPE_IP)) {
878 flow->nw_src = (OVS_FORCE ovs_be32)random_uint32();
879 flow->nw_dst = (OVS_FORCE ovs_be32)random_uint32();
880 } else {
881 random_bytes(&flow->ipv6_src, sizeof flow->ipv6_src);
882 random_bytes(&flow->ipv6_dst, sizeof flow->ipv6_dst);
883 }
884 /* Make most of IP flows TCP, some UDP or SCTP, and rest random. */
885 rnd = random_uint16();
886 flow->nw_proto = rnd < 0x8000 ? IPPROTO_TCP :
887 rnd < 0xc000 ? IPPROTO_UDP :
888 rnd < 0xd000 ? IPPROTO_SCTP : (uint8_t)rnd;
889 if (flow->nw_proto == IPPROTO_TCP ||
890 flow->nw_proto == IPPROTO_UDP ||
891 flow->nw_proto == IPPROTO_SCTP) {
892 flow->tp_src = (OVS_FORCE ovs_be16)random_uint16();
893 flow->tp_dst = (OVS_FORCE ovs_be16)random_uint16();
894 }
895 }
896 }
897
898 /* Masks the fields in 'wc' that are used by the flow hash 'fields'. */
899 void
900 flow_mask_hash_fields(const struct flow *flow, struct flow_wildcards *wc,
901 enum nx_hash_fields fields)
902 {
903 switch (fields) {
904 case NX_HASH_FIELDS_ETH_SRC:
905 memset(&wc->masks.dl_src, 0xff, sizeof wc->masks.dl_src);
906 break;
907
908 case NX_HASH_FIELDS_SYMMETRIC_L4:
909 memset(&wc->masks.dl_src, 0xff, sizeof wc->masks.dl_src);
910 memset(&wc->masks.dl_dst, 0xff, sizeof wc->masks.dl_dst);
911 if (flow->dl_type == htons(ETH_TYPE_IP)) {
912 memset(&wc->masks.nw_src, 0xff, sizeof wc->masks.nw_src);
913 memset(&wc->masks.nw_dst, 0xff, sizeof wc->masks.nw_dst);
914 } else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
915 memset(&wc->masks.ipv6_src, 0xff, sizeof wc->masks.ipv6_src);
916 memset(&wc->masks.ipv6_dst, 0xff, sizeof wc->masks.ipv6_dst);
917 }
918 if (is_ip_any(flow)) {
919 memset(&wc->masks.nw_proto, 0xff, sizeof wc->masks.nw_proto);
920 flow_unwildcard_tp_ports(flow, wc);
921 }
922 wc->masks.vlan_tci |= htons(VLAN_VID_MASK | VLAN_CFI);
923 break;
924
925 default:
926 OVS_NOT_REACHED();
927 }
928 }
929
930 /* Hashes the portions of 'flow' designated by 'fields'. */
931 uint32_t
932 flow_hash_fields(const struct flow *flow, enum nx_hash_fields fields,
933 uint16_t basis)
934 {
935 switch (fields) {
936
937 case NX_HASH_FIELDS_ETH_SRC:
938 return jhash_bytes(flow->dl_src, sizeof flow->dl_src, basis);
939
940 case NX_HASH_FIELDS_SYMMETRIC_L4:
941 return flow_hash_symmetric_l4(flow, basis);
942 }
943
944 OVS_NOT_REACHED();
945 }
946
947 /* Returns a string representation of 'fields'. */
948 const char *
949 flow_hash_fields_to_str(enum nx_hash_fields fields)
950 {
951 switch (fields) {
952 case NX_HASH_FIELDS_ETH_SRC: return "eth_src";
953 case NX_HASH_FIELDS_SYMMETRIC_L4: return "symmetric_l4";
954 default: return "<unknown>";
955 }
956 }
957
958 /* Returns true if the value of 'fields' is supported. Otherwise false. */
959 bool
960 flow_hash_fields_valid(enum nx_hash_fields fields)
961 {
962 return fields == NX_HASH_FIELDS_ETH_SRC
963 || fields == NX_HASH_FIELDS_SYMMETRIC_L4;
964 }
965
966 /* Returns a hash value for the bits of 'flow' that are active based on
967 * 'wc', given 'basis'. */
968 uint32_t
969 flow_hash_in_wildcards(const struct flow *flow,
970 const struct flow_wildcards *wc, uint32_t basis)
971 {
972 const uint32_t *wc_u32 = (const uint32_t *) &wc->masks;
973 const uint32_t *flow_u32 = (const uint32_t *) flow;
974 uint32_t hash;
975 size_t i;
976
977 hash = basis;
978 for (i = 0; i < FLOW_U32S; i++) {
979 hash = mhash_add(hash, flow_u32[i] & wc_u32[i]);
980 }
981 return mhash_finish(hash, 4 * FLOW_U32S);
982 }
983
984 /* Sets the VLAN VID that 'flow' matches to 'vid', which is interpreted as an
985 * OpenFlow 1.0 "dl_vlan" value:
986 *
987 * - If it is in the range 0...4095, 'flow->vlan_tci' is set to match
988 * that VLAN. Any existing PCP match is unchanged (it becomes 0 if
989 * 'flow' previously matched packets without a VLAN header).
990 *
991 * - If it is OFP_VLAN_NONE, 'flow->vlan_tci' is set to match a packet
992 * without a VLAN tag.
993 *
994 * - Other values of 'vid' should not be used. */
995 void
996 flow_set_dl_vlan(struct flow *flow, ovs_be16 vid)
997 {
998 if (vid == htons(OFP10_VLAN_NONE)) {
999 flow->vlan_tci = htons(0);
1000 } else {
1001 vid &= htons(VLAN_VID_MASK);
1002 flow->vlan_tci &= ~htons(VLAN_VID_MASK);
1003 flow->vlan_tci |= htons(VLAN_CFI) | vid;
1004 }
1005 }
1006
1007 /* Sets the VLAN VID that 'flow' matches to 'vid', which is interpreted as an
1008 * OpenFlow 1.2 "vlan_vid" value, that is, the low 13 bits of 'vlan_tci' (VID
1009 * plus CFI). */
1010 void
1011 flow_set_vlan_vid(struct flow *flow, ovs_be16 vid)
1012 {
1013 ovs_be16 mask = htons(VLAN_VID_MASK | VLAN_CFI);
1014 flow->vlan_tci &= ~mask;
1015 flow->vlan_tci |= vid & mask;
1016 }
1017
1018 /* Sets the VLAN PCP that 'flow' matches to 'pcp', which should be in the
1019 * range 0...7.
1020 *
1021 * This function has no effect on the VLAN ID that 'flow' matches.
1022 *
1023 * After calling this function, 'flow' will not match packets without a VLAN
1024 * header. */
1025 void
1026 flow_set_vlan_pcp(struct flow *flow, uint8_t pcp)
1027 {
1028 pcp &= 0x07;
1029 flow->vlan_tci &= ~htons(VLAN_PCP_MASK);
1030 flow->vlan_tci |= htons((pcp << VLAN_PCP_SHIFT) | VLAN_CFI);
1031 }
1032
1033 /* Returns the number of MPLS LSEs present in 'flow'
1034 *
1035 * Returns 0 if the 'dl_type' of 'flow' is not an MPLS ethernet type.
1036 * Otherwise traverses 'flow''s MPLS label stack stopping at the
1037 * first entry that has the BoS bit set. If no such entry exists then
1038 * the maximum number of LSEs that can be stored in 'flow' is returned.
1039 */
1040 int
1041 flow_count_mpls_labels(const struct flow *flow, struct flow_wildcards *wc)
1042 {
1043 if (wc) {
1044 wc->masks.dl_type = OVS_BE16_MAX;
1045 }
1046 if (eth_type_mpls(flow->dl_type)) {
1047 int i;
1048 int len = FLOW_MAX_MPLS_LABELS;
1049
1050 for (i = 0; i < len; i++) {
1051 if (wc) {
1052 wc->masks.mpls_lse[i] |= htonl(MPLS_BOS_MASK);
1053 }
1054 if (flow->mpls_lse[i] & htonl(MPLS_BOS_MASK)) {
1055 return i + 1;
1056 }
1057 }
1058
1059 return len;
1060 } else {
1061 return 0;
1062 }
1063 }
1064
1065 /* Returns the number consecutive of MPLS LSEs, starting at the
1066 * innermost LSE, that are common in 'a' and 'b'.
1067 *
1068 * 'an' must be flow_count_mpls_labels(a).
1069 * 'bn' must be flow_count_mpls_labels(b).
1070 */
1071 int
1072 flow_count_common_mpls_labels(const struct flow *a, int an,
1073 const struct flow *b, int bn,
1074 struct flow_wildcards *wc)
1075 {
1076 int min_n = MIN(an, bn);
1077 if (min_n == 0) {
1078 return 0;
1079 } else {
1080 int common_n = 0;
1081 int a_last = an - 1;
1082 int b_last = bn - 1;
1083 int i;
1084
1085 for (i = 0; i < min_n; i++) {
1086 if (wc) {
1087 wc->masks.mpls_lse[a_last - i] = OVS_BE32_MAX;
1088 wc->masks.mpls_lse[b_last - i] = OVS_BE32_MAX;
1089 }
1090 if (a->mpls_lse[a_last - i] != b->mpls_lse[b_last - i]) {
1091 break;
1092 } else {
1093 common_n++;
1094 }
1095 }
1096
1097 return common_n;
1098 }
1099 }
1100
1101 /* Adds a new outermost MPLS label to 'flow' and changes 'flow''s Ethernet type
1102 * to 'mpls_eth_type', which must be an MPLS Ethertype.
1103 *
1104 * If the new label is the first MPLS label in 'flow', it is generated as;
1105 *
1106 * - label: 2, if 'flow' is IPv6, otherwise 0.
1107 *
1108 * - TTL: IPv4 or IPv6 TTL, if present and nonzero, otherwise 64.
1109 *
1110 * - TC: IPv4 or IPv6 TOS, if present, otherwise 0.
1111 *
1112 * - BoS: 1.
1113 *
1114 * If the new label is the second or label MPLS label in 'flow', it is
1115 * generated as;
1116 *
1117 * - label: Copied from outer label.
1118 *
1119 * - TTL: Copied from outer label.
1120 *
1121 * - TC: Copied from outer label.
1122 *
1123 * - BoS: 0.
1124 *
1125 * 'n' must be flow_count_mpls_labels(flow). 'n' must be less than
1126 * FLOW_MAX_MPLS_LABELS (because otherwise flow->mpls_lse[] would overflow).
1127 */
1128 void
1129 flow_push_mpls(struct flow *flow, int n, ovs_be16 mpls_eth_type,
1130 struct flow_wildcards *wc)
1131 {
1132 ovs_assert(eth_type_mpls(mpls_eth_type));
1133 ovs_assert(n < FLOW_MAX_MPLS_LABELS);
1134
1135 memset(wc->masks.mpls_lse, 0xff, sizeof wc->masks.mpls_lse);
1136 if (n) {
1137 int i;
1138
1139 for (i = n; i >= 1; i--) {
1140 flow->mpls_lse[i] = flow->mpls_lse[i - 1];
1141 }
1142 flow->mpls_lse[0] = (flow->mpls_lse[1]
1143 & htonl(~MPLS_BOS_MASK));
1144 } else {
1145 int label = 0; /* IPv4 Explicit Null. */
1146 int tc = 0;
1147 int ttl = 64;
1148
1149 if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
1150 label = 2;
1151 }
1152
1153 if (is_ip_any(flow)) {
1154 tc = (flow->nw_tos & IP_DSCP_MASK) >> 2;
1155 wc->masks.nw_tos |= IP_DSCP_MASK;
1156
1157 if (flow->nw_ttl) {
1158 ttl = flow->nw_ttl;
1159 }
1160 wc->masks.nw_ttl = 0xff;
1161 }
1162
1163 flow->mpls_lse[0] = set_mpls_lse_values(ttl, tc, 1, htonl(label));
1164
1165 /* Clear all L3 and L4 fields. */
1166 BUILD_ASSERT(FLOW_WC_SEQ == 25);
1167 memset((char *) flow + FLOW_SEGMENT_2_ENDS_AT, 0,
1168 sizeof(struct flow) - FLOW_SEGMENT_2_ENDS_AT);
1169 }
1170 flow->dl_type = mpls_eth_type;
1171 }
1172
1173 /* Tries to remove the outermost MPLS label from 'flow'. Returns true if
1174 * successful, false otherwise. On success, sets 'flow''s Ethernet type to
1175 * 'eth_type'.
1176 *
1177 * 'n' must be flow_count_mpls_labels(flow). */
1178 bool
1179 flow_pop_mpls(struct flow *flow, int n, ovs_be16 eth_type,
1180 struct flow_wildcards *wc)
1181 {
1182 int i;
1183
1184 if (n == 0) {
1185 /* Nothing to pop. */
1186 return false;
1187 } else if (n == FLOW_MAX_MPLS_LABELS
1188 && !(flow->mpls_lse[n - 1] & htonl(MPLS_BOS_MASK))) {
1189 /* Can't pop because we don't know what to fill in mpls_lse[n - 1]. */
1190 return false;
1191 }
1192
1193 memset(wc->masks.mpls_lse, 0xff, sizeof wc->masks.mpls_lse);
1194 for (i = 1; i < n; i++) {
1195 flow->mpls_lse[i - 1] = flow->mpls_lse[i];
1196 }
1197 flow->mpls_lse[n - 1] = 0;
1198 flow->dl_type = eth_type;
1199 return true;
1200 }
1201
1202 /* Sets the MPLS Label that 'flow' matches to 'label', which is interpreted
1203 * as an OpenFlow 1.1 "mpls_label" value. */
1204 void
1205 flow_set_mpls_label(struct flow *flow, int idx, ovs_be32 label)
1206 {
1207 set_mpls_lse_label(&flow->mpls_lse[idx], label);
1208 }
1209
1210 /* Sets the MPLS TTL that 'flow' matches to 'ttl', which should be in the
1211 * range 0...255. */
1212 void
1213 flow_set_mpls_ttl(struct flow *flow, int idx, uint8_t ttl)
1214 {
1215 set_mpls_lse_ttl(&flow->mpls_lse[idx], ttl);
1216 }
1217
1218 /* Sets the MPLS TC that 'flow' matches to 'tc', which should be in the
1219 * range 0...7. */
1220 void
1221 flow_set_mpls_tc(struct flow *flow, int idx, uint8_t tc)
1222 {
1223 set_mpls_lse_tc(&flow->mpls_lse[idx], tc);
1224 }
1225
1226 /* Sets the MPLS BOS bit that 'flow' matches to which should be 0 or 1. */
1227 void
1228 flow_set_mpls_bos(struct flow *flow, int idx, uint8_t bos)
1229 {
1230 set_mpls_lse_bos(&flow->mpls_lse[idx], bos);
1231 }
1232
1233 /* Sets the entire MPLS LSE. */
1234 void
1235 flow_set_mpls_lse(struct flow *flow, int idx, ovs_be32 lse)
1236 {
1237 flow->mpls_lse[idx] = lse;
1238 }
1239
1240 static size_t
1241 flow_compose_l4(struct ofpbuf *b, const struct flow *flow)
1242 {
1243 size_t l4_len = 0;
1244
1245 if (!(flow->nw_frag & FLOW_NW_FRAG_ANY)
1246 || !(flow->nw_frag & FLOW_NW_FRAG_LATER)) {
1247 if (flow->nw_proto == IPPROTO_TCP) {
1248 struct tcp_header *tcp;
1249
1250 l4_len = sizeof *tcp;
1251 tcp = ofpbuf_put_zeros(b, l4_len);
1252 tcp->tcp_src = flow->tp_src;
1253 tcp->tcp_dst = flow->tp_dst;
1254 tcp->tcp_ctl = TCP_CTL(ntohs(flow->tcp_flags), 5);
1255 } else if (flow->nw_proto == IPPROTO_UDP) {
1256 struct udp_header *udp;
1257
1258 l4_len = sizeof *udp;
1259 udp = ofpbuf_put_zeros(b, l4_len);
1260 udp->udp_src = flow->tp_src;
1261 udp->udp_dst = flow->tp_dst;
1262 } else if (flow->nw_proto == IPPROTO_SCTP) {
1263 struct sctp_header *sctp;
1264
1265 l4_len = sizeof *sctp;
1266 sctp = ofpbuf_put_zeros(b, l4_len);
1267 sctp->sctp_src = flow->tp_src;
1268 sctp->sctp_dst = flow->tp_dst;
1269 } else if (flow->nw_proto == IPPROTO_ICMP) {
1270 struct icmp_header *icmp;
1271
1272 l4_len = sizeof *icmp;
1273 icmp = ofpbuf_put_zeros(b, l4_len);
1274 icmp->icmp_type = ntohs(flow->tp_src);
1275 icmp->icmp_code = ntohs(flow->tp_dst);
1276 icmp->icmp_csum = csum(icmp, ICMP_HEADER_LEN);
1277 } else if (flow->nw_proto == IPPROTO_ICMPV6) {
1278 struct icmp6_hdr *icmp;
1279
1280 l4_len = sizeof *icmp;
1281 icmp = ofpbuf_put_zeros(b, l4_len);
1282 icmp->icmp6_type = ntohs(flow->tp_src);
1283 icmp->icmp6_code = ntohs(flow->tp_dst);
1284
1285 if (icmp->icmp6_code == 0 &&
1286 (icmp->icmp6_type == ND_NEIGHBOR_SOLICIT ||
1287 icmp->icmp6_type == ND_NEIGHBOR_ADVERT)) {
1288 struct in6_addr *nd_target;
1289 struct nd_opt_hdr *nd_opt;
1290
1291 l4_len += sizeof *nd_target;
1292 nd_target = ofpbuf_put_zeros(b, sizeof *nd_target);
1293 *nd_target = flow->nd_target;
1294
1295 if (!eth_addr_is_zero(flow->arp_sha)) {
1296 l4_len += 8;
1297 nd_opt = ofpbuf_put_zeros(b, 8);
1298 nd_opt->nd_opt_len = 1;
1299 nd_opt->nd_opt_type = ND_OPT_SOURCE_LINKADDR;
1300 memcpy(nd_opt + 1, flow->arp_sha, ETH_ADDR_LEN);
1301 }
1302 if (!eth_addr_is_zero(flow->arp_tha)) {
1303 l4_len += 8;
1304 nd_opt = ofpbuf_put_zeros(b, 8);
1305 nd_opt->nd_opt_len = 1;
1306 nd_opt->nd_opt_type = ND_OPT_TARGET_LINKADDR;
1307 memcpy(nd_opt + 1, flow->arp_tha, ETH_ADDR_LEN);
1308 }
1309 }
1310 icmp->icmp6_cksum = (OVS_FORCE uint16_t)
1311 csum(icmp, (char *)ofpbuf_tail(b) - (char *)icmp);
1312 }
1313 }
1314 return l4_len;
1315 }
1316
1317 /* Puts into 'b' a packet that flow_extract() would parse as having the given
1318 * 'flow'.
1319 *
1320 * (This is useful only for testing, obviously, and the packet isn't really
1321 * valid. It hasn't got some checksums filled in, for one, and lots of fields
1322 * are just zeroed.) */
1323 void
1324 flow_compose(struct ofpbuf *b, const struct flow *flow)
1325 {
1326 size_t l4_len;
1327
1328 /* eth_compose() sets l3 pointer and makes sure it is 32-bit aligned. */
1329 eth_compose(b, flow->dl_dst, flow->dl_src, ntohs(flow->dl_type), 0);
1330 if (flow->dl_type == htons(FLOW_DL_TYPE_NONE)) {
1331 struct eth_header *eth = ofpbuf_l2(b);
1332 eth->eth_type = htons(ofpbuf_size(b));
1333 return;
1334 }
1335
1336 if (flow->vlan_tci & htons(VLAN_CFI)) {
1337 eth_push_vlan(b, htons(ETH_TYPE_VLAN), flow->vlan_tci);
1338 }
1339
1340 if (flow->dl_type == htons(ETH_TYPE_IP)) {
1341 struct ip_header *ip;
1342
1343 ip = ofpbuf_put_zeros(b, sizeof *ip);
1344 ip->ip_ihl_ver = IP_IHL_VER(5, 4);
1345 ip->ip_tos = flow->nw_tos;
1346 ip->ip_ttl = flow->nw_ttl;
1347 ip->ip_proto = flow->nw_proto;
1348 put_16aligned_be32(&ip->ip_src, flow->nw_src);
1349 put_16aligned_be32(&ip->ip_dst, flow->nw_dst);
1350
1351 if (flow->nw_frag & FLOW_NW_FRAG_ANY) {
1352 ip->ip_frag_off |= htons(IP_MORE_FRAGMENTS);
1353 if (flow->nw_frag & FLOW_NW_FRAG_LATER) {
1354 ip->ip_frag_off |= htons(100);
1355 }
1356 }
1357
1358 ofpbuf_set_l4(b, ofpbuf_tail(b));
1359
1360 l4_len = flow_compose_l4(b, flow);
1361
1362 ip->ip_tot_len = htons(b->l4_ofs - b->l3_ofs + l4_len);
1363 ip->ip_csum = csum(ip, sizeof *ip);
1364 } else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
1365 struct ovs_16aligned_ip6_hdr *nh;
1366
1367 nh = ofpbuf_put_zeros(b, sizeof *nh);
1368 put_16aligned_be32(&nh->ip6_flow, htonl(6 << 28) |
1369 htonl(flow->nw_tos << 20) | flow->ipv6_label);
1370 nh->ip6_hlim = flow->nw_ttl;
1371 nh->ip6_nxt = flow->nw_proto;
1372
1373 memcpy(&nh->ip6_src, &flow->ipv6_src, sizeof(nh->ip6_src));
1374 memcpy(&nh->ip6_dst, &flow->ipv6_dst, sizeof(nh->ip6_dst));
1375
1376 ofpbuf_set_l4(b, ofpbuf_tail(b));
1377
1378 l4_len = flow_compose_l4(b, flow);
1379
1380 nh->ip6_plen = htons(l4_len);
1381 } else if (flow->dl_type == htons(ETH_TYPE_ARP) ||
1382 flow->dl_type == htons(ETH_TYPE_RARP)) {
1383 struct arp_eth_header *arp;
1384
1385 arp = ofpbuf_put_zeros(b, sizeof *arp);
1386 ofpbuf_set_l3(b, arp);
1387 arp->ar_hrd = htons(1);
1388 arp->ar_pro = htons(ETH_TYPE_IP);
1389 arp->ar_hln = ETH_ADDR_LEN;
1390 arp->ar_pln = 4;
1391 arp->ar_op = htons(flow->nw_proto);
1392
1393 if (flow->nw_proto == ARP_OP_REQUEST ||
1394 flow->nw_proto == ARP_OP_REPLY) {
1395 put_16aligned_be32(&arp->ar_spa, flow->nw_src);
1396 put_16aligned_be32(&arp->ar_tpa, flow->nw_dst);
1397 memcpy(arp->ar_sha, flow->arp_sha, ETH_ADDR_LEN);
1398 memcpy(arp->ar_tha, flow->arp_tha, ETH_ADDR_LEN);
1399 }
1400 }
1401
1402 if (eth_type_mpls(flow->dl_type)) {
1403 int n;
1404
1405 b->l2_5_ofs = b->l3_ofs;
1406 for (n = 1; n < FLOW_MAX_MPLS_LABELS; n++) {
1407 if (flow->mpls_lse[n - 1] & htonl(MPLS_BOS_MASK)) {
1408 break;
1409 }
1410 }
1411 while (n > 0) {
1412 push_mpls(b, flow->dl_type, flow->mpls_lse[--n]);
1413 }
1414 }
1415 }
1416 \f
1417 /* Compressed flow. */
1418
1419 static int
1420 miniflow_n_values(const struct miniflow *flow)
1421 {
1422 return count_1bits(flow->map);
1423 }
1424
1425 static uint32_t *
1426 miniflow_alloc_values(struct miniflow *flow, int n)
1427 {
1428 if (n <= MINI_N_INLINE) {
1429 return flow->inline_values;
1430 } else {
1431 COVERAGE_INC(miniflow_malloc);
1432 return xmalloc(n * sizeof *flow->values);
1433 }
1434 }
1435
1436 /* Completes an initialization of 'dst' as a miniflow copy of 'src' begun by
1437 * the caller. The caller must have already initialized 'dst->map' properly
1438 * to indicate the significant uint32_t elements of 'src'. 'n' must be the
1439 * number of 1-bits in 'dst->map'.
1440 *
1441 * Normally the significant elements are the ones that are non-zero. However,
1442 * when a miniflow is initialized from a (mini)mask, the values can be zeroes,
1443 * so that the flow and mask always have the same maps.
1444 *
1445 * This function initializes 'dst->values' (either inline if possible or with
1446 * malloc() otherwise) and copies the uint32_t elements of 'src' indicated by
1447 * 'dst->map' into it. */
1448 static void
1449 miniflow_init__(struct miniflow *dst, const struct flow *src, int n)
1450 {
1451 const uint32_t *src_u32 = (const uint32_t *) src;
1452 unsigned int ofs;
1453 uint64_t map;
1454
1455 dst->values = miniflow_alloc_values(dst, n);
1456 ofs = 0;
1457 for (map = dst->map; map; map = zero_rightmost_1bit(map)) {
1458 dst->values[ofs++] = src_u32[raw_ctz(map)];
1459 }
1460 }
1461
1462 /* Initializes 'dst' as a copy of 'src'. The caller must eventually free 'dst'
1463 * with miniflow_destroy(). */
1464 void
1465 miniflow_init(struct miniflow *dst, const struct flow *src)
1466 {
1467 const uint32_t *src_u32 = (const uint32_t *) src;
1468 unsigned int i;
1469 int n;
1470
1471 /* Initialize dst->map, counting the number of nonzero elements. */
1472 n = 0;
1473 dst->map = 0;
1474
1475 for (i = 0; i < FLOW_U32S; i++) {
1476 if (src_u32[i]) {
1477 dst->map |= UINT64_C(1) << i;
1478 n++;
1479 }
1480 }
1481
1482 miniflow_init__(dst, src, n);
1483 }
1484
1485 /* Initializes 'dst' as a copy of 'src', using 'mask->map' as 'dst''s map. The
1486 * caller must eventually free 'dst' with miniflow_destroy(). */
1487 void
1488 miniflow_init_with_minimask(struct miniflow *dst, const struct flow *src,
1489 const struct minimask *mask)
1490 {
1491 dst->map = mask->masks.map;
1492 miniflow_init__(dst, src, miniflow_n_values(dst));
1493 }
1494
1495 /* Initializes 'dst' as a copy of 'src'. The caller must eventually free 'dst'
1496 * with miniflow_destroy(). */
1497 void
1498 miniflow_clone(struct miniflow *dst, const struct miniflow *src)
1499 {
1500 int n = miniflow_n_values(src);
1501 dst->map = src->map;
1502 dst->values = miniflow_alloc_values(dst, n);
1503 memcpy(dst->values, src->values, n * sizeof *dst->values);
1504 }
1505
1506 /* Initializes 'dst' with the data in 'src', destroying 'src'.
1507 * The caller must eventually free 'dst' with miniflow_destroy(). */
1508 void
1509 miniflow_move(struct miniflow *dst, struct miniflow *src)
1510 {
1511 if (src->values == src->inline_values) {
1512 dst->values = dst->inline_values;
1513 memcpy(dst->values, src->values,
1514 miniflow_n_values(src) * sizeof *dst->values);
1515 } else {
1516 dst->values = src->values;
1517 }
1518 dst->map = src->map;
1519 }
1520
1521 /* Frees any memory owned by 'flow'. Does not free the storage in which 'flow'
1522 * itself resides; the caller is responsible for that. */
1523 void
1524 miniflow_destroy(struct miniflow *flow)
1525 {
1526 if (flow->values != flow->inline_values) {
1527 free(flow->values);
1528 }
1529 }
1530
1531 /* Initializes 'dst' as a copy of 'src'. */
1532 void
1533 miniflow_expand(const struct miniflow *src, struct flow *dst)
1534 {
1535 memset(dst, 0, sizeof *dst);
1536 flow_union_with_miniflow(dst, src);
1537 }
1538
1539 static const uint32_t *
1540 miniflow_get__(const struct miniflow *flow, unsigned int u32_ofs)
1541 {
1542 if (!(flow->map & (UINT64_C(1) << u32_ofs))) {
1543 static const uint32_t zero = 0;
1544 return &zero;
1545 }
1546 return flow->values +
1547 count_1bits(flow->map & ((UINT64_C(1) << u32_ofs) - 1));
1548 }
1549
1550 /* Returns the uint32_t that would be at byte offset '4 * u32_ofs' if 'flow'
1551 * were expanded into a "struct flow". */
1552 uint32_t
1553 miniflow_get(const struct miniflow *flow, unsigned int u32_ofs)
1554 {
1555 return *miniflow_get__(flow, u32_ofs);
1556 }
1557
1558 /* Returns the ovs_be16 that would be at byte offset 'u8_ofs' if 'flow' were
1559 * expanded into a "struct flow". */
1560 static ovs_be16
1561 miniflow_get_be16(const struct miniflow *flow, unsigned int u8_ofs)
1562 {
1563 const uint32_t *u32p = miniflow_get__(flow, u8_ofs / 4);
1564 const ovs_be16 *be16p = (const ovs_be16 *) u32p;
1565 return be16p[u8_ofs % 4 != 0];
1566 }
1567
1568 /* Returns the VID within the vlan_tci member of the "struct flow" represented
1569 * by 'flow'. */
1570 uint16_t
1571 miniflow_get_vid(const struct miniflow *flow)
1572 {
1573 ovs_be16 tci = miniflow_get_be16(flow, offsetof(struct flow, vlan_tci));
1574 return vlan_tci_to_vid(tci);
1575 }
1576
1577 /* Returns true if 'a' and 'b' are the same flow, false otherwise. */
1578 bool
1579 miniflow_equal(const struct miniflow *a, const struct miniflow *b)
1580 {
1581 const uint32_t *ap = a->values;
1582 const uint32_t *bp = b->values;
1583 const uint64_t a_map = a->map;
1584 const uint64_t b_map = b->map;
1585 uint64_t map;
1586
1587 if (a_map == b_map) {
1588 for (map = a_map; map; map = zero_rightmost_1bit(map)) {
1589 if (*ap++ != *bp++) {
1590 return false;
1591 }
1592 }
1593 } else {
1594 for (map = a_map | b_map; map; map = zero_rightmost_1bit(map)) {
1595 uint64_t bit = rightmost_1bit(map);
1596 uint64_t a_value = a_map & bit ? *ap++ : 0;
1597 uint64_t b_value = b_map & bit ? *bp++ : 0;
1598
1599 if (a_value != b_value) {
1600 return false;
1601 }
1602 }
1603 }
1604
1605 return true;
1606 }
1607
1608 /* Returns true if 'a' and 'b' are equal at the places where there are 1-bits
1609 * in 'mask', false if they differ. */
1610 bool
1611 miniflow_equal_in_minimask(const struct miniflow *a, const struct miniflow *b,
1612 const struct minimask *mask)
1613 {
1614 const uint32_t *p;
1615 uint64_t map;
1616
1617 p = mask->masks.values;
1618
1619 for (map = mask->masks.map; map; map = zero_rightmost_1bit(map)) {
1620 int ofs = raw_ctz(map);
1621
1622 if ((miniflow_get(a, ofs) ^ miniflow_get(b, ofs)) & *p) {
1623 return false;
1624 }
1625 p++;
1626 }
1627
1628 return true;
1629 }
1630
1631 /* Returns true if 'a' and 'b' are equal at the places where there are 1-bits
1632 * in 'mask', false if they differ. */
1633 bool
1634 miniflow_equal_flow_in_minimask(const struct miniflow *a, const struct flow *b,
1635 const struct minimask *mask)
1636 {
1637 const uint32_t *b_u32 = (const uint32_t *) b;
1638 const uint32_t *p;
1639 uint64_t map;
1640
1641 p = mask->masks.values;
1642
1643 for (map = mask->masks.map; map; map = zero_rightmost_1bit(map)) {
1644 int ofs = raw_ctz(map);
1645
1646 if ((miniflow_get(a, ofs) ^ b_u32[ofs]) & *p) {
1647 return false;
1648 }
1649 p++;
1650 }
1651
1652 return true;
1653 }
1654
1655 /* Returns a hash value for 'flow', given 'basis'. */
1656 uint32_t
1657 miniflow_hash(const struct miniflow *flow, uint32_t basis)
1658 {
1659 const uint32_t *p = flow->values;
1660 uint32_t hash = basis;
1661 uint64_t hash_map = 0;
1662 uint64_t map;
1663
1664 for (map = flow->map; map; map = zero_rightmost_1bit(map)) {
1665 if (*p) {
1666 hash = mhash_add(hash, *p);
1667 hash_map |= rightmost_1bit(map);
1668 }
1669 p++;
1670 }
1671 hash = mhash_add(hash, hash_map);
1672 hash = mhash_add(hash, hash_map >> 32);
1673
1674 return mhash_finish(hash, p - flow->values);
1675 }
1676
1677 /* Returns a hash value for the bits of 'flow' where there are 1-bits in
1678 * 'mask', given 'basis'.
1679 *
1680 * The hash values returned by this function are the same as those returned by
1681 * flow_hash_in_minimask(), only the form of the arguments differ. */
1682 uint32_t
1683 miniflow_hash_in_minimask(const struct miniflow *flow,
1684 const struct minimask *mask, uint32_t basis)
1685 {
1686 const uint32_t *p = mask->masks.values;
1687 uint32_t hash;
1688 uint64_t map;
1689
1690 hash = basis;
1691
1692 for (map = mask->masks.map; map; map = zero_rightmost_1bit(map)) {
1693 hash = mhash_add(hash, miniflow_get(flow, raw_ctz(map)) & *p++);
1694 }
1695
1696 return mhash_finish(hash, (p - mask->masks.values) * 4);
1697 }
1698
1699 /* Returns a hash value for the bits of 'flow' where there are 1-bits in
1700 * 'mask', given 'basis'.
1701 *
1702 * The hash values returned by this function are the same as those returned by
1703 * miniflow_hash_in_minimask(), only the form of the arguments differ. */
1704 uint32_t
1705 flow_hash_in_minimask(const struct flow *flow, const struct minimask *mask,
1706 uint32_t basis)
1707 {
1708 const uint32_t *flow_u32 = (const uint32_t *)flow;
1709 const uint32_t *p = mask->masks.values;
1710 uint32_t hash;
1711 uint64_t map;
1712
1713 hash = basis;
1714 for (map = mask->masks.map; map; map = zero_rightmost_1bit(map)) {
1715 hash = mhash_add(hash, flow_u32[raw_ctz(map)] & *p++);
1716 }
1717
1718 return mhash_finish(hash, (p - mask->masks.values) * 4);
1719 }
1720
1721 /* Returns a hash value for the bits of range [start, end) in 'flow',
1722 * where there are 1-bits in 'mask', given 'hash'.
1723 *
1724 * The hash values returned by this function are the same as those returned by
1725 * minimatch_hash_range(), only the form of the arguments differ. */
1726 uint32_t
1727 flow_hash_in_minimask_range(const struct flow *flow,
1728 const struct minimask *mask,
1729 uint8_t start, uint8_t end, uint32_t *basis)
1730 {
1731 const uint32_t *flow_u32 = (const uint32_t *)flow;
1732 unsigned int offset;
1733 uint64_t map = miniflow_get_map_in_range(&mask->masks, start, end,
1734 &offset);
1735 const uint32_t *p = mask->masks.values + offset;
1736 uint32_t hash = *basis;
1737
1738 for (; map; map = zero_rightmost_1bit(map)) {
1739 hash = mhash_add(hash, flow_u32[raw_ctz(map)] & *p++);
1740 }
1741
1742 *basis = hash; /* Allow continuation from the unfinished value. */
1743 return mhash_finish(hash, (p - mask->masks.values) * 4);
1744 }
1745
1746 \f
1747 /* Initializes 'dst' as a copy of 'src'. The caller must eventually free 'dst'
1748 * with minimask_destroy(). */
1749 void
1750 minimask_init(struct minimask *mask, const struct flow_wildcards *wc)
1751 {
1752 miniflow_init(&mask->masks, &wc->masks);
1753 }
1754
1755 /* Initializes 'dst' as a copy of 'src'. The caller must eventually free 'dst'
1756 * with minimask_destroy(). */
1757 void
1758 minimask_clone(struct minimask *dst, const struct minimask *src)
1759 {
1760 miniflow_clone(&dst->masks, &src->masks);
1761 }
1762
1763 /* Initializes 'dst' with the data in 'src', destroying 'src'.
1764 * The caller must eventually free 'dst' with minimask_destroy(). */
1765 void
1766 minimask_move(struct minimask *dst, struct minimask *src)
1767 {
1768 miniflow_move(&dst->masks, &src->masks);
1769 }
1770
1771 /* Initializes 'dst_' as the bit-wise "and" of 'a_' and 'b_'.
1772 *
1773 * The caller must provide room for FLOW_U32S "uint32_t"s in 'storage', for use
1774 * by 'dst_'. The caller must *not* free 'dst_' with minimask_destroy(). */
1775 void
1776 minimask_combine(struct minimask *dst_,
1777 const struct minimask *a_, const struct minimask *b_,
1778 uint32_t storage[FLOW_U32S])
1779 {
1780 struct miniflow *dst = &dst_->masks;
1781 const struct miniflow *a = &a_->masks;
1782 const struct miniflow *b = &b_->masks;
1783 uint64_t map;
1784 int n = 0;
1785
1786 dst->values = storage;
1787
1788 dst->map = 0;
1789 for (map = a->map & b->map; map; map = zero_rightmost_1bit(map)) {
1790 int ofs = raw_ctz(map);
1791 uint32_t mask = miniflow_get(a, ofs) & miniflow_get(b, ofs);
1792
1793 if (mask) {
1794 dst->map |= rightmost_1bit(map);
1795 dst->values[n++] = mask;
1796 }
1797 }
1798 }
1799
1800 /* Frees any memory owned by 'mask'. Does not free the storage in which 'mask'
1801 * itself resides; the caller is responsible for that. */
1802 void
1803 minimask_destroy(struct minimask *mask)
1804 {
1805 miniflow_destroy(&mask->masks);
1806 }
1807
1808 /* Initializes 'dst' as a copy of 'src'. */
1809 void
1810 minimask_expand(const struct minimask *mask, struct flow_wildcards *wc)
1811 {
1812 miniflow_expand(&mask->masks, &wc->masks);
1813 }
1814
1815 /* Returns the uint32_t that would be at byte offset '4 * u32_ofs' if 'mask'
1816 * were expanded into a "struct flow_wildcards". */
1817 uint32_t
1818 minimask_get(const struct minimask *mask, unsigned int u32_ofs)
1819 {
1820 return miniflow_get(&mask->masks, u32_ofs);
1821 }
1822
1823 /* Returns the VID mask within the vlan_tci member of the "struct
1824 * flow_wildcards" represented by 'mask'. */
1825 uint16_t
1826 minimask_get_vid_mask(const struct minimask *mask)
1827 {
1828 return miniflow_get_vid(&mask->masks);
1829 }
1830
1831 /* Returns true if 'a' and 'b' are the same flow mask, false otherwise. */
1832 bool
1833 minimask_equal(const struct minimask *a, const struct minimask *b)
1834 {
1835 return miniflow_equal(&a->masks, &b->masks);
1836 }
1837
1838 /* Returns a hash value for 'mask', given 'basis'. */
1839 uint32_t
1840 minimask_hash(const struct minimask *mask, uint32_t basis)
1841 {
1842 return miniflow_hash(&mask->masks, basis);
1843 }
1844
1845 /* Returns true if at least one bit is wildcarded in 'a_' but not in 'b_',
1846 * false otherwise. */
1847 bool
1848 minimask_has_extra(const struct minimask *a_, const struct minimask *b_)
1849 {
1850 const struct miniflow *a = &a_->masks;
1851 const struct miniflow *b = &b_->masks;
1852 uint64_t map;
1853
1854 for (map = a->map | b->map; map; map = zero_rightmost_1bit(map)) {
1855 int ofs = raw_ctz(map);
1856 uint32_t a_u32 = miniflow_get(a, ofs);
1857 uint32_t b_u32 = miniflow_get(b, ofs);
1858
1859 if ((a_u32 & b_u32) != b_u32) {
1860 return true;
1861 }
1862 }
1863
1864 return false;
1865 }
1866
1867 /* Returns true if 'mask' matches every packet, false if 'mask' fixes any bits
1868 * or fields. */
1869 bool
1870 minimask_is_catchall(const struct minimask *mask_)
1871 {
1872 const struct miniflow *mask = &mask_->masks;
1873 const uint32_t *p = mask->values;
1874 uint64_t map;
1875
1876 for (map = mask->map; map; map = zero_rightmost_1bit(map)) {
1877 if (*p++) {
1878 return false;
1879 }
1880 }
1881 return true;
1882 }